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QUASI-ANOSOV DIFFEOMORPHISMS OF 3-MANIFOLDS

T. FISHER AND M. RODRIGUEZ HERTZ

Abstract. In 1969, Hirsch posed the following problem: given a diffeomor-
phism f : N → N and a compact invariant hyperbolic set Λ of f , describe the
topology of Λ and the dynamics of f restricted to Λ. We solve the problem
where Λ = M3 is a closed 3-manifold: if M3 is orientable, then it is a con-
nected sum of tori and handles; otherwise it is a connected sum of tori and
handles quotiented by involutions.

The dynamics of the diffeomorphisms restricted to M3, called quasi-Anosov
diffeomorphisms, is also classified: it is the connected sum of DA-diffeomor-
phisms, quotiented by commuting involutions.

1. Introduction

This paper deals with hyperbolic sub-dynamics. It is related to a problem posed
by M. Hirsch, around 1969: given a diffeomorphism f : N → N and a compact
invariant hyperbolic set Λ of f , describe the topology of Λ and the dynamics of f
restricted to Λ. Hirsch asked, in particular, whether the fact that Λ were a manifold
M would imply that the restriction of f to M is an Anosov diffeomorphism [11].
However, in 1976, Franks and Robinson gave an example of non-Anosov hyperbolic
sub-dynamics in the connected sum of two T

3 [3] (see below). There are also
examples of hyperbolic sub-dynamics in non-orientable 3-manifolds; for instance,
the example of Zhuzhoma and Medvedev [18]. Here we show that all examples of
3-manifolds that are hyperbolic invariant sets are, in fact, finite connected sums of
the examples above and handles S2 × S1 (see definitions in §3 and §5).

Theorem 1.1. Let f : N → N be a diffeomorphism, and let M ⊂ N be a hyperbolic
invariant set for f such that M is a closed orientable 3-manifold. Then the Kneser-
Milnor prime decomposition of M is

M = T1# . . .#Tk#H1# . . .#Hr,

the connected sum of k ≥ 1 tori Ti = T
3 and r ≥ 0 handles Hj = S2 × S1. In case

M is non-orientable, then M decomposes as

M = T̃1# . . .#T̃k#H1# . . .#Hr,

the connected sum of k ≥ 1 tori quotiented by involutions T̃i = T
3|θi and r handles

Hj = S2 × S1.
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In 1976, Mañé obtained the following characterization [15] (see also Theorem
3.3): g : M → M is the restriction of another diffeomorphism to a hyperbolic set
M that is a closed manifold, if and only if g is quasi-Anosov . That is, if it satisfies
Axiom A and all intersections of stable and unstable manifolds are quasi-transversal,
i.e.,

(1.1) TxW s(x) ∩ TxWu(x) = {0} ∀x ∈ M.

The Franks-Robinson example of a non-Anosov quasi-Anosov diffeomorphism is
essentially as follows: they consider a hyperbolic linear automorphism of a torus T1

with only one fixed point, and its inverse in another torus T2. They produce appro-
priate deformations on each torus (DA-diffeomorphisms) around their respective
fixed points. Then they cut suitable neighborhoods containing these fixed points,
and carefully glue them together along their boundary so that the stable and unsta-
ble foliations intersect quasi-transversally. This is a quasi-Anosov diffeomorphism
in the connected sum of T1 and T2, and hence T1#T2 is a compact invariant hyper-
bolic set of some diffeomorphism. The non-orientable example by Medvedev and
Zhuzhoma [18] is similar to Franks and Robinson’s, but they perform a quotient of
each Ti by an involution before gluing them together.

The second part of this work, a classification of the dynamics of quasi-Anosov
diffeomorphisms of 3-manifolds, shows that all examples are, in fact, connected
sums of the basic examples above:

Theorem 1.2. Let g : M → M be a quasi-Anosov diffeomorphism of a closed
3-manifold M . Then:

(1) The non-wandering set Ω(g) of g consists of a finite number of codimension-
one expanding attractors, codimension-one shrinking repellers and hyper-
bolic periodic points.

(2) For each attractor Λ in Ω(g), there exist a hyperbolic toral automorphism
A with stable index one, a finite set Q of A-periodic points, and a linear
involution θ of T

3 fixing Q such that the restriction of g to its basin of
attraction W s(Λ) is topologically conjugate to a DA-diffeomorphism fA

Q on
the punctured torus T

3 − Q quotiented by θ. In case M is an orientable
manifold, θ is the identity map. An analogous result holds for the repellers
of Ω(g).

Item (2) above is actually a consequence of item (1), as it was shown by Plykin
in [20, 21]; see also [6] and [7]. A statement of the result can be found in Theorem
4.3 in this work. The proof of Theorem 1.2 is in §4. Theorem 1.2, in fact, implies
Theorem 1.1. This is proved in §5.

Let us see how a handle S2 ×S1 could appear in the prime decomposition of M :
consider a linear automorphism of a torus T1 and its inverse in a torus T2, as in
Franks-Robinson’s example. Then, instead of exploding a fixed point, one explodes
and cuts around an orbit of period 2 in T1 and in T2. The rest of the construction is
very similar, gluing carefully as in that example to obtain quasi-Anosov dynamics.
This gives the connected sum of two tori and a handle. The explanation and details
can be found in §5.

