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ABSTRACT

Context. The recurrent nova RS Ophiuchi undergoes nova eruptions every ∼10−20 years as a result of thermonuclear runaway on the
surface of a white dwarf close to the Chandrasekhar limit. Both the progress of the eruption and its aftermath depend on the (poorly
known) composition of the red giant in the RS Oph system.
Aims. Our aim is to understand better the effect of the giant secondary on the recurrent nova eruption.
Methods. Synthetic spectra were computed for a grid of M-giant model atmospheres having a range of effective temperatures 3200 <
Teff < 4400 K, gravities 0 < log g < 1 and abundances −4 < [Fe/H] < 0.5, and fit to infrared spectra of RS Oph as it returned
to quiescence after its 2006 eruption. We have modelled the infrared spectrum in the range 1.4−2.5 μm to determine metallicity and
effective temperature of the red giant.
Results. We find Teff = 4100±100 K, log g = 0.0±0.5, [Fe/H] = 0.0±0.5, [C/H] = −0.8±0.2, [N/H] = +0.6±0.3 in the atmosphere
of the secondary, and demonstrate that inclusion of some dust “veiling” in the spectra cannot improve our fits.

Key words. stars: abundances – stars: novae, cataclysmic variables – stars: late-type – stars: binaries: close –
stars: individual: RS Ophiuchi

1. Introduction

The recurrent nova (RN) RSOphiuchi is a binary system consist-
ing of a red giant (RG) star and a white dwarf (WD) with mass
near the Chandrasekhar limit (see Shore et al. 1996; Fekel et al.
2000, and references therein). RS Oph is the best studied of RNe,
and is known to have undergone at least five eruptions, in 1898,
1933, 1958, 1967 and 1985. Each eruption displays very similar
visual light curves (e.g., Rosino 1987). The most recent outburst
of RS Oph was discovered in 2006 February 12.829UT (Narumi
et al. 2006, this defines our time origin), and was the subject
of an intensive, multi-wavelength observational campaign, from
the radio to X-rays (Evans et al. 2008).

It is likely that, unlike classical novae, in which some of the
WD is stripped away in the nova eruption, resulting in a sec-
ular decline in the WD mass, the mass of the WD in RS Oph
may be increasing. If this is the case, the mass of the WD in
RS Oph may eventually reach the Chandrasekhar limit and ex-
plode as a Type Ia supernova (Starrfield et al. 2004;Wood-Vasey
& Sokoloski 2006). However this remains a matter of consider-
able debate (e.g., Ness et al. 2008).

Despite a long history of observations of RS Oph, our knowl-
edge of the secondary star is surprisingly sparse. The secondary

known to be a RG, (SIMBAD1 spectral type M2IIIpe+) yet lit-
tle is known about photospheric abundances. Scott et al. (1994)
claimed some evidence of a deficit of carbon in the secondary,
while Wallerstein et al. (2006) found a “rather small excess” of
metals.

A knowledge of abundances in the atmosphere of the RG
in the RS Oph system is of crucial importance for two reasons.
First, in contrast to classical novae, it seems that only material
accreted by theWD from the RG takes part in the thermonuclear
runaway (TNR) that leads to the RN eruption. A complete un-
derstanding of the TNR requires knowledge of the composition
of material deposited on the WD; moreover, knowing the com-
position of the material accreted by theWDwill make it possible
to predict, with some confidence, the composition of the ejected
material, without the complication of knowing (or guessing) the
amount of material dredged up from the WD. Second, the mate-
rial ejected in the RN eruption runs into the RG wind (Bode &
Kahn 1985), which is shocked, causing the gas to emit strongly
at X-ray (Bode et al. 2006; Ness et al. 2007), infrared (IR; Das
et al. 2006; Evans et al. 2007a,b) and radio wavelengths (O’Brien
et al. 2006). Indeed X-ray observations of the 2006 eruption

1 http://simbad.u-strasbg.fr/Simbad
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(Ness et al. 2008) show complex, evolving line emission, the
interpretation of which requires knowledge of the composition
of the RG wind, which is poorly characterised.

