
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Undergraduate Honors Theses

2021-03-18

Automated Cyber Ranges: Design Features, Architectures, Automated Cyber Ranges: Design Features, Architectures,

Scenarios and Impacts Scenarios and Impacts

Dezhang Wen

Follow this and additional works at: https://scholarsarchive.byu.edu/studentpub_uht

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Wen, Dezhang, "Automated Cyber Ranges: Design Features, Architectures, Scenarios and Impacts" (2021).
Undergraduate Honors Theses. 182.
https://scholarsarchive.byu.edu/studentpub_uht/182

This Honors Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Undergraduate Honors Theses by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/studentpub_uht
https://scholarsarchive.byu.edu/studentpub_uht?utm_source=scholarsarchive.byu.edu%2Fstudentpub_uht%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/studentpub_uht/182?utm_source=scholarsarchive.byu.edu%2Fstudentpub_uht%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

i

Honors Thesis

AUTOMATED CYBER RANGES: DESIGN FEATURES,

ARCHITECTURES, SCENARIOS, AND IMPACTS

by

Dezhang Wen

Submitted to Brigham Young University in partial fulfillment

of graduation requirements for University Honors

Information Technology Department

Brigham Young University

April 2021

Advisor: Justin Giboney

Faculty Reader: Amanda Hughes

Honors Coordinator: Derek Hansen

ii

iii

ABSTRACT

AUTOMATED CYBER RANGES: DESIGN FEATURES,

ARCHITECTURES, SCENARIOS, AND IMPACTS

Dezhang Wen

Information Technology

Bachelor of Technology

As cybersecurity becomes increasingly important in the digital world, the need for

a virtual environment where security professionals can safely practice defending against

real-life attacks is gradually rising. This thesis explores, participates in, and expands upon

the design and implementation of such an environment, also known as a “cyber range”. We

build a model where real-life attacks and defense can be successfully simulated, as well as

further improving the process through automation. Ultimately, it proposes and experiments

with the idea of an automated cyber range in order to enhance both the efficiency and

effectiveness of a security testbed.

iv

v

ACKNOWLEDGMENTS

I would like to thank Dr. Justin Giboney for providing me the opportunity of

working on this project, as well as all of his guidance and help along the way. I also would

like to thank Dr. Derek Hansen and Dr. Amanda Hughes for their support and assistance.

Lastly, I would like to thank every person who has participated in the project, especially

Jacob Siebach, Timothy Smith, Maria Feist, and Kylie Johnson. Without our combined

effort, this project would not have been possible.

vi

vii

TABLE OF CONTENTS

Title ………………………………………………………………………………………. i

Abstract …………………………………………………………………………………. iii

Acknowledgments …………………………………………………………………….…. v

Table of Contents ………………………………………………………………………. vii

List of Figures ……………………...…………………………………………………… ix

Introduction ……………………………………………………………………………… 1

Design Features ………………………………………………………………………….. 6

Architecture Implementation …………………………………………………………... 10

Testing Scenario ………………………………………………………………………... 18

Impacts …………………………………………………………………………………. 20

Conclusion ……………………………………………………………………………... 24

References …………………………………………………………………………….... 25

viii

ix

LIST OF FIGURES

Figure 1: Project Design Sequence Diagram …………………………...……………… 12

Figure 2: Terraform Sequence Diagram …………………………….…………………. 14

Figure 3: Nmap Test Result ……………………...………………………………….…. 19

x

1

Introduction

 As the world becomes mediated through digital technologies, cyber-attacks are

also becoming more common and dangerous. In 2003, the worldwide expenditure due to

cyberattacks, such as botnet and denial-of-service, exceeded thirteen billion dollars and

this number has only been going up in the past years (Cashell etc., 2004). Apart from

ones performed by hacking enthusiasts and security professionals, there are various

malicious attacks conducted at large scales by organized crime groups and even teams

backed by government agencies across the globe. Such attacks should not be taken lightly

not only because of the pecuniary cost they can bring, but also the threat they possess to

people’s right of online privacy and freedom.

