
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2008-12-01

Sequence Alignment with Traceback on Reconfigurable Hardware Sequence Alignment with Traceback on Reconfigurable Hardware

Scott Lloyd

Quinn O. Snell
snell@cs.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Sequence Alignment with Traceback on Reconfigurable Hardware, Scott Lloyd and Quinn Snell,

In Proceedings of the 28 International Conference on ReConFigurable Computing and FPGAs

(ReConFig'8), Pages 259-264, Dec 28.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Lloyd, Scott and Snell, Quinn O., "Sequence Alignment with Traceback on Reconfigurable Hardware"
(2008). Faculty Publications. 151.
https://scholarsarchive.byu.edu/facpub/151

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/151?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Sequence Alignment with Traceback on Reconfigurable Hardware

Scott Lloyd and Quinn O. Snell
Brigham Young University, Dept. of Computer Science, Provo, UT 84602

{gslloyd, snell}@cs.byu.edu

Abstract

Biological sequence alignment is an essential tool used
in molecular biology and biomedical applications. The
growing volume of genetic data and the complexity of
sequence alignment present a challenge in obtaining align-
ment results in a timely manner. Known methods to accel-
erate alignment on reconfigurable hardware only address
sequence comparison, limit the sequence length, or exhibit
memory and I/O bottlenecks. A space-efficient, global se-
quence alignment algorithm and architecture is presented
that accelerates the forward scan and traceback in hard-
ware without memory and I/O limitations. With 256 pro-
cessing elements in FPGA technology, a performance gain
over 300 times that of a desktop computer is demonstrated
on sequence lengths of 16000. For greater performance, the
architecture is scalable to more processing elements.

1. Introduction

Searching and comparing biological sequences in the
genomic databases are essential processes in molecular bi-
ology. The collection of genetic sequence data is increasing
exponentially each year and consists mostly of nucleotide
(DNA/RNA) and amino acid (protein) symbols. Approx-
imately 3 billion nucleotide pairs comprise the human
genome alone. Given the large volume of data, sequence
comparison applications require efficient computing meth-
ods to produce timely results.

Biologists and other researchers use sequence alignment
as a fundamental comparison method to find common pat-
terns between sequences, predict protein structure, identify
important genetic regions, and facilitate drug design. For
example, sequence alignment is used to derive flu vaccines
[10] and by the nation’s BioWatch [3] program in identi-
fying DNA signatures of pathogens. Sequence alignment
consists of matching characters between two or more se-
quences and positioning them together in a column. Gaps
may be inserted in regions where matches do not occur to
reflect an insertion or deletion evolutionary event. A count
of the matching characters results in a measure of similarity

between the sequences. Pairwise alignment involves two
sequences and multiple alignment considers three or more
sequences. Finding the optimal multiple sequence align-
ment is NP-hard in complexity. As a first step, multiple
alignment algorithms [20], [14] often compute a pairwise
alignment between all the sequences.

Global and local pairwise alignment are the two most
common alignment problems. Global alignment [13] con-
siders both sequences from end to end and finds the best
overall alignment. Local alignment [19] identifies the sec-
tions with greatest similarity and only aligns the subse-
quences. Both alignment problems are typically solved with
dynamic programming (DP), which fills a two dimensional
matrix with score or distance values in a forward scan from
upper left to lower right, followed by a traceback procedure.
Traceback occurs from a designated lower right position
following a path to upper left, thereby determining the best
alignment.

The computational cost for an optimal sequence align-
ment increases exponentially with the length of each se-
quence and with the number of sequences. This complex-
ity poses a challenge for sequence alignment programs to
return results within a reasonable time period as biologists
compare greater numbers of sequences. Using current meth-
ods, an alignment program may run for days or even weeks
depending on the number of sequences and their length.

Unlike most acceleration methods that focus on se-
quence comparison, this research describes and evaluates
a space-efficient, global sequence alignment algorithm and
architecture that includes traceback for implementation on
reconfigurable hardware. Given a pair of sequences, the
accelerator returns a list of edit operations constituting the
optimal alignment. A library of accelerator functions is
easily incorporated into multiple sequence alignment pro-
grams that run on platforms equipped with reconfigurable
hardware.