Here we report the results of a preliminary attempt to rigor-
ously determine some of the parameters of the RG in the RS Oph
system by modelling its IR spectrum after the 2006 eruption had
subsided. Special attention is paid to the abundances of carbon
and nitrogen, and to the isotopic ratio 12C/13C, which are primary
indicators of the state of stellar evolution.

From the known orbit (Fekel et al. 2000) we find that the
RS Oph system was close to quadrature during our observation,
so that the WD was illuminating half of the observed photo-
spheric hemisphere of the RG. Further papers will augment the
results presented here, and will address the issue of the irradia-
tion of the RG by the WD.

2. Observational data

RS Oph was observed in the IJHK bands with the UIST in-
strument (λ/Δλ � 1500) on the United Kingdom Infrared
Telescope (UKIRT) on 2006 August 25 (day 193.71) and on
September 18 (day 212.9). While the data cover the wavelength
range 0.87−2.51 μm only data in the 1.4−2.5 μm range are con-
sidered here. First order sky subtraction was achieved by nod-
ding along the slit; HR6493 was used to remove telluric features
and for flux calibration. Wavelength calibration used an argon
arc, and is accurate to ±0.0003 μm in the HK bands; further ob-
servational details may be found in Evans et al. (2007a). The
data were dereddened using E(B − V) = 0.73 (Snijders 1987).

We note that data at the edge of the atmospheric windowmay
be less reliable than elsewhere due to inadequate atmospheric
cancellation. While this has minimal effect on the most pertinent
diagnostic (molecular) features this may impact on our fit at the
window edges.

3. Procedure

3.1. Origin of CO bands

We are confident that the CO and CN bands originate in the at-
mosphere of the RG and may be used as a diagnostic of pho-
tospheric conditions. Some classical novae are known to display
CO emission (e.g., Evans et al. 2005) which may cause “veiling”
of the photospheric CO but the environment of RS Oph during
its eruption would never have been conducive to molecule for-
mation. Furthermore there is little or no change in the molecular
bands between the August and September observations, so we
are proceed on the assumption that these features arise in the
RG atmosphere.

3.2. Model atmospheres and synthetic spectra

We compute plane-parallel model atmospheres of evolved stars
in LTE, with no energy divergence, using the SAM12 program
(Pavlenko 2003), which is a modification of ATLAS12 (Kurucz
1999). Chemical equilibrium is computed for molecular species
assuming LTE. The opacity sampling approach (Sneden et al.
1976) is used to account for absorption of atoms, ions and
molecules (for more details see Pavlenko 2003). The 1D con-
vection mixing length theory modified by Kurucz (1999) in
ATLAS12 was used to account for convection. The computed
model atmospheres are available on the web2.

2 ftp://ftp.mao.kiev.ua/pub/users/yp/RS.Oph

Synthetic spectra are calculated with the WITA6 program
(Pavlenko 2000), using the same approximations and opaci-
ties as SAM12. To compute synthetic spectra we use line lists
from Plez (1998, TiO), Goorvitch (1994, CO), Kupka et al.
(1999, VALD), Kurucz (1993, CN), and Barber et al. (2006,
H2O). The shape of each molecular or atomic line is determined
using the Voigt function. Damping constants are taken from
line databases, or computed using Unsold’s (1955) approach. A
wavelength step Δλ = 0.5 Å is employed in the synthetic spectra
computations.

In our computations we adopt a microturbulent velocity
Vt = 3 km s−1. This value is somewhat higher than the Vt ∼
2 km s−1 found in the atmospheres of RGs (see Foy 1978).
However a higher value may be more realistic for the secondary
of a RN. Unfortunately our spectra are not suitable for a more
accurate determination of Vt; we will further investigate this in
forthcoming papers.