In order to better combat and prevent cyber-attacks, it is essential to provide a

safe testbed where security professionals can safely practice defending against real-life

attacks. Such testbeds are known as “cyber ranges”. A cyber range is defined as a

controlled virtual environment used in cybersecurity training as an efficient way for

professionals to gain practical knowledge through hands-on activities (Pham etc., 2016).

To accomplish the said goal, features that a cyber range implements include simulating

common cyber-attacks, creating real-life security scenarios, testing possible defense

techniques, and others. However, designing, building, and evaluating such environments

is a challenging problem and one that warrants extensive research and experiment in

order to succeed.

1.1 Past Research

2

The earliest forms of security training were often set in a physical classroom

setting, where slides were presented and lectures were given. Over the years, such

conventional methods of security training have been proven to be ineffective. Not only

are most of the lectures and presentations repetitive, the lack of practical experience

involved also greatly hinders people’s abilities to translate classroom concepts into real-

world applications. Although such methods are still commonly used in the security field

today, researchers and industry professionals have been experimenting and developing

new ways for better security training, including hands-on competitions, challenges, and

exercises. Such events will not only enhance participants’ diverse security skills, but also

do so in a more practical and fun fashion.

Capture the Flag (CTF) is among one of the most popular security training

programs initiated in the recent decade. A CTF competition is one where the participants

search for flags in a virtual environment and score points for finding them. Because of its

game-like model and extensive hands-on opportunities, CTF has quickly gained interest

in the security field and has been adapted to various security training procedures. One of

the largest CTF competitions is called the GenCyber Capture the Flag competition,

created and sponsored by the United States National Security Agency (NSA) as part of its

GenCyber program (McDaniel etc., 2016). Participants who compete in this GenCyber

CTF range from middle schoolers all the way up to college students, and other more

advanced CTF competitions even attract audiences with full-time security jobs.

Other than CTF, cyber defense competitions are also ever-growing around the

nation. While a CTF competition puts the participant in the shoes of the attacker in order

to spot the possible vulnerabilities in an application, a cyber defense competition does the

3

opposite. It lets the participants take on a defensive role in trying to defend against

various attacks. The very first cyber defense competition, the Cyber Defense Exercise,

was create by the NSA to test the ability of students from various military academies to

defend certain networks. In recent years, more and more schools and organizations have

incorporated this idea into security training, creating more cyber defense competition and

at a larger scale. One example is the National Collegiate Cyber Defense Competition,

where students from all over the nation compete with each other to protect established

network infrastructures (Conkin etc., 2006).

1.2 Current State

While it is indeed exciting to see new models and methods for security training

emerging, the idea of establishing a cyber range by incorporating hands-on exercises into

one environment has only come forward recently. There are only a few research projects

dealing with designing such environments. While there are many theories and concepts

being explored in the security field, technical implementation and design details are still

in the early stage.

The Nation Cyber Range (NCP) is one of the largest and earliest cyber range

projects that is currently active. It is established by the Defense Advanced Research

Projects Agency (DARPA), part of the United States Department of Defense. The NCR,

once successfully developed, serves to provide a unique environment for cyber security

testing by using different methods to assess resiliency to advanced cyberspace security

threats. The NCP approaches the challenge of designing a cyber range by representing an

Internet-like environment by employing a multitude of virtual machines and physical

4

devices augmented with traffic emulation, vulnerability scanning, data capture, and

penetration tools (Ferguson etc., 2014). While the NCP is still under development and

testing, the overarching concept has been quickly adopted by many other researchers and

government agencies as a guideline for designing a cyber range.

The Cyber Range Instantiation System (CyRIS) is another example of an on-

going cyber range project that is more transparent, up-to-date, and comprehensive.

Developed by researchers from the Japan Advanced Institute of Science and Technology

(JAIST), CyRIS is a cyber range model designed to automatically prepare and manage a

cyber range for cybersecurity education or training based on specifications manually

defined (Pham etc., 2016). CyRIS’s method to achieve automation in creating and

managing a cyber range is to deploy one machine first through pre-defined scripts and

then clone that machine a number of times in order to set up the entire environment. If the

NCP solves the challenge of designing the overarching architecture of a cyber range, then

CyRIS solves the challenge of how to efficiently deploy and implement such an

architecture.

