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abstract

Zeros of Convex Combinations of Elementary Families of Harmonic Functions

Rebekah Ottinger
Department of Mathematics, BYU

Master of Science

Brilleslyper et al. analyzed a one-parameter family of harmonic trinomials, and Brooks
and Lee analyzed a one-parameter family of harmonic functions with poles. Each family
was explored to find the relationship between the size of the parameter and the number of
zeros of the harmonic function. In this thesis, we examine convex combinations of members
of these families. We determine conditions under which the critical curves separating the
sense-preserving and sense-reversing regions are circular. We show that the number of zeros
of a convex combination can be greater than the maximum number of zeros of either part.

Keywords: complex analysis, complex-valued harmonic function
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Chapter 1. Introduction

The Fundamental Theorem of Algebra states that every analytic polynomial of degree n ≥ 1

with complex coefficients has n zeros in the complex plane. A complex-valued harmonic

polynomial can be represented as an analytic polynomial with some conjugate terms added.

While the Fundamental Theorem of Algebra works for all analytic polynomials, it does not

directly extend to harmonic polynomials. We consider all zeros of an analytic function to

have a positive order whereas zeros of harmonic functions can be sensibly considered to have

positive or negative order depending on the region in which they lie due to the addition

of the conjugate terms. Therefore, the correct extension of the Fundamental Theorem of

Algebra to harmonic polynomials counts the sum of the orders of the zeros, and harmonic

polynomials are capable of having a total number of zeros that exceeds their degree.

There is a limit to how much a harmonic polynomial’s total number of zeros can exceed

its degree. Let f be a harmonic polynomial of degree n. Sheil-Small [6] conjectured and

Wilmshurst [7] later proved that f can have at most n2 zeros with this bound being a strict

bound. Further studies have shown the number of zeros is closely related to the degrees of

both the non conjugated terms and the conjugated terms. However, there is not a simple

relationship between them since the coefficients of the polynomials also influence the number

of zeros.

Consider the family studied by Brilleslyper, Brooks, Dorff, Howell, and Schaubroeck

pc(z) = zm + czk − 1 (1.1)

with m, k ∈ N, m > k, and c ∈ C \ {0}.

In Figure 1.1, we see that the number of zeros of pc(z) = z5+cz4−1 can change depending

on the value of c. The smallest number of zeros seems to be 5 and the largest seems to be 13.

Although there exist numbers of zeros between 5 and 13 for other values of c, their presence

is not pertinent to this thesis. The following is a corollary to the main theorem proved by

Brilleslyper et al. about the number of zeros and its relationship to the parameter c:

1



Figure 1.1: p(z) = z5 + cz4 − 1 for c = 1 (left) and c = 8 (right).

Corollary 1.1 (BBDHS [1]). Let pc be as above. There exist c0, c1 > 0 such that

(i) if 0 ≤ |c| < c0, then pc has m distinct zeros, and

(ii) if |c| > c1, then pc has m+ 2k distinct zeros.

In this thesis, we will examine convex combinations of previously studied elementary

families of harmonic functions. For analytic polynomials, the number of zeros of a convex

combination is the largest degree of its component parts. Since harmonic functions can vary

in their number of zeros based on their coefficients, we will focus on when the component

parts are obtaining their maximum number of zeros, and ask the question:

Question 1.2. How does the maximum number of zeros of the component parts of a convex

combination of harmonic functions relate to the number of zeros of the convex combination?

The first convex combination we will consider is a combination of two members from the

family (1.1):

fa,b,s(z) = s(zm + azk − 1) + (1− s)(zn + bzℓ − 1). (1.2)

where m > n, m > k, n > ℓ, s ∈ (0, 1), and a, b > 0.

2



Figure 1.2: 3
10
(z7+15z5−1)+ 7

10
(z5+20z4−1) (left) and 3

10
(z8+11z2−1)+ 7

10
(z5+12z4−1)

(right).

The maximum number of zeros for (1.1) occurs when c is sufficiently large. For the

following examples, a and b will be chosen such that the component parts each have their

maximum number of zeros.

In the left graph of Figure 1.2, the component parts have 17 and 13 zeros, respectively.

The convex combination has 15 zeros, which sits between those two numbers and can give

the impression that maybe taking the convex combination will result in an averaging of the

two maximums. However, the right graph of Figure 1.2 has component parts with 12 and

13 zeros, respectively, and their convex combination has 16 zeros. This example shows that

the convex combination can have more zeros than either component.

In order to better study the convex combination, we will need to understand the methods

used in analyzing 1.1 and how they can be applied to the convex combination. There are

harmonic analogues of the Argument Principle and Rouche’s Theorem that count the sums

of the orders of zeros instead of counting the number of zeros like their analytic counterparts.

One of the motivations for exploring (1.1) comes from the critical curves of this family being

circular. The critical curve of a harmonic function defines the boundary between the sense-

preserving and sense-reversing regions. Zeros in the sense-preserving region are considered

to have positive order whereas those in the sense-reversing region are considered to have

negative order. Therefore, the harmonic Argument Principle or Rouché’s Theorem applied

3



Figure 1.3: p(z) = z5 + cz4 − 1 for c = 1 (left) and c = 8 (right) with their critical curves.

to a simple critical curve counts all of the zeros in the region within the critical curve. Then,

the number of zeros outside the critical curve can be found using the number of zeros in the

critical curve and the sum of the order of the zeros in the complex plane as found using the

harmonic Argument Principle or Rouché’s Theorem, as well. These two numbers sum to the

total number of zeros for our harmonic function.

Figure 1.3 shows our examples of the original family from earlier with their circular

critical curves. Since the sense-reversing region for the family (1.1) is inside the critical

curve, the left graph has 5 zeros of positive order and 0 zeros of negative order. The right

graph has 9 zeros of positive order and 4 zeros or negative order.

Now, let us examine the critical curves for the examples of convex combinations. In

Figure 1.4, the critical curves are not circles. In fact, the graph on the right there are two

small loops disjoint from the much larger components of the critical curve on the imaginary

axis near i/2 and −i/2. These peculiar shapes and their proximity to the zeros makes a

Rouché style argument difficult.

There are different ways the convex combination can be restricted so the critical curve

is a circle. Chapter 3 provides the proofs of the following theorems about four different

restrictions of (1.2) that yield circular critical curves. The second and fourth theorems show

that those subfamilies have the same maximum number of zeros as the maximum number of

4



Figure 1.4: f15,20, 3
10
(z) = 3

10
(z7 + 15z5 − 1) + 7

10
(z5 + 20z4 − 1) (left) and f11,12, 3

10
(z) 3

10
(z8 +

11z2 − 1) + 7
10
(z5 + 12z4 − 1) (right) with their critical curves.

zeros of the parts. However, the first and third theorems show that the convex combination

can have more zeros than either part since that is true for these subfamilies.

Theorem 1.3. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m + k = n + ℓ and

m > n > ℓ > k. Let s = n
m+n

and a = mbℓ
kn

. Then, there exists b0 such that for all b > b0,

fa,b,s has m+ 2ℓ zeros.

Theorem 1.4. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m− k = n− ℓ, m > n > ℓ,

and m > k > ℓ. Let s = n
m+n

and a = mbℓ
kn

. Then, there exists b0 such that for all b > b0,

fa,b,s has m+ 2k zeros.

A slightly different method of restriction results in a larger family of polynomials that

includes the first two without s restricted. While the first two theorems are subsumed by

the third and fourth, we will include the first two theorems in this thesis to provide easier

reading of the proof method.

Theorem 1.5. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m + k = n + ℓ and

m > n > ℓ > k. Let a = (1−s)2bnℓ
s2mk

. Then, there exists b0 such that for all b > b0, fa,b,s has

m+ 2ℓ zeros.

5



Figure 1.5: p(z) = z5 + c
z4

− 1 for c = 0.1 (left) and c = 1 (right) with their critical curves.

Theorem 1.6. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m− k = n− ℓ, m > n > ℓ,

and m > k > ℓ. Let a = mbℓ
kn

. Then, there exists b0 such that for all b > b0, fa,b,s has m+ 2k

zeros.

Brooks and Lee explored a variation of the original polynomial. They constructed a

simple family of harmonic functions with poles for which an analysis similar to that of (1.1)

applies. They consider

rc(z) = zm +
c

zk
− 1 (1.3)

where m > k, c ∈ C \ {0}, and gcd(m, k) = 1.

