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ABSTRACT

Leveraging Biological Mechanisms in Machine Learning

Kyle J. Rogers
Department of Computer Science, BYU

Master of Science

This thesis integrates biologically-inspired mechanisms into machine learning to develop
novel tuning algorithms, gradient abstractions for depth-wise parallelism, and an original bias
neuron design. We introduce neuromodulatory tuning, which uses neurotransmitter-inspired
bias adjustments to enhance transfer learning in spiking and non-spiking neural networks,
significantly reducing parameter usage while maintaining performance. Additionally, we
propose a novel approach that decouples the backward pass of backpropagation using layer
abstractions, inspired by feedback loops in biological systems, enabling depth-wise training
parallelization.

We further extend neuromodulatory tuning by designing spiking bias neurons that
mimic dopamine neuron mechanisms, leading to the development of volumetric tuning.
This method enhances the fine-tuning of a small spiking neural network for EEG emotion
classification, outperforming previous bias tuning methods. Overall, this thesis demonstrates
the potential of leveraging neuroscience discoveries to improve machine learning.

Keywords: spiking neural networks, neuromorphic computing, dopamine-inspired learning
structures, layer abstractions



ACKNOWLEDGMENTS

I would like to thank my advisor, Nancy Fulda, for her consistent support and guidance.

Additionally, I would like to thank members of our interdisciplinary Neuromorphic Computing

group who contributed significantly to the first two chapters of this thesis. Lastly, I would

like to express tremendous gratitude to my wife, Talbot, who has supported me during my

academic career.



Table of Contents

1 Introduction 1

2 Towards Low-Power Machine Learning Architectures Inspired by Brain

Neuromodulatory Signalling 3

3 Decoupling the Backward Pass Using Abstracted Gradients 23

4 In preparation: Biologically-Inspired Spiking Bias Design For Use in EEG

Signal Classification 36

5 Conclusion 49

References 50

iv



Chapter 1

Introduction

On the quest to develop human-like artificial intelligence, researchers often draw inspi-
ration from observations of biological intelligence. Perhaps the first example of this pattern as
it relates to machine learning is the Perceptron model published by Frank Rosenblatt[2]. The
Perception is a computational model of a biological neuron that still has relevance in modern
deep neural networks today. Modern deep learning algorithms, while originally inspired by
biology, learn very differently than our biological brains. For example, backpropagation is
not biologically plausible. This does not mean that backpropagation should be disregarded,
but rather that biological structures and learning methods can be considered to address some
of the shortcomings of backpropagation such as its struggle to learn from small datasets and
the computational expense of computing the gradient. Our biological brain, however, does
not have these shortcomings [1]. Perhaps by mimicking different biological structures and
processes to some level of abstraction we can resolve problems in machine learning that we
have yet to solve using conventional methods.

In this thesis, we follow a well established pattern of applying recent findings in
neuroscience and biology to develop biologically-inspired learning algorithms for both spiking
and non-spiking neural networks. First, in Chapter 2, we examine the the application of
neurotransmitter mechanisms in biological brains to solve a transfer learning objective. We
present a method, called neuromodulatory tuning, which manipulates the firing sensitivity of
each neuron using a supplemental bias input. We evaluate our method on both feed forward
and spiking networks to fine tune a pretrained general image classification model on three
separate image classification tasks. We compare our method of tuning just bias vectors,
with the traditional form of fine tuning which involves adjusting the weight matrices and
bias vectors of a pretrained network. We find that neuromodulatory tuning approaches the
performance of traditional fine tuning, but uses orders of magnitude less parameters during
fine tuning.

Next, we present an original, biologically-inspired learning approach in Chapter 3.
Specifically, we decouple the backward pass of backpropagation using layer abstractions. We
motivate this approach from observations in neuroscience where distant, upstream layers
of neurons in biological systems are connected and tuned via feedback loops. We develop
a mathematically accurate abstraction for piece-wise linear networks and a more general
biological abstraction allowing the gradient the be passed around layers. This construction
yields theoretical depth-wise training parallelization.

Finally, in Chapter 4, we extend our previous work with neuromodulatory tuning
to design biologically-inspired spiking bias neurons. We mimic the stimulus and output
mechanisms of dopamine neurons in an effort to create more capable bias neurons. We apply
our previous neuromodulatory tuning method on a small spiking neural network (SNN) to
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solve a complex EEG emotion classification task where we compare traditional biases with
our spiking biases. We conduct additional experiments and ultimately present a variant of
the neuromodulatory tuning method, named volumetric tuning, which performs significantly
better at fine tuning the pretrained emotion classification SNN.

This collection of work has demonstrated the power in leveraging discoveries in
neuroscience to solve problems in the broader machine learning community; namely, parameter-
efficient fine tuning, and depth-wise parallelization. Not only does this research address
these issues directly, but it also provides fascinating avenues for future work. Our work
with abstracted gradients introduces a novel learning paradigm where we show that the
sequentiality of backpropagation is no longer strictly required. This discovery raises questions
regarding what other mechanisms of backpropagation are necessary.

Our work developing neuromodulatory tuning not only reduces the parameter count
needed for fine tuning deep learning models, but we also show how such an algorithm could
effectively operate and be implemented on CMOS hardware. This allows manufactured chips
programmed with pretrained, offline weights to be effectively tuned on new data. Tunable
chips such as these have immediate applications for autonomous, power-constrained devices.
We extend this work, to develop spiking bias neurons and volumetric tuning which still feature
parameter-efficient tuning, but do so with increased performance on a challenging BCI task.
This method has direct applications on physical chips, specifically in the domain of decoding
EEG signals. One can imagine the eventual development of a chip pretrained on EEG data
that is calibrated or fine tuned for the specific person using a emotion classification device.
Such advances and aspirations come as a result of adapting observed biological processes to
existing machine learning practices, and provide a strong argument for continuing to apply
biological inspiration to innovate in the machine learning community.