 While there are numerous other existing research projects on the topic of the

cyber range, the above two are the most prominent ones and ones that are widely

referenced in the security field. After careful examination and analysis of the current state

of cyber ranges, a project overview is presented in the next section.

1.3 Project Overview

First of all, the research question of this project was presented by the BYU

Cybersecurity Research Lab: how to successfully design, implement, and automate a

5

cyber range in order to test various cyber attacks and defenses effectively, efficiently and

securely. Circling this research question, the entirety of the project could be divided into

four major steps: designing, implementing, automating, and testing. Each of the steps was

essential to the entirety of the project and will be explained in detail individually below.

• Designing

The designing portion was the first step in this project. This portion was

mainly brainstorming and coming up with the design of the cyber range

and was possibly the most important one out of the four. It consisted of

thinking about various rudimentary problems and solving them, such as

deciding how to set up the cyber range, what different components it

would have, how the components would talk to each other, what

technologies to use for each component, how to connect the various

technologies, and others.

• Implementing

After the designing was finished, the second step was to implement the

design. This step established the overarching architecture of the range, as

well as installing and connecting any technologies needed. How the

implementation was done largely depended on how the range was

designed. Choosing the most efficient and safe tools, algorithms, and

applications was the key.

• Automating

The third step of the project was to automate the range, which technically

was still part of the implementation. As stated previously, research

6

surrounding automation in cyber ranges was very scarce and most research

is still in early stages. This step was to experiment on how to run the cyber

range with as little manual interaction as possible, potentially making it all

automated.

• Testing

After the previous steps were both finished, the last step of the project was

to test everything. What tests to run, how the tests were run, and what

results to expect also largely depended on the design and partially the

implementation. Example tests included port scanning, fingerprint,

injection attack, and others.

Design Features

 This section of the thesis talks about the design features of the project. Such

features include the flow of the range, application choices, and others. The central

research question of the project was how to successfully design, implement, and automate

a cyber range in order to test various cyber attacks and defenses effectively, efficiently

and securely, and it is important to keep this question in mind during the design process.

2.1 Hosts Setup

 Similar to NCP’s approach to designing a cyber range, the flow of the cyber range

started out with setting up the virtual machines, which were used as hosts in the range.

Such machines were divided up into two teams: the red team and the blue team. Each of

7

the two team was essential to the overall design and each had its own responsibilities and

tasks. First of all, the red team was the offensive team and its main responsibility was to

attack. Each machine in the red team was able to deploy various attacks onto specified

targets. The targets, secondly, were virtual machines on the blue team. The blue team was

the defensive team and its main responsibility was to defend against the red team. Each

machine in the blue team was pre-configured with various kinds of vulnerabilities that the

red team machines could attack. Ultimately, machines for both the red and blue teams

were the main players in the range; they provided the platform for different

vulnerabilities to be installed, as well as various types of attacks to be deployed. It was

important that all the machines should get set up in an efficient and safe environment.

Efficiency was needed because fast recreation and teardown of the machines were

required for experimenting with different scenarios; safety was also important because

certain attacks were extremely malicious if not carefully handled and it was absolutely

necessary to ensure that no damages were done to actual devices, applications, or servers.

2.2 Networking Configuration

 After the virtual machines for both the red and blue teams were set up and ready

to go, the next step was to configure the networking between the machines. For both the

red and blue teams, all the machines were in the same network environment; additionally,

the first three ports that should be open were port 80 for HTTP, port 443 for HTTPS, and

port 22 for SSH. The internet ports needed to be open because certain services or

applications needed to be installed on the machines as preparations. The port for SSH

needed to be open in order to support manual configurations inside the machines. After

these three ports, other networking configurations could then be applied depending on the

8

types of attacks and vulnerabilities tested. For example, if an SQL injection attack were

to be tested against a misconfigured File Transfer Protocol (FTP) server, then port 21 for

FTP should be open. Therefore, the networking differed due to the different attacks being

experimented with, but port 80, 443, and 22 should be opened up for installing services

and manual configurations.

