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abstract

A Sensitivity Equation Framework for Parameter Estimation in Dynamical Systems

Joshua Newey
Department of Mathematics, BYU

Master of Science

We present a new framework for understanding parameter estimation in dynamical sys-
tems. The approach is developed within the modeling approach of continuous data assimila-
tion. We outline the basic assumptions that lead to our derivation. Under these assumptions
we show that the parameter estimation turns into a finite dimensional nonlinear optimiza-
tion problem. We show that our derivation reproduces and extends the algorithm originally
developed in [9]. We then implement these methods in three example systems: the Lorenz
’63 model, the two-layer Lorenz ’96 model, and the Kuramoto Sivashinsky equation. So as
to remain sufficiently general, our derivations are largely formal; we leave a more rigorous
justification for future work.

Keywords: Data Assimilation, Parameter estimation, Differential Equations
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Chapter 1. Introduction

Mathematical modeling of physical systems can be largely classified into two approaches: 1)

the theory driven models that are usually derived by referencing specific aspects of physical

laws (relying on only a few parameters), and 2) data driven approaches that rely on fitting

large general models with many parameters. Both approaches have advantages and disad-

vantages. The first method generally leads to models requiring fewer parameters and can

often be much simpler, but in turn requires a great deal of upfront work, creative problem

solving, and intuition. The second approach has been very popular recently with the advent

of machine learning, access to large data sets, and computational resources. It has the advan-

tage of being a very general approach, but requires vast amounts of data and computational

power. Also, while it often provides effective models it generally gives little understanding

being largely a “black box”.

In this thesis we present a new framework for understanding parameter estimation in

dynamical system. The method we discuss in this thesis is a mixture of the theory driven

and data driven approaches. We assume that the physical system is understood up to some

relatively small number of parameters. These methods are implemented within the frame-

work of continuous data assimilation (CDA) [4]. In particular, we show that given some

basic assumptions, the parameter estimation problem reduces to a finite dimensional non-

linear optimization problem. We develop methods for parameter estimation that require

concurrent simulation of the sensitivity equation, and using asymptotic approximations we

develop “on the fly” methods which only require the current state of the system to do pa-

rameter estimation steps. Specifically, implementing Newton’s Method within this approach

reproduces an algorithm developed by Carlson, Hudson, and Larios (CHL) [9]. The general

approach also allows us to develop new algorithms for “on the fly” parameter estimation.

As our main goal is to develop a general approach for parameter estimation, we do not

provide a fully rigorous justification. For example, in the section on perturbation theory
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we do not give the precise asymptotic bounds on the terms in our perturbative expansion.

A rigorous justification for the finite dimensional case should be relatively straightforward,

but is reserved for future work. Given our more general approach, we rely on numerical

simulation as evidence of the correctness of our results. We go through several examples to

show how the implementation works in several cases. Specifically, we consider the Lorenz ’63

system, the two layer Lorenz ’96 system, and the Kuramoto Sivashinsky Equations system.

In all cases, we show that the parameter estimation algorithms developed in this thesis

converge. We investigate the robustness of the methods to various parameters upon which

the algorithms depend, e.g. learning rate in gradient descent; these are often referred to as

“hyperparameters”.

1.1 Introduction to Continuous Data Assimilation

Data assimilation [16] is the science of combining observations and theory to optimally

estimate the state of a system. We briefly walk through the nudging approach for continuous

time data assimilation We consider a general continuous time dissipative dynamical system

that we write generally as

u̇+ F (u) = 0. (1.1)

Here, u is considered to be an element of some Hilbert space H. We assume that F : H → H

is some known, usually nonlinear, function. If the initial conditions were known exactly, we

could just directly simulate the evolution. In practice, however, there will always be some

error associated with our initial conditions. The systems we are interested in will mostly be

chaotic which means that this error will be magnified over time.

If the state was known exactly, we could insert a “nudging” term to push the approximate

model towards the true system,

v̇ + F (v) + µ(v − u) = 0. (1.2)

Here v represents our simulated approximate solution. It is straightforward to see that
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if the solution to (1.1) is bounded then choosing µ large enough will lead to convergence

of v towards u. Of course, for the same reason that it is impossible to know our initial

conditions exactly, it is impossible to observe the current state of the system. It will only

be possible to observe some subset of the true state of the system, usually the large scales.

Letting Ih(u) : H → H be our observation function, we can modify our nudging algorithm

to accommodate this idea

v̇ + F (v) + µ(Ih(v)− Ih(u)) = 0. (1.3)

The remarkable thing about this method is that, for suitable choices of our observation

function, this method not only leads to convergence of the observed error, ∥Ih(v)− Ih(u)∥H ,

to zero but also leads to convergence of the total error, ∥v−u∥H , to zero. This can be due to

the fact that the systems studied though often infinite dimensional have finite dimensional

attractors. For simplicity, we will assume that our observation operator is a linear projection

operator Ih(v) = Pv onto some finite dimensional subspace of H. In general, it is ideal to

choose µ as large as possible while still maintaining numerical stability of the simulation

[4]; we shall see that this allows us to make some perturbative approximations that lead to

relatively simple parameter estimation algorithms.

This method was originally developed for the 2D Navier Stokes equations by Azouani,

Olson, and Titi (AOT) [4]. In their original paper, they gave conditions on the observation

function, Ih, which allowed for convergence. It was subsequently extended to many other

systems (see for example [6, 1, 2, 13, 7]). This continuous data assimilation (CDA) approach

is often referred to as “nudging”.

It is in the context of CDA that we introduce our new approach for parameter estimation.

We will see that given a few well motivated assumptions, we are able to implement a version

of any derivative based finite dimensional optimization or root finding method. In particular

we show that several methods developed in previous work correspond to specific finite di-

mensional optimization or root finding methods. Our approach provides a general framework

which allows us to examine parameter estimation algorithms in a variety of systems.
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Chapter 2. Error Function and Sensitivity

Equations

2.1 Problem Statement

Having reviewed the CDA approach we move on to the original work of this thesis, extending

this approach to handle parameter estimation. We begin by considering a modification of

the previous CDA approach where the function F is no longer exactly known. We make the

modification where the simulated system has some model error which takes the form of a

finite number of parameters. To denote this, write F (u; γ) as some function from H ×Rn to

H. Thus the system we consider is given by

u̇+ F (u; γ) = 0

v̇ + F (v; c) + µP (v − u) = 0, (2.1)

where γ ∈ Rn is some vector of “true” parameters which are assumed unknown, and c ∈ Rn

is some vector of approximate parameters. This problem was originally considered in [9]

and later using a different approach in [22]. However, the approach we develop here is very

different than the approach in [22], and more general than the approach in [9]. In particular,

we show that our general approach reproduces the algorithm in [9] as a special case.

