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Abstract

As complimentary metal-oxide semiconductor (CMOS) technologies

scale and field-effect transistor (FET) architectures change, the factors in

deciding to utilize analog or digital transistor behaviors evolve. This thesis

examines three case studies where traditionally analog or digital circuitry

has dominated published works but I show that the opposite regime has

significant benefits in scaled CMOS technologies. I present a highly digi-

tal operational amplifier (traditionally analog) and two artificial neurons

(traditionally digital).

In Chapters 2 and 3, I present a highly-digital five-stage zero-crossing-

based amplifier which breaks the trade-off between slew rate and settling

accuracy. I investigate the optimal charge pump design by analyzing the

effects of the current scaling factor, number of current sources, maximum

current value, and input amplitude on the settling performance including

overshoot and settling time. I find that there exists an optimal number

of stages that yields the fastest settling for a given total current and load

capacitance. The proposed amplifier achieves a signal-to-noise ratio of 57 dB

at a sampling rate of 40 MHz and consumes 1.45 mW under a 1V supply.

In Chapters 4 and 5, I propose two novel analog artificial spiking neurons,

operating in the voltage domain and phase domain respectively. The voltage

domain neuron presented in Chapter 4 implements a novel fine-tuning

method called neuromodulatory tuning which reduced the number of

parameters to be tuned by four orders of magnitude as compared with

traditional fine-tuning methods. Chapter 5 presents the design of a novel

phase-domain neuron. Voltage domain neurons mimic biological neurons

by integrating charge on a capacitor. I instead integrate phase in a voltage-

controlled ring oscillator (VCO). I also propose a novel bidirectional switched-

capacitor synapse which saves significant area compared to bidirectional

current based synapses. The proposed neuron, synapse and weight memory

occupy only 21x27𝜇m, and consume 134fJ/spike under a 0.35V supply

Keywords: analog neuron, artificial neuron, spiking neuron network, time-

domain computing, operational amplifier, charge pump
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1 Introduction

1.1 Research Motivation and Description
Complimentary metal-oxide semiconductor (CMOS) field effect transistor

(FET) manufacturing has been the driving force in technological innovation

for the last several decades. Most recently, deep sub-nanometer planar FETs,

FinFET, and GAAFET technologies have enabled ultra-high speed processors,

machine learning and artificial intelligence, and supercomputing. As CMOS

devices continue to shrink, so do device properties such as intrinsic gain and

output impedance. This is a boon to high-speed digital circuits, but hampers

the performance of analog circuits. Conversely, lower supply voltages have

made subthreshold analog circuit architectures highly attractive in some

applications. In some cases, these evolving device properties have made

designers consider analog versions of traditionally digital circuits and vice

versa. This thesis explores two such circuits circuits: an operational amplifier

and an artificial neuron.

Operational amplifiers (op-amps) are usually implemented using analog

circuit typologies like the folded cascode or telescopic op-amp. Recently,

highly-digital zero-crossing-based amplifiers (ZCBA) have emerged as alter-

natives because of their lower power consumption and scalability to deep

submicron CMOS processes. ZCBAs have found application in pipelined

analog-to-digital converters (ADC), ΔΣ ADCs and other circuits [1]–[11].

This thesis presents an optimization algorithm for the ZCBA charge pump

design. Then, a thorough analysis of the design of a ZCBA is provided.

The ZCBA is simulated using Cadence Virtuoso, and the results verify the

optimization algorithm and behavioral model. The proposed ZCBA achieves

a signal-to-noise-and-distortion ratio of 57.4dB under a 1V supply at a 40MHz

sample rate.

Artificial neurons circuits are used in neural networks to perform machine

learning and artificial intelligence tasks. Traditionally, these neurons are

implemented in digital circuitry using field-programmable gate arrays

or graphics processing units (GPU). While computationally robust, these

neurons consume high amounts of power and are therefore not suitable for

edge computing applications. Spiking neural networks are neural networks

which attempt to mimic the time-based neuronal spiking behavior observed

in the human brain. Analog artificial neurons have been shown to be highly

efficient at implementing spiking neurons [12]–[18].

This work proposes two low-power analog artificial spiking neurons.

The design of a voltage-domain spiking neuron (VDSN) is presented first,

1



Introduction 2

followed by the design and fabrication of a novel phase-domain spiking

neuron (PDSN). While many voltage-domain neurons have been proposed

to date, the proposed VDSN implements a custom fine-tuning algorithm

which significantly reduces the number of weight updates required for a

network to learn a new task.

Time-domain and phase-domain computing have been successfully

utilized in analog-to-digital converters, time-to-digital converters and other

circuits [19]–[24]. Time domain computing takes advantage of fast-switching

devices, and experiences less performance degradation from processes

scaling as compared to many analog circuits. Further, digital circuits can

be ported between processes faster, reducing design costs in commercial

applications [25]. I present a novel phase domain neuron that overcomes

many of the challenges faced by voltage-domain neurons in deep sub-micron

processes. I also propose a switched-capacitor-synapse that is particularly

suited to a phase-domain spiking neuron. The VDSN reaches an output

spike rate of 3.3Mhz achieving 1.08pF/spike under a 0.4V supply. The PDSN

reaches an output spike rate of up to 5.8Mhz and consumes only 134fJ/spike

under a 0.35V supply.

1.2 Outline
Chapters 2 and 3 discuss the design of a zero-crossing-based amplifier

(ZCBA). Chapter 2 presents an algorithm to optimize the charge pump

design for a ZCBA. I show that there exists an ideal current scaling factor

for a given set of design constraints. Chapter 3 presents the design and

simulation of a ZCBA based on our optimization algorithm. The design

of each sub-circuit in a ZCBA is thoroughly analyzed, including a novel

two-stage background-calibrated floating-inverter amplifier.

Chapters 4 and 5 present two artificial neuron designs. Chapter 4 presents

a voltage-domain neuron specifically design to implement a novel fine-tuning

algorithm called neuromodulatory tuning. Chapter 5 presents the design and

fabrication of a novel phase-domain spiking neuron, including simulation

and measurement results.



2 Multi-Stage Charge Pump Design Optimization
for Zero-Crossing-Based Amplifiers

This chapter is composed from a paper entitled "Multi-Stage Charge Pump

Design Methodologies for Zero-Crossing-Based Amplifiers" which is under

review from the journal "IEEE Transactions on Computer-Aided Design

of Integrated Circuits and System." I hereby confirm that the use of this

article is compliant with all publishing agreements. The authors on this

work are myself as lead author, Shea Smith, Yixin Song, Yen-Chen Kuan, and

Shiuh-hua Wood Chiang. With support and advice from the other authors,

I designed all the circuits and developed all the software presented in this

chapter.

2.1 Introduction
Zero-crossing-based amplifiers (ZCBAs) have been proposed as a replace-

ment for conventional operational amplifiers in applications such as pipelined

analog-to-digital converters (ADCs) and delta-sigma ADCs [1], [2], [5]–[11],

[26], [27]. Whereas traditional amplifiers implemented in scaled CMOS

processes suffer from limited intrinsic gain and headroom, ZCBAs utilizes

comparators, charge pumps, and digital logic that directly benefit from

technology scaling [26].

The general topology of a ZCBA is shown in Fig. 3.1. The amplifier

samples the input on 𝐶𝑖𝑛 and a comparator senses the polarity of the sampled

voltage 𝑉𝑋 . The comparator decision then controls a charge pump to charge

or discharge the load capacitor 𝐶𝐿 to drive 𝑉𝑋 toward zero through the

feedback capacitor 𝐶 𝑓 . The comparator turns off the charge pump when it

detects the zero crossing of 𝑉𝑋 to complete the signal amplification. Due

to the non-zero comparator decision time, the output of a ZCBA suffers

from overshoot 𝑉𝑂𝑆 as shown in Fig. 2.2(a). With a comparator period 𝑇𝑐𝑜𝑚𝑝
and a comparator threshold 𝑉𝑡ℎ,𝑐𝑜𝑚𝑝 , the comparator exhibits a worst-case

overshoot 𝑉𝑂𝑆 = 𝑇𝑐𝑜𝑚𝑝 𝐼𝐶𝑃/𝐶′
𝐿
, where 𝐼𝐶𝑃 is the charge pump current and

𝐶′
𝐿

the effective load capacitance. To decrease 𝑉𝑂𝑆 for a fixed 𝐶′
𝐿
, 𝑇𝑐𝑜𝑚𝑝 and

𝐼𝐶𝑃 must be reduced. But the former is limited by the technology speed

and the latter directly trades off with the amplifier speed (i.e. a smaller 𝐼𝐶𝑃
gives a smaller 𝑉𝑂𝑆 but a longer settling time). Therefore, prior works have

proposed a 2-stage charge pump to break the speed-precision trade-off [9]

[10]. The 2-stage charge pump activates a large current (𝐼𝐶𝑃) until the first

3
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Figure 2.1: Zero-crossing-based amplifier utilizing multiple charge pump current

stages with current scaling factor 𝑘.

zero-crossing, then a small current (𝐼𝐶𝑃/𝑘) until the second zero-crossing as

shown in Fig. 2.2(b). The large current provides fast settling and the small

current small overshoot. The amplifier in [1] extends this idea further to

six stages. Fig. 2.2(c) shows the output waveform of a generalized 𝑚-stage

ZCBA where each successive charge pump current is reduced by a factor of

𝑘.
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Figure 2.2: (a) Conceptual illustration of ZCBA settling behavior with 1-stage charge

pump for different current values. (b) ZCBA settling with 2-stage charge pump. (c)

ZCBA settling with 𝑛-stage charge pump. Behavioral simulations of ZCBA with (d)

3-stage, (e) 5-stage, and (f) 8-stage charge pump.

While the multi-stage charge pump for ZCBAs has been demonstrated

in prior works, the exact scaling factor and number of stages that lead to

an optimal settling time have not been investigated. For instance, a small

number of stages suffers from a severe trade-off between settling time and

overshoot, while a large number of stages suffers from the slow scaling of the

current sources, thus resulting in a longer settling time. To understand the

complex trade-offs in a ZCBA, this brief investigates the effects of the various

circuit parameters including the current scaling factor, number of current

sources, current value, and input amplitude on the settling performance.
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We develop a generalized behavioral model of the ZCBA that allows us to

vary the design parameters to analyze the circuit. Finally, we validate our

behavioral model with transistor-level simulations of a complete multi-stage

ZCBA. The numerical tool presented allows us to predict the optimal charge

pump design for ZCBAs from the circuit parameters.

2.2 Mathematical and Behavioral Model
The overshoot error during each stage of amplification can be predicated

mathematically. Due to the input-dependent nature of the overshoot error,

we use a statistical model that predicts settling time with good accuracy. Fig.

2.3 shows a graphical representation of our analysis. Fig. 2.4 (a) compares

the results of the analysis with our behavioral model.

Due to uniform comparator clock periods and the approximately linear

behavior of the current sources on a small time scale, The overshoot error

𝑉𝑂𝑆 is uniform distributed as 𝑉𝑂𝑆 = (𝐼𝑐𝑝/𝐶𝐿) ×𝑈(0, 𝑇𝑐𝑜𝑚𝑝)
It follows that across many zero crossings, the average overshoot 𝑉𝑂𝑆,𝑎𝑣𝑔

is 𝐼𝑐𝑝,𝑛𝑇𝑐𝑜𝑚𝑝/2𝐶𝐿 Using this simplification, we can write the settling time for

an 𝑚 stage ZCBA as:

𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 𝑇𝑐𝑜𝑚𝑝

𝑚∑
𝑛=1

⌈𝑉𝑥,𝑛
Δ𝑉𝑛

⌉ (2.1)

Where 𝑉𝑥,𝑛 is the virtual ground voltage before the 𝑛𝑡ℎ current stage and

Δ𝑉𝑛 = 𝐼𝑐𝑝,𝑛𝑇𝑐𝑜𝑚𝑝/𝐶𝐿 for the 𝑛𝑡ℎ current stage. This equation is not continuous

and therefore not differentiable. Numerical methods are required to find a

minimum.

