
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2023-08-22 

Estimating Hemispheric Specialization in Autistic and Estimating Hemispheric Specialization in Autistic and 

Neurotypical Individuals Neurotypical Individuals 

Madeline Peterson 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Family, Life Course, and Society Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Peterson, Madeline, "Estimating Hemispheric Specialization in Autistic and Neurotypical Individuals" 
(2023). Theses and Dissertations. 10495. 
https://scholarsarchive.byu.edu/etd/10495 

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F10495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/419?utm_source=scholarsarchive.byu.edu%2Fetd%2F10495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/10495?utm_source=scholarsarchive.byu.edu%2Fetd%2F10495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


 

Estimating Hemispheric Specialization in Autistic 

and Neurotypical Individuals 
 
 
 
 

Madeline Peterson 
 

 

A dissertation submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of  
 

Doctor of Philosophy 
 

 

 

Jared A. Nielsen, Chair 
Derin Cobia 

Rebecca A. Lundwall 
C. Brock Kirwan  

 

 

 

Department of Psychology 

Brigham Young University 

 

 

 

Copyright © 2023 Madeline Peterson 

All Rights Reserved 



 

ABSTRACT 

 
 Estimating Hemispheric Specialization in Autistic  

and Neurotypical Individuals 
 

Madeline Peterson 
Department of Psychology, Brigham Young University 

Doctor of Philosophy 
 
While the brain appears to be symmetrical, macroscopic differences or asymmetries between the 
two hemispheres emerge through careful quantitative study. Functional asymmetries can 
accompany these structural asymmetries, and these can be a reflection of hemispheric 
specialization, or the predominant hosting of macroscale functional network and its 
accompanying functional properties by a given hemisphere. Prior work has identified the 
specialization of language to the left hemisphere, visuospatial attention to the right hemisphere, 
and a dual specialization of executive control to both hemispheres. However, it is largely 
unknown how specialization is characterized at an individual level, particularly in terms of 
identifying the specific connections that contribute to the specialization of a given network.  
 
The present article-style dissertation explores human brain organization through the lens of 
specialization within individuals. Secondary to this goal is establishing reliable and valid 
methods for estimating specialization, as well as examining atypical patterns of specialization.  
Study 1 focuses on identifying specialized networks and investigating the relationships between 
these networks in neurotypical adults through the use of a novel, surface area-based measure of 
specialization. After establishing this measure of specialization in neurotypical individuals, 
Study 2 explores functional specialization within a neurodevelopmental condition, including the 
potential ramifications of atypical specialization for specific behavioral phenotypes. Taking a 
different approach to estimating specialization, Study 3 replicates and expands on prior work, 
examining the underpinnings of network specialization and providing support for principles 
governing contributions to specialization. Collectively, these studies elucidate the particulars of 
functional specialization within individuals, illustrating the complexity of brain organization 
through large-scale networks. 
 
 
 
 
 
 
 
 
 
 
Keywords: lateralization, specialization, asymmetry, brain networks, brain organization, network 
specialization, hemispheric specialization, neuroimaging, MRI, fMRI, precision neuroimaging, 
autism, autism spectrum conditions, neurodevelopment  
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Estimating Hemispheric Specialization in Autistic and Neurotypical Individuals 

Overall Introduction 

 As a key principle of brain organization, hemispheric asymmetries are found at levels 

ranging from the cytoarchitectonic to the structurally macroscopic (for review, see Toga & 

Thompson, 2003). Often accompanying these structural asymmetries are functional asymmetries, 

which are reflections of hemispheric specialization. In this context, specialization refers to the 

predominant hosting of a macroscale functional network and its associated functional properties 

by one hemisphere (Hervé et al., 2013). This organizational design appears to hold evolutionary 

value and play key roles in brain development and processing. Rather than duplicate processing 

capacities across both hemispheres and waste neural space (Corballis, 1991; Güntürkün & 

Ocklenburg, 2017), it is thought that evolutionary pressures conspired to produce hemispheric 

specialties, resulting in greater overall efficiency (Levy, 1969) and processing speed (Ringo et 

al., 1994). Given the evident importance of specialization to brain organization, functional 

specialization findings within individuals are remarkably limited.  

 To ameliorate this gap, the present dissertation explores human brain organization 

through the lens of functional specialization within individuals. Secondary to this goal is the 

development of robust methods for estimating specialization within individuals, as well as the 

investigation of specialization within a neurodevelopmental population. In the following 

sections, three studies and associated supplementary materials achieving these aims are described 

(see the Appendix for deviations from the prospectus and accompanying justification). 

 Study 1 approaches the problem of estimating specialization within individuals through 

the use of a novel measure: the network surface area ratio. Following the development of this 
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measure, the networks with the greatest specialization were identified, and the nature of 

relationships between specialized networks was characterized.  

 After establishing a method of within-individual specialization in neurotypical 

adolescents and adults, this method was applied to a neurodevelopmental population in Study 2. 

Potential deviations in specialization in autism were explored, followed by the examination of 

hypothesized relationships between language specialization and three behavioral phenotypes: 

verbal ability, autism symptom severity, and language delay. 

 Finally, Study 3 characterizes within-individual specialization through the autonomy 

index, a method previously applied at the group level. After estimating specialization in 

seventeen networks, specialization was deconstructed through the identification of the 

connections contributing the most to a given networks specialization, unraveling principles 

governing network specialization. 

 Through the use of robust measures for estimating specialization, the three studies 

contribute to the overall goal of understanding individual human brain organization. Importantly, 

the following results highlight the potential consequences of atypical specialization patterns for a 

specific neurodevelopmental condition. Together, the findings illustrate the complexities of brain 

organization, evident even at the macroscale network level. 
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Study 1: Estimating Brain Network Specialization: The Development and Use of the 

Network Surface Area Ratio 

Abstract 

 The two hemispheres of the brain are asymmetric in structure and function. On the 

network-level, the language network is known to exhibit left hemisphere lateralization while the 

visuospatial network is known to exhibit right hemisphere lateralization. However, it remains 

unknown which networks are the most functionally specialized when a greater number of 

networks are examined, as well as how network specialization is related between networks. In 

the present study, we estimated network specialization using a network surface area-based 

approach across four datasets. After examining the validity and reliability of individual network 

parcellations and this surface area-based measure of specialization, we addressed two 

hypotheses. First, we hypothesized that networks associated with language, visuospatial 

attention, and executive control would show the greatest specialization. Second, we hypothesized 

that network specialization relationships would follow one of three hypotheses: covariation, 

compensation, or independence. Exploratory factor analyses were used to examine relationships 

between networks’ specialization. 

 Keywords: Lateralization, specialization, asymmetry, brain networks, network 

specialization, hemispheric specialization, neuroimaging, precision neuroimaging, MRI, fMRI 
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Introduction 

 Observations of the human brain have revealed significant differences in the gross 

anatomical morphometry between the two hemispheres (for review, see Toga & Thompson, 

2003). These structural asymmetries are accompanied by functional asymmetries, such as 

language specialization. Famously, Paul Broca traced language specialization to the left 

hemisphere subsequent to identifying a lesion in the left inferior frontal gyrus of his patient as 

being responsible for his eponymous aphasia (Broca, 1861). This contribution launched an 

emphasis on regions specialized for language, which only recently shifted to a focus on a 

functional language network (Fedorenko & Thompson-Schill, 2014; Petersen & Sporns, 2015).  

 Contemporarily, the language network is regarded as a prototypical example of a 

lateralized network, with left-hemisphere language lateralization estimated to occur in most 

(Breier et al., 2000; Stippich et al., 2003) to more than 90% of the general population (Corballis, 

2003). The canonical language network is a distributed network of regions across the frontal, 

temporal, and parietal lobes, and these regions were identified using a rigorously tested task-

based fMRI approach (Fedorenko et al., 2010, 2011; Fedorenko, McDermott et al., 2012; Lipkin 

et al., 2022; Scott et al., 2017) and a functional connectivity-based approach (Braga et al., 2020). 

Remarkably, the overwhelmingly asymmetric organization of this network in neurotypical 

individuals continues to be replicated (Elin et al., 2022; Malik-Moraleda et al., 2022; Olulade et 

al., 2020; Reynolds et al., 2019). 

 This line of research has expanded to include additional specialized functional networks 

in both the right and left hemispheres, which support distinct cognitive processes and behaviors. 

In this context, “specialization” refers to the dominant hosting of a macroscale functional 

network and its associated functional properties by one hemisphere over the other (Hervé et al., 
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2013). For example, a right-lateralized attention network composed of the temporoparietal 

junction and ventral frontal areas is hypothesized to process visuospatial information, 

particularly unexpected stimuli (Corbetta & Shulman, 2002). Of note, one study quantified 

specialization across seven functional networks and found that specialization was not restricted 

to a single left- or right-specialized network (Wang et al., 2014). Rather, the right frontoparietal 

network and right ventral and dorsal attention networks, as well as the left default and 

frontoparietal networks exhibited specialization as assessed via a functional connectivity-based 

metric (see Figure 5; Wang et al., 2014). While these and other studies have made significant 

contributions, much regarding network and hemispheric specialization within individuals 

remains unknown. 

Methods of Examining Hemispheric Specialization 

 In humans, hemispheric specialization has historically been identified using a variety of 

methods including split-brain patients (for review, see Gazzaniga, 2000), lateralized brain lesions 

(Milner, 1971; Rasmussen & Milner, 1977), the Wada test (Wada & Rasmussen, 1960), and 

intraoperative brain stimulation mapping (Penfield & Jasper, 1954). These methods have since 

been extended to include a suite of neuroimaging metrics, many of which are functional 

connectivity-based. Of particular interest are the intrinsic laterality index (Liu et al., 2009), 

autonomy index (Wang et al., 2014), hemispheric contrast (Gotts et al., 2013), functional 

lateralization metric (Nielsen et al., 2013), classification metric (Friedrich et al., 2022), and 

network variants approach (Perez et al., 2023). Despite the unifying aim of estimating 

hemispheric specialization, each of the listed methods varies in terms of how it approaches 

structural asymmetries, the addition of covariates such as handedness and gender, and short- and 

long-range connectivity. However, with few exceptions, each relies upon group-based analyses 
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in estimating specialization, a tactic which is increasingly being exchanged for a within-

individual “precision” approach. 

A Precision Approach 

 The precision approach, which emphasizes individual-level analyses, has been 

intertwined with fMRI research since its early days, starting with a study in 1991 involving a 

single participant and a flickering lights paradigm (Kwong, 2012). Over three decades later, a 

return to this design is being heralded as a well-powered alternative to the large and costly 

sample sizes required for cross-sectional group and brain-wide association studies (Gratton et al., 

2022; Marek et al., 2022). This method of densely sampling individuals can, as noted by Marek 

et al. (2022), generate precise brain maps as well as blueprints for reducing MRI artifacts. 

Moreover, when combined with functional localizers, individual approaches offer superior 

sensitivity, functional resolution, and interpretability (Fedorenko, 2021). 

Precision Specialization 

 In line with the precision neuroimaging approach and previous efforts to understand brain 

network organization and specialization, the present study examines two open questions. First, 

we explore which networks exhibit the highest hemispheric specialization. A recent study 

involving 18 densely-sampled individuals demonstrated that among six networks, the language 

network displayed the greatest left hemisphere specialization, while a frontoparietal control 

network exhibited the greatest right hemisphere specialization (Braga et al., 2020). However, it 

remains unclear how these estimates might change in a larger sample with a greater number of 

examined networks. Building upon the work of Braga et al. (2020), we hypothesized that 

networks associated with language, visuospatial attention, and executive control would show the 

greatest hemispheric specialization. 
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 Second, we investigate how specialization in one network may influence the 

specialization of other networks. We propose the following three hypotheses to guide our 

investigation. The first hypothesis suggests that if an individual possesses a highly specialized 

network, other networks for that individual will exhibit increased specialization (the covariation 

hypothesis). The second hypothesis suggests that if one network is highly specialized, other 

networks will be less specialized (the compensatory hypothesis). The third hypothesis proposes 

that network specialization is unrelated between networks within an individual (the independent 

hypothesis).  

Methods 

Datasets and Overview 

 Three independent datasets were used for these analyses: The Human Connectome 

Project (HCP; split into discovery and replication datasets), the Human Connectome Project-

Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et 

al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per 

participant (see Figure 1). 

HCP Discovery and Replication 

 The HCP S1200 release consists of 1206 subjects (1113 with structural MRI scans) 

collected at 13 different data acquisition sites with informed consent (Van Essen et al., 2013). 

Additional details regarding HCP scanning protocols are available online 

(https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_A

ppendix_I.pdf; Uğurbil et al., 2013; Van Essen et al., 2012). With a relatively large quantity of 

data available per individual, this dataset is ideally suited for taking a within-individual approach 

to specialization. Participants underwent four 15-minutes runs of a passive fixation task (resting-
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state fMRI) during which they were asked to keep their eyes open while viewing a white cross 

on a dark background and think of nothing in particular while remaining awake (Smith et al., 

2013). Exclusion criteria for the HCP S1200 release included removing participants with a mean 

framewise displacement greater than 0.2 mm and mean DVARS greater than 50, participants 

missing handedness data, and participants with less than 50% of volumes remaining after motion 

censoring. This resulted in a subsample of 553 participants, which was split into a discovery and 

replication dataset using random sampling without replacement. The two datasets were then 

compared using the R package MatchIt (Ho et al., 2023) on age, mean framewise displacement, 

sex, handedness, and percentage of volumes remaining following motion censoring. The HCP-

Discovery dataset consisted of 276 participants 22-36 years old (M = 28.48, SD = 3.58) with 167 

females, while the HCP-Replication dataset consisted of 277 participants 22-36 years old (M = 

28.7, SD = 3.77) with 173 females.  

HCPD 

 With a younger sample and smaller quantity of data per individual, the HCPD dataset 

was used as an additional replication dataset for primary analyses. Since data collection for the 

HCPD project is ongoing, cross-sectional data from the latest release were included, and these 

were composed of 652 healthy participants. All data were obtained with informed assent or 

consent. As a part of the HCPD protocol, participants underwent four 6.5-minute runs of resting-

state fMRI, with an exception for participants 5-7 years old, which had six 3.5-minute runs each 

(Harms et al., 2018). Participants were instructed to view a small white fixation crosshair on a 

black background and blink normally. Exclusion criteria for HCPD included removing 

participants with less than 50% of volumes remaining after motion censoring, participants 

missing handedness data, and participants with a mean framewise displacement greater than 0.2 
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mm and mean DVARS greater than 50 (see Figure 1). Following the exclusion criteria, the 

dataset consisted of 343 individuals ages 11-21.92 (M = 15.93, SD = 2.97) of which 189 were 

female. 

NSD 

 With a large quantity of resting-state and task fMRI data available per individual, the 

NSD was included to examine potential task effects on estimating individual network 

parcellations and specialization. The NSD is composed of eight individuals (two males and six 

females; age range 19–32 years). All data were obtained with informed written consent 

according to the University of Minnesota institutional review board. As detailed in Allen et al. 

(2022), participants averaged two hours of resting state fMRI and 39.5 hours of task-based fMRI. 

For the resting-state runs, participants were instructed to stay awake and fixate on a white cross 

placed on a gray background but otherwise rest. During the task-based runs, participants were 

shown distinct natural scenes taken from the Microsoft Common Objects in Context database 

(Lin et al., 2014). Images were presented for 3 s with 1-s gaps in between images. Subjects 

fixated centrally and performed a long-term continuous recognition task on the images. 

Exclusion criteria for NSD included removing participants with less than 50% of volumes 

remaining after motion censoring, and participants with a mean framewise displacement greater 

than 0.2 mm and mean DVARS greater than 50. No subjects were excluded from the analysis; 

however, following motion correction, a minimum of 12 resting-state fMRI runs (approximately 

60 minutes) remained. In order to compare resting-state and task data on equal grounds, only the 

first 12 available resting-state runs and the first 12 available task fMRI runs from each 

participant were utilized. 
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Figure 1  

Participant Age, Data Quality, and Data Availability 

A

B

C
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Note. Panel A depicts participant age across each dataset following the implementation of 

exclusion criteria. HCP-Discovery participants included 276 individuals 22-36 years of age, 

HCP-Replication participants included 277 individuals 22-36 years of age, HCPD participants 

included 343 individuals 11-22 years of age, and NSD participants included eight individuals 19-

32 years of age. Panel B depicts the mean framewise displacement (FD) across each dataset 

following the implementation of exclusion criteria. HCP-Discovery mean FD was 0.08 mm (SD 

= 0.02 mm), range 0.04-0.14 mm; HCP-Replication mean FD was 0.07 mm (SD = 0.01 mm), 

range 0.04-0.12 mm; HCPD mean FD was 0.08 mm (SD = 0.02 mm), range 0.04-0.16 mm; 

NSD-Rest mean FD was 0.07 mm (SD = 0.03), range 0.04-0.11 mm; and NSD-Task mean FD 

was 0.07 mm (SD = 0.02 mm), range 0.04-0.1 mm. Panel C depicts the percentage of volumes 

remaining following motion-correction procedures for each dataset. HCP-Discovery mean 

percentage of volumes was 72.81% (SD = 12.12%), range 50.38-98.54%; HCP-Replication mean 

percentage of volumes was 72.09% (SD = 11.59%), range 50.04-97.62%; HCPD mean 

percentage of volumes was 73.6% (SD = 11.73%), range 50.05-99.63%; NSD-Rest mean 

percentage of volumes was 87.64% (SD = 10.51%), range 68.98-99.14%; and NSD-Task mean 

percentage of volumes was 94.27% (SD = 6.92), range 78.31-100%. Across each panel, a circle 

represents a single participant. 

 

MRI Acquisition Parameters 

HCP Discovery and Replication 

 The HCP dataset was acquired on a custom Siemens 3T Skyra with a 32-channel head 

coil. T1-weighted images were collected with a 3D MPRAGE sequence with isotropic 0.7 mm 

voxels (256 sagittal slices, repetition time [TR] = 2400 milliseconds, echo time [TE] = 2.14 

milliseconds) as detailed in Glasser et al. (2013). Resting-state functional images were collected 
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using 2 mm isotropic voxels (72 sagittal slices, TR = 720 milliseconds, TE = 33 milliseconds, 

multiband accelerated pulse sequence with multiband factor = 8) as detailed in Glasser et al. 

(2013, 2016). 

HCPD 

 The HCPD MRI data were acquired on Siemens 3T Prisma scanners with vendor 32-

channel headcoils at four sites: Harvard University, University of California-Los Angeles, 

University of Minnesota, and Washington University in St. Louis (Harms et al., 2018). Structural 

T1-weighted scans were acquired with a multi-echo MPRAGE sequence (van der Kouwe et al., 

2008) with 0.8 mm isotropic voxels (sagittal FOV = 256 × 240 × 166; matrix size = 320 × 300 × 

208 slices; slice oversampling = 7.7%; 2-fold in-plane acceleration (GRAPPA); pixel bandwidth 

= 744 Hz/Px; Tr/TI = 2500/1000, TE = 1.9/3.6/5.4/7.2 ms, flip angle = 8°; water excitation 

employed for fat suppression; up to 30 TRs allowed for motion-induced reacquisition). T2*-

weighted scans were used for rs-fMRI with 2D multiband gradient-recalled echo echo-planar 

imaging sequence (MB8, TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic voxels 

covering the whole brain (72 oblique-axial slices). Functional scans were acquired in pairs of 

two runs with opposite phase encoding polarity (anterior-to-posterior and posterior-to-anterior) 

so that fMRI data were not biased towards either phase encoding polarity. For all scans, 

Framewise Integrated Real-time MRI Monitoring (Dosenbach et al., 2017) was implemented to 

provide motion feedback to participants between fMRI runs. 

NSD 

 The NSD dataset was acquired at the Center for Magnetic Resonance Research at the 

University of Minnesota (Allen et al., 2022). Anatomical data (such as T1-weighted volumes) 

were collected using a 3T Siemens Prisma scanner with a standard Siemens 32-channel RF head 
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coil while functional data were collected using a 7T Siemens Magnetom passively shielded 

scanner and a single-channel-transmit, 32-channel-receive RF head coil. T1-weighted images 

were acquired with a MPRAGE sequence (0.8-mm bandwidth 220 Hz per pixel, no partial 

Fourier, in-plane acceleration factor (iPAT) 2, TA = 6.6 min per scan). Functional data were 

collected using gradient-echo EPI at 1.8-mm isotropic resolution with whole-brain coverage (84 

axial slices, slice thickness 1.8 mm, slice gap 0 mm, field-of-view 216 mm (FE) × 216 mm (PE), 

phase encode direction anterior-to-posterior, matrix size 120 × 120, TR = 1,600 milliseconds, 

TE = 22.0 milliseconds, flip angle 62°, echo spacing 0.66 milliseconds, bandwidth 1,736 Hz per 

pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration factor 3). Full protocol printouts 

for the NSD dataset are available online (https://cvnlab.slite.page/p/NKalgWd__F/Experiments).  

fMRI Preprocessing 

 Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI 

runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; (Kong et al., 

2019; Li et al., 2019); code is available online at 

https://github.com/ThomasYeoLab/CBIG/tree/c773720ad340dcb1d566b0b8de68b6acdf2ca505/s

table_projects/preprocessing/CBIG_fMRI_Preproc2016). This CBIG2016 preprocessing pipeline 

was selected to process the fMRI data in order to more closely follow the processing steps used 

to implement the multi-session hierarchical Bayesian modeling parcellation method (Kong et al., 

2019). As a prerequisite, this pipeline requires FreeSurfer recon-all output from the structural 

data (FreeSurfer 6.0.1; Dale et al., 1999). The fMRI data were then processed with the following 

steps: 1) removal of the first four frames and 2) motion correction using rigid body translation 

and rotation with the FSL package (Jenkinson et al., 2002; Smith et al., 2004). The structural and 

functional images are then aligned using boundary-based registration (Greve & Fischl, 2009) 
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using the FsFast software package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). FD and 

DVARS were computed using fsl_motion_outliers (Smith et al., 2004). Volumes with FD > 0.2 

mm or DVARS > 50 were tagged as outliers. Uncensored segments of data lasting fewer than 5 

contiguous volumes were also flagged as outliers (Gordon et al., 2016). BOLD runs with more 

than half of the volumes flagged as outliers were removed completely. Next, linear regression 

using multiple nuisance regressors was applied through a combination of CBIG in-house scripts 

and the FSL MCFLIRT tool (Jenkinson et al., 2002). Nuisance regressors consisted of global 

signal, six motion correction parameters, averaged ventricular signal, averaged white matter 

signal, and their temporal derivatives (totaling 18 regressors). The flagged outlier volumes were 

ignored during the regression procedure. Following the regression, a bandpass filter (0.009 Hz ≤ 

f ≤ 0.08 Hz) was applied using CBIG in-house scripts. At this point, the preprocessed fMRI data 

were projected onto the FreeSurfer fsaverage6 surface space (2 mm vertex spacing) with 

FreeSurfer’s mri_vol2surf function. The projected fMRI data were then smoothed using a 6 mm 

full-width half-maximum kernel through FreeSurfer’s mri_surf2surf function (Fischl et al., 

1999). Surface space was selected for the following analyses in order to best follow the 

individual parcellation pipeline outlined in Kong et al. (2019), and following evidence that 

landmark surface-based registration outperforms volume-based registration (Anticevic et al., 

2008; Argall et al., 2006; Desai et al., 2005; Van Essen, 2005). 

