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Abstract

Maize is the most grown crop in the world. Each year, 5% of maize is
lost due to a phenomenon known as stalk lodging (breakage of the stalk
below the ear). One of the most promising solutions to stalk lodging
is to design stalks with superior geometry to increase stalk strength.
Researchers have developed a 3D parameterized maize stalk model, but
these models take a long time to structurally analyze and are missing
important material properties. This thesis addressed these problems by
developing an automated package for analyzing the 3D parameterized
maize stalk model, and by measuring the longitudinal shear modulus
of both pith and rind stalk tissues. This thesis also identified the most
influential geometric patterns in the 3D parameterized maize stalk model,
which can be used to breed stronger maize. The results of this thesis are
an increased understanding of the factors that influence stalk lodging,
and geometric details for how stronger maize can be designed.

Keywords: sensitivity analysis, finite element analysis, biomechanics
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Introduction

1.1 Problem
Maize is the most produced crop in the world [1]. It accounts for 95% of
feed in the United States, occupying over 90 million acres of farmland
each year [2]. It also comprises 94% of ethanol production [3], which
is a major source of fuel in the world. Maize and its byproducts are a
major part of the world market. Because of this, any issue in the growth
or harvest of maize has a long and lasting impact. One such problem is
stalk lodging.

Stalk lodging is the breakage of maize stalks below the ear, and is
often caused by wind (see Fig. 1.1). This can lead to harvesting problems
and can significantly impact crop yield. It has been estimated that 5% of
maize is affected by stalk lodging each year [4], most often at the time
of peak maturity. The failure process associated with stalk lodging is
complex and depends on many factors. Research on this phenomenon
has focused on environmental effects [5], rapid phenotyping [6], and
stalk morphology [7], among others.

Figure 1.1: Stalk lodging in a field near Ames, Iowa, October 2019.

One of the most promising areas of study into stalk lodging is
the correlation between stalk geometry and strength [8]. It has been
theorized that modification to the morphological factors of maize stalks

1
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could decrease stalk lodging [7]. In order to provide support for this
theory, finite element modeling techniques have been applied to maize
stalk models to find a relationship between stalk geometry and stalk
strength [7, 9–11].

This thesis will continue the use of finite element modeling to char-
acterize how maize stalk material constants and morphology influence
strength. The sections below will describe the modeling approaches that
have been used in the past to predict maize stalk behavior.

1.2 Modeling Background
Maize stalks are composed of two materials: a hard outer rind and a soft
inner pith. An important characteristic of both of these materials is the
presence of inner fibers, which results in non-isotropic behavior. This
means that both the pith and rind can be modeled as transverse isotropic
materials, which require twelve material constants (ten of which are
independent) to fully define [12].

Relatively little research into maize stalk material constants has been
conducted. Although data regarding maize stalk material constants are
scarce, some of the twelve material constants have been measured pre-
viously. Notable studies include Stubbs [10], who measured transverse
elastic modulus of pith and rind tissue; Al-Zube [13], who measured lon-
gitudinal elastic modulus of rind tissue; Zhang [14, 15], who measured
longitudinal elastic modulus of pith and rind tissue; and Sutherland [16],
who measured longitudinal elastic modulus of rind tissue. These con-
stants have been used in a variety of applications, including analytic
modeling and finite element analysis.

Maize stalks follow a growth pattern of nodes followed by internodal
regions (see Fig. 1.2). Nodal regions have a higher proportion of rind
and are generally more resistant to damage than internode regions. It
has been found that the vast majority of failure occurs in the region just
4 cm above the node [17].

Figure 1.2: Maize stalk physiology, from Ottesen [9].



Introduction 3
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Various finite element modeling techniques have been used to predict
the behavior of maize stalks. Beginning models were created by CT-
scanning maize stalks along their length and then reconstructing the
geometry using SolidWorks (Dassault Systèmes SE, Vélizy-Villacoublay,
France). These high fidelity models were then imported into finite
element analysis programs and analyzed for flexural stiffness and failure
strength testing (see Fig. 1.3). These first studies suggested that geometry
has a more important role on stalk strength than material constants [7].

Figure 1.3: CT scan-based models, from Stubbs [10].

Because the CT-scan models indicated such a high dependence of
stalk strength on geometry, it was theorized that making small changes
to stalk geometry could increase resistance to stalk lodging. In order to
support this theory, researchers needed a 3D model of maize stalks with
geometry that could be manipulated manually. This could not be done
with CT-scan models, as they were specimen-specific, and could not be
easily manipulated. Researchers needed a simplified model that could
be used to more directly control geometric parameters to see how they
affected response.

Simplifying the maize stalk model began with creation of 2D param-
eterized stalk section models. Principal component parameterization
of these models resulted in elliptical cross sections, which were simpler
than their CT scan counterparts (see Fig. 1.4). It was found that modeling
the cross sections of the stalks as ellipses produced FEA responses that
were indistinguishable from those of the CT scan cross sections [9].

These 2D parameterized ellipse models were also used to create 3D
prismatic models for analysis in FEA. This analysis was an important
stepping stone to create simpler maize stalk models, but due to their
prismatic nature, did not contain important features found in maize
stalks such as node and internode regions. The problem still remained:
researchers needed a 3D model that was simple enough to understand
but complex enough to have high accuracy.
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Figure 1.4: Ellipse assumption, from Ottesen [9].
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1.3 The 3D Parameterized Maize Stalk Model
Ottesen [18] was the first researcher to develop a 3-dimensional parame-
terized maize stalk model. These models were created using CT data,
but were simplified using an ellipse assumption [9] and parameterization
(see Fig. 1.5). Consistent features from over 900 CT-scans were identified,
and principal component analysis (PCA) was used to create models with
51 distinct parameters.

The 3D parameterized stalk model was validated by simulating three
point bending tests in FEA and comparing these results to physical three
point bending tests conducted in a previous study [13, 19].

The 3D parameterized maize stalk model is a powerful tool for un-
derstanding the stalk lodging problem. It allows for direct control over
geometric parameters while still preserving the behavior of actual maize
stalks. This opens the door to sensitivity studies, which will inform
researchers of which specific geometric maize stalk features contribute
to stalk flexural stiffness, failure strength, and biomass.
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Figure 1.5: Parameterization by Ottesen [18] based on the ellipse assumption and PCA
parameterization.

1.4 Purpose
The purpose of this research is to better understand the factors that
influence maize stalk strength. This involves three main objectives:

1. Improve and automate the process of creating and analyzing finite
element models of the maize stalk;

2. Measure mechanical tissue properties that have not previously
been reported;

3. Understand the relationships between material/geometric proper-
ties and model flexural stiffness, failure strength, and biomass.

These objectives will gain new knowledge concerning maize stalks
that can be used to decrease stalk lodging.

Objective 1: Improve and automate the process of creating and analyzing
finite element models of the maize stalk.
Finite element analysis is used to solve for flexural stiffness and failure
strength of the 3D parameterized maize stalk model. This requires
many operations such as importing the geometry, applying boundary
conditions, assigning material constants, and applying finite element
meshes. Previously, this process was done manually by an experienced
researcher.
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Future studies using this automation process will involve creating
thousands of finite element models. This means that it is of utmost
importance that the analysis of the 3D parameterized maize stalk model
be automated. This automation is the subject of Chapter 2.

Objective 2: Measure mechanical tissue properties that have not previously been
reported.
This thesis will further improve the 3D parameterized maize stalk model
by measuring two material constants that are involved in their use in
finite element analysis. These material constants are the longitudinal
shear modulus of both the pith and rind tissue. The measurement of
these material constants is the subject of Chapter 3.

Objective 3: Understand the relationships between material/geometric properties
and model flexural stiffness, failure strength, and biomass.
The geometry of maize stalks is a promising factor involved in stalk lodg-
ing. Using the 3D parameterized maize stalk models, we can quantify
the relationship between specific geometric features of these models and
model response (flexural stiffness, failure strength, and biomass) through
sensitivity analysis. This sensitivity analysis will also characterize the
relationship between model biomass and failure strength sensitivities.
This is of particular interest for future optimization studies, where it
may be desired to increase model failure strength without substantial
increases in biomass. The sensitivity analysis of model response to
geometric and material parameters is the subject of Chapter 4.

Anticipated Outcomes:
The results of this research will be an improved and automated version
of the 3D parameterized maize stalk model, and evidence supporting
the relationship between maize stalk geometry and stalk behavior. The
results of sensitivity analysis will be used as direct evidence supporting
whether or not maize stalk geometry could be efficiently leveraged
to decrease stalk lodging. These insights will help researchers more
effectively address the problem of stalk lodging, which will increase
yearly maize yield.
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Model of Maize Stalk Flexure and
Buckling,” 2023.

Finite Element Model Automation and Validation

The 3D parameterized maize stalk model allows for complete control of
all model parameters. The method by which these models are structurally
analyzed is finite element analysis (FEA). FEA operates by dividing a
geometry into small elements, which discretizes the problem into a
system of equations that can be solved iteratively. In order to solve this
system of equations, a user needs to define many finite element program
parameters.

Creating a finite element model in any situation is an involved process:
the researcher must manually define all necessary material constants,
boundary conditions, and meshes (dividing up the geometry into small
elements) to receive structural responses. Even when a researcher gets
FEA results, a great deal of post processing is often necessary.

Setting up and processing finite element models is time-consuming,
especially when thousands of models are required. To address this, the
FEA process for the 3D parameterized maize stalk model was automated.
This chapter details the automation process, resulting in a package that
will be used in future studies.

2.1 Stalk Geometry Generation
This chapter explains how the structural responses of maize stalk ge-
ometries were calculated. This chapter does not address how the maize
stalk geometries were generated. Instead, we refer to a previous study
by Ottesen, who developed the geometry generation approach [9, 11].
Ottesen’s approach was used to generate two solid geometries for each
stalk: one for the pith (the inner stalk), and one for the rind (the outer
stalk). These geometries were generated in SolidWorks .STEP format
(Dassault Systèmes SE, Vélizy-Villacoublay, France). Ottesen’s geometry
generation technique functions separately from the automation technique
outlined in this chapter. As such, all geometries needed to be generated
before any finite element operations were applied to them.

7
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[20] Blokdyk, Procedural Programming A
Complete Guide, 2020.

2.2 The Automation System
Automation was implemented using the procedural programming
paradigm. Procedural programming achieves an objective through
a series of steps called functions [20]. Each function has a specific role in
computing a global result. This allows a programmer to write only a few
functions that are reused for every new set of inputs, without having to
rewrite code for a new situation.

Procedural programming was applied to this problem by creating
a list of functions that could create a maize stalk geometry, import the
geometry into Abaqus 2022 (Systemes Simulia Corporation, Providence,
RI, USA), apply all conditions necessary for analysis, run an analysis,
and then extract analysis results. These functions were written in Python
and executed via the Abaqus 2022/Python interface.

The automation system consisted of two main parts. First, one file
contained all of the data required to define a model (inputs.py). This
included the stalk CAD file path, material constants, boundary condi-
tion configuration, and others. Second, several functions processed the
information in inputs.py to create the geometry, boundary conditions,
meshes, and analysis. There were eight main subroutines for creating
and analyzing maize stalk geometry. The end result was an automated
package that can structurally analyze any specified stalk geometry at the
push of a button, with complete control over material properties, bound-
ary conditions, and analysis type. A diagram of the code functions that
constitute the automation system is provided in Fig. 2.1. The following
sections detail the purpose and functionality of each subroutine.

Figure 2.1: Code automation flowchart. This is a simplified version of the actual code.
The diagram above shows the general layout that aligns with the sections below.