Let us also mention that in a previous work [22] it was shown that there exist
a codimension-one expanding attractor and a codimension-one shrinking repeller if
g is a quasi-Anosov diffeomorphism of a 3-manifold that is not Anosov. The fact
that only T

3 can be an invariant subset of any known Anosov system was already



QUASI-ANOSOV DIFFEOMORPHISMS OF 3-MANIFOLDS 3709

shown by A. Zeghib [29]. In that case, the dynamics is Anosov. See also [2] and
[16].

This work is also related to a work by Grines and Zhuzhoma [8]. There they
prove that if an n-manifold supports a structurally stable diffeomorphism with a
codimension-one expanding attractor, then it is homotopy equivalent to T

n and is
homeomorphic to T

n if n �= 4. In a certain sense, the results deal with complemen-
tary extreme situations in the Axiom A world: the Grines-Zhuzhoma result deals
with structurally stable diffeomorphisms, which are Axiom A satisfying the strong
transversality condition. This means that all x, y in the non-wandering set satisfy
at their points z of intersection: TzW

s(x) � TzW
u(y). In particular,

dimEs
x + dim Eu

y ≥ n.

In our case, we deal with quasi-Anosov diffeomorphisms, which are Axiom A satisfy-
ing equality (1.1). In particular, for x, y, z as above, we have TzW

s(x)∩TzW
u(y) =

{0}, so
dimEs

x + dim Eu
y ≤ n.

In the intersection of both situations are, naturally, the Anosov diffeomorphisms.
Observe that it makes sense to get a classification of the dynamical behavior

of quasi-Anosov on its non-wandering set, since quasi-Anosov are Ω-stable [15]
(see also §3). They form an open set, due to quasi-transversality condition (1.1).
Moreover, they are the C1-interior of expansive diffeomorphisms; that is, they are
robustly expansive [14]. However, 3-dimensional quasi-Anosov diffeomorphisms of
M �= T

3 are never structurally stable, so they are approximated by other quasi-
Anosov diffeomorphisms with different dynamical behavior, but similar asymptotic
behavior (Proposition 3.2).

Finally, in Section 7 we study quasi-Anosov diffeomorphisms in the presence of
partial hyperbolicity (see the definitions in §7). We obtain the following result
under mild assumptions on dynamical coherence:

Theorem 1.3. If f : M3 → M3 is a quasi-Anosov diffeomorphism that is partially
hyperbolic, and either Ecs or Ecu integrate to a foliation, then f is Anosov.

2. Basic definitions

Let us recall some basic definitions and facts: given a diffeomorphism f : N → N ,
a compact invariant set Λ is a hyperbolic set for f if there is a Tf -invariant splitting
of TN on Λ:

TxN = Es
x ⊕ Eu

x ∀x ∈ Λ,

such that all unit vectors vσ ∈ Eσ
Λ with σ = s, u satisfy

|Tf(x)vs| < 1 < |Tf(x)vu|
for some suitable Riemannian metric |.|. The non-wandering set of a diffeomorphism
g : M → M is denoted by Ω(g) and consists of the points x ∈ M , such that for
each neighborhood U of x, the family {gn(U)}n∈Z is not pairwise disjoint. The
diffeomorphism g : M → M satisfies Axiom A if Ω(g) is a hyperbolic set for g and
periodic points are dense in Ω(g). The stable manifold of a point x is the set

W s(x) = {y ∈ M : d(fn(x), fn(y)) → 0 if n → ∞},
where d(., .) is the induced metric; the unstable manifold Wu(x) is defined analo-
gously for n → −∞. If g satisfies Axiom A, then W s(x) and Wu(x) are immersed
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manifolds for each x ∈ M (see for instance [25]). Also, if dσ is the intrinsic metric
of the invariant manifold W σ(x), for σ = s, u, one has constants C, ε > 0 and
0 < λ < 1 such that, for instance, if y ∈ W s(x), and ds(x, y) ≤ ε for some small
ε > 0, then

(2.2) ds(fn(x), fn(y)) ≤ Cλnds(x, y) ∀n ≥ 0;

an analogous bound holds for the unstable manifold.
Due to the Spectral Decomposition Theorem of Smale [26], if g is Axiom A, then

Ω(g) can be decomposed into disjoint compact invariant sets, called basic sets:

Ω(g) = Λ1 ∪ · · · ∪ Λr,

each Λi contains a dense orbit. Furthermore, each Λi can be decomposed into
disjoint compact sets Λi = Λi,1 ∪ · · · ∪ Λi,k such that there exists an n ∈ N where
each Λi,j is invariant and topologically mixing for gn. A set X is topologically mixing
for a diffeomorphism f if for each pair of non-empty open sets U and V of X, there
is K > 0 such that

fk(U) ∩ V �= ∅ ∀k ≥ K.