Individual Network Parcellation 

 Following preprocessing, network parcellations were computed using a multi-session 

hierarchical Bayesian modeling (MS-HBM) pipeline. The MS-HBM pipeline is designed to 

generate parcellations for individuals with multiple sessions of fMRI data (Kong et al., 2019; Li 

et al., 2019) and is implemented in MATLAB R2018b (MATLAB, 2018). This particular model 
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has been selected because it accounts for intra-individual variation, allowing the model to better 

generalize to new fMRI data from the same participant. As an overview, this model uses a 

variational Bayes expectation-maximization algorithm to learn group-level priors from a training 

dataset and then apply those to estimate individual-specific parcellations (see Figure 2). This 

model estimates the following parameters: group-level network connectivity profiles, inter-

subject functional connectivity variability, intra-subject functional connectivity variability, a 

spatial smoothness prior, and an inter-subject spatial variability prior. As recommended in the 

pipeline’s GitHub documentation, subjects with a single available run post-preprocessing had 

that single run split in two and a connectivity profile was generated for each split. A k of 17 was 

selected for all participants (Yeo et al., 2011). Additionally, it has previously been demonstrated 

that MS-HBM parameters estimated from one dataset can be effectively applied to another 

dataset with significant differences in acquisition and preprocessing (Kong et al., 2021). Thus, to 

generate our model, priors trained on 40 Brain Genomics Superstruct Project (GSP) subjects 

were utilized (Holmes et al., 2015; Kong et al., 2019). Following the generation of individual 

parcellations, a Hungarian matching algorithm was used to match the parcellation labels with the 

Yeo et al. (2011) 17-network group parcellation labels. 
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Figure 2 

Illustration of the Multi-Session Hierarchical Bayesian Modeling Individual Parcellation 

Pipeline 

Note. First, a connectivity profile is generated for each available fMRI run on an individual basis 

(illustrated here as a functional connectivity matrix). Next, group priors previously estimated 

(Kong et al., 2019) from 40 Brain Genomics Superstruct Project (GSP) subjects were used. 

Third, the connectivity profiles from each available run and the group priors (more specifically, 

the inter-subject functional connectivity variability, intra-subject functional connectivity 

variability, spatial smoothness, and inter-subject spatial variability) are used to generate network 

parcellations for each participant. Finally, the network surface area ratio (NSAR) is calculated 

using the formula shown, where LH SA is the left hemisphere surface area for a given network 

and RH SA is the right hemisphere surface area for a given network. A negative NSAR value 

indicates left hemisphere specialization for a given network while a positive value indicates right 

hemisphere specialization. 

 

Network Surface Area Ratio 

 Following the generation of individual network parcellations, specialization was 

estimated using a novel measure: the network surface area ratio (NSAR). This measure was 

MS-HBM Step 2.
Group priors were 
previously 
computed using 
40 GSP subjects.

MS-HBM Step 1.
A connectivity 
profile is 
generated for 
each run. 

MS-HBM Step 3.
Individual 
parcellations are 
generated.

NSAR = 
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calculated within each individual for each of 17 networks by first extracting each network label 

as a region of interest using the Connectome Workbench wb_command functions metric-label-

import and gifti-label-to-roi (Marcus et al., 2013). Next, the left and right hemisphere surface 

areas for a given network were calculated on an midthickness Conte69 surface in fsaverage6 

resolution (Glasser & Essen, 2011) using the wb_command function metric-stats. Finally, NSAR 

was calculated as the difference between normalized left and right hemisphere surface areas as 

indicated in Figure 2. A scaling factor was not included in the denominator since asymmetry 

indices including a scaling factor deliver essentially the same findings as those without (X.-Z. 

Kong et al., 2022). NSAR values range from -1.0 to +1.0, with negative values indicating left 

hemisphere specialization for a given network and positive values indicating right hemisphere 

specialization. NSAR values closer to zero indicate less specialization (hemispheric symmetry). 

Additionally, while this measure of specialization is similar to several asymmetry indices 

previously implemented (Binder et al., 1996; Braga et al., 2020; Mahowald & Fedorenko, 2016), 

its specific validity and reliability stand untested.   

Establishing the Validity of NSAR 

 Ecological validity for the parcellation method was first examined, since surface area 

estimates for NSAR rely exclusively upon the network parcellations. Since the language network 

has previously been established as a highly specialized network, the network parcellation for the 

language network was compared against a language task fMRI atlas (LanA atlas) derived from a 

large sample (N = 804; Lipkin et al., 2022). HCP participants with all four runs available were 

selected, and a group parcellation was generated by first computing the connectivity profiles 

from all four resting-state scans from each participant (N = 232; the first step of the MS-HBM 

pipeline), averaging those connectivity profiles, and then generating the group parcellation using 
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the Yeo et al. (2011) group parcellation algorithm. The network labels from this parcellation 

were then matched to the Yeo et al. (2011) 17-network group parcellation using a Hungarian 

matching algorithm. Following the matching, the parcellation was exported to the FreeSurfer 

annotation file format and then to the GIFTI file format, which is a file type compatible with 

Connectome Workbench. The LanA atlas is publicly available for download (see Lipkin et al., 

2022), and was resampled to fsaverage6 resolution before being converted to the GIFTI file 

format. Both the HCP group parcellation and the LanA atlas were overlaid on semi-inflated 

surfaces in the Connectome Workbench’s wb_view for visual comparison. 

 Convergent validity was also examined through a comparison of the NSAR against 

another measure of specialization: the autonomy index (Wang et al., 2014). The autonomy index 

approaches specialization from a functional connectivity perspective and is known to reliability 

estimate specialization across neurotypical and clinical samples (Mueller et al., 2015; Sun et al., 

2022; Wang et al., 2014). First, individual functional connectivity matrices were calculated for 

each resting-state run and then averaged across runs within an individual at the fsaverage6 

resolution in MATLAB R2018b (MATLAB, 2018). From here the autonomy index was 

computed. In summary, for each seed ROI obtained from a functional connectivity matrix, the 

degree of within-hemisphere connectivity and cross-hemisphere connectivity were computed by 

summing the number of vertices correlated to the seed in the ipsilateral hemisphere and in the 

contralateral hemisphere. This is then normalized by the total number of vertices in the 

corresponding hemisphere, thus the accounting for a potential brain size asymmetry between the 

two hemispheres. Finally, AI is calculated as the difference between normalized within- and 

cross-hemisphere connectivity as follows: 

AI = Ni/Hi – Nc/Hc 
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where Ni and Nc are the number of vertices correlated to the seed ROI (using a threshold of 

|0.25|) in the ipsilateral hemisphere and contralateral hemisphere, respectively. Hi and Hc are the 

total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute 

the specialization of each functional network, the AI was averaged within the boundary of each 

network on an individual basis. Subjects from the HCP dataset with all four runs available (N = 

232) were again selected for this analysis of validity and all four runs from each individual were 

used to compute the autonomy index. To facilitate direct comparison with NSAR values, the sign 

for autonomy index values was reversed. A Spearman’s rank correlation coefficient was then 

used to compare the autonomy index and NSAR on three right-specialized networks (Limbic-B, 

Visual-B, and Ventral Attention-A) and three left-specialized networks (Language, Dorsal 

Attention-A, and Control-B) determined a priori. In order to correct for multiple comparisons, a 

Bonferroni-corrected alpha level of 0.008 was used. This and all other statistical analyses took 

place in R 4.2.0 (R Core Team, 2022).  

Establishing the Reliability of NSAR 

  Reliability analyses sought to address three questions: 1) How much data is needed to 

obtain a stable estimate of NSAR, 2) What is the test-retest reliability of NSAR, and 3) Is there a 

task effect on NSAR estimation? 

Stable Estimate Analysis 

 Given that MRI scanning is costly, rendering it comparatively rare to have highly 

sampled individuals, it is important to understand how much data is needed to reliably estimate 

specialization. To address this concern, we utilized HCP participants with all four runs available 

(N = 232). Following preprocessing, the first and third scans from each participant were set aside 

to compose 30 minutes of independent data. Next, the second and fourth scans were each split 
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into three five-minute segments. Runs were split in MATLAB R2018b (MATLAB, 2018) using 

native MATLAB functions as well as the FreeSurfer functions MRIread and MRIwrite. The MS-

HBM pipeline was then used to generate individual parcellations from 5, 10, 15, 20, 25, and 30 

minutes of data from the segmented scans. The MS-HBM pipeline was also used to generate 

separate individual parcellations from 30 minutes of independent data. Of note, the reliability of 

the MS-HBM pipeline has been examined previously (see Kong et al. (2019) Figure 3B and 

Supplementary Figure S10C). The NSAR was then calculated for each iteration (5, 10, 15, etc. 

minutes) and the independent 30 minutes of data. An intraclass correlation between the NSAR 

from each iteration parcellation and the independent 30 minutes parcellation was assessed within 

each subject. Similarly, an intraclass correlation between the NSAR from each iteration 

parcellation and the independent 30 minutes parcellation was assessed for each network. For the 

NSAR and parcellation stable estimate analyses, the standard guidelines from Koo & Li (2016) 

regarding intraclass correlation values were implemented, with values less than 0.5 indicating 

poor reliability, values between 0.5 and 0.75 indicating moderate reliability, values between 0.75 

and 0.9 indicating good reliability, and values greater than 0.9 indicating excellent reliability 

(based on a 95% confidence interval). 

Test-Retest Reliability Analysis 

 The purpose of the test-retest reliability analysis is to measure the reliability of NSAR in 

a simpler fashion than the stable estimate analysis. For this analysis, the first two and second two 

runs from HCP participants with all four runs available were used to generate separate individual 

parcellations from which NSAR will be calculated. Outliers were fenced on a network basis to an 

upper limit of the third quartile plus 1.5 multiplied by the interquartile range, and a lower limit of 

the first quartile minus 1.5 multiplied by the interquartile range. An intraclass correlation 
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coefficient was calculated comparing the NSAR from the first half of the data with the NSAR 

from the second half for three right-specialized networks (Limbic-B, Visual-B, and 

Salience/Ventral Attention-A) and three left-specialized networks (Language, Dorsal Attention-

A, and Control-B) determined a priori. 

Task Effects Analysis 

 In the case that a large quantity of data is needed to derive a reliable estimate of 

specialization, one might consider including task data in addition to any resting-state data in 

order to increase the amount of available data per participant. However, in this situation it would 

be prudent to know if task data provides the same or similar estimates as those from resting-state 

data. To address this concern, the NSD dataset was selected since it has a large quantity of both 

resting-state and task-based fMRI data per participant. Following preprocessing, a minimum of 

12 resting-state runs were available for each participant, so the first 12 available resting-state 

runs and the first 12 available task runs were utilized (resting-state and task runs were of the 

same duration). Individual parcellations were then generated based on various combinations of 

runs within task type: even-numbered runs, odd-numbered runs, the first half of runs, the second 

half of runs, and two random selections of runs (without replacement). A dice coefficient was 

then computed to compare parcellation label overlap within task (e.g., between even and odd-

numbered resting-state runs) and between tasks (e.g., between odd-numbered runs from resting-

state and task runs). This comparison procedure was repeated for the NSAR intraclass correlation 

coefficient. Due to the non-normal nature of such a small dataset, comparisons between the task 

and rest parcellation dice coefficients and NSAR intraclass correlations were formally made 

using paired Wilcoxon Signed Rank tests (R Core Team, 2011; Wilcoxon, 1945). 

Identifying Specialized Networks 
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 After establishing validity and reliability, we addressed the first hypothesis of 

determining whether any of the 17 networks exhibited specialization, and of those, which were 

the most specialized. The following analyses were first implemented in the HCP-Discovery 

dataset and then replicated in the HCP-Replication and HCPD datasets using all data available 

from each participant. First, to determine whether any networks exhibited specialization, 

multiple regressions were implemented for each of the 17 networks. Models consisted of the a 

given network’s NSAR value and the covariates of mean-centered age, sex, mean-centered mean 

framewise displacement, and handedness (measured via the Edinburgh Handedness Inventory; 

Oldfield, 1971). A network was considered specialized if the model intercept was significant at 

the Bonferroni-corrected alpha level of 0.003. Next, to determine which networks were the most 

specialized, any networks exhibiting significant specialization in the previous tests with the same 

direction of specialization were compared against each other two at a time in multiple 

regressions with a binary variable for the two networks and the covariates of mean-centered age, 

sex, mean-centered mean framewise displacement, and handedness.  

Identifying Network Relationships  

To test the second hypothesis regarding how network specialization is potentially related 

between networks, correlation matrices and then separate exploratory factor analyses (EFAs) in 

the HCP-Discovery, HCP-Replication, and HCPD datasets were performed on the model-

adjusted specialization values from any reliably specialized networks. For a network to be 

considered reliably specialized, it was significantly specialized across the HCP-Discovery, HCP-

Replication, and HCPD datasets. The exploratory factor analysis was chosen for its ability to 

identify shared relationships between the items in a data-driven manner. The fa function from the 

psych package (Revelle, 2023) was used to conduct an iterated principal factors analysis and 
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subsequent parallel analysis. Criteria for the extraction of factors were: a minimum eigenvalue of 

one, visual inspection of a scree plot, and a parallel analysis. A four-factor model was 

hypothesized, similar to Liu et al. (2009), with each factor encompassing vision, internal thought, 

attention, and language.  

Results 

NSAR as a Valid Measure of Specialization 

 The ecological validity of NSAR was examined through the proxy of the network 

parcellation validity, by comparing an HCP group parcellation (see Figure 3 Panel A) with a 

task-based language atlas from a large population (see Figure 3 Panel B). Upon visual inspection 

of Figure 3 Panel B, the language network parcellations appears to be consistent with task-based 

language data. 
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Figure 3  

The LanA Atlas and the HCP Group Parcellation Overlap  

 

Note. Panel A depicts the group parcellation for a subset of the HCP dataset using participants 

with all four resting-state runs (N = 232). Panel B depicts that HCP group parcellation overlaid 

on the LanA atlas (N = 804).  

A HCP group parcellation

Visual A
Visual B
Somatomotor A
Somatomotor B
Language
Dorsal Attention A 
Dorsal Attention B
Salience/VentAttn A
Salience/VenAttn B

Control A
Control B
Control C
Default A
Default B
Default C
Limbic A
Limbic B

B HCP group parcellation 
overlaid on LanA atlas

p = .2 p = .8
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 The convergent validity of NSAR was assessed through comparison with an additional 

functional measure of specialization (the autonomy index) using the Spearman rank correlation. 

To facilitate direct comparison with NSAR values, the sign for autonomy index values was 

reversed. With the selected left-lateralized networks, significant relationships were found 

between the autonomy index and NSAR for the Language (Spearman rank correlation r = 0.62, p 

< .001), Dorsal Attention-A (Spearman rank correlation r = 0.62, p < .001), and the Control-B 

(Spearman rank correlation r = 0.57, p < .001) networks (see the top row of Figure 4). 

Significant relationships were also found between the autonomy index and NSAR for the 

selected right-lateralized networks including the Visual-B (Spearman rank correlation r = -0.71, 

p < .001), Salience/Ventral Attention-A (Spearman rank correlation r = -0.61, p < .001), and 

Limbic-B (Spearman rank correlation r = -0.69, p < .001) networks (see the second row of 

Figure 4). These findings indicate that NSAR and the autonomy index are measuring similar 

facets of specialization. 
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Figure 4  

Evidence for Convergent Validity Between the Autonomy Index and NSAR in a Subset of the 

HCP Dataset 

 Note. The top row depicts the relationships between the autonomy index and NSAR for three 

left-lateralized networks (Language, Dorsal Attention-A, and Control-B; Spearman rank 

correlation r = 0.57-0.62). The bottom row depicts the relationships between the autonomy index 

and NSAR for three right-lateralized networks (Visual-B, Ventral Attention-A, and Limbic-B; 

Spearman rank correlation r = -0.61 - -0.71). For each scatterplot, the line of best fit was 

generated using the lm function (no covariates) and each circle represents an individual.  

 

NSAR as a Reliable Measure of Specialization 

Stable Estimate Analysis 

p      y 
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 To address the question of how much data is needed in order to obtain a stable estimate 

of NSAR values, combinations of five-minute increments (5, 10, 15…30 minutes) were 

compared against 30 independent minutes of data in a subset of HCP subjects. The intraclass 

correlations indicate that only five minutes of data are needed to obtain moderate to good 

intraclass correlations for the majority of subjects (see Figure 5 Panel A). Of note, poor and 

excellent interclass correlations were observed for some subjects. The stable estimate analysis 

was also approached from a network basis (as opposed to the subject basis presented in Figure 5 

Panel A). Networks with the lowest intraclass correlations included the Limbic-A and Control-A 

networks, while networks with the greatest intraclass correlations included Visual-A, Limbic-B, 

and Default-A (for overall distributions, see Figure 5 Panel B; for specific network intraclass 

correlation coefficients, see Supplementary Figure S2). Interestingly, not all networks improved 

in reliability with additional data, including the Limbic-A and Control-A networks. This is likely 

a reflection of a poor signal-to-noise ratio. For parcellation label overlap estimates, see 

Supplementary Figure S3. 
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Figure 5  

Evidence for Reliable Estimates of NSAR in the HCP Dataset  

Note. Panel A depicts the intraclass correlation coefficient calculated for each subject’s 17 

NSAR values for each time increment (5, 10, 15 … 30 minutes) and the subject’s 17 NSAR 

values from 30 independent minutes of data. Panel B depicts the intraclass correlation coefficient 

calculated for each network’s mean NSAR value between the 30 independent minutes of data 

A

B
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and each increment of data. Specific network intraclass correlation coefficients are displayed in 

Supplementary Figure S2. 

 

Test-Retest Reliability Analysis 

Using HCP subjects with all four resting-state runs available post-preprocessing (N = 

232), test-retest reliability was assessed for three left-specialized networks (Language, Dorsal 

Attention-A, and Control-B) and three right-specialized networks (Limbic-B, Visual-B, and 

Salience/Ventral Attention-A) determined a priori. For the left-lateralized networks, intraclass 

correlations were within the moderate range, from 0.56 to 0.63, with the lowest being the Dorsal 

Attention-A network (ICC = 0.56, F(231, 231) = 3.6, p < .001, 95% CI [0.47, 0.64]; see Figure 

6). For the right-lateralized networks, intraclass correlations remained in the moderate range, 

between 0.58 to 0.71, with the Visual-B network exhibiting the lowest reliability (ICC = 0.58, 

F(231, 231) = 3.7, p < .001, 95% CI [0.48, 0.66]).  
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Figure 6  

Test-Retest Reliability of NSAR Values for Left- and Right-Specialized Networks in 232 HCP 

Subjects 

Note. Left-specialized networks (left column) included Language, Dorsal Attention-A, and 

Control-B. Right-specialized networks (right column) included Visual-B, Salience/Ventral 

Attention-A, and Limbic-B. In each plot, a circle represents a subject. 

 

Task Effects on Individual Parcellations and NSAR 

 Using the NSD dataset (N = 8) to compare potential differences between resting-state and 

task fMRI on individual parcellations and NSAR estimates, we found differences between the 
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within-task comparisons and between task comparisons for both the parcellation dice coefficients 

and NSAR intraclass correlations (see Figure 7). Wilcoxon signed rank comparisons revealed a 

difference in within-task (Task-Task and Rest-Rest) dice coefficients for even versus odd 

numbered runs (V = 36, p = .008), but no difference for the first half versus the second half of 

runs (V = 29, p = .15) or the random selection of runs (V = 31, p = .08). Regardless of how the 

data were split, a task effect in dice coefficient was found between within-task (Task-Task) and 

between-task (Task-Rest) dice coefficients for even versus odd numbered runs (V = 36, p = 

.008), the first half versus the second half of runs (V = 36, p = .008), and the random selection of 

runs (V = 36, p = .008).  