We develop a MATLAB program that models the behavior of the amplifier

with a generalized multi-stage charge pump. The program simulates the

amplification cycle for different values of 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 (total charge pump current),

𝑚 (number of current stages), 𝑘 (current scaling factor), and 𝑉𝑖𝑛 , and gives

the settling waveform and settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 . The goal in developing the

behavioral model was to gain intuition into the effects of circuit parameters

on settling time. In this model, 𝐼𝐶𝑃 (first stage current), 𝑚, 𝑘, and 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙
are related by

∑𝑚−1

𝑛=0
𝐼𝐶𝑃/𝑘𝑛 = 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 . Algorithm 1 shows the pseudo-code

of our program.

Fig. 2.2(d)-(f) show the simulation results of the ZCBA with three different

charge pump designs (3-stage, 5-stage, and 8-stage). In these simulations,

we set 𝑇𝑐𝑜𝑚𝑝 = 500 ps, 𝐶𝐿 = 1 pF, and 𝐼𝑜 = 1 uA (final stage current). Our

choice of 𝐼𝑜 assumes an output swing of 1.6 𝑉 and a 10-bit settling error

target (1.5 𝑚𝑉), yielding a worst-case overshoot of ±500 𝜇V. Simulations

show that the respective 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ’s are 8, 4, and 7.5 ns for the 3, 5, and 8-stage

designs, indicating a strong dependency of the settling time on the number

of stages as postulated earlier. Next, we analyze the effect of 𝑉𝑖𝑛 on 𝑇𝑠𝑒𝑡𝑡𝑙𝑒
by sweeping the input. Fig. 2.4(a) shows 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 versus 𝑉𝑖𝑛 of the 5-stage

ZCBA over its input range. We observe that while a larger 𝑉𝑖𝑛 will generally

take longer to settle, the characteristic is not monotonic. This is due to

the nonlinear settling behavior introduced by the discrete current stages.
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Figure 2.3: Visualisation of the ZCBA settling time analysis. 𝐶′
𝐿

is the equivalent

load capacitor, and 𝛽 is the amplifier’s feedback factor.

Therefore, we numerically compute the average settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 over

the input range for a given design. We then compare 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 across designs

for a fair evaluation. Fig. 2.4(c) shows the simulated settling time of the

corresponding transistor-level design, whose details will be described in

Section III.”

Fig. 2.5 shows the average settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 of a ZCBA as we vary

the number of current stages 𝑚. In this simulation, we keep 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 and 𝐼𝑜
constant across designs so as to maintain the same total current and settling

error for a fair comparison. The results show that 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 decreases rapidly

as 𝑚 increases from 2, reaching a minimum at 5, then increases thereafter.

Algorithm 2.1 Generalized Zero-Crossing-Based Amplifier Behavioral

Model.

for (𝐼𝑡𝑜𝑡 = 10uA; 𝐼𝑡𝑜𝑡 < 500uA; 𝐼𝑡𝑜𝑡 += 10uA)

for (m = 2; m < 10; m += 1)

for (𝑉𝑖𝑛 = 0; 𝑉𝑖𝑛 < 𝑉𝑖𝑛,𝑚𝑎𝑥 ; 𝑉𝑖𝑛 += 1mV )

while (zero-crossings < 𝑚)

𝐼𝐶𝑃 = computeNextCurrent(𝐼𝑡𝑜𝑡 , m, 𝑉𝑖𝑛)

increment𝑉𝑜𝑢𝑡(𝐼𝐶𝑃)

if 𝑉𝑋 crossed 𝑉𝑡ℎ,𝑐𝑜𝑚𝑝
scale𝐼𝐶𝑃()

++zero-crossings

saveSettlingTimeData()
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Figure 2.4: 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 versus𝑉𝑖𝑛 from (a) behavioral simulation and mathematical model.

(b) transistor-level simulations.

The large 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 for low 𝑚 is due to the large overshoot from the first

current stage and the need to correct the overshoot with small currents in

the subsequent stages. 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 is large for high 𝑚 because of the slower

current scaling, i.e. more time is spent waiting for the comparator to make

decisions for a larger number of stages.

The foregoing analysis suggests that an optimal number of stages exists

to produce a minimum settling time, and that a 5-stage design is optimal

for the particular circuit parameters chosen in the above simulations. For

a more general case, we sweep both the total current 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 and number

of stages 𝑚 and observe 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 . Fig. 2.2 shows 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 versus 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙
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1 2 3 4 5

I
cp,total

 (A) 10
-4

5

10

15

20

25

A
v

e
ra

g
e

 S
e

tt
li

n
g

 T
im

e
 (

n
s)

2

3

4

5

6

2 stages

3 stages

4 stages

6 stages5 stages

Number of stages

Figure 2.6: Average settling time versus 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 for different number of stages.

for different 𝑚’s and 𝐶𝐿 = 1 pF. We observe that as 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 increases, the

optimal 𝑚 increases. 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 decreases with 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 but it becomes a weak

function of 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 after about 400 𝜇A, suggesting that using more current

after that point will face diminishing returns. With the above results, we

can predict the optimal total current and number of current stages for any

load by multiplying both 𝐶𝐿 and 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 by a constant 𝛼. Figure 2.8 is a

3D plot showing the asymptotic behavior of the settling time versus 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙
and 𝑚. For our transistor-level design in the next section, 𝐶𝐿 = 1 pF and we

choose 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 = 340 𝜇A and 𝑚 = 5 for 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔2 ns. This design choice

strikes a good balance by achieving a near-minimum settling time while
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𝑚. We choose the design point at a minimum of the surface: 5 stages with 340 𝜇A

total current.

keeping the current consumption and number of stages low as shown by the

design point indicated in Fig. 2.8. Performance levels are similar beyond

our chosen design point, but require either a higher current or more stages,

which increase power, chip area, and circuit complexity. Our numerical

tool allows us to predict the optimal charge pump design for ZCBAs. Noise

adds random variations to the trends predicted by our analysis, and can be
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suppressed by increasing power consumption. We use our behavioral tool

in combination with transistor-level simulations of charge pump linearity

to analyze the effect of charge pump nonlinearity on settling time. The

simulation shows the same trend as the ideal case. Our tool predicts that

nonlinearity increases the average settling time from 6.4 ns to 7.12 ns, an

11.25% increase.

The above simulations are based on an amplifier with a closed-loop

gain (𝐴𝐶𝐿) of 2 V/V, but the optimal scaling factor is the same regardless of

𝐴𝐶𝐿. This is because the optimal scaling factor is determined by the average
settling time across all valid 𝑉𝑖𝑛 (i.e. 𝑉𝑖𝑛’s within the input range). Since the

maximum value for𝑉𝑖𝑛 is set by the amplifier’s output swing divided by 𝐴𝐶𝐿,

it follows that if 𝐴𝐶𝐿 increases, the maximum𝑉𝑖𝑛 value must decrease by the

same factor to maintain the same output swing, and vice versa. Simulations

confirm that the optimal scaling factor across all valid 𝑉𝑖𝑛 for a given 𝐴𝐶𝐿 is

the same for any 𝐴𝐶𝐿.

This Work [1] [2] [7] [10]

Architecture ZCBA
MASH 

ADC
ΔΣ ADC

Pipeline 

ADC

Pipieline 

ADC

Process (nm) 28 65 65 65 90

Supply (V) 1 1.2 1 1.2 1.2

Fs (MHz) 40 40 0.4** 26 50

SNDR (dB) * 57.4 70.4 61.1 54.3 62

SFDR (dB) * 71.5 90 -- 70.4 68

ENOB * 9.25 11.4 9.85 8.7 10

Power (mW)* 1.45 3.73 0.948 1.78 4.5

*Reported values are for [1], [2]. [7] and [10] are for the ADC not the ZCBA only

** Signal Bandwidth

2.3 Transistor-Level Design and Simulations
We design a transistor-level ZCBA in a 28-nm CMOS process using parameters

determined from our optimization. We then compare the transistor-level

simulations with behavioral simulations to validate our analysis. . Fig. 2.7

shows the schematic of the ZCBA, which consists of a comparator, control

logic, and 5-stage charge pump. The charge pumps send a differential current

𝐼𝐶𝑃 onto two load capacitors 𝐶𝐿 which ramps the output voltage 𝑉𝑜𝑢𝑡 up or

down. The capacitor 𝐶 𝑓 creates a negative feedback to force𝑉𝑋 towards zero.

In this design, 𝐶 𝑓 = 500 fF, 𝐶𝐿 = 1 pF, 𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 = 340 𝜇A, and 𝑇𝑐𝑜𝑚𝑝 = 500

ps. The size of 𝐶𝐿 is dictated by the magnitude of the smallest charge pump

current and the desired overshoot error. The smallest current source must

be sized for tolerable mismatch. Similar to the phase offset in a phase-locked

loop, charge pump mismatch creates an output offset which reduces the

output swing of the amplifier
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To minimize the input-referred noise and kickback of the comparator,

we utilize a floating-inverter pre-amplifier (FIA) before the comparator.

Compared to a conventional differential common-source amplifier, the FIA

features lower power consumption and more robustness against common-

mode variations [28], [29]. The comparator assumes the StrongARM topology

to sense the virtual ground voltage 𝑉𝑋 to make a decision. An SR latch and

combinational logic monitor the comparator decisions to detect the zero

crossing, and control a bank of current stages in the charge pump. The

logic detects a zero crossing when the previous decision is different from

the current decision. The current stages are all active at the beginning of

the amplification phase, and the charge pump logic turns off one stage at a

time by advancing the “off" signal in a chain of registers as it detects zero

crossings. At each step, the charge pump current is scaled by a factor 𝑘 = 4

and the current polarity is reversed. These steps are repeated until the last

current stage. A common-mode feedback (CMFB) amplifier senses the output

common mode and adjusts the charge pump current to set the common mode

to𝑉𝑟𝑒 𝑓 . The ZCBA forces𝑉𝑋 toward zero by alternating the current direction

and successively scaling down the currents, producing the amplified 𝑉𝑜𝑢𝑡 .

Fig. 2.4(b) shows the transistor-level simulation results of 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 versus 𝑉𝑖𝑛 ,

which exhibits a similar profile as our behavioral simulations, Fig. 2.4(a),

with 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 ,𝑎𝑣𝑔 = 10.1 ns. The good agreement between the behavioral- and

transistor-level simulations validates our behavioral model and analysis.

Our ZCBA model and analysis allows the designer to rapidly select optimal

system-level parameters for a given set of constraints, reducing the time-

consuming transistor-level design iterations.

The trend and shape of the 𝑉𝑖𝑛 vs 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 plots are the same, albeit with

a small offset. We acknowledge the limits of our mathematical tool, which

is not designed to simulate process dependant parameters and nuanced

transistor level behavior. The main effect not modeled by our mathematical

tool is charge sharing error 𝑉𝐶𝑆 between 𝐶𝐿 and the charge pump parasitic

capacitance. Each time the charge pump switches directions, an error 𝑉𝐶𝑆 is

induced on the output. For example, on the final current stage, 𝑉𝐶𝑆 ranges

between 1 − 2mV. With 𝐼𝑜 = 1uA, it takes 1 − 2nS for the output to return to

it’s value before the switching-induced error.