2.2.1 Subroutine 1: Importing .STEP files
The first subroutine imported a pre-generated stalk geometry into Abaqus
2022. This geometry was manipulated in later subroutines to have user-
specified boundary conditions, constraints and material constants for
simulation purposes. In addition, this subroutine added guiding lines
to the geometry for easier meshing. These lines were drawn based on
coordinate axes. Fig. 2.2 shows examples of the imported .STEP files.
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Figure 2.2: STEP files. Pith on the left, rind on the right.

2.2.2 Subroutine 2: Interactions
A tie constraint relationship was used to characterize the interaction
between pith and rind. A tie constraint restricts the movement of the
secondary surface, ensuring that it matches the displacement of the
primary surface. Because the rind controls the majority of stalk behavior,
the inner rind was defined as the primary surface, and the outer pith
was defined as the secondary surface.

2.2.3 Subroutine 3: Defining Material Constants
The third subroutine defined and applied material constant definitions
to the imported geometry. Both the pith and rind were modeled as
transverse isotropic materials. A transverse isotropic material has six
material constants, five of which are independent. Fig. 2.3 illustrates
these six material constants, which are also listed in Table 2.1.

Figure 2.3: Interpretation of transverse isotropy material constants. The || symbol
indicates a property in the fiber direction, while the ⊥ symbol indicates a property
perpendicular to the fibers. Material direction is highlighted for the rind tissue, but this
orientation is also present in pith tissue.
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[19] Al-Zube et al., “Measuring the
compressive modulus of elasticity of
pith-filled plant stems,” 2017.

To accurately model the material response of maize stalks, twelve
different material constants were required, ten of which were indepen-
dent. Table 2.1 lists the ranges used in this study for each of these material
constants along with their sources.

Table 2.1: Material constant ranges for maize stalk pith and rind tissue, from Ottesen [18].
Units in GPa.

property method distribution pith rind source

𝐸⊥
random

sampling normal (0.026, 0.01) (0.85, 0.39) Stubbs [10]

rind 𝐸||
specimen
specific empirical n/a specimen

specific Al-Zube [13]

pith 𝐸||
random

sampling normal (0.45, 0.05) n/a Sutherland [16]

𝐺⊥ calculated n/a 𝐸⊥
2(1+𝜈) theory

𝐺||
random

sampling normal (0.27, 0.01) (0.93, 0.33) Carter [25]

𝜈⊥
random

sampling uniform (0.2, 0.45)
Green [21]

𝜈||
random

sampling uniform (0.009, 0.086)

Due to uncertainty in several properties, a variance test was performed
to determine relative influence of each material constant. This involved
testing 63 stalks with 10 replicates per stalk. Each replicate was randomly
sampled within the bounds listed in Table 2.1, except for 𝐸|| in the rind,
which was taken from stalk-specific physical testing [19]. The results of
this test are discussed further in Section 2.3.3.

2.2.4 Subroutine 4: Reference Points
Specific reference points were added to each stalk on the vertices shown
in Fig. 2.4. A tie constraint was used for reference points on the end faces,
while a rigid body constraint with radii of effect was applied to the refer-
ence points in the nodal region. These interactions best mimic physical
testing conditions. These reference points are used to easily apply loads
and boundary conditions, which are discussed in Section 2.2.5.
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Figure 2.4: Reference point locations on maize stalk geometries.

[13] Al-Zube et al., “The elastic modulus
for maize stems,” 2018.
[19] Al-Zube et al., “Measuring the
compressive modulus of elasticity of
pith-filled plant stems,” 2017.

2.2.5 Subroutine 5: Loading Cases
One of the main goals of this study was to mimic the same conditions
used to test the strength of physical maize stalks. This way, the results
of simulated maize stalks (in FEA) could be compared against phys-
ical maize stalks for validation. This increases our confidence in the
parameterized model.

The physical stalk responses used for this study were ones tested by
Al-Zube [13, 19]. Al-Zube tested specimens under three point bending
loads. Three point bending loads were applied to each model. Table 2.2
summarizes these boundary conditions.

Table 2.2: Boundary condition calculations, from Ottesen [18].

Load
Type

Bottom Face Top Face

Force 𝐹𝑎 =
𝑀 𝑓 𝑎𝑖𝑙

𝐴 𝐹𝑏 =
𝑀 𝑓 𝑎𝑖𝑙

𝐵

Moment 𝑀𝑎 =
𝐴−𝑎
𝐴 𝑀 𝑓 𝑎𝑖𝑙 𝑀𝑏 =

𝐵−𝑏
𝐵 𝑀 𝑓 𝑎𝑖𝑙

A Distance between left-hand support and applied load in the
3-point bending test

B Distance between the right-hand support and applied load
in the 3-point bending test

𝑀 𝑓 𝑎𝑖𝑙 Maximum bending moment applied during physical 3-point
bending tests
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[17] Robertson et al., “Maize Stalk
Lodging: Flexural Stiffness Predicts
Strength,” 2016.

For modeling purposes, only the middle of each stalk was considered
in calculations. “A” was the length of the top half of each stalk, “B”
was the length of the bottom half of each stalk, and “a” or “b” were the
modeled section of each of these sections. These test conditions are also
shown in Fig. 2.5.

Figure 2.5: Load diagrams for three point bending of maize stalks. Writing in terms of a
normalized Pfail yields the equations shown. Loads were normalized by Pfail because
the linear buckling analysis requires a scalable input load.

This subroutine applied these loads and moments to the reference
points described in Section 2.2.4 and constrained the middle section of
each stalk. As will be discussed in Chapter 4, there were also other
load configurations applied to each model, but for validation, the load
conditions described above were used.

2.2.6 Subroutine 6: Symmetry
To handle potentially long and repetitive tests, simplifying the geometry
can significantly reduce processing time. One effective method is to apply
symmetry conditions. Because the parameterized maize stalk model
has an elliptical cross-section, it has two symmetry planes. A symmetry
boundary condition in the yz plane was used to simplify the model and
reduce computational expense. The model was further simplified based
on the fact that maize stalk failure typically occurs above the node [17].
This means that it was unnecessary to simulate material that is below
the stalk node. Therefore, simulations only modeled above the node,
across the yz plane; these models were called quarter models. Fig. 2.6
summarizes the geometry simplifications applied to each stalk geometry.



Finite Element Model Automation and Validation 13

Figure 2.6: Simplifications to stalk geometry.

[22] Benzley et al., “A Comparison of All
Hexagonal and All Tetrahedral Finite
Element Meshes for Elastic and
Elasto-plastic Analysis,” 1995.

2.2.7 Subroutine 7: Mesh
The mesh used for each stalk consisted of two parts: a C3D4 (quadratic)
tetrahedral region and a C3D8 hexahedral region. Fig. 2.7 shows the
layout of the mesh applied to each model geometry.

Figure 2.7: Mesh regions in maize stalk models, from Ottesen [18].

In general, tetrahedral (tet) elements have more weaknesses than
hexahedral (hex) elements, and hex elements should be used whenever
possible [22]. Tet elements were used in the node region due to significant
geometric variation that hex elements cannot accurately capture. Hex
elements were used in the internode section of the geometry.

The mesh density was adjusted by assigning specific edges a desig-
nated number of elements, calculated as a multiple of a model mesh
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index parameter stored in inputs.py. Increasing the model mesh index
parameter enhances the mesh density along each feature edge. A custom
multiplier for each feature edge was determined iteratively. For simplic-
ity, this thesis does not detail the specific number of elements along each
feature edge.

2.2.8 Subroutine 8: Analysis and Post Processing
The final subroutine ran a user-selected analysis and then post-processed
the results of the analysis. Subroutine 8 was therefore composed of three
‘mini subroutines’ that all work toward the goal of running analysis
and interpreting results: 1) running the chosen analysis, 2) flex post
processing, and 3) buckling post processing. If the user chose to run a
flex analysis, then only functions 1) and 2) were used; if the user chose to
run a buckling analysis, then only functions 1) and 3) were used.

Running the Chosen Analysis
Two different analyses could be performed on stalk geometries: linear
static analysis and linear buckling analysis. These analyses were chosen
because they most accurately capture the behavior observed from two
different tests performed on physical maize stalks: flexural stiffness and
failure strength. Physical testing was performed in three point bending
configuration [13, 19].

Flexural stiffness refers to how stiff a stalk is; it describes how much
force a stalk exerts when bent in the linear elastic region (when failure or
nonlinearities are not present). This behavior can be replicated in FEA
by applying a small load on a stalk and calculating its deflection. For
small loads, a linear static (Newton) finite element solver is suitable for
this situation.

Failure strength refers to the maximum applied force on a stalk before
it fails. A linear eigenvalue (buckling) solver was used to calculate the
maximum load before failure for stalks in three point bending. A linear
eigenvalue solver operates by slowly scaling input loads until instability
occurs. As such, the solver does not take into consideration any dynamic
effects or material failure in the analysis. In spite of this, linear buckling
analysis has been a commonly accepted and validated approach for
calculating failure strength in maize stalk models [9, 10, 18].

Subroutine 8 therefore ran either a flexural stiffness (linear static) or a
failure strength (linear buckling) analysis depending on which analysis
the user chose. This was as simple as defining a keyword (either ‘flex’ or
‘buckle’) to Abaqus to start the solver.

Flex Post Processing
The results of a linear static analysis were deflections caused by the
applied loads. The flexural stiffness, 𝐸𝐼, has been used in previous
studies as a predictor of stalk strength [17, 18]. Deflection was used with
Castigliano’s theorem to calculate 𝐸𝐼. Castigliano’s theorem is shown
in Eqs. (2.1) to (2.3).
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Flexural stiffness was then calculated using equations from Table 2.2
(see Eqs. (2.4) and (2.5)). Subroutine 8 performed these calculations on
calculated deflections and returned the flexural stiffness to the user in
CSV format.
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Buckling Post Processing
Linear buckling analysis produced eigenvalues and corresponding eigen-
vectors. The eigenvalues are scale factors; multiplying the user-defined
applied load (see Table 2.2) by a buckling eigenvalue corresponds to the
load required to cause structural instability. The eigenvectors are the
shape of the instabilities (sometimes called a mode).

During linear buckling analysis, there was a chance that a computed
failure strength corresponded to a buckling shape that was unrealis-
tic. Fig. 2.8 illustrates common shapes that are unrealistic, such as ones
influenced by mesh node locking or boundary effects.

Figure 2.8: Examples of node locking, boundary effects, and correct modes from linear
buckling analysis.
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To classify the computed buckling nodes, a method was developed
to check a computed shape for inaccuracies. This involved (1) exporting
the buckling shape as a set of four contour lines, (2) determining which
contour line captures the buckling shape, and (3) calculating the number
of peaks and valleys of the contour line of interest (see Fig. 2.9). This
caught buckling shapes calculated below the node and shapes affected
by mesh node locking (shapes with more than 20 peaks and valleys).
Subroutine 8 returned the eigenmode, eigenvector, and number of
peaks and valleys to the user in CSV format. A minimum of three
buckling shapes were calculated for each failure strength analysis with
the knowledge that some computed shapes would be unrealistic.

Figure 2.9: Post processing linear buckling results.

2.2.9 Subroutine Summary
The culmination of the eight subroutines described above is an automated
package capable of generating and analyzing 3D parameterized maize
stalk models. This method significantly reduces processing time com-
pared to CT-based methods and facilitates in-depth studies on geometric
sensitivity, as detailed in Chapter 4.

2.3 System Validation
2.3.1 Comparison of Quarter Symmetric Models to Whole

Models
To verify that quarter symmetry simplifications did not significantly influ-
ence the predictive accuracy of our models, simulations were conducted
on twenty stalk geometries using the quarter model simplification and
compared to simulations of the full geometry. The results from both sets
of models showed a high correlation, with an 𝑟2 statistic of over 0.99 for
both flexural stiffness and failure strength analyses.
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2.3.2 Mesh Convergence
An important aspect of FEA meshing is the mesh convergence study [23].
This involves increasing mesh density at discrete intervals to evaluate
the mesh’s influence on results. For our geometries, a mesh convergence
study was performed on both the pith and rind geometries by varying
the model mesh index parameter.