Our goal is to find the ideal parameter values that minimize the error functional

I(u, v) =
1

2
∥P (v − u)∥2H , (2.2)

Much of these methods extend straightforwardly to more arbitrary error functionals, e.g.

different norms on our Hilbert space, so long as they satisfy some basic assumptions such as

Fréchet differentiability and convexity.

We also briefly consider extending our approach to the system

u̇+ F (u) = 0

v̇ + F̃ (v; c) + µP (v − u) = 0, (2.3)
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where F̃ is some approximation of F which depends on some parameters c. As we discuss,

this models the case where the true system is either not known exactly, or too complicated

to simulate fully. In this case, the analysis becomes more complicated because there is no

“true” parameter values, only (possibly) optimal ones. However, as we shall see in Section

4.3.3, the methods appear to work in this modified case as well.

2.2 Assumptions

We make several key assumptions in deriving the following algorithms. These same as-

sumptions generally underlie many similar parameter estimation approaches [10]. These

assumptions were originally motivated by numerical experimentation, but have been justi-

fied more rigorously in several cases [20, 9]. The key idea is that given these assumptions,

the problem reduces to a finite dimensional nonlinear optimization problem.

2.2.1 A1 : Time independence of long time error. First we consider what happens

due to the presence of parameter error in our simulated system. What will generally happen

is that nudging will cause the system to converge up to some error proportional to the

parameter error and then stay there. This is shown for the Lorenz ’63 system in Figure 2.1.

This motivates our assumption that for some T ≫ 1 we have

∂

∂t
I(u, v)

∣∣∣∣
t=T

≈ 0. (2.4)

This assumes that the system has been nudged for sufficient time such that the error has

settled to a steady state value. This leads to the following result for long time

I(u, v)|t=T ∼ E(c; v0), (2.5)

where E(c; v0) is some function dependent on Rn and possibly our initial conditions. In

practice the system will tend to relax and then fluctuate around a relaxed value. It may

be that a more proper derivation contains an integral over time to cancel these fluctuations.

Such a modification of parameter estimation algorithms is mentioned in [20].
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Figure 2.1: Time independence of long time error for the Lorenz ’63 system while varying

across c1, here ϵ = ∆c1
c1

.

2.2.2 A2: Independence of initial conditions. Another key assumption is that the

long time behavior of the error is independent of initial conditions. Thus we assume that E

has no dependence on initial conditions which allows us to just write E(c). This is necessary

because performing the parameter estimation requires regularly updating the parameter

values and restarting the simulation. This assumption is clearly true if there is no parameter

error as the nudging leads to convergence of the state error to zero. The key idea behind this

assumption is that even in the case where there is parameter error, the nudging overwhelms

the transient behavior on the initial conditions in v. This is demonstrated for the Lorenz

’63 system in Figure 2.2.
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Figure 2.2: Independence of initial conditions with parameter error is ϵ = 10−10

2.2.3 A3: Convexity and Differentiability. We need our function E to be sufficiently

well behaved to apply the parameter estimation methods described below. This amounts to

an assumption of local convexity and differentiability of our long-tine error function E(c).

We assume that our parameter estimation algorithm takes place in a system in which the

nudging algorithm will converge. This clearly leads to the following result,

E(γ) = 0. (2.6)

Clearly, from the definition of E, we have

E(c) ≥ 0. (2.7)

Thus, E has a root that is also a minimum at c = γ, i.e. the root of E at γ is at least order

2. We show the local convexity of the error in the Lorenz ‘63 system in Figure 2.3.
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Figure 2.3: Convexity of the error function, E(c1)), around the correct value c1 = 10.

2.3 Derivatives of E(c)

Our goal is to implement gradient or Hessian based optimization and root finding methods

on E. This requires estimating the derivatives of E. We know the form of our long term

error which allows us to write the derivative of E with respect to ci as function of wi :=
∂v
∂ci

,

∂E

∂ci
=

1

2

∂

∂ci
∥P (v − u)∥2H

∣∣∣∣
t=T

= ⟨v − u, Pwi⟩H
∣∣∣∣
t=T

. (2.8)

This will be valid as long as our projection operator P does not depend on ci. Similarly

if we can find the second order derivative of the solution we can find the Hessian. Indeed,

defining zij :=
∂2v

∂ci∂cj
, we get the following result,

∂2E

∂ci∂cj
=

1

2

∂2

∂ci∂cj
∥P (v − u)∥2H

∣∣∣∣
t=T

= ⟨v − u, Pzij⟩H
∣∣∣∣
t=T

+ ⟨Pwi, Pwj⟩H
∣∣∣∣
t=T

. (2.9)

The problem then becomes how to estimate wi and zij. This will naturally lead us to consider

the sensitivity equations.
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2.4 Sensitivity equations

We find the time evolution of wi by taking the derivative of (2.1) with respect to ci. We

assume differentiability of F in both v and c. If H is infinite dimensional then a rigorous

analysis would have to justify Fréchet differentiability of F in v. We move forward assuming

that the formal manipulations performed here are justified. This leads us to,

ẇi + dF (v; c) [wi] + Fci(v; c) + µP [wi] = 0. (2.10)

We use square braces to specify multilinear functions, e.g. A[x, y] is a bilinear function.

For single linear functions we will sometimes use this convention or sometimes us adjacency.

Here, dF [.] is the differential of F in v, and Fci is the partial derivative of F with respect

to ci with v held constant. Because they represent how the system is sensitive to various

parameters, these equations are often referred to as “sensitivity equations” [11].

Assuming the initial conditions do not depend on our parameters, we have the following

simple initial condition:

wi|t=0 = 0. (2.11)

We can immediately see several things from inspection of the sensitivity equations. For

one thing, they are linear in w. While they are dependent on v, given a a known time

dependent v we can simulate w. Operationally, this means they have the same computational

difficulty as a linear time dependent system. They are also greatly simplified by having zero

initial conditions. We see as well that µ acts as a decay factor on the sensitivity equations.

This is important, because otherwise the sensitivity may grow with time.

We can also find the second order sensitivity equations for zij which are given by

żij + dF (v)[zij] + d2F (v)[wi, wj] + 2(dF )c(i(v)
[
wj)

]
+ Fcicj(v; c) + µP [zij] = 0, (2.12)

here we are using the notation X(ij) =
1
2
(Xij + Xji). As in the first order case, the second

order equations will also have zero initial conditions.
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2.5 Asymptotics

We can make a remarkable number of simple estimates if we do perturbation theory for

µ → ∞ on the sensitivity equations. In order to keep the derivation general the calculation

in the next section is largely formal. It would only require a little additional work to make

it rigorous in the finite dimensional case. In the infinite dimensional, i.e. partial differential

equation (PDE), case the analysis will be much more involved.