Note that dimEs
x is constant for x varying on a basic set Λ. We shall call this

amount the stable index of Λ and will denote it by st(Λ).
For any set Λ ⊂ M , let us denote by W σ(Λ) the set

⋃
x∈Λ W σ(x), where σ = s, u.

We define the following (reflexive) relation among basic sets:

Λ1 → Λ2 ⇐⇒ Wu(Λ1) ∩ W s(Λ2) �= ∅.
The relation → naturally extends to a transitive relation �:

Λi � Λj ⇐⇒ Λi → Λk1 → · · · → Λkr
→ Λj ,

where Λk1 , . . . , Λkr
is a finite sequence of basic sets. The diffeomorphism satisfies

the no-cycles condition if � is anti-symmetric:

Λ1 � Λ2 and Λ2 � Λ1 =⇒ Λ1 = Λ2.

In this case � defines a partial order among basic sets.
We shall call Λ an attractor if Λ is a basic set such that Wu(Λ) = Λ. Note that

this implies that there exists a neighborhood U of Λ such that Λ =
⋂

n∈N
fn(U).

Similarly, we shall call Λ a repeller if Λ is a basic set such that W s(Λ) = Λ. If
g is Axiom A and satisfies the no-cycles condition, then hyperbolic attractors and
repellers are, respectively, the minimal and maximal elements of �.

A hyperbolic attractor Λ is a codimension-one expanding attractor if all x ∈ Λ
satisfy dimWu(x) = dimM − 1. Codimension-one shrinking repellers are defined
analogously.

Note that an attractor can have topological dimension dim M − 1 and still be
not expanding. See the survey [9] on expanding attractors for a discussion on this
topic.

3. Quasi-Anosov diffeomorphisms

Let f : N → N be a diffeomorphism of a Riemannian manifold.

Definition 3.1. The sets W s(x) and Wu(x) have a point of quasi-transversal in-
tersection at x if

TxW s(x) ∩ TxWu(x) = {0}
(see Figure 1).
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y
z

x
W s(x)

W s(y)

Wu(x)

Wu(z)

Figure 1. Quasi-transversal intersection at x

At a point of quasi-transversal intersection x, all vectors in Es
x form a positive

angle with vectors in Eu
x . But this does not necessarily imply transversality, as can

be seen in Figure 1.
Let us note the difference between this definition and the strong transversality

condition. There, transversality is required at the intersection points of Wu(x) and
W s(y), but this can be attained without quasi-transversality; for instance, if we
had two planes intersecting at a curve in a 3-dimensional setting.

Observe that a structurally stable quasi-Anosov diffeomorphism is Anosov (see
[15] and references therein). On the other hand, quasi-Anosov diffeomorphisms
satisfy the no-cycles condition (see below), and hence they are Ω-stable. Also,
quasi-Anosov are a C1-open set of diffeomorphisms [14].

Proposition 3.2. A quasi-Anosov diffeomorphism f that is not Anosov is ap-
proximated by Ω-conjugate quasi-Anosov diffeomorphisms that are not topologically
conjugate to f .

The following theorem by Mañé relates quasi-Anosov diffeomorphisms with hy-
perbolic sub-dynamics.

Theorem 3.3 (Mañé [15]). A diffeomorphism g is a quasi-Anosov diffeomorphism
if and only if M can be embedded as a hyperbolic set for a diffeomorphism f : N →
N by means of an embedding i : M ↪→ N satisfying fi = ig.

This characterization reduces the proof of Theorem 1.1 to proving Theorem 1.2.
See also §5. We shall review some properties of quasi-Anosov diffeomorphisms:

Proposition 3.4 ([15]). Quasi-Anosov diffeomorphisms satisfy the no-cycles con-
dition.

Proof. If Λi and Λj are two basic sets satisfying Λi → Λj , then Wu(xi)∩W s(xj) �= ∅
for some xk ∈ Λk. It follows from quasi-transversality that

[n − st(Λi)] + st(Λj) = dimEu
xi

+ dimEs
xj

≤ n,

where n is the dimension of M , hence st(Λj) ≤ st(Λi). We get by transitivity that

(3.3) Λi � Λj ⇒ st(Λi) ≥ st(Λj).

Suppose that,
Λ1 → Λ2 → · · · → Λk → Λ1.



3712 T. FISHER AND M. RODRIGUEZ HERTZ

We have, in the first place, that st(Λi) = st(Λ1). Hence all intersections xi ∈
Wu(Λi)∩W s(Λi+1) for i = 1, . . . , k−1, and xk ∈ Wu(Λk)∩W s(Λ1) are transversal,
since

[n − st(Λi)] + st(Λ1) = dimEu
xi

+ dimEs
x1

= n.

This implies that the xi’s belong to Ω(g); hence Λi = Λi for all i = 1, . . . , k, and so
g satisfies the no-cycles condition. �

In the particular case of a quasi-Anosov diffeomorphism of a 3-dimensional man-
ifold, this implies that there can be only basic sets with stable index 2 or 1 and
that basic sets with stable index one can only succeed basic sets with stable index
one. We delay the proof of the next proposition until the next section.