Using similar methods to Brillesplyer et al., they proved a theorem that has the following

corollary:

Corollary 1.7 (Brooks and Lee [3],[5]). Let rc be as above. There exist c0, c1 > 0 such that

(i) if 0 < |c| < c0, then rc has m+ k zeros, and

(ii) if |c| > c1, then rc has m− k zeros.

This harmonic function also has a circular critical curve. Figure 1.5 shows examples of

this function for c values for which it achieves its maximum and minimum number of zeros.

Consider a convex combination between (1.1) and (1.3)

6



Figure 1.6: r12, 1
10

, 3
10
(z) = 3

10
(z5 + 12z3 − 1) + 7

10
(z7 + 1

10z4
− 1) (left) and r 4

9
, 1
3
, 3
7
(z) = 3

7
(z5 +

4
9
z3 − 1) + 4

7
(z6 + 1

3z5
− 1) (right) with their critical curves.

ra,b,s(z) = s(zm + azk − 1) + (1− s)

(
zn +

b

zℓ
− 1

)
. (1.4)

with m > k, n > ℓ, s ∈ (0, 1), and a, b ∈ R \ {0}.

Once again, we want to know how the number of zeros of the component parts relates

to the number of zeros of the convex combinations. However, unlike with the previous

convex combination, (1.1) and (1.3) achieve their maximum and minimum number of zeros

for different values of c. For sufficiently large c, (1.1) has its maximum of m+ 2k zeros, and

(1.3) has its minimum of n − ℓ zeros. For sufficiently small c, (1.1) has its minimum of m

zeros, and (1.3) has its maximum of n + ℓ zeros. As a result, we examine both sufficiently

large and small values of a and b.

Figure 1.6 demonstrates that (1.4) can have complicated critical curves as well. The left

figure has small pieces of the critical curve that are disjoint from the rest, and the right

figure has a critical curve much too bumpy to be a circle. This figure also demonstrates that

this convex combination can have more zeros than the maximum of either component since

the left convex combination has 17 zeros while its components both have a maximum of 11.

As with the other convex combination, we want the critical curve to be circular, but it is

not always circular. So, we restrict the parameters to ensure that we get a circular critical

7



curve using the same method as earlier. We can restrict four ways as before with (1.2) to

make four families with two of them subsumed by the others. However, we are not going to

include the smaller families for this convex combination So, Chapter 4 will be spent proving

the following two theorems that come from the less restrictive families with circular critical

curves:

Theorem 1.8. Let ra,b,s be as in (1.4). Let m, k, n, ℓ ∈ N satisfy m− k = n+ ℓ, m > k, and

n > ℓ. Let a = −mbℓ
kn

. Then, there exist b0 and b1 such that

(1) for all 0 < |b| < b0, ra,b,s has m+ ℓ zeros,

(2) for all |b| > b1, ra,b,s has m+ ℓ+ 2k zeros.

Theorem 1.9. Let ra,b,s be as in (1.4). Let m, k, n, ℓ ∈ N satisfy m+ k = n− ℓ, m > k, and

n > ℓ. Let a = −nbℓ(1−s)2

mks2
. Then, there exist b0 and b1 such that

(1) for all 0 < |b| < b0, ra,b,s has n+ ℓ zeros,

(2) for all |b| > b1, ra,b,s has n+ ℓ+ 2k zeros.

Theorem 1 and its proof have already been published [2]. This paper also covers a

theorem about a convex combination of (1.3) with itself under the same type of restrictions

present in Theorem 1 which was proven by Lee and is therefore not in this thesis.

Chapter 2. Background and Definitions of

the Subfamilies

In this chapter, we provide the definitions and theorems concerning complex-valued har-

monic functions we need to analyze these convex combinations. We also restrict the convex

combinations into subfamilies that are more easily analyzed using Rouché’s Theorem for

harmonic functions. The first section defines harmonic functions and their zeros with the

second section building on that with a discussion about what happens when poles are added.

8



The third and fourth sections give the process used to restrict both convex combinations into

their subfamilies and why these restrictions are easier to analyze using Rouché’s Theorem

for harmonic function.

2.1 Functions

In this thesis, we study complex-valued harmonic functions and their zeros. For a more

detailed study, look at Duren’s book [4].

First, we define what a complex-valued harmonic function is before we define the tools

we use to analyze them.

Definition 2.1 (Harmonic Function). A function ϕ : D ⊆ R2 → R is harmonic if it is twice

continuously differentiable and satisfies Laplace’s equation ϕxx + ϕyy = 0.

Definition 2.2 (Complex-valued Harmonic Function). A function f = u+ iv : D ⊆ C → C

is a complex-valued harmonic function if both u and v are harmonic in D.

Any function written in the from f = h + g is complex-valued harmonic if h and g

are analytic functions. In this form, we refer to h as the analytic part of f and g as the

co-analytic part of f .

A function is sense-preserving on a domain D if the image of a simple, closed, positively

oriented contour C in D whose interior lies entirely in D remains positively oriented. Sim-

ilarly, a function is sense-reversing on a domain D if the image of such a contour C in D

is negatively oriented. An analytic function is sense-preserving and a co-analytic function

is sense-reversing. Since harmonic functions have both an analytic and a co-analytic part,

they have both sense-preserving and sense-reversing regions. We can determine where these

regions are using the complex dilatation.

Definition 2.3 (Complex Dilatation). The complex dilatation of f = h+ g is defined by

ω(z) =
g′(z)

h′(z)
.

9



The complex dilatation gives us a way to measure whether the analytic part or co-analytic

part of a harmonic function is dominant in a region. If the analytic part is dominant in a

region, then the harmonic function is sense-preserving in that region. Similarly, if the co-

analytic part of a harmonic function is dominant in a region, then the harmonic function

is sense-reversing in that region. This relationship between the dilatation function and the

sense-preserving and sense-reversing regions is demonstrated in the following proposition.

Proposition 2.4. Let f = h+ g be a harmonic function on D, with complex dilatation ω.

• If |ω(z)| < 1 throughout some region R ⊆ D, then f is sense-preserving on R.

• If |ω(z)| > 1 on R ⊆ D, then f is sense-reversing on R.

Using these relations, we can define the boundary between the sense-preserving and

sense-reversing regions.

Definition 2.5 (Critical Curve). The critical curve of f = h+ g is defined by

{z ∈ C : |ω(z)| = 1}.

Understanding where the sense-preserving and sense-reversing regions reside is important

because they impact how zeros are counted using the methods present in the Argument

Principle or Rouché’s Theorem. For analytic functions, we define the order of the zero z0

in terms of the lowest-order term in the Taylor expansion about z0. For complex-valued

harmonic functions, we can do the same thing except we need to expand the analytic and

co-analytic parts separately to see whether this lowest order term is part of the analytic or

co-analytic component of the function.

Definition 2.6 (Order of a Zero). Let f = h + g be a complex-valued harmonic function

and suppose f(z0) = 0. Write

f(z) = a0 +
∞∑
j=r

aj(z − z0)
j + b0 +

∞∑
j=s

bj(z − z0)j.

10



If z0 is in a sense-preserving region, we define the order of z0 to be r and if z0 is in a sense-

reversing region, we define its order to be −s. If z0 is on the critical curve, we call it a

singular zero and its order is not defined.

Now, with this definition, we can describe how the Argument Principle and Rouché’s

Theorem extend to harmonic polynomials. The Argument Principle works the same in sense-

preserving regions as it does for analytic polynomials. However, the Argument Principle

yields a negative sign in sense-reversing regions due to the contours changing direction. Since

we defined zeros in sense-reversing regions to have negative order, we are able to say that

the Argument Principle for harmonic functions works the same as the analytic Argument

Principle with two simple changes. It produces the sum of the orders of the zeros instead of

the number of zeros, and there cannot be any singular zeros since their order is not defined.

The harmonic analogue to Rouché’s Theorem is similar, and it is the theorem through

which we will analyze the convex combinations in this thesis. For this theorem and the rest

of the thesis, we will denote the sum of the orders of the zeros of p in C by Zp,C .

Theorem 2.7 (Rouché’s Theorem for Harmonic Functions). Let p and q be harmonic in a

simply connected domain D ⊆ C. Let C be a simple, closed curve contained in D. If |p(z)| >

|q(z)| at each point on C, and if p and q have no singular zeros in C, then Zp,C = Zp+q,C.