Similarly, with the NSAR intraclass coefficients, no significant difference was found for 

within-task (Task-Task and Rest-Rest) reliability across the even versus odd numbered runs (V = 

31, p = .08) and the first half versus the second half of runs (V = 19, p = .95), but not for the 

random selection of runs (V = 35, p = .02). However, a significant difference was not found 

between within-task (Task-Task) and between-task (Task-Rest) intraclass correlation coefficients 

across the even versus odd numbered runs (V = 31, p = .08), the first half versus the second half 

of runs (V = 31, p = .08), but for the random selection of runs (V = 34, p = .02).  
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Figure 7  

Task Dependency of Individual Parcellations and NSAR in the NSD Dataset  

Note. Depicted in the top row are the dice coefficients for the individual parcellations between 

30-minute increments of resting-state or task fMRI data. Regardless of how the data were split 

(even- versus odd-numbered runs, the first half versus the second half, or a random selection 

without replacement), a task effect was found. Depicted in the second row are the NSAR 

intraclass correlation coefficients computed in individuals across networks. In each plot, circles 

connected by a line represent an individual.  

 

Networks with the Greatest Specialization 

 A series of multiple regressions were used to identify if any of the 17 networks were 

specialized, first in the HCP-Discovery dataset and then in the HCP-Replication and HCPD 

datasets. Networks with significant specialization (p < .003) in the same direction (e.g., right or 

     

Pa
rc

el
la

tio
n 

D
ic

e 
C

oe
ffi

ci
en

t
N

SA
R

 IC
C



34 

left lateralization) across all three datasets included the following eight networks: Visual-B, 

Language, Dorsal Attention-A, Salience/Ventral Attention-A, Control-A, Control-B, Control-C, 

Default-C, and Limbic-B (see Supplementary Table 1). However, given the very low reliability 

of the Control-A network (mean ICC = 0.12; see Supplementary Figure S2), this network was 

not considered further. None of the covariates were reliably significant for a given network 

across all three datasets. See Figure 8 for model-adjusted NSAR values for each of the 17 

networks and see Figure 9 for the percentage of surface area occupied by the eight most 

specialized networks.   

 Following the identification of eight specialized networks, a series of multiple regressions 

were used to compare networks with the same direction of specialization two at a time in order to 

identify the networks with the greatest specialization. Models included a binary network variable 

and the covariates of mean-centered age, sex, handedness, and mean-centered mean framewise 

displacement. Of the left-lateralized networks, the Dorsal Attention-A network was the most 

lateralized compared with the Language and Default-C networks, and this pattern was replicated 

across the HCP-Discovery, HCP-Replication, and HCPD datasets (see Supplementary Table 2). 

Of the right-lateralized networks, the Limbic-B network was the most specialized, followed by 

the Control-B network, Visual-B and Control-C networks (not significantly different), and the 

Salience/Ventral Attention-A network. This pattern was replicated across the three datasets as 

well (see Supplementary Table 3). 
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Figure 8 

Specialization for 17 Networks across the HCP-Discovery, HCP-Replication, and HCPD 

Datasets 

Note. On the y-axis are the 17 networks and on the x-axis are the adjusted NSAR values, with 

negative values representing left hemisphere lateralization and positive values representing right 

hemisphere lateralization. Bars represent the 2.5 and 97.5 percentiles. NSAR values were 

adjusted by regressing out the effects of mean-centered age, mean-centered mean framewise 

displacement, and sex using the following formula: NSARadjusted = NSARraw — [β1(mean-

HCP-DISC
HCP-REP
HCPD

Left-lateralized Right-lateralized
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centered ageraw - mean of mean-centered ageraw) + β2(mean-centered FDraw - mean of mean-

centered FDraw) + β3(sexraw – mean sexraw) + β4(handednessraw – mean handednessraw)]. NSAR 

adjustment occurred separately for each network within each dataset.  

 Lines represent the standard error. Across the three datasets, eight networks were reliably and 

significantly specialized (Visual-B, Language, Dorsal Attention-A, Salience/Ventral Attention-

A, Control-B, Control-C, Default-C, and Limbic-B). 
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Figure 9  

Percent Surface Area for 17 Networks Across the HCP-Discovery, HCP-Replication, and HCPD 

Datasets 
HCP-DISC
HCP-REP
HCPD

A

B

C
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Note. Depicted in the top of Panel A is the percentage of the left hemisphere surface area 

occupied by a given specialized network. Depicted in the bottom portion of Panel A is the 

percentage of the right hemisphere surface area occupied by a given network. Points represent 

individual outliers. Depicted in Panel B is the mean percentage of surface area occupied by a 

specialized network, with standard error bars. The left and right hemisphere estimates are 

displayed side-by-side for each dataset. In Panel C, the adjusted NSAR values for each network 

are shown, with points representing individual outliers. 

 

Relationships between Networks’ Specialization 

 Our hypothesis regarding network relationships was assessed through both correlation 

matrices and exploratory factor analyses conducted in triplicate across the HCP-Discovery, HCP-

Replication, and HCPD datasets. Correlation matrices of the model-adjusted NSAR values from 

the eight specialized networks evidenced moderate negative relationships between the left- and 

right-specialized networks (see Figure 10). In the HCP-Discovery dataset, negative relationships 

were found between the Limbic-B and Dorsal Attention-A networks (r = -0.45; see Figure 11 

Panel A), the Limbic-B and Default-C networks (r = -0.42; see Figure 11 Panel B), the Default-C 

and Visual-B networks (r = -0.16), the Default-C and Control-B networks (r = -0.27), the 

Default-C and Control-C networks (r = -0.17), the Control-B and Language networks (r = -0.31), 

and the Control-B and Salience/Ventral Attention-A networks (r = -0.3). Interestingly, a negative 

relationship was also found between two left-lateralized networks: Dorsal Attention-A and 

Language (r = -0.23; see Figure 11 Panel C). Each negative relationship was replicated across 

the HCP-Replication and HCPD datasets (see Figure 10).   
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Figure 10 

Relationships Between Specialized Networks Across the HCP-Discovery, HCP-Replication, and 

HCPD Datasets 
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Note. Correlation matrices were created from the model-adjusted NSAR values from the eight 

specialized networks (Visual-B, Language, Dorsal Attention-A, Salience/Ventral Attention-A, 

Control-B, Control-C, Default-C, and Limbic-B), controlling for sex, mean-centered age, mean-

centered framewise displacement, and handedness. Correlation values thresholded at p = .05 are 

displayed in the upper triangles, and consistent relationships have been highlighted with black 

boxes. 
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Figure 11 

Negative Correlations Between Highly Left- and Right-Specialized Networks Across the HCP-

Discovery, HCP-Replication, and HCPD Datasets 

HCP-DISC
HCP-REP
HCPD

A

B

C
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Note. Panel A depicts the negative relationship between the Limbic-B and Dorsal Attention-A 

networks. Panel B depicts the negative relationship between the right-lateralized Limbic-B and 

left-lateralized Default-C networks. Panel C depicts the negative relationship between the left-

lateralized Dorsal Attention-A and left-lateralized Language networks. In each panel, a circle 

represents a single participant’s model-adjusted NSAR value, which was adjusted for mean-

centered age, sex, handedness, and mean-centered mean framewise displacement.  

 

EFA in the HCP-Discovery Dataset 

 In preparation for the EFA in the HCP-Discovery dataset (N = 276; no missing data), 

linearity and heteroskedasticity of adjusted NSAR values from the eight specialized networks 

were evaluated in pairwise plots, which were followed by the Doornik-Hansen multivariate test 

for normality (DH.test function from the mvnTest package; DH = 202.89, p = 0; Doornik & 

Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for multicollinearity, and 

no items had Variance Inflation Factor values greater than 1.65 (vif function from the psych 

package; Revelle, 2023). Additional assumptions testing included Bartlett’s test of sphericity and 

the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy. For the test of sphericity, we 

rejected the null hypothesis that there is no correlation among the items (χ2(28) = 293.43, p < 

.001). Additionally, the KMO test was .46, revealing that the extracted factors will account for an 

unacceptable amount of common variance.  

 To examine network relationships, a principal factors analysis in the HCP-Discovery 

dataset was performed. Using the correlation matrix from eight specialized networks, two factors 

were extracted. This first factor had an eigenvalue of 1.38 (explaining 57% of the variance; see 

Table 1 for factor loadings) and the second factor had an eigenvalue of 1.02 (explaining 43% of 
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the variance). Of note, the left-lateralized networks load negatively onto the first extracted factor 

while right-lateralized networks load positively, suggesting that this factor encompasses right-

hemisphere lateralization, with the opposite in the second extracted factor.  

 

Table 1  

Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal 

Factors in the HCP-Discovery Dataset (N = 276) 

Network Factor 1 Loadings Factor 2 Loadings 
Visual-B 0.29  

Language -0.38 -0.75 

Dorsal Attention-A -0.37 0.48 

Salience/VenAttn-A 0.28 0.26 

Control-B 0.22 0.23 

Control-C 0.28  

Default-C -0.51  

Limbic-B 0.73 -0.32 

Eigenvalues 1.38 1.02 

Proportion of variance 
explained 

0.57 0.43 

Note: Factor loadings over .40 appear in bold. 

 

EFA in the HCP-Replication Dataset 

 In preparation for the EFA in the HCP-Replication dataset (N = 277; no missing data), 

linearity and heteroskedasticity of adjusted NSAR values were evaluated in pairwise plots, which 

were followed by the Doornik-Hansen multivariate test for normality (DH = 215.73, p = 0; 

Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for 
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multicollinearity, and no items had Variance Inflation Factor values greater than 1.53 Additional 

assumptions testing included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) 

Measure of Sampling Adequacy. For the test of sphericity, we rejected the null hypothesis that 

there is no correlation among the items (χ2(28) = 325.12, p < .001). Additionally, the KMO test 

was .4, revealing that the extracted factors will account for an unacceptable amount of common 

variance.  

 To examine network relationships and potentially replicate the HCP EFA, a principal 

factors analysis in the HCP-Replication dataset was performed. Using the correlation matrix 

from eight specialized networks, a single factor was extracted. This factor had an eigenvalue of 

1.06 (explaining 13% of variance; see Table 2 for factor loadings). Interestingly, this factor 

analysis does appear to support the EFA in the HCP-Discovery dataset, with a negative loading 

from the left-lateralized Dorsal Attention-A and Default-C networks and a positive loading from 

the Limbic-B network. 

 

Table 2  

Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal 

Factors in the HCP-Replication Dataset (N = 277) 

Network Factor 1 Loadings 

Visual-B 0.29 

Language  

Dorsal Attention-A -0.46 

Salience/VenAttn-A 0.15 

Control-B 0.27 

Control-C 0.18 
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Default-C -0.54 

Limbic-B 0.58 

Eigenvalues 1.06 

Proportion of variance explained 0.13 

Note: Factor loadings over .40 appear in bold. 

 

EFA in the HCPD Dataset 

 In preparation for the EFA in the HCPD dataset (N = 343; no missing data), linearity and 

heteroskedasticity of adjusted NSAR values were evaluated in pairwise plots, which were 

followed by the Doornik-Hansen multivariate test for normality (DH = 67.12, p < .001; Doornik 

& Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for multicollinearity, 

and no items had Variance Inflation Factor values greater than 1.64. Additional assumptions 

testing included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) Measure of 

Sampling Adequacy. For the test of sphericity, we rejected the null hypothesis that there is no 

correlation among the items (χ2(28) = 323.75, p < .001). Additionally, the KMO test was .39, 

revealing that the extracted factors will account for an unacceptable amount of common 

variance.  

 To examine network relationships, a principal factors analysis in the HCPD dataset was 

performed. Using the correlation matrix from eight specialized networks, one factor was 

extracted. This factor had an eigenvalue of 1.17 (explaining 15% of the variance; see Table 3 for 

factor loadings). Once more, right-lateralized networks (such as Limbic-B) loaded positively 

onto this single factor while left-lateralized networks (including Dorsal Attention-A and Default-

C) loaded negatively. 
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Table 3  

Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal 

Factors in the HCPD Dataset (N = 343) 

Network Factor 1 Loadings 

Visual-B 0.28 

Language  

Dorsal Attention-A -0.64 

Salience/VenAttn-A  

Control-B 0.29 

Control-C 0.24 

Default-C -0.43 

Limbic-B 0.61 

Eigenvalues 1.17 

Proportion of variance explained 0.15 

Note: Factor loadings over .40 appear in bold. 

 

Discussion 

 As a key to understanding brain organization and development (Toga & Thompson, 

2003), individual differences (Perez et al., 2023), human-defining cognitive processes 

(Hartwigsen et al., 2021), and neurodevelopmental conditions (Eyler et al., 2012; X.-Z. Kong et 

al., 2022), hemispheric specialization is a crucial area of investigation. Previously, functional 

specialization has been assessed through a variety of approaches dependent on intrinsic 

connectivity primarily at the group level. However, recent evidence suggests that group-based 

approaches can obfuscate the idiosyncratic anatomy of individuals and blur potentially 

meaningful and clinically useful variability (Lynch et al., 2020; Salvo et al., 2021). For example, 
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the language network has high spatial variability across individuals (Braga et al., 2020; 

Fedorenko, Duncan, et al., 2012), holding ramifications for the accurate assessment of 

specialization for this and other variable networks. In light of these findings, we implemented a 

measure of specialization based upon high-resolution individual network parcellations (NSAR). 

Using NSAR, we identified eight networks that were reliably specialized across three 

independent datasets. Furthermore, we examined potential relationships between networks’ 

NSAR values and found evidence for a covariation hypothesis of specialization. 

Evidence for the Validity and Reliability of NSAR 

 In this study, we examined functional specialization using a novel surface area-based 

index. This measure was developed methodologically through the examination of ecological and 

convergent validity, as well as a stable estimate analysis, test-retest reliability, and potential task 

effects. Notably, group parcellation boundaries appear to align moderately well with those from 

a language task atlas, indicating that the parcellations are likely biologically relevant (in addition 

to being behaviorally relevant; Kong et al., 2019). Furthermore, estimates from this surface area 

approach to specialization appear to converge with a different functional connectivity-based 

method. This result supports the idea that NSAR is approaching specialization in a way that is 

valid while being distinct from the autonomy index. However, unlike the autonomy index, the 

formula for NSAR does not normalize for brain size or deal in the minutiae of individual 

connections, rendering NSAR clearly interpretable and accessible to lay audiences.  

 Reliability analyses indicated that NSAR is stable within individuals, even after just five 

minutes of resting-state fMRI data. Interestingly, networks with the greatest reliabilities included 

the visual and somatomotor networks. This is in keeping with Kong et al. (2019), who found that 

sensorimotor networks exhibited lower inter-subject functional connectivity variability than 
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association networks. Since NSAR is indirectly based on an individual’s functional connectivity 

profiles, this result is unexpected.  

 In addition to the quantity of data available per participant, we also examined the effect 

of data type (task versus rest) on NSAR estimates within individuals. While within-task type 

reliability was high, we found that there was indeed a task effect such that resting-state fMRI and 

task fMRI did not yield identical parcellations and NSAR estimates within individuals. This 

finding supports the hypothesis that resting-state fMRI can be thought of as another arbitrary task 

state (Buckner et al., 2013). Yet, the “task” of resting-state fMRI results in greater variability in 

functional connectivity compared with that resulting from task fMRI, perhaps resulting from 

mind wandering (Elton & Gao, 2015). And when predicting individual traits, task-based models 

outperform rest-based models, with this difference likely reflecting the “unconstrained nature” of 

the resting state (Greene et al., 2018). Since NSAR estimates are derived from individual 

parcellations which are in turn generated from individual functional connectivity profiles, it 

stands to reason that connectivity differences resulting from task type could trickle down to 

differences in NSAR estimates. 

The Identification of Eight Reliably Specialized Networks 

 Following the methodological development of NSAR, we reliably identified eight 

specialized networks across three datasets: Visual-B, Language, Dorsal Attention-A, 

Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B. While a ninth 

specialized network was reliably identified (Control-A), this network was discarded from further 

analysis due to very poor reliability. Previously, several of these networks have been established 

as lateralized, particularly those associated with language and visuospatial attention processing.  

The Dorsal Attention-A Network Exhibited the Greatest Left-Lateralization 
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 Previously, left-lateralized networks have included the language, frontoparietal control, 

and default networks. More specifically, evidence for the lateralization of the language network 

has been derived from a variety of methods including the Wada test (Desmond et al., 1995; 

Wada & Rasmussen, 1960), lesion cases (Broca, 1861; Wernicke, 1995), task fMRI (Elin et al., 

2022; Fedorenko, Duncan, et al., 2012; Fedorenko et al., 2010, 2011; Fedorenko, McDermott, et 

al., 2012; Lipkin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Scott et al., 

2017; Wilson et al., 2017), and resting-state fMRI (Braga et al., 2020; Labache et al., 2020; Zhu 

et al., 2014), among others. Using NSAR, we also identified the language network as being 

strongly left-lateralized. However, unlike a prior comparative study (Braga et al., 2020), which 

examined lateralization in the language, salience, default, and frontoparietal networks, we failed 

to find that the language network was the most left-lateralized network. Instead, we identified the 

Dorsal Attention-A network as being the most left-lateralized. Unlike the ventral attention 

network, the dorsal attention network has been previously identified as a bilateral network (Fox 

et al., 2006; for review see Mengotti et al., 2020). This was the case for the Dorsal Attention-B 

network, which was not a significantly specialized network across the three datasets. However, 

there is evidence for a left-lateralized dorsal attention network across both left- and right-handed 

individuals, stemming from a within-individual network variants approach (see Figure 7 Panel C 

of Perez et al., 2023). Additionally, it could be that a finer-grained parcellation deconstructs the 

dorsal attention network into one bilateral and one specialized network, similar to previous 

within-individual work on the default network (Braga & Buckner, 2017; DiNicola et al., 2020).  

Replication of Right-Lateralized Attention, Control, and Limbic Networks  

 This is not the first study to identify the ventral attention, control, and limbic networks as 

being specialized. Abundant evidence exists for the right-lateralization of visuospatial/ventral 
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attention, stemming from task fMRI (Beume et al., 2015; Cai et al., 2013; Jansen et al., 2004; 

Shulman et al., 2010; Siman-Tov et al., 2007; Umarova et al., 2010; J. Wang et al., 2016; Zago et 

al., 2016, 2017), resting-state fMRI (Braga et al., 2020; Wang et al., 2014), hemispatial neglect 

cases (Corbetta & Shulman, 2011), and others (for review, see Mengotti et al., 2020). 

Interestingly, we identified the Salience/Ventral Attention-A but not the Salience/Ventral 

Attention-B network as being right-lateralized. Once more, this may be due to the network 

resolution selected (k = 17), which may have split the canonical ventral attention network into a 

bilateral and right-lateralized networks.  

 While this study successfully replicated right-lateralized control networks (Control-B and 

Control-C), a left-lateralized control network was not identified. Previously, Wang et al. (2014) 

found evidence for a dually specialized frontoparietal control network using the autonomy index. 

It was suggested that this control network acted as a coupler between the two hemispheres to 

increase efficiency while simultaneously supporting within-hemisphere processes. This was also 

evidenced by Spreng et al. (2013), which found that the frontoparietal control network exhibits 

distinct connectivity patterns with the default and attention networks in response to varying task 

requirements. Similarly, using a seed-based analysis, Braga et al. (2020) confirmed the presence 

of both left-lateralized and right-lateralized frontoparietal control networks. Collectively, these 

results point to control networks differentially executing cognitive processes within the left and 

right hemispheres. 

 Finally, the most right-lateralized network identified using NSAR was the Limbic-B 

network, a network that occupies cortical real estate associated with emotion (Olson et al., 2007; 

Pehrs et al., 2017; Sonkusare et al., 2020). Historically, emotion has been identified as being 

specialized, perhaps beginning with lesion cases (Gainotti, 2019; Hughlings-Jackson, 1878; 
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Luys, 1879). Later work suggested that specific aspects of emotion were specialized, including 

the right-lateralization of emotion recognition, the right-lateralization of emotional control and 

expression, the right-lateralization of negative emotions, and the left-lateralization of positive 

emotions (Silberman & Weingartner, 1986). Contemporarily, it has been suggested that a 

hemispheric functional-equivalence hypothesis would better explain emotion neuroimaging 

results, such that emotion results from networks that are interrelated and may have different 

patterns of lateralization (for review, see Palomero-Gallagher & Amunts, 2022). This perspective 

emphasizes the intricate and interconnected nature of emotion-related neural processes, 

particularly those patterns of lateralization that emerge from inter-network relationships. 

Interestingly, the Limbic-B network appears to be at the center of our main results regarding 

specialization relationships between networks. 

Support for the Covariation Hypothesis of Network Specialization 

 Beyond identifying networks with the greatest specialization, we sought to understand 

how network specialization was related between networks. We proposed three hypotheses: 

covariation, compensation, and independence. Using correlation matrices, we found support for 

the covariation hypothesis in networks specialized to contralateral hemispheres. The covariation 

hypothesis posits that having a highly specialized network corresponds with increased 

specialization in other networks within an individual. For example, a negative relationship was 

found between the right-lateralized Limbic-B network and the left-lateralized Dorsal Attention-A 

network, and between the Limbic-B network and the left-lateralized Default-C network across 

each of three datasets. These negative relationships suggest that as the Limbic-B network 

increases in specialization, the Dorsal Attention-A and Default-C networks also increase in 

specialization, covarying. Additionally, evidence for the compensation hypothesis was found 
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between networks specialized to the same hemisphere, such as between the left-lateralized 

Language and Dorsal Attention-A networks. This finding is expected given that NSAR is derived 

from surface area, which is zero-sum, so networks specialized to the same hemisphere may be in 

competition with one another for cortical real estate. 

 Additional support for the covariation hypothesis was found with the EFA structures 

across the three datasets. While we did not replicate the four-factor model from Liu et al. (2009), 

we did extract a single factor for both the HCP-Replication and HCPD datasets, and two factors 

for the HCP-Discovery dataset. Across these factor analyses, significant positive and negative 

loadings were found within each factor structure, suggesting that left- and right-lateralized 

networks work within a system level higher than the network. 