2



Chapter 2

Towards Low-Power Machine Learning Architectures Inspired by Brain
Neuromodulatory Signalling

Taylor Barton, Hao Yu and I are primary authors of this paper. We have agreed that
each of us will include this paper in our theses.

The following list summarizes our respective contributions to the research and writing
contained in this this chapter. This list also appears in Hao’s thesis.

• Kyle developed the neuromodulatory tuning method in feed-forward fully-connected
networks in the domain of image recognition.

• Kyle made the decision to utilize VGG-19 and fine tune it on three tasks.

• Hao created a spiking classifier for the VGG-19 model.

• Hao developed the method for a spiking version of the VGG-19 classifier.

• Taylor outlined the mechanisms by which neuromodulatory tuning can feasibly be
implemented on CMOS hardware.

• Taylor presented an analog spiking neuron with neuromodulatory tuning capabilities.

• We worked together to create experiments and gather experimental results.

• We worked together to write and revise the text to create the final draft.

I hereby confirm that the use of this article is compliant with all publishing agreements.

Barton, T.; Yu, H.; Rogers, K.; Fulda, N.; Chiang, S.-h.W.; Yorgason, J.; Warnick, K.F.
Towards Low-Power Machine Learning Architectures Inspired by Brain Neuromodulatory
Signalling. J. Low Power Electron. Appl. 2022, 12, 59. https://doi.org/10.3390/jlpea12040059
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Abstract: We present a transfer learning method inspired by modulatory neurotransmitter mech-
anisms in biological brains and explore applications for neuromorphic hardware. In this method,
the pre-trained weights of an artificial neural network are held constant and a new, similar task is
learned by manipulating the firing sensitivity of each neuron via a supplemental bias input. We refer
to this as neuromodulatory tuning (NT). We demonstrate empirically that neuromodulatory tuning
produces results comparable with traditional fine-tuning (TFT) methods in the domain of image
recognition in both feed-forward deep learning and spiking neural network architectures. In our tests,
NT reduced the number of parameters to be trained by four orders of magnitude as compared with
traditional fine-tuning methods. We further demonstrate that neuromodulatory tuning can be imple-
mented in analog hardware as a current source with a variable supply voltage. Our analog neuron
design implements the leaky integrate-and-fire model with three bi-directional binary-scaled current
sources comprising the synapse. Signals approximating modulatory neurotransmitter mechanisms
are applied via adjustable power domains associated with each synapse. We validate the feasibility
of the circuit design using high-fidelity simulation tools and propose an efficient implementation of
neuromodulatory tuning using integrated analog circuits that consume significantly less power than
digital hardware (GPU/CPU).

Keywords: power-constrained devices; low-power analog learning; neural network; spiking neural
network; neuromorphic; analog CMOS; life-long learning; machine learning; transfer learning;
fine-tuning

1. Introduction

Analog CMOS hardware has the potential to reduce energy consumption of deep
neural networks by orders of magnitude, but the in situ training of networks implemented
on such hardware is challenging. Once the chip has been programmed with the correct
weight values for a task, typically no further learning occurs. We introduce a biologically-
inspired knowledge transfer approach for neural networks that offers potential for in situ
learning on the physical chip. In our method, the weight matrices of a spiking neural
network [1–5] are initialized with values learned via offline (i.e., off-chip) methods, and
the system is exposed to an analogous—but distinct—learning task. The bias inputs of the
chip’s spiking neurons are manipulated such that the network’s outputs adapt to the new
learning task.

This approach has applications for autonomous, power-constrained devices that must
adapt to unanticipated circumstances, including vision and navigation in unmanned aerial
vehicles (UAVs) deployed into unpredictable environments; fine-grained haptic controls
for robotic manipulators; dynamically adaptive prosthetic devices; and bio-cybernetic

J. Low Power Electron. Appl. 2022, 12, 59. https://doi.org/10.3390/jlpea12040059 https://www.mdpi.com/journal/jlpea
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interfaces. In these real-world domains, the system must deploy with initial knowledge
relevant to its target environment, then adapt to near-optimal behavior given minimal
training examples, a feat beyond the capability of current learning algorithms or hardware
platforms. Neuromodulatory tuning offers a path toward implementing such abilities on
physical CMOS chips. The key contributions of our work are as follows:
1. We introduce a novel transfer learning variant, called neuromodulatory tuning, that

is able to match the performance of traditional fine-tuning approaches with orders of
magnitude fewer weight updates. This lends itself naturally to easier, lower power
implementation on physical chips, especially because the proposed CMOS implemen-
tation of our the fine-tuning method does not involve writing to memory hardware.

2. We provide a biologically-inspired motivation for this tuning method based on recent
findings in neuroscience, and discuss additional insights gleaned from modulatory
neurotransmitter behaviors in biological brains that may prove valuable for neuro-
morphic computing hardware.

3. We demonstrate in both traditional (non-analog) feed-forward architectures and spik-
ing neural network simulations that neuromodulatory tuning methods are able to
approach or exceed the performance of traditional fine-tuning methods on a number
of transfer learning tasks in the domain of image recognition, while overall task perfor-
mance must still be improved, the trends and potential of the method are encouraging.

4. We outline the mechanisms by which neuromodulatory tuning can feasibly be imple-
mented on CMOS hardware. We present an analog spiking neuron with neuromodu-
latory tuning capabilities. Post-layout simulations demonstrate energy/spike rates as
low as 1.08 pJ.
The remainder of this paper adheres to the following structure: We begin by providing

a general background on transfer learning, artificial neural networks, and neuromorphic
hardware in Section 2. We then outline the motivating principles and neurobiological
foundations of the current work (Section 3.1) and present our biologically inspired tuning
method (Section 3.2). A preliminary analysis follows (Section 4), showing performance
comparisons of NT versus TFT in digital computation environments across a variety of
learning rates and transfer tasks. Lastly, we present our spiking neuron design (Section 5)
with confirming evidence that our neuromodulatory tuning method can be used as an
acceptable proxy for traditional fine-tuning in analog CMOS environments (Section 6).
Conclusions are presented in Section 7.

