CREATING STATISTICAL TESTING TOOLS IN DIGITAL TESTING ENVIRONMENTS: ELIMINATING CONFIRMATION BIAS AND IMPROVING PEDAGOGY IN THE HUMANITIES TESTING LAB AT BYU

Robert Hatch

BYU

Follow this and additional works at: https://scholarsarchive.byu.edu/studentpub_uht

BYU ScholarsArchive Citation
Hatch, Robert, "CREATING STATISTICAL TESTING TOOLS IN DIGITAL TESTING ENVIRONMENTS: ELIMINATING CONFIRMATION BIAS AND IMPROVING PEDAGOGY IN THE HUMANITIES TESTING LAB AT BYU" (2020). Undergraduate Honors Theses. 165. https://scholarsarchive.byu.edu/studentpub_uht/165

This Honors Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
Creating Statistical Testing Tools

Honors Thesis

CREATING STATISTICAL TESTING TOOLS IN DIGITAL TESTING ENVIRONMENTS: ELIMINATING CONFIRMATION BIAS AND IMPROVING PEDAGOGY IN THE HUMANITIES TESTING LAB AT BYU

by

Robert Hatch

Submitted to Brigham Young University in partial fulfillment of graduation requirements for University Honors

Humanities Department
Brigham Young University
December 2020

Advisor: Devin Asay

Honors Coordinators: Gregory Stallings / Rex Nielson
ABSTRACT

CREATING STATISTICAL TESTING TOOLS IN DIGITAL TESTING ENVIRONMENTS:
ELIMINATING CONFIRMATION BIAS AND IMPROVING PEDAGOGY
IN THE HUMANITIES TESTING LAB AT BYU

Robert Hatch
Humanities Department
Bachelor of Spanish Teaching

The Humanities Testing Lab at BYU is a computer testing environment for humanities students and professors. Statistics are useful in a pedagogical sense because they present unbiased information about the progress of the class. The Humanities Testing Lab did not previously have a statistical tool, making it the perfect place to monitor the change in teacher perspective when a statistical tool was introduced. In an effort to better the BYU Humanities Testing Lab, an ideal statistical tool was researched, created, and delivered to participating professors. Their interactions with the tool were measured through a set of before and after surveys.
Acknowledgements

I would like to thank Russel Hansen for his involvement since the beginning of this project from brainstorming to programming. I would also like to thank the rest of my committee. Devin Asay was critical in setting up the interactions with the focus group. Gregory Stallings, who started this adventure with us, and Rex Nielson who brought us across the finish line. I am giving a big shout out to the professors who volunteered to test the final product and for Casey Griffiths who provided inspiration by sharing his process. My wife deserves thanks of course for listening to me blather until I made sense. A final thanks to the folks in the Honors Office for answering each and every one of my questions.
Table of Contents

Title ... i
Abstract .. ii
Acknowledgments .. iii
Table of Contents ... iv
List of Tables and Figures .. v

I. Introduction .. 1
II. Research ... 3
III. Design ... 17
IV. Results ... 23
Works Consulted .. 25

Appendix A: Coding .. 26
Appendix B: Surveys and Responses 33
Appendix C: Extended Tables 35
Creating Statistical Testing Tools

List of Tables and Figures

Research
Fig. 1.1 Canvas Quiz Summary
Fig. 1.2 Canvas Question Analysis
Table 1 Canvas Export
Fig 2.1 Learning Suite Exam Summary
Fig 2.2 Learning Suite Question Detail
Fig 3.1 Blooket Overview
Fig 3.2 Blooket Question Detail

Design
Fig 4.1 HLAB Statistical Tool Blank
Fig 4.2 HLAB Statistical Tool Information
Fig 4.3 HLAB Statistical Tool Uploads
Fig 4.4 HLAB Statistical Tool Filled
Fig 4.5 HLAB Statistical Tool Exam Overview
Fig 4.6 HLAB Statistical Tool Details

Appendix C
Table 2 Extended Canvas Export
I Introduction

One of the most controversial topics in the pedagogical world is the effects of standardized testing on the time spent in class. Under current laws, schools receive funding based on the scores their students receive from standardized tests such as the ACT or the SAT. The thinking behind this system is that each student in the nation should be at the same educational level and have a common baseline of skills upon high school graduation. While this is a noble goal, the controversy comes from the teachers asked to effectuate it. Getting numbers to agree with each other across the nation is easy, but it is becoming ever more evident that getting people to agree with each other is not. Each teacher has their own methods, goals, and benchmarks. What more, each student has their own expectations for a class. Many teachers feel they are being asked to replace time spent on what they believe to be important with time spent on what someone else believes to be important. Others believe that this form of learning isn’t long lasting for students. Often students will ask “Will this be on the test?” If the teacher answers yes, the student pays attention out of obligation. If the teacher answers no, the student pays no attention at all. This plight is too large to address in just one project, but there is an aspect of it that can be improved regardless of the situation.