Combining Rouché’s Theorem with the critical curve gives a process to count the total

number of zeros for a function with a simple critical curve. First, applying Rouché’s Theorem

to circles of sufficiently large radius gives the sum of the orders of the zeros in the plane.

Then, applying Rouché’s Theorem to the critical curve gives the sum of the orders of the

zeros in the enclosed region. Since the orders of the zeros inside of the critical curve all have

the same sign, the sum of the orders of the zeros is the same as the count of the zeros inside

that region. Finally, with these two pieces of information, we can solve for the number of

zeros outside of the critical curve which combined with the number of zeros inside gives us

the total number of zeros.

11



2.2 Harmonic Functions with poles

Define z0 to be a pole of f provided limz→z0 |f(z)| = ∞. The second convex combination

(1.4) contains a 1
zk

term which introduces a pole to the situation. Therefore, we need to

consider the impact that adding a pole has on a harmonic function.

Conveniently, the definitions of sense-preserving and sense-reversing regions, dilatation

function, and critical curve extend to harmonic functions with poles without any changes.

Similar to how the sense-preserving and sense-reversing regions impact the way we think

about the order of a zero for complex-valued harmonic polynomials, these regions also impact

the way we think about the order of poles for complex-valued harmonic functions with poles.

For meromorphic functions, we define the order of a pole z0 in terms of the lowest-order term

in the Laurent expansion about z0. For complex-valued harmonic functions, we need to do

the same thing as we did with the zeros and expand the analytic and co-analytic parts

separately.

Definition 2.8. Let f be a harmonic function on a domain D ⊆ C except at a finite number

of poles. Suppose that the local representation of f around a pole z0 ∈ D is

f(z) =
∞∑

j=−r

aj(z − z0)
j +

∞∑
j=−s

bj(z − z0)j + 2A log |z − z0|,

for some constant A, and where r and s are finite.

• If a−r ̸= 0 for some r > 0 and r > s, or r = s with |a−r| > |b−s|, then f is sense-

preserving near z0 and f has a pole at z0 of order r.

• If b−s ̸= 0 for some s > 0 and r < s, or r = s with |a−r| < |b−s|, then f is sense-reversing

near z0 and f has a pole at z0 of order −s.

This definition for the order of a pole enables us to write the Argument Principle and

Rouché’s Theorem for harmonic functions with poles using the sum of the orders of zeros

minus the sum of the orders of the poles instead of the analytic analogue where we have

the number of zeros minus the number of poles. It also includes a restriction that no zeros
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or poles can be on the critical curve since the order is not defined for those zeros or poles.

Similarly to how we are denoting the sum of the orders of the zeros of p in C as Zp,c we will

denote the sum of the orders of the poles of p in C as Pp,C for the rest of this thesis.

Theorem 2.9 (Rouché’s Theorem for Harmonic Functions with Poles). Let p and q be

harmonic, except for a finite number of poles, in a simply connected domain D ⊆ C. Let C

be a simple, closed curve contained in D. If |p(z)| > |q(z)| at each point on C, and if p and

q have no poles on C and no singular zeros in C, then Zp,C − Pp,C = Zp+q,C − Pp+q,C.

While the inclusion of a pole makes a Rouché style argument more difficult, we only have

a single pole and it is located at the origin. So, the sums of the orders of the poles for our

convex combination with a pole or any of its parts are found without hassle allowing us to

focus on identifying the number of zeros.

2.3 Building the Restrictions on the First Convex Combina-

tion

The first convex combination we are looking at is

fa,b,s(z) = s(zm + azk − 1) + (1− s)(zn + bzℓ − 1). (1.2)

where a, b > 0, m > n, n > ℓ, and m > k. We want to restrict this convex combination in

ways that guarantee a circular critical curve. The dilatation function of fa,b,s is

ωf (z) =
ksazk−1 + ℓ(1− s)bzℓ−1

mszm−1 + n(1− s)zn−1
. (2.1)

If ωf (z) = CzD, then the critical curve will be a circle. We discuss two methods that

restrict the dilatation function into this form. The first method consists of factoring the

dilatation function to look like

CzD
(

A+ zB

1 + AzB

)
. (2.2)

The hope was that since zB+A
1+AzB

is a composition of a Möbius transformation and a power

function, this type of restriction would be enough to yield a critical curve of a circle. However,

13



Figure 2.1: f 1120
3

,40, 9
16
(z) = 9

16
(z14 + 1120

3
z − 1) + 7

16
(z9 + 40z6 − 1)

C ̸= 1 prevents a circular critical curve if |A| ≠ 1, as seen in the example in figure 2.1 where

A = 2. Therefore, we require |A| = 1. Given that A in the denominator for our convex

combination will always be a positive real number, |A| = 1 fixes A = 1.

The second method factors the dilatation function slightly differently. So, it looks like

CzD
(
1 + AzB

1 + AzB

)
. (2.3)

This factorization gives A the freedom to be any number, which decreases the number of

restrictions required for a circular critical curve.

2.3.1 Subfamily with ℓ > k and s Fixed. For our first restriction, we factor zk−1

from the numerator and zn−1 from the denominator of (2.1) and rearrange the coefficients

to match (2.2) as follows:

14



wf (z) =
ksazk−1 + ℓ(1− s)bzℓ−1

mszm−1 + n(1− s)zn−1

=
zk−1

zn−1

(
ksa+ ℓ(1− s)bzℓ−k

mszm−n + n(1− s)

)

=

(
bℓ

n

)
zk−n

(
ksa

bℓ(1−s)
+ zℓ−k

ms
n(1−s)

zm−n + 1

)
.

In order for the fraction on the right to simplify to 1, we add the following conditions:

• ℓ− k = m− n

• A = ksa
bℓ(1−s)

= ms
n(1−s)

which implies that ka
bℓ

= m
n

• |A| = 1 which gives us that ms
n(1−s)

= 1, and so s = n
m+n

Combining ℓ− k = m− n with m > n, n > ℓ, and m > k gives us that m > n > ℓ > k. We

can also rewrite the dilatation as

ωf (z) =
bℓ

n

1

zn−k
.

Proposition 2.10. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m + k = n + ℓ and

m > n > ℓ > k. Let s = n
m+n

and a = mbℓ
kn

. Then

• The critical curve is a circle centered at the origin with radius
(
bℓ
n

) 1
n−k .

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.

2.3.2 Subfamily with k > ℓ and s Fixed. For our second restriction, we factor zℓ−1

from the numerator and zn−1 from the denominator of (2.1) and rearrange the coefficients

15



to match (2.2) as follows:

wf (z) =
ksazk−1 + bℓ(1− s)zℓ−1

mszm−1 + n(1− s)zn−1

=
zℓ−1

zn−1

(
ksazk−ℓ + bℓ(1− s)

mszm−n + n(1− s)

)

=

(
ksa

n(1− s)

)
zℓ−n

(
zk−ℓ + bℓ(1− s)/(ksa)

ms/(n(1− s))zm−n + 1

)
.

In order for the fraction on the right to simplify to 1, we add the following conditions:

• k − ℓ = m− n

• A = ℓb(1−s)
ksa

= ms
n(1−s)

• |A| = 1 which gives us that ms
n(1−s)

= 1, and so s = n
m+n

.

Combining k− ℓ = m−n with m > n, n > ℓ, and m > k gives us that k > ℓ, and combining

the second and third conditions gives that a = mbℓ
kn

. We can also rewrite the dilatation as

ωf (z) =
bℓ

n

1

zn−ℓ
.

Proposition 2.11. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m − k = n − ℓ,

m > n > ℓ, and m > k > ℓ. Let s = n
m+n

and a = mbℓ
kn

. Then

• The critical curve is a circle centered at the origin with radius
(
bℓ
n

) 1
n−ℓ .

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.

2.3.3 Subfamily with ℓ > k and s Unrestricted. For our third restriction, we fac-

tor zk−1 from the numerator and zn−1 from the denominator of (2.1) and rearrange the
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coefficients to match (2.3) as follows:

wf (z) =
sakzk−1 + ℓ(1− s)bzℓ−1

smzm−1 + (1− s)nzn−1

=
zk−1

zn−1

(
ksa+ l(1− s)bzℓ−k

smzm−n + (1− s)n

)

=

(
sak

(1− s)n

)
zk−n

(
1 + (1−s)bℓ

sak
zℓ−k

sm
(1−s)n

zm−n + 1

)
.