2. Background

The current study lies at the intersection of three prodigious research fields: Transfer
learning (Section 2.1), spiking neural networks (Section 2.2), and neuromorphic computing
(Section 2.3). We outline key principles of each below. Our method also draws heavily on
recent discoveries in neuroscience, documented alongside the motivating principles of this
research in Section 3.1.

2.1. Transfer Learning

Transfer learning allows a network trained for one task to learn a new, similar task with
less computational complexity than fully retraining the network. The field includes a broad
range of techniques ranging from weighting, importance sampling, and domain adaptation
in unsupervised contexts [6–11], to fine-tuning and multi-task learning in supervised
settings [12–18]. Recent work in few-shot, one-shot, and zero-shot learning also contributes
to this line of research [19–22].

Our approach can be combined with many of these methods, but is most closely
related to feature learning from unsupervised data [13], whereby trained parameters from
a related task are used to jump-start the learning process. Our method is distinct in that
the activation sensitivity of individual neurons, rather than the strengths of their synaptic
connections, are modified. In some sense, this can be viewed as a degenerate form of neural
programming interface [23], in that activation patterns are modulated during each forward
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pass of the network; however, our method adjusts firing sensitivities via supplemental bias
inputs rather than by overwriting output signals directly. Our work also has tangential
relations to activation function learning [24], although we adjust firing sensitivity only,
rather than changing the shape of the activation curve.

Parallel to our work, ref. [25] presented BitFit, which shows bias tuning is an effective
sparse fine-tuning method that is competitive with traditional fine-tuning on Transformer-
based Masked Language Models. Our work augments and expands upon the insights
from this work in two key ways: We apply a bias tuning methodology much like [25] to a
convolutional neural network in the domain of computer vision, where we discover that it
is not able to match the performance of a traditional fine-tuning method, and we present a
novel approach to bias tuning (neuromodulatory tuning) based on multiplicative rather
than summative layer modifications, and demonstrate that this method is able to match
traditional fine-tuning approaches.

2.2. Spiking Neural Networks

Spiking neural networks (SNNs) [1,3,4,26–28] are artificial neural networks that at-
tempt to mimic temporal and synaptic behaviors of biological brains. Rather than using
continuous activation functions, spiking neurons utilize a series of binary pulses, called a
spike train [29], to propagate information forward in a brain-like manner. SNNs are partic-
ularly well-suited to implementation on analog/mixed-signal hardware, which naturally
supports the high parallel sparse activation pathways common in such networks [30].

Despite these potential advantages and their strong parallels with biological brain
behavior, SNNs have not gained as much recent prominence as traditional (digital) feed-
forward networks, in part because of the difficulty of propagating gradient information
backwards through a spike train [31]. One means to compensate for this is by training a
traditional (non-spiking) network using back-propagation and then applying a transfer
function to convert the learned weights into their SNN equivalents [32]. We leverage this
idea in our work, but instead of applying a transfer function, we copy the non-spiking
weights directly, then use neuromodulatory tuning to adapt them to a new learning task.

Recent works detailing the conversion of traditional feed-forward networks to SNNs
use algorithms which modify weights, biases and activation thresholds of the network to
create a SNN from a feed-forward network [33,34]. The difference between our work and
others is that we do not train the network to match the behavior with existing feed-forward
network. Instead, we seek to train network for different tasks. Therefore, we do not perform
layer-wise comparison which is resource consuming. Moreover, our work tunes a single
parameter per neuron which is far more implementable on physical chips compared to
other more computationally expensive methods.

2.3. Neuromorphic Hardware

Neuromorphic hardware uses dedicated processing units to implement neuronal
connections and firing behavior directly on a physical chip, rather than simulating them
mathematically. Analog neuromorphic hardware has been shown to be more power
efficient than traditional digital computation hardware, and does not suffer from the
same bottleneck as Von Neuman computing [35–42]. Some designs take advantage of
sub-threshold operation for ultra-low power neurons [43,44]. Further power reductions
have been achieved through sparse temporal coding [30].

The temporal nature of spiking neural networks naturally lends itself to on-chip,
biologically plausible learning methods. Spike-time-dependent plasticity (STDP) uses
analog hardware to directly implement learning rules on chip. Several works have shown
impressive learning accuracies using this method [29,35,45–47]. However, direct hardware
implementations for learning rules consume large amounts of space and power, limiting its
potential learning capacity. Our work bridges this gap by offering the possibility of on-chip
learning with similar performance but reduced space and component requirements.
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3. Neuromodulatory Tuning

Neuromodulatory tuning is a novel fine-tuning method based on recent discoveries
in neuroscience. Neuronal transmission in biological brains is highly complex in timing
and can occur either via rapidly terminating signals that influence only immediately
connected cells (synaptic transmission), or via chemical signals that spread further away to
simultaneously influence larger groups of neurons (volumetric transmission) [48,49]. Our
work is motivated by and takes inspiration from this non-synaptic transmission method.
Specifically, we observe that, rather than adjusting connection strengths between neurons
directly, modulatory neurotransmitters impact system behavior by affecting the activation
threshold of each neuron. Thus, a single trainable parameter, implemented in our case as a
supplementary input, can be used in lieu of the large suite of trainable parameters typically
employed during a fine-tuning process.

3.1. Biological Foundations

Modulatory neurotransmitters in biological brains use metabotropic g-protein coupled
receptors as opposed to strictly ion conducting receptors propagate signals, and can include
neurotransmitters such as the cathecholamines dopamine and norepinephrine [50–54].
Interestingly, glutamate is also used by neurons as a modulatory metabotropic signal,
though it is largely discussed in the context of ion channel activity [55].