2.5.1 First Order Sensitivity Equations. This is a singular perturbation problem

because if we take the limit the equation becomes static. It is easiest to handle this by

re-scaling the time variable as τ = µt.

Thus we write

wi(t) = Wi(τ). (2.13)

By the chain rule we see that we have

ẇi = µẆ . (2.14)

Plugging this into our sensitivity equations and letting ϵ = 1
µ
, we get

µẆi + dF [Wi] + µP [Wi] = −Fci . (2.15)

We start with the ansatz that W can be written as a perturbative power series in ϵ, i.e.

W = W 0+ ϵW 1+ ϵ2W 2+ ... . Following standard perturbation theory, we plug this into the

differential equation and gather all terms of the same order.

The order 1 equation is

Ẇ 0
i + PW 0

i = 0,

W 0
i |τ=0 = 0. (2.16)

Clearly the only solution to this is W 0
i = 0.

We next turn to the order ϵ equation

Ẇ 1
i + P [W 1

i ] + dF [W 0
i ] = −Fci(v). (2.17)
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This simplifies to

Ẇ 1
i + P [W 1

i ] = −Fci(v),

W 1
i (0) = 0. (2.18)

The solution, in the P subspace, is given by,

PW 1
i (τ) = −

∫ τ

0

PFci

(
v

(
τ ′

µ

))
eτ

′−τdτ ′. (2.19)

2.5.2 Watson’s Lemma. This gives us the following first order asymptotic approxima-

tion for wi:

Pwi(t) ∼ − 1

µ

∫ µt

0

PFci(v(τ
′/µ))eτ

′−µtdτ ′. (2.20)

If we make the change of variables s = −τ ′/µ+ t, this simplifies the solution to

Pwi(t) ∼ −
∫ t

0

PFci(v(−s+ t))e−µsds. (2.21)

Given the form above we can directly apply Watson’s Lemma [21] to get

Pwi(t) ∼ −
∞∑
n=0

[(
d

ds

)n

Fci(v(−s+ t); c)

]
s=0

1

µn+1
. (2.22)

This suggests the leading order approximation

Pwi(t) ∼ − 1

µ
PFci(v(t)). (2.23)

2.5.3 Second Order Sensitivity Equation. We can also look at perturbation theory

for the second order sensitivity equations. We follow a similar process; plugging in our

perturbative ansatz, we have

(Ż0
ij + ϵŻ1

ij + ϵ2Ż2
ij + ...) + ϵdF [Z0

ij + ϵZ1
ij + ϵ2Z2

ij + ...]

+ P [Z0
ij + ϵZ1

ij + ϵ2Z2
ij + ...] = −ϵd2F [ϵW 1

i + ϵ2W 2
i + ..., ϵW 1

j + ϵ2W 2
i ...]

− ϵ2(dF )c(j [ϵW
1
i) + ...]− ϵFcicj . (2.24)
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The order 1 equation is given by

Ż0
ij + PZ0

ij = 0,

Z0
ij|τ=0 = 0. (2.25)

Again, clearly the only solution is identically zero.

The order ϵ equation is given by,

Ż1
ij + PZ1

ij = −Fcicj

Z1
ij|τ=0 = 0 (2.26)

With solution

PZ1
ij(τ) = −

∫ τ

0

PFcicj(v(τ
′/µ))eτ

′−τdτ ′. (2.27)

We can again apply Watson’s Lemma to get the leading otder approximation

PZ1
ij(τ) ∼ PFcicj(v(τ/µ); c). (2.28)

In the case where explicit dependence of F on the parameters is linear this term will be zero.

Given that many of the examples we consider have this property, in these cases, we move to

second order in perturbation theory.

Consider the case where Fcicj = 0. Given this assumption, the second order equation is

given by

Ż2
ij + P [Z2

ij] = −2(dF )c(i [W
1
j)],

Zij
2|τ=0 = 0. (2.29)

This gives us the equation

Ż2
ij + P [Z2

ij] = −2(dF )c(i [W
1
j)]. (2.30)

Following a similar derivation to before, we find the approximation

Pzij ∼
1

µ2
2P (dF )c(i(v)

[
W 1

j)

]
. (2.31)
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If P commutes with (dF )ci we can us the approximation for PW 1
j to get

Pzij ∼
1

µ2
2(dF )c(i(v)

[
PFcj)

]
. (2.32)

Chapter 3. Parameter Estimation from Op-

timization Methods

Under some reasonable assumptions E(c) = 1
2
∥P (v − u)∥2

∣∣
t=T≫1

as a function of c has a

unique root and minima at c = γ. Given knowledge of the sensitivities wi we can derive

parameter estimation algorithms from any derivative based root finding or optimization

algorithms. We follow the “relax then punch” approach where we allow the error to relax

between parameter update steps [9, 10, 20]. This is required because our assumption is that

the error has relaxed enough that we can do optimization on E(c). This amounts to the

assumption that ∆t = tk+1 − tk is “large” (where tk is our parameter update time). In

practice, the system usually relaxes very quickly, so the interval between parameter updates

does not need to be especially large. The behavior for large error is ∥v − u∥ ∼ e−µt, we see

the characteristic relaxation time scale is 1
µ
. Thus we just have to choose ∆t much larger

than this. In practice, because systems tend to fluctuate around a minimum rather than

completely relax, there seems to be a sweet spot for the value of ∆t where the system has

just relaxed, but has not started to fluctuate. A good rule of thumb seems to be choosing

∆t > 10 1
µ
.

In order to compute the parameter updates we need a way of estimating the sensitivities

wi. One way to do this is by directly simulating the solution from the equations of motion

numerically. We shall refer to this method as the direct simulation (DS) method. This

method has the advantage of requiring less approximations, but does involve additional

computation. It may still be preferable over many equation discovery methods that require

running the dynamics multiple times across many different parameter values. However,

the DS method will not be as useful in practice generally, but will be very useful as a
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demonstration tool for this thesis. The second method relies on using perturbation theory

in µ → ∞, which we derived in the last section. This method, while it requires additional

approximation, is more computationally efficient. It allows us to estimate the parameters

using only the current state v of the nudged system. We shall refer to these methods as

“on the fly” (OTF) methods. We shall see that OTF methods often lead to similar or even

better convergence properties than DS methods. We briefly review several possible simple

optimization and root finding algorithms and how they can be implemented as parameter

estimation algorithms.