The mesh convergence study consisted of increasing the model mesh
index parameter in steps of 0.5. For pith convergence, the rind was
kept at a fine model mesh index of 7 and the pith model mesh index
was slowly increased from a coarse mesh of 1. The reverse was true for
rind convergence. Fig. 2.10 shows the mesh convergence of the pith and
rind geometries for both flexural stiffness analysis and linear buckling
analysis. Convergence tests were conducted for both whole and quarter
geometries, with nearly identical results. As seen in Fig. 2.10, an adequate
model mesh index for both pith and rind meshes was a mesh index
parameter of 3. Summary statistics for the number of elements used in
the pith and rind regions, as well as the type of element with a model
mesh index of 3, are provided in Section 2.4.

Figure 2.10: Mesh convergence. The model mesh index represents the relative degree
of how fine the mesh is; 1 is a coarse mesh and 7 is a fine mesh. The y-axis shows the
percent change from the last calculated result. For example, a percent change of 17 for
pith buckling convergence at a model mesh index of 1 means the calculated buckling
result at a model mesh index of 1 was 17% higher than the same result calculated at a
model mesh index of 0.5. After a model mesh index of 3, the percent change between
subsequent indices was less than 1%.
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2.3.3 Validation Results
To validate the automation system, 63 maize stalks were generated and
analyzed using Abaqus 2022, incorporating the methodologies outlined
in the previous sections. Flexural stiffness (flex) and failure strength
(buckling) test results were compared with physical testing results. As
described in Section 2.2.3, variance was introduced to account for material
uncertainties. The test results are shown in Figs. 2.11 and 2.12.

Figure 2.11: Whole geometry material variance and validation for flexural stiffness, from
Ottesen [18].

Figure 2.12: Whole geometry material variance and validation for failure strength, from
Ottesen [18].

The 3D parameterized maize stalk model demonstrated strong cor-
relations between model predictions and actual maize stalk behavior,
particularly in flexural stiffness calculations. The strength of the re-
lationship was not as strong for failure strength calculations, but still
predictive of stalk strength. Buckling analyses are more sensitive to
material constants as a result of the more complex mechanics of buckling.
This issue is discussed further in Chapter 4.
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2.4 Assessment of Automation System Performance
While model creation would typically require manual execution by an
experienced finite element analyst, the automated package demonstrated
in this chapter drastically reduces setup time. Manual execution typically
takes at least 20 minutes per analysis, whereas the automated package
presented here completes the same tasks in just seconds. Table 2.3
summarizes the mean model generation time for both whole and quarter
models, for models with a model seed index of 3 (see Section 2.3.2). These
statistics were gathered by generating 20 models of each case (20 quarter
models, and 20 whole models). The 20 models were chosen through
failure strength stratified sampling of the original 900 CT scanned stalks.

Table 2.3: Mean model generation time for whole and quarter models, in seconds.

Whole Quarter Whole / Quarter
Model Generation Time 15 s 9 s 1.67

Table 2.4 shows the mean analysis runtime of these same generated
models for both flex and buckling simulations. Quarter models run
roughly twice as fast for flex simulations and nearly six times as fast for
buckling simulations, while providing virtually identical results.

Table 2.4: Mean runtime for flex/buckling models for whole/quarter models, in seconds.

Whole Quarter Whole / Quarter
Flex 47 s 25 s 1.88

Buckling 471 s 81 s 5.81

Table 2.5 shows the average and standard deviation number of
elements present in both whole and quarter models for both pith and
rind regions for each element type. This data was taken from the same
20 models described previously.

Table 2.5: Mean/standard deviation number of elements in each region by element type,
also in percent form.

Element Whole Models Quarter Models
mean (std) % mean (std) %

tet (rind) 38207 (6817) 44.09% (7.87%) 0 (0) 0.00% (0.00%)
hex (rind) 10752 (0) 12.41% (0.00%) 2800 (0) 16.43% (0.00%)

wedge (rind) 0 (0) 0.00% (0.00%) 600 (118) 3.52% (0.69%)
tet (pith) 13310 (746) 15.36% (0.86%) 6140 (911) 36.03% (5.35%)
hex (pith) 24384 (1160) 28.14% (1.34%) 7500 (0) 44.01% (0.00%)

wedge (pith) 0 (0) 0.00% (0.00%) 0 (0) 0.00% (0.00%)
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Note that wedge elements were specifically used to replace tetrahedral
elements in the rind region for quarter models. This was only feasible
for quarter models, and was done because wedge elements perform
slightly better than tet elements. The use of wedge elements only slightly
affected convergence results in Section 2.3.2, which was performed for
both whole and quarter models with similar results.

For hexahedral element regions, the standard deviation for both pith
and rind meshes was zero (except for whole model pith hex elements,
which were minimal), indicating consistent meshing regardless of geome-
try. In contrast, tetrahedral and wedge element regions showed non-zero
standard deviations for both pith and rind meshes, reflecting some
numerical noise associated with geometric changes in those regions.

2.5 Discussion
The results of the work in this chapter is a fully automated package
capable of analyzing any 3D parameterized maize stalk geometry. This
allows for researchers to more freely explore model behavior in sensi-
tivity studies. The automated nature of this package facilitates rapid
analysis of arbitrary model shapes, significantly enhancing efficiency in
computational studies.

Validation results depicted in Figs. 2.11 and 2.12 demonstrate the
predictive capability of the automated package. This makes the model
a reliable tool for future investigations into maize stalk mechanics and
behavior. It is estimated that over 50,000 simulations have been run using
this automated package over the past 3 years.

The outcomes of this chapter lays a solid foundation for subsequent
chapters, where the automated package will play a pivotal role in
parameter sensitivity analysis. This automated package can also be used
in future studies involving optimization of geometric parameters.
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Material Constant Measurement: Longitudinal
Shear Modulus

This chapter is composed from a paper entitled “Measurement of Maize
Stalk Shear Moduli” published in the journal Plant Methods [25]. I hereby
confirm that the use of this article is compliant with all publishing
agreements.

3.1 Background
The material behavior of maize stalks is complex and important to capture
in FEA models. As stated in Chapter 2, both pith and rind tissue are
modeled as transverse isotropic materials. This means that many material
constants are required in order to fully define their behavior. Many of
these material constants have not yet been reported in literature. The
purpose of this chapter was to measure the longitudinal shear modulus
of rind and pith tissues. This will allow the resulting FEA models to be
based upon measurements instead of estimates.

The mechanical behavior of transversely isotropic materials are de-
termined by six material constants. Five of these material constants are
independent [26]. When analyzing maize stalks (which are composed of
two transversely isotropic materials), twelve (ten independent) material
constants are needed to model their behavior. Because of the difficulties
in measuring maize stalk tissues materials (e.g. asymmetrical geometry
and variation in specimens), research on maize stalk material constants
has been relatively limited.

Although data regarding maize stalk properties are scarce, some
of the twelve material properties have been measured previously. The
longitudinal modulus of rind tissue is the most commonly reported
maize tissue property [13–15, 19]. This is because the longitudinal rind
modulus is relatively simple to measure and it has been shown to be
influential in failure modeling [9].

The longitudinal modulus of pith tissue is more difficult to measure
due to its low stiffness and fragility. Studies often adopt an inference-
based approach to measure this property–a researcher will measure
material response of an intact specimen (pith and rind), remove the pith,
test the specimen again (with just the rind), and infer the contribution of
the pith. Sutherland [16], Zhang [15], and Al-Zube [19] have reported
the longitudinal modulus of elasticity of pith tissues.

21
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The transverse modulus of pith and rind tissue is also difficult to
measure. This is because there are no closed form equations to calculate
modulus values for transverse compression testing (as opposed to three
point bending or simple tension testing). Stubbs used an inverse-FEA
process in order to calculate the transverse modulus of elasticity of maize
pith and rind tissues [10, 27].

For late-season stalk lodging, researchers are most interested in tissue
properties at the time of harvest when stalks often have a relatively
low moisture content. As a result, tissues are often classified as “dry”
(moisture content below 15%) or “wet” (moisture content above 15%).
Dry tissues are most relevant to late-season stalk lodging [28] while
wet tissue properties are more relevant to mid-season stalk lodging or
greensnap [16]. Dry tissues have the advantage of being more amenable
to laboratory testing since they are much more stable and easier to test
than wet tissues. In general, tissue stiffness is highest for dry tissues and
decreases as moisture content increases [14–16].

While many properties have been measured, several remain unmea-
sured. The properties that have not yet been measured include poisson’s
ratios and shear modulus values. These properties are either difficult to
measure or are believed to have a less significant influence on material
response in maize stalks [9]. Of these remaining material properties,
the longitudinal shear modulus of pith and rind tissue is the easiest to
measure. This is because shear modulus is most often measured through
torsion testing, and it is relatively easy to grip a maize stalk along its
fibers (in the longitudinal direction). Table 3.1 summarizes the maize
stalk tissue properties that have and have not been measured and shows
how this chapter fills a gap in our understanding of maize stalk tissue
properties.

Table 3.1: Summary of which maize stalk tissue properties have and have not been
measured, including whether measurements were included for both wet and dry
specimens.

Source 𝐸|| 𝐸⊥ 𝐺|| 𝐺⊥ 𝜈|| 𝜈⊥ Pith Rind Wet Dry

Al-Zube [19] ✓ ✓ ✓

Al-Zube [13] ✓ ✓ ✓

Stubbs [27] ✓ ✓ ✓ ✓

Stubbs [29] ✓ ✓ ✓ ✓

Sutherland [16] ✓ ✓ ✓ ✓ ✓

Zhang [14] ✓ ✓ ✓ ✓

Zhang [15] ✓ ✓ ✓ ✓

This chapter ✓ ✓ ✓ ✓
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The goal of this research was to measure the longitudinal shear
modulus of dried maize stalk pith and rind tissues so that future studies
that require these properties can be based upon empirical data instead
of estimates, as has been necessary in the past [9, 18, 29]. In particular,
measurements were taken only on dried maize stalk samples for two
reasons: first, dried stalks are easier to measure than wet ones; and
second, because researchers are most concerned with stalk behavior at
the time of harvest, when stalks are relatively dry [16, 28, 29]. Through
this research, a 95% confidence level distribution of pith and rind
longitudinal shear moduli was developed. This knowledge will be
used to improve computational models of maize stalks, thereby enabling
a better understanding of the mechanisms involved in stalk lodging.

3.2 Methods
Torsion tests were performed on dried maize stalks by twisting specimens
(see Fig. 3.1). Specimens were gripped at the node to prevent crushing
due to the gripping pressure. The applied torque and rotation were
measured simultaneously during each test. Following each test, the
geometry of the stalk was quantified. Finally, the shear modulus was
calculated based on the torque/rotation slope and the geometry of the
specimen.

Figure 3.1: Torsion testing illustration and photograph of experimental set up.

The general approach used in this chapter is similar to well estab-
lished methods for measuring similar materials [30]. Such torsion tests
were conducted on dried bamboo [31–33] and 10-12% moisture content
wood [21, 34].
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3.2.1 Theory
The shear modulus, 𝐺 is a measure of a material’s resistance to shear
deformation. For a prismatic 3D member, the equation relating shear
deformation 𝜃 to applied torque 𝑇 is:

𝜃 =
𝑇𝐿

𝐺𝐾
(3.1)

Here 𝐿 represents the length over which the torque is applied and
𝐾 is the torsional constant, a factor that accounts for the cross-sectional
geometry of the object [35]. This equation can be solved for the shear
modulus:

𝐺 =
𝑇

𝜃
𝐿

𝐾
(3.2)

For a circular section, this simplifies to the more familiar form 𝑇𝐿
𝐽𝜃

where 𝐽 is the polar area moment of inertia. However, for a specimen
of arbitrary cross section (as for a maize stalk), the torsional constant
should be used [26, 36].