Proposition 3.5. If f is a quasi-Anosov diffeomorphism and Λ0 is a codimension-
one expanding attractor, and if Λ is a basic set satisfying Λ � Λ0 with st(Λ) = 1,
then Λ = Λ0 or else Λ is a periodic point.

Analogously, if Λ0 is a codimension-one repeller and Λ is a basic set satisfying
Λ0 � Λ with st(Λ) = 2, then Λ = Λ0 or Λ is a periodic point. This implies:

Proposition 3.6. All attractors of a quasi-Anosov diffeomorphism of a 3-dimen-
sional manifold are codimension-one expanding attractors unless the diffeomor-
phism is Anosov. An analogous statement holds for repellers.

Proof. Indeed, let ΛR be a repeller such that st(ΛR) = 1 (hence, not codimension-
one). There is a maximal chain of � containing ΛR. Let ΛA be a minimal element
of that chain. Then, due to (3.3) in the proof above, ΛA is a codimension-one
expanding attractor. But then Proposition 3.5 implies that the repeller ΛR equals
ΛA, since ΛA cannot be a periodic point. Therefore ΛR = ΛA = M . �

Note that Propositions 3.5 and 3.6 above prove item (1) of Theorem 1.2. Item
(2) of Theorem 1.2 follows from results in next section.

4. Codimension-one expanding attractors and shrinking repellers -

Proof of Theorem 1.2

Before proving Proposition 3.5 we review properties of codimension-one expand-
ing attractors. A codimension-one expanding attractor Λ is orientable if the inter-
section index of W s(x)∩Wu(y) is constant at all its intersection points, for x, y ∈ Λ.
This notion was first introduced by Grines [4, 5]. Let us also recall the following
result by Zhuzhoma and Medvedev:

Theorem 4.1 (Medvedev-Zhuzhoma [18]). If M is an orientable closed 3-manifold,
then all codimension-one expanding attractors and shrinking repellers are orientable.

Derived from Anosov (or DA-) diffeomorphisms were introduced by Smale in [26]
(see also [28]). They are certain deformations of hyperbolic automorphisms of the
torus. We shall use the following definition [20]:

Corresponding to a hyperbolic toral automorphism A with stable index one and a
finite set Q of A-periodic points, there is a diffeomorphism fA

Q : T
3 → T

3 diffeotopic
to A, such that Ω(fA

Q ) = Λ∪Q, where Λ is a codimension-one expanding attractor
and Q is a finite set of fA

Q -repelling periodic points. The stable manifolds of fA
Q

coincide with the stable manifolds of A, except for a finite set of lines LQ. Each
line L ∈ LQ contains a point q ∈ Q. The component of L − Λ containing q is
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an interval whose endpoints p± are periodic boundary points of Λ. We call fA
Q a

DA-diffeomorphism.
Plykin obtained models for connected codimension-one expanding attractors us-

ing DA-diffeomorphisms [20, 21]. See also §8 of [8]. We shall also use some of his
intermediate results:

Theorem 4.2 (Plykin [20]). If Λ is a connected orientable codimension-one ex-
panding attractor of a diffeomorphism g : M3 → M3, then W s(Λ) has the homo-
topy type of T

3 − Q, where Q is a finite set of points. There is a finite point-
compactification W s(Λ) of W s(Λ) having the homotopy type of T

3, and a homeo-
morphism ḡ : W s(Λ) → W s(Λ) extending g|W s(Λ) and admitting two ḡ-invariant
fibrations that extend, respectively, the stable and unstable manifolds of Λ.

An analogous result holds for non-orientable attractors: there exists a two-
sheeted covering π : W s(Λ) → W s(Λ) and a covering homeomorphism ḡ : W s(Λ) →
W s(Λ) that commutes with the involution θ : W s(Λ) → W s(Λ) associated to π,
such that W s(Λ) has the homotopy type of T

3 [21].
Let us note that results above do not require that Λ has a dense orbit.

Theorem 4.3 (Plykin [20, 21]). If Λ is a connected orientable codimension-one
expanding attractor of a diffeomorphism g : Mn → Mn having a dense unstable
manifold, then there exist a hyperbolic toral automorphism A with stable index one
and a finite set Q of A-periodic points, such that g|W s(Λ) is topologically conjugate
to the DA-diffeomorphism fA

Q |Tn−Q.
If Λ is non-orientable, then there is a two-sheeted covering π : W s(Λ) → W s(Λ)

with an associate involution θ : W s(Λ) → W s(Λ) and a covering homeomorphism
g : W s(Λ) → W s(Λ) commuting with θ that is topologically conjugate to a DA-
diffeomorphism fA

Q as described above.

Let us note that, in the case where the manifold M is a torus, this result was
obtained in [7]; see also [6] for the two-dimensional case.

Next, we state some of the results obtained in [8] and follow the general outline
and notation.