In order for the fraction on the right to simplify to 1, we add the following conditions:

• ℓ− k = m− n

• A = (1−s)bℓ
sak

= sm
(1−s)n

.

Unlike the conditions for the first subfamily, these conditions do not impose a restriction on

s. Since the other conditions are the same, this subfamily contains the first subfamily, and

preserves the consequences of the first two conditions like m > n > ℓ > k. We can rewrite

the dilatation as

ωf (z) =
(1− s)bℓ

sm

1

zn−k
.

Proposition 2.12. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m + k = n + ℓ and

m > n > ℓ > k. Let a = (1−s)2bnℓ
s2mk

. Then

• The critical curve is a circle centered at the origin with radius
(

(1−s)bℓ
sm

) 1
n−k

.

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.

2.3.4 Subfamily with k > ℓ and s Unrestricted. For our fourth restriction, we

factor zℓ−1 from the numerator and zn−1 from the denominator of (2.1) and rearrange the
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coefficients to match (2.3) as follows:

wf (z) =
ksazk−1 + bℓ(1− s)zℓ−1

mszm−1 + n(1− s)zn−1

=
(1− s)bℓzℓ−1

(1− s)nzn−1

(
ksa

(1−s)bℓ
zk−ℓ + 1

ms
(1−s)n

zm−n + 1

)

=
bℓ

n
zℓ−n

(
ksa

(1−s)bℓ
zk−ℓ + 1

ms
(1−s)n

zm−n + 1

)
.

In order for the fraction on the right to simplify to 1, we add the following conditions:

• k − ℓ = m− n

• A = sak
(1−s)bℓ

= sm
(1−s)n

.

Unlike the conditions for the second subfamily, these conditions does not impose a restriction

on s. Since the other conditions are the same, this subfamily contains the second subfamily,

and it preserves the consequences of the first two conditions like k > ℓ. We can also rewrite

the dilatation as

ωf (z) =
bℓ

n

1

zn−ℓ
.

Proposition 2.13. Let fa,b,s be as in (1.2). Let m, k, n, ℓ ∈ N satisfy m − k = n − ℓ,

m > n > ℓ, and m > k > ℓ. Let a = mbℓ
kn

. Then

• The critical curve is a circle centered at the origin with radius
(
bℓ
n

) 1
n−ℓ .

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.

2.4 Building Restrictions on Second Convex Combination

The second convex combination we are looking at is

ra,b,s(z) = s(zm + azk − 1) + (1− s)

(
zn +

b

zℓ
− 1

)
. (1.4)

with m > k, n > ℓ, s ∈ (0, 1), and a, b ∈ R.
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Similar to the first convex combination, we want a circular critical curve. The dilatation

of (1.4) is

ωr(z) =
sakzk−1 − (1− s)bℓz−ℓ−1

smzm−1 + (1− s)nzn−1
. (2.4)

We can restrict this dilatation so that the critical curve is a circle using either (2.2) or (2.3).

However, much like the first combination, the subfamilies that result from restrictions using

(2.2) are subsumed by subfamilies created from restrictions using (2.3). This time we are

going to exclude the smaller families and focus on only the larger families.

2.4.1 Subfamily with m > n. By factoring the zk−1 term out of the numerator and the

zm−1 term out of the denominator, we get that

ωr(z) =
ak

m
zk−m

(
1− (1−s)bℓ

sak
z−ℓ−k

1 + (1−s)n
sm

zn−m

)
. (2.5)

Therefore, restrictions that yield a circular critical curve are

• n−m = −(ℓ+ k)

• −bℓ
ak

= n
m
.

Combining these restrictions with m,n, ℓ, k ∈ N, we know that m > n and a and b have

opposite signs. We also get

ωr(z) =
bℓ

n

1

zm−k
. (2.6)

Proposition 2.14. Let ra,b,s be as in (1.4). Let m, k, n, ℓ ∈ N satisfy m− k = n+ ℓ, m > k,

and n > ℓ. Let a = −mbℓ
kn

. Then

• The critical curve is a circle centered at the origin with radius
∣∣ bℓ
n

∣∣ 1
m−k .

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.
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2.4.2 Subfamily with n < m. By factoring the zk−1 term out of the numerator and the

zn−1 term out of the denominator, we get that

ωr(z) =
sak

(1− s)n
zk−n1−

(1−s)bℓ
sak

z−ℓ−k

1 + sm
(1−s)n

zm−n
. (2.7)

Therefore, restrictions that yield a circular critical curve are

• m− n = −(ℓ+ k)

• −(1−s)bℓ
sak

= sm
(1−s)n

.

Combining these restrictions with m,n, ℓ, k ∈ N, we know that n < m and a and b have

opposite signs. We also get

ωr(z) =
(1− s)bℓ

sm

1

zn−k
. (2.8)

Proposition 2.15. Let ra,b,s be as in (1.4). Let m, k, n, ℓ ∈ N satisfy m+ k = n− ℓ, m > k,

and n > ℓ. Let a = −(1−s)2nbℓ
s2mk

. Then

• The critical curve is a circle centered at the origin with radius
∣∣∣ (1−s)bℓ

sm

∣∣∣ 1
n−k

.

• The region inside the critical curve is sense-reversing.

• The region outside the critical curve is sense-preserving.

Chapter 3. Proofs of Theorems 1.3, 1.4, 1.5,

and 1.6

In this chapter, we prove zero-counting theorems for the subfamilies defined in Section 2.3

for sufficiently large b. For each of these proofs, we calculate the number of zeros inside

of the critical curve and outside of the critical curve for each restriction using the sum of

the orders of the zeros for each in the complex plane and inside of the critical curve. Since

the sum of the orders of the zeros in the complex plane is dependent on the powers of the

polynomial and not the coefficients, we find the sum of the orders of the zeros in the complex

plane for the unrestricted convex combination.
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Lemma 3.1. The sum of the orders of the zeros of fa,b,s in C is m.

Proof. Let CR be a circle of radius R. We prove this lemma by showing that Zf,CR
= m for

sufficiently large radius R. Since m is the largest power, the term p(z) = szm is dominant

on any sufficiently large circle, so by Rouché’s Theorem, Zf,CR
= Zp,CR

= m. The details for

showing that p(z) is dominant for CR with R sufficiently large are below.

If |z| > 1, then because a, b, s, (1 − s) > 0, and because the natural number m exceeds

n, k, and ℓ,

|fa,b,s(z)− p(z)| =|sazk + (1− s)zn + (1− s)bzℓ − 1|

≤sa|z|k + (1− s)|z|n + (1− s)b|z|ℓ + 1

<sa|z|m−1 + (1− s)|z|m−1 + (1− s)b|z|m−1 + |z|m−1

=(sa+ (1− s) + (1− s)b+ 1)|z|m−1

=D|z|m−1

where D = sa+ (1− s) + (1− s)b+ 1. If also |z| ≥ D
s
, then

|fa,b,s(z)− p(z)| < D|z|m−1 ≤ (s|z|)|z|m−1 = |szm| = |p(z)|.

It is easy to check that, because 0 < s < 1, D
s
> 1. Thus, if R ≥ D

s
, then for all z ∈ C with

|z| = R

|fa,b,s(z)− p(z)| < |p(z)|.

By Rouché’s Theorem, Zf,CR
= Zp,CR

. Since p has a zero of order m at the origin, Zf,CR
= m

for all sufficiently large R.

With this lemma, we know the sum of the orders of the zeros for each subfamily, and

each section focuses on the sum of the orders of the zeros inside the critical curve for each

subfamily which must be handled case by case. Since the sum of the orders of the zeros

inside the critical curve is just the sum of all the negatively ordered zeros, the total number

of zeros is the sum of the orders of the zeros in the plane plus two times the number of

negatively ordered zeros.
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Proposition 3.2. For fa,b,s and hence its subfamilies, if S is the number of zeros inside the

critical curve, then the total number of zeros in the plane is m+ 2S.

3.1 Proof of Theorem 1.3

In this section, we prove the number of zeros the subfamily in Section 2.3.1 has for arbitrarily

large b. In Section 2.3.1, we restricted fa,b,s by requiring

• m+ k = n+ ℓ,

• m > n > ℓ > k,

• s = n
m+n

, and

• a = mbℓ
kn

.