The theory described above relies upon several assumptions. First,
the theory assumes that the member subjected to torsion is prismatic.
Second, the theory assumes that the tissue is linearly elastic with small
levels of deformation. These assumptions are discussed below.

“Prismatic” means that the cross section of a specimen is uniform
along its length. While the cross-sectional shape of maize stalks is not
perfectly uniform, there is very little change in the cross-sectional shape
between nodes [28]. The nearly uniform shape of the maize stalk is
shown in Fig. 3.2.

The assumption for small deformations in Eqs. (3.1) and (3.2) are met
so long as the angle of twist is small. To account for this, specimens were
twisted only a small amount: from 0 to 5 degrees. This approach kept
measurements within the linear elastic region.

3.2.2 Specimen Groups and Selection
Specimens came from maize stalks that were grown in an open field
in Spanish Fork Utah during the 2021-2022 growing seasons. Three
different commercial varieties of maize were used for testing. However,
since the purpose of this chapter was to report a range of feasible values
for the longitudinal shear modulus of maize, the influence of variety
was not used as an experimental factor. Stalks were harvested once
grain filling had completed and just before harvest. This time point
corresponds to the period when late-season stalk lodging is most likely
to occur [28]. The stalks were cut with pruning shears just above the root
and immediately transferred to the lab for specimen preparation. Fig. 3.2
shows a representative sample cutting location on an intact maize stalk.

Specimen dimensions were limited by the physical constraints of the
torsion tester (MTS Acumen 12, Eden Prairie, MN). The maximum length
of specimens was constrained to 20 cm and the maximum diameter of

https://books.google.com/books?vid=ISBN978-1-260-45375-1
https://books.google.com/books?vid=ISBN978-1-260-45375-1
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Figure 3.2: Example specimen location for sample selection. The specific location of a
stalk was chosen based on whether the length was less than 20 cm and the diameter was
less than 2.5 cm.

specimens was constrained to 2.5 cm. These limits excluded only a small
number of very large diameter stalks. Cuts were made 2-3 centimeters
above and below a node (see Fig. 3.2) so that miniature lathe chucks could
grip the nodes, which are sturdier and easier to grip. Each specimen was
inspected for disease, pest damage, cracks, or any other damage before
being chosen. Any damaged specimens were excluded from testing.

Two different specimen groups were created in order to observe spe-
cific phenomena in testing: rind-only specimens (pith tissue removed),
and pith-only specimens (rind tissue removed):

Rind Only Specimens: Specimens with only rind tissue were used to
directly measure the shear modulus of the rind. To create rind-only
specimens, the pith was carefully removed using drill bits, dissection
spatulas, and abrasive pipe cleaners. Care was taken to ensure that the
rind was not damaged in this process. If cracking occurred during pith
removal, the specimen was not used. Due to the difficulty in preparing
rind-only specimens, only 18 rind-only tests were performed.

Pith Only Specimens: Specimens with only pith tissue were used to
directly measure the shear modulus of the pith. To create pith-only spec-
imens, the rind was carefully removed using a razor blade. If cracking
occurred during rind removal, the specimen was not used.

3.2.3 Gripping Specimens
Gripping specimens is always a challenge with biological tissues. If
specimens are not gripped tightly enough, slipping may occur which
adversely affects the collected data. On the other hand, if specimens
are gripped too tightly, the specimen may be damaged. To mitigate
these problems, 180 grit sandpaper was glued to the gripping jaws. This
allowed the jaws to provide substantial gripping force which prevented
slipping while also avoiding crushing or cracking the specimen. Tests
were not performed if cracks occurred during the grip tightening phase.
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Because gripping involves multiple points of contact, the center of rotation
can change slightly depending on how a specimen is gripped. To mitigate
this effect and to account for other sources of random measurement
errors, each specimen was fixtured and tested using 3-5 replications of
the torsion test.

Standard Torque/Angle Measurement
Both torque T and angle of twist 𝜃 were measured by a 3 kip-MTS
Acumen torsion/tensile testing device. The torque transducer for this
device was a 662.30H-02B Model 30 N m capacity transducer. The angle
measurement for this device was a 494.47 Encoder B Rotary Encoder.
Each specimen was loaded from 0 to 5 degrees at a rate of 0.15 degrees per
second. This load speed was chosen because it was deemed slow enough
to be considered static loading (viscoelastic effects could be neglected).
Torque and angle were measured simultaneously during testing.

Assessing Slippage: Alternative Angle Measurement
As stated previously, any shifting/slipping of the specimen during the
torsion test will produce inaccuracies in the angle of twist measurement.
Slipping can occur incrementally, making it very difficult to detect. To
assess whether or not slippage of the grips was a problem, a second
method for measuring the angle of twist was developed. This second
method relied upon the rotation of two lasers attached directly to the
specimen itself (see Fig. 3.3). Because there are no external loads applied
to the lasers, this approach is not subject to any slippage. Under the laser
method, two Feyachi 9 mm bore sight lasers were attached at the outer
thirds of each specimen as shown in Fig. 3.3. The lasers were aimed at a
grid located a known distance from the specimen. A Nikon DSLR Z2
camera with a zoom lens was used to capture the location of the laser
dots relative to the grid. During torsion testing, the lasers twisted with
the maize stalks, and the paths of the laser dots were captured by a
sequence of photographs.

To align the laser data with the torque and rotation data, the Nikon
camera was triggered using an output signal from the torsion tester.
Two photographs were taken every second during a torsion test (2 Hz
sampling). As most tests took approximately 2 minutes to complete, this
resulted in over 200 photographs per test. Each frame captured by the
camera was analyzed using computer vision techniques to determine
the position of each laser dot over time. Using trigonometry, the angle
of twist between the two points was calculated over time, as shown
in Fig. 3.3.

Comparing Encoder Rotation with Laser Rotation
Rotation was thus measured using two approaches: the rotations of
the grips themselves as recorded by the rotary encoder (we call this the
‘rotary encoder’ measurement procedure), and the rotation as measured
by the laser method described above (we call this the ‘laser’ measurement
procedure). Any discrepancies between the two tests provided evidence
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Figure 3.3: Laser setup. Left: two lasers were attached to the outer thirds of a specimen
and pointed at a grid-poster board some distance away. A camera with a zoom lens
tracked the movement of the laser dots over time. 𝐿1 was the grip length used in the
torsional stiffness calculation for standard samples, and 𝐿2 was the grip length used
in the torsional stiffness calculation for laser samples. Right: Trigonometry of camera
setup. The angle was calculated with 𝜃 = 𝑡𝑎𝑛−1[𝑑/𝐷], where 𝑑 was the position of the
laser dot on the poster board and 𝐷 was the distance from the laser to the poster board.

of slippage. Because the length of specimen differed between grips and
between lasers, the appropriate quantity for comparison between the
rotary encoder data and the laser data was the torsional stiffness, GK,
which is defined as:

𝐺𝐾 =
𝑇

𝜃
𝐿 (3.3)

Where 𝑇 was the torque measured by the MTS Acumen (identical in
both tests); was the angle of twist; and 𝐿 was the length of the specimen
for which twist was measured. These lengths are shown in Fig. 3.3 as
𝐿1 (for the standard measurement) and 𝐿2 for the laser measurement. A
two sample t-test was used to compare results obtained using this laser
measurement technique and those measured using the ‘standard’ angle
measurement technique. Comparisons between the two methods for
measuring rotation are presented in Section 3.3.1.

3.2.4 Quantifying Specimen Geometry
Specimen Length Measurements
The effective length 𝐿 of each specimen was measured. Before a torsion
test began, a standard 1 mm precision flexible tape measure was used
to measure the distance between the grips. This distance measurement
was used for each subsequent test per specimen. Uncertainties in length
measurements are explored in Section 3.2.5.
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Specimen Cross-sectional Geometry
Formulas from Roark’s Formulas for Stress and Strain [35] were used to
calculate 𝐾 for both pith-only sections and rind-only sections. For pith-
only cross sections, Roark’s equation for arbitrary solid cross sections
was used:

𝐾𝑝𝑖𝑡ℎ =
𝐴2
𝑝𝑖𝑡ℎ

40𝐽𝑝𝑖𝑡ℎ
(3.4)

Where 𝐴𝑝𝑖𝑡ℎ is the area encapsulated by the pith section and 𝐽𝑝𝑖𝑡ℎ is
the polar moment of the area of the pith section. For hollow rind-only
cross sections, Roark’s equation for arbitrary thin walled hollow cross
sections was used:

𝐾𝑟𝑖𝑛𝑑 =
4𝐴2

𝑚∮
𝑑𝑠/𝑡

(3.5)

Here 𝐴𝑚 was the area encapsulated by the thin wall midline, 𝑠
was the distance along the midline, and 𝑡 was a function of 𝑠 along
the midline. The geometric information used in these equations was
obtained from optical scans of specimen cross sections. Specimens were
first cut perpendicular to their length with a bandsaw to expose the
inner cross-section. These cross sections were held against an Epson
Perfection V39 flatbed scanner and scanned at 2400 dpi. These images
were then exported to Matlab (MathWorks, Natick, MA) as JPEGs for
image processing.

In Matlab, the Visual Processing Toolbox’s imageSegmenter function
was used to create digital masks of each image. A region of interest tool
was used to mark the relevant pixels for calculations. Fig. 3.4 outlines
various steps of this process.

Figure 3.4: Three steps of the image segmentation process. We first imported an image to
Matlab (left), then we separated the rind pixels from the pith pixels using the segmenter
tool (middle), then relevant quantities were calculated using Matlab functions (right).

3.2.5 Uncertainty in Measurements
It is important to consider the degree of uncertainty when reporting
measured values of plant tissues [37]. Three quantities were required
to calculate shear modulus: the 𝑇/𝜃 slope, 𝐿, and 𝐾. Each of these

https://books.google.com/books?vid=ISBN978-1-260-45375-1
https://books.google.com/books?vid=ISBN978-1-260-45375-1
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quantities were subject to measurement uncertainty. In this chapter, we
will define the measurement uncertainty of all quantities as the two-sided
95% confidence interval of the mean measurement. This quantity is
written as

𝑢 = 𝑡95,𝑛−1
𝑠√
𝑛

(3.6)

Where 𝑡95,𝑛−1 was the 95% confidence t-statistic drawn from the
student’s t distribution with 𝑛 − 1 degrees of freedom, 𝑠 was the sample
standard deviation, and 𝑛 was the number of measurements for a given
specimen.

The quantity 𝑇/𝜃 was measured 3 to 5 times for each specimen
with the MTS Acumen. The specimen was removed from the machine
and refixtured between each test. The standard deviation of these
measurements was used in Eq. (3.6) to calculate 𝑢𝑇/𝜃 for each set of
repeated specimen measurements. This uncertainty was unique for each
specimen.

The quantity 𝐿 was measured as the distance between the two grips
for a specimen. This was measured with a standard 1mm increment tape
measure. To estimate the variation in measuring the length 𝐿, one sample
was fixtured and measured 10 times by one user. The standard deviation
of this repeated measurement was used with Eq. (3.6) to calculate an
uncertainty that was applied to all samples.

The quantity 𝐾 was measured through numerical integration of the
formulas described in Section 3.2.4. The biggest source of error in this
measurement came from variation in manually identifying the pixels in
a cross section scan as being either pith pixels or rind pixels. Erroneously
identifying pith pixels as being rind pixels would inflate the 𝐾 calculated
for the rind while depressing the 𝐾 value for the pith. To estimate
the variation caused by the manual segmentation process, the torsional
constant of one cross section scan was calculated 10 times by one user.
The standard deviation of the resulting torsional constants was used
with Eq. (3.6) to calculate a 𝑢𝐾 that was applied to both pith-only and
rind-only specimens.