Limitations and Future Directions 

 One limitation to this work is that while functional connectivity may be constrained in 

part by anatomical connectivity, it is not necessarily dictated by anatomical connectivity. Several 

pieces of evidence point to this conclusion: functional connectivity is modulated by task (Shirer 

et al., 2012), recent experience (Lewis et al., 2009), caffeine (Laumann et al., 2015), and 

sleepiness (Tagliazucchi & Laufs, 2014); and is dynamic within a person over time (Hutchison et 

al., 2013). Furthermore, underlying brain geometry models of spontaneous neural activity appear 

to be more accurate and parsimonious than those derived from anatomical connectivity (Pang et 

al., 2023). Hence, NSAR as a connectivity and surface area-based measure is more reflective of 

functional rather than anatomical specialization. 

 In this study, individual parcellations were generated using the Kong et al. (2019) MS-

HBM algorithm. However, improved versions of this algorithm have since been published (Kong 

et al., 2021; Yan et al., 2023), which account for parcel distributions, spatial contiguity, local 
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gradients, and homotopy (or the lack thereof in Schaefer parcels). Thus, future investigations 

using NSAR might consider implementing an updated individual parcellation algorithm. 

Moreover, it would be valuable for future studies to explore specialization in developmental and 

clinical populations to address questions regarding the developmental timeline of network 

specialization and the potential disruptions in network specialization observed in specific 

neurodevelopmental conditions. 

Conclusions 

 The present study investigated hemispheric specialization in the human brain, focusing 

on 17 functional networks. This was accomplished by implementing a surface area-based metric 

of specialization, for which validity and reliability were examined. Following methodological 

development, we addressed two main questions: (1) which networks exhibit the greatest 

hemispheric specialization, and (2) how does specialization in one network relate to the 

specialization of other networks? We found that the Language, Dorsal Attention-A, and Default-

C networks were significantly left-lateralized while the Visual-B, Salience/Ventral Attention-A, 

Control-B, Control-C, and Limbic-B networks were significantly right-lateralized. Additionally, 

using EFA to understand how network specialization is related between networks, we found 

general support for a relationship between left- and right-lateralized networks. This suggests that 

network specialization follows a covariation paradigm. Further work is needed to understand 

how these findings may differ in developmental and clinical populations. 
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Study 1 Supplementary Materials 

Figure S1  

Data Quality for the NSD Dataset 
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Note. Panel A depicts the mean framewise displacement across both resting-state and task fMRI 

data (12 runs each). Panel B depicts the total number of volumes post-motion correction 

available per participant for both resting-state and task fMRI data. Panel C depicts the total 

number of volumes available post-motion correction per participant by the mean framewise 

displacement. In each panel, a colored circle connected by a line to another colored circle 

represents the same individual. 
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Figure S2  

NSAR Network Reliability 

Note. Depicted is the intraclass correlation coefficient calculated for each network’s mean NSAR 

value between the 30 independent minutes of data and each increment of data. 
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Figure S3  

Parcellation Overlap Estimates in a Subset of Participants From the HCP Dataset (N = 232) 
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Note. Panel A depicts the subject dice coefficients calculated for the individual parcellations 

between each increment of data (5, 10, 15, … 30 minutes) and 30 independent minutes of data. 

Dice coefficient calculations are detailed in the Supplementary Methods. Comparable subject-

level network assignment overlap analyses were conducted in the Midnight Scan Club dataset 

(see (Gordon et al., 2017) Figure 2 Panel B), finding that dice coefficients began at ~0.4 - 0.6 

and plateaued at ~0.6 - 0.8. Panel B depicts the subject dice coefficients calculated for the 

individual parcellations between each increment of data (5, 10, 15, … 30 minutes) and 30 

independent minutes of data averaged within each network. Comparable test-retest findings for 

parcellation overlap were described in Kong et al. (2019) Figures S10 Panel C and S11 Panel C, 

for which the somatomotor and visual networks exhibited the greatest intra-subject 

reproducibility. 

 

Supplementary Table 1  

Identifying Specialized Networks Using Multiple Regressions in the HCP-Discovery (N = 276), 

HCP-Replication (N = 277), and HCPD (N = 343) Datasets 

Network Intercept Dataset β SE t p 
Visual-A      
 HCP-DISC 0.02 0.01 3.63 < .001 
 HCP-REP 0.01 0.01 2.79 .006 
 HCPD 0.01 0.00 1.54 .13 
Visual-B      
 HCP-DISC 0.07 0.02 3.95 < .001 
 HCP-REP 0.11 0.02 6.26 < .001 
 HCPD 0.11 0.01 8.18 < .001 
Somatomotor-A      
 HCP-DISC 0.02 0.01 2.92 .004 
 HCP-REP 0.01 0.01 1.41 .16 
 HCPD 0.01 0.01 1.22 .22 
Somatomotor-B      
 HCP-DISC -0.03 0.01 -3.35 < .001 
 HCP-REP -0.03 0.01 -2.85 .005 
 HCPD -0.01 0.01 -3.42 < .001 
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Language      
 HCP-DISC -0.15 0.03 -4.71 < .001 
 HCP-REP -0.12 0.03 -4.13 < .001 
 HCPD -0.19 0.02 -8.11 < .001 
Dorsal Attention-A      
 HCP-DISC -0.25 0.02 -12.05 < .001 
 HCP-REP -0.31 0.02 -15.37 < .001 
 HCPD -0.22 0.02 -13.74 < .001 
Dorsal Attention-B      
 HCP-DISC -0.02 0.02 -1.24 .21 
 HCP-REP -0.03 0.02 -1.47 .14 
 HCPD 0.01 0.01 0.87 .38 
Salience/VenAttn-A      
 HCP-DISC 0.05 0.01 4.48 < .001 
 HCP-REP 0.07 0.01 6.05 < .001 
 HCPD 0.05 0.01 6.35 < .001 
Salience/VenAttn-B      
 HCP-DISC -0.02 0.01 -1.59 .11 
 HCP-REP -0.03 0.01 -2.56 .01 
 HCPD -0.03 0.01 -3.52 < .001 
Control-A      
 HCP-DISC -0.07 0.02 -3.7 < .001 
 HCP-REP -0.11 0.02 -6.51 < .001 
 HCPD -0.05 0.01 -6.52 < .001 
Control-B      
 HCP-DISC 0.19 0.02 7.95 < .001 
 HCP-REP 0.18 0.02 8.09 < .001 
 HCPD 0.14 0.01 9.93 < .001 
Control-C      
 HCP-DISC 0.09 0.02 6.11 < .001 
 HCP-REP 0.09 0.01 7.16 < .001 
 HCPD 0.09 0.01 9.53 < .001 
Default-A      
 HCP-DISC -0.02 0.02 -1.01 .31 
 HCP-REP -0.02 0.02 -1.52 .13 
 HCPD -0.01 0.01 -1.04 .3 
Default-B      
 HCP-DISC 0.01 0.01 1.04 .29 
 HCP-REP 0.02 0.01 2.13 .03 
 HCPD 0.01 0.01 0.87 .39 
Default-C      
 HCP-DISC -0.21 0.02 -10.56 < .001 
 HCP-REP -0.17 0.02 -9.37 < .001 
 HCPD -0.15 0.02 -8.83 < .001 
Limbic-A      
 HCP-DISC 0.06 0.01 4.4 < .001 
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 HCP-REP 0.09 0.01 6.3 < .001 
 HCPD 0.01 0.01 0.91 .37 
Limbic-B      
 HCP-DISC 0.25 0.03 8.93 < .001 
 HCP-REP 0.32 0.03 11.89 < .001 
 HCPD 0.28 0.02 12.21 < .001 

Note. Coefficients and p-values for the intercept are shown. None of the covariates (mean-

centered age, mean-centered framewise displacement, handedness, and sex) were consistently 

significant across the three datasets for any of the networks. Networks with reliably significant 

(Bonferroni-corrected alpha level of .003) intercepts are bolded. 

 

Supplementary Table 2 

Left-lateralized Network Comparisons 

Network Comparison Dataset β SE t p 
Language      
     Dorsal Attention-A      
 HCP-DISC -0.11    0.02 -6.98 < .001 
 HCP-REP -0.11 0.02 -6.73 < .001 
 HCPD -0.12 0.01 -9.69 < .001 
     Default-C      
 HCP-DISC 0.09 0.01 7.94 < .001 
 HCP-REP 0.1 0.01 8.63 < .001 
 HCPD 0.11 0.01 9.09 < .001 
Dorsal Attention-A      
     Default-C      
 HCP-DISC -0.01 0.02 -0.93 .36 
 HCP-REP -0.00 0.02 -0.31 .76 
 HCPD -.02 0.01 -1.29 .19 

Note. Comparisons consist of multiple regressions, which included a network variable with two 

levels (the two networks under comparison), mean-centered age, sex, handedness, and mean-

centered mean framewise displacement. 
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Supplementary Table 3 

Right-lateralized Network Comparisons 

Network Comparison Dataset β SE t p 
Visual-B      
     Salience/VenAttn-A      
 HCP-DISC -0.04 0.01 -4.56 < .001 
 HCP-REP -0.05 0.01 -5.04 < .001 
 HCPD -0.05 0.01 -6.69 < .001 
     Control-B      
 HCP-DISC 0.09 0.02 5.69 < .001 
 HCP-REP 0.08 0.01 6.19 < .001 
 HCPD 0.05 0.01 5.47 < .001 
     Control-C      
 HCP-DISC -0.01 0.01 -1.03 .3 
 HCP-REP -0.01 0.01 -1.27 .2 
 HCPD -0.01 0.01 -1.56 .12 
     Limbic-B      
 HCP-DISC 0.08 0.02 4.21 < .001 
 HCP-REP 0.18 0.01 12.89 < .001 
 HCPD 0.18 0.01 13.46 < .001 
Salience/VenAttn-A      
     Control-B      
 HCP-DISC 0.06 0.01 4.32 < .001 
 HCP-REP 0.12 0.01 11.18 < .001 
 HCPD 0.11 0.01 13.1 < .001 
     Control-C      
 HCP-DISC 0.03 0.01 3.71 < .001 
 HCP-REP 0.03 0.01 4.29 < .001 
 HCPD 0.04 0.07 6.04 < .001 
     Limbic-B      
 HCP-DISC 0.21 0.01 16.23 < .001 
 HCP-REP 0.22 0.01 17.81 < .001 
 HCPD 0.23 0.01 19.23 < .001 
Control-B      
     Control-C      
 HCP-DISC -0.09 0.01 -6.97 < .001 
 HCP-REP -0.09 0.01 -7.78 < .001 
 HCPD -0.07 0.01 -7.59 < .001 
     Limbic-B      
 HCP-DISC 0.09 0.02 5.89 < .001 
 HCP-REP 0.1 0.02 6.74 < .001 
 HCPD 0.12 0.01 9.32 < .001 
Control-C      
     Limbic-B      
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 HCP-DISC 0.18 0.01 13.04 < .001 
 HCP-REP 0.19 0.01 14.69 < .001 
 HCPD 0.19 0.01 15.35 < .001 

Note. Comparisons consist of multiple regressions, which included a network variable with two 

levels (the two networks under comparison), mean-centered age, sex, handedness, and mean-

centered mean framewise displacement. 

 

Supplementary Methods 

 This section provides additional information on estimating the quantity of data needed to 

generate stable individual parcellation labels, similar to the in-text analysis performed with 

NSAR values. 

Stable Estimate Analysis for Individual Parcellation Labels 

 A dice coefficient (Dice, 1945; Sorenson, 1948) was calculated in order to identify 

parcellation label overlap between the parcellations resulting from iteration (5, 10, 15, etc. 

minutes) and the parcellation resulting from the independent 30 minutes of data. The dice 

coefficient is calculated as follows:  

Dice = 
2|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

 

where 𝑋𝑋 ∩ 𝑌𝑌 represents the number of vertices with the same network labels in the same 

positions across the iteration parcellation and the independent 30 minutes parcellation. The 

denominator represents the total number of vertices with a given network label across both the 

iteration parcellation and the independent 30 minutes parcellation. Dice coefficients were also 

estimated for each network within each participant between each increment of data and the 30 

independent minutes of data, and then an average dice coefficient for each network was 

computed for each increment of data.  
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 When a single dice coefficient was calculated within individuals, only five minutes of 

data were needed obtain a mean dice coefficient of 0.75 (SD = 0.03), which was highly similar to 

the 0.76 mean (SD = 0.03) dice coefficient obtained with 30 minutes of data (see Supplementary 

Figure S2 Panel A). Networks with the highest mean dice coefficients include those related to 

sensory and somatomotor functions such as the Visual-A, Visual-B, Somatomotor-A, and 

Somatomotor-B networks (see Supplementary Figure S2 Panel B). 
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Study 2: Estimating Brain Network Specialization in Autistic and Neurotypical Individuals 

Abstract 

 Autism spectrum disorder has been characterized by disruptions in hemispheric 

lateralization which may be localized to language-relevant regions or be distributed pervasively. 

In the present study, we estimated hemispheric specialization in autism using an individual-level 

approach and explored potential relationships between language specialization and behavioral 

phenotypes including verbal ability, language delay, and autism symptom severity. We 

hypothesized that disruptions to hemispheric specialization in autism would be limited to the 

language network. We tested this and other hypotheses by employing a cross-sectional dataset of 

121 individuals (48 autistic, 73 neurotypical). Using multi-echo resting-state fMRI scans, we 

generated individual network parcellations and estimated network specialization using a surface 

area-based approach. A series of multiple regressions were then used to compare network 

specialization for each of 17 networks between groups. Contrary to our hypothesis, we found 

significant group differences in specialization for the Language, Salience/Ventral Attention-A, 

and Control-B networks. Furthermore, we found that language delay stratified language 

specialization, with group differences in language specialization occurring solely between 

autistic individuals with language delay and neurotypical individuals. These results evidence the 

pervasive disruption hypothesis of atypical functional asymmetry in autism, with a differential 

relationship between language asymmetry and specific symptom profiles (namely, language 

delay) of autism. 

 Keywords: lateralization, specialization, asymmetry, brain networks, network 

specialization, neuroimaging, MRI, fMRI, autism spectrum disorder, autism, ASD, 

neurodevelopmental conditions 
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Introduction 

 Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental condition 

characterized by challenges in social communication and the presence of restricted repetitive 

behaviors (Diagnostic and Statistical Manual-5; Diagnostic and Statistic Manual of Mental 

Disorders, 2013). As a neurodevelopmental condition, ASD is linked to atypical timelines of 

social, cognitive, and physiological development. Of particular historical and ongoing interest is 

the role that disrupted specialization may play in the development of autism.  

 Hemispheric specialization refers to a characteristic of brain organization in which 

specific functions draw on one hemisphere more than another. The resulting asymmetries reflect 

a dynamic trade-off between decreases in redundancy (Levy, 1969), processing speed (Ringo et 

al., 1994), and interhemispheric conflict in function initiation (Andrew et al., 1982; Corballis, 

1991), and the loss of system redundancies and inter-hemispheric connections. When 

considering neurodevelopmental conditions such as ASD, the consequences of hemispheric 

specialization or a lack thereof become particularly relevant. 

 Autism research is not new to the investigation of specialization, and has historically 

approached specialization with a variety of methods. A dichotic listening task paradigm 

identified a reversal or reduction of lateralization for speech in ASD (Prior & Bradshaw, 1979). 

Later evidence from electroencephalography studies arrived at a similar conclusion (Cantor et 

al., 1986; Dawson et al., 1982, 1986, 1989). Despite evidence from these and additional studies, 

it is unknown if disruptions in hemispheric lateralization in autism are localized to language-

relevant regions, as posited in the left hemisphere dysfunction theory of autism (McCann, 1982), 

or if they are more pervasive.  
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 Current evidence surrounding this specialization debate is consistent, with findings for 

generally increased activity in the right hemisphere in autism (Anderson et al., 2010; Knaus et 

al., 2008; Takeuchi et al., 2004; Tesink et al., 2009; Wang et al., 2006), generally decreased 

activity in the left hemisphere (Eyler et al., 2012; Harris et al., 2006; Müller et al., 2003), both 

increased activity in the right hemisphere and decreased activity in the left hemisphere (Boddaert 

et al., 2003; Kleinhans et al., 2008; Redcay & Courchesne, 2008), and generally decreased 

connectivity across both hemispheres in autism (Cardinale et al., 2013). Conversely, recent 

evidence for specific disruptions in lateralization for regions involved in language processing in 

autism is compelling. For example, in a functional connectivity-based study that employed a 

graph analytic approach, a reduction in left lateralization was observed for several connections 

involving left-lateralized hubs, particularly those related to language and the default network 

(Nielsen et al., 2014). This was examined once more by Jouravlev et al. (2020) with a functional 

language task on an individual level. Within the language network, autistic participants showed 

less lateralized responses due to greater right hemisphere activity (Jouravlev et al., 2020). 

Interestingly, there was no strong difference in lateralization for the theory of mind and multiple 

demand networks between autistic and neurotypical (NT) participants, suggesting that 

differences in lateralization are constrained to language regions (Jouravlev et al., 2020).  

 Adding another layer to this debate is the potential role that language delay might play in 

stratifying disruptions in specialization in autism. Using normative modeling, one team found 

that language delay explained the most variance in extreme rightward deviations of laterality in 

autism (Floris et al., 2021). This is a promising direction, as it appears language delay is capable 

of parsing the heterogeneity of atypical specialization patterns in autism. Furthermore, this result 

points to the behavioral relevance of atypical lateralization patterns to language development in 
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autism. However, it is unclear as to if atypical language lateralization specifically or global 

alterations of lateralization are contributing to the observed language deficits (Khundrakpam et 

al., 2021).  

 The aim of the present study is to address this ongoing debate regarding the specificity of 

atypical lateralization patterns to language-relevant regions in autism. This was undertaken by 

approaching both brain network parcellations and network specialization from an individual 

level. The use of these individualized elements is non-trivial, since functional networks vary 

more by stable group and individual factors than cognitive or daily variation (Gratton et al., 

2018). Furthermore, group averaging can obscure individual differences and blur functional and 

anatomical details—details which are potentially clinically useful (Lynch et al., 2020; Salvo et 

al., 2021). Thus, through the use of this individual approach, we are better positioned to capture 

idiosyncratic functional and anatomical details relevant to network specialization.  

 The present study explored four main hypotheses. First, it was hypothesized that ASD 

individuals would show reduced hemispheric specialization only in areas associated with 

language (e.g., the Language network) compared with neurotypical individuals. Second, we 

examined the relationships between language specialization and three behavioral phenotypes: 

verbal ability, autism symptom severity, and language delay. More specifically, we hypothesized 

a positive relationship between language specialization and verbal ability, and a negative 

relationship between language specialization and autism symptom severity. Finally, we 

hypothesized that language delay would stratify language specialization, with the greatest 

expected differences in specialization to occur between autistic individuals with language delay 

and neurotypical individuals. 

Methods 
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Participants 

 A previously collected dataset was used to address these hypotheses regarding network 

specialization in ASD. This dataset was originally developed to understand ASD from a 

longitudinal perspective, and further information on participant recruitment and diagnosis can be 

found elsewhere (Alexander et al., 2007; Prigge et al., 2013, 2018; Zielinski et al., 2014). All 

data were obtained with assent and informed consent according to the University of Utah's 

Institutional Review Board. For the purposes of this analysis, data from collection wave five 

were exclusively used due to the availability of multi-echo fMRI data, which were solely 

acquired during this particular wave. Participants underwent two 15-minute resting-state multi-

echo fMRI scans and were instructed to simply rest with their eyes open while letting their 

thoughts wander (King et al., 2018). Exclusion criteria for the Utah dataset included removing 

participants without fMRI data from wave five, participants without age data, participants older 

than 50 years, female participants, participants with less than 50% of volumes remaining after 

motion censoring, and participants with a mean framewise displacement greater than 0.2 mm and 

mean DVARS greater than 50. The exclusion criterion of age greater than 50 was selected due to 

the lack of matched controls for participants older than 50. Female participants were excluded 

from the analyses due to their limited representation (N = 3). Additional demographic 

information can be found in Table 1. In summary, ASD mean age was 27.22 years, range 14.67–

46.42 years; NT mean age was 28.42 years, range 16.33–46.92 years; overall mean age was 

27.95 years. 
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Table 1  

Demographics 

 Autism, N = 48 Neurotypical, N = 73 Group Comparison 
 Mean 

(SD) Range Mean 
(SD) Range t p  

Age at Time 5 
Scan (Years) 

27.22 
(7.71) 

14.67 – 
46.42 

28.42 
(7.59) 

16.33 – 
46.92 -0.84 .4 

Mean 
Framewise 
Displacement 

0.09 
(0.03) 

0.04 – 
0.19 

0.08 
(0.03) 

0.04 – 
0.16 2.26 .03 

Percent 
Volumes 
Available 

76.79 
(15.49) 

50.17 – 
98.98 

83.56 
(12.22) 

55.38 – 
100 -2.55 .01 

Mean 
Performance 
IQa 

100.07 
(17.34) 

65 – 
131.33 

116.32 
(15.26) 

77 – 
136.33 -4.24 < .001 

Mean Verbal 
IQb 

97.11 
(20.64) 

64.67 – 
132.8 

115.61 
(13.73) 

84 – 
146.33 -4.57 < .001 

Mean Full-scale 
IQc 

99.36 
(16.89) 

61.8 – 
132.33 

118.24 
(14.39) 78 – 142.5 -5.14 < .001 

ADOS CSS at 
Entryd 

7.91 
(1.89) 2 - 10 - - - - 

ADI-Re 28.2 
(7.32) 12-40 - - - - 

Note. NT = Neurotypical 

aMean Performance IQ: Autism N = 45, Neurotypical N=29. 

bMean Verbal IQ: Autism N = 43, Neurotypical N = 29. 

cFull-scale IQ: Autism N = 45, Neurotypical N = 29. 

dADOS CSS at Entry: Autism N = 47. ADOS CSS scores at time 5 were introduced when a 

participant did not have an ADOS CSS at Entry score. 

eADI-R: Autism N = 44. 