Despite the uproar, tests have an important place in each teacher’s classroom. The relationship between student and test was originally designed to be helpful to everyone. The original purpose of testing a student was to ensure they had mastered a skill and could perform it without constant supervision and aid. A recent improvement in testing environments is the inclusion of computers. The Humanities Testing Lab at BYU has
options for tests to include video and audio clips, and for students to submit audio clip responses. This is especially useful for language learning and evaluation.

Another benefit of using computers is the elimination of the bias found in the subconscious. When conducting research there is an issue known as confirmation bias. Researchers who suffer from confirmation bias only accept results they expect while coming up with reasons to reject results they didn’t expect. Teachers unknowingly suffer from both confirmation bias and regular subconscious bias.

There are many things that stand in the way of accurately measuring and portraying the progress of a group of students. Computers have come to be very helpful in combatting the issues associated with testing, both in the way tests are presented to students and in the way results are presented to teachers. Perhaps one of the most useful tools a computer can provide is an aggregation of student data. Whether the grades come from one test or the overall course, a lack of accurate statistical data inhibits learning because the teacher doesn’t know that their students don’t understand the subject matter. A computer, however, can present averages, trends, outliers and other information without error. We simply have to ask.

In an effort to better the BYU Humanities Testing Lab, a statistical tool was researched, created, and delivered to participating professors. Their interactions with the tool were measured through a set of before and after surveys. The following findings will present the process of the creation and implementation of the tool as well as a rundown of professor responses.
Creating Statistical Testing Tools

II Research

The research for this tool was experiential. Many statistical tools were used and some of their best suited features were selected to be integrated into the HLAB (Humanities Testing Lab) Tool. In this section, each researched tool and selected feature will be explained.

Statistical Tool 1: Canvas

The first, and probably most well-known statistical tool, is the suite of statistics that come integrated with Canvas. Canvas is an online classroom environment which presents assignments and grades to students and can also administer tests and grade them. It is a favorite of teachers in virtual classroom environments. Besides giving options to moderate tests and grade assignments digitally, it also presents detailed statistics of each test. (Fig. 1.1)

![Canvas Quiz Summary](image)

Fig. 1.1 Canvas Quiz Summary – Seen here are the test results for a pretest. On the left are the number of students who achieved each score. On the bottom are the scores. Also seen are the average score, as well as the highest and lowest scores, and the average time.
Creating Statistical Testing Tools

As you move down the page each question is displayed individually with its answers. (Fig. 1.2) Clicking on an answer will give you a list of students who selected that answer.

![Question Analysis](image)

Fig 1.2 Canvas Question Analysis – Here the question is displayed along with the possible answers. Clicking on the respondents will give a list of students who selected that answer. The correct answer is in green.

This particular tool also gives the option to export results into an Excel spreadsheet in several different ways. (Table 1) Most of the numbers here are for the computer to use later as it does its calculations, but the correct and wrong column are useful for creating graphs directly from the spreadsheet.

<table>
<thead>
<tr>
<th>Question Id</th>
<th>Answered</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
<th>Quiz</th>
<th>Correct</th>
<th>Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>1514145</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>1514147</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>1514150</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>46</td>
<td>64</td>
</tr>
<tr>
<td>1514151</td>
<td>109</td>
<td>30</td>
<td>70</td>
<td>9</td>
<td>6</td>
<td>90</td>
<td>19</td>
</tr>
<tr>
<td>1514208</td>
<td>109</td>
<td>30</td>
<td>69</td>
<td>10</td>
<td>6</td>
<td>31</td>
<td>78</td>
</tr>
<tr>
<td>1514209</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>18</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 1.1 Canvas Export – By default this creates an Excel Spreadsheet full of data. Most of the data is used by the computer when calculating, but many columns are useful. A more complex version of this chart can be found in Appendix C.
Creating Statistical Testing Tools

After researching this specific function it became apparent that useful statistical tools require much more data than is shown to the user. This extra data is sometimes referred to as metadata.