Since these restrictions fix s and make a a function of b, we will refer to fa,b,s with these

restrictions as fb for the rest of this section. Proposition 2.10 also gives us the critical curve

|z| =
(
bℓ

n

) 1
n−k

for fb with the sense-reversing region inside the critical curve and the sense-preserving region

outside of the critical curve. We will denote the critical curve of fb as Γb for the rest of the

section.

Now, we find Zfb,Γb
.

Lemma 3.3. For sufficiently large b, Zfb,Γb
= −ℓ.

Proof. We prove this lemma using Rouché’s Theorem. We show that if p(z) = (1 − s)bz̄ℓ,

then Zfb,Γb
= Zp,Γb

; that is, we show

|szm + sazk + (1− s)zn − 1| < |(1− s)bzℓ| (3.1)

for all z ∈ Γb. Equation (3.1) will follow if we show

(1− s)b|z|ℓ − (s|z|m + sa|z|k + (1− s)|z|n + 1) > 0 (3.2)
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for all z ∈ Γb. Since points on the critical curve satisfy |z| =
(
bℓ
n

) 1
n−k , (3.2) is equivalent to

(1− s)b

(
bℓ

n

) ℓ
n−k

− s

(
bℓ

n

) m
n−k

− sa

(
bℓ

n

) k
n−k

− (1− s)

(
bℓ

n

) n
n−k

− 1 > 0.

By factoring out (1 − s)b
(
bℓ
n

) ℓ
n−k and using m − ℓ = n − k and sℓ

(1−s)n
= ℓ

m
to simplify the

second term, the left-hand side of (3.2) becomes

(1− s)b

(
bℓ

n

) ℓ
n−k

[
1− ℓ

m
− sa

(1− s)b

(
bℓ

n

) k−ℓ
n−k

− 1

b

(
bℓ

n

) n−ℓ
n−k

− 1

(1− s)b

(
bℓ

n

) −ℓ
n−k

]
.

The third term can also be simplified using sa
(1−s)b

= ℓ
k
, giving

(1− s)b

(
bℓ

n

) ℓ
n−k

[
1− ℓ

m
− ℓ

k

(
bℓ

n

) k−ℓ
n−k

− 1

b

(
bℓ

n

) n−ℓ
n−k

− 1

(1− s)b

(
bℓ

n

) −ℓ
n−k

]
.

This expression is positive if and only if the expression in square brackets is positive. Due

to the relation between m,n, ℓ, and k, we find that the total exponent on b in each term is

negative. Indeed,

−ℓ

n− k
− 1 <

k − ℓ

n− k
=

n− ℓ

n− k
− 1 < 0.

Therefore, each term involving b tends to 0 as b tends to infinity. Thus, there exists b0 such

that for all b > b0,

ℓ

k

(
bℓ

n

) k−ℓ
n−k

+
1

b

(
bℓ

n

) n−ℓ
n−k

+
1

(1− s)b

(
bℓ

n

) −ℓ
n−k

< 1− ℓ

m
.

Therefore, for such b,

0 < 1− ℓ

m
− ℓ

k

(
bℓ

n

) k−ℓ
n−k

− 1

b

(
bℓ

n

) n−ℓ
n−k

− 1

(1− s)b

(
bℓ

n

) −ℓ
n−k

.

It follows that p is the dominant term of fb on the critical curve, and by Rouché’s Theorem,

Zfb,Γb
= Zp,Γb

for sufficiently large b. Since p only has a zero of order −ℓ located at the

origin, Zfb,Γb
= −ℓ for sufficiently large b.

Now, we have everything needed to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.3, Zfb,Γb
= −ℓ. Therefore, the number of zeros in the

critical curve is ℓ, and Proposition 3.2 gives us the total number of zeros for fb is m+2ℓ for

b sufficiently large.
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Figure 3.1: The zeros and critical curve of f41 =
6
15
(z9 + 615

4
z2 − 1) + 9

15
(z6 + 41z5 − 1)

Figure 3.1 displays an example of Theorem 1.3. In this example, the component parts

of f41 have 13 and 16 as their maximum number of zeros. However, f41 has 19 zeros. For

this subfamily, the number of zeros the convex combination has for sufficiently large b will

always be larger than the maximum of the component parts since m > n > ℓ > k.

3.2 Proof of Theorem 1.4

In this section, we prove the number of zeros the subfamily in Section 2.3.2 has for arbitrarily

large b. In Section 2.3.2, we restricted fa,b,s by requiring

• m− k = n− ℓ,

• m > n > ℓ,

• m > k > ℓ,

• s = n
m+n

, and

• a = mbℓ
kn

.
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Since these restrictions fix s and make a a function of b, we will refer to fa,b,s with these

restrictions as fb for the rest of this section. Proposition 2.11 also gives us the critical curve

|z| =
(
bℓ

n

) 1
n−ℓ

for fb with the sense-reversing region inside the critical curve and the sense-preserving region

outside of the critical curve. We will denote the critical curve of fb as Γb for the rest of the

section.

Now, we find Zfb,Γb
.

Lemma 3.4. For sufficiently large b, Zfb,Γb
= −k.

Proof. We prove this lemma using Rouché’s Theorem. We show that if p(z) = sazk, then

Zfb,Γb
= Zp,Γb

; that is, we show

|szm + (1− s)bzℓ + (1− s)zn − 1| < |sazk| (3.3)

for all z ∈ Γb. Equation (3.3) will follow if we show

sa|z|k − (s|z|m + (1− s)b|z|ℓ + (1− s)|z|n + 1) > 0 (3.4)

for all z ∈ Γb. Using the same process as for Lemma 3.3, we rearrange this expression into

constants and powers of b and show the powers are negative. Since points on the critical

curve satisfy |z| =
(
bℓ
n

) 1
n−ℓ and a = mbℓ

kn
, (3.4) is equivalent to

smbℓ

kn

(
bℓ

n

) k
n−ℓ

−

(
s

(
bℓ

n

) m
n−ℓ

+ (1− s)b

(
bℓ

n

) ℓ
n−ℓ

+ (1− s)

(
bℓ

n

) n
n−ℓ

+ 1

)
> 0.

By factoring out smbℓ
kn

(
bℓ
n

) k
n−ℓ and using m − k = n − ℓ to simplify the second term, the

left-hand side of (3.4) becomes

smbℓ

kn

(
bℓ

n

) k
n−ℓ

[
1− kn

mbℓ

(
bℓ

n

)
− (1− s)kn

smℓ

(
bℓ

n

) ℓ−k
n−ℓ

− (1− s)kn

smbℓ

(
bℓ

n

)n−k
n−ℓ

− kn

smbℓ

(
bℓ

n

) −k
n−ℓ

]
.

(3.5)

The third and fourth terms can also be simplified using ms
n(1−s)

= 1, giving

smbℓ

kn

(
bℓ

n

) k
n−ℓ

[
1− k

m
− k

ℓ

(
bℓ

n

) ℓ−k
n−ℓ

− k

bℓ

(
bℓ

n

)n−k
n−ℓ

− kn

smbℓ

(
bℓ

n

) −k
n−ℓ

]
.
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This expression is positive if and only if the expression in square brackets is positive. Due

to the relation between m,n, ℓ, and k, we find that the total exponent on b in each term is

negative. Indeed,

−k

n− ℓ
− 1 <

ℓ− k

n− ℓ
=

n− k

n− ℓ
− 1 < 0.

Therefore, each term involving b tends to 0 as b tends to infinity. Thus, there exists b0 such

that for all b > b0,

k

ℓ

(
bℓ

n

) ℓ−k
n−ℓ

+
k

bℓ

(
bℓ

n

)n−k
n−ℓ

+
kn

smbℓ

(
bℓ

n

) −k
n−ℓ

< 1− k

m
.

Therefore, for such b,

0 < 1− k

m
− k

ℓ

(
bℓ

n

) ℓ−k
n−ℓ

− k

bℓ

(
bℓ

n

)n−k
n−ℓ

− kn

smbℓ

(
bℓ

n

) −k
n−ℓ

.

It follows that p is the dominant term of fb on the critical curve, and by Rouché’s Theorem,

Zfb,Γb
= Zp,Γb

. Since p only has a zero of order −k located at the origin, Zfb,Γb
= −k for

sufficiently large b.

Now, we have everything needed to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 3.4, Zfb,Γb
= −k. Therefore, the number of zeros in the

critical curve is k, and Proposition 3.2 gives us the total number of zeros for fb is m+2k for

b sufficiently large.