 

 Autistic participants and neurotypical participants did not significantly differ in mean age 

(t(99.55) = −0.84, p = .4). However, the two groups did differ in data quality (t(93.95) = 2.26, p 
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= .03) and quantity (t(84.15) = -2.55, p = .01). Furthermore, there was a significant difference 

between groups on available intelligence quotient (IQ) measures (p < .001), which were 

averaged within each participant if scores from multiple timepoints were available. Details 

regarding IQ measures in this dataset have been previously reported (Prigge et al., 2013; 

Zielinski et al., 2014). Using an average full-scale IQ score of 79 or lower as the criterion for low 

verbal and cognitive performance (Gabrielsen et al., 2018), there were five autistic participants 

and one neurotypical participant who met this criterion. Additionally, 40 scans came from 

autistic participants with high verbal and cognitive performance and 28 scans came from 

neurotypical participants with high verbal and cognitive performance. 

 Table 1 also presents the Autism Diagnostic Observation Schedule (ADOS) calibrated 

severity scores (CSS) at entry. The ADOS was administered by trained clinicians or research-

reliable senior study staff as detailed previously (Prigge et al., 2013; Zielinski et al., 2014). The 

ADOS CSS scores were then calculated based on ADOS module and participant age (Gotham et 

al., 2009). However, ADOS CSS scores taken at time five were used when ADOS CSS at entry 

scores were not available, which is the case for some participants who were clinical patients of 

one of the senior study staff members. The ASD diagnosis of these select participants was 

confirmed prior to study enrollment, so the ADOS was not administered. Autism Diagnostic 

Interview-Revised (ADI-R) scores are also reported, and these scores act as a summary of autism 

severity during childhood.  

 Since one aim of this study is to examine the potential stratification of language 

specialization by language delay in autism, characteristics of autistic participants with and 

without language delay can be found in Table 2. In accordance with prior work (Floris et al., 

2016, 2021), language delay was operationalized as having the onset of first words later than 24 
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months and/or having onset of first phrases later than 33 months as assessed via the ADI. These 

ADI items were available for 42/48 autistic participants, of which 27 met the threshold for 

language delay.  

 

Table 2 

Language Delay Demographics 

 No Language Delay 
N = 15 

Language Delay 
N = 27 Group Comparison 

 Mean 
(SD) Range Mean 

(SD) Range t p  

Age at Time 5 
Scan (Years) 

29.34 
(7.34) 

19.5 – 
46.42 

26.54 
(8.25) 

15.33 – 
45.42 -1.13 .27 

Mean 
Framewise 
Displacement 

0.09 
(0.03) 

0.04 – 
0.14 

0.09 
(0.03) 

0.06 – 
0.19 -0.46 .65 

Percent 
Volumes 
Available 

72.03 
(16.23) 

50.17 – 
98.98 

79.57 
(14.38) 

50.59 – 
97.01 1.5 .15 

Mean 
Performance IQ 

100.09 
(16.27) 73 - 128 99.65 

(18.91) 
65 – 
131.33 -0.08 .94 

Mean Verbal 
IQa 

105.93 
(20.65) 

63.5 – 
132.8 

92.29 
(20.47) 

54.57 – 
129 -2.03 .05 

Mean Full-scale 
IQ 

104.05 
(17.62) 

71.67 – 
132.33 

86.64 
(17.14) 61.8 – 130 -1.32 .19 

ADOS CSS at 
Entryb 

8.07 
(1.71) 5 – 10 8.08 

(1.62) 3 – 10  0.02 .99 

ADI-R 25.47 
(7.81) 12 – 38 29.63 

(6.89) 15 – 40  1.72 .09 
aMean Verbal IQ: No Language Delay N = 15, Language Delay N = 25. 

bADOS CSS at Entry: No Language Delay N = 15, Language Delay N = 26. ADOS CSS scores 

at time 5 were introduced when a participant did not have an ADOS CSS at Entry score. 

 

MRI Acquisition Parameters 
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 The Utah dataset was acquired at the Utah Center for Advanced Imaging Research using 

a Siemens Prisma 3T MRI scanner (80 mT/m gradients) with the vendor’s 64-channel head coil 

(see King et al., 2018; Siemens, Erlangen, Germany). Structural images were acquired with a 

MP2RAGE sequence with isotropic 1-mm resolution (TR = 5000 milliseconds, TE = 2.91 

milliseconds, and inversion time = 700 milliseconds). Resting-state functional images were 

acquired with a multiband, multi-echo, echo-planar sequence (TR = 1553 milliseconds; flip angle 

= 65°; inplane acceleration factor = 2; fields of view = 208 mm; 72 axial slices; resolution = 2.0 

mm isotropic; multiband acceleration factor = 4; partial Fourier = 6/8; bandwidth = 1850 Hz; 3 

echoes with TEs of 12.4 milliseconds, 34.28 milliseconds, and 56.16 milliseconds; and effective 

TE spacing = 22 milliseconds). 

fMRI Preprocessing 

 Preprocessing took place on raw NIFTI files for the resting-state fMRI runs using a 

pipeline developed by the Computational Brain Imaging Group (CBIG2016; Kong et al., 2019; 

Li et al., 2019). Briefly, preprocessing steps included surface reconstruction (using FreeSurfer 

6.0.1; Dale et al., 1999), removal of the first four frames (using FSL; Jenkinson et al., 2002; 

Smith et al., 2004), multi-echo integration and denoising (using tedana; DuPre et al., 2021), 

structural and functional alignment using boundary-based registration (using FsFast; Greve & 

Fischl, 2009), linear regression using multiple nuisance regressors (using a combination of CBIG 

in-house scripts and the FSL MCFLIRT tool; Jenkinson et al., 2002), projection to FreeSurfer 

fsaverage6 surface space (using FreeSurfer’s mri_vol2surf function), and smoothing with a 6 mm 

full-width half-maximum kernel (using FreeSurfer’s mri_surf2surf function; Fischl et al., 1999). 

To take full advantage of the multi-echo EPI scans in this dataset, the parameters of the 

CBIG2016 preprocessing pipeline included tedana (DuPre et al., 2021). Multi-echo data are 
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acquired by taking three or more images per volume at echo times spanning tens of milliseconds 

(Posse, 2012; Posse et al., 1999). This provides two specific benefits: 1) Echoes can be 

integrated into a single time-series with improved BOLD contrast and less susceptibility artifact 

via weighted averaging, and 2) the way in which signals decay across echoes can be used to 

inform denoising (Lynch et al., 2021). Therefore, to take advantage of these properties, tedana 

creates a weighted sum of individual echoes and then denoises the data using a multi-echo ICA-

based denoising method (DuPre et al., 2021). Additionally, as suggested by Kundu et al. (2017), 

bandpass filtering was not included as a preprocessing step for the multi-echo data. 

Individual Network Parcellation 

 After the implementation of multi-echo preprocessing, network parcellations were 

computed using a multi-session hierarchical Bayesian modeling (MS-HBM) pipeline (Kong et 

al., 2019). The MS-HBM pipeline was implemented as described in Study 1 in MATLAB 

R2018b (MATLAB, 2018). In summary, the pipeline estimates group-level priors from a training 

dataset (40 Brain Genomics Superstruct Project subjects; Holmes et al., 2015; Kong et al., 2019) 

and applies those to estimate individual-specific parcellations. A k of 17 networks was selected 

for all subjects, following the 17-network solution found in Yeo et al. (2011). A Hungarian 

matching algorithm was then used to match the parcellation labels with the Yeo et al. (2011) 17-

network group parcellation labels.  

Network Surface Area Ratio 

 Following the generation of individual network parcellations, specialization was 

estimated using the network surface area ratio (NSAR) calculated in Connectome Workbench 

wb_command v1.5.0 (Marcus et al., 2013). This measure was previously examined for validity 

and reliability in Study 1 and is calculated on an individual basis for each of 17 networks. NSAR 
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values range from -1.0 to +1.0, with negative values indicating left hemisphere specialization for 

a given network while positive values indicate right hemisphere specialization. NSAR values 

closer to zero indicate less specialization (e.g., hemispheric symmetry).  

Statistical Analysis 

Group Differences Network Specialization 

 To verify that the NT individuals from the Utah dataset were a good reference group and 

could replicate previous network specialization findings using NSAR, we implemented a series 

of multiple regressions in the NT subset of the Utah dataset. Models consisted of NSAR values 

as the dependent variable with the covariates of mean-centered age and mean-centered 

framewise displacement. Next, to test our first hypothesis and compare hemispheric 

specialization between autistic and neurotypical individuals, a series of multiple regressions were 

used. Models consisted of NSAR values as the dependent variable, group (ASD and NT) as the 

independent variable, and the following covariates: mean-centered age and mean-centered mean 

framewise displacement. Sex was not included as a covariate since females (N = 3) were 

excluded from the analysis. Findings meeting a Bonferroni-corrected alpha level of .003 were 

considered significant. Effect sizes (Cohen’s d) for any potential group differences were 

calculated on contrasts extracted from the corresponding multiple regression model (Nakagawa 

& Cuthill, 2007). 

Network Specialization and Behavioral Phenotypes 

 To address the second hypothesis and examine the relationship between language 

network lateralization and verbal IQ across ASD and NT individuals, a multiple regression was 

used. Since the dataset examined here comes from a single wave of a longitudinal study and 

multiple assessments of IQ are available for many participants, available verbal IQ scores were 
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averaged within each participant. Covariates included mean-centered age and mean-centered 

mean framewise displacement. A similar analysis including language lateralization as a predictor 

of autism symptom severity (measured via ADOS CSS scores) was also performed. 

 Lastly, the potential relationship between language delay and language lateralization in 

ASD was investigated. For these analyses, language lateralization measured via NSAR was the 

dependent variable while the predictor was group (NT, ASD with language delay, and ASD 

without language delay), and covariates included mean-centered age and mean-centered mean 

framewise displacement. All statistical analyses took place in R 4.2.0 (R Core Team, 2022). 

Results 

Group Differences in Network Specialization 

 In order to validate the neurotypical group as a reference group for the group analysis, 

multiple regressions were used to identify significantly specialized networks, and ten networks 

were identified as being specialized: Visual-A, Visual-B, Language, Dorsal Attention-A, 

Salience/Ventral Attention-A, Control-B, Control-C, Default-A, Default-C, and Limbic-B (see 

Supplementary Table 1 and Supplementary Figure S1). With the exception of two networks 

(Visual-A and Default-A), this result aligns with that in Study 1, validating the neurotypical 

group as a reference group. Interestingly, the Visual-A network was also identified as being 

specialized across the HCP-Discovery and HCP-Replication datasets in Study 1 (see Study 1 

Supplementary Table 1). Differences in results between the present neurotypical group and the 

results in Study 1 may stem from a variety of factors, including the type of fMRI data collected 

(multi-echo versus single-echo), selected covariates (handedness data were not available for the 

present dataset), and the quantity of available data per individual.  
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 Next, multiple regressions were used to examine potential differences between the ASD 

and NT groups in specialization. No age effects on specialization were identified for any of the 

17 networks. However, a significant group effect on specialization was found for three networks 

at the Bonferroni-corrected alpha level of 0.003: Language (t(117) = -3.85, p < .001), 

Salience/Ventral Attention-A (t(117) = 3.33, p = .001), and Control-B (t(117) = 3.05, p = .003). 

Medium effect sizes, measured via Cohen’s d, were found for the Language (d = -0.73), 

Salience/Ventral Attention-A (d = 0.63), and Control-B (d = 0.58) networks. Network surface 

areas adjusted for mean-centered age and mean-centered mean framewise displacement are 

depicted in Figure 1, and group differences in network specialization are depicted in Figure 2.  
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Figure 1  

Percent Surface Area for 17 Networks in ASD and NT Individuals 

Note. Depicted in the top of Panel A is the model-adjusted percentage of the left hemisphere 

surface area occupied by a given specialized network. Percent surface area was adjusted using 

the following formula: Surface areaadjusted = Surface arearaw - [β1(mean-centered ageraw - mean of 

mean-centered ageraw) + β2(mean-centered FDraw - mean of mean-centered FDraw) + β3(groupraw - 

mean groupraw)]. Depicted in the bottom portion of Panel A is the model-adjusted percentage of 

the right hemisphere surface area occupied by a given network. Points represent individual 

ASD
NT

A

B
LR
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outliers. Depicted in Panel B is the mean percentage of surface area occupied by a specialized 

network, with 95% confidence intervals. The left and right hemisphere estimates are displayed 

side-by-side. 

 

Figure 2  

Specialization for 17 Networks 

Note. On the y-axis are the 17 networks and on the x-axis are model-adjusted NSAR values, with 

negative values representing left hemisphere lateralization and positive values representing right 

Left-lateralized Right-lateralized
Adjusted NSAR Values

ASD
NT
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hemisphere lateralization. NSAR values were adjusted by regressing out the effects of mean-

centered age and mean-centered mean framewise displacement using the following formula: 

NSARadjusted = NSARraw - [β1(mean-centered ageraw - mean of mean-centered ageraw) + β2(mean-

centered FDraw - mean of mean-centered FDraw) + β3(groupraw - mean groupraw)]. NSAR 

adjustment occurred separately for each network and each group. A significant group effect on 

specialization was found for three networks at the Bonferroni-corrected alpha level of 0.003: 

Language (t(117) = -3.85, p < .001), Salience/Ventral Attention-A (t(117) = 3.33, p = .001), and 

Control-B (t(117) = 3.05, p = .003). Each point represents the group mean NSAR value and bars 

represent the 2.5 and 97.5 percentiles. 

 

Verbal Ability, ASD Symptom Severity and Language Specialization 

 To examine the potential relationship between verbal ability (measured via verbal IQ and 

Language network specialization, a multiple regression with the covariates of mean-centered age 

and mean-centered mean framewise displacement was used (N = 74; ASD = 45, NT = 29). 

Language specialization was not a significant predictor of mean verbal IQ (t(67) = .23, p = .82).  

 Next, the relationship between language specialization and autism symptom severity 

(measured via ADOS CSS scores, N = 47 ASD) was examined using a multiple regression with 

the covariates of mean-centered age and mean-centered mean framewise displacement. 

Language specialization was not a significant predictor of ADOS CSS scores (t(43) = 0.27, p = 

.79).  

Language Delay and Language Specialization  

 The potential relationship between language delay and language specialization was 

investigated using a multiple regression with the covariates of mean-centered age and mean-
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centered mean framewise displacement. A significant group difference was found between the 

ASD with Language Delay and NT groups (t(110) = 3.69, p < .001, Cohen’s d = 0.79). However, 

no a significant group difference was found between the ASD without Language Delay and NT 

groups (t(110) = 1.78, p = .08; see Figure 3). When the ASD without Language Delay was set as 

the reference group, no significant group difference between ASD without Language Delay and 

ASD with Language was found (t(110) = 1.03, p = .3).  

 

Figure 3 

Language Specialization is Stratified by Language Delay 

Note. Participants were binned into NT (N = 73), ASD with Language Delay (N = 27), and ASD 

without Language Delay (N = 15), with six participants missing language delay data. On the y-

axis are model-adjusted NSAR values for the language network, with negative values 

representing left hemisphere lateralization and positive values representing right hemisphere 

lateralization. NSAR values were adjusted by regressing out the effects of mean-centered age 

and mean-centered mean framewise displacement using the following formula: NSARadjusted = 
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NSARraw - [β1(mean-centered ageraw - mean of mean-centered ageraw) + β2(mean-centered FDraw - 

mean of mean-centered FDraw) + β3(groupraw - mean groupraw)]. NSAR adjustment occurred 

separately for each group. A significant group effect on language specialization was found 

between the NT and ASD Language Delay groups (t(110) = 3.69, p < .001). Circles represent 

group mean adjusted NSAR values while bars represent the standard error of the mean. 

 

Discussion 

 In this study, we examined network specialization in autistic and neurotypical individuals 

using a network surface area-based approach. Inconsistent with our first hypothesis that group 

differences would be constrained to areas associated with language, we found group differences 

in specialization for the Language, Salience/Ventral Attention-A, and Control-B networks. Next, 

in our investigation of the relationship between behavioral phenotypes and language 

specialization, no significant relationships were found for verbal ability or autism symptom 

severity. However, language delay was a stratification marker of language specialization 

between the ASD with Language Delay and NT groups. This result suggests that the difference 

in language specialization between the ASD and NT groups identified for the first hypothesis 

was predominantly driven by ASD individuals with language delay. Taken as a whole, these 

results provide further evidence for disruptions in functional specialization in ASD, which 

appear to be behaviorally and clinically relevant in the case of language specialization and 

language delay.  

Evidence for Pervasive Disruptions in Functional Specialization in ASD 

 Here, we identified three networks for which specialization differs between ASD and NT 

individuals: Language, Salience/Ventral Attention-A, and Control-B. Previously, language 
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regions have been identified as potential areas for disruptions in connectivity and asymmetry, 

leading to the postulation of the left hemisphere dysfunction theory of autism (McCann, 1982). 

Interestingly, the direction of group differences indicates that the language network in ASD is 

less asymmetrical than in NT individuals. Specifically, the mean ASD specialization value 

adjusted for covariates was right-lateralized (see Figure 2). This appears to be driven by an 

increase in language network surface area in the right hemisphere compared with the NT group 

(see Figure 1). Other functional work has similarly identified a rightward shift in asymmetry in 

autism (Anderson et al., 2010; Knaus et al., 2008; Takeuchi et al., 2004; Tesink et al., 2009; 

Wang et al., 2006).  

 Perhaps, as suggested by the expansion-fractionation-specialization hypothesis, 

disruptions to the fractionation or specialization of the interdigitated theory of mind and 

language networks may contribute to the development of autism symptoms (DiNicola & 

Buckner, 2021). This hypothesis suggests that as the cerebral cortex expands, certain core 

organizing areas act as anchors, while areas farther from these anchors self-organize into 

association cortex (Buckner & Krienen, 2013). These untethered association regions may exhibit 

a proto-organization at birth, which then fractionates and specializes through processes including 

competition and inherent connectivity differences. Any disruptions in the processes of expansion 

or fractionation may impact network specialization. Considering the interdigitated nature of 

functional networks, disturbances in the expansion or fractionation of one core area are likely to 

impact multiple networks both directly and indirectly. In the present study, we identified 

multiple differences in specialization across various networks in autism, which aligns with this 

hypothesis.  
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 The present study also identified a decrease in specialization in the Control-B network in 

ASD. A mapping between resting-state functional connectivity and task activation has identified 

an executive control network as being associated with action–inhibition, emotion, and 

perception–somesthesis–pain (Smith et al., 2009). This has since been disentangled into two 

functional distinct control networks, which are linked to initiating and adapting control and the 

stable maintenance of goal-directed behavior (Dosenbach et al., 2007). In ASD specifically, prior 

evidence has supported disruptions in control network structure (de Lacy et al., 2017), as well as 

increased right-lateralization in frontoparietal network components (Cardinale et al., 2013). 

However, because there is no standardized network taxonomy (Uddin et al., 2023), we cannot 

definitively determine if the previous findings in control and frontoparietal networks directly 

relate to the observed specialization differences in the Control-B network in the present study. 

 Unexpectedly, our research revealed a decrease in lateralization within the 

Salience/Ventral Attention-A network in ASD compared with NT individuals. Although this 

outcome was surprising, it could be partly attributed to the sensitive individualized approach 

taken in the present study. Regardless, the salience network is thought to identify relevant stimuli 

from internal and external inputs in order to direct behavior and is distinct from executive control 

networks (Menon & Uddin, 2010; Seeley et al., 2007). Complementary in function to the 

salience network, the ventral attention network is involved in spatial selective attention (Corbetta 

& Shulman, 2011; Shulman et al., 2010). Our finding is intriguing considering that disruptions in 

attention are among the most frequently reported cognitive deficits in ASD (Allen & 

Courchesne, 2001). Neuroimaging studies have also supported this observation. Of note, Farrant 

& Uddin (2016) reported hyperconnectivity in the ventral and dorsal attention networks in 

children with ASD, while hypo-connectivity was observed in the dorsal attention network in 
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adults. However, the present study specifically identified decreased lateralization in the ventral 

attention network in ASD. Regardless, a salience network dysfunction theory of ASD has been 

proposed, suggesting that deviations in the salience network and anterior insula in particular may 

contribute to social communication and theory of mind deficits in ASD (Toyomaki & 

Murohashi, 2013; Uddin & Menon, 2009). 

Language Delay as a Stratification Marker for ASD 

 The present study identified a significant difference in language specialization between 

NT and ASD with Language Delay individuals, similar to a previous study which found that 

language delay explained the most variance in extreme rightward deviations of laterality in 

autism (Floris et al., 2021). This finding is particularly remarkable considering the disparities in 

datasets and modeling techniques between this study and that of Floris et al. (2021). In the prior 

study, gray matter voxels were the subject of laterality, as opposed to functional connectivity-

derived language network surface area. Additionally, significant group differences were 

identified using individual deviations from a normative pattern of brain laterality across 

development rather than from group mean comparisons. Another challenge, highlighted by 

Marek et al. (2022) and Liu et al. (2023), is the difficulty of establishing connections between 

scanner-derived data (such as functional connectivity) and out-of-scanner behavioral measures. 

This is of particular concern with the use of the ADI for determining language delay, since this 

measure is retrospective and susceptible to memory errors such as telescoping (Hus et al., 2011). 

Thus, there is a clear need for prospective investigations of the relationship between language 

delay and language specialization.  

 Regardless of these challenges, the causal direction and origins of the relationship 

between language delay in ASD and language specialization remain unknown. Bishop (2013) 
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proposed several explanations for these disruptions. It was suggested that genetic risk may lead 

to language impairment, subsequently resulting in weak laterality (the neuroplasticity model). 