Canvas divides students into 3 skill levels shown here as top, middle, and bottom. The reason for this will be discussed later.
Creating Statistical Testing Tools

Statistical Tool 2: Learning Suite/Testing Center

BYU’s website for students to access information on their courses is called Learning Suite. It is the official site for grades to be posted, and though it is still rough around the edges it has many uses. It is connected to the non-digital Testing Center, letting students see their scores instantly. It also compiles statistics for professors. This is how most BYU professors administer their tests and receive their statistics. Students fill in scantron papers which are afterwards scanned by a computer to create data for their results. Professors have access to the following statistical report. (Fig 2.1)

Fig. 2.1 Learning Suite Exam Summary – Statistics are presented along with a basic graph. Hovering over the bars of the graph will present more exact numbers on the website.

The main differences we see here are the inclusion of average time, shortest time, and median score. It should also be noted that here students are divided into 4 skill levels.
An individual question analysis is also available. (Fig. 2.2)

Fig 2.2 Learning Suite Question Detail – Green Columns indicate correct answers. Note that the final row is not a percentage.

Learning Suite also has the option to export data. It is not available here because it contains student names and is protected under FERPA. This statistical tool was something we wanted to emulate as it was what most professors on campus interacted with.
Other Statistical Tools

Other tools that were presented with formative assessments also have statistics. Examples include Kahoot, Quizlet, Gimkit, and Blooket. These statistics aren’t recorded and disappear quickly, but they let the teacher know how the class understands as a whole. (Fig 3.1)

Specifically, it is common for these quiz games to present students with different questions in different orders. All questions come from the same set and are related, but not all are presented to each student.

Fig 3.1 Blooket Overview – The statistic here is the average score of every question asked to every student. Not every student had the same questions.
Creating Statistical Testing Tools

Even for temporary assessments like these, individual terms are analyzed. There is an option here to view responses in the order of most incorrect. (Fig. 3.2) Also presented on this page are student scores. On this particular website, students must also make strategic (ex. Power-ups, Multipliers) choices in a game-like setting, converting their scores into “money”. Students only have access to other student’s money scores, while teachers have access to all scores. Note once again, the option to export. This option costs extra.

![Blooket Question Detail](image)

Fig. 3.2 Blooket Question Detail – Here presented are the terms most incorrectly scored by students. Not all students were presented with all questions.

The major insight gleaned from these quiz game websites was that most of them offered advanced statistics for a monthly fee. Without statistics, these were just games, and not very useful for teachers in the long run.
Creating Statistical Testing Tools

Selected Features

From the above tools, and conversations with involved professors, the following features were selected. They are listed here in order of appearance in the created tool. They also have definitions and additional information as to why they were chosen, or where they can be used in classroom planning. An important statistic to remember is 85%. It is considered a mastery skill level.

Exam Overview

These statistics were chosen from among those researched as the most relevant to BYU Professors using the Humanities Testing Lab. Not every statistic is important in every set of test results, but the indications that might come up are very helpful.

Highest Score – Displays the highest percentage score achieved by any student. If the score is 100%, then it is possible for a student to understand everything on the test. If no one scored 100% something on the test was difficult to understand, whether it be the subject matter or the wording of a specific question.

Average Score – Displays the average percentage score achieved by all students. If the average score is above 85%, most of the students understand most of the content. This is perhaps the most important statistic presented after any test.

Median Score – Displays the median score of all students. Whatever this score is, 50% of students are above it, and the other 50% are below it. On occasion, the average score will be above Mastery, but the Median score will be below mastery due to
outliers. In this case, the average score would be misleading when considering the success of all students.

Lowest Score- Displays the lowest percentage score achieved by any student.
Excluding scores of 0%, this is a good statistic to know how far away from understanding the subject matter your struggling students are.

Longest Time- Displays the longest time of any student in minutes. This statistic isn’t usually the most prominent. It is useful however when you want to know if your tests are “rigorous”. Most tests have a time limit. The closer any of the time statistics are to the time limit, the more challenging the test is.

Average Time- Displays the average time of all students in minutes. If the average time is close to the limit, consider extending the time limit. If there is a lot of excess time, consider shortening the time limit.

Shortest Time- Displays the shortest time of any student in minutes. If the shortest time is very short, the test may be too easy or too short, depending on your goals. Keep in mind, times will vary more than scores, because even if students understand, they express understanding in different ways.