2.4 Conclusion
The multi-stage charge pump in a ZCBA presents complex trade-offs. This

brief investigates the optimal design of the charge pump by analyzing the

effects of the current scaling factor, number of current sources, current value,

and input amplitude on the ZCBA’s settling performance with the aid of a

generalized behavioral model. We find that there exists an optimal number

of stages that gives the fastest settling time for a given total current and

load capacitance. We also find that the settling time approaches a limit

as the total current increases. We validate our behavioral analysis with

transistor-level simulations of a ZCBA and confirm that the two models are

in good agreement with each other. The model developed in the brief allows

us to predict the optimal charge pump design for ZCBAs.



3 A Multi-Stage Zero-Crossing-Based Amplifier
Using Floating-Inverter Amplifier With
Background Offset Calibration and Self-Timed
Loop

This chapter is composed from a paper entitled "A Multi-Stage Zero-Crossing-

Based Amplifier Using Floating-Inverter Amplifier With Background Offset

Calibration and Self-Timed Loop" which will be published in the proceedings

of the "66th IEEE International Midwest Symposium of Circuits and Systems".

I hereby confirm that the use of this article is compliant with all publishing

agreements. The authors on this work are myself as lead author, Yen-Chen

Kuan, and Shiuh-hua Wood Chiang. With support and advice from the

other authors, I designed all the circuits presented in this chapter.

3.1 Introduction
Zero-crossing-based amplifiers (ZCBAs) have been proposed as an alternative

to the conventional operational amplifier in applications such as pipelined

analog-to-digital converters (ADCs) and delta-sigma ADCs [1]–[11]. The idea

of these ZCBAs is to replace the classic op amp structures with more digital-

and scaling-friendly circuits, such as dynamic comparators and switched

current sources. For instance, the works in [6], [9] propose a ZCBA using an

inverter-based comparator to improve power efficiency. However, inverter-

based comparators have ill-defined bias currents and feature single-ended

signaling. Additionally, their threshold voltages vary over process-voltage-

temperature (PVT) corners. The ZCBA in [30] employs a voltage-controlled

oscillator (VCO) as the comparator. However, this VCO must operate at a

high frequency to obtain a 10 MHz amplifier bandwidth. A subthreshold

version of this VCO-based ZCBA faces a similar challenge [31]. In addition,

both works [30], [31] require a loop filter for stability.

This paper proposes a fully dynamic ZCBA using mostly digital blocks

and switched current sources that are amenable to technology scaling. The

ZCBA employs a fully differential two-stage floating inverter amplifier (FIA)

with background offset calibration using the feedback loop from the zero-

crossing detection comparator. A novel self-timed loop controls the FIA to

increase the time available for amplification to improve gain. Additionally, a

five-stage charge pump breaks the trade-off between slewing and overshoot

12
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Figure 3.1: (a) Simplified block diagram of an 𝑛-stage radix-𝑘 ZCBA with a floating-

inverter preamplifier and (b) its output settling waveform.

to minimize the settling time. Simulations of the proposed ZCBA in a 28-nm

CMOS process show a signal-to-noise ratio (SNR) of 57.4 dB at a sample rate

of 40 MHz while consuming 1.45 mW.

3.2 Circuit Design
Fig. 3.1(a) shows the block diagram of our proposed ZCBA. The amplifier

samples the input on 𝐶𝑖𝑛 and the FIA amplifies the sampled voltage𝑉𝑋 . The

comparator determines the FIA output polarity and controls the current

sources in a charge pump to charge or discharge the load capacitor 𝐶𝐿 ,

driving 𝑉𝑋 toward zero through the feedback capacitor 𝐶 𝑓 . The comparator

turns off the most-significant-bit (MSB) current source when it detects a

zero-crossing of𝑉𝑋 and activates the MSB-1 current source to drive𝑉𝑋 in the

opposite direction. This process repeats until the least-significant-bit (LSB)

current source is reached. Due to the non-zero comparator decision time, the

output of the ZCBA suffers from an overshoot𝑉𝑂𝑆. With a comparator period

𝑇𝑐𝑜𝑚𝑝 , the ZCBA exhibits a worst-case overshoot 𝑉𝑂𝑆 = 𝑇𝑐𝑜𝑚𝑝 𝐼𝐶𝑃/𝐶′
𝐿
, where

𝐼𝐶𝑃 is the charge pump current and 𝐶′
𝐿

is the effective load capacitance. Prior

works have proposed a two-stage charge pump to break the speed-precision

trade-off [9], [10], [26]. The two-stage charge pump activates a large current

(𝐼𝐶𝑃) until the first zero-crossing, then a small current (𝐼𝐶𝑃/𝑘) until the second

zero-crossing. The large current provides fast slewing and the small current

small 𝑉𝑂𝑆. The amplifier in [1] extends this idea further to six stages. In our

design, we utilize five stages with an optimized radix for the fastest settling

based on our behavioral simulations. Fig. 2(a) shows the architecture of

the proposed ZCBA, which includes a two-stage FIA preamplifier, dynamic
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Figure 3.2: (a) Architecture of proposed ZCBA. Schematic of (b) two-stage floating-

inverter amplifier with offset calibration, (c) StrongARM comparator, (d) offset

calibration circuit, (e) one of the five charge pump stages, and (f) charge pump

control and reset logic.

comparator, charge pump, and switched current sources. In addition, a

common-mode feedback circuit defines the output common mode and clock

generator generates the internal clocks from a master clock. The closed-loop

gain is set by the ratio of 𝐶𝑖𝑛 (1 pF) to 𝐶 𝑓 (500 fF) and the amplifier drives

the load 𝐶𝑜𝑢𝑡 (1 pF).

3.2.1 Two-Stage Floating-Inverter Amplifier and Comparator
Our design implements a novel background-calibrated FIA as the comparator

preamplifier to suppress the comparator noise and kickback. The schematic

of our FIA is shown in Fig. 3.2(b). The FIAs in [28], [29] offer several benefits

over a traditional inverter amplifier. They consume no static power and

tolerate input common-mode variations by virtue of the floating supply. Our

two-stage FIA achieves a gain of approximately 28 dB, which is comparable

to the three-stage common-source preamplifier reported in [1]. A two-stage

FIA was also proposed in [32] as a residue amplifier in a pipelined ADC.

Compared to the FIA in [32], our FIA has 5 dB less open-loop gain (28 dB

versus 33 dB) but uses 80× smaller 𝐶𝑟𝑒𝑠1 (150 fF), and 7.5× smaller 𝐶𝑟𝑒𝑠2 (47

fF). Further, our FIA operates at a sampling frequency of 2 GHz, which is

much higher than that of [32] (10 MHz). We implement the comparator

using the StrongARM topology for its zero static power consumption and

high speed operation (Fig. 3.2(c)). The combined input-referred noise of the

proposed FIA and comparator combination is 175 𝜇V, sufficient to meet the

noise level requirement of the ZCBA.
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The FIA and comparator are clocked by a self-timed loop, similar to

the asynchronous successive-approximation-register ADC. The idea is to

initiate the FIA amplification as soon as the previous comparison is done,

thus maximizing the FIA amplification time. The schematic and timing

diagram of our self-timed circuits are shown in Fig. 3.3. At each comparator

cycle, and external clock source 𝐶𝐾 clocks a reset-low D flop-flop (DFF)

𝐷1, whose input is tied to 𝑉𝐷𝐷 , which pulls 𝐶𝐾𝑐𝑜𝑚𝑝 high. A NAND gate at

the comparator output is used to detect the completion of the comparison.

The NAND gate output resets 𝐷1 to 𝑉𝑆𝑆 when the comparator decision is

complete. This pulls 𝐶𝐾𝑐𝑜𝑚𝑝 and 𝐶𝐾𝐹𝐼𝐴 low resetting the comparator and

FIA, respectively. Once the comparator is reset, 𝐶𝐾𝐹𝐼𝐴 is pulled high to start

amplification. This loop scheme increases the FIA amplification time from

1/(2 𝑓𝑐𝑘) = 250 ps for uniform clocking to approximately 415 ps on average

over multiple cycles.

CK

CK comp

CK FIA

yV

dec+/-

VyVin

CK

Floating

Inverter

Amplifier

compCK FIA

dec+

dec- CK

QD

R
V
DD

D1

Figure 3.3: Schematic and timing diagram of the self-timed logic for the FIA and

comparator loop.
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Figure 3.4: Operation of the FIA offset calibration circuit. (a) Calibration circuit

outputs 𝑉𝑐𝑎𝑙+ and 𝑉𝑐𝑎𝑙−, (b) FIA differential output, (c) comparator outputs.

3.2.2 Background Calibration for FIA Offset
In our particular topology, if the combination of the FIA and comparator

have an effective input-referred offset of𝑉𝑂𝑆, and the ZCBA has a closed-loop

gain of 𝐴𝐶𝐿, then the ZCBA output will settle to a value of𝑉𝑖𝑛𝐴𝐶𝐿 +𝑉𝑂𝑆𝐴𝐶𝐿.
The term due to the offset can significantly reduce the output swing and

may even saturate the amplifier. In this regard, we propose calibrating this

offset in the background by sensing the comparator output and correcting

the offset via the FIA.

We implement a charge-sharing-based calibration circuit similar to [33].

Fig. 3.2(d) depicts the schematic of the calibration circuit. 𝐶𝑝 and 𝐶𝑛 are

minimum-sized MOS capacitors and 𝐶𝑐𝑎𝑙 is a large capacitor of 1 pF. When

𝐶𝐾𝑐𝑎𝑙 is low, 𝐶𝑝 and 𝐶𝑛 are reset to 𝑉𝐷𝐷 and 𝑉𝑆𝑆, respectively through 𝑀5

and 𝑀6. When 𝐶𝐾𝑐𝑎𝑙 goes high, the comparator, with its inputs shorted,

makes a decision. Depending on the decision, it turns on either 𝑀7 or 𝑀8.

This causes charge sharing between 𝐶𝑝 (or 𝐶𝑛) and 𝐶𝑐𝑎𝑙 , raising (or lowering)

𝑉𝑐𝑎𝑙 = 𝑉𝑐𝑎𝑙+ − 𝑉𝑐𝑎𝑙−. 𝑉𝑐𝑎𝑙+ and 𝑉𝑐𝑎𝑙− connect to a second pair of inverters

in the FIA, 𝑀3 and 𝑀4, which create a differential current 𝐼𝑐𝑎𝑙+ and 𝐼𝑐𝑎𝑙− to

cancel the offset. We size 𝑀3 and 𝑀4 significantly smaller than 𝑀1 and 𝑀2 to

minimize the noise contribution. Fig. 3.4 shows the simulated waveforms of

the proposed calibration. The calibration loop ramps the calibration voltages
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𝑉𝑐𝑎𝑙+ and 𝑉𝑐𝑎𝑙− to null the differential FIA output 𝑉𝑦 . In steady-state, the

comparator output toggles between positive and negative decisions to show

that the offset has been removed. The proposed calibration runs in the

background during the reset phase to track any changes in the offset.

3.2.3 Five-Stage Differential Charge Pump
The proposed ZCBA employs a five-stage differential charge pump with an

optimized current source scaling factor. We use a ZCBA behavioral model to

predict the settling time versus current source scaling factor of the ZCBA.

We chose our charge pump currents based on this optimization to minimize

the settling time. The currents in stages 1 to 5 are 300 𝜇A, 75 𝜇A, 20 𝜇A, 5

𝜇A, and 1 𝜇A, respectively. The schematic of one of the charge pump stages

is shown in Fig. 3.2(e). Fig. 3.2(f) illustrates the charge pump control logic,

which consists of a cascade of DFFs and a zero-crossing detector. The DFFs

are reset to high at the start of each amplification cycle, activating all of

the charge pump stages. When the 𝑛𝑡ℎ decision and the (𝑛 − 1)𝑡ℎ decision

are different, a zero-crossing is detected and the control logic clocks all the

DFFs. This shifts a low signal into the first DFF output, deactivating the MSB

charge pump to reduce the current. Subsequent zero-crossings sequentially

deactivate additional charge pumps until the LSB+1 unit. The LSB charge

pump always remains active except during reset.