3.1 Parameter Estimation as Root Finding

3.1.1 Single Parameter Estimation: Newton’s Method. We consider initially fit-

ting a single parameter. The long time error will approach zero when the exact parameters

are known. Thus we can apply any derivative based root finding methods as parameter

estimation methods. The most ubiquitous of these is Newton’s method; it finds the roots of

a function f(x) by approximating it as a linear function locally around some starting point

x0

f(x) ≈ f(x0) + f ′(x0) · (x− x0). (3.1)

Next, we solve for the roots of this linear function, i.e. f(x) = 0.

x = x0 −
f(x0)

f ′(x0)
. (3.2)

This suggests the iterative root finding algorithm

xi+1 = xi −
f(xi)

f ′(xi)
. (3.3)

Modification for higher multiplicity roots. The root of our error function will also

be a minimum, thus it will have a multiplicity of at least two. Roots of higher multiplicity

slow the convergence rate of Newton’s method, but an increased convergence rate can be

found by multiplying the update step by a factor of the multiplicity [14]. This leads to the
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following modification of Newton’s method when the multiplicity, m, of the root is known

xi+1 = xi −m
f(xi)

f ′(xi)
. (3.4)

In our case, where the multiplicity is at least 2, this leads to the following parameter esti-

mation algorithm.

c(k+1) = c(k) − ∥P [v − u]∥2

⟨P [v − u], w⟩

∣∣∣∣
tk

. (3.5)

3.1.2 Comparison with CHL algorithm . If we further examine this algorithm, we see

remarkable similarity to the parameter estimation algorithm developed by Carlson, Hudson,

and Larios (CHL) [9]. They considered a nudged system of the form

u̇+ γLu+ F (u) = f

v̇ + cLv + F (v) = f − µP (v − u). (3.6)

In this case taking the asymptotic approximation for Newton’s method results in the following

algorithm for parameter estimation. The parameter update is given by

c(k+1) = c(k) + µ
∥P (v − u)∥2H

⟨P (v − u), Lv⟩H

∣∣∣∣
tk

. (3.7)

We see that this agrees exactly with the CHL parameter estimation algorithm [9]. This

shows us how the CHL algorithm fits into the sensitivity equaiton framework for parameter

estimation.

3.1.3 Generalization to Multiple Parameters. We next consider root finding for a

function f : Rn → R. Following the derivation of Newton’s method, we approximate f as a

linear function. We consider the behavior near a point x0 which leads to the linear system

−f(x0) ≈ ∇f(x0) · (x− x0). (3.8)

This is an underdetermined system, but because we are making a local approximation, we

can choose the closest root of the linear system that will be in the direction of steepest

15



descent. This is given by

x = x0 −
f(x0)

∥∇f(x0)∥2
∇f(x0). (3.9)

Taking the modification for double roots, this leads to the parameter estimation algorithm

given by

c
(k+1)
i = c

(k)
i − ∥P (v − u)∥2H

∥⟨P (v − u),w⟩H∥2Rn

· ⟨P (v − u), wi⟩H
∣∣∣∣
tk

. (3.10)

If we take the asymptotic approximation for large µ we get the following OTF algorithm

c
(k+1)
i = c

(k)
i + µ

∥P (v − u)∥2H
∥⟨P (v − u), Fc⟩H∥2Rn

· ⟨P (v − u), Fci(v)⟩H
∣∣∣∣
tk

. (3.11)

As we see in Section 3.2.1, this can be seen as a modification of gradient descent with a

variable learning rate.

3.1.4 Root Finding vs. Optimization. It is important to make the distinction be-

tween root finding and optimization algorithms. In this thesis, we mostly assume that the

functional form of the unknown dynamics is exactly known, with the only unknown being

the precise value of the parameters. In this case, there are exactly correct values of param-

eters. However, in many applications, the exact form of the dynamics may not be known or

may be impossible to simulate, and only some approximate form may be used. We briefly

consider this case in section 4.3.3. In those cases, there is no longer “true” parameter values,

only optimal ones, and root finding algorithms will no longer be appropriate. The issue is

that if f does not go to zero when f ′ goes to zero, then Newton’s root finding method will

approach the minimum but will be pushed away from it by the singular denominator. See

Figure 3.1 and compare with the behavior in Figure 4.19.
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Figure 3.1: Newton’s root finding method will approach a small minima but be pushed away

by the denominator approaching zero.

3.2 Parameter Estimation as Optimization

3.2.1 Gradient Descent . One of the simplest optimization methods is gradient de-

scent. It says to move in the direction of steepest descent of the error. This gives us the

following optimization algorithm

xi+1 = xi − r∇f(xi) (3.12)

where the parameter r is the learning rate. The corresponding parameter estimation algo-

rithm is given by the following

c
(k+1)
i = c

(k)
i − r⟨P (v − u), Pwi⟩

∣∣∣∣
tk

. (3.13)
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If we take the asymptotic approximation we get the OTF parameter estimation algorithm

c
(k+1)
i = c

(k)
i +

r

µ
⟨P (v − u), PFci⟩

∣∣∣∣
tk

. (3.14)

This algorithm only relies on values of the first derivative of our error. It can be improved

upon if we can find, or at least approximate, the second derivative of our error.

3.2.2 Hessian method. Since a minimum of the function will be a root of its deriva-

tive we can apply Newton’s method to the gradient of our error function. This method is

sometimes called Newton’s method for optimization, or the Newton-Raphson method [5].

To avoid confusion with the root-finding Newton’s method, we shall refer to this method as

the Hessian method. Applying this method leads to the following iterative formula

xi+1 = xi − (D2f(xi))
−1∇f(xi), (3.15)

where D2f is the Hessian of f . As such, implementing this as a parameter estimation

algorithm requires knowledge of all of the second derivatives with respect to our various pa-

rameters. This algorithm assumes that the Hessian is invertible. As a parameter estimation

algorithm, this becomes

c
(k+1)
i = c

(k)
i −

∑
j

(⟨v − u, Pzij⟩H + ⟨Pwi, Pwj⟩H)−1 ⟨v − u, Pwj⟩H
∣∣∣∣
tk

. (3.16)

This requires knowledge of the solution to the second order sensitivity equations. In prac-

tice directly simulating the second order sensitivity equations grows very computationally

expensive as the number of parameters increases. For example, in a system dependent on

n parameters there are n first order sensitivity equation, but there are n(n+1)
2

unique second

order sensitivity equations. This makes direct simulation methods more computationally

prohibitive for the Hessian based optimization algorithm. One possibility is to use a mixed

DS and OTF approach by using the perturbative approximation for zij in terms of wi, but

directly simulating wi.