Most Missed Question- Displays the question(s) with the most incorrect answers.
Whichever question or questions have the highest number of incorrect responses indicates a subject that should be retaught. It is also an indicator that the question might be worded poorly, or the answer key may be incorrect.
Creating Statistical Testing Tools

All Correct- Displays questions that every student answered correctly. These questions may be too easy or entirely unnecessary. It is an indication of well-known subject matter.

Majority Missed- Displays questions that more than 50% of the class responded incorrectly on. Another indicator that subject matter needs more attention, or there is a formatting error.

Mastery Students- Displays the number of students who scored higher than 85% on the test. If this number is above 70% it is an indicator that there has been enough time spent on the subject matter of the test.

Non-Mastery Students- Displays the number of students who scored lower than 85% on the test. If this number is very high, consider spending more time on the subject matter of the test.
Question Detail

Splitting question results into different skill groups was a method that came up in the research. It is useful to know if a question was missed on part of the teacher or part of the student. Usually, if a student passed the test, they put in more effort. If they put in effort and missed a specific question, that specific question deserves some attention on the part of the teacher.

All Students- Displays the percentage of students who answered the selected question correctly, as well as the percentage of students who answered incorrectly. For each individual question this is an indicator of how well students understood the subject matter.

Mastery Students- Displays the percentage of students who scored higher than 85% who answered the selected question correctly, as well as the percentage of those students who answered incorrectly. Students with higher scores likely put in more effort to study or perhaps simply were in class more often. If most high effort students answered a question correctly, everything is how it should be. If most high effort students answered incorrectly it is an indicator that the subject should be revisited, or the question is poorly formatted.

Non-Mastery Students- Displays the percentage of students who scored lower than 85% who answered the selected question correctly, as well as the percentage of those students who answered incorrectly. Students who got lower scores were likely exposed to less subject matter. If a specific question received high scores from low effort students, the subject matter has been covered sufficiently.
It is best to use all of these statistics together instead of separately.

Also available is the option to view the overall statistics for just mastery students and just non-mastery students in order to amplify the effects of skill division.
III Design

This is a screenshot of the opening screen of the finished application. (Fig. 4.1)

![HLAB Tool Overview](image-url)

Fig 4.1 HLAB Tool Overview – The opening screen of the statistical tool. Everything is zeroed to ensure previous test results don’t affect later test results.

This application was created using the LiveCode programming language. While it is not as commonly used as other programming languages, it is the program used by the Humanities Testing Lab and is taught in a beginner and an advanced course at BYU as part of the Digital Humanities coursework.

Following are the functions of each of the buttons you can interact with in the application. Some of their coding can be found in Appendix A.
Information

The following will be displayed when the information bubble is clicked.

Fig. 4.2 HLAB Statistical Tool information – A brief informational section.

This Statistical Analysis Tool was created by Robert Hatch under the supervision of Russell Hansen, Devin Asay, and Gregory Stallings. It is part of an Honors Thesis study researching the benefit of statistical tools in classrooms. These tools are meant to mimic the tools and statistics presented with tests given in the testing center. The overall purpose of the study is to measure the benefit gained by providing statistical tools where they were not previously present. Thank you so much for your participation!
Creating Statistical Testing Tools

Upload Area

(Fig. 4.2) Each button can be used to change which specific responses are being analyzed.

Autofill – Opens a screen to browse for a folder. The selected folder is then parsed and displayed, removing names of students. The statistics are automatically calculated and displayed from this information.

Add Result – Opens a screen to browse for a single file. The selected file is then parsed and displayed. The statistics are automatically updated and displayed from this information. Useful if a student took the test later than the others, or their results are found in a different place. It can also be used to duplicate results to see how many students need to pass in order to raise statistics to a desired goal.

Remove Result – Deletes one set of responses. If there is an error or an outlier this can help get more accurate statistics overall.

Mastery Only – Temporarily hides the results of students who did not score higher than 85%. Statistics are updated and displayed. This option is useful for investigating the statistics of a higher achievement skill group.
Creating Statistical Testing Tools

Non-Mastery Only – Temporarily hides the results of students who scored higher than 85%. Statistics are updated and displayed. This options is useful for investigating the statistics of a lower achievement skill group.

Reset – Deletes all results and zeroes out statistics so a new set can be analyzed.