The LSB charge pump includes a common-mode feedback (CMFB) circuit

to set the ZCBA’s output common mode. A low-power CMFB amplifier

senses the output common mode and compares it against a reference of

𝑉𝐷𝐷/2. The CMFB amplifier controls a pull-down transistor in the LSB

charge pump, driving the output CM toward 𝑉𝐷𝐷/2. To ensure stability, the

CMFB loop gain is kept low by including the pull-down transistor only in

the LSB charge pump.

3.3 Simulation Results
We simulated the proposed ZCBA in a 28-nm CMOS technology. The ZCBA

has a closed-loop gain 𝐴𝐶𝐿 of 2 V/V and a sampling rate 𝑓𝑠 of 40 MHz while

consuming 1.45 mW under a 1-V supply. The power is dominated by the

FIA and comparator including the self-timed loop and calibration. They

consume 1.1 mW, accounting for 77% of the total power. Fig. 3.5 shows

the simulated waveforms of the ZCBA. The output voltages slew rapidly

initially due to the large charge pump current and gradually settle to the

final value with smaller ramps due to the reduced charge pump current.

We can also observe that the virtual ground voltages converge toward each

other due to the negative feedback. Finally, we see the asynchronous charge

pump control logic deactivating the charge pumps sequentially. Fig. 3.6

shows the ZCBA output spectra from a near-DC input and a near-Nyquist

input. The ZCBA exhibits a signal-to-noise-and-distortion ratio (SNDR)

and spurious-free-dynamic range (SFDR) of 59.8 dB and 72.1 dB at DC,

respectively, and 57.4 dB and 72.1 dB at Nyquist, respectively.

Table I compares our ZCBA to state-of-the-art non-traditional amplifiers.

Note that the reported data from [5], [8], [9] and [11] are from ZCBAs



A Multi-Stage Zero-Crossing-Based Amplifier Using Floating-Inverter Amplifier With
Background Offset Calibration and Self-Timed Loop 18

4.5 5 5.5 6 6.5 7 7.5
Time (s)

10
-8

0.2

0.4

0.6

0.8

V
o

u
t (

V
)

4.5 5 5.5 6 6.5 7 7.5

Time (s) 10
-8

0.45

0.5

0.55

V
X
 (

V
)

4.5 5 5.5 6 6.5 7 7.5

Time (s) 10
-8

0

0.5

1

C
P

A
<

0
:4

>
 (

V
)

(a)

(b)

(c)

Figure 3.5: Time-domain waveforms at the (a) differential output, (b) virtual ground

nodes 𝑉𝑋 , and (c) charge pump control logic output.

embedded in ADCs. This work achieves a competitive sampling rate, SNDR,

and power, and presents several unique circuit techniques including the

FIA, self-timed circuit, background offset calibration, and multi-stage charge

pump designs.

3.4 Conclusion
We present the design of a five-stage zero-crossing-based amplifier in a

28-nm CMOS technology. The proposed ZCBA utilizes five stages of scaled

charge pumps to break the trade-off between speed and settling accuracy.

Our proposed two-stage FIA incorporates background offset calibration

using the zero-crossing detection comparator. In addition, a self-timed loop

increases the available time for amplification to increase the gain. The scaled

five-stage charge pump reduces the overshoot while offering a fast slew rate.

The design achieves an SNDR of 57.4 dB at a sampling rate of 40 Mhz and

consumes only 1.45 mW in simulations.
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Table 3.1: Performance Summary and Comparison.



4 Towards Low-Power Machine Learning
Architectures Inspired by Brain
Neuromodulatory Signalling

This chapter is composed from a paper entitled "Towards Low-Power Machine

Learning Architectures Inspired by Brain Neuromodulatory Signalling"

which is published in the journal "MDPI Journal of Low-Power Electronics

and Applications" [34]. I hereby confirm that the use of this article is

compliant with all publishing agreements. The authors on this work are

myself, Hao Yu, and Kyle Rogers as lead authors, Nancy Fulda, Shiuh-

hua Wood Chiang, Jordan Yorgason and Karl F. Warnick. I designed and

simulated the artificial neuron circuit presented in this chapter. All learning

algorithms, training tasks and biological foundations were developed by the

other authors.

4.1 Introduction
Analog CMOS hardware has the potential to reduce energy consumption

of deep neural networks by orders of magnitude, but the in situ training of

networks implemented on such hardware is challenging. Once the chip has

been programmed with the correct weight values for a task, typically no

further learning occurs. We introduce a biologically-inspired knowledge

transfer approach for neural networks that offers potential for in situ learning

on the physical chip. In our method, the weight matrices of a spiking neural

network [35]–[39] are initialized with values learned via offline (i.e., off-chip)

methods, and the system is exposed to an analogous—but distinct—learning

task. The bias inputs of the chip’s spiking neurons are manipulated such

that the network’s outputs adapt to the new learning task.

This approach has applications for autonomous, power-constrained de-

vices that must adapt to unanticipated circumstances, including vision and

navigation in unmanned aerial vehicles (UAVs) deployed into unpredictable

environments; fine-grained haptic controls for robotic manipulators; dy-

namically adaptive prosthetic devices; and bio-cybernetic interfaces. In

these real-world domains, the system must deploy with initial knowledge

relevant to its target environment, then adapt to near-optimal behavior

given minimal training examples, a feat beyond the capability of current

learning algorithms or hardware platforms. Neuromodulatory tuning offers

20
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a path toward implementing such abilities on physical CMOS chips. The

key contributions of our work are as follows:

1. We introduce a novel transfer learning variant, called neuromodulatory
tuning, that is able to match the performance of traditional fine-tuning

approaches with orders of magnitude fewer weight updates. This

lends itself naturally to easier, lower power implementation on physical

chips, especially because the proposed CMOS implementation of our

the fine-tuning method does not involve writing to memory hardware.

2. We provide a biologically-inspired motivation for this tuning method

based on recent findings in neuroscience, and discuss additional

insights gleaned from modulatory neurotransmitter behaviors in bio-

logical brains that may prove valuable for neuromorphic computing

hardware.

3. We outline the mechanisms by which neuromodulatory tuning can

feasibly be implemented on CMOS hardware. We present an analog

spiking neuron with neuromodulatory tuning capabilities. Post-layout

simulations demonstrate energy/spike rates as low as 1.08 pJ.

4.2 Background
The current study lies at the intersection of three prodigious research fields:

Transfer learning (Section 4.2.1), spiking neural networks (Section 4.2.2), and

neuromorphic computing (Section 4.2.3). We outline key principles of each

below. Our method also draws heavily on recent discoveries in neuroscience,

documented alongside the motivating principles of this research in Section

4.3.1.

4.2.1 Transfer Learning
Transfer learning allows a network trained for one task to learn a new, similar

task with less computational complexity than fully retraining the network.

The field includes a broad range of techniques ranging from weighting,

importance sampling, and domain adaptation in unsupervised contexts [40]–

[45], to fine-tuning and multi-task learning in supervised settings [46]–[52].

Recent work in few-shot, one-shot, and zero-shot learning also contributes

to this line of research [53]–[56].

Our approach can be combined with many of these methods, but is most

closely related to feature learning from unsupervised data [47], whereby

trained parameters from a related task are used to jump-start the learning

process. Our method is distinct in that the activation sensitivity of individual

neurons, rather than the strengths of their synaptic connections, are modified.

In some sense, this can be viewed as a degenerate form of neural programming

interface [57], in that activation patterns are modulated during each forward

pass of the network; however, our method adjusts firing sensitivities via

supplemental bias inputs rather than by overwriting output signals directly.

Our work also has tangential relations to activation function learning [58],
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although we adjust firing sensitivity only, rather than changing the shape of

the activation curve.

Parallel to our work, [59] presented BitFit, which shows bias tuning is

an effective sparse fine-tuning method that is competitive with traditional

fine-tuning on Transformer-based Masked Language Models. Our work

augments and expands upon the insights from this work in two key ways:

We apply a bias tuning methodology much like [59] to a convolutional neural

network in the domain of computer vision, where we discover that it is not

able to match the performance of a traditional fine-tuning method, and we

present a novel approach to bias tuning (neuromodulatory tuning) based on

multiplicative rather than summative layer modifications, and demonstrate

that this method is able to match traditional fine-tuning approaches.

4.2.2 Spiking Neural Networks
Spiking neural networks (SNNs) [35], [37], [38], [60]–[62] are artificial neural

networks that attempt to mimic temporal and synaptic behaviors of biological

brains. Rather than using continuous activation functions, spiking neurons

utilize a series of binary pulses, called a spike train [63], to propagate

information forward in a brain-like manner. SNNs are particularly well-

suited to implementation on analog/mixed-signal hardware, which naturally

supports the high parallel sparse activation pathways common in such

networks [64].

Despite these potential advantages and their strong parallels with bio-

logical brain behavior, SNNs have not gained as much recent prominence as

traditional (digital) feed-forward networks, in part because of the difficulty

of propagating gradient information backwards through a spike train [65].

One means to compensate for this is by training a traditional (non-spiking)

network using back-propagation and then applying a transfer function to

convert the learned weights into their SNN equivalents [66]. We leverage

this idea in our work, but instead of applying a transfer function, we copy

the non-spiking weights directly, then use neuromodulatory tuning to adapt

them to a new learning task.

Recent works detailing the conversion of traditional feed-forward net-

works to SNNs use algorithms which modify weights, biases and activation

thresholds of the network to create a SNN from a feed-forward network [67],

[68]. The difference between our work and others is that we do not train the

network to match the behavior with existing feed-forward network. Instead,

we seek to train network for different tasks. Therefore, we do not perform

layer-wise comparison which is resource consuming. Moreover, our work

tunes a single parameter per neuron which is far more implementable on

physical chips compared to other more computationally expensive methods.

4.2.3 Neuromorphic hardware
Neuromorphic hardware uses dedicated processing units to implement

neuronal connections and firing behavior directly on a physical chip, rather

than simulating them mathematically. Analog neuromorphic hardware has

been shown to be more power efficient than traditional digital computation
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hardware, and doesn’t suffer from the same bottleneck as Von Neuman com-

puting [69]–[76]. Some designs take advantage of sub-threshold operation

for ultra-low power neurons [77], [78]. Further power reductions have been

achieved through sparse temporal coding [64].

The temporal nature of spiking neural networks naturally lends itself

to on-chip, biologically plausible learning methods. Spike-time-dependent

plasticity (STDP) uses analog hardware to directly implement learning rules

on chip. Several works have shown impressive learning accuracies using

this method [63], [69], [79]–[81]. However, direct hardware implementations

for learning rules consume large amounts of space and power, limiting

its potential learning capacity. Our work bridges this gap by offering the

possibility of on-chip learning with similar performance but reduced space

and component requirements.

4.3 Neuromodulatory Tuning
Neuromodulatory tuning is a novel fine-tuning method based on recent

discoveries in neuroscience. Neuronal transmission in biological brains is

highly complex in timing and can occur either via rapidly terminating signals

that influence only immediately connected cells (synaptic transmission), or

via chemical signals that spread further away to simultaneously influence

larger groups of neurons (volumetric transmission) [82], [83]. Our work

is motivated by and takes inspiration from this non-synaptic transmission

method. Specifically, we observe that, rather than adjusting connection

strengths between neurons directly, modulatory neurotransmitters impact

system behavior by affecting the activation threshold of each neuron. Thus,

a single trainable parameter, implemented in our case as a supplementary

input, can be used in lieu of the large suite of trainable parameters typically

employed during a fine-tuning process.