Let Λ be a codimension-one expanding attractor. We will assume for now that
Λ is orientable. (The non-orientable case will follow by taking a double cover and
looking at the orientable case.) A point p is a boundary point of a codimension-
one expanding attractor Λ if there exists a connected component of W s(p) − p,
denoted W s

∅ (p), not intersecting Λ. Boundary points for hyperbolic codimension-
one expanding attractors are finite and periodic [20]. For z ∈ Λ and given points
x, y ∈ W s(z) we denote (x, y)s (respectively [x, y]s) the open (closed) arc of W s(z)
with endpoints x and y. If p is a boundary point of Λ and x ∈ Wu(p)−p, then there
is a unique arc (x, y)s

∅ such that (x, y)s ∩Λ = ∅ and y ∈ Λ. If z ∈ W s(Λ)−Λ, then
either z ∈ (x, y)s

∅ for some x and y elements of the unstable manifolds of boundary
points, or z ∈ W s

∅ (p) for some boundary point p ∈ Λ.
The boundary points p1 and p2 are called associated if for each point x ∈ Wu(p1)

there exists an arc (x, y)s
∅ where y ∈ Wu(p2), and similarly for each point y ∈

Wu(p2) there is an arc (x, y)s
∅ where x ∈ Wu(p1). The boundary point p1 is said to

be paired if there exists a boundary point p2 such that p1 and p2 are associated.1

1This concept also appears as 2-bunched in the bibliography. It is not to be confused with the
concept of center bunching used for partially hyperbolic diffeomorphisms.
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Two associated boundary points always have the same period m. If dim(M) ≥ 3,
then all boundary points are paired.

For associated periodic points p1 and p2 let

ϕp1,p2 : (Wu(p1) − p1) ∪ (Wu(p2) − p2) → (Wu(p1) − p1) ∪ (Wu(p2) − p2)

be defined by ϕp1,p2(x) = y whenever (x, y)s
∅. The continuous dependence of stable

and unstable manifolds implies that ϕp1,p2 is a homeomorphism. We may naturally
extend ϕp1,p2 to be a homeomorphism of Wu(p1) ∪ Wu(p2) to itself by defining
ϕp1,p2(p1) = p2 and ϕp1,p2(p2) = p1.

Fix Dp1 a closed disk in Wu(p1) containing p1 in the interior such that Dp1 ⊂
int(fm(Dp1)). The boundary of Dp1 is a circle denoted Sp1 . The circles Sp1 and
fm(Sp1) bound an annulus contained in Wu(p1) denoted Ap1 .

Since ϕp1,p2 is a homeomorphism we can define

• a closed disk Dp2 = ϕp1,p2(Dp1) in Wu(p2),
• a circle Sp2 = ϕp1,p2(Sp1), and
• an annulus Ap2 = ϕp1,p2(Ap1).

The set
Cp1,p2 =

⋃

x∈Sp1

(x, ϕp1,p2(x))s
∅

is called a connecting cylinder of p1 and p2, and is homeomorphic to the open 2-
cylinder S1 × (0, 1). The set

Sp1,p2 = Dp1 ∪ Dp2 ∪ Cp1,p2

is called a characteristic sphere for p1 and p2 and is homeomorphic to a sphere.
Define

Ap1,p2 =
⋃

x∈Ap1

[x, ϕp1,p2(x)]s∅,

which is homeomorphic to an annulus times an interval. Let

Dp1,p2 =
⋃

j≥0

f jm(Ap1,p2) =
⋃

x∈W u(p1)−intDp1

[x, ϕp1,p2(x)]s∅

and denote πp1 as the projection from Dp1,p2 to Wu(p1)− int(Dp1). Then the triple
(Dp1,p2 , W

u(p1)−int(Dp1), πp1) is a trivial fiber bundle with fiber the interval [0, 1].
The following is Corollary 3.1 in [8].

Lemma 4.4. Let Λ0 be a codimension-one orientable expanding attractor and p1, p2

are associated boundary points on Λ0. Suppose Λ is another basic set of M for f
with st(Λ) = 1. If there exists a point z ∈ Λ such that Wu(z) ∩ Dp1,p2 �= ∅, then
Wu(z) intersects Cp1,p2 .

Theorem 6.1 in [8] is similar to the following lemma.

Lemma 4.5. Suppose f is a quasi-Anosov diffeomorphism of a closed 3-manifold
M and Λ0 is an orientable codimension-one expanding attractor of f . Let Λ �= Λ0

be a basic set of st(Λ) = 1 such that Wu(Λ) ∩Dp1,p2 �= ∅. Let C ⊂ Dp1,p2 ∩Wu(z)
be a component of the intersection of Dp1,p2 ∩ Wu(z), where z ∈ Λ is a periodic
point. Then Wu(z) ∩ Cp1,p2 = C ∩ Cp1,p2 �= ∅, and this intersection consists of a
unique circle, S, that is isotopic to Sp1 and Sp2 .
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We will provide an outline of the proof (see also [8]), since some of the details are
needed in the proof of Proposition 3.5. The statement of Theorem 6.1 in [8] assumes
that the diffeomorphism is structurally stable. Structurally stable diffeomorphisms
have the strong transversality property which implies that for all x ∈ Λ0 and z ∈ Λ,

(4.4)
W s(x) ∩ Wu(z) = W s(x) � Wu(z) and
Wu(x) ∩ W s(z) = Wu(x) � W s(z).