Artificial neural networks principally use neuronal ion channel activity, as repre-
sented by classical synapses, to represent synaptic strength. In contrast, metabotropic
neuromodulators activate g-protein coupled receptors in neurons, whose downstream
effectors can be stimulatory or inhibitory (depending on predefined cellular components)
and work through a series of effectors that can amplify signals from traditional synaptic
inputs, resulting in multiplicative tuning of the neuron’s inputs. This is considered a tuning
process since these neurotransmitters often do not directly change the membrane potential,
but instead change the activation threshold by modulating the channels receiving inputs.
Our neuromodulatory tuning method simulates this increase or decrease in sensitivity by
including additional inputs to the incoming signal, as shown in Section 5. In other words,
neuromodulatory tuning increases a model’s sensitivity to specific pre-learned features,
rather than changing the functions represented by those features. To our knowledge, this is
the first application of volumetric, as opposed to strictly synaptic, mesolimbic attention
modalities within an analog CMOS system.

3.2. Implementation

We simulate increased or decreased resting cell voltage via the introduction of a
supplementary bias neuron for each network layer to be fine-tuned, as shown in Figure 1.
The weights connecting this bias to neurons within each layer are initialized according to a
random uniform distribution, and, if the number of output categories has changed from the
original task, a new output layer is appended to the model. These additional bias weights
are multiplied to the pre-trained weights in each layer of a network selected for fine tuning.
The additional bias weights are then adjusted using standard back-propagation methods
while all original weights from the pre-trained model are held fixed. This multiplicative
bias method outperformed traditional additive bias, presented by [25], in experiments
shown Table 1.

Alternately, neuromodulatory tuning can also be implemented by unfreezing only
the existing bias weights of the pre-trained model, leaving all other weights fixed. We
denote the additional bias neuron implementation as NT1, and denote this unfreezing bias
weights implementation as NT2. Although the representational capacity of both methods is
equivalent from a theoretical standpoint, we find that, empirically, introducing additional
bias neurons (NT1) functions slightly better in deep feed-forward networks as shown in
Table 2. Consequently, we use NT1 in our experiments with feed-forward networks in
Section 4. In spiking networks, we compare both implementations (NT1 and NT2) and
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we find NT1 performs better on STL-10 dataset, but has similar performance with NT2 on
Food-11 and BCCD as shown in our experiments with spiking networks in Section 6.1.

Figure 1. Depiction of neuromodulatory tuning (NT) in contrast with traditional fine-tuning (TFT).
In NT, the weights of the pre-trained network are frozen, preserving all learned feature information
pertaining to the original training task. A set of auxiliary bias neurons with randomly initialized
weights is then inserted into the network, and the auxiliary bias weights are then updated in response
to the new learning task. In this diagram, color indicates the weights’ update status: red for active,
blue for frozen. NT requires far fewer parameter updates than traditional fine-tuning methods,
although loss information must still be propagated backward through the entire network.

Table 1. Validation accuracy on STL-10, Food-11, and BCCD datasets after 5 epochs, mean of five
training runs using learning rate (lr) = {0.01} and and using the full training set for each dataset after
being balanced.

STL-10 acc Food-11 acc BCCD acc

additive bias tuning 0.1000 0.0863 0.2498
multiplicative neuromodulatory tuning 0.8447 0.7110 0.3966

Table 2. Validation accuracy on the STL-10, Food-11, and BCCD dataset after 10 epochs, mean of
five training runs using learning rate (lr) = {0.1, 0.01, 0.001, 0.0001} and using the full training set for
each dataset after being balanced. NT1 = additional bias implementation, NT2 = modify existing bias
implementation. Highest average accuracies are bolded.

STL-10 acc Food-11 acc BCCD acc

NT1 (lr = 0.1) 0.8237 0.6819 0.3864
NT2 (lr = 0.1) 0.7626 0.5309 0.3280
NT1 (lr = 0.01) 0.8491 0.7184 0.4126
NT2 (lr = 0.01) 0.8420 0.7030 0.3800
NT1 (lr = 0.001) 0.8429 0.6929 0.3986
NT2 (lr = 0.001) 0.8517 0.7173 0.4234
NT1 (lr = 0.0001) 0.7856 0.5946 0.3939
NT2 (lr = 0.0001) 0.8333 0.6631 0.4008

NT1—average 0.8253 0.6720 0.3979
NT2—average 0.8224 0.6536 0.3831

4. Modeling and Analysis

We first probe the capabilities and weaknesses of neuromodulatory tuning (NT) in a
traditional deep learning setting. Using a pre-trained VGG-19 network architecture, we fine-
tune the model on three image recognition tasks. VGG-19 was trained on ImageNet [56], an
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image classification dataset composed of 1000 different image categories. The first dataset
we use in our evaluation is STL-10, a subset of ImageNet with only 10 image categories [57].
We expect traditional fine-tuning (TFT) and neuromodulatory tuning (NT) to achieve high
accuracies on STL-10 since the data is a subset of the original training data. Next, we
evaluate neuromodulatory tuning on a more difficult food classification task, Food-11 [58],
which contains images of 11 different types of food none of which match any of ImageNet’s
classes. Finally, we examine the capability of neuromodulatory tuning to learn blood cell
classification (BCCD) [59], which is a task very distinct from ImageNet containing 4 classes
of blood cells images. We hypothesize that as the difficulty of the tasks increase, NT will be
less effective in tuning the model to solve the given task, but still comparable to TFT.

For simplicity, fine tuning is applied only to the VGG-19 classifier layers, a process
which lowers the fine-tuned classification accuracy but facilitates our comparisons to
spiking neural network implementations in Section 5.1. Additionally, it is common practice
to only fine tune select layers of VGG models in recent literature [60,61]. We then apply
neuromodulatory tuning to the same layers that were fine-tuned (i.e., classification layers
only) and compare the performance of traditional fine tuning (TFT) to neuromodulatory
tuning (NT), as shown in Table 3.

To visualize the comparison between neuromodulatory tuning (NT) and traditional
fine-tuning (TFT), we create two model architectures, one with hyper-parameters config-
ured for NT and the other for TFT. We use the existing train and validation partitions in
the STL-10, Food-11 and BCCD datasets to train and evaluate the classifier layers of the
pre-trained VGG-19 model. We resize the data in each of the datasets to be images of size
256 × 256 to be compatible with VGG-19. Using an NVIDIA GeForce RTX 2080 Ti GPU, we
fine-tune both models for 10 epochs, with various training set sizes and learning rates.