2. Related Work

Most efforts to accelerate bio-sequence applications with
hardware have focused on database searches. Ramdas and

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.30

259

Egan [17] compare several of these architectures in their
survey. Given a query sequence, an entire genetic database
is scanned looking for other sequences that are similar.
Searching a genetic database for matches with a bio-
sequence is similar in nature to a search of the web that
returns “hits” sorted by relevance. Accelerating a database
search is a simpler problem than alignment. Only the score
for the comparison is computed by hardware in the forward
scan, whereas alignment requires traceback in addition to
the forward scan. The sequence comparison problem can
be mapped to a linear systolic array of processing elements
(PEs) requiring O(min(m,n)) space, where m and n are
the lengths of the sequences. However, global alignment
necessitates extra storage and a traceback procedure, which
is not addressed by sequence comparison solutions.

The predominant, non-parallel algorithms for global se-
quence alignment are described by Gotoh [4] and Myers-
Miller [12]. Both algorithms execute in O(mn) time. The
algorithm presented by Gotoh requiresO(mn) space, while
the algorithm of Myers-Miller needs only O(logm + n)
space, but it incurs a factor of 2 time penalty. Most of
the space is used to hold values of the DP matrix or the
traceback pointers. Saving all traceback pointers in an array
requires only one forward scan through the DP matrix
followed by one traceback pass. Otherwise, multiple passes
through the DP matrix are required if not saving all the
traceback pointers. The downside of saving all the traceback
pointers is the O(mn) space requirement, which can be
significant for longer sequence lengths or prohibitive when
limited by FPGA memory.

A few efforts propose hardware methods for accelerating
pairwise alignment and traceback. The work presented by
Hoang and Lopresti [6] describes an FPGA architecture
which consists of a linear systolic array of PEs that output
traceback data. However, the type of sequences are limited
to only DNA and the sequence length is limited by the
number of PEs on the accelerator (a couple of hundred
nucleotides). The work by Jacobi et al. [7] and VanCourt-
Herbordt [21] suggest accelerated traceback methods, but
with few details. The sequence length accommodated by
their accelerators is also limited by the number of PEs on
the accelerator like the one described by Hoang. Another
limitation of the Hoang and VanCourt methods is that
traceback cannot be overlapped with another forward scan
since the systolic array is used for both scan and traceback.

The methods presented by Yamaguchi et al. [22] and
Moritz et al. [11] allow longer sequences by partitioning
the sequences through the pipeline of PEs. Nevertheless,
the traceback data must be saved to external memory, since
the size of the data exceeds the amount of available internal
FPGA memory. Hence, the traceback performance of both
methods is limited by the FPGA bandwidth to external
memory. Operating at 100 MHz, a systolic array with 256

PEs requires 6.4 GB/s of memory bandwidth to store 2-bit
traceback data from each PE. As PE densities and clock
frequencies increase, the external memory bandwidth is
easily exceeded. Internal FPGA memory can handle the
memory bandwidth, but even modest sequence lengths of
16K require 64 MB of traceback store, which far exceeds
current FPGA internal memory capacities.

The global alignment algorithm presented in this paper
overcomes the memory size and bandwidth limitations of
FPGA accelerators and does not limit the sequence length
by the number of PEs. Long sequences of DNA and pro-
tein are accommodated by the algorithm through a space-
efficient traceback procedure that is accelerated in hard-
ware. Traceback may occur in parallel with the next forward
scan since it is implemented in a separate process from the
systolic array.

3. Algorithm

The general algorithm is described first followed by the
FPGA architecture in the next section. The algorithm is
based on dynamic programming (DP), but partitions the
problem into slices for the FPGA hardware. A description
of the general sequence alignment problem is also found in
[13], [4].