Propagation of Uncertainty
The Monte Carlo error propagation method [38] was used to determine
the overall uncertainty in shear modulus. The mean and standard
deviation values for 𝑇/𝜃, 𝐿, and 𝐾 were calculated for each specimen.
Normal distributions were then created for each quantity based on these
respective mean and standard deviations. These distributions were
then sampled 100 times for each quantity and combined to produce a
distribution of corresponding 𝐺 values. The mean 𝐺 value was carried
forward as the best estimate of 𝐺 for each specimen. The standard
deviation of the 𝐺 distribution was used with Eq. (3.6) to calculate the
propagated uncertainty in shear modulus, 𝑢𝐺.
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It is often easier to visualize uncertainties in terms of percent uncer-
tainty. The percent uncertainty for any of the quantities discussed above
can be calculated with Eq. (3.7):

𝑢% = (𝑢/𝑋̄) × 100% (3.7)

Where 𝑢 was the uncertainty calculated in Eq. (3.6) and 𝑋̄ was
the mean measured value for a specimen. Because 𝑋̄ was unique
for each specimen, the percent uncertainty varied for each specimen.
In Section 3.3.3, we will report the 95% confidence intervals on the
uncertainties found for 𝑇/𝜃, 𝐿, 𝐾, and 𝐺.

3.3 Results
3.3.1 Influence of Slippage
The paired t-test between the standard measurement method and the laser
measurement method showed that there was no significant difference
between the two methods (p-value of 0.2846). As seen in Fig. 3.5, the
medians of the two measurement distributions are virtually identical.
Because slipping is not possible when using the laser method, and
because there was no difference in data between the laser method and
the standard methods, we concluded that slippage was negligible when
using the grips approach. As a result, subsequent test results are not
differentiated by the method used in measuring rotation.

Figure 3.5: Torsional stiffness calculated using laser-based angle measurements (“Laser”)
and the standard MTS method (“Standard”).
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3.3.2 Shear Modulus Distributions for Rind and Pith Tissues
Rind shear moduli measurements varied from 355 MPa to 1630 MPa and
had an approximately normal distribution with a mean of 931 MPa and
standard deviation of 334 MPa. Pith shear moduli measurements varied
from 13 MPa to 55 MPa and had an approximately normal distribution
with a mean of 27 MPa and standard deviation of 10 MPa. The coefficients
of variation for these distributions were very similar, 36% for the rind,
and 37% for the pith. Fig. 3.6 shows the measured distributions for pith
and rind tissues.

Figure 3.6: Measured pith and rind shear moduli.

Comparison to Similar Materials
Wood and bamboo are relatively similar to maize and can be used as
comparison. Moran [33] reported the mean shear modulus of Guadua
Angustifolia (dry) bamboo to be 638 MPa. Green [21] reported the mean
shear modulus of hard woods to be 768 MPa, and soft woods to be 692
MPa. The measured rind shear modulus was found to be slightly higher
than these averages, with a mean of 931 MPa.

Fig. 3.7 shows that the measured rind values fall within both Green
and Moran’s ranges for wood and bamboo. As expected, the measured
shear modulus values for pith were significantly lower than the other
tissues. This is because pith tissue has a density far lower than those
materials.

3.3.3 Measurement Uncertainty
The 95% percent confidence interval of propagated uncertainty for shear
modulus was between 5.9% and 13.44% for rind samples. The 95%
percent confidence interval of propagated uncertainty for shear modulus
was between 5.77% and 7.17% for pith samples. The largest source
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Figure 3.7: Comparison between measured shear modulus values for dry ( < 15%
moisture) specimens of maize pith, maize rind, bamboo, hardwood and softwood.
Bamboo values are from Moran [33], wood values are from Green [21].
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for this error came from uncertainties in slope (𝑢𝑇/𝜃). 95% confidence
intervals for measurement uncertainties are shown in Table 3.2. Because
these uncertainties are relatively small, they were not included in the
results shown in Figs. 3.6 and 3.7.

Table 3.2: 95% confidence intervals for measurement uncertainties in slope, length,
torsional constant, and measurement of shear modulus.

𝒖𝑻/𝜽 𝒖𝑳 𝒖𝑲 𝒖𝑮

Rind 3.12% - 4.83% 0.66% - 0.88% 0.35% - 0.86% 4.36% - 12.5%

Pith 4.16% - 12.8% 0.94% - 1.17% 0.11% - 0.16% 3.18% - 4.75%

3.4 Discussion
There are several reasons for confidence in the measured shear modulus
values. Firstly, tested specimens did not slip due to applied torque. This
is because t-testing showed that measurement techniques impervious
to specimen slipping produced the same results as standard techniques.
This means that the data is not biased towards the effects of specimen
slipping.

Second, the measured values agree well with reported values for
similar materials. The measured rind modulus fell within the same
ranges for wood and bamboo, which are relatively similar to corn tissue.
As expected, the measured pith values were much lower than rind values,
as has been reported elsewhere for maize tissues [10, 16].
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Lastly, the measurement uncertainties were similar to those reported
for several methods for measuring the longitudinal stiffness of maize
tissues in a prior study [13]. The majority of this error came from
variability in repeated specimen testing. Similar phenomena have been
seen in previous studies and are common in biological material, so this
error is understandable.

The results of the measurements in this chapter were used in the
analysis in Chapter 4, and will be used in future studies involving
3D parameterized maize stalk models. This allows us to better model
the material behavior of maize stalks, and is an important piece in
understanding stalk lodging.

3.5 Limitations
All specimens came from maize stalks having a relatively low moisture
content, (10-15% moisture by weight). An inverse relationship between
moisture content and tissue stiffness has been reported in several previous
studies of plant tissues [16, 21, 39, 40]. As a result, lower modulus values
are to be expected for tissues with higher moisture content.

Several factors such as axial variation, the influence of moisture
content, tissue maturity, and other factors were beyond the scope of this
chapter. Axial variation of tissue bending strength, flexural stiffness, and
the influence of the leaf sheath have all been shown to vary along the
axial length of the stalk [41–43]. Shear modulus also likely varies with
axial position but was not investigated. Moisture content is known to
affect the mechanical properties of maize tissues [14, 16]. In addition, the
behavior of immature tissues, diseased tissues, and “goosenecked” stalks
have been observed (qualitatively) by the authors to differ significantly
from those of mature tissues. As a preliminary study on the longitudinal
shear modulus of maize stalk tissues, this chapter focused on dry tissues
and did not investigate the issues of axial variation, tissue maturity,
disease, or goosenecking.
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Sensitivity Analysis of 3D Parameterized Models

4.1 Background
Research has suggested that the shape of maize stalks can greatly in-
fluence their ability to withstand stalk lodging [7, 8, 10]. However,
these studies relied primarily upon an observational approach. This
approach was used in prior studies to identify correlational patterns
between gross morphological features and stalk strength. To gain a more
nuanced understanding and establish causation, direct modification
of the stalk geometry is required. In actual practice, direct modifica-
tion of the structural attributes of the maize stalk is extremely difficult.
A promising alternative is to use sophisticated computational models
which allow precise control over each aspect of the maize stalk. The 3D
parameterized maize stalk model developed previously provides direct
control over individual geometric and material features of the maize
stalk [18]. This type of model enables studies such as sensitivity analyses
and optimization studies to shed more light on the mechanics of stalk
strength and failure.

A sensitivity analysis is a powerful tool that can be used to characterize
the manner in which features of a system influence its behavior [44].
This is done by changing each aspect of the model on a one-at-a-time
basis to determine what impact this change has on the model output [45].
Sensitivity analysis has been used to study growth and development in
the field of agronomy, including wheat [46], potatoes [47], and rice [48].

The purpose of this chapter is to understand how geometric and
material properties of maize stalk models influence maize stalk flexural
stiffness, failure strength, and biomass. This will be done using a sensi-
tivity analysis combined with statistical data from actual experiments.
These results will enable researchers to better understand how geometric
and tissue parameters of the maize stalk contribute to the behaviors listed
above. This understanding can help guide future efforts to mitigate stalk
lodging via selective breeding or genetic manipulation.

4.2 Methods
4.2.1 Overview
Sensitivities in this paper were computed using the 3D parameterized
maize stalk model that was described in previous chapters. Rather than
modeling the entire stalk, this model captures the failure region: the

34
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region immediately apical of the node [49]. The model approximates
each cross-section of an individual maize stalk using two ellipses, one for
the outer boundary and one for the rind/pith boundary. Axial variation
is captured by allowing the elliptical cross-section to vary along the
length of the stalk. One advantage of this model is that it can be used to
efficiently create specimen-specific models from experimental data. An
original specimen-specific model and a corresponding parameterized
model are shown in Fig. 4.1. The colored paths on the parameterized
model illustrate the major diameter, minor diameter, and rind thickness
paths that define the elliptical cross-sections of the model at each axial
location.

Figure 4.1: The parameterized maize stalk model. The highlighted lines are the inner
and outer exterior edges of the rind geometry. The outer edges are simply the major and
minor diameter landmark paths, and the inner edges are the major and minor diameter
landmark paths with the rind thickness feature path subtracted.

The 3D parameterized maize stalk model is defined by a number
of geometric parameters as well as a set of material tissue parameters.
This model was used to perform a comprehensive sensitivity analysis
to determine how the parameters that define the model influence the
flexibility, strength, and total biomass.

4.2.2 Sensitivity Analysis
Sensitivity 𝑆 is essentially a partial derivative that quantifies the influence
of factor 𝑋𝑖 on response 𝑌𝑗 :

𝑆𝑖 𝑗 =
𝜕𝑌𝑗

𝜕𝑋𝑖
(4.1)

Sensitivities are frequently normalized by reference values to obtain
a non-dimensionalized form of sensitivity, 𝑆∗

𝑖 𝑗
:

𝑆∗𝑖 𝑗 =
𝜕𝑌𝑗

𝜕𝑋𝑖

𝑋𝑖 ,𝑟𝑒 𝑓

𝑌𝑗 ,𝑟𝑒 𝑓
(4.2)

Here 𝑋𝑖 ,𝑟𝑒 𝑓 is the reference value of factor 𝑋𝑖 , which is a material or
geometric input parameter, and𝑌𝑗 ,𝑟𝑒 𝑓 is the corresponding response when
all 𝑋𝑖 factors are at their reference values. The structural characteristics
of interest were flexural stiffness, failure strength and biomass. The
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non-dimensional form allows comparison across inputs that may have
different units. We can discretize either of these equations using a finite
difference approach:

𝑆∗𝑖 𝑗 =
𝑌𝑗 ,𝑛𝑒𝑤 − 𝑌𝑗 ,𝑟𝑒 𝑓
𝑋𝑖 ,𝑛𝑒𝑤 − 𝑋𝑖 ,𝑟𝑒 𝑓

𝑋𝑖 ,𝑟𝑒 𝑓

𝑌𝑗 ,𝑟𝑒 𝑓
(4.3)

Where the subscript “new” refers to a quantity calculated with a
modified input factor.

4.2.3 Refined Parameterization
The original parameterization approach [18] utilized 51 geometric pa-
rameters. Of these 51 parameters, 36 were used to define geometric
landmarks (12 parameters per path) and 15 were used to define the
transition patterns between landmarks (5 per path). While this parame-
terization adequately captured the overall shape of the maize stalk and
provided good predictive accuracy, we found that this parameterization
approach did not offer the level of control required for a sensitivity study.
This is because changes to a single landmark tended to influence the
shape of the model on both sides of the modified landmark. To provide
more localized control over the stalk geometry, we introduced additional
control points between landmarks. Fig. 4.2 illustrates both the original
and updated parameterization schemes.