This is the property used in the proof in [8]. However, if f is quasi-Anosov and Λ0

and Λ are codimension-one, then for all x ∈ Λ0 and z ∈ Λ property (4.4) holds by
the quasi-transversal property of quasi-Anosov diffeomorphisms.

First, we use Lemma 4.4 to show there is a component. Next, we use transver-
sality to show that every component C ∩Cp1,p2 is a circle, S, that is isotopic to Sp1

and Sp2 . So in fact each component divides Cp1,p2 into two cylinders.
Next, let BS ⊂ Wu(z) be a minimal disk bounded by S. Since BS is minimal it

follows that BS ∩ Dp1,p2 = ∅. Then there are two possibilities:
(1) No BS contains z.
(2) Some BS contains z.

It is shown that case (1) cannot occur. For case (2) since f(Cp1,p2) ⊂ Dp1,p2 we
know f(S) ∩ S = ∅ and S is inside f(S) in Wu(z). It then follows that S and
f(S) bound a closed annulus in Wu(z) which is a fundamental domain of Wu(z)
contained in Dp1,p2 . Thus the intersection of Wu(z) and Cp1,p2 is a unique circle.

Proof of Proposition 3.5. To simplify the argument we first assume that the attrac-
tors are orientable. Let us suppose that Λ is a codimension-one basic set that is not
a hyperbolic attractor. Since periodic points are dense in Λ and Λ0 we may assume
there exist periodic points x ∈ Λ and x0 ∈ Λ0 such that W s(x0) ∩ Wu(x) �= ∅. Let
y ∈ W s(x0)∩Wu(x). Then from the previous lemma y ∈ (y1, y2)s

∅ for y1 and y2 in
the unstable manifolds of associated boundary points p1 and p2, respectively.

Let Sp1,p2 be a characteristic sphere for p1 and p2 such that (y1, y2)s
∅ ⊂ Cp1,p2 ,

so Cp1,p2 ∩ Wu(x) �= ∅. From the previous lemma we know that Wu(x) ∩ Dp1,p2

is a unique component C. Furthermore, there is a fundamental domain of Wu(x)
contained in Dp1,p2 ⊂ W s(Λ0). The invariance of W s(Λ) implies that Wu(x)−x ⊂
W s(Λ0). Hence, (Wu(x)−x)∩Λ = ∅. Since Wu(x)∩W s(x) is dense in a component
of Λ given by the Spectral Decomposition Theorem, we know that Λ is trivial and
consists of the orbit of x. In this way, the result follows for orientable attractors
Λ0.

We now suppose that Λ is a codimension-one basic set and Λ0 is a codimension-
one non-orientable attractor where Λ → Λ0. This implies that M is non-orientable
from [21]. Let M̄ be an orientable manifold and π : M̄ → M is a (non-branched)
double covering of M . Then there exists a diffeomorphism f̄ of M̄ that covers
f . Furthermore, M̄ contains a hyperbolic orientable codimension-one expanding
attractor Λ̄0 such that Λ̄0 ⊂ π−1(Λ0). The result now follows from the previous
argument by lifting Λ. �

5. Proof of Theorem 1.1

Let us recall some basic definitions and results, which can be found in [19].
The connected sum of two 3-manifolds is obtained by removing the interior of a
3-cell from each 3-manifold, and then matching the resulting boundaries, using an
orientation reversing homeomorphism. The connected sum of M and M ′ is denoted
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M#M ′. In order to add a handle to a connected 3-manifold M , one removes the
interior of two disjoint 3-cells from M and matches the resulting boundaries under
an orientation reversing homeomorphism. If one adds a handle to M , one obtains
a manifold isomorphic to M#S2 × S1. Note that M#S3 = M .

A manifold M �= S3 is prime if M = M1#M2 implies M1 = S3 or M2 = S3. We
have the following Unique Decomposition Theorem (see also [13]):

Theorem 5.1 (Milnor [19]). Every 3-manifold M �= S3 can be written as a finite
connected sum,

M = M1# . . .#Mk,

where each Mi is prime, i = 1, . . . , k, and is unique up to order and isomorphisms.

Note that the handles S2 × S1 are prime manifolds. The torus T
3 is also prime.

Now, let us prove Theorem 1.1. Let M be a hyperbolic invariant set for a
diffeomorphism f such that M is a 3-manifold. Then f |M is a quasi-Anosov diffeo-
morphism [15]. Let us first assume that M is orientable. Theorem 4.1 implies that
all attractors and repellers of f |M are orientable. Then Theorems 4.2 and 4.3 imply
that the basin of attraction/repulsion of each attractor/repeller is homeomorphic
to a finitely punctured torus and also that f restricted to each basin is topologically
equivalent to a DA-diffeomorphism. Let us first consider the simplest case of a non-
Anosov quasi-Anosov diffeomorphism: one with just one attractor and one repeller.
Let us furthermore suppose that the basin of attraction of the attractor is homeo-
morphic to a torus minus one point. If one takes a ball centered at that (repelling)
point and cuts the pre-image of that ball under the DA-diffeomorphism, one obtains
a fundamental domain, which is homeomorphic, under the conjugacy, to a funda-
mental domain D of f |M , met just once by the orbit of every point neither in the
attractor nor in the repeller of f |M . By connectedness, the basin of repulsion of the
repeller must also be homeomorphic to a torus minus one (attracting) point A, and
f restricted to this basin is also conjugated to another DA-diffeomorphism. The
image of D under this second conjugacy consists of two spheres S3, each bounding
a ball containing A in its interior. So, the fact that D is a fundamental domain
implies that M is the connected sum of two tori, just like in the Franks-Robinson
example [3].