3.3. Fits to observed spectra

To determine the best fit parameters, we compare the observed
fluxes Fν with the computed fluxes Fx

ν following the scheme
of Pavlenko & Jones (2002). We adopt a Gaussian profile
(FWHM = 0.002 μm) to model line broadening. We then find
the minima of the 3D function

S ( fs, fh, fg) =
∑

ν

(
Fν − Fx

ν

)2 ,

where Fν and Fx
ν are the observed and computed spectra respec-

tively, and fs, fh, fg are the wavelength shift, the normalisation
factor, and the profile broadening parameter, respectively. The
model parameters are determined by minimising S for every
computed spectrum, and from the grid of the better solutions
for a given set of abundances and/or other parameters (microtur-
bulent velocity, effective temperature, isotopic ratios, etc.), we
choose the best-fitting solution.

For many evolved stars some of the flux, particularly at
longer wavelengths, arises from dust in the circumstellar envi-
ronment. On the other hand any inadequate atmospheric cancel-
lation (see Sect. 2) can mimic the presence of circumstellar dust.
Either of these effects provides a source of “veiling” in the ob-
served spectra, such that Ftotal = Fatmos + a0, where a0 is the flux
formed outside the stellar photosphere. In this case we should
minimise Ftotal − Fobs, whilst considering Fenvelope as an addi-
tional parameter (see Pavlenko & Geballe 2002; Pavlenko et al.
2004, for more details). In the present paper we refer to both of
these effects as “veiling”.

3.4. Algorithm to determine best fit

We carry out the process in several steps, as follows:

1. we compute a small grid of model atmospheres in the range
of metallicities [Fe/H] = 0.5, 0,−1,−2,−3,−4, effective
temperatures Teff = 3400, 3600, 3800, 4000 K and log g =
0, 0.5, 1;

2. the main absorption features in the observed spectrum
were identified (excluding the emission lines arising in the
shocked wind and ejecta);

3. for these models we compute synthetic spectra;
4. after determining the basic parameters of RS Oph we com-
pute further grids of synthetic spectra, but incorporate at this
stage a range of possible non-solar abundances for carbon
and nitrogen;
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Fig. 1. Contribution of different species to the formation of the observed
spectrum of RS Oph (bottom plot), which still displays emission lines
following the eruption. Computed spectra, showing contributions of
12CO, 13CO and CN are shifted vertically for better presentation
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Fig. 2. Determination of the best fit from the family of solutions ob-
tained for model atmospheres of different Teff and [Fe/H].

5. the best fits were found following the schemes described in
Sect. 3.3, i.e. we obtained solutions with and without veiling;

6. the best fit was determined from the both non-veiled and
veiled solutions.

4. Results

4.1. Fits to the SED of RS Oph: models with different
metallicities

The main features in the photospheric spectrum of RS Oph are
absorption by 12CO and 13CO around 1.6 and 2.3 μm respec-
tively, where the first and second overtone (Δυ = 2 and 3 respec-
tively) bands of CO are located (see Fig. 1). Some features at
λ < 1.6 μm are due to absorption by CN bands.

The slopes of the spectral energy distribution (SED) and the
intensity of molecular bands in the modelled spectra depend on
both Teff and [Fe/H]. This allows us to refine both parameters
from analysis of the best fits of the synthetic spectra to the ob-
served spectrum of RS Oph. In Fig. 2 we show the dependence
of the best fit parameter S on Teff and on [Fe/H]. Here the range
of metallicities is restricted to the range [–2. . .+0.5]; for lower
metallicities the minimisation does not produce any meaning-
ful fits because the features in the computed spectra become
too shallow. The computations in Fig. 2 were carried out for
the veiling-free case, and the abundances of carbon and nitro-
gen were scaled by the factor [Fe/H].