We set the batch size to 64 training instances in all experiments with neural networks.
The effect of batch size on model performance has been studied in depth in recent literature.
Kandel and Castelli [62] study the effect of varying batch size and learning rate on VGG-16,
and also provide a literature review which details several papers concerning the properties
of training batch sizes. From these sources, it is clear that batch size and learning rates
are dependent, but the measure of dependence often differs depending on the given task,
model, and optimizer. Thus, we run a quick experimental analysis of the effect of batch size
for a given learning rate on VGG-19 and the Food-11 dataset in Table 4. The learning rate
for NT is set to be 0.01 and it is set to 0.0001 for TFT, since these learning rates performed
well in preliminary results. As evident from the results in Table 4, we see that batch size
does not effect the validation accuracy of NT or TFT models significantly. Therefore, we
can fix batch size to 64 in the remainder of our experiments with varying learning rates.

To perform gradient descent we use Cross Entropy Loss and the Adam optimizer.
After tuning, we iterate through the entire predefined validation set to find the mean loss
and accuracy for a specific model (NT or TFT) and learning rate.

Our results show that algorithm performance between traditional fine-tuning (TFT)
and neuromodulatory tuning (NT) is largely on par, a result that remains consistent across
a wide variety of learning rates. Table 3 provide our experimental data that highlights
the best-performing learning rates for NT (lr = 0.01) and TFT (lr = 0.0001). Interestingly,
the optimal learning rate for each tuning algorithm differs, and the average performance
of NT across multiple learning rates is higher than that of TFT. TFT achieves the highest
validation accuracies overall, but critically, not by much. This is important because it
means we can retain much of TFT’s learning accuracy while using four orders of magnitude
fewer trainable parameters, a circumstance that makes NT far more feasible than TFT to
implement on neuromorphic hardware.

Recognizing our success in the results presented above, we further reduced the number
of tunable parameters. The reduction in parameters was biologically motivated such that
each tunable parameter matches to a single neuron in the classifier layers of VGG-19.
Specifically, our initial results as reported in Table 3 include a set of tunable parameters
applied after the VGG-19 convolutional layers but before the data was passed into the
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VGG-19 classifier. Table 5 shows the same experiment repeated with this additional layer
of parameters removed, resulting in an even smaller number of trainable parameters—a
critical factor for potential implementation of such methods within the space constraints
of physical analog chips. We found that this reduction in parameters did decrease the
accuracy of the network on each task, but only slightly. As this reduced parameter count is
more analogous to biological neuromodulatory transmitters, we use this NT configuration
in future experiments in Section 5.1.

Table 3. Validation accuracy on the STL-10, Food-11, and BCCD datasets after 10 epochs, mean of five
training runs using learning rate (lr) = {0.1, 0.01, 0.001, 0.0001, 0.00001} and using the full training
set for each dataset after being balanced. Highest average accuracies and highest best-performing
accuracies are bolded.

STL-10 acc (n = 500) Food-11 acc (n = 280) BCCD acc (n = 2400)

NT1 (lr = 0.1) 0.8237 0.6819 0.3864
TFT (lr = 0.1) 0.1031 0.0876 0.2487
NT1 (lr = 0.01) 0.8491 0.7184 0.4126
TFT (lr = 0.01) 0.1540 0.0987 0.2496
NT1 (lr = 0.001) 0.8429 0.6929 0.3986
TFT (lr = 0.001) 0.8617 0.7184 0.2509
NT1 (lr = 0.0001) 0.7856 0.5946 0.3939
TFT (lr = 0.0001) 0.8836 0.8060 0.4291
NT1 (lr = 0.00001) 0.4969 0.2218 0.3484
TFT (lr = 0.00001) 0.8724 0.7387 0.4209

NT1—average 0.7596 0.5819 0.3880
TFT—average 0.5750 0.4899 0.3198

NT1—best 0.8491 0.7184 0.4126
TFT—best 0.8836 0.8060 0.4291

NT1—tuned parameters 43,290 44,291 37,284
TFT—tuned parameters 123,652,866 123,653,867 123,646,860

Table 4. Validation accuracy on the Food-11 dataset after 10 epochs, mean of ten training runs using
bath sizes (bs) = {16, 32, 64, 128}, and using the full training set for the Food-11 dataset after being
balanced. The batch size 128 is too large for the TFT setup and is thus omitted. The best learning
rates for TFT and NT1 methods were determined from preliminary results.

acc (bs = 16) acc (bs = 32) acc (bs = 64) acc (bs = 128)

NT1 (lr = 0.01) 0.6924 0.6861 0.6933 0.7162
TFT (lr = 0.0001) 0.7900 0.8068 0.8118 -

Table 5. A repeat of the experiments sin Table 3, but with a large subset of neuromodulatory inputs
removed. Validation accuracy on the STL-10, Food-11, and BCCD datasets after 10 epochs, mean
of five training runs using learning rate (lr) = {0.01, 0.0001} and using the full training set for each
dataset after being balanced. The best learning rates for TFT and NT1 methods were determined
from results in Table 3.

STL-10 acc (n = 500) Food-11 acc (n = 280) BCCD acc (n = 2400)

NT1 (lr = 0.01) 0.8213 0.7056 0.3680
TFT (lr = 0.0001) 0.8836 0.8060 0.4291

NT1—tuned parameters 18,202 19,203 12,196
TFT—tuned parameters 123,652,866 123,653,867 123,646,860
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5. Methods
5.1. Neuromodulatory Tuning on Spike Neural Networks

The VGG-19 architecture is complex and difficult to implement in its entirety on a SNN
architecture, in particular due to the large number of convolution and max pooling layers.
Since our research goal is to explore the learning effect of neuromodulatory signalling on
brain-like architecture, and not to replicate VGG-19, we apply the following simplification
in our experiments: The feature layers of VGG-19 are retained in their original (digital) deep
format. As illustrated in Figure 2, image inputs are passed through these layers to attain a
feature embedding, which would normally be passed through to the VGG-19 classification
layers. We replace the VGG-19 classification layers with a spiking neural network having
the same number of layers and layer width. The weight matrices of these SNN-VGG
classification layers are initialized to the same values as the pre-trained VGG-19 weights.