Given a pair a sequences A = a1a2...am and B =
b1b2...bn of length |A| = m and |B| = n from the finite
alphabet Σ, a sequence alignment is obtained by inserting
gap characters ’-’ into A and B. The aligned sequences A′

and B′ from the extended alphabet Σ′ = Σ ∪ {’-’} are of
equal length such that |A′| = |B′|. Let the function s :
Σ × Σ → Z determine the similarity of symbol ai with bj ,
and the constant α represent the cost of inserting/deleting
a gap. Let H denote the DP matrix and the element H[i, j]
the similarity score of sequences a1a2...ai and b1b2...bj . An
optimal alignment is obtained by maximizing the score in
each element of H . The values of H are determined by
the following recurrence relations for 1 ≤ i ≤ m and
1 ≤ j ≤ n:

H[0, 0] = 0,
H[i, 0] = H[i− 1, 0] + α,

H[0, j] = H[0, j − 1] + α,

H[i, j] = max

 H[i− 1, j − 1] + s(ai, bj),
H[i− 1, j] + α,
H[i, j − 1] + α.

(1)

The matrix fill occurs in a scan from upper left
to lower right because of dependencies from neighbor-
ing elements. During the forward scan, a pointer p ∈
{DIAG, ABOVE, LEFT} indicates the current selection of
the MAX function in Equation 1. Given a tie, fixed prior-
ity resolves the selection. The value of p is saved to the
traceback matrix T , thus T [i, j] = p. Following the forward

260

[i,j] = [0,0]

[m,n]

W = Num PEs Designated

Columns [k,j]A

B

Bseg

Aseg

interchange

Aseg

Bseg

Figure 1. Forward scan and traceback

scan, traceback proceeds from T [m,n] to T [0, 0], thereby
determining the best alignment. The result is a list of edit
operations e ∈ {SUBSTITUTE, INSERT, DELETE}.

The scan algorithm presented here builds upon the space-
saving concepts described by Edmiston et al. [2], and the
divide-and-conquer scheme of Guan and Uberbacher [5].
Since sequence lengths are often longer than the number
of PEs available in a systolic array, the problem is often
partitioned [8]. The forward scan consists of two funda-
mental scan procedures SCANPARTIAL and SCANFULL.
The PARTIAL and FULL descriptors refer to the amount
of traceback data saved by the procedures. SCANPARTIAL
partitions the DP matrix H into slices of width W . The
slices are processed iteratively. The result of processing
each slice is a column of traceback pointers R[k, j] that
refer to a row in a prior slice (see Figure 1). The designated
columns k are given by k ∈ {c | cmodW = 0 ∨ c = m}.
The row pointers form a partial traceback path through
H that link only the right-most columns of each slice.
Given that p indicates the heritage of element H[i, j], the
following recurrences for 1 ≤ i ≤ m and 1 ≤ j ≤ n
determine R.

if imodW = 1 then

R[i, j] =

 j − 1 if p = DIAG
j if p = LEFT
R[i, j − 1] if p = ABOVE

else

R[i, j] =

 R[i− 1, j − 1] if p = DIAG
R[i− 1, j] if p = LEFT
R[i, j − 1] if p = ABOVE

Only the designated columns of R are actually stored,
which correspond to the right-most columns of a slice. The
values for the other columns are retained temporarily with
a vector variable that follows the wavefront of the scan.
In contrast, the SCANFULL procedure does not partition
the DP matrix and produces a full matrix T of traceback
pointers that refer to adjacent elements of H .

procedure TracePartial(A, B, m, n, R, E)
{

x2 ← m, y2 ← n
while (x2 > 1) do

x1 ← b(x2 − 1)/W c ·W + 1
y1 ← (x1 > 1 ∧ y2 ≥ 1) ? R[x2, y2] + 1 : 1
xlen← x2 − x1 + 1, ylen← y2 − y1 + 1
if (ylen = 0) then