2.3 Internal Logic

 Once the virtual machines and networking were completely configured, it was

time to design the internal logic of the cyber range itself. The first thing to think about

was how to set up the attacks. The approach that we took to solve this challenge was to

have different types of attacking scripts targeted at different types of vulnerabilities. Such

scripts were the attacks used by the red team and they could be either stored physically on

the red team machines or remotely stored in an online container where the red team

machines could grab them from. After the attacking scripts were written and ready to go,

the blue team machines would install the necessary vulnerabilities corresponding to

whatever attacks were available. This way, each attacking script had a target blue team

machine to deploy an attack onto. It was important to note here that one red machine

could have more than one attacking script stored; similarly, each of the blue machines

could have more than one vulnerability. This directly related to the next phase in the

design, which was automation.

2.4 Redteam Engine / Automation

 After the attacking scripts were set up on the red team machines and the

vulnerabilities were installed on the blue team machines, now it was time to test out the

9

attacks. Because one of the goals in the research question was to automatically deploy

attacks onto various vulnerabilities, it was not enough to manually send out the attack

scripts one by one onto the blue machines; we wanted to do so in a way that required as

few user interactions as possible, potentially achieving full automation. There are a few

main reasons why we would want automation in a cyber range. First of all, it could

greatly increase the fairness to different teams and make sure that there were not any

errors from the red team. Secondly, automation can greatly increase the efficiency for

security training. As of currently, most tasks of the red teams in a cyber range were still

being done by actual humans. By making the red team automated, it could reduce the

time of setup and response, ultimately making the whole process more fluid and less

time-consuming. To accomplish this goal of automation, we took the approach of

building a “Redteam Engine”. The engine reached the goal of automated attacks through

the following steps:

1. Take out all the available attack scripts from either a local directory or an

online container

2. Store a reference to each script into a data structure that allows for easy

insertion and deletion

3. Loop through the data structure

4. Each time a reference is found, deploy the attacking script corresponding

to the reference onto the target blue machine

5. After the deployment is finished, the reference will be removed and the

next reference will be called to deploy the next script

10

6. After every reference is called and nothing is left, the loop stops and an

intelligencer checks the attacking results

The engine should be installed on every red team machine, thus potentially

automating the attacks in the cyber range. This was the design features of an automated

cyber range, and further changes or improvements are discussed later in this paper.

Architecture Implementation

 After successfully designing the overall architecture of the cyber range,

implementation came. This section of the paper talks about the technologies used for

implementation, the process of implementing each functionality, and what they

accomplished in response to the central research question.

3.1 Technologies to Use

 Before getting into the details of the architecture implementation of the cyber

range, it was necessary to determine what technologies to use and how to use them

compatibly. As stated in the “Design Features” section, it was important to choose

technologies that were convenient, stable, and safe. Stability was important because the

entire range would be built on top of all the technologies chosen, and it was important

they should not conflict with each other during any stage or cause any problems.

Convenience was needed for potential reproduction and duplication, and safety should

always be kept in mind when dealing with potentially malicious software or applications.

After careful selection and review, the following technologies were used during stages of

11

the implementation; each of them is further explained later in detail on why they were

chosen, how they were used, and what they accomplished for the project.

• Terraform

Terraform is an open-source infrastructure as code software tool used for

building, changing, and versioning infrastructure safely and efficiently.

This was used to automate the setup for all the virtual machines and

networking configurations.

• Amazon Web Service (AWS)

o Elastic Compute Cloud (EC2)

EC2 is a service that allows users to launch and manage AWS

resources, such as virtual machines, in the cloud with minimum

friction. This was used to host all of the virtual machines, both red

team and blue team.

o Virtual Private Cloud (VPC)

VPC is a service that allows users to compute inside an isolated

virtual network, which will be used to manage the networking

configuration of the virtual machines.

• Git / GitHub

Git / GitHub is a tool used mainly for code storage and version control. It

allows for efficient team cooperation within a team, as well as acting as a

backup method for the project in case of emergencies or accidents.

12

3.2 Implementation Sequence Diagram

The implementation of the design was divided into five main stages: deployment,

initialization, queue, script, and exploiter. A sequence diagram for the implementation

was shown in Figure 1. Each of the individual components of the design was explained in

detail in its own section. The deployment stage corresponded to “Hosts Setup” and

“Network Configuration” in the design, while the remaining four components

corresponded to “Redteam Engine / Automation”.