Let us now suppose that we have an attractor and a repeller, but that the
basin of attraction is homeomorphic to a torus minus k points, with k ≥ 2. One
can assume that the k points are fixed under the DA-diffeomorphism by taking a
sufficiently high iterate of the diffeomorphism. A connectedness argument shows
that the basin of repulsion of the repeller is also homeomorphic to a torus minus
k points. Now, the previous procedure shows that M is obtained by removing k
3-cells from each torus and matching the resulting boundaries, using an orientation
reversing homeomorphism. Observe that this implies that

M = T1#T2#H1# . . .#Hk−1,

where T1, T2 are tori and the Hi are handles S2 × S1. Indeed, instead of simulta-
neously removing the k 3-cells of each torus, one can only remove one 3-cell from
each torus and glue along their boundaries by f , which reverses orientation. In
this way one obtains the connected sum of two tori. The rest of the procedure
consists in repeating the operation (k−1) times: cutting two disjoint 3-cells of this
connected sum and matching the resulting boundaries by a reversing orientation
homeomorphism. This is the same as adding a handle.
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Now, in fact there is nothing special in having just one attractor and one repeller.
In case there are more attractors or repellers, one proceeds inductively as in the
previous cases until one obtains a finite connected sum of tori and handles.

Let us also consider the case where the non-wandering set has a basic set Λ that
is a periodic orbit. We may assume st(Λ) = st(Λ0), and that Λ → Λ0, where Λ0 is a
connected codimension-one attractor. Let p and q be associated boundary periodic
points and P1, ..., Pk be the set of all periodic points with st(Pi) = 1 and

Wu(Pi) ∩
⋃

x∈W u(p)−{p}
[x, φp,q(x)]s∅ �= ∅

for all 1 ≤ i ≤ k. Let x ∈ Wu(p) − {p} and

θx : [x, φp,q(x)]s∅ → [0, 1]

be a homeomorphism. Denote P x
i as the point of intersection between [x, φp,q(x)]s∅

and Wu(Pi). By reordering the points, if necessary, assume that θx(P x
i ) < θx(P x

j )
for i < j. Then for any other x′ ∈ Wu(x′) and θx′ defined similarly we have
θx′(P x′

i ) < θx′(P x′

j ) for i < j, since Wu(Pi) is codimension-one.
For the rest of the construction we assume, with no loss of generality, that

p, q, P1, ..., Pk are all fixed points. Define the set

D =
⋃

x∈W u(p)−{p}
[x, φp,q(x)]s∅ ∪ W s

∅ (p) ∪ W s
∅ (q) ∪ W s(P1) ∪ · · · ∪ W s(Pk).

Following the construction in the proof of Theorem 1 of [20] we can extend the
diffeomorphism f |D to a homeomorphism f̄ on the compactification D̄ = D ∪ α1 ∪
· · ·αk+1 where each αi is a repelling fixed point for f̄ . Fix ε > 0 sufficiently small
and let

B =
⋃

x∈W u
ε (p)−{p}

[x, φp,q(x)]s∅ ∪ W s
∅ (p) ∪ W s

∅ (q) ∪ (
k⋃

i=1

W s(Pi)) ∪ (
k+1⋃

i=1

αi).

Let Bε(0) be the ball of size ε centered at the origin in R
n−1. Then we can define

a homeomorphism F : Bε(0) × [0, 1] → B so that
• F (0, 0) = p,
• F (0, 1) = q,
• F (0, 2i

2k+1) = Pi for 1 ≤ i ≤ k,
• F (0, 2i+1

2k+1) = αi+1 for 0 ≤ i ≤ k,
• F (x, t) ∈ [F (x, 0), φp,q(F (x, 0))]s∅, and
• F (x, 0) ∈ Wu

ε (p).
Furthermore, we can extend the unstable manifolds of the points in p∪P1∪· · ·∪Pk

to a codimension-one fibration of D̄ and extend the stable foliation to a fibration
of D̄ with one-dimensional fibers. Similar to Corollary 7.2 in [8], there exists a
compact arc apq ⊂ D̄ with no self-intersections such that

apq = p ∪ W s
∅ (p) ∪ α1 ∪ W s(P1) ∪ α2 ∪ · · · ∪ Pk ∪ αk+1 ∪ W s

∅ (q) ∪ q.