Add xlen DELETE operations to E′

else if (ylen ≤ Y) then
ScanFull(Ax1 , By1 , xlen, ylen, T)
TraceFull(Ax1 , By1 , xlen, ylen, T, E′)

else // interchange A and B
ScanPartial(By1 , Ax1 , ylen, xlen, R′)
TracePartial(By1 , Ax1 , ylen, xlen, R′, E′)
∀e ∈ E′ : replace DELETE⇔ INSERT

end if
E ← E ∪ E′

x2 ← x1 − 1, y2 ← y1 − 1
end while

}

Figure 2. Algorithm for TRACEPARTIAL

The TRACEPARTIAL procedure differs from TRACE-
FULL in that the partial set of traceback pointers from
R are followed instead of the full set from T . The row
pointers, from R[m,n] to R[0, 0] in designated columns,
identify waypoints on the optimal path through the DP
matrix. Since the row pointer in R[k, j] refers to a row in a
prior slice, a block between the columns is identified, along
with corresponding segments of A and B. The segments
of A and B are passed to SCANFULL and TRACEFULL to
determine the full path from [k, j] back to [kprev, R[k, j]].
The alignment results from each block are concatenated and
thereby form a complete path from [m,n] to [0, 0].

Since the vertical height of a block (the length of a B
segment) is unbounded, the traceback space available to the
FULL procedures may be exceeded. To avoid this case, a
vertical threshold Y is defined such that if exceeded, the
PARTIAL procedures are called instead, with the segments
of A and B interchanged in the calls. Figure 2 shows the
algorithm, which is central to bounding the memory re-
quired for traceback. TRACEPARTIAL is called recursively
a maximum of once. Any segments passed to the FULL
procedures will not exceed W and Y in length because
of the partitioning done by SCANPARTIAL. In the worst
case, the length of sequence A is bounded by the first call
to SCANPARTIAL and the length of B is bounded by the
second call.

4. Architecture

The global alignment accelerator is implemented using
Qnet [9], an open-source packet-switched network archi-
tecture similar to DIMEtalk [18]. Qnet components in-

261

PW Alignment

Host Interface

A

Switch

DP FIFO

BC

PCI Express

Figure 3. System architecture

terconnect the host and other FPGA accelerator modules
in the system. The architecture facilitates system design
with reusable modules that encapsulate sharable devices or
resources. Qnet encourages parallelism by offering concur-
rent, high-performance data paths between modules. Fig-
ure 3 shows the alignment system constructed with Qnet
modules and components. A few specifics of Qnet are given
before describing the alignment accelerator module and
system operation.

4.1. Qnet Components

The basic network components consist of a switch,
Qports, and Qlinks. As the central figure in the network,
the switch provides a path for communicating packets to
other modules. Qports are the interface between modules
and the network, and are the addressable endpoints of
communication. Qports are connected by Qlinks, which
consist of paired, unidirectional, point-to-point signaling
channels that are each 32-bits wide in this system, but
may be implemented with other bit widths. Each Qport has
word-based flow control that will apply back-pressure on
a link, delaying communication until the port is ready to
receive. Hence, packets are not arbitrarily discarded, and
the requirement to buffer an entire packet at the input of
a module is removed while still maintaining performance.
Qnet communication performance has been shown to be
very near the theoretical max bandwidth between modules
on the FPGA while also maintaining latencies very near
theoretical minimums.

4.2. System Modules

Host Interface. The host computer communicates with
the FPGA accelerator through the PCI Express [15] module,
which contains DMA engines and translates PCI packets
into Qnet packets. Two ports on this module allow both
sequences to be sent in parallel to the accelerator.

a in

b in

sync

in
FIFO PE pipeline FIFO

A

B,H

len

len

S

A,B,H

config

sync

out

a out

b out

B,H,R

AA

B,H

len

len

R

B,H

R

B,H

FIFO

len Src, Dst ID

Src, Dst ID
Block RAM

2*nPE

32

raddr ren rdata

100 MHz

c io
Traceback

state machine

E

T

Figure 4. Pairwise alignment module

DP Matrix FIFO. If the length of sequence A is longer
than the number of PEs in the accelerator, the DP matrix
H must be processed in slices of width W = (num. PEs)
as described in Section 3. After processing a slice, the right
column of DP matrix values will exit the pipeline of PEs.
These H values are sent in a packet to the DP matrix
FIFO and retained for processing the next slice through the
pipeline. Any packet sent to the DP matrix FIFO will be
returned to the originating Qport, as indicated by the packet
header, thus cycling the pipeline output to the input. The
FIFO may be implemented with any memory technology
of sufficient bandwidth and size to handle the stream of
data from the PE pipeline. Since only one H value exits
the pipeline each clock cycle, the bandwidth requirement is
not excessive.