After choosing a set of responses the screen will appear like this. (Fig. 4.3) Like before, there is a spreadsheet with metadata for the computer. It is displayed here so that users can check for errors. Also seen are overall statistics and a question detail for question 1.

![HLAB Statistical Tool](image-url)

Fig. 4.4 HLAB Statistical Tool Filled – This is what the screen displays after information has been uploaded. Statistics are automatically calculated and displayed upon upload.
Exam Overview

Fig. 4.5 HLAB Statistical Tool Exam Overview – Here the statistics are presented for the test scores shown above. The buttons labeled “show all” present a complete list of the questions found in that area in a small box.

Each of the statistics has been explained above. Here professors can view statistics for their entire class, or classes, depending on the data they entered.

Calculate General Statistics – Individually calculates the statistics shown above and places the numbers in their respective field. Also indicated are the units for each statistic such as percentages or minutes.

Show All – Each of these buttons expands the list of the corresponding statistic. A small box appears with the complete list of questions, and the button changes to display “Hide” so that the list can be collapsed.
Question Detail

The final piece of the tool is the Question Detail. Here, test questions can be analyzed one by one. Results are divided by skill level as well as given overall, for reasons mentioned above. Clicking on the dropdown menu gives a list of all the questions on the test. Selecting one replaces the statistics seen here with the statistics for that question. Statistics are always shown in rounded percentages.

Fig 4.6 HLAB Statistical Tool Question Detail – Here, Question 1 of the exam is analyzed by skill level. Green indicates correct answers in percentage and red indicates incorrect answers.
IV. Results

It should be noted that these results are inconclusive. Due to COVID lowering the amount of social interaction the entire Spanish and Portuguese department, as well as many other teachers that were planning on using the Humanities Testing Lab, moved to other resources such as Canvas. Due to the reduced sample size, these results might not be accurate.

Professors who stayed in contact with the Humanities Testing Lab were contacted and asked to participate in two anonymous surveys. The surveys are identical. One was administered before the statistical tool was introduced. The second was administered after the tool had been experienced. In hypothesis, teacher perspectives of and experience with statistical tools would increase. A full script of the survey and data collected can be found in Appendix B. A brief summary of comments and findings will be presented here.

Findings

Based on the results of the survey, teachers who used the application had an increased desire for more statistical tool use in the classroom, and an increased confidence in their pedagogy skills and the way their tests impacted the classroom. This confirms the general hypothesis of the use of statistical tools, but once again, findings are inconclusive.
Future Applications

Based on feedback from the participants, there are many areas of improvement for both the application of the tool and the computer application itself.

The computer program can be improved in the following ways according to study participants:

- **Additional Features Wanted:**
 - A printable overview
 - The ability to manually input grades for essay type questions

- **Unnecessary Features Found:**
 - Adding one result at a time
 - Removing one result at a time

The study can be improved in the following ways:

- Increase the sample size of the participation group
- Compare class scores across several semesters as the tool is used
Works Consulted

Appendix A: Coding

Statistical Calculations: (LiveCode Programming language is Copyrighted)

On mouseup
 set itemdelimiter to tab

//Get highest score
put 0 into HScore
 repeat with b = 2 to the number of lines in field "results"
 if item 2 of line b of field "results" > HScore then
 put item 2 of line b of field "results" into HScore
 end if
 end repeat
put Hscore into field "Highest Score"

//Get lowest score besides 0
put 100 into LScore
 repeat with c = 2 to the number of lines in field "results"
 if item 2 of line b of field "results" < LScore then
 put item 2 of line c of field "results" into Lscore
 end if
 end repeat
put Lscore into field "Lowest score"

 if Item 1 of line 2 of field "results" = empty then
 put 0 into field "Lowest Score"
 end if

//Get average score
put 0 into AvScore
 repeat with s = 2 to the number of lines in field "results"
 add item 2 of line s of field "results" to AvScore
 end repeat
 if the number of lines in field "results" > 2 then
 Divide AvScore by (number of lines in field "results" - 1)
 Put the round of AvScore into field "Average Score"
 else
 put 0 into field "average Score"
 end if

//Get median score
put item 2 of line 2 of field "results" & comma into Mscore
 repeat with d = 3 to the number of lines in field "results"
 put item 2 of line d of field "results" into MCheck
 end repeat
if Mcheck > line 1 of Mscore then
 put Mcheck & comma after Mscore
end if
if Mcheck < line 1 of Mscore then
 put Mcheck & comma before Mscore
end if
end repeat
put median(Mscore) into field "Median Score"