Alternatively, genetic risk might independently cause weak laterality and language impairment 

(the pleiotropy model), or weak laterality caused by genetic risk could subsequently lead to 

language impairment (the endophenotype model). Evidence from Nielsen et al. (2014) suggests 

that deficits in language development may result in the abnormal language lateralization 

observed in ASD. This is supported by several pieces of evidence observed in the present study 

as well as in Studies 1 and 3. Notably, no consistent age-related effects on specialization were 

found in Studies 1 and 3, and the present study evidenced no direct relationship between 

language specialization and verbal ability. However, language delay was found to act as a 

stratification marker for language specialization. Together, this suggests that disruptions in 

language specialization occurring early in development (likely in utero or shortly after birth), 

could underlie the differences in language specialization observed in autism. 

Limitations and Future Directions 

 Network specialization in this study was examined through the use of NSAR, which has 

previously been established as a reliable measure (see Study 1). However, this measure is 

derived by generating individual parcellations using functional connectivity, and then calculating 

the ratio of left and right hemisphere surface areas for each network. Thus, rather than using a 

language localizer task to determine network boundaries (unavailable with this dataset), this 

measure is indirectly reliant upon functional connectivity. This is an important limitation since 

functional connectivity is not necessarily reflective of underlying anatomical connectivity, and 

may instead better reflect brain geometry (Pang et al., 2023). Furthermore, NSAR is one of many 
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available measures of functional asymmetry, and it is unknown if the present results can be 

reproduced using other measures. 

 Moreover, it should be noted that the dataset chosen for this study has certain 

characteristics which restrict the generalizability of our findings. First, the participant sample 

consisted entirely of males, which restricts the applicability of our results to females with ASD 

and may overlook potential sex differences. Additionally, the relatively small sample size and 

the overwhelming representation of high verbal and cognitive performance individuals within the 

dataset further impact the generalizability of our findings.  

 Further investigations should focus on replicating these findings in larger and more 

diverse samples, as well as exploring the longitudinal trajectories of network specialization in 

individuals with ASD. Additionally, the incorporation of multimodal neuroimaging techniques 

could provide a more comprehensive understanding of the relationship between language 

network specialization and language delay in ASD. 

Conclusions 

 In this study, we examined network specialization in ASD and NT individuals using an 

individual-level approach based on participant network parcellations. Inconsistent with our 

hypothesis that group differences in specialization would be constrained to language-relevant 

regions, we identified group differences in specialization for the Language, Salience/Ventral 

Attention-A, and Control-B networks. Additionally, we hypothesized that language delay would 

stratify language specialization, such that the greatest group differences would be found between 

the NT and ASD with Language Delay groups. Support for this hypothesis was found, 

suggesting that language specialization is behaviorally and clinically relevant to autism.  
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Study 2 Supplementary Materials 

Supplementary Table 1  

Identifying Specialized Networks Using Multiple Regressions in Neurotypical Individuals (N = 

73) 

Network Intercept β SE t p 

Visual-A 0.02 0.00 5.12 < .001 

Visual-B 0.14 0.01 10.19 < .001 

Somatomotor-A 0.00 0.01 0.18 .86 

Somatomotor-B -0.03 0.01 -1.99 .05 

Language -0.19 0.02 -7.96 < .001 

Dorsal Attention-A -0.28 0.02 -15.43 < .001 

Dorsal Attention-B 0.00 0.02 0.06 .95 

Salience/VenAttn-A 0.09 0.01 9.01 < .001 

Salience/VenAttn-B -0.01 0.01 -1.17 .25 

Control-A -0.02 0.01 -2.36 0.02 

Control-B 0.21 0.01 14.58 < .001 

Control-C 0.10 0.01 9.77 < .001 

Default-A -0.03 0.01 -3.03 .003 

Default-B -0.01 0.01 -2.15 0.04 

Default-C -0.21 0.02 -11.77 < .001 

Limbic-A 0.02 0.01 2.12 0.04 

Limbic-B 0.31 0.02 15.20 < .001 

Note: Coefficients and p-values for the intercept are shown. Networks with significant 

(Bonferroni-corrected alpha level of .003) intercepts are bolded. 
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Figure S1  

Specialized Networks in Neurotypical Individuals 

Note. On the y-axis are the 17 networks and on the x-axis are model-adjusted NSAR values, with 

negative values representing left hemisphere lateralization and positive values representing right 

hemisphere lateralization. NSAR values were adjusted by regressing out the effects of mean-

centered age and mean-centered mean framewise displacement using the following formula: 

NSARadjusted = NSARraw - [β1(mean-centered ageraw - mean of mean-centered ageraw) + β2(mean-

centered FDraw - mean of mean-centered FDraw)]. NSAR adjustment occurred separately for each 

Left-lateralized Right-lateralized
Adjusted NSAR Values
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network. Ten networks were found to be significantly specialized: Visual-A, Visual-B, 

Language, Dorsal Attention-A, Salience/Ventral Attention-A, Control-B, Control-C, Default-A, 

Default-C, and Limbic-B. 

  



125 

Study 3: Parsing Brain Network Specialization: A Replication and Expansion of Wang et 

al. (2014) 

Abstract 

 One organizing principle of brain function is specialization, or the dominance of a 

specific function in one hemisphere or another. Previously, Wang et al. (2014) identified 

networks associated with language and visuospatial attention as being specialized to the left and 

right hemispheres, respectively; and a dual-specialization of the frontoparietal network. 

However, it remains unknown which networks are specialized when specialization is examined 

within individuals using a higher resolution parcellation, as well as which connections are 

contributing the most to a given network’s specialization. In the present study, we estimated 

network specialization across three datasets using the autonomy index and a novel method of 

deconstructing network specialization. After examining the reliability of these methods as 

implemented on an individual level, we addressed two hypotheses. First, we hypothesized that 

the most specialized networks would include those associated with language, visuospatial, and 

executive control. Second, we hypothesized that within-network contributions to specialization 

would follow one of three outcomes: a within-between network gradient, a specialization 

gradient, or a sensorimotor-association gradient. Interestingly, we found that the majority of 

networks exhibited greater within-hemisphere connectivity than between-hemisphere 

connectivity. Additionally, we found that the greatest network contributions were within-

network, followed by those from specialized networks.  

 Keywords: lateralization, specialization, asymmetry, autonomy index, brain networks, 

network specialization, neuroimaging, MRI, fMRI 
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Introduction 

 Hemispheric specialization refers to a characteristic of brain organization in which 

specific functions draw on one hemisphere of the brain more than the other. These functional 

asymmetries give rise to reductions in redundancy (Levy, 1969), processing speed (Ringo et al., 

1994), and interhemispheric conflict in function initiation (Andrew et al., 1982; Corballis, 1991). 

Importantly, disruptions to hemispheric specialization can have significant clinical implications, 

particularly in the context of neurodevelopmental and psychiatric conditions (X.-Z. Kong et al., 

2022).  

Methods of Estimating Hemispheric Specialization 

 Measures of hemispheric specialization have previously ranged from the examination of 

split-brain patients (for review, see Gazzaniga, 2000) and brain lesions (Milner, 1971; 

Rasmussen & Milner, 1977) to the Wada test (Wada & Rasmussen, 1960) and intraoperative 

brain stimulation mapping (Penfield & Jasper, 1954). With the advent and development of 

functional neuroimaging, these methods now include many functional connectivity-based 

metrics. One such measure is the intrinsic laterality index (Liu et al., 2009), which quantifies 

within- versus between-hemisphere connectivity. Another includes the hemispheric contrast 

(Gotts et al., 2013), which examines node interactions between the two hemispheres through  cl 

“segregation” (highly within-hemisphere interactions) versus “integration” (highly between-

hemisphere interactions). Similarly, the autonomy index (Wang et al., 2014) captures a 

normalized ratio of within- versus between-hemisphere connectivity on the vertex level. Taking 

a different approach, a classification metric (Friedrich et al., 2022) identifies the “classifiability” 

of each hemisphere and determines which areas are necessary to accurately classify the left and 

right hemispheres. Also of interest, a network variants approach (Perez et al., 2023) was recently 
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applied to hemispheric specialization, examining inter-individual variability in network 

organization between the two hemispheres.  

 Using the autonomy index, Wang et al. (2014) quantified specialization across seven 

functional networks and found that specialization was not restricted to a single left- or right-

specialized network (Wang et al., 2014). Rather, the right frontoparietal network and right 

ventral and dorsal attention networks, as well as the left default and frontoparietal networks 

exhibited high degrees of specialization (see Fig. 5; Wang et al., 2014). Interestingly, the dual 

specialization of the frontoparietal control network evidences a joint coupling of executive 

control functions with a distinct pattern of networks in either hemisphere (Wang et al., 

2014).While this and other studies have made significant contributions, much of what is known 

regarding hemispheric specialization has been derived from group-level analyses, an approach 

which is increasingly being exchanged for a within-individual “precision” approach. 

The Need for Individual-Level Analyses 

 Increasing attention has been drawn towards the pitfalls of group-level analytic 

approaches, which face critiques concerning their validity (Dubois & Adolphs, 2016) and 

sensitivity and resolution (Fedorenko & Blank, 2020). The major question facing the validity of 

group-based approaches focuses on if one is indeed comparing functionally homologous regions 

across subjects (Dubois & Adolphs, 2016). This is a legitimate concern in light of findings 

pointing to the high interindividual variability of association cortices compared with 

sensorimotor cortices (Kong et al., 2019; Laumann et al., 2015; Mueller et al., 2013). This issue 

is particularly problematic since it can result in functional activation maps that fail to align 

perfectly between individuals (Fedorenko & Blank, 2020; Fischl et al., 2008; Frost & Goebel, 

2012; Vázquez-Rodríguez et al., 2019). But beyond questionable validity, group-level analyses 
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also face issues with sensitivity and resolution. As discussed in Fedorenko and Blank (2020), in 

task fMRI studies, some activations may not be detectable at the group level despite being 

clearly present in each individual. Additionally, two regions that are spatially adjacent but 

distinct functionally on an individual level may be resolved as one region at the group level. This 

issue of low functional resolution was demonstrated recently as default networks A and B, and 

the language network previously resolved as overlapping at the group level were disentangled 

only at the individual level (Braga et al., 2020; Braga & Buckner, 2017; DiNicola et al., 2020). 

Thus, to counter the issues of validity, sensitivity, and resolution intrinsic to group-level 

analyses, individual-level approaches appear to be a viable alternative. 

A Precision Approach 

 Individual-level analyses are intertwined with the origins of fMRI research, beginning 

with a 1991 study featuring a flickering lights paradigm and a single participant (Kwong, 2012). 

Just over 30 years later, a return to this design is being heralded as a well-powered alternative to 

the large and costly sample sizes required for cross-sectional group and brain-wide association 

studies (Gratton et al., 2022; Marek et al., 2022). This method of densely sampling individuals 

can, as noted by Marek et al. (2022), generate precise brain maps as well as blueprints for 

reducing MRI artifacts. Moreover, in combination with a functional localizer, individual 

approaches can have superior sensitivity, functional resolution, and interpretability (Fedorenko, 

2021). Despite these many advantages, the questions that can be answered using this method are 

different from those approached with a traditional group analysis and may be seen as limiting to 

some researchers. However, this approach has been demonstrated to be effective in examining 

brain plasticity (Newbold et al., 2020; Newbold & Dosenbach, 2021), disentangling functional 

networks (Braga et al., 2020; Braga & Buckner, 2017; DiNicola et al., 2020), and identifying 
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network variants (Gordon et al., 2017; Laumann et al., 2015; Perez et al., 2023) among other 

outcomes. 

Aims and Hypotheses  

 In line with the precision neuroimaging approach and previous efforts to understand brain 

network organization and specialization, the present study examines two open questions. First, 

we explore which networks exhibit the greatest hemispheric specialization. Previously, Wang et 

al. (2014), identified networks associated with language, visuospatial attention, and executive 

control as being the most specialized. However, it remains unclear how these estimates might 

change with a greater number of examined networks, and when implemented in individuals. In 

line with previous work, we hypothesized that networks associated with language, visuospatial 

attention, and executive control would show the greatest specialization. 

 Second, we investigate which connections support specialization in a given network. 

Although a data-driven approach was implemented to address contributions to network 

specialization, we anticipated that the pattern of network contributions would follow one of three 

outcomes: a within-between network gradient, a specialization gradient, or a sensorimotor-

association gradient.  

Methods 

Datasets and Overview 

 Three independent datasets were used for these analyses: The Human Connectome 

Project (HCP; split into discovery and replication datasets), the Human Connectome Project-

Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et 

al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per 

participant. See Study 1 for dataset descriptions and accompanying MRI acquisition parameters. 
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MRI Processing 

 Processing for BOLD NIFTI files was comprised of the following steps: preprocessing, 

generation of individual parcellations, implementation of the autonomy index and the 

deconstructed autonomy index. 

Preprocessing 

 Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI 

runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; Kong et al., 

2019; Li et al., 2019). The implementation of this pipeline was described previously (see Study 

1) and is summarized briefly here. Following FreeSurfer surface reconstruction (FreeSurfer 

6.0.1, Dale et al., 1999), the pipeline includes the removal of the first four frames and motion 

correction (using FSL; Jenkinson et al., 2002; Smith et al., 2004), functional and structural image 

alignment (using FsFast; Greve & Fischl, 2009), linear regression using multiple nuisance 

regressors (using a combination of CBIG in-house scripts and FSL MCFLIRT; Jenkinson et al., 

2002), bandpass filtering (using CBIG in-house scripts), surface project (using FreeSurfer’s mri-

vol2surf function), and surface smoothing using a 6 mm full-width half-maximum kernel (using 

FreeSurfer’s mri_surf2surf function; Fischl et al., 1999).  

Individual Network Parcellations 

 Following preprocessing, network parcellations were computed using a multi-session 

hierarchical Bayesian modeling (MS-HBM) pipeline (Kong et al., 2019) in MATLAB R2018b 

(MATLAB, 2018). This pipeline generates parcellations for individuals with multiple sessions of 

fMRI data by using a variational Bayes expectation-maximization algorithm to learn group-level 

priors from a training dataset and apply those to estimate individual-specific parcellations. The 

model estimates various parameters, including group-level network connectivity profiles, inter-
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subject functional connectivity variability, intra-subject functional connectivity variability, a 

spatial smoothness prior, and an inter-subject spatial variability prior. A k of 17 was selected for 

all participants (Yeo et al., 2011). Following the generation of individual parcellations, a 

Hungarian matching algorithm was used to match the parcellation labels with the Yeo et al. 

(2011) 17-network group parcellation labels.  

Autonomy Index 

 The autonomy index approaches specialization from a functional connectivity perspective 

and is known to reliably estimate specialization across neurotypical and clinical samples 

(Mueller et al., 2015; Sun et al., 2022; Wang et al., 2014). First, individual functional 

connectivity matrices were calculated for each BOLD run and then averaged across runs within 

an individual at the fsaverage6 resolution in MATLAB R2018b (MATLAB, 2018). From here, 

the autonomy index was computed. In summary, for each seed vertex obtained from a functional 

connectivity matrix, the degree of within-hemisphere connectivity and cross-hemisphere 

connectivity were computed by summing the number of vertices correlated to the seed in the 

ipsilateral hemisphere and in the contralateral hemisphere. This is then normalized by the total 

number of vertices in the corresponding hemisphere, thus the accounting for a potential brain 

size asymmetry between the two hemispheres. Finally, AI is calculated as the difference between 

normalized within- and cross-hemisphere connectivity as follows: 

AI = Ni/Hi – Nc/Hc 

where Ni and Nc are the number of vertices correlated to the seed ROI (using a threshold of 

|0.25|) in the ipsilateral hemisphere and contralateral hemisphere, respectively. Hi and Hc are the 

total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute 
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the specialization of each functional network, the AI was averaged within the boundary of each 

network within each hemisphere on an individual basis. 

Deconstructed Autonomy Index 

 To address the aim of identifying contributions to network specialization, the autonomy 

index was deconstructed for each network. This was accomplished by first calculating functional 

connectivity matrices for each BOLD run as previously described. Then, for each target network 

(1-17) and each seed vertex derived from a functional connectivity matrix, the degree of within- 

and cross-hemisphere connectivity was computed by summing the number of highly correlated 

vertices belonging to that target network in each hemisphere. This is normalized by the total 

number of vertices with a given target network label in each hemisphere. This deconstructed AI 

is calculated as follows: 

dAI = 𝑇𝑇𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

−  𝑇𝑇𝑇𝑇𝑐𝑐
𝑇𝑇𝑇𝑇𝐻𝐻𝑐𝑐

 

where TNi represents the number of vertices correlated with the seed vertex (using a threshold of 

|0.25|) that fall within the target network in the ipsilateral hemisphere, TNHi represents the 

number vertices with the target network label in the ipsilateral hemisphere, TNc represents the 

number of vertices correlated with the seed vertex that fall within the target network in the 

contralateral hemisphere, and TNHc represents the number of vertices with a given target 

network label in the contralateral hemisphere. This results in a matrix of dAI values for each 

target network for each subject. Then, for each target network matrix, the deconstructed AI is 

averaged within the boundaries of each network within each subject (1-17; see Figure 1).  
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Figure 1 

The Deconstructed Autonomy Index (dAI) 

Note. The first step consists of calculating dAI for each vertex. Panel A depicts a seed vertex 

(white circle) and a target network (highlighted in blue). In Panel B, vertices correlated with the 

seed vertex in the ipsilateral and contralateral hemispheres are identified. In Panel C, the 

correlated vertices are filtered to those that fall within the boundaries of the target network. In 

Panel D, the dAI is calculated for the seed vertex, which is the ratio of connections between the 

seed vertex and target network above |.25| in the ipsilateral hemisphere divided by the total 

number of vertices in the target network in the ipsilateral hemisphere and subtract from this the 

ratio of connections between the seed vertex and target network in the contralateral hemisphere 

divided by the total number of vertices in the target network in the contralateral hemisphere. This 

process (Panels A-D) is repeated for each vertex, after which dAI is calculated for each target 

network. Panel E depicts the dAI values when Language is the target network. Next, in Panel F, 
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dAI values are averaged within each network. This process is repeated for each target network 

(1-17; Panel G). 

 

Replications of Wang et al. (2014) 

 Before expanding on the work of Wang et al. (2014), which was originally performed in 

Brain Genomics Superstruct Project subjects (Holmes et al., 2015), we first performed a 

replication in the HCP-Discovery and HCP-Replication datasets. This was accomplished by 

averaging left hemisphere and right hemisphere autonomy index values within the network 

boundaries of a seven-network group parcellation produced from 1000 subjects (the parcellation 

is freely available online: 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011; Yeo et al., 2011). 

Then, to proceed in a step-wise fashion, the same procedure was undertaken with a 17-network 

group parcellation (Yeo et al., 2011).  

Reliability Analyses 

 Reliability analyses sought to address three questions: 1) What is the test-retest reliability 

of the autonomy index using individual parcellations, 2) How much data is needed to obtain a 

stable estimate of the autonomy index, and 3) Is there a task effect on autonomy index 

estimation? 

Test-Retest Reliability 

 In order to determine the test-retest reliability of the autonomy index, HCP subjects with 

all four resting-state runs available post-preprocessing were utilized (N = 232). Individual 

parcellations were generated separately for the first two runs and the second two runs. Functional 

connectivity matrices were also generated separately for the first session and the second session, 
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and the autonomy index was calculated on both. Next, the autonomy index was averaged within 

network boundaries for the left and right hemispheres for each session. Outliers were fenced on a 

network basis to an upper limit of the third quartile plus 1.5 multiplied by the interquartile range, 

and a lower limit of the first quartile minus 1.5 multiplied by the interquartile range. Finally, an 

intraclass correlation was calculated for the averaged autonomy index values for the top five 

most left-lateralized (Language, Dorsal Attention-A, Default-A, Default-C, and Limbic-B) and 

the top five most right-lateralized networks (Salience/Ventral Attention-A, Control-B, Control-C, 

Default-C, and Limbic-B). Intraclass correlations were then evaluated using the standard 

guidelines from Koo & Li (2016), with values less than 0.5 indicating poor reliability, values 

between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and 0.9 indicating 

good reliability, and values greater than 0.9 indicating excellent reliability (based on a 95% 

confidence interval). Spearman rank correlations were then used to examine potential 

relationships between network test-retest reliability and a network-averaged signal-to-noise ratio.  

Stable Estimate Analysis 

 Given that MRI scanning is costly, rendering it relatively rare to have highly sampled 

individuals, it is important to understand how much data is needed to reliably estimate 

specialization. To address this concern, we utilized HCP subjects with all four resting-state runs 

(N = 232) available post-preprocessing. Following preprocessing, the first and third scans from 

each participant were set aside to compose 30 minutes of independent data. Next, the second and 

fourth scans were each split into three five-minute segments. Runs were split in MATLAB 

R2018b (MATLAB, 2018) using native MATLAB functions as well as the FreeSurfer functions 

MRIread and MRIwrite. The MS-HBM pipeline was then used to generate separate individual 

parcellations from 5, 10, 15, 20, 25, and 30 minutes of data from the segmented scans. The MS-
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HBM pipeline was also used to separately generate individual parcellations from 30 minutes of 

independent data from the same subjects. Of note, the reliability of the MS-HBM pipeline has 

been examined previously through test-retest reliability (see Kong et al. (2019) Figure 2B and 

supplementary Figure S10C) and a stable estimate analysis (see Study 1). The autonomy index 

was then calculated for each iteration (5, 10, 15, etc. minutes) and the independent 30 minutes of 

data. An intraclass correlation between the autonomy index from each iteration parcellation and 

the independent 30 minutes parcellation were assessed within the right and left hemispheres for 

each subject. Similarly, an intraclass correlation between the autonomy index from each iteration 

parcellation and the independent 30 minutes parcellation were assessed within the right and left 

hemispheres for each network. Intraclass correlations from the stable estimate analysis were also 

evaluated using the guidelines from Koo & Li (2016). 