Figure 1: This image is the sequence diagram for the overall design of the cyber range

being built. Starting from left to right are the five components of the design: Terraform

13

for the deployment, initialization using NodeJS, queue to store the attacking scripts, the

attacking scripts, and the exploiter that executes each script.

3.3 Deployment

 As the first stage, the deployment establishes the foundation of the entire project;

it consists of the deployment of virtual machines for both the red and blue teams, as well

as the networking configurations. During this stage of the implementation, the red team

machines inherite most of the other design features, specifically the queue, the scripts,

and the exploiter. Further details about this are explained in later sections. On the other

hand, the blue team machines mainly consisted of various vulnerabilities that the red

team machines would exploit. Therefore, it was important to differentiate the two teams

from each other in the deployment process so that it is obvious which machine belongs to

which team.

 The two major technologies used in the deployment stage were Terraform and

AWS, specifically EC2 and VPC. While EC2 and VPC were used to host the virtual

machines and manage the network, Terraform was used to automate the process of the

setup. If the user had to go into the AWS Console and manually prepare everything, that

would be extremely inefficient and defeating the purpose of an automated cyber range. In

order to achieve automatic setup, rather than duplicating a manually created machine like

the CyRIS project, Terraform was used to accomplish the goal. The fact that the entire

cyber range could be treated as an infrastructure and Terraforms compatibility with AWS

made the entire process straightforward and convenient. Therefore, a Terraform script

14

was created so that when it ran with one simple command, it set up everything needed for

the deployment stage.

 The Terraform script can be broken down into five major components:

networking which consists of VPC and subnetting, security groups, hosts, and tasks. Each

component is directly related to the configuration of the virtual machines and networks

that are being deployed in AWS.

Figure 2: Sequence Diagram of the Terraform Script. From left to right: Variables,

VPCs, Subnets, Security Groups, Hosts, and Tasks.

15

3.4 Initialization

After successfully running the Terraform script, the virtual machines and network

for both the red team and the blue were ready to go. Next was to start the initialization

stage of the cyber range. This was also the first stage of “Redteam Engine/Automation”

from the design.

The initialization stage of the design was divided into three main steps, as shown

in the following order:

1. Grab an available attacking script stored in either a local directory or a

remote container.

2. Create an object based on the reference to local path of the current

attacking script. The object consists of various attributes based on the

script, which will be further discussed in the next stage.

3. Pushing object created into the queue, which is the next stage.

4. Keep populating the queue with every object created until there is no more

available script to create object from

5. Call the queue

3.5 Queue

 The third stage of the design of the cyber range was the queue. This queue was

implemented as a ring buffer using a double-linked list as the data structure and was

mainly used to store the script objects. The objects were first created in the initialization

16

stage and were passed into the queue after finishing initialization. Each object in the

queue consisted of several main attributes as shown in the following list:

• Name of the current attacking script

• Reference/path to the current attacking script

• Type of the current attacking script

• Target of the current attacking script

• Time at which time the script will be executed

Every time the queue was called, the “while” loop inside the queue ran under the

condition that as long as there was something inside the queue, it would keep cycling.

Once an object was found, the queue would pass the object, along with all the attributes

inside the object to the exploiter, where the script would be called and the attack would

be executed.

3.6 Scripts

 The fourth stage of the design of the cyber range was the scripts used by the red

team for attacking. While the actual contents of the script had nothing to do with either

the queue or the exploiter, it was important to introduce them in between the queue and

the exploiter because they were being passed from the queue to the exploiter as objects,

which were created based on their respective attributes.

 There were various types of scripts that could be tested in the range. Depending

on the attack being tested, example script types included port scanning, SQL injection,

17

fingerprinting, denial-of-service, and others. They could be either written manually or

obtained from free sources online. One important thing to note was that no matter what

scripts were being tested in the range, they must be accessible by the red machine sending

out the attack; additionally, each script must have a unique name, the reason for which is

explained in the next stage. In this specific project, we stored the scripts locally on the red

machines for a more convenient approach.