//Get longest time
put 0 into Htime
repeat with e = 2 to the number of lines in field "results"
 if item 1 of line e of field "results" > Htime then
 put item 1 of line e of field "results" into Htime
 end if
end repeat
put Htime into field "Longest time"

//Get average elapsed time excluding 0's
put 0 into AvTime
repeat with s = 2 to the number of lines in field "results"
 add item 1 of line s of field "results" to AvTime
end repeat
if the number of lines in field "results" > 2 then
 Divide AvTime by (number of lines in field "results" - 1)
 Put the round of AvTime into field "Average time"
else
 put 0 into field "average time"
end if

//Get shortest time besides 0
put item 1 of line 2 of field "results" into Ltime
repeat with f = 3 to the number of lines in field "results"
 if item 1 of line f of field "results" is not 0 then
 if item 1 of line f of field "results" < Ltime then
 put item 1 of line f of field "results" into Ltime
 end if
 end if
end repeat
put Ltime into field "Shortest time"
if item 1 of line 2 of field "results" = empty then
 put 0 into field "Shortest time"
end if

put empty into field "All Correct"
put empty into field "majority"
put the number of lines in field "results" into Lcheck
repeat with j = 3 to the number of items in line 1 of field "results"
 put 0 into allCount
 repeat with i = 2 to the number of lines in field "results"
 if item j of line i of field "results" is 1 then
 add 1 to allCount
 end if
 end repeat
end repeat

//Get most missed question(s)
if allCount = Lcheck then
 put comma & " " & item j of line 1 of field "results" after field "most missed"
end if
if allCount < Lcheck then
 put item j of line 1 of field "results" into field "Most Missed"
 put allCount into Lcheck
end if

//List questions that all students answered correctly
if allCount = (the number of lines in field "results" - 1) then
 put item j of line 1 of field "results" & comma & " " after field "All Correct"
end if
if item 1 of line 2 of field "results" = empty then
 put 0 into field "Most Missed"
 put 0 into field "All Correct"
end if

//list Questions that were missed by the majority of test takers
if allCount < (the number of lines in field "Results" - 1)/2 then
 put item j of line 1 of field "results" & comma & " " after field "Majority"
end if
if item 1 of line 2 of field "results" = empty then
 put 0 into field "majority"
end if
end repeat
if line 2 of field "results" = empty then
 put 0 into field "most missed"
 put 0 into field "All correct"
 put 0 into field "majority"
end if
delete character -2 of field "all correct"
delete character -2 of field "majority"

//Calculate and show the percentage of test takers who achieved mastery = 85%
repeat with k = 2 to the number of lines in field "results"
 if item 2 of line k of field "results" > 85 then
 add 1 to passCount
 end if
 put passCount into field "Mastery"
end repeat

//Calculate the percentage of students who failed
 put (the number of lines in field "results" -1 - passCount) into field "Non Mastery"
end repeat

if item 1 of line 2 of field "results" = empty then
 put 0 into field "mastery"
 put 0 into field "non mastery"
end if

if line 2 of field "results" = empty then
 set the label of button "questions" to empty
 put 0 & "%"into field "allgood"
 put 0 & "%" into field "allbad"
 put 0 & "%" into field "masterygood"
 put 0 & "%" into field "masterybad"
 put 0 & "%" into field "NMgood"
 put 0 & "%" into field "NMbad"
else
 put line 1 of the label of button "questions" into QReset
send mouseup to button "questions"
end if
end mouseup
Appendix B: Surveys and Responses

Survey: (Formatting changes have been made.)

Questions one through five will ask whether you agree or disagree with a statement on a scale of Completely Disagree to Completely Agree. Please circle your level of agreement.

1. I feel comfortable creating and grading exams.
 Completely Disagree Disagree Neutral Agree Completely Agree

2. The Humanities testing lab is in some ways better than the standard testing building.
 Completely Disagree Disagree Neutral Agree Completely Agree

3. I think students prefer being tested on computers.
 Completely Disagree Disagree Neutral Agree Completely Agree

4. I would like more tools to help me assess students learning.
 Completely Disagree Disagree Neutral Agree Completely Agree

5. I feel very confident in my pedagogical skills.
 Completely Disagree Disagree Neutral Agree Completely Agree

Questions 6-8 are short answer questions. Please respond in 2-4 sentences.