Figure 3.2 displays an example of Theorem 1.4. In this example, the component parts

of f50 have 17 and 11 as their maximum number of zeros. f50 has 17 zeros for b sufficiently

large. For this subfamily, the number of zeros the convex combination has for sufficiently

large b will be the same as first component which has the larger maximum number of zeros

since m > n and k > ℓ. For both this subfamily and the subfamily in Section 3.1, the

dominant term on the critical curve was the conjugate term with the larger power when the

coefficients of those terms were arbitrarily large, so whether ℓ > k or k > ℓ determined the

total number of zeros.
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Figure 3.2: The zeros and critical curve of f50 =
7
16
(z9 + 225

7
z4 − 1) + 9

16
(z7 + 50z2 − 1)

3.3 Proof of Theorem 1.5

In this section, we prove the number of zeros the subfamily in Section 2.3.3 has for arbitrarily

large b. In section 2.3.3, we restricted fa,b,s by requiring

• m+ k = n+ ℓ,

• m > n > ℓ > k, and

• a = (1−s)2bnℓ
s2mk

.

Since these restrictions make a a function of b but do not restrict s, we will refer to fa,b,s

with these requirements as fb,s for the rest of this section. Proposition 2.12 also gives us the

critical curve

|z| =
(
(1− s)bℓ

sm

) 1
n−k

for fb,s with the sense-reversing region inside the critical curve and the sense-preserving

region outside of the critical curve. Since the expression (1−s)ℓ
sm

is cumbersome and shows up

frequently in proving the next lemma, we will rename it Rs, which will reduce the critical

curve expression to |z| = (bRs)
1

n−k . We denote the critical curve of fb,s as Γb for the rest of

the section.
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Now, we find Zfb,s,Γb
.

Lemma 3.5. For sufficiently large b, Zfb,s,Γb
= −ℓ.

Proof. We prove this lemma using Rouché’s Theorem. We show if p(z) = (1 − s)bz̄ℓ, then

Zfb,s,Γb
= Zp,Γb

; that is, we show

|szm + sazk + (1− s)zn − 1| < |(1− s)bzℓ| (3.6)

for all z ∈ Γb. Equation (3.6) will follow if we show

(1− s)b|z|ℓ − (s|z|m + sa|z|k + (1− s)|z|n + 1) > 0 (3.7)

for all z ∈ Γb. Since points on the critical curve satisfy |z| = (bRs)
1

n−k , (3.7) is equivalent to

(1− s)b(bRs)
ℓ

n−k − s(bRs)
m

n−k − sa(bRs)
k

n−k − (1− s)(bRs)
n

n−k − 1 > 0.

By factoring out (1− s)b(bRs)
ℓ

n−k and using m− ℓ = n− k to simplify the second term, the

left-hand side of (3.7) is equivalent to

(1− s)b(bRs)
ℓ

n−k

[
1− ℓ

m
− sa

(1− s)b
(bRs)

k−ℓ
n−k − 1

b
(bRs)

n−ℓ
n−k − 1

(1− s)b
(bRs)

−ℓ
n−k

]
.

The third term can also be simplified using a = (1−s)2bnℓ
s2mk

, giving

(1− s)b(bRs)
ℓ

n−k

[
1− ℓ

m
− (1− s)nℓ

smk
(bRs)

k−ℓ
n−k − 1

b
(bRs)

n−ℓ
n−k − 1

(1− s)b
(bRs)

−ℓ
n−k

]
.

This expression is positive if and only if the expression in square brackets is positive. Due

to the relation between m,n, ℓ, and k, we find that the total exponent on b in each term is

negative. Indeed,

−ℓ

n− k
− 1 <

k − ℓ

n− k
=

n− ℓ

n− k
− 1 < 0.

Therefore, each term involving b tends to 0 as b tends to infinity. Thus, there exists b0 such

that for all b > b0,

(1− s)nℓ

smk
(bRs)

k−ℓ
n−k +

1

b
(bRs)

n−ℓ
n−k +

1

(1− s)b
(bRs)

−ℓ
n−k < 1− ℓ

m
.

Therefore, for such b,

0 < 1− ℓ

m
− (1− s)nℓ

smk
(bRs)

k−ℓ
n−k − 1

b
(bRs)

n−ℓ
n−k − 1

(1− s)b
(bRs)

−ℓ
n−k .

28



Figure 3.3: The zeros and critical curve of f50, 5
12

= 5
12
(z7 + 750

7
z − 1) + 7

12
(z5 + 50z3 − 1)

It follows that p is the dominant term of fb,s on the critical curve, and by Rouché’s Theorem,

Zfb,s,Γb
= Zfb,s,Γb

. Since p only has a zero of order −ℓ located at the origin, Zfb,s,Γb
= −ℓ for

sufficiently large b.

Now, we have everything needed to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 3.5, Zfb,s,Γb
= −ℓ. Therefore, the number of zeros in the

critical curve is ℓ, and Proposition 3.2 gives us the total number of zeros for fb,s is m + 2ℓ

for b sufficiently large.

Figure 3.3 displays an example of Theorem 1.5. In this example, the component parts

of f50, 5
12

have 9 and 11 as their maximum number of zeros. However, f50, 5
12

has 13 zeros for

b sufficiently large. For this subfamily, the number of zeros the convex combination has for

sufficiently large b will always be larger than the maximum of the component parts since

m > n > ℓ > k.

29



3.4 Proof of Theorem 1.6

In this section, we prove the number of zeros the subfamily in Section 2.3.4 has for arbitrarily

large b. In section 2.3.4, we restricted fa,b,s by requiring

• m− k = n− ℓ,

• m > n > ℓ,

• m > k > ℓ, and

• a = mbℓ
kn

.

Since these restrictions make a a function of b and do not fix s, we will refer to fa,b,s with

these restrictions as fb,s for the rest of this section. Proposition 2.13 also gives us the critical

curve

|z| =
(
bℓ

n

) 1
n−ℓ

for fb,s with the sense-reversing region inside the critical curve and the sense-preserving

region outside of the critical curve. We denote the critical curve of fb,s as Γb for the rest of

the section.

Now, we find Zfb,s,Γb
.

Lemma 3.6. For sufficiently large b, Zfb,s,Γb
= −k.

Proof. The proof of this lemma is identical to the proof of Lemma 3.4 up through (3.5). For

this proof, the expression (3.5) can not be simplified the same way since s is unrestricted.

However, the powers on b in each term are unchanged and therefore negative. Thus, there

exists b0 such that for all b > b0,

(1− s)kn

smℓ

(
bℓ

n

) ℓ−k
n−ℓ

+
(1− s)kn

smbℓ

(
bℓ

n

)n−k
n−ℓ

+
kn

smbℓ

(
bℓ

n

) −k
n−ℓ

< 1− k

m
.

Therefore, for such b,

0 < 1− k

m
− (1− s)kn

smℓ

(
bℓ

n

) ℓ−k
n−ℓ

− (1− s)kn

smbℓ

(
bℓ

n

)n−k
n−ℓ

− kn

smbℓ

(
bℓ

n

) −k
n−ℓ

.
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Figure 3.4: The zeros and critical curve of f30, 5
12

= 5
12
(z7 + 126

5
z5 − 1) + 7

12
(z5 + 30z3 − 1)

It follows that p is the dominant term of fb,s on the critical curve, and by Rouché’s Theorem,

Zfb,s,Γb
= Zp,Γb

. Since p only has a zero of order −k located at the origin, Zfb,s,Γb
= −k for

sufficiently large b.

Now, we have everything needed to prove Theorem 1.6.

Proof of Theorem 1.6. By Lemma 3.6, Zfb,s,Γb
= −k. Therefore, the number of zeros in the

critical curve is k, and Proposition 3.2 gives us the total number of zeros for fb,s is m + 2k

for b sufficiently large.

Figure 3.4 displays an example of Theorem 1.6. In this example, the component parts of

f30, 5
12

have 17 and 11 as their maximum number of zeros. f30, 5
12

has 17 zeros for b sufficiently

large. For this subfamily, the number of zeros the convex combination has for sufficiently

large b will be the same as its first component which has the larger maximum number of

zeros since m > n and k > ℓ.
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Chapter 4. Proofs of Theorems 1.8 and 1.9

In this chapter, we count the number of zeros each subfamily introduced in Section 2.4 has for

arbitrarily small and large b. Since the largest power of ra,b,s is determined by the subfamily,

the sum of the orders of the zeros in the complex plane needs to be found separately for

each.