3.2.3 Approximations to the Hessian. The big drawback of the Hessian algorithm

is that it requires knowledge of zij. The Gauss-Newton method comes from assuming that

18



the quadratic terms in the Hessian dominate the terms dependent on zij. This is a good

approximation when v − u is small or when zij is small. Making this assumption we get

c
(k+1)
i = c

(k)
i −

∑
j

(⟨Pwi, Pwj⟩H)−1 ⟨v − u, Pwj⟩H
∣∣∣∣
tk

. (3.17)

The Levenberg-Marquardt algorithm is a modification of the Gauss-Newton algorithm. It is

generally more robust than the Gauss-Newton algorithm [19]; for many cases, it will converge

to the correct answer even when the initial guess is far off. It may also help in points where

the matrix ⟨wi, wj⟩ is not invertible. It is given by the following

c
(k+1)
i = c

(k)
i −

∑
j

(⟨Pwi, Pwj⟩H + λδij)
−1 ⟨v − u, Pwj⟩H

∣∣∣∣
tk

. (3.18)

The inverse given above will always be defined so long as −λ is not an eigenvalue of

⟨Pwi, Pwj⟩H . For appropriate choices of the cost function, the matrix ⟨Pwi, Pwj⟩H will

be positive semi-definite and so this algorithm will always be defined. Clearly, in the limit

λ → 0 this converges to the Gauss-Newton algorithm. In the λ → ∞ limit we have∑
j

(⟨Pwi, Pwj⟩H + λδij)
−1 ⟨v − u, Pwj⟩H ∼ 1

λ
⟨v − u, Pwj⟩H =

1

λ
∇E(c). (3.19)

Thus, the Levenberg-Marquardt algorithm comes from interpolating between Gauss-Newton

and gradient descent. Using the perturbative approximation developed earlier we find the

following OTF version of the Levenberg-Marquardt algorithm

c
(k+1)
i = c

(k)
i +

∑
j

(
⟨PFci , PFcj⟩H + λδij

)−1 ⟨v − u, PFcj⟩H
∣∣∣∣
tk

. (3.20)

Chapter 4. Applications

The methods outlined before this are given in full generality. We demonstrate how these

methods may be implemented in several simple systems. The derivations we have given are

not fully rigorous, and while a rigorous proof may be possible in the ODE case it is likely not

possible in full generality in the PDE case. For this work, we forgo a full rigorous derivation.

We instead rely on numerical evidence for convergence of the algorithms and leave the more
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rigorous analysis for future work.

4.1 Lorenz ’63 System

Figure 4.1: Phase space trajectory of the Lorenz ‘63 system.

One of the classic examples of Chaos is the Lorenz ’63 system. It was originally developed

by meteoroligist Edward Lorenz to model the atmosphere [17]. The dynamics of the Lorenz

‘63 system are shown in Figure 4.1. The equations describe a simplified model of a two

dimensional fluid warmed from below and cooled from above. u1 represents the rate of

convection, u2 is the horizontal temperature variation, and u3 is the vertical temperature

variation. The parameters γ1, γ2, and γ3 are proportional to the Prandtl number, Rayleigh

number, and physical size of the layer respectively. This system forms an ideal toy model for

understanding chaos in dynamical systems because of it’s relatively exotic behavior despite

it’s low dimensionality.

Because this system is low dimensional it will be easier to understand and analyze than

higher dimensional dynamical systems. The differential equations for this system are given
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by,

u̇1 = −γ1(u1 − u2)

u̇2 = u1(γ2 − u3)− u2

u̇3 = u1u2 − γ3u3. (4.1)

The corresponding nudged system is

v̇1 = −c1(v1 − v2)− µ(v1 − u1)

v̇2 = v1(c2 − v3)− v2 − µ(v2 − u2)

v̇3 = v1v2 − c3v3 − µ(v3 − u3). (4.2)

Numerically the parameter update only converges if the number of parameters being esti-

mated is less than or equal to the rank of the observation projector. It appears that this is a

fundamental restriction on these algorithms. This is because our error function maps from

our parameter space into the range of P and then into R. We see that if the dimensionality

of the parameter space is less than the dimension of the range of P , then the parameters are

underdetermined. This restriction is not so prohibitive in more realistic, higher dimensional

systems. In practice, this means that if we want to estimate all three parameters in the

Lorenz system, we have to nudge all of the variables. To focus on the parameter estimation

rather than the nudging, we take our entire state to be observed. Nudging with some subset

of the state was thoroughly explored in [8, 12, 10]. Indeed, [10] looked at parameter estima-

tion using a version of the CHL algorithm to do parameter estimation on various subsets of

the full parameters. We will explore the connection with the algorithm used in that paper

below.
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4.1.1 Direct Simulation Methods. Now, we find the following system of 9 sensitivity

equations for wij =
∂vi
∂cj

.

ẇ1j = −δ1j(v1 − v2)− c1(w1j − w2j)− µ1w1j,

ẇ2j = w1j(c2 − v3) + v1(δ2j − w3j)− w2j − µ2w2j,

ẇ3j = w1jv2 + v1w2j − δ3jv3 − c3w3j − µ3w3j. (4.3)

Note that because we have the same number of variables as parameters we can represent

wij as a matrix, W = [wij]. In this case we get that the gradient of the error E(c) =

1
2
∥v − u∥2R3

∣∣
t=T

is

∇E = W T (v − u)
∣∣
t=T

. (4.4)

Now, this leads to various parameter estimation algorithms which we explore below. We take

the relaxation parameter to be µ = 100 unless otherwise specified, and ∆t = 0.5. We take

the true parameter values to be γ = (10, 28, 2.667), and we start off with initial conditions

u = (0, 1,−1) and v = 0. We start with initial parameter values c = 1
2
γ.

Gradient Descent. The gradient descent algorithm is given by

ck+1 = ck − rW T (v − u)
∣∣
t=tk

. (4.5)

For simplicity, we take the learning rate to be constant. We experiment with various

learning rates in Figure 4.2.
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Figure 4.2: DS gradient descent with different learning rates.

We see that choosing a large learng rate leads to the faster convergence. However, if

we choose the learning rate too large, for example r = 50, we see that we no longer see

convergence of this algorithm this is shown in Figure 4.3. This is because a learning rate

that is too large will consistently overshoot the minimum.

Figure 4.3: Non convergence of gradient descent with r = 50.