Figure 4.2: The parameterized path for major/minor stalk diameter as a function of
axial position. Top Panel: Photograph showing the major diameter path traced in red.
Middle Panel: The original parameterization of the major diameter. Bottom Panel: The
updated parameterization with additional control points (open circles) located at the
point of maximum discursion of the transition pattern between landmark points (closed
circles). As seen by comparison between the two panels, changes to a landmark in the
updated parameterization scheme have a more limited influence than in the original
scheme. Note: The changes shown here have been exaggerated for illustrative purposes.
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These new parameter points provided a much greater level of control
over geometric features while still preserving the characteristics of the
original parameterization technique. A validation study confirmed that
models with 96 parameters provided identical results to corresponding
models with 51 parameters.

Parameterization Challenges
The new parameterization allowed for very fine control of geometric
parameters to influence stalk shape. However, it presented some new
challenges to the sensitivity analysis.

First, although the parameterization provided fine control over geom-
etry, changing just one geometric parameter by a small amount resulted
in an extremely small change in overall model shape. The model’s finite
element mesh has been optimized to accurately capture overall model
response, but does not accurately capture these small changes. A mesh
convergence could have been performed for each parameter modified
in this chapter. This would have required 96 mesh convergence studies.
Another alternative would have been to create a single mesh that was
sufficiently detailed that it could capture any minor change in the stalk
geometry. Either of these approaches would have required thousands of
hours of manual modeling and computational effort. In addition, the
resulting mesh(es) would have required many hundreds or thousands
of additional computing time to perform the sensitivity analysis. The
resulting change in stiffness or strength was therefore sometimes difficult
to detect in the presence of some degree of “noise” which is due to the
computational mesh. Levels of modification that were large enough
to detect clearly often resulted in model geometries that were highly
distorted.

Secondly, after fitting the parameterized model to 900 individual
maize stalks, we discovered that most model parameters are not truly
independent, but instead are highly correlated with neighboring pa-
rameters. Traditional one-at-a-time sensitivity analysis entirely neglects
correlations between model parameters, resulting in sensitivities that
could be misleading [50].

These challenges were addressed using a statistical technique called
principal component analysis (also known as empirical eigenfunction
analysis). Principal component analysis captures and describes natural
patterns of variation observed in a data set. In our case, these pat-
terns involved coordinated variation patterns involving the 96 model
parameters.

Principal Component Analysis
Principal component analysis transforms a dataset into a new coordi-
nate system defined by empirical basis “functions” that capture the
largest variation in the data [51]. These functions, known as principal
components, serve as the foundation of the data. The first principal
component captures the most variation, while subsequent components
capture progressively less.
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Principal component analysis can be used to reduce the dimensional-
ity of a system because the ranking of the principal components can be
used to ‘cut off’ information which can be neglected or omitted with a
minimal loss of fidelity. For example, in a model with 100 parameters (or
dimensions), if the first three principal components account for 95% of
the variation, we could use only these three principal components and
achieve a very similar set of behaviors using just 3 dimensions instead of
the original 100 dimensions. This machine learning technique has been
used in many fields, often dealing with morphology, including complex
drawing assemblies [52], and structural components [53].

Because principal component analysis is a statistical technique that
uses variations in model parameters, it also preserves any existing
relationships between model parameters [54]. This means that we can
use principal component analysis on our 96 geometric parameters and
still preserve how model parameters move according to nature. In the
sections below, we outline how principal components were calculated
for our 96 geometric parameters.

Parameter Grouping Approach
A data set of 900 maize stalk geometries were fitted to the 3D parameter-
ized model which has been used and described in previous studies [9,
10, 18]. The fitting approach produced a matrix of model parameters
having 900 rows (one for each stalk) and 96 columns (the geometric
parameters). Principal component analysis was performed on this data
set. Prior to performing principal component analysis, each parameter
was standardized according to Eq. (4.4):

𝑋𝑖 ,𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑋𝑖 − 𝑋̄𝑖
𝑠𝑋𝑖

(4.4)

Where 𝑋𝑖 are the original parameters, 𝑋̄𝑖 is the mean parameter value
and 𝑠𝑋𝑖 is the standard deviation of the 𝑋𝑖 values. Standardization was
applied to remove scaling effects between parameters of different units.
In addition, standardization ensured that each parameter exerted an
equal influence on the total variance of the data set. Principal component
analysis was performed using a pre-built function in Matlab 2022. The
output of principal component analysis was a 96 by 96 matrix of principal
components (called 𝑃), a 900 by 96 matrix of principal component
coefficients (called 𝐶), and a vector of 96 eigenvalues that described the
total variance explained by each principal component. The original fitted
parameter matrix (𝑋𝑜𝑟𝑖𝑔) could be reconstructed with Eq. (4.5).

𝑋𝑜𝑟𝑖𝑔 = 𝐶𝑃𝑇 𝑠𝑋 + 𝑋̄ (4.5)

Where 𝐶 is the coefficients matrix and 𝑃 is the principal component
matrix. In order to convert to the space of the original parameters,
de-standardization was applied (multiplying by standard deviation and
adding the mean in Eq. (4.5)).
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The principal component approach essentially re-parameterized the
maize stalk model. Instead of controlling the geometry through one-
at-a-time variation of individual geometric parameters, the principal
component approach allowed us to control the geometry by adjusting
the amount of each principal component present in each model. Fig. 4.3
provides an example of what a +100% standard deviation change to the
first principal component looks like for a representative stalk model.
More information on the mechanics of this process is provided in further
sections.

Figure 4.3: Visualizing the first principal component. The left side (in black) is the stalk
at its ‘reference’ state (no changes to the principal component). The right side (in red) is
the same stalk with a +100% standard deviation increase applied to the model’s first
principal component. Each stalk is mirrored across from each other in order to show the
differences between the two (the only part of each stalk shown is the region above the
node–regions below the node are not shown).

For sensitivity analysis, we treated the first twenty columns of prin-
cipal component coefficients (from the matrix 𝐶) as the new control
‘parameters’ of the 3D parameterized model. Each entry in the matrix
𝐶 represents the amount of a given principal component present in
the model. By increasing a given column in the principal component
coefficient matrix, we could ‘twist a knob’ that increased the amount of a
given principal component.

4.2.4 Finite element models and analyses
The parameterization techniques outlined in Section 4.2.3 were used to
generate 3D parameterized stalk models using SolidWorks. These 3D
CAD models were then imported into the commercial finite element
software Abaqus for structural analysis. The results of finite element
analysis were used to calculate sensitivities.
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Analyses Performed
Two mechanical responses of the 3D parameterized maize stalk model
were investigated: flexural stiffness and failure strength. Flexural stiffness
was calculated using a linear static analysis. Failure strength was calcu-
lated using linear buckling analysis. Details on the loading conditions
for both cases are provided in Section 4.2.4.

Material Properties
As in previous studies [9, 10], we modeled the maize stalk rind and
pith tissues using a transversely isotropic elastic material model. A
transversely isotropic material consists of six material constants, five of
which are independent [55]. Fig. 4.4 provides a diagram depicting these
six material properties.

Figure 4.4: Interpretation of transverse isotropy material constants. The || symbol
indicates a property in the fiber direction, while the ⊥ symbol indicates a property
perpendicular to the fibers. Material direction is highlighted for the rind tissue, but this
orientation is also present in pith tissue.

There were twelve different material constants required to define the
material response of maize stalks, ten of which were independent. The
ranges that were used in this chapter for each of these material constants
are shown in Table 4.1 along with the sources for each range.

Boundary Conditions
Because the parameterized maize stalk model has an elliptical cross-
section, it has two symmetry planes. A symmetry boundary condition in
the yz plane was used to simplify the model and reduce computational
expense. The model was further simplified based on the fact that maize
stalk failure typically occurs above the node [17]. This means that it is
unnecessary to simulate material that is below the stalk node. Therefore,
we only simulated the section above the node, with symmetry across
the xy plane [56]; we called these models ‘quarter models’. Fig. 4.5 sum-
marizes the geometry simplifications applied to each 3D parameterized
stalk geometry.
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Table 4.1: Material constant ranges for maize stalk pith and rind tissue, from Ottesen [18].
Units in GPa.

property method distribution pith rind source

𝐸⊥
random

sampling normal (0.026, 0.01) (0.85, 0.39) Stubbs [10]

rind 𝐸||
specimen
specific empirical n/a specimen

specific Al-Zube [13]

pith 𝐸||
random

sampling normal (0.45, 0.05) n/a Sutherland [16]

𝐺⊥ calculated n/a 𝐸⊥
2(1+𝜈) theory

𝐺||
random

sampling normal (0.27, 0.01) (0.93, 0.33) Carter [25]

𝜈⊥
random

sampling uniform (0.2, 0.45)
Green [21]

𝜈||
random

sampling uniform (0.009, 0.086)

Figure 4.5: Simplifications to stalk geometry.



Sensitivity Analysis of 3D Parameterized Models 42

[18] Ottesen et al., “Development and
stochastic validation of a parameterized
model of maize stalk flexure and
buckling,” 2023.

[57] Kumar et al., “Bending and Cutting
Characteristics of Maize Stalk Residue,”
2015.

[18] Ottesen et al., “Development and
stochastic validation of a parameterized
model of maize stalk flexure and
buckling,” 2023.

[58] Falzon et al., Buckling and Postbuckling
Structures, 2008.

[59] Saranpaa, Wood Quality and its
Biological Basis, 2009.

[60] Huang et al., “Density distribution
profile for internodes and nodes of
Phyllostachys edulis (Moso bamboo) by
computer tomography scanning,” 2015.

To verify that these simplifications did not significantly influence the
predictive accuracy of our models, we simulated twenty stalk geometries
using the ‘quarter model’ simplification and twenty geometries with
the full geometry for comparison. The model results between these two
groups correlated with each other with an 𝑟2 statistic of over 0.99 for
both flexural stiffness and failure strength analyses.

Cantilever bending loading boundary conditions were applied to
all quarter-stalk models. In previous papers [18], we had used three
point bending boundary conditions because validation data was based
on physical three point bending tests. With the model fully validated, we
used cantilever loading boundary conditions because these conditions
more accurately match the loads experienced by maize stalks in real
life [57].

To calculate flexural stiffness under cantilever loading, a linear static
analysis was used. The static analysis consisted of applying simulated
loads to calculate deflections. The simulated deflections were used to
calculate the flexural stiffness of each model [18]. To calculate failure
strength, linear buckling analysis was used. This type of analysis
gradually applies larger and larger loads until instabilities occur in the
model. The results of a linear buckling analysis are an eigenvector
(the geometric shape of the instability) and an eigenvalue [58] (a scalar
multiple for applied loads that will result in the corresponding instability).
Multiplying this eigenvalue by the applied moment on a stalk gives the
maximum moment before failure.

Calculating Model Biomass
In addition to mechanical response, model biomass was calculated by
multiplying the volume of pith/rind tissue by their respective densi-
ties. Pith and rind densities were based upon empirical measurements.
These measurements were made using the samples from Chapter 3,
which included measurements of cross sectional area and sample length.
Densities were calculated by assuming prismatic specimens, calculating
volumes with areas/lengths, and then weighing each sample to calculate
density (density = mass/volume). This process was repeated for 20 pith
samples and 20 rind samples.

The average density of pith samples was 83 𝑘𝑔/𝑚3 (standard de-
viation 27 𝑘𝑔/𝑚3) and the average density of rind samples was 810
𝑘𝑔/𝑚3 (standard deviation 280 𝑘𝑔/𝑚3). The measured mean density of
rind samples has very similar densities to wood [59] and bamboo [60].
Because both pith and rind densities had such high variation (coefficients
of variance each being roughly 0.3), both pith and rind densities were
randomly sampled twenty times for each sensitivity calculation to ac-
count for uncertainties due to variations in density. This will be covered
in Section 4.2.5.
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To calculate the sensitivity of models to biomass we used the sensi-
tivity approach shown in Eq. (4.6).