The best fit over the wavelength range 1.506−2.490 μm has
S = 0.1565 ± 0.0005 for Teff = 3400 ± 100 K, log g = 0.0 ± 0.5
and [Fe/H] = 0.0±0.5We note that our best solution is consistent
with normal (solar) metallicities (see Anders & Grevesse 1989).
However over the wavelength range 1.491−2.490 μm (which in-
cludes the CN bands at the blue end of the spectral range),
we obtain a better solution, with S = 0.2066 ± 0.0006 for a
model atmosphere with the same Teff = 3400 ± 100 K, and
[Fe/H] = 0.0 ± 0.5, but with log g = 1 ± 0.5 (note that the value
of S depends on the wavelength range over which the compari-
son between observed and computed spectra is made). However,
further analysis (Sect. 4.2) shows that the CO and CN bands
in our theoretical spectra do not have the proper intensities for
these parameters if simultaneous fits are attempted over a broad
wavelength range.

4.2. Fits to the SED of RS Oph: models with different
abundances of carbon and nitrogen

Numerical experiments showed that, in order to get acceptable
fits of both CO and CN bands, the carbon abundance must be
reduced, while the nitrogen abundance must be increased. To
determine the appropriate abundances of carbon and nitrogen we
compute the second set of synthetic spectra varying abundances
of carbon logN(C) and nitrogen logN(N) over a wide range.

Computations were carried out for the case of (i) “normal
metallicities”, i.e. all abundances other than N and O were taken
to be solar, [Fe/H] = 0.0; and (ii) slightly enhancedmetallicities,
[Fe/H] = +0.5. For model atmospheres having solar abundances
we performed computations for −1.2 < [C/H] < −0.2 and 0 <
[N/H] < +1.2. Sets of variable carbon and nitrogen abundances
were adopted with a step of 0.2 dex. We note that the adopted
variations of the C and N abundances have minimal effect on the
temperature structure of the RG model atmosphere for Teff in the
range 3600−4400 K. With these refined abundances of carbon
and nitrogen we carried out the entire set of computations and
comparison.

Better fits to the observed SEDs were obtained for
model atmospheres with Teff/log g/[Fe/H] = 4000/0.0/0.0,
4000/1.0/+0.5, 4200/0.0/0.0 with S = 5.176 ± 0.031, 5.110 ±
0.031, 5.130 ± 0.031, Figs. 3−5, respectively. Formally the best
solution we obtain is for the 4000/1.0/+0.5 set of parameters.
However, as illustrated in Fig. 5:

– the fit to the observed slope at λ > 2 μm is better with model
spectra computed with the 4000/0.0/0.0 and 4200/0.0/0.0
model atmospheres;

– a few of the sufficiently strong atomic lines computed for the
metal-rich model atmosphere are too strong by comparison
with observations.

Both these factors provide good constrains for choosing the
best solution, which is provided by two model atmospheres
4000/0.0/0.0 or 4200/0.0/0.0, and with [C/H] = −0.8 ± 0.2,
[N/H] = +0.6 ± 0.3.

Emission measure distribution analysis and APECmodelling
of line fluxes derived Chandra and XMM-Newton spectra ob-
tained over a period 240 days post-outburst (Ness et al. 2008)
indicates that the metallicity of the ejecta is ≈0.5 solar, with N
to be overabundant and Fe to be underabundant relative to O.
The N overabundance derived by Ness et al. (2008) suggests
that the material accreted by the WD from the RG secondary
is N-enhanced, in qualitative agreement with our models.

The deduced effective temperature Teff (4000−4200 K)
of RS Oph corresponds well with the upper limit of the
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in the Table 1.
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conventional mean values for spectral classes M0−M2 (see
http://www.astro.umd.edu/∼roger/ pubs/ mtemps.ps).
Perhaps, this Teff is a consequence of irradiating of the pho-
tosphere of RS Oph by WD. In general this range of Teff
corroborates our expectation that the effect of irradiation of
atmosphere of RS Oph should not significantly affect the IR

spectra. The effect of irradiation should be more critical for the
optical part of the spectrum, especially its blue and UV regions.