23



Newton’s Method. Applying the multiparameter Newton’s method for the Lorenz ’63

system gives us the following parameter estimation algorithm.

c(k+1) = c(k) − ∥v − u∥2

∥W T (v − u)∥2
W T (v − u). (4.6)

As discussed earlier, this version of Newton’s method is essentially a modification of gradient

descent with a specific choice of variable learning rate. Figure 4.4 shows that this parameter

estimation algorithm gives us significantly faster convergence than gradient descent.

Figure 4.4: Convergence of Newton’s Method

Levenberg-Marquardt. Now, the DS Hessian method requires knowledge of the 18

second order sensitivity equations. These could be directly simulated but greatly increases

the computational complexity. Instead we move directly to the Levenberg-Marquardt algo-

rithm.

c(k+1) = c(k) − (W TW + λI)−1W T (v − u). (4.7)

We experiment with various values of the damping parameter λ in 4.5. We find that the

fastest convergence is found with small damping. As such, we choose the parameter only
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large enough to ensure invertibility of the approximate Hessian. This behavior appears to

be constant across the models tested here.

Figure 4.5: DS Levenberg-Marquardt algorithm with various values of λ.

4.1.2 OTF Methods. Following the asymptotics derived in chapter 2.5, we find the

following approximation for W which allows us to define OTF versions of the algorithms,

W =


− 1

µ1
(v1 − v2) 0 0

0 1
µ2
v1 0

0 0 − 1
µ3
v3

 . (4.8)

This allows us to compare the OTF methods with the DS methods. It can be seen that

the OTF Gauss-Newton method agrees with the modification of the CHL algorithm used

in [10]. We compare the convergence behavior of the DS and OTF methods in Figure 4.6.

We see good agreement between the direct simulation of the sensitivity equations and the

perturbative approximation.
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Figure 4.6: Comparison of DS and OTF methods

Interestingly, we find that the OTF method for gradient descent converges faster than

the DS method. We shall see below that the OTF method converging just as fast or faster

than the DS method is not so uncommon. This may be due to the fact that by doing

perturbation theory in large µ, we are getting at the essential long term behavior but by

directly simulating the sensitivity equations we are sensitive to the small fluctuations of the

error funcitonal. We also see in Figure 4.7 that increasing the value of µ leads to greater

agreement between the OTF and DS methods supporting the perturbative approximation.

26



Figure 4.7: DS vs. OTF Levenberg-Marquardt method for various values of µ. Note the

similar behavior for larger values of µ in agreement with perturbative results.

4.2 Two Layer Lorenz ’96 Model

One thing that is important to understand is the interaction between scales of chaotic dy-

namical systems. The two layer Lorenz ’96 model is a system of ODEs designed to capture

both large scale and small scale behavior. It was originally designed to model atmospheric

quantities along a single circle of latitude [18]. The dynamics of this model are plotted in

Figure 4.8.
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Figure 4.8: Plot of ul
k wtih I = 100, γ = (0.01, 0.5)

This system has two layers, representing two different scales that are coupled together.

ul captures the large scale behavior of the system, with k ∈ {1, .., I} indexing the position

along the latitude circle. Each ul
k is coupled to J small scale variables us, which represent

the small scale behavior not accounted for by our course grained system.

u̇l
k = ul

k+1(u
l
k−1 − ul

k+2) + γ1

J∑
j=1

us
kju

l
k − γ2u

l
k + F

u̇s
kj, = −dju

s
kj − γ1(u

l
k)

2. (4.9)

Now, consider the nudged system given by

v̇lk = vlk+1(v
l
k−1 − vlk+2) + c1

J∑
j=1

vskjv
l
k − c2v

l
k + F − µ(vlk − ul

k),

v̇skj = −djv
s
kj − c1(v

l
k)

2. (4.10)

Our observation operator for this system is the projection onto the large scale variables,

i.e. we assume that only the large scale is observable and used for the nudging. Since the

parameters dj only appear in the small scale equations, they only directly interact with the

28



unobservable variable, for simplicity we consider them as fixed parameters. We take them

as equal to : (dj) = (0.2, 0.5, 1, 2, 5). We take the true parameter values as γ = (0.01, 0.5),

with starting approximate parameters as c = 1
2
γ. We also take J = 5 and I = 40. We take

our nudging parameter as µ = 50. Our initial conditions for u are randomly drawn from a

normal distribution, and we take 0 initial conditions for v.

Convergence of Nudging on Large Scales. Because the parameter estimation is

implemented within the nudging framework, we must check that the nudging algorithm

converges for this model. We see in Figure 4.9 below that nudging with only the large scales

observed leads to convergence of the entire system.

Figure 4.9: Convergence of nudging with parameters fixed at “correct” values. Only the

larges scale variables are observed.

4.2.1 DS Methods. Due to the convergence of the nudging we only need to minimize

over E = 1
2
∥P (v − u)∥2

∣∣
t=T

= 1
2
∥vl − ul∥2

∣∣
t=T

. The sensitivity equations for Lorenz ’96 are
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given by

ẇl
k,i = wl

k+1,i(v
l
k−1 − vlk+2) + vlk+1(w

l
k−1,i − wl

k+2,i) + δ1i

J∑
j=1

vskjv
l
k,

+ c1

J∑
j=1

ws
kj,iv

l
k + c1

J∑
j=1

vskjw
l
k,i − δ2iv

l
k − c2w

l
k,i − µwl

k,i

ẇs
kj,i = −djw

s
kj,i − δ1,i(v

l
k)

2 − 2c1v
l
kw

l
k,i. (4.11)

In this model, for simplicity, we consider only the implementation of Newton’s method and

the Levenberg-Marquardt algorithm. We compare these algorithms in Figure 4.10. Though

we should note that the algorithm does not always converge for reasons discussed in Section

4.2.3.

Figure 4.10: Comparison of convergence between two algorithms.
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4.2.2 OTF Methods. The perturbation theory developed earlier leads us to the follow-

ing estimates for the sensitivities as µ → ∞.

wl
k,1 ∼

1

µ

J∑
j=1

vskjv
l
k,

wl
k,2 ∼ − 1

µ
vlk. (4.12)

the following section shows how the parameter update algorithms are very sensitive to the

hyper parameters for this system.

4.2.3 Sensitivity to Hyperparameters and Possible Failure of Convergence. The

parameter estimation algorithms in this model seem to have a good deal of sensitivity on the

hyper parameters µ and ∆t. We demonstrate this in Figure 4.11. From directly inspecting

the results of the algorithms we find that the algorithm occasionally converges to exactly

(c1, c2) = (−γ1, γ2). It is not clear exactly what is going on, though it seems to indicate that

the error function has a local minima or saddle point at this value. This is likely related to

the fact that we are fitting the parameter value for the nonlinear term, as c1 is the parameter

which does not converge.