Task Effects on the Autonomy Index 

 Following the procedure outlined in Study 1, task effects were also examined for the 

estimation of the autonomy index within individuals. Briefly, individual parcellations were 

generated using both task and resting-state fMRI data from the NSD dataset using various 

combinations of runs within task type: even-numbered runs, odd-numbered runs, the first half of 

runs, the second half of runs, and two random selections of runs (without replacement). 

Intraclass correlation coefficients were then used to compare autonomy index overlap within task 

and between tasks for each hemisphere. Wilcoxon Signed Rank tests were then used to compare 

the intraclass correlations (R Core Team, 2011; Wilcoxon, 1945).  

Identifying Specialized Networks with Individual Parcellations 

 After establishing the reliability of approaching specialization from an individual-level 

perspective using the autonomy index, we addressed the first hypothesis of determining whether 
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any of the 17 networks exhibited specialization, and if so, which exhibited the greatest 

specialization. The following analyses were first implemented in the HCP-Discovery dataset and 

then replicated in the HCP-Replication and HCPD datasets using all data available from each 

participant. First, to determine whether any networks exhibited specialization, multiple 

regressions were implemented for each of the 17 networks, separately for the left and right 

hemispheres. Models consisted of the a given network’s mean autonomy index value and the 

covariates of mean-centered age, sex, mean-centered mean framewise displacement, and 

handedness (measured via the Edinburgh Handedness Inventory, Oldfield, 1971). A network was 

considered specialized if the model intercept was significant at the Bonferroni-corrected alpha 

level of 0.001.  

Within-Network Contributions 

 To address our second hypothesis regarding contributions to specialized networks, we 

implemented the deconstructed autonomy index in the top five left- and right-lateralized 

networks as determined via the HCP-Discovery dataset. These values were adjusted for mean-

centered age, mean-centered framewise displacement, sex, and handedness. Following model-

adjustment, potential patterns were visually identified and then assessed quantitatively via 

matrices of mean dAI values first within the HCP-Discovery dataset and then within the HCP-

Replication and HCPD datasets. 

Results 

Replication of Wang et al. (2014) 

 Using the Yeo et al. (2011) seven-network group parcellation, we identified the Default 

and Frontoparietal networks as the most left-lateralized networks, and the Frontoparietal, Dorsal 

Attention and Ventral Attention networks as the most right-lateralized networks for both the 
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HCP-Discovery and HCP-Replication datasets (see Supplementary Figure S1). This pattern of 

specialized networks replicates that found by Wang et al. (2014). Next, using the Yeo et al. 

(2011) 17-network group parcellation, we identified the Dorsal Attention-A, Language, Default-

A, Default-C, and Limbic-B networks as the most left-lateralized across both datasets (see 

Supplementary Figure S2). The Control-B, Default-C, and Limbic-B networks showed the 

greatest right- hemisphere lateralization.  

Reliability Analyses 

 The reliability of the autonomy index was examined through the following three 

analyses: test-retest reliability, a stable estimate analysis, and a task effects analysis.   

Test-Retest Reliability 

 Using HCP subjects with all four resting-state runs available post-preprocessing (N = 

232), test-retest reliability was assessed for the top five left- and right-lateralized networks. For 

the left-lateralized networks, intraclass correlations were within a moderate range, between 0.55 

to 0.77, with the lowest being the Limbic-B network (ICC = 0.55, F(231, 231) = 3.5, p < .001, 

95% CI [0.46, 0.63]; see Figure 2). For the right-lateralized networks, the intraclass correlations 

were also in the moderate range, from 0.55 to 0.72, with the Control-C network exhibiting the 

lowest reliability (ICC = 0.55, F(231, 231) = 3.5, p < .001, 95% CI [0.45, 0.63]). Spearman rank 

correlations identified no relationship between test-retest reliability (intraclass correlation 

coefficients) and network-averaged temporal signal-to-noise ratios (left hemisphere: r(15) = 

0.11, p = .68; right hemisphere: r(15) = .27, p = .29; see Supplementary Figure S3). 
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Figure 2  

Test-Retest Reliability of Autonomy Index Values for Five Left- and Right-Specialized Networks 

in 232 HCP Subjects       
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Note. Left-specialized networks (left column) included Language, Dorsal Attention-A, Default-

A, Default-C, and Limbic-B. Right-specialized networks (right column) included 

Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B. In each plot, a 

circle represents a subject.  

 

Stable Estimate Analysis 

 To address the question of how much data is needed in order to obtain a stable estimate 

of autonomy index values, combinations of five-minute increments (5, 10, 15…30 minutes) were 

compared against 30 independent minutes of data in 232 HCP subjects. The intraclass 

correlations indicate that approximately 20 minutes of data are needed to obtain moderate to 

good intraclass correlations for the majority of subjects (see Figure 3 Panel A). The stable 

estimate analysis was also approached from a network basis (as opposed to the subject basis 

presented in Figure 3 Panel A). Across both hemispheres, networks with the lowest intraclass 

correlation were Limbic-A, Control-A, and Somatomotor-B (for the overall distributions, see 

Figure 3 Panel B; for the individual network intraclass correlations, see Supplementary Figure 

S4). Notably, the network with the greatest intraclass correlation for the left hemisphere 

autonomy index was as the Default-A network, while the Control-B network was the right 

hemisphere counterpart. Most networks improved in reliability with additional data. 
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Figure 3  

Evidence for Reliable Estimates of the Autonomy Index in 232 HCP Subjects 

 Note. Panel A depicts the intraclass correlation coefficient calculated for each subject’s 17 mean 

autonomy index values for each time increment (5, 10, 15 … 30 minutes) and the subject’s 17 

mean autonomy index values from 30 independent minutes of data for the left and right 

hemispheres. Panel B depicts the distribution of intraclass correlations in autonomy index 

between the 30 independent minutes of data and each increment of data for each network for the 

A

B
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left and right hemispheres. Individual network intraclass correlation coefficients are depicted in 

Supplementary Figure S4. 

 

Task Effects on the Autonomy Index 

 Using the NSD dataset (N = 8) to compare potential differences between resting-state and 

task fMRI on autonomy index estimates for the left and right hemispheres, we found differences 

between the within-task comparisons and between task comparisons for autonomy index 

intraclass correlation coefficients (see Figure 4). For the left hemisphere autonomy index 

intraclass correlation coefficients, Wilcoxon signed rank comparisons revealed a difference in 

within-task (Task-Task and Rest-Rest) intraclass correlation coefficients for even versus odd 

numbered runs (V = 33, p = .04) as well as for the first half versus the second half of runs (V = 

34, p = .02), but not for the random selection of runs (V = 26, p = 31). Regardless of how the data 

were split, a task effect in intraclass correlation coefficients was found between within-task 

(Task-Task) and between-task (Task-Rest) intraclass correlation coefficients for even versus odd 

numbered runs (V = 36, p = .008), the first half versus the second half of runs (V = 36, p = .008), 

and the random selection of runs (V = 34, p = .02).  

 Similarly, with the right hemisphere autonomy index intraclass correlation coefficients, a 

significant difference was found for within-task (Task-Task and Rest-Rest) reliability across the 

even versus odd numbered runs (V = 34, p = .02) and the first half versus the second half of runs 

(V = 32, p = .05), but not for the random selection of runs (V = 24, p = .46). Regardless of how 

the data were split, a significant difference was found between within-task (Task-Task) and 

between-task intraclass correlation coefficients across the even versus odd numbered runs (V = 
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35, p = .02), the first half versus the second half of runs (V = 36, p = .008), and the random 

selection of runs (V = 36, p = .008).  

 

Figure 4  

Task Dependency of the Autonomy Index in the NSD Dataset 

Note. Depicted in the top row are the intraclass correlation coefficients for the left hemisphere 

autonomy index for each participant. Regardless of how the data were split (even- versus odd-

numbered runs, the first half versus the second half, or a random selection without replacement), 

a task effect was found. Depicted in the second row are the intraclass correlation coefficients for 

the right hemisphere autonomy index for each participant. In each plot, circles connected by a 

line represent an individual.  

 

Identifying Specialized Networks with Individual Parcellations 
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 A series of multiple regressions were used to identify if any of the 17 networks were 

specialized, first in the HCP-Discovery dataset and then in the HCP-Replication and HCPD 

datasets. Networks with significant left-hemisphere specialization (p < .001) across all three 

datasets included each network except Visual-A and Default-B (see Supplementary Table 1). All 

17 networks were found to have significant right-hemisphere specialization (p < .001) across all 

three datasets (see Supplementary Table 2). Of the covariates, only handedness was reliably 

significant across all three datasets for the left-hemisphere averaged Salience/Ventral Attention-

A autonomy index (see Supplementary Figure S5). See Figure 5 for model-adjusted mean 

autonomy index values for each of the 17 networks for the left hemisphere (Panel A) and the 

right hemisphere (Panel B). Notably, the Limbic-B and Default-C networks appear to be strongly 

lateralized to both hemispheres, not unlike what has previously been observed with the 

frontoparietal control network (Wang et al., 2014). 
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Figure 5  

Specialization for 17 Networks Across the HCP-Discovery, HCP-Replication, and HCPD 

Datasets 

Note. For each panel, the y-axis displays the 17 networks and the x-axis displays the adjusted 

average autonomy index values, with greater values representing greater hemispheric 

specialization (left hemisphere on Panel A and right hemisphere on Panel B). Autonomy index 

values were adjusted by regressing out the effects of mean-centered age, mean-centered mean 

framewise displacement, sex, and handedness using the following formula: AIadj = AInat — 

A B

HCP-DISC
HCP-REP
HCPD
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[β1(mean-centered agenat - mean of mean-centered agenat) + β2(mean-centered FDnat - mean of 

mean-centered FDnat) + β3(sexnat – mean sexnat) + β4(handednessnat – mean handednessnat)]. 

Autonomy index adjustment occurred separately for each network within each dataset for each 

hemisphere. Bars represent the 2.5 and 97.5 percentiles. 

 

Within-Network Contributions to Specialization 

 To decompose network specialization and identify the greatest contributions to each 

network’s specialization, deconstructed autonomy index values were averaged within the 17 

networks for each target network. Visual examination of the top left- and right-lateralized 

networks initially indicated that within-network connections appear to be the greatest 

contributors (e.g., Language network connections contribute the most to Language network 

specialization; see Supplementary Figures S6-S11). Following within-network connections, other 

specialized networks appear to be the second largest contributor to specialization (see Figure 6). 

Matrices of mean dAI scores for all potential 17 seed networks confirmed these two principles 

(see Supplementary Figures S12-S14).   
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Figure 6 

Deconstructed Autonomy Index Values Within and Between Specialized Networks for the HCP-

Discovery, HCP-Replication, and HCPD Datasets 

Note. For each row, the averaged dAI value for each category is given. dAI scores were grouped 

as being within-network (e.g., target network Language and averaged network Language), 

between specialized networks (e.g., target network Language and averaged network Dorsal 

LH, Spec.
RH, Spec.
LH, Not Spec.
RH, Not Spec.

HCP-DISC

LH, Spec.
RH, Spec.
LH, Not Spec.
RH, Not Spec.

HCP-REP

LH, Spec.
RH, Spec.
LH, Not Spec.
RH, Not Spec.

HCPD
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Attention-A), and between not specialized (e.g., target network Language and averaged network 

Visual-A). Next, dAI scores were further binned depending on the target network as being 

specialized or not specialized (specialized networks included the top five left- and right-

lateralized networks). Finally, dAI scores were organized by hemisphere, left or right. Each point 

represents a single target and averaged network combination mean dAI score. Across each 

dataset, within-network contributions appear to be greatest followed by between-specialized 

network contributions. 

 

Discussion 

 In the present study, we examined brain network specialization using a functional 

connectivity-based measure, replicating and expanding on the work of Wang et al. (2014). After 

directly replicating Wang et al. (2014) and addressing the reliability of a within-individual 

implementation, we identified specialized networks at a 17-network resolution and determined 

the greatest contributions to specialization. Inconsistent with our first hypothesis, we identified 

networks other than those directly associated with language, visuospatial attention, and executive 

control as being the most specialized. However, across three datasets, we found that within-

network connections contributed most to a given network’s specialization followed by 

connections from other specialized networks. Taken as a whole, these results provide evidence 

for guiding principles of brain organization generally and the specialization of macroscale brain 

networks specifically.   

Evidence for the Reliability of the Autonomy Index 

 In the present study, we examined specialization using the autonomy index. However, the 

implementation of this measure differed from the original in two key ways: the use of a 17-
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network parcellation scheme as opposed to seven networks, and the adoption of individual 

parcellations to delineate network boundaries as opposed to a single group-level network 

parcellation. While we contend that these differences facilitated the acquisition of novel insights 

into network specialization, it was uncertain as to whether they compromised the integrity of the 

autonomy index. The top five left- and right-specialized networks fell within moderate test-retest 

reliability. Additional reliability analyses indicated that the autonomy index is stable within 

individuals after approximately 20 minutes of resting-state fMRI data. 

 While the individual-level implementation of the autonomy index was found to be 

reliable, task effects were found. This finding replicates previously observed task effects on a 

different measure of functional connectivity-derived network specialization (see Study 1). This is 

likely due to the idea that the act of "resting" introduces greater variability in functional 

connectivity compared to that observed during task-based fMRI, potentially as a result of mind 

wandering (Elton & Gao, 2015). Furthermore, when it comes to predicting individual traits, task-

based models outperform rest-based models, and this has been attributed to the "unconstrained 

nature" of the resting state (Greene et al., 2018). 

Identification of Highly Specialized Networks 

 Notably, the top five greatest left-specialized networks included the Language, Dorsal 

Attention-A, Default-A, Default-C, and Limbic-B networks, while the right-specialized 

counterparts included the Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and 

Limbic-B networks. Similar to previous work, several highly left-lateralized networks support 

language function (such as the Language, Default-A, and Default-C networks) and several highly 

right-lateralized networks support visuospatial attention and executive control functions (such as 

the Salience/Ventral Attention-A, Control-B, and Control-C networks; Wang et al., 2014).  
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Interestingly, while networks associated with language, attention, and executive control were 

highly specialized, they were not the most specialized left- and right-lateralized networks. 

Instead, the Dorsal Attention-A and Limbic-B networks were the most left- and right-lateralized 

networks, respectively. Corroborating this finding, a network surface area-based approach to 

specialization also using the Kong et al. (2019) 17-network parcellation identified these two 

networks as the most specialized (see Study 1). While it is unclear why language and 

visuospatial attention were not identified as the most lateralized networks, this may be due to 

differences in methodologies or even the failure to compare language and attentional networks 

against the large number of networks examined here.  

 An alternative explanation for the identification of the Dorsal Attention-A and Limbic -B 

networks as being most specialized comes from other within-individual investigations. Work on 

the default network found that the group-defined default network is split into two parallel yet 

interdigitated networks which subserve different functions on the individual level (Braga & 

Buckner, 2017; DiNicola et al., 2020). Thus, it may be that, by taking a fine-grained approach to 

network parcellations, networks which have previously been described as bilateral may be split 

into subnetworks, of which one may be left- or right-lateralized. In the case of dorsal attention, 

previously described as belonging to a bilateral network (Fox et al., 2006; Mengotti et al., 2020), 

this may have been split into a highly left-specialized network (Dorsal Attention-A) and a less 

specialized network (Dorsal Attention-B).  

 Interestingly, the present study failed to replicate dually-specialized frontoparietal control 

networks (Wang et al., 2014) within the 17-network parcellation. Instead, we identified the 

Control-B and Control-C networks as being highly right-lateralized with minimal specialization 

of the Control-A network. Additionally, we found that the Default-C and Limbic-B networks 
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were highly specialized to both hemispheres. While it is unclear why these specific networks 

would show this dual or coupling pattern of specialization, further investigation into these 

specific networks and their functional implications could provide valuable insights. 

Contributions to Specialization 

 In order to better understand which functional connections contribute the most to a given 

network’s specialization, we implemented a novel version of the within-individual 

implementation of the autonomy index: the deconstructed autonomy index. Resulting patterns of 

dAI values indicated that the greatest contributions to network specialization were from the same 

network (following a within-between network gradient) followed by other specialized networks 

(following a specialization gradient). This first principle of specialization contributions--that 

within-network contributions are greatest--is supported by the idea that hemispheric asymmetries 

increase the modularization of functions, thereby decreasing redundancy (Levy, 1969), 

processing speed (Ringo et al., 1994), and interhemispheric conflict (Andrew et al., 1982; 

Corballis, 1991; Gerrits et al., 2020; Vallortigara, 2006). A larger number of within-network 

connections would contribute to that network’s specialization of function and likely increase the 

efficiency of that network. Support for the second principle of network contributions--that 

connections from other specialized networks make up the second largest contribution--can be 

found from graph theoretical analysis and so-called “rich clubs”. These hubs are composed of 

high degree and high strength nodes, and are highly interconnected to one another (Colizza et al., 

2006; Opsahl et al., 2008). Notably, rich club nodes have been identified in highly integrated 

brain regions, such as cingulate and pericingulate regions, as well as highly specialized brain 

regions including the orbitofrontal cortex, caudate, fusiform gyrus, and hippocampus (Kocher et 

al., 2015). Relevant to the present study, this work with rich club hubs evidences an interesting 
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idea: specialized brain regions can be highly interconnected with one another. While the 

specialized brain networks discussed in the present study are not necessarily the same as the 

specialized brain regions referenced in Kocher et al. (2015), our work suggests that the strength 

of between-network contributions is less than within-network contributions. 

Limitations and Future Directions 

 In order to obtain individual parcellations that are reliable within individuals and 

comparable with previous work, the MS-HBM pipeline was selected. As a part of this pipeline, 

inter-subject variability is accounted for by way of group priors (derived from 40 GSP subjects). 

One risk with incorporating group priors is that they may constrain network boundaries in ways 

that do not necessarily reflect an individual’s functional neurobiology. As noted in Kong et al. 

(2019), functional connectivity profiles derived from individuals are fairly noisy compared with 

those from a group-averaged profile. Thus, while the incorporation of group priors may reduce 

this noise, some signal may be lost as well.  

 An additional limitation with the selected method concerns the failure to capture the 

moment-to-moment dynamics of brain function. By creating static parcellations, we have 

oversimplified the temporal dimension of these large-scale networks. Relevant to the use of the 

autonomy index, which is based on correlations between vertices, one team found that brain 

activity between pairs of distributed regions fluctuates in and out of correlation over time 

(Zalesky et al., 2014). Future investigations may consider implementing approaches to 

specialization that account for temporal dynamics, such as multi-layer network approaches 

(Betzel & Bassett, 2017).  

 Further applications of the deconstructed autonomy index could involve studying 

populations other than neurotypical children, adolescents, and adults. For example, it would be 
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interesting to know how contributions to network specialization may be different in autism, for 

which atypical functional lateralization patterns have been reliably observed (Anderson et al., 

2010; Cardinale et al., 2013; Eyler et al., 2012; Harris et al., 2006; Jouravlev et al., 2020; 

Kleinhans et al., 2008; X.-Z. Kong et al., 2022; Lindell & Hudry, 2013; Müller et al., 2003; 

Nielsen et al., 2014; Persichetti et al., 2022; Redcay & Courchesne, 2008) as well as 

schizophrenia (Agcaoglu et al., 2018; X.-Z. Kong et al., 2022; Ocklenburg et al., 2013; Sommer 

et al., 2001). Additionally, it is unknown when the patterns of network contributions are 

established or how they potentially change in older adulthood. Future research could provide 

valuable insights into potential variations of network contributions in individuals with 

neurodevelopmental conditions and shed light on the developmental trajectory and potential 

changes in network specialization throughout adulthood. 

Conclusions 

 In the present study, we examined brain network organization on an individual level 

through the lens of specialization. We identified most networks as exhibiting greater within-

hemisphere connectivity than between-hemisphere connectivity. Additionally, we found that the 

greatest contributors to network specialization were first within-network connections followed 

by connections with other specialized networks. 
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Study 3 Supplementary Materials 

Figure S1  

Direct Replication of Wang et al. (2014) Across the HCP-Discovery and HCP-Replication 

Datasets 

BA

DC
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Note. Panel A depicts autonomy index (AI) values averaged within the left hemisphere networks 

of the HCP-Discovery dataset. Panel B depicts AI values averaged within the right hemisphere 

networks of the HCP-Discovery dataset. Panel C depicts AI values averaged within the left 

hemisphere networks of the HCP-Replication dataset. Panel D depicts AI values averaged within 

the right hemisphere networks of the HCP-Replication dataset. Network boundaries came from a 

1000-subject parcellation (Yeo et al., 2011). Error bars represent the standard error of the mean. 
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Figure S2 

Replication of Wang et al. (2014) Across 17 Networks in the HCP-Discovery and HCP-

Replication Datasets 

A

B
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Note. Panel A depicts the average autonomy index (AI) values for each of 17 networks in the left 

and right hemispheres for the HCP-Discovery dataset. Panel B depicts the average AI values for 

each of 17 networks in the left and right hemispheres for the HCP-Replication datasets. Network 

boundaries came from a 1000-subject parcellation (Yeo et al., 2011). Error bars represent the 

standard error of the mean. 

 

Figure S3 

Test-Retest Reliability and Temporal Signal-to-Noise Ratio (tSNR) by Network 

Note. tSNR was calculated by taking the mean BOLD signal and dividing it by the standard 

deviation in BOLD signal across all vertices for each participant. The tSNR was then averaged 

within network boundaries for each participant before being averaged across participants. 