4.3.1 Biological Foundations
Modulatory neurotransmitters in biological brains use metabotropic g-

protein coupled receptors as opposed to strictly ion conducting receptors

propagate signals, and can include neurotransmitters such as the cathe-

cholamines dopamine and norepinephrine [84]–[88]. Interestingly, glutamate

is also used by neurons as a modulatory metabotropic signal, though it is

largely discussed in the context of ion channel activity [89].

Artificial neural networks principally use neuronal ion channel activity,

as represented by classical synapses, to represent synaptic strength. In con-

trast, metabotropic neuromodulators activate g-protein coupled receptors

in neurons, whose downstream effectors can be stimulatory or inhibitory

(depending on predefined cellular components) and work through a series

of effectors that can amplify signals from traditional synaptic inputs, result-

ing in multiplicative tuning of the neuron’s inputs. This is considered a

tuning process since these neurotransmitters often do not directly change

the membrane potential, but instead change the activation threshold by

modulating the channels receiving inputs. Our neuromodulatory tuning

method simulates this increase or decrease in sensitivity by including ad-
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ditional inputs to the incoming signal, as shown in Section 4.3.2. In other

words, neuromodulatory tuning increases a model’s sensitivity to specific

pre-learned features, rather than changing the functions represented by

those features. To our knowledge, this is the first application of volumetric,

as opposed to strictly synaptic, mesolimbic attention modalities within an

analog CMOS system.

4.3.2 Neuromodulatory Tuning on Analog Hardware
One particularly advantageous aspect of neuromodulatory tuning (NT) is

its suitability for implementation on analog neuromorphic hardware. The

behavior of fine-tuned bias connections, implemented in digital simulations

as additional bias neurons, can also be implemented in analog hardware

as a current source with a variable supply voltage. This approach has the

following advantages:

• Minimal additional chip area required

• Lower power consumption than digital hardware

• No need to re-load weights to the on-chip memory

To probe this possibility, we use Cadence Virtuoso to explore the feasibility

of a NT approach on simulated analog hardware. Our hardware is designed

and simulated at the transistor level in TSMC 28-nm CMOS. The analog

neuron implements the leaky integrate-and-fire model [90]. Six binary-

scaled current sources make up the synapse. A current is driven onto a 50-fF

capacitor to produce an integrated membrane voltage that is quantized by a

dynamically clocked latched comparator. An adjustable delay line generates

a 100-ns spike when the membrane voltage reaches the activation threshold

and resets the membrane voltage by connecting the capacitor to ground via

a pull-down transistor. A schematic diagram of our proposed neuron is

shown in Figure 4.1.

Synapse Design
Each synapse operates at a supply voltage between 0.5–1 V. A higher supply

increases the current in the synapse. The neuron core operates at a constant

supply of 1 V. Adjusting the supply voltage of individual synapses or groups

of synapses effectively changes the weights of the synapse connections.

This change in behavior is analogous to the bias neurons in the software

implementation and to what is observed biologically [87], [88]. To make the

synapse current dependent on the supply voltage 𝑉𝐷𝐷 , we use a current

mirror with a resistive load. The drain-to-source current through an N-type

MOSFET is given by eq. (4.1). In a current mirror, 𝑉𝑔 is related to 𝑉𝐷𝐷 by

equation (4.2). Substituting (4.1) into (4.2) and solving for 𝐼 results in (4.3).

𝐼𝑑𝑠,𝑛 𝑓 𝑒𝑡 =
1

2

𝛽(𝑉𝑔𝑠 −𝑉𝑡ℎ)2 (4.1)

𝑉𝑔 = 𝑉𝐷𝐷 − 𝐼𝑅𝑠 (4.2)
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Figure 4.1: Schematic diagram of the proposed leaky integrate-and-fire neuron with

NT (𝑉𝐷𝐷,𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) capabilities. The Up and Down signals are generated from the

input spike and weight signals.

𝐼 =

√
(4𝛽𝑅𝑠(𝑉𝐷𝐷 −𝑉𝑡ℎ) − 1) + 2𝛽𝑅𝑠(𝑉𝐷𝐷 −𝑉𝑡ℎ) + 1

2𝛽𝑅2

𝑠

(4.3)

Eq. (4.3) shows that the synapse current 𝐼 is a function of the supply

voltage 𝑉𝐷𝐷 , which we tune to adjust the weights. Figure 4.2 shows the

neuron behavior when we vary 𝑉𝐷𝐷 from 550 mV to 750 mV. The higher

supply results in a larger current, producing more spikes.
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Figure 4.2: Neuron outputs with the same input spike pattern and synaptic weights,

but with varied bias weights implemented as (a) 𝑉𝐷𝐷 = 550 mV and (b) 𝑉𝐷𝐷 = 750

mV.

The effect of a bias neuron with a weight of 𝑊𝑏 on a synapse with

weights𝑊𝑠 can be approximated as 𝐼(𝑊𝑏 +𝑊𝑠). The behavior of the analog

implementation can be written as 𝑘𝐼𝑊 where 𝑘 represents the change in the

synapse current due to adjusting 𝑉𝐷𝐷 . If 𝐼𝑊𝑏 = 𝑘𝑊 then the behavior of the

two implementations is identical.
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Figure 4.3: Schematic of the threshold comparator with dynamic clocking, and

tunable spike generator circuit.

Neuron Core Design
A schematic of the neuron core is shown in Figure 4.3. The threshold

comparator is implemented with the StrongARM topology. We choose

a clocked topology to reduce static power, especially when compared to

inverter based threshold detectors. Instead of a fixed-period clock, we only

clock the comparator after an input spike or after an output spike. We use

a 4-input NOR gate to generate the comparator clock. This ensures that

power consumption is minimized in a network trained for minimal spiking

activity. The membrane capacitance is always reset to𝑉𝑟𝑒𝑠𝑡 = 250 mV and the

comparator has a fixed threshold of 𝑉𝑡ℎ = 350 mV. We choose 𝑉𝑟𝑒𝑠𝑡 to give

𝑉𝑚𝑒𝑚 at least 100 mV of swing without driving the synapse current sources

into the triode region, even when the synapse power supply is 0.5 V. Once

the membrane potential crosses the preset threshold, the spike generation

circuit is triggered. The spike is generated using a self-reset DQ fip-flop

with current-starved inverter-based delay cells between Q and reset. The

delay cells utilize parasitic capacitance to increase delay so as to decrease

the number of stages needed for a certain spike width.

The membrane capacitor is a custom 50-fF finger capacitor which occupies

only 27 𝜇𝑚2
. Because the membrane capacitance is only 50 fF, the neuron

needs an extremely large resistor for a sufficiently low leakage current.

Instead of using a polysilicon resistor which would occupy large area, we

implement a CMOS pseudo resistor using a PMOS transistor which occupies

only 0.7 𝜇𝑚 x 0.5 𝜇𝑚 and achieves approximately 400 MΩ (Figure 4.4).

The pseudo-resistor is implemented as two PMOS transistors connected

in a transdiode configuration. The simplest of pseudo-resistors have an

asymmetric resistance-voltage characteristic, making them unusable for this

neuron because the membrane potential can go both above and below 𝑉𝑟𝑒𝑠𝑡 ,

and must have the same up and down leakage current. To solve this, we use



Towards Low-Power Machine Learning Architectures Inspired by Brain Neuromodulatory
Signalling 27

two psuedo-resistors in parallel with opposite connections polarities. This

halves the effective resistance, but creates a symmetric resistance-voltage

characteristic.

A AB B

R R

V  -  V
A B

0V V  -  V
A B

0V 

(a) (b)

Figure 4.4: Schematic of (a) a one-directional pseudo-resistor and its asymmetric

resistance characteristic and (b) the proposed pseudo-resistor showing symmetric

resistance characteristics.

Figure 4.5: Neuron layout and annotations showing the regions of the neuron.

4.4 Results
Our long-term objective is to enable low-power analog learning behaviors

in situ on physical analog chips. This requires both a viable mechanism for

potential in situ learning that does not require large amounts of surface area

for gradient calculations and a validated circuit design that can realistically
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implement that mechanism. We present neuromodulatory tuning as a

possible mechanism for this objective, and here provide results showing its

performance in simulated (digital) spiking neural networks (Section 4.4.1)

and a full chip design for its eventual implementation on physical CMOS

hardware (Section 4.4.2).

4.4.1 Neuromodulatory Tuning on Spiking Neural Networks
To validate the performance of neuromodulatory tuning in spiking neural

networks, we apply neuromodulatory tuning (NT) and traditional fine-

tuning (TFT) to the SNN-VGG classification layers using the STL-10, Food-11,

and BCCD datasets for comparison. We fix the batch size at 64 for all training,

since our experiment with batch sizes (shown in Table 4.1) reveals that batch

size does not impact the model performance dramatically. Both the Food-11

and BCCD datasets are singularly distinct from the ImageNet data [91]

which was used to train VGG-19. VGG-19 therefore lacks output classes

corresponding to labels from the Food-11 and BCCD datasets. To create

the necessary output layer size, we added one extra fully connected layer

at the end of each model. This extra layer functions as the output layer

for corresponding classes in Food-11 and BCCD. Different from Food-11

and BCCD, STL-10 is a subset of ImageNet. Since VGG-19 is trained on

ImageNet, VGG-19 contains classes that are contained within in STL-10 labels.

Therefore, we do not add extra layers for the SNN STL-10 experiments. All

SNN models were trained on an AMD Ryzen Threadripper 1920X 12-Core

Processor. Results are shown in Table 4.2 and 4.3.

As expected, performance is poor when no tuning is applied. This is

partially because SNN architectures, comprised of leaky integrate-and-fire

neurons, differ drastically from traditional deep networks in both signal

accumulation and signal propagation, resulting in almost 0% accuracy on

all three transfer tasks. Tuning improves this accuracy, achieving up to 88%

accuracy with TFT and 50% with NT on some tasks with certain learning

rates. According to our results shown in Table 4.2, NT underperforms on the

STL-10 dataset comparing to TFT, has equal performance to TFT on BCCD,

and outperforms TFT on Food-11, which suggests that neuromodulatory

tuning can positively impact learning behaviors on brain-like architectures.

Our performance comparison of the algorithms is influenced by differ-

ences between the three datasets. STL-10 is the subset of the dataset used to

train VGG-19, so tasks in STL-10 is more native to the network. In contrast,

Food11 and BCCD are foreign to the VGG-19 network, so those tasks will

require VGG-19 to make adjustments in larger magnitudes or completely

re-learn the task. Given that neuromodulatory tuning outperforms TFT on

Food11, a foreign dataset, and that TFT requires changes of larger magni-

tudes, NT is superior for these cases. There are accuracies below random

guessing, this might be caused by the low learning rate for NT and the

absence of feed-forward to spiking network conversion algorithm for TFT.

Comparing two different types of NT, 𝑁𝑇1 performs better than 𝑁𝑇2 on

STL-10 dataset, and has equal performance with 𝑁𝑇2 on Food-11 and BCCD

dataset.
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According to Table 4.3, TFT requires over 120 million parameters adjust-

ment to achieve such performance, so the adjustments are impossible to

implement on the physical chips. In contrast, NT method only requires 9000-

20000 adjustments, which is implementable on physical chips.

Table 4.1: Validation accuracy on the Food-11 dataset on SNN after 10 epochs, mean

of 10 training runs using bath sizes (bs) = {16, 32, 64, 128}.

acc (bs=16) acc (bs=32) acc (bs=64) acc (bs=128)

𝑁𝑇1 (lr = 0.1) 0.4568 0.4605 0.4570 0.4647

TFT (lr = 0.1) 0.1304 0.1243 0.1145 0.0770
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Figure 4.6: The energy/spike decreases as 𝑉𝐷𝐷 increases. This is because a higher

𝑉𝐷𝐷 yields a higher synapse current and therefore more output spikes for the same

number of input spikes.