This is what happens in Figure 4.11 when the parameter estimation algorithm does not

converge.
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Figure 4.11: Sensitivity to parameter update interval ∆t

This appears to be a feature of this specific model. Understanding this sensitivity to the

hyper parameters requires further investigation.

4.3 Kuramoto-Sivashinsky Equation

Having shown the applicability of these methods in several finite dimensional systems, we

now turn to the infinite dimensional case to study how these methods can be applied to the

PDE case. We consider the 1 dimensional Kuramoto-Sivashinsky Equation (KSE) system

u̇+ γ1u
′′ + γ2uu

′ + γ3u
(4) = 0 (4.13)

here we have u′ = ∂u
∂x
. The KSE system can model a variety of physical systems. Generally, it

models systems far from equillibrium such as turbulent behavior of a single flame, instabilities

in reaction diffusion systems, and the flow of plasmas [15, 3]. It is mathematically interesting

as a model because it is an example of a chaotic PDE with only one spatial dimension, and

as such, is relatively computationally inexpensive to simulate. Despite its computational
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cheapness the KSE system is still displays a wider variety of interesting dynamics. We plot

the dynamics of the KSE system in Figure 4.12.

Figure 4.12: Plot of u(x, t)

Parameter estimation in the KSE system was studied by Pachev, Whitehead, and Mc-

quarrie using a different approach than the one used here [22]. The corresponding nudged

system is given by

v̇ + c1v
′′ + c2vv

′ + c3v
(4) + µPN(v − u) = 0. (4.14)

Here our projection operator, PN , is the fourier projection onto Fourier modes less than N .

The inner products below are all given in the L2 norm. Here we use N = 32. Because

we have three parameters to fit, DS methods would greatly increase the computational

complexity. We shall consider first fitting only c1 where DS methods do not greatly increase

the computational cost. This allows us to compare the DS methods with the OTF methods.

After, this we move on to multi parameter estimation using OTF methods and investigate

the efficacy of the parameter estimation algorithms.
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4.3.1 Single Parameter Estimation. For simplicity and computational efficiency we

consider only DS for single parameter estimation. In this case we only have one first order

and second order sensitivity equation each. They are given by,

ẇ + v′′ + c1w
′′ + c2(wv)

′ + c3w
(4) + µPNw = 0, (4.15)

ż + 2w′′ + c1z
′′ + 2c2ww

′ + c2(zv)
′ + c3z

(4) + µPNz = 0. (4.16)

Numerical results. We take the true parameter values γ = (1, 1, 1), and the hyper

parameters ∆t = 1 and µ = 25. We take initial conditions

u|t=0 = sin(6πx/L) + 0.1 cos(πx/L)− 0.2 sin(3πx/L)

+ 0.05 cos(15πx/L) + 0.7 sin(18πx/L)− cos(13πx/L). (4.17)

where our domain is [0, L] = [0, 100], and we take the intial conditions of v to be zero. We

also assume periodic boundary conditions for simplicity.

We can directly simulate the sensitivity equations and use this for parameter estimation.

This allows us to implement parameter estimation algorithms. We also simulate the second

order sensitivity equation which allows us to implement the Hessian method. We simulate

the convergence of these algorithms in Figure 4.13.
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Figure 4.13: Convergence of DS algorithms with initial value c1 = 2.

We see that Newton’s method has the fastest convergence rate. We see similar con-

vergence rates for the Hessian method and Levenberg-Marquardt method, justifying the

approximation of the Hessian.
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Figure 4.14: Non-convergence of optimization algorithms with initial value c1 = 4.5. The

optimization algorithms converge to a c1 ≈ 4.25.

We also see in Figure 4.14 that for specific initial guesses of the unknown parameters

Levenberg-Marquardt and the Hessian method do not converge. This is likely due to the

fact that they only converge to a critical point and may get stuck in a local minima or saddle

point. Whereas, our error function only has one root. We compare the DS and OTF methods

in Figure 4.15. We discuss the similarity between the CHL algorithm and the Gauss-Newton

algorithm in the next section.

36



Figure 4.15: Comparison of OTF and DS methods

OTF Methods: Comparison Between CHL and Gauss-Newton. As explained

in Section 3.1.2, the OTF Newton’s method for a single parameter reproduces the CHL

algorithm. Interestingly, the Levenberg-Marquardt algorithm with λ = 0 (i.e. the Gauss-

Newton Algorithm) has a very similar form to the CHL algorithm. To see this comparison

we look at them next to each other

ck+1
1,CHL = ck1 + µ

∥P [v − u]∥2

⟨v − u, P [v′′]⟩
(4.18)

ck+1
1,GN = ck1 + µ

⟨v − u, P [v′′]⟩
∥P [v′′]∥2

. (4.19)

These are clearly very similar. They have the same sign, and roughly the same magnitude.

For example, if the range of P were one dimensional they would exactly agree. However,

note that the Gauss-Newton algorithm has a denominator which is easier to control, i.e. it

is harder for it to be zero and it always has definite sign. From numerical experimentation
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shown in Figure 4.16, we see that both algorithm’s have similar convergence rates for single

parameter estimation.

Figure 4.16: Comparison of CHL algorithm and OTF Levenberg-Marquardt.

4.3.2 OTF Methods For Multiparameter Estimation. We now move on to esti-

mating all three parameters. We shall see, as before, that Levenberg-Marquardt generalizes

very well for multiparameter estimation. The full sensitivity equations for this system are

given by,

ẇi + δ1iv
′′ + δ2ivv

′ + δ3iv
(4) + c1w

′′
i + c2wiv

′ + c2vw
′
i + c3w

(4)
i + µPNwi = 0. (4.20)

We can also work out the second order sensitivity equations

żij + 2δ1(iw
′′
j) + 2δ2(iwj)v

′ + 2δ2(iw
′
j)v + 2δ3(iw

(4)
j) + 2c2w(iw

′
j),

+ c1z
′′
ij + c2zijv

′ + c2vz
′
ij + c3z

(4)
ij + µPNzij = 0. (4.21)
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The perturbation theory derived earlier gives us the simple approximations

wOTF
i ∼ − 1

µ
δ1iv

′′ − 1

µ
δ2ivv

′ − 1

µ
δ3iv

(4), (4.22)

which can be written in vector form as
wi

w2

w3

 ∼ − 1

µ


v′′

vv′

v(4)

 , (4.23)

and

µ2zij ∼ 2δ1(iδ1j)v
(4) + 2δ1(iδ2j)

[
(vv′)′′ + v′′v′ + v(3)v

]
+ 2δ1(iδ3j)

[
2v(6)

]
+ 2δ2(iδ2j)

[
v(v′)2 + (vv′)′v

]
+ 2δ2(iδ3j)v

(4)v′ + 2δ2(iδ3j)
[
v(5)v + (vv′)(4)

]
+ 2δ3(iδ3j)v

(8).