Figure 2. Representation of the Spiking Neural Network (SNN) experimental setup. In these
experiments we construct a SNN that mimics the function and purpose of the traditional pretrained
VGG-19 classifier layers. To accomplish this, we pass data from a dataset d, where d = {STL-10, Food-
11, BCCD}, through the feature layers of VGG-19 to generate a feature embedding for a particular data
instance. A traditional usage of VGG-19, like in Section 4, would then pass the feature embedding
through the fully-connected classifier layers to produce a model prediction. In these experiments,
however, we pass the feature embedding through spiking classifier layers which then in turn produce
a spiking model prediction.

We implement our spiking neural network using core algorithm components outlined
by leaky integrate-and-fire model [63], with the following adjustments:
• Network update frequency minimization
• Customized simple loss calculation method on network output

5.1.1. Update Frequency Minimization

A typical leaky integrate-and-fire neuron receives input over a set time span. During
this time span, neurons must be updated multiple times to simulate temporal connectivity
on the actual circuit [29,35,45–47], which greatly increases the computation costs of simula-
tion. Since temporal connections are not a major factor in the VGG-19 image classification
tasks, our update frequency for each neuron can be as small as 1 timestep for each task.
Therefore, in our simulation for this experiment, we update neurons in each SNN layer
exactly once.

11
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Since we update neurons in each SNN layer exactly once, neurons will only fire at
most once. As a consequence, argmax is not applicable on our output layer. Argmax
chooses the maximum value from the output neurons as the true output, which make sure
the output to be exactly one classification. In absent of argmax, network will start to output
multiple classifications through activation of multiple neurons, which will be counted as
mis-classification. Therefore, the network should not only activate the correct neuron, but
it also should avoid the activation of incorrect neurons. Let n be the numbers of neurons
which equals to numbers of classes in the tasks. Let p be the actual accuracy of random
outputs, then:

p =
1
2
· 1

2n−1 =
1
2n (1)

of which 1
2 is the possibility of the correct neuron activates and 1

2n−1 is the possibilities of
all incorrect neurons do not fire.

5.1.2. Simple Loss Calculation

For each neuron in our SNN output, one spike indicates an output of 1.0 and no spikes
represents an output of 0.0. Therefore, the output of the SNN for each input will be an
array consisting exclusive of values in {0.0, 1.0}. Due to the simplicity of the output as a
binary array, we employ a customized simple gradient calculation method on the network
output, calculated as follows:

loss = target− output (2)

This simple method fits our SNN simulation for this experiment, because of the binary
output nature of our SNN. A binary output simply indicates whether a neuron fired or not.
Losses on the binary output imply whether the neurons on the output layer have fired or
not. Therefore, the polarity of the SNN output loss (i.e., whether it is positive or negative) is
sufficient for basic training. We believe that other, more complex loss calculation methods
have potential to perform better on these tasks, and that will be left to future explorations.

5.1.3. Gradient Calculation

Our network behaves according to the following equations:

vi =

(
n

∑
j=0

Ojwij + bi

)
ai (3)

Oi = H(vi)I (4)

H(v) =

{
1, if v ≥ θ

0, otherwise
(5)

where vi is the voltage of the neuron i, wij is the weight of the input given by neuron j to
neuron i, bi is the additive bias of the neuron i, ai is the amplifier bias, Oi is the output
of neuron i calculated by our Heaviside function H times I, which represents a neuron’s
output if fires, and θ is the activation threshold of neuron.

The gradient will then be calculated as:

gwij =
dOutput

dOi

dOi
dHi

dHi
dvi

dvi
dwj
· loss (6)

gai =
dOutput

dOi

dOi
dHi

dHi
dvi

dvi
dai
· loss (7)
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Since many researchers implement sigmoidal neurons, with steep sigmoid function, as a
replacement for Heaviside step function, we can safely assume:

dHi
dvi
≈ dSigmoid(dvi)

dvi
(8)

The sigmoid method in popular machine learning libraries behaves as follows:

dSigmoid(v)
dv

=





1 + s, if v ≥ θ, s ≈ 0
d, if v ≈ θ, with 0 < d < 1
s, otherwise

(9)

where s approaches 0, but never reaches 0. Most of modern day techniques requires sigmoid
to be steep, to minimize the window of v ≈ θ. Therefore, our method seeks to remove the
influence of v ≈ θ by using customized sigmoid derivative σ:

dSigmoid(v)
dv

≈ σv =

{
1, if v ≥ θ

s, otherwise, with s ≈ 0
(10)

However, this σ function causes firing neurons to be adjusted 1/s times faster than
non-firing neurons. Such behavior becomes most problematic on physical chips, due to the
fact that weight has its upper limit on physical chips. To make sure the weight adjustment
speed on non-firing neurons matches firing neurons we amplified the gradient on non-firing
neurons by 1/s. Then, σ = 1 for all firing and non-firing neurons.

As a result, our gradient function becomes:

gwij ≈
dOutput

dOi

dOi
dHi

dvi
dwij

· loss (11)

gaij ≈
dOutput

dOi

dOi
dHi

dvi
dai
· loss (12)

Since dvi
dwij

= O(vj) = H(vj) · I, and Heaviside step function produces 0 when vi < θ,
the gradient chain will break when the Heaviside function outputs 0.

Therefore, our Heaviside step function on the simulation side is modified as:

Hsim(v) =

{
1, if v ≥ θ

s, otherwise, with s ≈ 0
(13)

If s is small enough as it approaches 0, s poses no influence on the accuracy of simula-
tion comparing to hardware performance.