4.4.2 Analog Neuromorphic Hardware Simulation
The goal of this work is to develop a low-power CMOS chip architecture

that implements neuromodulatory tuning. In addition to presenting the

neuromodulatory tuning algorithm and exploring its performance, we also

present a complete neuron design to implements this algorithm on analog

CMOS hardware.

Figure 4.5 shows the layout of the proposed neuron implementing NT

fine tuning. The entire neuron, synapse and weight storage occupies only

598𝑢𝑚2
, with the neuron core (including membrane capacitor) occupying

only 132𝑛𝑚2
. We have validated the simulation results from Section 4.4.1

using post-layout simulations in Cadence Virtuoso to model an XOR task

using spiking neurons. Two neurons were chosen to be the inputs to the

XOR "gate" and another designated as the output. A train of 10 spikes to

an input neuron constituted a "1". No input spikes constituted a "0". The
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Table 4.2: Validation accuracy on STL-10, Food-11, and the BCCD dataset in a

spiking neural network (SNN) architecture. Models were trained for 50 epochs

for STL-10, Food11, and the BCCD dataset, respectively. Average of five training

runs. Best per-task performance of neuromodulatory tuning (𝑁𝑇2) and traditional

fine-tuning (TFT), respectively, is underlined. 𝑁𝑇2 refers to the modify existing

bias implementation of NT and 𝑁𝑇1 refers to the additional bias implementation

described in Section 4.3.

lr 0.0001 lr 0.001 lr 0.01 lr 0.1

no tuning 0.0007 0.0007 0.0007 0.0007

TFT 0.8888 0.8014 0.2582 0.1274

STL-10 𝑁𝑇2 0.0000 0.0000 0.3052 0.3062

𝑁𝑇1 0.0000 0.0009 0.5428 0.5731

additive bias 0.0010 0.0008 0.0006 0.0025

no tuning 0.0341 0.0341 0.0341 0.0341

TFT 0.0147 0.0729 0.1017 0.1168

Food-11 𝑁𝑇2 0.0063 0.3645 0.4537 0.4615

𝑁𝑇1 0.0020 0.3678 0.4564 0.4665

additive bias 0.0840 0.1864 0.1404 0.1414

no tuning 0.0005 0.0005 0.0005 0.0005

TFT 0.1003 0.2508 0.2507 0.2508

BCCD 𝑁𝑇2 0.2501 0.2509 0.1371 0.0680

𝑁𝑇1 0.2508 0.2509 0.2041 0.0591

additive bias 0.1848 0.2137 0.2144 0.2505

Table 4.3: Validation accuracy and parameter on STL-10, Food-11, and the BCCD

dataset in a spiking neural network (SNN) architecture. Models were trained for

50 epochs for STL-10, Food11, and the BCCD dataset, respectively. Accuracy from

the learning rate with best average accuracy of five training runs. 𝑁𝑇2 refers to the

modify existing bias implementation of NT and 𝑁𝑇1 refers to the additional bias

implementation described in Section 4.3.

best accuracy Parameter Amount

TFT 0.8888 123,642,856

STL-10 𝑁𝑇2 0.3062 9,192

𝑁𝑇1 0.5731 9,192

additive bias 0.0025 9,192

TFT 0.0356 123,653,867

Food-11 𝑁𝑇2 0.4615 20,203

𝑁𝑇1 0.4665 20,203

additive bias 0.1864 20,203

TFT 0.2508 123,646,860

BCCD 𝑁𝑇2 0.2509 13,196

𝑁𝑇1 0.2509 13,196

additive bias 0.2505 13,196
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Table 4.4: Comparison of our proposed neuron implementing neuromodulatory

tuning with the state of the art in standalone neurons. *Total area includes neuron

core, synapse, and weight storage.

spikes propagated through the network according to the trained weights.

The output was "0" if less than three spikes were observed at the output,

otherwise the output was a "1". The analog simulation showed 2 spikes at

the output for a 0, and 4 for a 1.

The proposed neuron achieves performance competitive with the state-

of-the-art in standalone neuron circuits (see Table 4.4). The total power for

the neuron core varies with spike rate. Figure 4.6 shows the energy/spike vs

spike rate, and figure 4.7 shows the distribution of power for two spike rates.

The best case energy consumption is 1.08pJ/spike. The energy used to charge

𝐶𝑚𝑒𝑚 from 𝑉𝑟𝑒𝑠𝑡 to 𝑉𝑡ℎ can be calculated as 𝐸𝑐ℎ𝑎𝑟𝑔𝑒 = 1

2
𝐶𝑚𝑒𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑡)2.

For the values in this design, 𝐸𝑐ℎ𝑎𝑟𝑔𝑒 = 0.25fJ, which is completely negligible

compared to the total energy consumption.

Figure 4.7: The distribution of power within the neuron core.

4.5 Conclusions
Low-power analog machine learning has the potential to revolutionize mul-

tiple disciplines, but only if novel and physically-implementable learning

algorithms are developed that enable in situ behavior modification on physi-

cal analog hardware. This chapter presents a novel task transfer algorithm,

termed neuromodulatory tuning, for machine learning based on biologically-

inspired principles. On image recognition tasks, neuromodulatory tuning

performs on test cases as well as traditional fine-tuning methods while re-

quiring four orders of magnitude fewer active training parameters (although

the total number of weights is comparable between methods). We verify

this result using both deep forward networks and spiking neural network

architectures. We also present a circuit design for a neuron that immplements
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neuromodulatory tuning, a potential layout for the use of such neurons on

an analog chip, and a post-layout verification of its capabilities.

Neuromodulatory tuning has the advantage of being well-suited for im-

plementation on neuromorphic hardware, enabling circuit implementations

that support life-long learning for applications that require energy-efficient

adaptation to constantly changing conditions, such as robotics, unmanned

air vehicle guidance, and prosthetic limb controllers. Future research in this

area should focus on probing the performance of NT in domains beyond

image recognition; exploring the possibility of paired bias links in which

multiple neurons connect to a single power domain region; and designing

improved SNN update algorithms with stronger convergence properties.



5 A Phase-Domain Spiking Neuron with Switched
Capacitor Synapse.

This chapter is composed from a paper entitled "A Phase-Domain Spiking

Neuron with Switched Capacitor Synapses" which will be submitted to

the journal "IEEE Transactions on Circuits and System II: Express Briefs." I

hereby confirm that the use of this article is compliant with all publishing

agreements. The authors on this work are myself as lead author, Shea

Smith, Yu Hao, Ryan Watson, Nancy Fulda, Jordan Yorgason, Karl Warnick,

Yen-Chen Kuan and Shiuh-hua Wood Chiang. With support and input

from the other authors, I architected and designed the time-domain neuron

presented in this chapter.

5.1 Introduction
Analog spiking neurons have emerged as a competitive alternatives to power-

hungry digital neurons. The development of spiking neural networks (SNN)

have further motivated work in analog neurons, which are well suited to

handle the time-domain components of SNN signaling [92]–[94].

A widely used, biologically inspired analog neuron model is called the

leaky integrate-and-fire (LIF) neuron. The two dominant CMOS implemen-

tations of an LIF neuron are the op-amp based voltage-mode neuron, and

the current-mode neuron.

A current-mode neuron is shown in Fig. 5.1(a) [92], [94]–[100]. Input

spikes activate a current source 𝐼𝑠𝑦𝑛 and charge is integrated on 𝐶𝑚𝑒𝑚 until

𝑉𝑚𝑒𝑚 reaches the comparator threshold 𝑉𝑡ℎ at which point the neuron

generates an output spike and resets 𝐶𝑚𝑒𝑚 to its resting potential. A resistor

𝑅𝐿 or small conductor is placed in parallel with the capacitor to slowly

leak charge. The comparator is either implemented as an inverter, which

burns high short-circuit current as 𝐶𝑚𝑒𝑚 approaches 𝑉𝑚𝑒𝑚 , or a dynamic

comparator requiring an external clock. A current-mode neuron’s area is

dominated by capacitors.[94] reports that 64% of the neuron area is consumed

by 𝐶𝑚𝑒𝑚 .

Voltage-mode neurons use an op-amp as shown in Fig. 5.1(b) [93], [101].

A resistor 𝑅𝐿 is placed in parallel with the feedback capacitor 𝐶𝑚𝑒𝑚 to

achieve a leaky integrator. When the integrator output reaches a comparator

threshold 𝑉𝑡ℎ , an output spike is generated and the integrator is reset. Op-

amps consume large area and high power, high gain is difficult to achieve

33
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Figure 5.1: Block diagram of three implementations of an LIF neuron. (a) Current

mode, (b) voltage mode, (c) phase domain. (d) Integration of phase between two

VCOs.

under low supply. large area capacitors and resistors further limit this

topology’s scalability.

Some works have proposed to use a VCO in a time-domain LIF neuron.

[102] proposes to use a VCO integrator in an analog low pass filter in place of

𝐶𝑚𝑒𝑚 . This design reduces area by removing a capacitor, but also uses many

resistors which also occupy large area. Further, it uses time-domain circuity

to do voltage domain filtering, which requires voltage-to-time conversion

and time-to-voltage conversion. [103] proposes a time-domain neuron design

using a current-controlled oscillator (ICO) and time-domain comparator.

Their proposed circuits are not well described and limited verification is

provided. Moreover, the comparator architecture is complex and consumes

unecessary power.

We present the design and analysis of a VCO-based time-domain neuron

in 28nm process which overcomes many of the challenges posed by existing

neuron designs. Our proposed neuron design fully utilizes time domain

computing and implements a simple, power-efficient phase-domain com-

parator. We propose a VCO-based time-domain spiking neuron with an

XOR-based phase domain comparator with a fixed 4𝜋/3 radians phase thresh-

old. We further propose a novel 5-bit switched-capacitor based synapse

which utilizes the fast switching speed of small transistors and the unused

area on the higher metal layers above the neuron and which bypasses the

challenges associated with designing sub-nanoamp current sources. We

further propose a phase-domain leak circuit inspired by the phase-locked-

loop which replaces the leaky conductor in LIF neuron model. The neuron,

synapse, and weight memory occupy a combined area of only 21x27𝜇m. The
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neuron achieves a maximum spiking frequency of 5.8MHz consuming only

134fJ/spike under a 0.35V supply.

5.2 Theory and Analysis of a Phase-Domain LIF Neuron
Time- and phase-domain circuits have emerged as potential replacements for

analog circuits that face design difficulties in scaled technologies. Time based

circuits already find application in analog-to-digital converters (ADC) and

amplifiers [26]. In this section we analyze the behavior of the phase-domain

circuit.

A block diagram of the phase-domain neuron is shown in Fig. 5.2. It

works by comparing the phase between two VCOs. Bias voltages𝑉𝐵,𝑉𝐶𝑂 and

𝑉𝑠𝑦𝑛 controls the center frequency of the two VCO’s 𝑉𝐶𝑂𝑠𝑦𝑛 and 𝑉𝐶𝑂𝑟𝑒 𝑓 .

Except during an input spike event, 𝑉𝐵,𝑉𝐶𝑂 = 𝑉𝑠𝑦𝑛 . During a synaptic input,

𝑓𝑠𝑦𝑛 temporarily changes meaning 𝑓𝑠𝑦𝑛 - 𝑓𝑟𝑒 𝑓 ≠ 0. A phase difference between

𝑉𝐶𝑂𝑠𝑦𝑛 and 𝑉𝐶𝑂𝑟𝑒 𝑓 Δ𝜙 begins to accumulate. After the input spike is

over, 𝑓𝑠𝑦𝑛 returns to the same value as 𝑓𝑟𝑒 𝑓 and phase stops accumulating.