𝑆𝑚𝑎𝑠𝑠 =
𝜕𝑚

𝜕𝑋
=

𝜕𝑉𝑟𝑖𝑛𝑑𝜌𝑟𝑖𝑛𝑑
𝜕𝑋

𝜕𝑉𝑝𝑖𝑡ℎ𝜌𝑝𝑖𝑡ℎ

𝜕𝑋
= 𝜌𝑟𝑖𝑛𝑑

𝜕𝑉𝑟𝑖𝑛𝑑
𝜕𝑋

+𝜌𝑝𝑖𝑡ℎ
𝜕𝑉𝑝𝑖𝑡ℎ

𝜕𝑋
(4.6)

Where 𝑋 was a model input (in this case, a geometric parameter, as
we did not calculate volume sensitivities for material properties in this
chapter), 𝑚 was the model mass, 𝑉 was the model volume, and 𝜌 was
the tissue density.

Model volumes were estimated using numerical integration. The
parameterization technique outlined in Section 4.2.3 resulted in major
diameter, minor diameter, and rind thickness paths for each stalk model
that had a user-defined number of points located between each of the
geometric parameters. 100 points were defined between each landmark
point. The volume of a particular stalk was calculated by calculating
the area of an ellipse using the major and minor diameters at each
user-defined point along these paths, and then integrating these areas
along the axial length of a stalk model (trapezoidal integration). Fig. 4.6
visualizes the approach used to calculate volumes.

Figure 4.6: Approach used to calculate model volumes using trapezoidal integration.
The ‘A’ symbol is the cross sectional area of both the pith and rind ellipse section together,
and the ‘a’ symbol is the cross sectional area of just the pith ellipse section. To calculate
just the volume of the rind, the total volume is subtracted from the pith volume.
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4.2.5 Sampling Approach
The reference values for factors𝑋 and responses𝑌 as explained in Eqs. (4.2)
and (4.3) were calculated from ‘base models’. We defined a ‘base model’
as one of the 900 specimen-specific parameterized geometries. Only
a subset of these 900 parameterized geometries were chosen for use
in sensitivity analysis through stratified sampling. Stratified sampling
was used because it provides a more representative sample than simple
random sampling [61]. The goal was to calculate 1000 unique values
of sensitivities for both material and geometric sensitivities. Stratified
sampling consisted of ordering all 900 parameterized geometries by stalk
strength (measured from a previous study [13, 19]), and then choosing a
specified number of ‘base models’ from linearly spaced indices.

Number of Material Sensitivity Calculations
Twenty ‘base models’ were selected for material sensitivity calculations.
For each base model, each of the ten material constants were randomly
sampled according to the distributions shown in Table 4.1. To account
for variations in material constants, this process was repeated five times
for each base model. With ten unique material properties (plus one case
where the material properties were at their reference state), five material
samplings, and twenty ‘base models’, the total number of simulations
required to calculate the material sensitivities was:

20 geometries × 5 random samples × (1 reference case + 10 materials)
= 1100 simulations = 1000 sensitivity values

Number of Geometric Sensitivity Calculations
Fifty ‘base models’ were selected for geometric sensitivity calculations.
For each ‘base model’, each of the ten material constants were randomly
sampled according to the distributions shown in Table 4.1. Contrary
to material sensitivities, the material constants for each ‘base geometry’
were sampled only once. With fifty ‘base models’ and twenty principal
components (plus one case where the ‘base model’ geometry was at its
reference state), the total number of simulations required to calculate
geometric sensitivities was:

50 geometries × (1 reference state + 20 principal components)
= 1050 unique simulations = 1000 sensitivity values

Number of Geometric Mass Sensitivity Calculations
The estimated distributions for pith and rind densities as described
in Section 4.2.4 had high coefficients of variance (roughly 0.3). Due to
this high uncertainty, for geometric mass sensitivity calculations, we
randomly sampled both the pith and rind densities twenty times for each
sensitivity calculation. In all other ways, the sensitivity calculation setup
was identical to those of Section 4.2.5, except repeated twenty times with
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a different randomly sampled pith and rind density using the ranges
in Section 4.2.4. This means a total of 20,000 sensitivities were calculated
for geometric mass sensitivities.

In order to determine whether or not randomly sampling pith and
rind densities had a significant impact on biomass sensitivity calculations,
an error uncertainty was calculated for each sensitivity calculation. The
error uncertainty was calculated with Eq. (4.7).

𝑢 = 𝑡95,𝑛−1
𝑠√
𝑛

(4.7)

Where 𝑢 was the uncertainty in the sensitivity, 𝑡95,𝑛−1 was the t-
statistic, 𝑠 was the standard deviation of the sensitivity as a result of
variations in random samples for pith and rind densities, and 𝑛 was the
number of samples in the sensitivity distribution. In this case, 𝑛 = 20
because the pith and rind densities were sampled twenty times for each
sensitivity calculation.

4.2.6 Finite Difference for Sensitivity Calculations
We applied a percent standard deviation step size to 𝑋𝑟𝑒 𝑓 for finite
difference calculations. Taking percent standard deviation steps assures
that all parameters are changed in proportional amounts. For material
sensitivities, this was as simple as just adding 25% of a standard deviation
to the material constant of interest. For geometric sensitivities, percent
standard deviation changes were applied to the principal component co-
efficient matrix 𝐶 (see Section 4.2.3). The principal component coefficient
matrix was normalized prior to this so that standard deviations were
evenly scaled. In turn, this required the principal component matrix to
be scaled by the inverse of the normalization applied to 𝐶. Like material
sensitivity calculations, a 25% standard deviation change was applied to
the first twenty principal component coefficients for geometric sensitivity
calculations.

4.2.7 Regression between Full and Reduced Parameterized
Models

After geometric sensitivities were calculated, statistical analysis was
performed to determine whether a ‘reduced’ model consisting of only
the first principal component could be constructed to capture the majority
of stalk behavior. This approach provided valuable insights into which
principal components are most important for predicting stalk strength.

Twenty ‘base geometries’ were created using both the ‘reduced’ model
setup (using only the first principal component) and the ‘full’ setup
(using all principal components), and then analyzing these geometries
for flexural stiffness, failure strength, and biomass. The data were then fit
to a linear model and the 𝑟2 value was used as the measure of correlative
strength. A high 𝑟2 meant that the ‘reduced’ model setup predicted the
majority of flexural stiffness, failure strength, and biomass found using
the ‘full’ model setup.
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The number of principal components chosen to represent the ‘reduced’
model setup was determined by using the principal components that had
the highest flexural stiffness, failure strength, and biomass normalized
sensitivities. As will be explained in Section 4.3.2, there was only one
principal component that was distinguishable from the rest. Therefore,
only one principal component was used for the ‘reduced’ model setup.

4.2.8 Regression between Principal Components and Maize
Stalk Behavior

A statistical analysis was performed to determine whether the principal
components correlated with physical stalk behavior. This is important to
do because if the principal components are not correlated with physical
stalk behavior, then the 3D parameterized model has no connection to
reality. It also provides insights into how principal components influence
behaviors in actual maize stalks.

A previous study provided the failure strength and section moduli
of each of the 900 tested stalks used to generate our principal compo-
nents [13]. Another previous study provided the section moduli of
these same 900 stalks [8]. We performed statistical analysis between
these failure strengths, section moduli, and the principal component
coefficients. Section modulus was considered in this analysis because
Robertson found a high correlation between section modulus and failure
strength in maize [8].

Least squares regression was used to calculate correlations between
each set of data. This involved fitting a least squares polynomial to
principal component, failure strength, and section modulus data. The
𝑟2 statistics of the most parsimonious fitted polynomials were used to
characterize the strength of relationship between principal components,
failure strength, and section modulus for actual (not modeled) maize
stalks [62]. Failure strength was considered over flexural stiffness and
biomass because ultimately, it has a larger impact on stalk lodging than
the other two.

4.3 Results
4.3.1 Material Sensitivity Results
Fig. 4.7 shows the ranked influence of material properties on flexural
stiffness (i.e. sensitivity of flexural stiffness to material properties). The
elastic modulus of rind tissue parallel to the fibers (rind 𝐸||), was far more
influential than any other material property. Shear modulus of pith and
rind tissue parallel to the fibers (rind and pith 𝐺||), as well as the rind
Poisson’s ratio parallel to the fibers (rind 𝜈||) had median sensitivities
less than 10%. All other material constants had sensitivities less than 1%.
Distributions that were deemed statistically not significant (ns) from one
sample t-testing (p > 0.05) are marked with an ‘ns’.
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Figure 4.7: Flexural stiffness material property sensitivities (ranked).

Fig. 4.8 shows the ranked influence of material properties on failure
strength. Failure strength was also most highly influenced by the elastic
modulus of rind tissue parallel to the fibers (rind 𝐸||). But unlike flexural
stiffness, failure strength was more broadly influenced by other material
properties, such as the elastic modulus of pith tissue transverse to the
fibers (pith E) and the shear modulus of pith and rind tissue parallel to
the fibers (rind and pith 𝐺||). Distributions that were deemed statistically
not significant (ns) from one sample t-testing (p > 0.05) are marked with
an ‘ns’.

Figure 4.8: Failure strength material sensitivities (ranked).
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4.3.2 Geometric Sensitivity Results
Fig. 4.9 shows the ranking of flexural stiffness, failure strength, and
biomass sensitivities with respect to the first twenty principal components.
Distributions that were deemed statistically not significant (ns) from one
sample t-testing (p > 0.05) are marked with an ‘ns’.

Figure 4.9: Calculated geometric sensitivities for flexural stiffness, failure strength and
biomass with respect to the first twenty principal components. The number of samples
for biomass sensitivities (1000) is different from the other sensitivities due to random
sampling of pith and rind densities (see Section 4.2.5)

The first principal component had the highest influence on model
flexural stiffness (median 55%), failure strength (median 45%), and
biomass (median 27%). All other principal components had relatively
low influence. For flexural stiffness sensitivities, all remaining principal
components had median sensitivities below +/- 6%. For failure strength
sensitivities, all other principal components had median sensitivities
below +/- 7%. For mass sensitivities, all other principal components had
median sensitivities below +/- 4%.

Uncertainty in the value of pith density and rind density were
found to have little effect on the biomass sensitivities shown in Fig. 4.9.
An uncertainty analysis revealed that for each principal component
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sensitivity, the maximum error due to density uncertainty was less than
+/- 0.5 percent normalized sensitivity. This was a small enough error
that error bars were not included for biomass sensitivities in Fig. 4.9.

4.3.3 Relationships between Mass and Flexural Stiffness/Failure
Strength Sensitivities

Fig. 4.10 shows a scatter-plot between biomass sensitivities and flexural
stiffness sensitivities / failure strength sensitivities. Both plots show
positive correlations between stiffness / strength and biomass. The
cluster of data around the origin of these charts shows that all other
principal component sensitivities (in various colors) had much weaker
relationships with biomass sensitivities.

Figure 4.10: Scatter plots of mass sensitivities to flexural stiffness/failure strength
sensitivities. The first principal component sensitivities are shown in blue, and all other
principal component sensitivities are shown in various colors.

4.3.4 Statistical Analysis of Full and Reduced Parameterized
Models

Fig. 4.11 shows the linear model equations and 𝑟2 statistics comparing
‘reduced’ parameterized models and ‘full’ parameterized models. The
sensitivity results from Section 4.3.2 indicated that only the first principal
component is distinguishable from the other principal components for
flexural stiffness, failure strength, and biomass calculations. As such,
the ‘reduced’ parameterized model was formed with only the first
principal component present. The results of this analysis indicated that
95% of flexural stiffness, 86% of failure strength, and 95% of biomass
can be predicted in parameterized stalk models using only the first
principal component. The scatter plots for these relationships are shown
in Fig. 4.11.
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Figure 4.11: Full and reduced parameterized model comparison. The x-axis in each case is
the quantity calculated by the ‘full’ parameterized model (with all principal components
included) and the y-axis is the quantity calculated by the ‘reduced’ parameterized model
(with only the first principal component).