The inclusion of even a small amount “veiling” (see
Sect. 3.3) reduces the quality of the fits (see Table 1). This result
implies that at the time of our IR observations the contribution
of any dust envelope (Evans et al. 2007b) around RS Oph was
negligible.

4.3. Fits to the CN and CO bands

We obtain good fits to the CN bands around 1.6 μm, and to the
CO bands around 1.6 (Fig. 4) and 2.3 μm (Fig. 5). In the 2.3 μm
range both 12CO and 13CO bands are observed and in princi-
ple, we can use these to determine the isotopic ratio 12C/13C.
However, due to the low spectral resolution of our data, we can
only infer a lower limit on the 12C/13C ratio in the RG photo-
sphere, 12C/13C > 10. The model spectra shown in Figs. 4, 5
were computed for 12C/13C = 14, and the general picture is not
changed for a somewhat lower value, 12C/13C = 9. We will re-
port better estimates of 12C/13C in forthcoming papers.

5. Discussion and conclusion

Our results are obtained in the “classical” approach, using plane-
parallel model atmospheres with no sinks or sources of energy.
However, at the time of our observation, the IR spectrum dis-
played strong H and He lines from the shocked wind and ejecta
(Evans et al. 2007b). RS Oph is (following outburst) known to
be a strong source of x-radiation and in principle, the flux of high
energy photons could change the outermost layers of RG atmo-
sphere. However, the IR flux originates deep in the atmosphere
of the RG, so that a thick slab of cool material lies above the
IR photosphere: high energy photons cannot penetrate these lay-
ers and are not likely to affect our general conclusions. We will
be assessing the effects of irradiation as the RG is observed with
the WD in different orbital configurations.

There is evidence for a modest deficit of carbon, and over-
abundance of nitrogen, in the atmosphere of the RG. It may
be that carbon was converted to nitrogen in the CN cycle (see
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Table 1. Log abundances of carbon and nitrogen obtained from the best fit of the infrared spectra of RS Oph.

Dusty-free case
Teff(K) 3800 4000 4200 4400
[Fe/H] 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
S *100 6.403 5.667 5.176 5.110 5.130 6.019 5.393 9.355
log g 0.0 0.5 0.0 1.0 0.0 0.5 1.0 1.0

[C/H]/[N/H] –1./0 –0.5/+0.4 –0.8/+0.4 –0.2/+1.2 –0.8/+0.9 –0.2/+0.2 –0.2/+0.8 –0.2/+1.2

“Veiled” model
Teff(K) 3800 4000 4200 4400
[Fe/H] 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5
S *100 9.176 6.929 5.738 6.149 5.374 5.900 5.574 7.653
log g 0.0 0.0 0.0 1.0 0.5 1.0 1.0 0.5

[C/H]/[N/H] –0.8/0 –0.8/+0.2 –0.6/+0.8 –0.4/+1.0 –0.4/+0.4 –0.3/+1.2 –0.2/+0.6 –0.2/+1.2
a0 0.02 0.02 0.12 0.02 0.02 0.02 0.02 0.02

Sneden et al. 2000) during the previous evolution of the sec-
ondary. Alternatively, there may have been some pollution of
the RG surface by products of former eruptions. Nevertheless,
the C and N abundance, together with the 12C/13C ratio when it
becomes available, will provide new constraints for theoretical
models of the TNR and its aftermath.

Furthermore, determination of the oxygen abundance in the
atmosphere of the RG will be of crucial importance for two rea-
sons: first, oxygen cannot be formed in the interiors of low and
intermediate mass stars and second, oxygen may have been pro-
duced in past RN eruptions. In any case, the determination of the
oxygen abundance should clarify the origin of the carbon and ni-
trogen abundances.

Our UKIRT RS Oph programme is ongoing and in future pa-
pers we will address the effects of irradiation, the 12C/13C ratio.
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