Pairwise Alignment Module. The compute intensive
portions of the alignment algorithm are performed by the
pairwise alignment module, which contains the pipeline of
PEs. This module has 3 Qports through which the sequences
are provided and results are returned (see Figure 3). In
parallel, Sequence A is input on port A and sequence B
is input on port B, while the traceback results are returned
on port C. The recurrence equations described in Section 3
are calculated by the PEs each time a pair of symbols enter
the pipeline.

Figure 4 shows the internal architecture of the alignment
module. The front-end of the pipeline synchronizes the A
and B streams of symbols. The pipeline back-end sends the
partial traceback results R out on port A and the H values
on port B. The symbols of sequenceB that flow through the
pipeline are merged with the H values on output, since they
will also be needed in processing additional slices. Both of
the merged B and H values are sent in a packet to the DP
matrix FIFO. As the sequence A is fed into the pipeline, the
merged B and H values from the end of the pipeline flow
from the alignment module through the DP matrix FIFO
and back into the front-end of the pipeline at port B. This
cycle occurs for each slice of the scan, except for the last.

Both of the forward SCAN procedures are implemented
by the pipeline of PEs. SCANPARTIAL enables the R (par-

262

tial row pointer) output, while SCANFULL enables the T
(full traceback pointer) output. Configuration bits in the
packet header of sequence A determine which pointer type
is enabled. For each slice processed by SCANPARTIAL, a
column of R is returned to the host in a packet. SCANFULL
will only process one slice, while saving the full traceback
data in FPGA block RAM, which has the bandwidth to store
pointers from every PE in parallel. The vertical threshold
Y , as described in Section 3, is determined by the depth of
FPGA block RAM allocated to full traceback.

A state machine implements the TRACEFULL procedure
that follows the pointers saved in block RAM by SCAN-
FULL. To initiate a full traceback, a request packet is sent
to Port C of the pairwise alignment module from the host.
The results, a list of edit operations e ∈ E, are returned
to the host from Port C. TRACEPARTIAL is implemented in
software on the host, but calls the FULL procedures for most
of the work (see Figure 2).

5. Experimental setup
Application. Three global alignment implementations

are tested in the evaluation: 1) as a baseline, a software-only
version of the algorithm presented in this paper; 2) a version
accelerated by the FPGA; and 3) an implementation of the
Myers-Miller global alignment algorithm for an additional
point of reference. The host computer is used to evaluate
the software only versions of the algorithms. Seq-Gen [1]
produced varying lengths of test sequences ranging from
128 to 16383 symbols for the evaluation.

Host. The host platform consists of a desktop computer
with a 2.4 GHz Intel® Core™2 Duo processor running
Fedora™ 6 Linux as the operating system. All benchmark
applications execute in a single thread and are compiled
with gcc using -O3 optimization. For accurate timing, the
processor’s performance counters are used.

Accelerator. An 8-lane PCI Express add-in card with
a Xilinx Virtex-4 FX100 FPGA provides the hardware
acceleration. To conserve FPGA resources, only 4 of the 8
PCI Express lanes are used in the experimental system. All
of the components are implemented in VHDL. As shown in
Figure 3, a 4-port switch connects the three FPGA modules
using 32-bit Qlinks that run at 150 MHz. The DP matrix
FIFO uses 64 KB of FPGA block RAM, which is enough
to hold 16K entries of B symbols and H values. With
the use of floor planning, 256 PEs are instantiated within
the pipeline and clocked at 100 MHz. DNA and protein
sequences are accommodated with 5-bit symbol values.
An 8-bit look-up table that requires one block RAM per
PE implements the similarity function s(ai, bj). Each PE
outputs a 2-bit traceback pointer p that is stored in traceback
memory, which is instantiated in 64 KB of block RAM with
a width of 512 bits and a depth of 1024. The traceback mem-
ory depth determines the Y threshold. Within the system,

Table 1. Speedup between implementations
Sequence
Length tFPGA µs

tMyers

tF P GA

tHost
tF P GA

511 64 131 107
1023 128 171 124
2047 327 264 181
4095 969 357 236
16383 11696 471 304

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

0 255 608 1448 3444 8191 16384

Sequence Length

T
im
e
 S
e
c
o
n
d
s

Myers

Host

FPGA

Figure 5. Global alignment execution time

DP matrix values H and row pointer values R both require
16-bits.