6. What was the last average test score of your classes? Was it higher or lower than you expected?
7. What do you feel is the best possible relationship between students, teachers, and tests?
8. How do test scores affect what you teach, if at all?
9. Are you familiar with any grading tools or other forms of digital analysis? What are your thoughts on these tools?
10. Please use the space provided below to record any remaining comments you have on the humanities testing lab or statistical tools and what role they play in your teaching.

Please check this box to show that you provide consent for your answers to be anonymously quoted as part of a research study: ___
Creating Statistical Testing Tools

General Results:

Survey 1
1. 4
2. 4
3. 2.5
4. 3.5
5. 3.5
6. Students Achieved Mastery Level or Higher
7. Measurement, Motivation
8. Item analysis, no effect
9. Unfamiliar
10. Time = Participation, Paperless is better

Survey 2
1. 4
2. 4
3. 3
4. 4
5. 5
6. Students Achieved Mastery Level or Higher
7. Measurement, Mastery
8. Item analysis
9. Useful for evaluating format and student performance
10. Bugs in program
Appendix C: Complete Canvas Table (With formatting changes)

<table>
<thead>
<tr>
<th>Question Id</th>
<th>Question Title</th>
<th>Count</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
<th>Quiz</th>
<th>Correct</th>
<th>Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>1514145</td>
<td>Questions 1-4</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>1514147</td>
<td>Questions 1-4</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>1514150</td>
<td>Questions 1-4</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>46</td>
<td>64</td>
</tr>
<tr>
<td>1514151</td>
<td>Questions 1-4</td>
<td>109</td>
<td>30</td>
<td>70</td>
<td>9</td>
<td>6</td>
<td>90</td>
<td>19</td>
</tr>
<tr>
<td>1514208</td>
<td>Questions 5-6</td>
<td>109</td>
<td>30</td>
<td>69</td>
<td>10</td>
<td>6</td>
<td>31</td>
<td>78</td>
</tr>
<tr>
<td>1514209</td>
<td>Questions 5-6</td>
<td>110</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>6</td>
<td>18</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correct Student Ratio</th>
<th>Wrong Student Ratio</th>
<th>Correct Top Student Count</th>
<th>Correct Middle Student Count</th>
<th>Correct Bottom Student Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.754545455</td>
<td>0.245454545</td>
<td>29</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>0.481818182</td>
<td>0.518181818</td>
<td>27</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>0.418181818</td>
<td>0.581818182</td>
<td>20</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>0.825688073</td>
<td>0.174311927</td>
<td>29</td>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td>0.28440367</td>
<td>0.71559633</td>
<td>18</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>0.163636364</td>
<td>0.836363636</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Difficulty Index</th>
<th>Alpha</th>
<th>Point Biserial of Correct</th>
<th>Point Biserial of Distractor 2</th>
<th>Point Biserial of Distractor 3</th>
<th>Point Biserial of Distractor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.185207</td>
<td>0.430356</td>
<td>0.754545</td>
<td>0.090176</td>
<td>0.448263</td>
<td>-0.24672</td>
<td>-0.05076</td>
<td>-0.34034</td>
</tr>
<tr>
<td>0.249669</td>
<td>0.499669</td>
<td>0.481818</td>
<td>0.090176</td>
<td>0.573441</td>
<td>0.014177</td>
<td>-0.57875</td>
<td>-0.23242</td>
</tr>
<tr>
<td>0.243306</td>
<td>0.49326</td>
<td>0.418182</td>
<td>0.090176</td>
<td>0.37421</td>
<td>-0.264</td>
<td>-0.05076</td>
<td>-0.34034</td>
</tr>
<tr>
<td>0.143927</td>
<td>0.379377</td>
<td>0.825688</td>
<td>0.090176</td>
<td>0.38699</td>
<td>-0.37268</td>
<td>-0.11515</td>
<td>0.005562</td>
</tr>
<tr>
<td>0.203518</td>
<td>0.45113</td>
<td>0.284404</td>
<td>0.090176</td>
<td>0.530239</td>
<td>-0.18217</td>
<td>0.000672</td>
<td>-0.34015</td>
</tr>
<tr>
<td>0.13686</td>
<td>0.369945</td>
<td>0.163636</td>
<td>0.090176</td>
<td>0.163791</td>
<td>0.101452</td>
<td>-0.00531</td>
<td>-0.25066</td>
</tr>
</tbody>
</table>