(4.24)

This gives the following approximation for the Hessian

D2fOTF= 1
µ



∥Pv′′∥2+2⟨v−u,P [v(4)]⟩ ⟨v′′,P [vv′]⟩+⟨v−u,P[(vv′)′′+v′′v′+v(3)v]⟩ ⟨v′′,Pv(4)⟩+⟨v−u,P [2v(6)]⟩

. ∥P [vv′]∥2+2⟨v−u,P[v(v′)2+(vv′)′v]⟩ ⟨v(4),P [vv′]⟩+⟨v−u,P[v(5)v+(vv′)(4)]⟩

. . ∥P [v(4)]∥2+2⟨v−u,P [v(8)]⟩


.

(4.25)

This may be quite complicated to compute in practice given the number of high order

derivatives involved. The Levenberg-Marquardt approximation to the Hessian is given by

D2fOTF
LM =

1

µ


∥Pv′′∥2 + λ ⟨v′′, P [vv′]⟩ ⟨v′′, P [v(4)]⟩

. ∥P [vv′]∥2 + λ ⟨v(4), P [vv′]⟩

. . ∥P [v(4)]∥2 + λ

 . (4.26)

We take our initial guess c(0) = (2, 2, 2). We take the true parameter values γ = (1, 1, 1),

and the hyper parameters ∆t = 0.5 and µ = 25. A brief summary of our result is that

Newton’s method does converge but very slowly, and Levenberg-Marquardt (with λ = 10−6)

converges very rapidly. We show the convergence of both algorithms in Figures 4.17 and

4.18.
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Figure 4.17: Comparison of algorithms for estimating (c1, c2, c3) simultaneously.
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Figure 4.18: Rapid convergence of OTF Levenberg-Marquardt for multi-parameter estima-

tion.

4.3.3 Parameter Optimization vs. Parameter Root Finding . We consider the

case where the equations of motions are altered by adding additional higher order terms.

Consider the modification of the true system given by

u̇+ γ1u
′′ + γ2uu

′ + γ3u
(4) − ϵu(6) = 0. (4.27)

We take ϵ to be fixed. We use this to stand in for the case where the true system is either not

known exactly, or too complicated to simulate fully. For example, in a different system, the

Navier Stokes equations are only a large scale approximation to the true motion of molecules

in fluids which is far to complex to simulate numerically. In fact, every physical model we

know of is some large scale approximation of whatever the underlying theory of the universe
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is. Now, given this modification of the true system, our goal is estimate (c1, c2, c3) on the

unmodified nudged system.

We now consider parameter estimation in this regime. We take as initial values the

ci = γi = 1 and we then look at the effect of implementing the parameter update schemes

described in this paper. We see in Figures 4.19 and 4.20 that the Levenberg-Marquardt

algorithm effectively reduces the error, but as would be expected Newton’s root finding

method is no longer effective. Note that although we cant expect the error to converge to

zero in this case, it does lower the state error by a factor of 3 or 4.

Figure 4.19: Parameter optimization with ϵ = 10−3 .
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Figure 4.20: Non logarithmic plot of optimization with ϵ = 10−3

Chapter 5. Conclusion

5.0.1 Summary. We outline an original framework for parameter estimation within the

continuous time data assimilation approach. Starting from some basic assumptions, mo-

tivated by numerical experimentation, we see that we can treat the problem as a finite

dimensional optimization problem. We consider the derivative of our error functional with

respect to parameters, which leads us to considering the sensitivity equations. We show that

within the nudging framework, we can get perturbative approximations for the solutions

to the sensitivity equations. Given these estimates, we can derive on “the fly” parameter

estimation algorithms. In particular, we show that the OTF version of Newton’s method
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for one parameter reproduces the CHL algorithm. In addition, we develop several new pa-

rameter estimation algorithms, the most prominent of these being an implementation of

the Levenberg-Marquardt algorithm. We show that for single parameter estimation, this

leads to a modification of the CHL algorithm, which generalizes well to multi-parameter

estimation. This algorithm also seems to compare well with another algorithm developed

by Pachev, Whitehead, and McQuarrie for multi-parameter estimation because it does not

require estimation of the time derivative of u [22]. Though we leave a direct comparison to

this algorithm to future work.

The derivations given in this thesis are not given fully rigorously. However we have

outlined the method very generally, but it also means that several assumption have to be

made to carry out the derivation. We leave the fully rigorous analysis for future work, which

will likely have to be carried out on a case by case basis. Instead of relying on rigorous

analysis for our results, we instead demonstrate their efficacy numerically. We demonstrate

the application of these methods in three cases of increasing complexity. Specifically we

look at: the Lorenz ’63 system, the two layer Lorenz ’96 system, and the one dimensional

Kuramoto-Sivashinsky equation. In all cases, we find that the methods converge for suitable

choices of hyper parameters and initial conditions.

5.0.2 Next Steps. As mentioned before, further analysis is required to make the meth-

ods outlined here fully rigorous. In the finite dimensional case not this should be relatively

straightforward, whereas the infinite dimensional case would require a considerable amount of

further work . A rigorous analysis would also be interesting because it would allow us to an-

alyze the convergence rate of our algorithm. Heuristically we can guess that the convergence

rate should follow from the convergence of the finite dimensional optimization algorithms

we implement, but there may be more subtlety. Additionally, it would be interesting to find

areas where the algorithm does not converge similar to the case of the Lorenz ’96 model

discussed in this paper.

Additionally, it would be interesting to see if the sensitivity equations could be used to
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give more insight in to the algorithm developed by Pachev Whitehead and McQuarrie [22].

There are hints of a potential connection. For example, the matrix that is inverted in their

algorithm is the same as the Gauss-Newton approximation of the Hessian.

Another interesting avenue of future work is to explore how we could extend the appli-

cability of the AOT nudging algorithm. An important drawback of the current algorithm is

that it is not clear how to handle noise in the measurement. In particular, if our observation

operator includes a stochastic term, then choosing a large nudging parameter, µ, will amplify

this noise. A proof for the convergence of nudging with noisy observations does exist in a

specific case [6], but there is no general understanding of how to handle noisy observations.

This is crucial because an important assumption of our derivations was that they were hap-

pening within the nudging framework. Thus, by extending the robustness and generality of

the nudging, we can extend the applicability of these parameter estimation algorithms.
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