3.7 Exploiter

 Last but not least was the final stage of the design, the exploiter. The main

function of the exploiter was to correctly execute the attacking script onto the correct

target based on the object passed in from the queue. Once the queue found at least one

object, it would then pass the object to the exploiter. The exploiter would know which

exact attacking script the object was based on because of the unique name of each script.

After the script was successfully executed, the exploiter generated a certain response and

went back to the queue, where the next object was sent out. The cycle continued until

every single object in the queue was sent out to the exploiter for execution, thus

accomplishing the goal of automation.

 This concluded the implementation section of the cyber range. When everything

was successfully implemented, the cyber range was ready to go and tests could be

deployed.

18

Testing Scenario

 After the implementation of the cyber range was finished, it was time to test it in

various scenarios and see if things would turnout as expected. The testing scenario

present here was an Nmap scan test. The blue machine being tested on was configured to

have public exposed ports and vulnerable services, so that they should be discovered after

the attack was deployed.

4.1 Nmap

 The scenario that we were testing was to run the range and then automatically

deploy an Nmap scan on a designated blue machine. In order to do this, there were a few

preparatory tasks that needed to be done. These tasks should exist every time a unique

test was being conducted; although such tasks might vary from test to test, it was

important to complete them beforehand to ensure the success of the test.

1. Installation of Nmap on Red Machine

Nmap is an open-source network scanner used to discover hosts and

services on a network through packet traffic. It was used to discover any

public exposed ports or services running on the target blue machine.

2. Installation of NodeJS on Red Machine

Because the “Redteam Engine” was entirely written in NodeJS, it was

necessary to install NodeJS on the red machines in order to run the engine.

3. A Written Nmap Script

19

After the installation of Nmap and NodeJS were finished on the red

machine, the next step was to write the actual Nmap script. In this

scenario, we used Python to write the Nmap script and then tested it to

ensure that the script itself had no errors.

4. Installation of Python on Red Machine

As stated above, because the Nmap script was written in Python, the red

machine deploying the attack needed to have Python installed in order for

the attacking script to run.

 After all the preparatory tasks were finished, it was time to start the range and run

the test. In order to start the range, a simple command was run and the result is shown

below:

Figure 3: Starting the range and deploying a Nmap script onto a vulnerable blue

machine

20

 As shown in the image above, the flow of the range was displayed. The

initialization code was the first to be executed. After that, an object was added to the

queue with all the necessary attributes. Next, the Python script was deployed on the blue

machine with the corresponding address. When the attack finished, certain responses

were sent back. In this particular scenario, it was shown that the blue machines had

several public exposed ports and services; after obtaining this information, we could then

deploy further attacks aimed at such services and ports. Right now, the architecture that

we designed did not support building up attacks based on each other, and each of the

attacks were individual by itself. But for future development, we can have the

architecture get results from a test like this and then automatically deploy other attacks

that are relevant.

Impacts

5.1 Potential Improvements / Changes

 Looking back at the progress made so far in this project, there were a few

potential improvements and changes that would have made the project more efficient and

optimized.

1. Remote Container for Storing Attacking Scripts

When designing the project at the beginning, we originally had the thought of

placing all the attacking scripts for the red team in a remote container. But in

the actual implementation, we chose to store them locally on each individual

21

red machine that was used to attack. Even though this was more convenient

because there was only one machine on the red team during testing, it would

not remain so in a cyber range with a larger scale. If a cyber range were to

have ten machines on the red team, it would be a hassle to manually store the

attacking scripts in each one of them. Therefore, to store all the script in a

remote container and have each red machine pull from it would be much more

efficient.

2. Designated Machine for the Redteam Engine

Redteam Engine was designed in a way that every machine on the red team

had to be installed with it. While there were ways to automate the installation

of the engine onto every machine through tools like Terraform, we could still

further improve the overall efficiency by having a designated machine

specifically for the engine. For example, if a red machine were to deploy a

XSS attack onto a blue machine, it would just need to call the engine stored on

another machine in the same network and let that engine deploy the attack

instead.

3. Difficulty Levels

An idea that originally came up during the design of the cyber range was to

give each attacking script a difficulty level. This was to give the tester the

ability to choose a difficulty level at the beginning of the initialization stage

and only the scripts with the matching difficulty level would be initialized into

the queue. Due to time constraints and technical difficulty, the functionality

22

was not implemented but it would be a great improvement to add to the

project for more customizability.