4.1 Proof of Theorem 1.8

In this section, we prove the number of zeros that the subfamily in Section 2.4.1 has for

arbitrarily small and arbitrarily large b. In Section 2.4.1, we restricted ra,b,s by requiring

• m− k = n+ ℓ,

• a = mbℓ
kn

.

Since these restrictions make a a function of b, we will refer to ra,b,s with these restrictions

as rb,s for the rest of this section. Proposition 2.14 also gives us the critical curve

|z| =
(
bℓ

n

) 1
m−k

for rb,s with the sense-reversing region inside the critical curve and the sense-preserving

region outside of the critical curve. We denote the critical curve of rb,s as Γb for the rest of

this section.

Lemma 4.1. Zrb,s,C = m− ℓ.

Proof. We claim that if p(z) = szm, then |p(z) − rb,s(z)| < |p(z)|. The proof of this is the

same as the proof for the original combination with −ℓ replacing the ℓ. Using Rouché’s

Theorem, we get that

Zrb,s,C − Prb,s,C = Zp,C − Pp,C = m− 0 = m.

Since Prb,s,C = −ℓ; that is to say, the sum of the orders of the poles of rb,s in C is −ℓ, we

have that Zrb,s,C = m− ℓ.
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Now, we find the sum of the orders of the zeros inside the critical curve for both small

and large b.

Lemma 4.2. For sufficiently small b, Zrb,s,Γb
= −ℓ.

Proof. On the critical curve, each term besides −1 has a b with a positive exponent. Since

we are letting b be small, −1 should be the largest term for b small enough. So, we are going

to let p(z) = −1 for our Rouché’s Theorem argument below. On the critical curve,

|p(z)− rb,s(z)| = |szm + sazk + (1− s)zn + (1− s)z−ℓ|

≤ s|z|m + s|a||z|k + (1− s)|z|n + (1− s)|b||z|−ℓ

= s

∣∣∣∣bℓn
∣∣∣∣ m
m−k

+ s

∣∣∣∣mbℓ

nk

∣∣∣∣ ∣∣∣∣bℓn
∣∣∣∣ k
m−k

+ (1− s)

∣∣∣∣bℓn
∣∣∣∣ n
m−k

+ (1− s)|b|
∣∣∣∣bℓn
∣∣∣∣ −ℓ
m−k

= s

∣∣∣∣bℓn
∣∣∣∣ m
m−k (

1 +
m

k

)
+ (1− s)

∣∣∣∣bℓn
∣∣∣∣ n
m−k

(
1 +

∣∣∣∣ ℓn
∣∣∣∣ −ℓ
m−k

)
.

Since m
m−k

> 0 and n
m−k

> 0, there exists a b0 such that for all b with |b| < b0,

|p(z)− rb,s(z)| < 1 = |p(z)|.

Therefore, by Rouché’s Theorem, Zrb,s,Γb
−Prb,s,Γb

= Zp,Γb
−Pp,Γb

= 0. Since Prb,s,Γb
= −ℓ as

there is a pole of order −ℓ at the origin, Zrb,s,Γb
= −ℓ.

Since we have found the sum of the orders of the zeros inside of the critical curve for

small b, we just need the sum for large b.

Lemma 4.3. For sufficiently large b, Zrb,s,Γb
= −(k + ℓ).
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Proof. Let b > 1 and p(z) = szm + sazk. Then, on the critical curve

|p(z)| = |szm + sazk|

≥ s(|a||z|k − |z|m)

= s

(
|a|
∣∣∣∣bℓn
∣∣∣∣ k
m−k

−
∣∣∣∣bℓn
∣∣∣∣ m
m−k

)

= s

(∣∣∣∣mbℓ

kn

∣∣∣∣ ∣∣∣∣bℓn
∣∣∣∣ k
m−k

−
∣∣∣∣bℓn
∣∣∣∣ m
m−k

)

= s

∣∣∣∣bℓn
∣∣∣∣ m
m−k (m

k
− 1
)
.

Also,

|rb,s(z)− p(z)| = |(1− s)zn + (1− s)bz−ℓ − 1|

≤ (1− s)|z|n + (1− s)|b||z|−ℓ + 1

= (1− s)

∣∣∣∣bℓn
∣∣∣∣ n
m−k

+ (1− s)|b|
∣∣∣∣bℓn
∣∣∣∣ −ℓ
m−k

+ 1

= (1− s)

∣∣∣∣bℓn
∣∣∣∣ n
m−k

+ (1− s)

(
ℓ

n

) −ℓ
m−k

|b|
n

m−k + 1

≤ (1− s)

∣∣∣∣bℓn
∣∣∣∣ n
m−k

+ (1− s)

(
ℓ

n

) −ℓ
m−k

|b|
n

m−k + |b|
n

m−k

=

[
(1− s)

(
ℓ

n

) n
m−k

+ (1− s)

(
ℓ

n

) −ℓ
m−k

+ 1

]
|b|

n
m−k .

Therefore, since m > n, there exists a b0 > 1 such that for all |b| > b0[
(1− s)

(
ℓ

n

) n
m−k

+ (1− s)

(
ℓ

n

) −ℓ
m−k

+ 1

]
|b|

n
m−k ≤ s

∣∣∣∣bℓn
∣∣∣∣ m
m−k (m

k
− 1
)
.

Therefore, |p(z)| ≥ |rb,s(z)− p(z)|. So, Zrb,s,Γb
− Prb,s,Γb

= Zp,Γb
− Pp,Γb

.

The harmonic function p has no poles, so Pp,Γb
= 0. Now, we just need to find Zp,Γb

. This

is not as trivial as it is in Chapter 3. Since p has two terms, we need to find the locations of

the zeros not at the origin in order to deduce if they are in the critical curve or not. Using

Definition 2.6, we see that p has a zero of order −k at the origin. If z0 is a nonzero zero,
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then it satisfies

|a|
1

m−k = |z0|

=⇒
∣∣∣∣mbℓ

kn

∣∣∣∣ 1
m−k

= |z0|.

Therefore, the remaining zeros of p all lie on a circle of bigger radius than the critical curve.

Therefore, Zp,Γb
= −k. So, Zrb,s,Γb

−Prb,s,Γb
= −k. Since Prb,s,Γb

= −ℓ, Zrb,s,Γb
= −(k+ℓ).

Now, we have everything we need to prove Theorem 1.8.

Proof of Theorem 1.8. For arbitrarily small b, Lemma 4.2 gives that Zrb,s,Γb
= −ℓ. Since the

sense-reversing region is inside of the critical circle, there are ℓ negatively ordered zeros. By

Lemma 4.1, the Zrb,s,C = m− ℓ, so the number of zeros in the sense-preserving region must

be (m− ℓ) + ℓ = m. Therefore, the number of zeros for rb,s is m+ ℓ when |b| < b0 for some

b0 > 0.

For arbitrarily large b, Lemma 4.3 gives that Zrb,s,Γb
= −(k+ℓ). Since the sense-reversing

region is inside of the critical circle, there are k+ ℓ negatively ordered zeros. By Lemma 4.1,

Zrb,s,C = m−ℓ, so the number of zeros in the sense-preserving region must be (m−ℓ)+ℓ+k =

m+ k. Therefore, the number of zeros for rb,s is m+ ℓ+ 2k when |b| > b1 for some b1 > 0.

Figure 4.1 displays an example of Theorem 1.8. In this example, rb, 3
5
has 8 zeros for b

sufficiently small and 12 zeros for b sufficiently large. For this subfamily, the end behavior in

the change the number of zeros the convex combination goes through from sufficiently small

b to sufficiently large b follows the same pattern as Corollary 1.1 while the number of zeros

for sufficiently small b matches the impact the pole had in Corollary 1.7.

4.2 Proof of Theorem 1.9

In this section, we prove the number of zeros that the subfamily in Section 2.4.2 has for

arbitrarily small and arbitrarily large b. In Section 2.4.2, we restricted ra,b,s by requiring
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Figure 4.1: The zeros and critical curve of rb, 3
5
= 3

5
(z7− 7

8
bz2−1)+ 2

5
(z4+ b

z
−1) with b = 0.1

(left) and b = 20 (right)

• m+ k = n− ℓ,

• a = −(1−s)2nbℓ
s2mk

.