Spearman rank correlations identified no relationship between intraclass correlation coefficients 

and network-averaged temporal signal-to-noise ratios in the left hemisphere (r(15) = 0.11, p = 

BA
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.68; Panel A) and right hemisphere (r(15) = .27, p = .29; Panel B). Each circle represents a single 

network.  

 

Figure S4 

Autonomy Index Network Reliability 

Note. Depicted is the intraclass correlation coefficient calculated for each network’s mean 

autonomy index value between the 30 independent minutes of data and each increment of data. 

Panel A depicts the intraclass correlation coefficients for networks in the left hemisphere while 

Panel B depicts the intraclass correlation coefficients for networks in the right hemisphere. 
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Figure S5  

Negative Relationship Between Handedness and Salience/Ventral Attention-A Left Hemisphere 

Mean Autonomy Index 

Note. Across the HCP-Discovery, HCP-Replication, and HCPD datasets, handedness (measured 

via the Edinburgh Handedness Inventory) was a significant covariate for the left hemisphere 

Salience/Ventral Attention-A mean autonomy index. Each point represents a subject.  
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Figure S6  

Deconstructed Autonomy Index (dAI) for the Top Five Left-Lateralized Networks in the HCP-

Discovery Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network (Language, 

Dorsal Attention-A, Default-A, Default-C, and Limbic-B). Points represent mean dAI values. 
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Figure S7 

Deconstructed Autonomy Index (dAI) for the Top Five Right-Lateralized Networks in the HCP-

Discovery Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network 

(Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B). Points 

represent mean dAI values. 
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Figure S8 

Deconstructed Autonomy Index (dAI) for the Top Five Left-Lateralized Networks in the HCP-

Replication Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network (Language, 

Dorsal Attention-A, Default-A, Default-C, and Limbic-B). Points represent mean dAI values. 
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Figure S9 

Deconstructed Autonomy Index (dAI) for the Top Five Right-Lateralized Networks in the HCP-

Replication Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network 

(Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B). Points 

represent mean dAI values. 
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Figure S10 

Deconstructed Autonomy Index (dAI) for the Top Five Left-Lateralized Networks in the HCPD 

Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network (Language, 

Dorsal Attention-A, Default-A, Default-C, and Limbic-B). Points represent mean dAI values. 
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Figure S11 

Deconstructed Autonomy Index (dAI) for the Top Five Right-Lateralized Networks in the HCPD 

Dataset    
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Note. dAI values were averaged within each network (1-17) for each target network 

(Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B). Points 

represent mean dAI values. 
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Figure S12  

Deconstructed Autonomy Index (dAI) for All 17 Target Networks in the HCP-Discovery Dataset 
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Note. dAI values were averaged within each network (1-17) for each target network (1-17). The 

diagonal represents within-network contributions, which appear to make the strongest 

contributions to network specialization. These are followed by contributions from other 

specialized networks. 
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Figure S13  

Deconstructed Autonomy Index (dAI) for All 17 Target Networks in the HCP-Replication 

Dataset   
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Note. dAI values were averaged within each network (1-17) for each target network (1-17). The 

diagonal represents within-network contributions, which appear to make the strongest 

contributions to network specialization. These are followed by contributions from other 

specialized networks. 
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Figure S14  

Deconstructed Autonomy Index (dAI) for All 17 Target Networks in the HCPD Dataset 
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Note. dAI values were averaged within each network (1-17) for each target network (1-17). The 

diagonal represents within-network contributions, which appear to make the strongest 

contributions to network specialization. These are followed by contributions from other 

specialized networks. 

 

Supplementary Table 1  

Identifying Left-Specialized Networks Using Multiple Regressions in the HCP-Discovery Dataset 

(N = 276), HCP-Replication Dataset (N = 277), and the HCPD Dataset (N = 343) 

Network Intercept Dataset β SE t p 
Visual-A      
 HCP-DISC 0.19 0.18 1.07 .29 
 HCPD-REP 0.01 0.02 0.29 .14 
 HCPD 0.11 0.13 0.84 .39 
Visual-B      
 HCP-DISC 0.99 0.16 6.4 < .001 
 HCPD-REP 0.75 0.15 5.06 < .001 
 HCPD 0.97 0.18 5.3 < .001 
Somatomotor-A      
 HCP-DISC 1.66 0.21 7.52 < .001 
 HCPD-REP 1.44 0.23 6.28 < .001 
 HCPD 1.3 0.14 9.33 < .001 
Somatomotor-B      
 HCP-DISC 1.78 0.24 7.48 < .001 
 HCPD-REP 1.79 0.19 -0.68 < .001 
 HCPD 0.63 0.12 5.3 < .001 
Language      
 HCP-DISC 3.53 0.32 11.12 < .001 
 HCPD-REP 4.22 0.32 13.16 < .001 
 HCPD 3.87 0.21 18.14 < .001 
Dorsal Attention-A      
 HCP-DISC 5.13 0.22 23.79 < .001 
 HCPD-REP 5.79 0.24 24.09 < .001 
 HCPD 5.89 0.22 27.09 < .001 
Dorsal Attention-B      
 HCP-DISC 2.57 0.22 11.44 < .001 
 HCPD-REP 2.7 0.22 12.09 < .001 
 HCPD 1.73 0.18 9.81 < .001 
Salience/VenAttn-A      
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 HCP-DISC 1.55 0.23 6.76 < .001 
 HCPD-REP 1.58 0.22 7.29 < .001 
 HCPD 0.76 0.17 4.38 < .001 
Salience/VenAttn-B      
 HCP-DISC 1.07 0.13 7.89 < .001 
 HCPD-REP 1.24 0.15 8.36 < .001 
 HCPD 1.77 0.16 11.28 < .001 
Control-A      
 HCP-DISC 1.32 0.18 7.14 < .001 
 HCPD-REP 1.59 0.16 9.79 < .001 
 HCPD 1.57 0.09 16.75 < .001 
Control-B      
 HCP-DISC 1.56 0.24 6.46 < .001 
 HCPD-REP 1.97 0.24 8.36 < .001 
 HCPD 1.94 0.19 9.91 < .001 
Control-C      
 HCP-DISC 1.19 0.23 5.19 < .001 
 HCPD-REP 1.25 0.21 6.07 < .001 
 HCPD 0.58 0.18 3.28 0.001 
Default-A      
 HCP-DISC 3.16 0.2 15.54 < .001 
 HCPD-REP 3.59 0.22 16.67 < .001 
 HCPD 4.42 0.21 20.78 < .001 
Default-B      
 HCP-DISC 0.4 0.16 2.57 0.01 
 HCPD-REP 0.39 0.17 2.24 0.03 
 HCPD 0.14 0.13 1.07 0.28 
Default-C      
 HCP-DISC 4.06 0.21 19.47 < .001 
 HCPD-REP 3.85 0.2 18.91 < .001 
 HCPD 4.33 0.2 21.17 < .001 
Limbic-A      
 HCP-DISC 0.92 0.09 10.09 < .001 
 HCPD-REP 1.01 0.11 9.26 < .001 
 HCPD 2.12 0.13 16.16 < .001 
Limbic-B      
 HCP-DISC 4.11 0.21 19.27 < .001 
 HCPD-REP 3.91 0.22 18.09 < .001 
 HCPD 4.7 0.21 22.31 < .001 

Note: Coefficients and p-values for the intercept are shown. Networks with reliably significant 

(Bonferroni-corrected alpha level of .001) intercepts are bolded. 

 

Supplementary Table 2  
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Identifying Right-Specialized Networks Using Multiple Regressions in the HCP-Discovery 

Dataset (N = 276), HCP-Replication Dataset (N = 277), and the HCPD Dataset (N = 343) 

Network Intercept Dataset β SE t p 
Visual-A      
 HCP-DISC 1.39 0.18 7.69 < .001 
 HCPD-REP 1.52 0.19 7.76 < .001 
 HCPD 0.93 0.14 6.72 < .001 
Visual-B      
 HCP-DISC 2.4 0.2 11.97 < .001 
 HCPD-REP 2.79 0.21 13.48 < .001 
 HCPD 3.27 0.21 15.89 < .001 
Somatomotor-A      
 HCP-DISC 1.84 0.2 9 < .001 
 HCPD-REP 1.86 0.2 9.29 < .001 
 HCPD 1.78 0.13 13.46 < .001 
Somatomotor-B      
 HCP-DISC 2.02 0.18 11.07 < .001 
 HCPD-REP 2.33 0.17 14.01 < .001 
 HCPD 1.46 0.13 11.64 < .001 
Language      
 HCP-DISC 2.41 0.18 13.45 < .001 
 HCPD-REP 2.75 0.21 13.03 < .001 
 HCPD 1.61 0.18 8.91 < .001 
Dorsal Attention-A      
 HCP-DISC 2.15 0.19 11.32 < .001 
 HCPD-REP 1.84 0.19 9.93 < .001 
 HCPD 2.12 0.19 10.72 < .001 
Dorsal Attention-B      
 HCP-DISC 2.76 0.22 12.56 < .001 
 HCPD-REP 2.67 0.24 11.15 < .001 
 HCPD 2.54 0.19 13.21 < .001 
Salience/VenAttn-A      
 HCP-DISC 2.83 0.24 11.82 < .001 
 HCPD-REP 3.14 0.26 11.95 < .001 
 HCPD 2.74 0.21 13.05 < .001 
Salience/VenAttn-B      
 HCP-DISC 1.73 0.14 12.61 < .001 
 HCPD-REP 1.75 0.14 12.45 < .001 
 HCPD 1.49 0.14 10.63 < .001 
Control-A      
 HCP-DISC 1.22 0.11 11.56 < .001 
 HCPD-REP 1.24 0.1 11.9 < .001 
 HCPD 0.84 0.06 13.14 < .001 
Control-B      
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 HCP-DISC 4.09 0.26 15.68 < .001 
 HCPD-REP 4.09 0.26 15.79 < .001 
 HCPD 4.22 0.24 17.89 < .001 
Control-C      
 HCP-DISC 2.91 0.22 13.03 < .001 
 HCPD-REP 3.14 0.23 13.67 < .001 
 HCPD 2.84 0.19 15.15 0.001 
Default-A      
 HCP-DISC 1.98 0.21 9.64 < .001 
 HCPD-REP 1.83 0.18 9.95 < .001 
 HCPD 1.97 0.19 9.98 < .001 
Default-B      
 HCP-DISC 1.46 0.17 8.51 < .001 
 HCPD-REP 1.91 0.19 9.87 < .001 
 HCPD 1.19 0.14 8.38 < .001 
Default-C      
 HCP-DISC 3.62 0.22 16.21 < .001 
 HCPD-REP 4.12 0.23 17.92 < .001 
 HCPD 4.33 0.2 21.44 < .001 
Limbic-A      
 HCP-DISC 1.14 0.15 7.85 < .001 
 HCPD-REP 1.24 0.14 9.16 < .001 
 HCPD 2.01 0.11 17.59 < .001 
Limbic-B      
 HCP-DISC 5.06 0.26 19.69 < .001 
 HCPD-REP 5.7 0.23 24.29 < .001 
 HCPD 6.07 0.22 27.85 < .001 

Note: Coefficients and p-values for the intercept are shown. Networks with reliably significant 

(Bonferroni-corrected alpha level of .001) intercepts are bolded. 
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Overall Conclusion 

 The primary aim of this dissertation was to estimate specialization in individuals using 

methodologically robust approaches. Together, the findings from the three studies have shed 

light on the organization of specialized brain networks in neurotypical and autistic individuals.  

 Study 1 introduced a novel measure of specialization, the Network Surface Area Ratio 

(NSAR), which was used to identify the most specialized networks and explore their 

relationships. Of the 17 networks examined, eight were found to be significantly specialized. 

Surprisingly, the most left-specialized network was the Dorsal Attention-A network, while the 

most right-specialized network was the Limbic-B network, contradicting our initial hypothesis 

that the language, visuospatial attention, and executive control networks would be the most 

specialized. Moreover, evidence supported a covariation pattern of specialization between left- 

and right-specialized networks, such as between the Limbic-B and Dorsal Attention-A networks, 

as well as evidence for compensation between networks specialized to the same hemisphere, 

such as between Language and Dorsal Attention-A. 

 After establishing NSAR as a reliable method in neurotypical adolescents and adults in 

Study 1, we investigated specialization in autism. Group differences in specialization between 

the autism and neurotypical groups were found for the Language, Salience/Ventral Attention-A, 

and Control-B networks. This was contrary to our original hypothesis that group differences 

would be limited to the Language network. Additionally, we examined the relationship between 

language specialization and three behavioral phenotypes and found no significant relationships 

between language specialization and verbal ability or autism symptom severity. However, we did 

find that language delay stratified language specialization, with group differences between the 

autism with language delay and neurotypical groups. 
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 Study 3 took a deeper dive into within-individual specialization using the autonomy 

index, which had been previously implemented at the group level. We replicated group-level 

findings at the 7-network level and then implemented the autonomy index at the individual level 

with 17 networks. The most left-specialized network was the Dorsal Attention-A network while 

the Limbic-B network was the most right-specialized network. Then, to understand contributing 

factors to specialization, a novel method, the deconstructed autonomy index, was implemented to 

identify the specific connections contributing to each network’s specialization. The greatest 

contributors to specialization included first within-network connections followed by connections 

with other specialized networks.  

 When considering the main takeaways from all three studies, it becomes evident that 

robust measures were crucial in achieving the proposed research objectives. NSAR provided 

spatially specific information with a clear and intuitive interpretation and required no scaling or 

normalization factor. In contrast, the autonomy index allowed us to explore functional 

connectivity differences between hemispheres, focusing on within- versus between-hemisphere 

connectivity. Both measures captured specialization in distinct ways, but arrived at the 

identification of the Dorsal Attention-A and Limbic-B networks as the most specialized 

networks, although the ranking following these two networks varied depending on the method. 

 Another integral aspect of these studies was the focus on exploring specialization at 

multiple levels. On the macroscale, Study 1 examined specialized network relationships, such as 

how the degree of specialization in left-specialized networks might influence the degree of 

specialization of right-specialized networks. On the microscale, Study 3 delved into vertex-level 

connections, identifying the specific connections that contributed to specialization, which were 

first along a within-between network gradient and then along a specialization gradient. 
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 Additionally, this research provides valuable insights into the implications of atypical 

specialization in autism. Interestingly, no age-related effects were consistently observed in 

Studies 1 and 3 across the HCP-Discovery, HCP-Replication, and HCPD datasets. Moreover, no 

relationship was found between language specialization and verbal ability in Study 2. However, 

language delay stratified language specialization. Together, these three pieces of evidence 

suggest that disruptions in language specialization occurring early in development may be 

responsible for behavioral differences observed in autism later in adolescence and adulthood. 

 In conclusion, this dissertation has contributed significantly to our understanding of 

specialization within individuals using two distinct measures. By examining 17 networks for 

specialization, we confirmed that both NSAR and the autonomy index supported the Dorsal 

Attention-A network and the Limbic-B network as the most specialized networks. Furthermore, 

our investigation of specialization in autism uncovered group differences across three networks 

and highlighted the relationship between language delay and language specialization. The 

identification of connections contributing to specialization provides a potential benchmark for 

further exploration in different developmental stages and neurodevelopmental conditions such as 

schizophrenia. Overall, this research has extended our comprehension of large-scale brain 

network organization within individuals, offering insights into their relationships with each other 

and their underpinnings. 
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Appendix: Deviations from the Prospectus and Justification 

Overview 

 While carrying out the analyses proposed in the prospectus, several large and small 

deviations emerged due to a variety of factors. Several of these larger differences came after a 

crucial conversation with a collaborator, which shaped a research question and added a 

previously unconsidered hypothesis. Other changes arose following denial of access to a 

proposed dataset and the review of data quality. But most significantly, after examining 

preliminary results, some questions and hypotheses were grouped together in a different 

configuration, more conducive to a logical storyline and eventual publication. Regardless of the 

reason, changes to the three aims, their associated hypotheses, and proposed datasets from the 

accepted prospectus are outlined below.  

Aim 1 

 In the prospectus, Aim 1 encapsulated estimating hemispheric specialization within adult 

neurotypical individuals using the autonomy index in conjunction with various parcellation 

schemes. This aim was updated to investigating hemispheric specialization in neurotypical 

individuals using a different metric of specialization: the network surface area ratio (NSAR). 

After a conversation with a colleague, we decided to adapt a measure of specialization based on 

network surface area. However, including results from both the autonomy index and NSAR 

proved to be too cumbersome for one paper. Since there were enough interesting results with 

NSAR, it made more sense to split this off as its own paper. Results from estimating 

specialization using the autonomy index became Aim 3. Additionally, only one parcellation 

scheme was adopted: the multi-session hierarchical Bayesian modeling algorithm (MS-HBM; 

Kong et al., 2019). Preliminary results in ten subjects showed extremely low test-retest reliability 



199 

for the other proposed parcellation scheme, k-means, so this was dropped from the analysis 

pipeline. 

 Given the changes in the overall goal of Aim 1, it is unsurprising that significant changes 

were made to the hypotheses and datasets used to test these hypotheses. The proposed 

Hypothesis 1.1 centered around identifying the most specialized networks, which were 

hypothesized to be language and visuospatial attention. This was updated to also include 

networks involved in executive control, which was neglected due to oversight. Previously, a  

frontoparietal control network was found to be highly specialized (in addition to networks 

involved in language and attention; Wang et al., 2014). Changes were also made to the proposed 

Hypothesis 1.2, which hypothesized that a greater relationship between language laterality and 

language specialization would be found using a within-individual approach. We were not able to 

acquire the proposed Harvard dataset, which included the large quantity of language task data 

needed to compare language laterality and language specialization within individuals. However, 

we were able to examine how an Human Connectome Project (HCP) group parcellation aligned 

with a language atlas (Lipkin et al., 2022) as part of examining the validity of NSAR. 

Additionally, the second hypothesis was reframed as investigating specialized network 

relationships, which we hypothesized would follow one of three patterns: covariation, 

compensation, or independence.  

 Neither the Harvard dataset (Braga et al., 2020) nor the Midnight Scan Club dataset 

(Gordon et al., 2020) were included in Study 1 as proposed. The Harvard dataset was dropped 

due to access issues while the Midnight Scan Club dataset was dropped due to unusually large 

voxel sizes (4 mm isotropic; Gordon et al., 2017), which resulted in a poor group parcellation as 

assessed by a colleague. In place of these datasets, the HCP, Human Connectome Project-
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Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et 

al., 2022) were selected. The HCP dataset includes approximately one hour of resting-state fMRI 

data per individual with relatively low motion per participant. The HCPD dataset was brought in 

as an additional replication dataset in a younger population (5-21 years). The NSD dataset was 

used to examine task effects on the individual parcellations and NSAR, since there are multiple 

hours of resting-state fMRI and task fMRI data available per participant (although the number of 

participants is reduced at N = 8). 

Aim 2 

 Originally, Aim 2 was proposed as estimating hemispheric specialization in a 

neurodevelopmental population (autism) and exploring the relationship between hemispheric 

specialization and verbal ability. The second part of this aim was expanded to include the 

relationship between language specialization and three behavioral phenotypes instead of one. 

Those additional behavioral phenotypes included autism symptom severity and language delay, 

which were added to enable us to better understand which, if any, of these were driving a 

hypothesized group difference in language specialization. Thus, while the first two hypotheses of 

this study were unchanged, two were added. We hypothesized that language specialization would 

be negatively related to autism symptom severity. We also hypothesized that language delay 

would stratify language specialization (based on work by Floris et al., 2016, 2021).  

 In the prospectus, two datasets were proposed for Aim 2: the Utah dataset and the 

Healthy Brain Network dataset (HBN; Alexander et al., 2017). The HBN dataset was originally 

included as a replication dataset for any findings identified with the Utah dataset. However, the 

HBN dataset was processed with the inclusion of task and rest data, which were rendered 

obsolete since task effects on individual parcellations and estimates of specialization were found. 
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Rather than continue with these data, the HBN dataset was dropped and a within-dataset 

replication using first and second runs in the Utah dataset (forthcoming) will be used as a 

replacement.  

Aim 3 

 The greatest discrepancy in aims between the prospectus and the final dissertation can be 

found with Aim 3. It was proposed that we examine specialization in neurotypical development, 

across later childhood, adolescence, and early adulthood. However, preliminary analyses using 

the HCPD dataset found no consistent age-related effects on specialization. So, as previously 

described, Aim 1 was split into two studies: one estimating specialization using NSAR and 

another estimating specialization using the autonomy index. Thus, the new aim became 

estimating specialization in individuals using the autonomy index by first replicating Wang et al. 

(2014) using a group parcellation, estimating specialization in individuals, and then examining 

which connections contribute the most to a given networks specialization. 

 In the prospectus, only one hypothesis was proposed for Aim 3, and this was regarding 

the direction of functional specialization for left- and right-specialized networks across 

development. Keeping with the updated aim, this was replaced with two hypotheses. First, that 

the most specialized networks identified in neurotypical individuals using the autonomy index 

would be the language, visuospatial attention, and executive control networks (following 

Hypothesis 1.1). Second, we hypothesized that connections contributing to specialization would 

follow one of three gradients: a within-between networks gradient, a specialization gradient, or a 

sensorimotor-association cortex gradient. This second hypothesis was included with the goal of 

deconstructing specialization and examining which connections contribute the most to 
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specialization. To address this hypothesis, a new method was developed: the deconstructed 

autonomy index.  

 Proposed datasets for Aim 3 included the HCPD dataset with the Adolescent Brain 

Cognitive Development (ABCD) Study® (Casey et al., 2018) as a replication dataset. This was 

altered to include the same datasets as Aim 1: HCP, HCPD, and NSD. This allows us to directly 

compare results from the two measures of specialization. And, since no reliable effects of age on 

specialization for any of the networks were identified, the HCPD dataset was included as an 

additional replication dataset in a younger population. 
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