5.2. Neuromodulatory Tuning on Analog Hardware

One particularly advantageous aspect of neuromodulatory tuning (NT) is its suitability
for implementation on analog neuromorphic hardware. The behavior of fine-tuned bias
connections, implemented in digital simulations as additional bias neurons, can also be
implemented in analog hardware as a current source with a variable supply voltage. This
approach has the following advantages:
• Minimal additional chip area required
• Lower power consumption than digital hardware
• No need to re-load weights to the on-chip memory

To probe this possibility, we use Cadence Virtuoso to explore the feasibility of a
NT approach on simulated analog hardware. Our hardware is designed and simulated
at the transistor level in TSMC 28-nm CMOS. The analog neuron implements the leaky
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integrate-and-fire model [63]. Six binary-scaled current sources make up the synapse. A
current is driven onto a 50-fF capacitor to produce an integrated membrane voltage that is
quantized by a dynamically clocked latched comparator. An adjustable delay line generates
a 100-ns spike when the membrane voltage reaches the activation threshold and resets the
membrane voltage by connecting the capacitor to ground via a pull-down transistor. A
schematic diagram of our proposed neuron is shown in Figure 3.

Figure 3. Schematic diagram of the proposed leaky integrate-and-fire neuron with NT (VDD,variable)
capabilities. The Up and Down signals are generated from the input spike and weight signals.

5.2.1. Synapse Design

Each synapse operates at a supply voltage between 0.5 and 1 V. A higher supply
increases the current in the synapse. The neuron core operates at a constant supply of
1 V. Adjusting the supply voltage of individual synapses or groups of synapses effectively
changes the weights of the synapse connections. This change in behavior is analogous to the
bias neurons in the software implementation and to what is observed biologically [53,54].
To make the synapse current dependent on the supply voltage VDD, we use a current mirror
with a resistive load. The current through an N-type MOSFET is given by

IDS =
1
2

β(VGS −Vth)
2 (14)

In a current mirror, the gate voltage VG is related to VDD by

VG = VDD − IRS (15)

Substituting (14) into (15) and solving for I results in

I =
√
(4βRS(VDD −Vth)− 1) + 2βRS(VDD −Vth) + 1

2βR2
S

(16)

Equation (16) shows that the synapse current is a function of the supply voltage VDD, which
we tune to adjust the weights. Figure 4 shows the neuron behavior when we vary VDD from
550 mV to 750 mV. The higher supply results in a larger current, producing more spikes.
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Figure 4. Neuron outputs with the same input spike pattern and synaptic weights, but with varied
bias weights implemented as (a) VDD = 550 mV and (b) VDD = 750 mV.

The effect of a bias neuron with a weight of Wb on a synapse with weights Ws can be
approximated as I(Wb + Ws). The behavior of the analog implementation can be written
as kIW where k represents the change in the synapse current due to adjusting VDD. If
IWb = kW then the behavior of the two implementations is identical.

5.2.2. Neuron Core Design

A schematic of the neuron core is shown in Figure 5. The threshold comparator is
implemented with the StrongARM topology. We choose a clocked topology to reduce
static power, especially when compared to inverter based threshold detectors. Instead of a
fixed-period clock, we only clock the comparator after an input spike or after an output
spike. We use a 4-input NOR gate to generate the comparator clock. This ensures that
power consumption is minimized in a network trained for minimal spiking activity. The
membrane capacitance is always reset to Vrest = 250 mV and the comparator has a fixed
threshold of Vth,comp = 350 mV. We choose Vrest to give Vmem at least 100 mV of swing
without driving the synapse current sources into the triode region, even when the synapse
power supply is 0.5 V. Once the membrane potential crosses the preset threshold, the spike
generation circuit is triggered. The spike is generated using a self-reset DQ fip-flop with
current-starved inverter-based delay cells between Q and reset. The delay cells utilize
parasitic capacitance to increase delay so as to decrease the number of stages needed for a
certain spike width.

The membrane capacitor is a custom 50-fF finger capacitor which occupies only 27 µm2.
Because the membrane capacitance is only 50 fF, the neuron needs an extremely large
resistor for a sufficiently low leakage current. Instead of using a polysilicon resistor which
would occupy large area, we implement a CMOS pseudo resistor using a PMOS transistor
which occupies only 0.7 µm × 0.5 µm and achieves approximately 400 MΩ (Figure 6).
The pseudo-resistor is implemented as two PMOS transistors connected in a transdiode
configuration. The simplest of pseudo-resistors have an asymmetric resistance-voltage
characteristic, making them unusable for this neuron because the membrane potential can
go both above and below Vrest, and must have the same up and down leakage current. To
solve this, we use two psuedo-resistors in parallel with opposite connections polarities. This
halves the effective resistance, but creates a symmetric resistance-voltage characteristic.

15



J. Low Power Electron. Appl. 2022, 12, 59 13 of 19

VDD

Vmem
Vth

CK CK CK CK

QD
Spike

VDD

VB

Vout

Vin

delay cell
Input spike 1
Input spike 2
Input spike 3
Output spike

decision

Figure 5. Schematic of the threshold comparator with dynamic clocking, and tunable spike genera-
tor circuit.
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Figure 6. Schematic of (a) a one-directional pseudo-resistor and its asymmetric resistance characteris-
tic and (b) the proposed pseudo-resistor showing symmetric resistance characteristics.

6. Results

Our long-term objective is to enable low-power analog learning behaviors in situ on
physical analog chips. This requires both a viable mechanism for potential in situ learning
that does not require large amounts of surface area for gradient calculations and a validated
circuit design that can realistically implement that mechanism. We present neuromodula-
tory tuning as a possible mechanism for this objective, and here provide results showing its
performance in simulated (digital) spiking neural networks (Section 6.1) and a full chip
design for its eventual implementation on physical CMOS hardware (Section 6.2).