In this way, we integrate phase the same way that current-mode neurons

integrate charge on a capacitor. A phase comparator monitors the two

VCOs. When The VCO’s are 4𝜋/3 radians out of phase, the comparator

triggers a spike generator. To ’leak’ phase from our integrator, we use a

phase-frequency detector (PFD) to generate leak pulses. A PFD provides

a digital pulse whose outputs provide information about whether 𝑉𝐶𝑂𝑠𝑦𝑛

has accumulated positive or negative phase. Further, a PFD’s output pulse

width is proportional to the phase difference Δ𝜙 between its two inputs.

Similar to a charge-pump phase-locked-loop, we use the PDF output to drive

the phase of the 𝑉𝐶𝑂𝑠𝑦𝑛 towards 𝑉𝐶𝑂𝑟𝑒 𝑓 . For this prototype chip, synaptic

weights are stored in a shift-register.

This behavior closely matches the traditional LIF neuron, which models

a biological neuron as a capacitor in parallel with a leaky conductor. The

behavior of a LIF neuron is described by eq. 5.1.

𝐶𝑚𝑒𝑚
𝑑𝑉

𝑑𝑡
= 𝐼𝑠𝑦𝑛 −

𝑉𝑚𝑒𝑚

𝑅𝐿
(5.1)

Rearranging terms and combining 𝐼𝑠𝑦𝑛 and 𝑉𝑚𝑒𝑚/𝑅𝐿 into 𝐼𝑡𝑜𝑡𝑎𝑙 yields eq. 5.2

𝑉𝑚𝑒𝑚 =
1

𝐶𝑚𝑒𝑚

∫ 𝑡

0

𝐼𝑡𝑜𝑡𝑎𝑙(𝑡)𝑑𝑡 (5.2)

From signal processing theory we know that the integral of frequency is

phase (eq. 5.3).

𝜙(𝑡) =
∫ 𝑡

0

𝑓 (𝑡)𝑑𝑡 (5.3)

We expand this analysis to two VCOs: a VCO with constant frequency

and a VCO with time-varying frequency. We call the VCO with a constant

frequency 𝑓𝑟𝑒 𝑓 , 𝑉𝐶𝑂𝑟𝑒 𝑓 and the VCO with frequency 𝑓𝑠𝑦𝑛(𝑡) that changes

with synaptic input 𝑉𝐶𝑂𝑠𝑦𝑛 . Phase accumulates as the integral of the

difference in frequency between 𝑉𝐶𝑂𝑟𝑒 𝑓 and 𝑉𝐶𝑂𝑠𝑦𝑛 as in eq. 5.4.
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Figure 5.2: (a) Simplified block diagram of the proposed phase-domain LIF neuron.

(b) Time-domain waveforms showing the operation of the proposed neuron

Δ𝜙(𝑡) =
∫ 𝑡

0

𝑓𝑟𝑒 𝑓 − 𝑓𝑠(𝑡)𝑑𝑡 (5.4)

𝑓𝑠(𝑡) is determined by the product of the VCO gain 𝑘𝑣𝑐𝑜 and its bias voltage

𝑉𝑠𝑦𝑛 . 𝑉𝑠𝑦𝑛 is generated by the synapse and is changed by input spikes and

PFD pulses. Let 𝑉𝑠𝑦𝑛(𝑡) be the time varying bias voltage for 𝑉𝐶𝑂𝑠𝑦𝑛 . We

rewrite eq. 5.4

Δ𝜙(𝑡) =
∫ 𝑡

0

𝑘𝑣𝑐𝑜𝑉𝐵,𝑉𝐶𝑂 − 𝑘𝑣𝑐𝑜𝑉𝑠𝑦𝑛(𝑡)𝑑𝑡 (5.5)

Again rearranging terms, we see that the eq. 5.6 describing a phase-domain

neuron parallels eq. 5.2, where 1/𝐶 and 𝑘𝑣𝑐𝑜 dictate how much affect 𝐼𝑠𝑦𝑛
and 𝑉𝑠𝑦𝑛 have on 𝑉𝑚𝑒𝑚 and Δ𝜙 respectively.

Δ𝜙(𝑡) = 𝑘𝑣𝑐𝑜

∫ 𝑡

0

𝑉𝐵,𝑉𝐶𝑂 −𝑉𝑠𝑦𝑛(𝑡)𝑑𝑡 (5.6)

5.3 Design
5.3.1 VCO-Based Neuron Design
Both VCOs in the proposed neuron are implemented as 3-stage ring oscillators

as shown in Fig. 5.3. The delay element is a current starved inverter with an

analog control bias 𝑉𝑏 to set the frequency. When 𝑉𝑅𝑆𝑇 is asserted, the VCO

is reset to a known phase. When𝑉𝑖𝑛𝑖𝑡 is asserted, the VCO enters sleep mode

and does not oscillate. This is used to conserve power when the neuron

is not in use. The VCO’s center frequency was chosen to be 15MHz, as a

tradeoff between power and inference speed [103], and was also limited by

the subthreshold speed of the phase comparator logic. The two VCO layouts

are symmetrical and surrounded by shielding traces to equalize any parasitic

loading and minimize any parasitic coupling to or from the VCO. The VCO

outputs are routed with equal length traces to buffers before being routed to

the phase comparator.
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Figure 5.3: Full block diagram of the fabricated time-domain neuron.

Many voltage domain neurons use inverter based comparators. While

simple and small, inverter-based comparators have thresholds that vary

drastically over process, voltage and temperature, and are consume high

short-circuit current as the membrane potential approaches the threshold.

Clocked comparators have been used to solve this problem. Clocked com-

parators consume no static power but consume more area. Further, they

require a network-wide clock distribution circuit, or local clock generator cir-

cuit which add area, power and complexity. This phase-domain comparator

consumes no static power, has very low short-circuit current, requires no

clock, and occupies small area.

The phase comparator is implemented as an array of three XOR gates,

one XOR gate for each pair of VCO stages. This topology is also used in

state-of-the-art time-to-digital converters [104]. A schematic of one of the

XOR gates and the control logic is shown in Fig. 5.3. We only enable the

comparator during an input spike, which reduces power consumption. All

three XOR gates will assert high only when the VCOs are 4𝜋/3 rad out of

phase. A NAND gate senses when all three XOR gates output high. A

schmidt trigger buffer filters out any short pulses when the phase difference

is approaching 4𝜋/3 rad.

The proposed spiking neuron has a simple and highly tuneable spike

generator which consists of a clocked flip-flop with the input tied to VDD

as shown in Fig. 5.3. The flip-flop is clocked by the output of the phase

comparator. On a rising comparator edge, the flip flop output is pulled to

VDD. A programmable delay line connects the flip-flop output and reset.

The spike width is set by the flip-flop’s internal propagation delays plus the

delay of the delay line. The delay line is controlled by an analog bias 𝑉𝑏 .

We also propose a novel time-domain leak circuit. We use a phase-

frequency detector (PDF) to mimic the behavior of an RC decay in the phase
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domain. The output of a PFD is a pulse in time proportional to the difference

in phase of two VCOs. The PFD outputs connect to an auxiliary path in

the synapse. A pulse from the positive output of the PFD causes a positive

phase shift in 𝑉𝐶𝑂𝑠𝑦𝑛 , and a negative pulse causes a negative shift. The

change in phase is proportional to length of the PFD pulse. This system will

therefore ’leak’ phase faster when the phase difference is larger.

This behavior is comparable to the RC-discharge-based leak in a voltage

domain neuron which is modeled as𝑉 = 𝑉𝑜𝑒
−𝑡/𝑅𝐶

. The leaked phase at time

t 𝜙𝐿(𝑡) can be written as:

𝜙𝐿(𝑡) = −𝛽𝜙(𝑡)𝐾𝑝 𝑓 𝑑(𝑡) (5.7)

where 𝛽 is the synapse gain, and 𝐾𝑝𝑑𝑓 (𝑡) is the PFD gain. Because 𝐾𝑝𝑑𝑓 (𝑡) is

linearly proportional to 𝜙(𝑡), we can rewrite 𝐾𝑝𝑑𝑓 (𝑡) as 𝛼𝜙(𝑡). The behavior

of the leak circuit can now be written as

𝜙𝐿(𝑡) = −𝛼𝛽𝜙(𝑡)2 (5.8)

A second order polynomial has a similar profile as a exponential function

and effectively mimics the behavior of RC decay.

Fig. 5.4 shows the functionality of the phase-domain neuron. When

𝑉𝑠𝑝𝑖𝑘𝑒 ,𝑖𝑛 is high, 𝑓𝑠𝑦𝑛 drops causing a negative phase shift between 𝜙𝑟𝑒 𝑓
and 𝜙𝑠𝑦𝑛 . Observe that each PFD output pulse 𝑉𝑙𝑒𝑎𝑘,𝑢𝑝 causes 𝑉𝐶𝑂𝑠𝑦𝑛 and

𝑉𝐶𝑂𝑟𝑒 𝑓 to move closer in phase. As this happens, the 𝑉𝑙𝑒𝑎𝑘,𝑢𝑝 pulse widths

decrease.

The leak circuit’s closed loop transfer function 𝐻(𝑠) = 𝜙𝑜𝑢𝑡/𝜙𝑖𝑛 is written

as

𝐻(𝑠) =
𝐶𝐴Δ𝑉𝐾𝑉𝐶𝑂
2𝜋(𝐶𝐴+𝐶𝐵)

𝑠 + 𝐶𝐴Δ𝑉𝐾𝑉𝐶𝑂
2𝜋(𝐶𝐴+𝐶𝐵)

(5.9)

where Δ𝑉 is the difference between 𝑉𝐵,𝑉𝐶𝑂 and 𝑉𝑢𝑝/𝑑𝑛 . This is a one pole

system and is therefore stable.

5.3.2 Switched Capacitor Synapse
Existing current and voltage synapse designs are not suitable for a VCO-based

neuron. The synapse must change the VCO bias only for the duration of an

input spike. To meet this requirement, we propose a novel switched capacitor

synapse. The operating principle is similar to a capacitive digital-to-analog

converter (DAC). We construct a 4-bit binary-scaled capacitive DAC using

high density custom-built finger capacitors. The voltage on the top plate of

the DAC is 𝑉𝑠𝑦𝑛 . The bottom plate can be switched between three signals,

𝑉𝑢𝑝 , 𝑉𝑑𝑜𝑤𝑛 or 𝑉𝑚𝑖𝑑 as shown in Fig. 5.5. Except during an input spike, The

synapse holds 𝑉𝑠𝑦𝑛 at 𝑉𝐵,𝑉𝐶𝑂 as in Fig. 5.5 (a). When an input spike is

detected, switches 𝜙2 goes low to effectively sample 𝑉𝑠𝑦𝑛 on 𝐶𝐵. 𝜙1,up or

𝜙1,dn goes high if the synaptic weight𝑊 is positive or negative, respectively,

which connects 𝑉𝑏𝑜𝑡 to either 𝑉𝑢𝑝 or 𝑉𝑑𝑜𝑤𝑛 as shown in Fig. 5.5 (b) and (c).

This causes 𝑉𝑠𝑦𝑛 to change based on the values of 𝑉𝑢𝑝 or 𝑉𝑑𝑜𝑤𝑛 and the

capacitor divider 𝐶𝐵/𝐶𝐵 + 𝐶𝐴 set by the number of switched DAC fingers.
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Figure 5.4: Operation of the proposed time-domain leak circuit.