6. Results

Figure 5 shows the performance of the three global
sequence alignment implementations with varying lengths
of sequences and Table 1 compares the speedup between the
implementations. The host-only version averages a speedup
of 1.6 over the Myers-Miller implementation and the ac-
celerated version achieves a max speedup of 304 over the
host version. For longer sequences, the actual performance
is near the theoretical peak. A timing model suggests a
high degree of scalability for the presented algorithm and
architecture. For example, performance predicted by the
model gives a speedup of 580 with 512 PEs operating at
100 MHz on a larger FPGA.

Sequences shorter than W have a lower bound on align-
ment time, because unused PEs must be filled with null
symbols. Longer sequences realize greater performance on
the accelerator because the pipeline does not require a
flush between adjacent slices. Adjacent slices need only 1
cycle of spacing in the pipeline. Longer sequences are also
more efficient because of proportionately less time spent in
the traceback. The average traceback time relative to the
forward scan can be visualized in Figure 1 as the area of
the sub-blocks relative to the area of the whole matrix.

Even though the algorithm presented here requires

263

O(mn) space, the traceback memory is reduced by a
significant constant. For example, given sequences with
100K symbols, saving all the traceback data requires 2.5
GB. By saving the partial traceback pointers in a system
with 256 PEs, the traceback data is reduced to 78 MB.
Perhaps more importantly, the memory bandwidth to store
the partial traceback pointers is reduced to a practical level
that is achievable between the host computer and the FPGA
accelerator. With the pipeline running at 100 MHz and 16-
bit R values, the partial traceback data rate is only 200
MB/s.

Notice that the presented algorithm does not limit the
sequence length by the number of PEs or by the amount of
full traceback memory. Matching system parameters, such
as the number of PEs and the size of traceback memory, to
the available FPGA resources maximizes performance. The
experimental results and timing model together demonstrate
the scalability of the algorithm without memory bandwidth
limitations.

7. Conclusion
With the presented algorithm and architecture, long se-

quences are globally aligned with supercomputing perfor-
mance on reconfigurable hardware. A speedup over 300
is achieved with the example implementation on FPGA
technology when compared to a desktop computer. The ar-
chitecture is scalable to larger capacity FPGAs for a further
increase in performance. Beyond sequence comparison, the
full alignment of long sequences is accelerated without
memory and I/O bottlenecks through a space-efficient al-
gorithm. After executing traceback in hardware, the accel-
erator returns a list of edit operations to the host, which
constitutes an optimal alignment. Other global alignment
acceleration methods only address sequence comparison,
limit the sequence length, or exhibit memory and I/O bot-
tlenecks.

The key features of the algorithm are the bounded space
requirement for full traceback memory and the reduced
space for partial traceback memory. These space reductions
enable high-performance alignment of long sequences on
a reconfigurable accelerator and are a match for FPGA
memory capacities and bandwidth. Only 64 KB of FPGA
block RAM is used for full traceback in the demonstrated
implementation. Partial traceback data sent to the host at a
rate of 200 MB/s is supported by commodity FPGA boards.

Future work includes combining coarse-grain parallel
methods [16] with the fine-grain parallelism of this method
for multiplied performance gain on reconfigurable comput-
ing clusters. Also, the advantages of the presented method
are applicable to accelerating local alignment. A general-
purpose accelerated alignment library that consists of both
local and global methods may be applied to multiple se-
quence alignment codes with minimal effort.