4.3.5 Statistical Analysis of Principal Components and Maize
Stalk Behavior

We now pivot from modeling results to statistical analysis of empirical
data (as outlined in Section 4.2.8). Fig. 4.12 shows the relationships
between actual maize stalk failure strength, the first principal component
as it was extracted from the physical geometry of maize stalks, and section
modulus of real maize stalk cross-sections. All relationships were fit with
3rd order polynomials. Both the first principal component and section
modulus are very strong predictors of stalk strength (𝑟2 = 0.8). The
relationship between the first principal component and section modulus
was extremely strong (𝑟2 = 0.96). This indicates that the first principal
component is essentially the same construct as the section modulus. All
other principal components exhibited 𝑟2 values of less than 0.01.

Figure 4.12: Comparisons between maize stalk failure strength, principal component 1,
and section modulus. The fit lines shown are third order fits.
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4.4 Discussion
4.4.1 Material Sensitivities
Material sensitivity analysis provided similar results to previous stud-
ies [10]. The most influential material property for both flexural stiffness
and failure strength analyses was the longitudinal modulus of the rind
tissue (rind 𝐸||). Higher variation in material sensitivities was observed
for failure strength, which is similar to the phenomenon observed in past
studies [18]. This is likely the case because failure modeling is a compli-
cated phenomenon dependent on more factors than static analysis [24].

4.4.2 Geometric Sensitivities
Geometric sensitivity analysis revealed that the first principal component
had high sensitivity values for flexural stiffness, failure strength, and
biomass. All other principal components had low sensitivity values.
These results indicate that the majority of stalk behavior is influenced by
only the first principal component.

The results shown in Fig. 4.10 further confirm this point. Looking
at Fig. 4.10, it is obvious that the first principal component stands apart
from all other principal components. The other principal components
are barely distinguishable from each other, and are centered near (0,0).

The fact that there is only one influential factor that influences model
behavior suggests that mass constrained optimization studies concerning
3D parameterized maize stalk models using principal components as
factors may not be feasible. This is because constrained optimization
usually requires multiple influential factors, whereas the 3D parameter-
ized model only has one. We had hoped that this sensitivity analysis
would suggest strategies for increasing stalk strength without increasing
biomass. Unfortunately, these results suggest that there is little possibil-
ity of increasing stalk strength without increasing biomass. As shown
in Fig. 4.10, when strength increases, it is virtually always accompanied
by an increase in biomass.

Lastly, because the maximum error uncertainty in biomass sensitivi-
ties was less than +/- 0.5, we can conclude that uncertainty in pith and
rind densities does not affect the results of this chapter. The estimated
pith and rind densities had distributions with high variation and were
only ‘ballpark’ estimates. Fortunately, the accuracy of density estimates
did not significantly affect our biomass sensitivity calculations.

4.4.3 Reduced Models and Principal Components
Statistical analysis between ‘reduced’ parameterized models that only
contained the first principal component and ‘full’ parameterized models
that contained all principal components revealed that 85% of model
failure strength can be predicted by only the first principal component.
This indicates that the geometric behaviors quantified by the other
principal components associated with stalk geometry have little impact
on strength. The geometric behavior associated with the first principal
component, however, is the primary determinant of stalk strength.
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4.4.4 Section Modulus
Prior to this paper, the relationship between maize stalk strength and
section modulus was based on purely observational “mechanics-based
regression” [8]. This approach used insights from structural mechanics
to inform the regression approach. The structural quantity of section
modulus was found to be the strongest predictor of stalk strength. In a
similar manner, flexural stiffness was also found to be a good predictor
of stalk strength.

A single principal component was found to be closely related to
flexural stiffness, stalk strength, and biomass. Principal component
analysis is a purely statistical approach that identifies natural patterns
in data sets without making any prior assumptions about the resulting
patterns. Modification of the principal components through sensitivity
analysis demonstrated that the first principal component had a strong
influence on flexural stiffness, stalk strength, and biomass. In addition,
the remaining principal components had very little influence on the
stiffness, strength, and biomass. This finding was reinforced by creating
reduced models that included the first principal component but omitted
all other components. These reduced models produced results that
were extremely close to the results of models that included all principal
components Fig. 4.11.

As a purely statistical method, principal component analysis doesn’t
“know” anything about structural mechanics. Yet the first principal com-
ponent was found to be extremely closely related to the section modulus
(𝑟2 = 0.96). The analysis therefore provides independent support for the
idea that section modulus is the primary predictor of stalk strength. In
other words, a purely statistical approach (principal component analysis)
and mechanics-based regression provided independent paths to the
same conclusions.

4.4.5 Limitations
Several limitations affect the results of this chapter. For one, there are
several side effects to quarter-symmetric models. Calculated buckling
modes can no longer be antisymmetric [24], and therefore can no longer
occur on the bottom part of a modeled stalk. Also, any calculated values
such as flexural stiffness or failure moment are half the value of their
full-model counterparts. These problems can be remedied by adjusting
output values for quarter-symmetric models by a factor of two. Several
limitations affect the results of this chapter. For one, there are several side
effects to quarter-symmetric models. Calculated buckling modes can
no longer be antisymmetric [24], and therefore can no longer occur on
the bottom part of a modeled stalk. Also, any calculated values such as
flexural stiffness or failure moment are half the value of their full-model
counterparts. These problems can be remedied by adjusting output
values for quarter-symmetric models by a factor of two.

The models were also based on fully matured, dried, healthy maize
stalks. This means that the calculated sensitivities are only applicable
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to stalks of a similar caliber. Because maize stalks have been known to
behave differently when unhealthy, moist, or during different stages of
development [16, 63], these sensitivities will likely be affected by any
changes to stalk condition.

Sensitivities were also calculated within 25% of a standard deviation
of either principal component coefficients or material properties. This
means that these sensitivities are only accurate within this range. The
models may behave differently outside of this range. In spite of this,
we believe that keeping to within 25% of a standard deviation for the
relevant quantities is important to preserve behaviors of maize stalks seen
in nature, and that going outside of this bound may lead to inaccuracies.
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Summary and Conclusion

5.1 Summary of Results
The purpose of this study was to improve and better understand the
factors that influence maize stalk failure. First, the process for creating
and analyzing 3D parameterized finite-element models of maize stalks
was automated. Second, the longitudinal shear modulus of maize stalk
pith and rind tissues were measured to fill a gap in our current set of
material constants used in FEA analysis. Third, a sensitivity analysis
was performed to assess the influence of material and geometric factors
on maize stalk flexural stiffness, failure strength, and biomass.

The creation and analysis of 3D parameterized models in FEA were
automated using the python/Abaqus API, which allows for complete
user control over boundary conditions, meshes, and geometries. The
created automated package can now create a model in under one minute.
This is a major improvement over the 20 minutes previously required
when manually creating a model. Validation of the automated package
showed high correlation between simulation results and results from
physical testing, with an 𝑟2 of 0.98 for flexural stiffness, and an 𝑟2 of 0.73
for failure strength [18]. The automated modeling platform supports the
automated creation of models that can be used for sensitivity analyses
and optimization studies.

The transverse shear modulus of maize pith and rind tissue were
measured for dry and fully mature maize stalks. The shear modulus of
the rind tissue had a mean of 931 MPa and standard deviation of 334 MPa.
The pith shear modulus had a mean of 27 MPa and standard deviation
of 10 MPa. Rind measurements had similar values to bamboo and wood.
These measurements are the first reported values in the literature. Their
use in FEA models allows researchers to avoid the estimation process
that was necessary before these measurements were taken.

The automated model generation package was used to perform a
sensitivity analysis in order to assess the influence of material and geo-
metric factors on model flexural stiffness, failure strength, and biomass.
Sensitivity analysis consisted of making changes to statistical geometric
patterns found in actual maize. These statistical geometric patterns were
found using principal component analysis. Manipulating the principal
component patterns increased the ‘amount’ of a particular pattern found
in actual maize. Results indicated high failure strength sensitivity to
the first principal component, with low sensitivity to all other principal
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buckling,” 2023.

[25] Carter et al., “Measurement of Maize
Stalk Shear Moduli,” 2023.

components. The first principal component is highly correlated with
section modulus (𝑟2 = 0.97); this is independent validation that section
modulus is the primary predictor of stalk strength, which is consistent
with previous studies [8]. Results indicated that all failure strength
sensitivities had positive correlations with biomass. Because there is
only one influential predictor of stalk strength, and because all model
parameter failure strength sensitivities are positively correlated with
biomass sensitivities, it is unlikely that future optimization analyses
using the principal component patterns in this study could result in
stalks with higher failure strength without increasing biomass.

5.2 Contributions
The automated system described in Chapter 2 supported a study focused
on validating the parameterized maize stalk model. The validation study
was published in the journal Plant Methods and I was a co-author on that
paper [18]. The automated system also contributed to the material and
geometric sensitivity analysis in Chapter 4.

The measurement of longitudinal shear modulus of pith and rind
tissue in Chapter 3 resulted in a paper that has been accepted for publi-
cation in the journal Plant Methods [25], These results were subsequently
used in the models described in Chapter 4.

The sensitivity analysis in Chapter 4 has been submitted to the journal
in Silico Plants. These results will also inform future studies concerning
the effect of geometric parameters on stalk response.

5.3 Future Work
Several future studies would be beneficial to complement the work done
in this thesis. Firstly, now that a solid relationship has been established
between principal components and model response, optimization studies
could be performed to improve model failure strength by manipulat-
ing the principal components rather than individual model parameters.
Based on the results of the sensitivity analysis, it seems unlikely that
model failure strength can be increased significantly without increasing
biomass. This is because the sensitivity analysis revealed only posi-
tive correlations between failure strength and biomass. However, an
optimization study that does not constrain biomass could quantify the
degree of biomass increase; it may be that the tradeoff between increasing
stalk biomass and increasing stalk strength is small enough to warrant
attention in selective breeding.

Second, if stalk strength cannot be feasibly increased with additional
biomass, future studies will need to focus on increasing stalk strength in
other ways. While this thesis sought to preserve variation patterns found
in nature (through principal component analysis), it may be the case
that breaking these patterns may allow for increases in failure strength
without significantly increasing biomass. The downside to this approach
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is that it may indicate an optimal solution that is difficult or impossible
to achieve through natural breeding.

In addition to optimization studies, further work could focus on
some factors that are currently ignored in our models. For example, our
models only model a small portion of maize stalks (about 50 millimeters
above and below a single node) instead of the entire stalk. In addition,
our models do not include the leaf sheath, which has been found to be
influential in stalk failure [64]. Lastly, our models do not include the
relationship between stalks and the soil. The addition of each of these
factors would lead to a more comprehensive model. Fortunately, the
current model provides a flexible platform upon which these additional
capabilities could be built. Thus it is hoped that this model will both be
used in future studies in its current form and expanded upon to increase
its capabilities.

5.4 Conclusions
The results of this thesis are 1) an automated modeling package that
allows models of any desired shape and material properties to be created
approximately 100 times faster than previously possible; 2) distributions
of longitudinal shear modulus of pith and rind tissue, found to be 13 MPa
to 55 MPa for pith tissue and 355 MPa to 1630 MPa for rind tissue; and 3)
evidence that the strength and flexibility of maize stalks are governed
by a single mode of geometric variation, which is positively correlated
with biomass and closely related to section modulus. These findings
significantly contribute to the field of engineering in agronomy, and help
researchers better understand the factors that contribute to maize stalk
lodging.
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