A fundamental limitation of current source synapses is that they are

inherently unidirectional. That means that a bi-directional current-source

based synapse occupies approximately double the area of a unidirectional

synapse. The proposed switch capacitor DAC is bidirectional because the

DAC drivers can drive𝑉𝑏𝑜𝑡 to a voltage higher or lower than𝑉𝑚𝑖𝑑. This allows

us to use a 4-bit capacitor DAC for a 5-bit synaptic weight. In the DAC driver

logic, We designate bit 1 𝑉𝑊 < 0 > for weight polarity and 𝑉𝑊 < 1 : 4 > for

weight magnitude. Logic in the DAC drivers determine how many fingers to

drive to which voltages. A Nor gate detects a zero-value weight and holds

𝑉𝑠𝑦𝑛 at 𝑉𝐵,𝑉𝐶𝑂 through 𝑆1.

To further increase neuron density, we layout the DAC on a high metal

layer on top of the DAC drivers and weight memory. We place a metal

shielding layer between the DAC and any routing to equalize parasitic

capacitance to neighboring metal layers. One finger has a capacitance of

approximately 0.5fF. The DAC uses a layout technique from [105] which

makes the DAC more robust against gradient mismatch. The layout of the

proposed time-domain neuron is shown in Fig. 5.6.

5.3.3 Measurement Results
The proposed neuron and synapse were designed and fabricated in a 28nm

cmos process. Fig. 5.9 shows the die photograph, with a core of 12 neurons

in the center measuring 65x125𝜇m. The chip consumes 15.61𝜇W under a

0.35V supply, meaning each neuron consumes approximately 1.3𝜇W. The

power consumption varies based on the neuron’s spiking frequency. At

the maximum spiking frequency, the VCO, phase comparator, PFD, spike

generator and synapse account for 20%, 16%, 17%, 5% and 29% respectively.

At a spiking frequency of 1.7MHz, the VCO, phase comparator, PFD, spike
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generator and synapse account for 27%, 15%, 20%, 4% and 25% respectively.

With an measured average maximum spiking frequency of 5.5MHz, and 58%

of power consumption from the neuron core, we achieve 134fJ/spike. We

achieve 287fJ/spike at an output spike frequency of 2.7MHz and 1.07pJ/spike

At an output spike frequency of 730kHz,.

Fig. 5.7 the output spike waveforms of two neurons, one each at high

frequency and low frequency. Fig. 5.8 shows the measured spiking frequency

as we vary several neuron parameters: input spike width, 𝑉𝑢𝑝 , and synaptic

weight. Fig. 5.8 (a) shows that as the width of an input spike increases, so

does spiking frequency. This is expected, because the longer the spike width,

the longer 𝑉𝐶𝑂𝑠𝑦𝑛 and 𝑉𝐶𝑂𝑟𝑒 𝑓 are at different frequencies. In Fig. 5.8

(b) we sweep 𝑉𝑢𝑝 . A larger 𝑉𝑢𝑝 causes more phase change per input spike,

which is what we observe in the measurements. In Fig. 5.8 (c) we sweep

the input’s synaptic weight. A larger weight results in a higher spiking

frequency. The observed non-linearity in this data are due to the nonlinear

VCO tuning curve. 5.8 (d) plots the power consumption of the neuron at a

spiking frequency of 1.7MHz.
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Figure 5.7: Measured waveforms showing two different spiking frequencies. (a)

and (c) show neuron A’s output at a high and low spiking frequency respectively.

(b) and (d) shows neuron B’s output at a high and low spiking frequency.
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5.3.4 Conclusion
We present a phase-domain spiking neuron circuit that achieves 134fJ/spike.

The neuron is built from two voltage-controlled oscillators and an XOR-

based phase comparator. A PFD is used to mimic the behavior of time-

domain neuronal leak behavior. We proposed a novel bidirectional switched

capacitor synapse which is more suited to a phase-domain neuron than

existing synapse designs. Table 5.3.3 compares the performance of this

neuron to the state-of-the-art.

This neuron design is more area efficient as compared to the voltage

domain spiking neuron (VDSN) presented in Chapter 4. Note that both

neurons are designed in the same 28nm CMOS process. The phase-domain

neuron core occupies 110𝑢𝑚2
versus 132𝑢𝑚2

in the VDSN. The 5-bit synapse

in the phase-domain neuron occupies 90𝑢𝑚2
verses 133𝑢𝑚2

for the 4-bit

synapse in the VDSN. Further, because the phase-domain synapse consists

mainly of a capacitor build on metal 5, it can be built on top of weight memory

and synapse control logic. Phase-domain neurons have the potential to

replace existing artificial neuron topolgies in scaled CMOS processes.



6 Conclusion

6.1 Thesis Contributions
The contributions of this thesis are:

• A novel optimization algorithm for zero-crossing-based amplifier

design using a combination of MATLAB modeling and transistor level

simulations

• The design and simulation of a zero-crossing-based amplifier to verify

the aforementioned algorithm which achieves competitive performance

and validates the design methodology

• The design of a high-speed two-stage background-calibration floating-

inverter amplifier which occupies a significantly smaller area as com-

pared to other works

• The design, layout, and simulation of a voltage-domain leaky integrate-

and-fire neuron circuit which implements a novel fine-tuning algorithm

• The design, fabrication and measurement of a novel phase-domain

artificial neuron. I show that phase-domain neurons are a scaling

friendly alternative to voltage-domain neurons.

• The design of a bidirectional switched-capacitor synapse for VCO-

based neurons. This synapse achieves lower area per bit as compared

to current-base synapses.

6.2 Summary
This work presented the design of three circuits which break from traditional

digital or analog architectures. Detailed analysis of each circuit was provided.

Accompanying measurement and simulation results were also presented.

Chapter 2 discussed a ZCBA behavioral model. The model is used in a

MATLAB script to optimize the charge pump design for a ZCBA. We showed

that there exists a set of circuit parameters that minimize the amplifier’s

settling time within a set of predetermined design constraints. The design

and simulation of a ZCBA based on the optimization algorithms were briefly

discussed. Circuit simulation results showed that the MATLAB model and

transistor-level design are in agreement.
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Chapter 3 discussed in detail the design of a ZCBA in a 28nm CMOS

process. The design of a novel two-stage background-calibrated floating-

inverter amplifier was presented. A self-timed loop was used to relax the

bandwidth requirement for the floating-inverter amplifier. The proposed

ZCBA achieved an SNR of 57.4dB at a sampling rate of 40Mhz and consumes

only 1.45mW under a 1V supply.

Chapter 4 presented a voltage-domain artificial neuron circuit compatible

with neuromodulatory tuning. The behavior of spiking neurons and spiking

neural networks was discussed. An analysis of a novel synapse design was

presented. Simulation results showed the functionality of the neuron. The

proposed neuron achieves a maximum spiking frequency of 3.3MHz and

consumes only 1.08pJ/spike.

Chapter 5 detailed the design, fabrication and measurement of a novel

phase-domain spiking neuron. A high-density bidirectional synapse design

was presented. Both simulation and measurement results were shown.

Simulation results showed the functionality of a phase-domain leak circuit

which mimics an RC decay in the phase-domain. Measurement results

showed how spiking frequency changes verses several input parameters.

The phase-domain neuron consumes only 134fJ/spike under a 0.35V supply

and occupies only 21𝜇mx27𝜇m.

6.3 Future Work
To continue research in the field of ZCBA, the following suggestions are

provided:

1. Integrate the proposed ZCBA in an ADC. This would provide better

comparison with existing ZCBA and provide further understanding of

ZCBAs in system architectures.

2. Experiment with a reduced supply voltage. ZCBAs are well suited for

low supply operation, and performance may not suffer dramatically.

The behavioral model could be expanded to include subthreshold

effects.

To continue research in phase-domain neuron design, the following

suggestions are provided:

1. Design the ring oscillators to be robust to process variation. Much

of the performance degradation in the proposed neuron is due to

fabrication mismatch in the oscillators. A calibration circuit could be

designed, similar to a PLL, to mitigate oscillator frequency mismatch.

2. Several system level parameters have not been explored. These include

optimum spike width, input encoding scheme and VCO tuning range.

Each of these parameters have the potential to significantly affect

network performance.
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Appendices



A Appendix A: Proof that no analytical minimum
exists for ZCBA

Chaper 2 claims that there exists no closed form solution for Eq. 2.1. This

appendix rigorously analyzes why this is the case.

The ZCBA settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 is given as

𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 𝑇𝑐𝑜𝑚𝑝

𝑚∑
𝑛=1

⌈𝑉𝑥,𝑛
Δ𝑉𝑛

⌉ (A.1)

which includes a non-differentiable ceiling function, preventing us from

using its derivative to find the minimum 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 . Therefore, we approximate

it as

𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 𝑚
𝑇𝑐𝑜𝑚𝑝

2

+ 𝑇𝑐𝑜𝑚𝑝
𝑚∑
𝑛=1

𝑉𝑥,𝑛

Δ𝑉𝑛
(A.2)

which eliminates the ceiling function by assuming each stage overshoots by

𝑇𝑐𝑜𝑚𝑝/2 on average over a set of random inputs. It follows that the setting

time for stages 2 through 𝑚 − 1 will be the same for every value of 𝑉𝑖𝑛 on

average. We can therefore separate the settling time of the first stage and the

rest of the stages:

𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 𝑚
𝑇𝑐𝑜𝑚𝑝

2

+ 𝑉𝑖𝑛

𝑉𝑚𝑠𝑏
𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑚𝑝

𝑚∑
𝑛=2

𝑉𝑥,𝑛

Δ𝑉𝑛
(A.3)

where 𝑉𝑚𝑠𝑏 = 𝐼𝐶𝑃𝑇𝑐𝑜𝑚𝑝/𝐶𝐿. We then expand 𝑉𝑥,𝑛 and Δ𝑉𝑛 as

𝑉𝑥,𝑛 =
𝐼𝑐𝑝,𝑛−1𝛽𝑇𝑐𝑜𝑚𝑝

2𝐶𝐿
(A.4)

and

Δ𝑉𝑛 =
𝐼𝑐𝑝,𝑛𝛽𝑇𝑐𝑜𝑚𝑝

𝐶𝐿
(A.5)

where 𝛽 is the ZCBA’s feedback factor. We subsequently define 𝐼𝑐𝑝,𝑛 and

𝐼𝑐𝑝,𝑛−1 as

𝐼𝑐𝑝,𝑛 =
𝐼𝑐𝑝,𝑡𝑜𝑡𝑎𝑙

𝑘𝑛−1

(A.6)

and

𝐼𝑐𝑝,𝑛−1 =
𝐼𝑐𝑝,𝑡𝑜𝑡𝑎𝑙

𝑘𝑛−2

(A.7)
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where 𝑘 is the radix. Combining equations (A.4) - (A.7), we obtain

𝑚∑
𝑛=2

𝑉𝑥,𝑛

Δ𝑉𝑛
=

𝑚∑
𝑛=2

𝑘

2

. (A.8)

Evaluating the sum and substituting the result into equation (A.3) yields:

𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 𝑚
𝑇𝑐𝑜𝑚𝑝

2

+ 𝑉𝑖𝑛

𝑉𝑀𝑆𝐵
𝑇𝑐𝑜𝑚𝑝 +

𝑇𝑐𝑜𝑚𝑝(𝑚 − 1)𝑘
2

. (A.9)

From Section II of the chapter 2, we have

𝐼𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 =

𝑚−1∑
𝑛=0

𝐼𝐿𝑆𝐵𝑘
𝑛 . (A.10)

Re-writing (A.10) as

𝑘 =
𝑚

√
1 − (1 − 𝑘)𝐼𝐶𝑃

𝐼𝐿𝑆𝐵
, (A.11)

we note that 𝑘 does not have a closed-form solution. It follows that (A.9)

which contains 𝑘 does not have a closed-form solution. We thus conclude

that no minimum of 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 can be found through analytical methods, and

numerical methods are necessary as described in our paper.
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