Since these restrictions make a a function of b, we will refer to ra,b,s with these restrictions

as rb,s for the rest of this section. Proposition 2.15 also gives us the critical curve

|z| =
(
(1− s)bℓ

sm

) 1
n−k

for rb,s with the sense-reversing region inside the critical curve and the sense-preserving

region outside of the critical curve. We denote the critical curve of rb,s as Γb for the rest of

this section.

Lemma 4.4. Zrb,s,Γb
= n− ℓ.

Proof. We claim that if p(z) = szn, then |p(z)−f(z)| ≤ |p(z)|. The proof of this is the same

as the proof for the original combination with −ℓ replacing the ℓ. Using Rouché’s Theorem,

we get that

Zf,C − Pf,C = Zp,C − Pp,C = n− 0 = n.

Since Pf,C = −ℓ, we have that Zf,C = n − ℓ. In other words, the sum of the orders of the

zeros of f for the entire complex plane is n− ℓ.
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Now, we find the sum of the orders of the zeros inside the critical curve for both small

and large b.

Lemma 4.5. For sufficiently small b, Zrb,s,Γb
= −ℓ.

Proof. On the critical curve, each term besides −1 has a b with a positive exponent. Since

we are letting b be small, −1 should be the largest term for b small enough. So, we are going

to let p(z) = −1 for our Rouché’s Theorem argument below. On the critical curve,

|p(z)− rb,s(z)| = |szm + sazk + (1− s)zn + (1− s)z−ℓ|

≤s|z|m + s|a||z|k + (1− s)|z|n + (1− s)|b||z|−ℓ

=s

∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ m
n−k

+

∣∣∣∣(1− s)2bnℓ

s2mk

∣∣∣∣ ∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ k
n−k

+ (1− s)

∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ n
n−k

+ (1− s)|b|
∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ −ℓ
n−k

=s

∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ m
n−k

+

∣∣∣∣(1− s)2bℓ

s2mk

∣∣∣∣ ∣∣∣∣(1− s)ℓ

sm

∣∣∣∣ k
n−k

|b|
m

n−k + (1− s)

∣∣∣∣(1− s)bℓ

sm

∣∣∣∣ n
n−k

+ (1− s)

∣∣∣∣(1− s)ℓ

sm

∣∣∣∣ −ℓ
n−k

|b|
m

n−k .

Since m
n−k

> 0 and n
n−k

> 0, there exists a b0 such that for all b with |b| < b0,

|p(z)− f(z)| ≤ 1 = |p(z)|.

Therefore, by Rouché’s Theorem, Zrb,s,Γb
− Prb,s,Γb

= Zp,Γb
− Pp,Γb

= 0. So, Zrb,s,Γb
= −ℓ.

Since we have found the sum of the orders of the zeros inside of the critical curve for

small b, we just need the sum for large b.

Lemma 4.6. For sufficiently large b, Zrb,s,Γb
= −(k + ℓ).

37



Proof. Let b > 1 and p(z) = (1− s)zn + sazk. Then, on the critical curve

|p(z)| = |(1− s)zn + sazk|

≥ s|a||z|k − (1− s)|z|n

= s

∣∣∣∣bnℓ(1− s)2

mks2

∣∣∣∣ ∣∣∣∣bℓ(1− s)

sm

∣∣∣∣ k
n−k

− (1− s)

∣∣∣∣bℓ(1− s)

sm

∣∣∣∣ n
n−k

= (1− s)
(n
k
− 1
)(ℓ(1− s)

sm

) n
n−k

|b|
n

n−k .

Also,

|rb,s(z)− p(z)| = |szm + (1− s)bz−ℓ − 1|

≤ s|z|m + (1− s)|b||z|−ℓ + 1

= s

∣∣∣∣bℓ(1− s)

sm

∣∣∣∣ m
n−k

+ (1− s)|b|
∣∣∣∣bℓ(1− s)

sm

∣∣∣∣ −ℓ
n−k

+ 1

= s

∣∣∣∣bℓ(1− s)

sm

∣∣∣∣ m
n−k

+ (1− s)

(
ℓ(1− s)

sm

) −ℓ
n−k

|b|
m

n−k + 1

≤

[
s

(
ℓ(1− s)

sm

) m
n−k

+ (1− s)

(
ℓ(1− s)

sm

) −ℓ
n−k

+ 1

]
|b|

m
n−k .

Since n > m, there exists a b0 > 1 such that for all |b| > b0, |p(z)| ≥ |rb,s(z) − p(z)|. So,

Zrb,s,Γb
− Prb,s,Γb

= Zp,Γb
− Pp,Γb

.

The harmonic function p has no poles, so Pp,Γb
= 0. Now, we just need to find Zp,Γb

.

Similar to the previous section, p has two terms, so we need to find the locations of the zeros

not on the origin in order to deduce if they are in the critical curve or not. Using Definition

2.6, p has a zero of order −k at the origin. If z0 is a nonzero zero, then it satisfies∣∣∣∣ sa

1− s

∣∣∣∣ 1
n−k

= |z0|

=⇒
∣∣∣∣(1− s)nbℓ

smk

∣∣∣∣ 1
n−k

= |z0|

Therefore, the remaining zeros of p all lie on a circle of bigger radius than the critical curve.

Therefore, Zp,Γb
= −k. So, Zrb,s,Γb

−Prb,s,Γb
= −k. Since Prb,s,Γb

= −ℓ, Zrb,s,Γb
= −(k+ℓ).

Now, we have everything we need to prove Theorem 1.8.
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Figure 4.2: The zeros and critical curve of rb, 2
5
= 2

5
(z5 − 3bz3 − 1) + 3

5
(z10 + b

z2
− 1) with

b = 0.1 (left) and b = 18 (right)

Proof of Theorem 1.8. For arbitrarily small b, Lemma 4.5 gives that Zrb,s,Γb
= −ℓ. Since the

sense-reversing region is inside of the critical circle, there are ℓ negatively ordered zeros. By

Lemma 4.4, Zrb,s,C = n − ℓ, so the number of zeros in the sense-preserving region must be

(n− ℓ)+ ℓ = n. Therefore, the number of zeros for rb,s is n+ ℓ when |b| < b0 for some b0 > 0.

For arbitrarily large b, Lemma 4.6 gives that Zrb,s,Γb
= −(k+ℓ). Since the sense-reversing

region is inside of the critical circle, there are k+ ℓ negatively ordered zeros. By Lemma 4.4,

Zrb,s,C = n−ℓ, so the number of zeros in the sense-preserving region must be (n−ℓ)+ℓ+k =

n+ k. Therefore, the number of zeros for rb,s is n+ ℓ+ 2k when |b| > b1 for some b1 > 0.

Figure 4.2 displays an example of Theorem 1.9. In this example, rb, 2
5
has 12 zeros for

b sufficiently small and 18 zeros for b sufficiently large. This subfamily has the same end

behavior as the other wherein the change the number of zeros the convex combination goes

through from sufficiently small b to sufficiently large b follows the pattern as Corollary 1.1

while the number of zeros for sufficiently small bmatches the impact the pole had in Corollary

1.7. However, n > m is enough to replace the job of m in counting the number of zeros with

n.
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Chapter 5. Further Directions

Here are a list of questions that remain for future work:

• While this thesis does not contain an exploration of the convex combination of the

Brooks and Lee family with itself, the paper [2] explores a subfamily of the Brooks

and Lee convex combination using the same method of finding restrictions as the

subfamily in Theorem 1.3. What subfamilies would be produced for the Brooks and Lee

convex combination using the same methods for finding restrictions as the subfamilies

in Theorems 1.4, 1.5, and 1.6? Would they have similar relationships to Theorems 1.3,

1.4, 1.5, and 1.6?

• In this thesis, we only explored two methods of restricting the dilatation function to get

circular critical curves. Are there different restrictions of these convex combinations

that could have circular critical curves?

• While a circular critical curve allows for a simpler Rouché’s Theorem argument, a

circular critical curve is not required to find the number of zeros. Are there any

interesting results from analyzing subfamilies of these convex combinations with non-

circular critical curves using annuli or other methods?

• Does increasing the number of functions in the convex combination, like

s1(z
m1 + a1z

k1 − 1) + s2(z
m2 + a2z

k2 − 1) + s3(z
m3 + a3z

k3 − 1)

with s1, s2, s3 ∈ (0, 1) and s1 + s2 + s3 = 1, have any substantial consequences?
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