Let P be the set of saddle periodic points of stable index one that intersect
W s(Λ). Following the above construction we compactify W s(Λ) ∪ W s(P) to a set
W s(Λ) and extend the diffeomorphism f on W s(Λ)∪W s(P) to a homeomorphism
f̄ of W s(Λ). Here W s(Λ) = W s(Λ) ∪ W s(P) ∪ A, where A consists of a set of
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repelling periodic points for f̄ . The proof of Theorem 7.1 in [8] extends to W s(Λ)
to show that W s(Λ) is homeomorphic to T

3.
In the case where there is at least one non-orientable attractor or repeller, M

is non-orientable. Theorem 4.3 implies that the basin of attraction or repulsion of
this attractor or repeller is homeomorphic to a torus quotiented by an involution
minus k points. f is doubly covered by a DA-diffeomorphism in this set, and the
procedure of removing cells and matching the corresponding boundaries follows as
in the previous cases, whence one obtains that

M = T̃1# . . . #T̃n#H1# . . . #Hk,

where the T̃j = T
3|θj are tori quotiented by involutions θj (possibly the identity)

and the Hi are handles.

6. An example of a quasi-Anosov diffeomorphism

with a basic set that is a periodic orbit

Both the example by Franks-Robinson [3] and the example by Medvedev-
Zhuzhoma [18] are quasi-Anosov diffeomorphisms whose non-wandering set consists
exclusively of one codimension-one expanding attractor and one shrinking repeller.

Let us construct an example of a quasi-Anosov diffeomorphism with a basic set
consisting of a periodic orbit.

Let A be a linear hyperbolic diffeomorphism of a 3-torus T1 having at least
one fixed point, and such that the stable dimension is 1. Make a deformation
around a fixed point in order to obtain a DA-diffeomorphism with a repelling fixed
point and a codimension-one expanding attractor. See details in Section 4. This
new diffeomorphism h preserves the original stable foliation. Now, make a new
deformation, also preserving the original stable foliation, such that the repelling
fixed point turns into a saddle, and two repelling fixed points appear on its stable
manifold, locally separated by the unstable manifold of the saddle point.

As in the Franks-Robinson example, cut two 3-balls B2 and B3 containing, re-
spectively, the repelling fixed points of T1. Now, take two 3-tori T2 and T3, and
consider the dynamics of h−1 on each one of them. Cut two 3-balls B′

2 and B′
3,

each containing the attracting fixed points of T2 and T3 respectively. Carefully glue
T1 and Tj along the boundary of Bj and B′

j , j = 2, 3, by means of an orientation
reversing homeomorphism as described in section §5. One obtains an Axiom A dif-
feomorphism of a manifold which is the connected sum of T1, T2 and T3: T1#T2#T3.
The non-wandering set of this diffeomorphism consists of one codimension-one ex-
panding attractor, two codimension-one shrinking repellers, and a hyperbolic fixed
point. Proceeding as in [3] one perturbs the diffeomorphism producing a twist in
the regions where the surgery was performed. Since this perturbation is local, it
does not affect the hyperbolic behavior of the non-wandering set. In this way one
obtains an Axiom A diffeomorphism satisfying the quasi-transversality condition,
and with the above mentioned non-wandering set.

7. Partially hyperbolic quasi-Anosov diffeomorphisms

In this section, we study quasi-Anosov diffeomorphisms in the presence of partial
hyperbolicity. A diffeomorphism f is called partially hyperbolic if there exists an
invariant splitting of the tangent bundle TM = Es ⊕ Ec ⊕ Eu such that all unit
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vectors vσ ∈ Eσ
x , σ = s, c, u satisfy

|Tfxvs| < |Tfxvc| < |Tfxvu| and |Tfxvs| < 1 < |Tfxvu|.
It is a known fact that there are unique invariant foliations Ws and Wu that are
everywhere tangent, respectively, to Es and Eu (see, for instance, [12]). However,
Ec is not integrable in general. It is an open problem if it is integrable in the case
dim Ec = 1. Here, we shall consider an a priori mild hypothesis: either Ecs or Ecu

integrates to a (codimension-one) foliation.
Let us prove Theorem 1.3. Assume that Ecu integrates to a foliation F . We

may suppose that the manifold M is not the 3-torus, for otherwise the result would
be immediate. Then, M is not irreducible (that is, there is an embedded sphere
S2 not bounding any 3-dimensional ball). Indeed, irreducible manifolds are prime,
and Theorem 1.1 implies that M is not prime unless it is the 3-torus. Now, The-
orem C.2., p. 45 of Roussarie [24] implies that a codimension-one foliation F of a
manifold that is not irreducible has a compact leaf. This compact leaf T must be
homeomorphic to a 2-torus, since the strong unstable foliation has no singularities
and does not contain closed leaves.

Take p ∈ M a periodic point in M , of period k, such that the stable manifold
of p hits T . This implies that the set of leaves fkn(T ) (f preserves the foliation)
accumulates in p. Now, Haefliger [10] says that the set of points lying in a compact
leaf is compact. In particular p ∈ M , the accumulating point of compact leaves,
must be in a compact leaf T0. It follows that T0 is fk-invariant. Moreover, by the
above argument, T0 must be a 2-torus. Now, the local stable manifolds of T0 form
an open set U satisfying fk(U) ⊂ U . This implies that T0 is a basic set that is an
attractor, but this contradicts Theorem 1.2(2).
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