5.2 Future Research

 Since this project is still ongoing and will likely continue its development in the

future, there are a few research routes that can be sought after to further extend the

functionalities of the cyber range.

1. Reinforcement Learning for Cyber Security

As one of the rising topics in the field of cyber security, reinforcement

learning for cyber security is the idea of using machine learning to

dynamically create defending mechanisms that are responsive, adaptive, and

scalable. One of the current challenges for reinforcement learning in cyber

security is how to efficiently train and test such algorithms in a safe

environment. Due to its nature, a cyber range would be the perfect test bed for

reinforcement learning. One method would be incorporating reinforcement

learning into a blue machine and then feed it attacking scripts constantly to

enforce machine learning. This will potentially lead to autonomous defense

from the blue machine, which will further automate both the attacking and

defending side of the range.

2. Cyber Security Education / Training

As stated in the introduction, security education and training are mostly

classroom-based right now. Although hands-on training experiences such as

CTF competitions do exist and are proven to be more effective, most of the

23

current methods of teaching and training are still through lectures and

seminars. In order to provide more hands-on learning opportunities, cyber

ranges would be a great place to do so. Because of tools like Terraform, the

creation and teardown of a cyber range can be automated and students can

freely play inside a range without worrying about potential security risks.

5.3 Ethical Impacts

 Ethics has always been a large factor in the cyber security field. Since a large

amount of the applications and services in the cyber security field directly relates to

ethical topics, such as personal privacy and online integrity, potential ethics impacts

should never be ignored. In the case of a cyber range, there are several ethical impacts

that should be considered when practicing such technologies.

 First of all, it is important to note that while most cyber ranges used virtual

machines for hosts, these machines were still being hosted by companies that offer the

cloud service providing the virtual machines, such as AWS in our case. It is critical to

keep in mind to not direct any of the attacking tests at the hosting companies, purposely

or by accident. This would result in devastating consequences and should be avoided at

all times.

 Secondly, certain high-risk attacks, such as distributed denial-of-service attacks,

should only be practiced inside a secured cyber range and should never be practiced in a

real-life situation. Large-scale attacks like DDOS are dangerous and should only be

tested in a safe environment like a cyber range.

24

Conclusion

 In conclusion, cyber range is a relatively new technology that has emerged in the

recent decade. While its design and implementation are still being researched and

experimented by many, the potential of such technology is limited. The advancement it

can bring to the security industry and education should not be under-estimated. In this

paper, a design and implementation of a cyber range were conducted and a test scenario

of it was successfully ran. Many potential improvements and changes still exist, and

future research and applications of a cyber range is looking bright as ever.

25

Reference

B. Ferguson, A. Tall and D. Olsen, National Cyber Range Overview, 2014 IEEE Military

Communications Conference, Baltimore, MD, USA, 2014, pp. 123-128, doi:

10.1109/MILCOM.2014.27.

Cuong Pham, Dat Tang, Ken-ichi Chinen, and Razvan Beuran. 2016. CyRIS: a cyber

range instantiation system for facilitating security training. In Proceedings of the Seventh

Symposium on Information and Communication Technology. Association for Computing

Machinery, New York, NY, USA, 251–258.

DOI:https://doi.org/10.1145/3011077.3011087

Cashell, Brian, et al. The economic impact of cyber-attacks. Congressional research

service documents, CRS RL32331 (Washington DC) 2 (2004).

A. Conklin, Cyber Defense Competitions and Information Security Education: An Active

Learning Solution for a Capstone Course, Proceedings of the 39th Annual Hawaii

International Conference on System Sciences (HICSS'06), Kauai, HI, USA, 2006, pp.

220b-220b, doi: 10.1109/HICSS.2006.110.

L. McDaniel, E. Talvi and B. Hay, Capture the Flag as Cyber Security Introduction,

2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI,

USA, 2016, pp. 5479-5486, doi: 10.1109/HICSS.2016.677.

	Automated Cyber Ranges: Design Features, Architectures, Scenarios and Impacts
	BYU ScholarsArchive Citation

	tmp.1616127700.pdf.m2bPl