References

[1] Seq-Gen. http://tree.bio.ed.ac.uk/software/seqgen/.
[2] E. W. Edmiston, N. G. Core, J. H. Saltz, and R. M. Smith. Parallel

processing of biological sequence comparison algorithms. Interna-
tional Journal of Parallel Programming, 17(3):259–275, 1988.

[3] S. N. Gardner, M. W. Lam, N. J. Mulakken, C. L. Torres, J. R. Smith,
and T. R. Slezak. Sequencing needs for viral diagnostics. Journal of
Clinical Microbiology, 42(12):5472–5476, December 2004.

[4] O. Gotoh. An improved algorithm for matching biological se-
quences. Journal of Molecular Biology, 162(3):705–708, December
1982.

[5] X. Guan and E. C. Uberbacher. A multiple divide-and-conquer
(MDC) algorithm for optimal alignments in linear space. Technical
Report ORNL/TM-12764, Oak Ridge National Lab., June 1994.

[6] D. T. Hoang and D. P. Lopresti. FPGA implementation of systolic
sequence alignment. In H. Grünbacher and R. W. Hartenstein, edi-
tors, Field-Programmable Gate Arrays: Architectures and Tools for
Rapid Prototyping, pages 183–191. Springer-Verlag, Berlin, 1992.

[7] R. P. Jacobi, M. Ayala-Rincón, L. G. Carvalho, C. H. Llanos, and
R. W. Hartenstein. Reconfigurable systems for sequence alignment
and for general dynamic programming. Genetics and Molecular
Research, 4(3):543–552, September 2005.

[8] R. Lipton and D. Lopresti. Comparing long strings on a short
systolic array. In W. Moore, A. McCabe, and R. Urquhart, editors,
Systolic Arrays, pages 363–376. Hilger, 1987.

[9] S. Lloyd and Q. Snell. Qnet: A modular architecture for reconfig-
urable computing. In Procedings of the 2008 International Con-
ference on Engineering of Reconfigurable Systems and Algorithms
(ERSA’08), pages 259–265, July 2008.

[10] C. Macken, H. Lu, J. Goodman, and L. Boykin. The value of
a database in surveillance and vaccine selection. International
Congress Series, 1219:103–106, October 2001.

[11] G. L. Moritz, C. Jory, H. S. Lopes, and C. R. E. Lima. Imple-
mentation of a parallel algorithm for protein pairwise alignment
using reconfigurable computing. In Reconfigurable Computing and
FPGA’s (ReConFig), pages 99–105. IEEE, September 2006.

[12] E. W. Myers and W. Miller. Optimal alignments in linear space.
Comput. Appl. Biosci., 4(1):11–17, 1988.

[13] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453, 1970.

[14] C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: A novel
method for fast and accurate multiple sequence alignment. Journal
of Molecular Biology, 302(1):205–217, September 2000.

[15] PCI-SIG. PCI Express. http://www.pcisig.com/.
[16] S. Rajko and S. Aluru. Space and time optimal parallel sequence

alignments. IEEE Transactions on Parallel and Distributed Systems,
15(12):1070–1081, December 2004.

[17] T. Ramdas and G. Egan. A survey of FPGAs for acceleration of
high performance computing and their application to computational
molecular biology. In TENCON 2005 IEEE Region 10, pages 1–6,
November 2005.

[18] C. Sanderson. Simplify FPGA application design with DIMEtalk.
Xcell Journal, Winter(51):104–107, 2004.

[19] T. F. Smith and M. S. Waterman. Identification of common molec-
ular subsequences. Journal of Molecular Biology, 147(1):195–197,
March 1981.

[20] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W:
improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22(22):4673–
4680, 1994.

[21] T. VanCourt and M. C. Herbordt. Families of FPGA-based ac-
celerators for approximate string matching. Microprocessors and
Microsystems, 31(2):135–145, March 2007.

[22] Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed homol-
ogy search with FPGAs. In Pacific Symposium on Biocomputing,
pages 271–282, 2002.

264

	Sequence Alignment with Traceback on Reconfigurable Hardware
	Original Publication Citation
	BYU ScholarsArchive Citation

	Sequence Alignment with Traceback on Reconfigurable Hardware