6.1. Neuromodulatory Tuning on Spiking Neural Networks

To validate the performance of neuromodulatory tuning in spiking neural networks
(distinct from the traditional feed-foward networks shown in Section 4), we apply neuro-
modulatory tuning (NT) and traditional fine-tuning (TFT) to the SNN-VGG classification
layers using the STL-10, Food-11, and BCCD datasets for comparison. We fix the batch size
at 64 for all training, since our experiment with batch sizes (shown in Table 6) reveals that
batch size does not impact the model performance dramatically. Both the Food-11 and
BCCD datasets are singularly distinct from the ImageNet data [56] which was used to train
VGG-19. VGG-19 therefore lacks output classes corresponding to labels from the Food-11
and BCCD datasets. To create the necessary output layer size, we added one extra fully
connected layer at the end of each model. This extra layer functions as the output layer for
corresponding classes in Food-11 and BCCD. Different from Food-11 and BCCD, STL-10 is
a subset of ImageNet. Since VGG-19 is trained on ImageNet, VGG-19 contains classes that
are contained within in STL-10 labels. Therefore, we do not add extra layers for the SNN
STL-10 experiments. All SNN models were trained on an AMD Ryzen Threadripper 1920X
12-Core Processor. Results are shown in Tables 7 and 8.
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As expected, performance is poor when no tuning is applied. This is partially because
SNN architectures, comprised of leaky integrate-and-fire neurons, differ drastically from
traditional deep networks in both signal accumulation and signal propagation, resulting in
almost 0% accuracy on all three transfer tasks. Tuning improves this accuracy, achieving
up to 88% accuracy with TFT and 50% with NT on some tasks with certain learning rates.
According to our results shown in Table 7, NT underperforms on the STL-10 dataset
comparing to TFT, has equal performance to TFT on BCCD, and outperforms TFT on Food-
11, which suggests that neuromodulatory tuning can positively impact learning behaviors
on brain-like architectures.

Our performance comparison of the algorithms is influenced by differences between
the three datasets. STL-10 is the subset of the dataset used to train VGG-19, so tasks in STL-
10 is more native to the network. In contrast, Food11 and BCCD are foreign to the VGG-19
network, so those tasks will require VGG-19 to make adjustments in larger magnitudes
or completely re-learn the task. Given that neuromodulatory tuning outperforms TFT
on Food11, a foreign dataset, and that TFT requires changes of larger magnitudes, NT
is superior for these cases. There are accuracies below random guessing, this might be
caused by the low learning rate for NT and the absence of feed-forward to spiking network
conversion algorithm for TFT.

Comparing two different types of NT, NT1 performs better than NT2 on STL-10 dataset,
and has equal performance with NT2 on Food-11 and BCCD dataset.

According to Table 8, TFT requires over 120 million parameters adjustment to achieve
such performance, so the adjustments are impossible to implement on the physical chips.
In contrast, NT method only requires 9000–20,000 adjustments, which is implementable on
physical chips. Note, the parameter values for NT differ slightly in Table 8 from Table 5
due to the difference in implementing a spiking network versus a feed-forward network.

Table 6. Validation accuracy on the Food-11 dataset on SNN after 10 epochs, mean of 10 training runs
using bath sizes (bs) = {16, 32, 64, 128}.

acc (bs = 16) acc (bs = 32) acc (bs = 64) acc (bs = 128)

NT1 (lr = 0.1) 0.4568 0.4605 0.4570 0.4647
TFT (lr = 0.1) 0.1304 0.1243 0.1145 0.0770

Table 7. Validation accuracy on STL-10, Food-11, and the BCCD dataset in a spiking neural network
(SNN) architecture. Models were trained for 50 epochs for STL-10, Food11, and the BCCD dataset,
respectively. Average of five training runs. Best per-task performance of neuromodulatory tuning
(NT2) and traditional fine-tuning (TFT), respectively, is underlined. NT2 refers to the modify existing
bias implementation of NT and NT1 refers to the additional bias implementation described in
Section 3.2.

lr 0.0001 lr 0.001 lr 0.01 lr 0.1

no tuning 0.0007 0.0007 0.0007 0.0007
TFT 0.8888 0.8014 0.2582 0.1274

STL-10 NT2 0.0000 0.0000 0.3052 0.3062
NT1 0.0000 0.0009 0.5428 0.5731
additive bias 0.0010 0.0008 0.0006 0.0025

no tuning 0.0341 0.0341 0.0341 0.0341
TFT 0.0147 0.0729 0.1017 0.1168

Food-11 NT2 0.0063 0.3645 0.4537 0.4615
NT1 0.0020 0.3678 0.4564 0.4665
additive bias 0.0840 0.1864 0.1404 0.1414
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Table 7. Cont.

lr 0.0001 lr 0.001 lr 0.01 lr 0.1

no tuning 0.0005 0.0005 0.0005 0.0005
TFT 0.1003 0.2508 0.2507 0.2508

BCCD NT2 0.2501 0.2509 0.1371 0.0680
NT1 0.2508 0.2509 0.2041 0.0591
additive bias 0.1848 0.2137 0.2144 0.2505

Table 8. Validation accuracy and parameter on STL-10, Food-11, and the BCCD dataset in a spiking
neural network (SNN) architecture. Models were trained for 50 epochs for STL-10, Food11, and
the BCCD dataset, respectively. Accuracy from the learning rate with best average accuracy of five
training runs. NT2 refers to the modify existing bias implementation of NT and NT1 refers to the
additional bias implementation described in Section 3.2.

Best Accuracy Parameter Amount

TFT 0.8888 123,642,856
STL-10 NT2 0.3062 9192

NT1 0.5731 9192
additive bias 0.0025 9192

TFT 0.0356 123,653,867
Food-11 NT2 0.4615 20,203

NT1 0.4665 20,203
additive bias 0.1864 20,203

TFT 0.2508 123,646,860
BCCD NT2 0.2509 13,196

NT1 0.2509 13,196
additive bias 0.2505 13,196

6.2. Analog Neuromorphic Hardware Simulation

The goal of this work is to develop a low-power CMOS chip architecture that imple-
ments neuromodulatory tuning. In addition to presenting the neuromodulatory tuning
algorithm and exploring its performance, we also present a complete neuron design to
implements this algorithm on analog CMOS hardware.

Figure 7 shows the layout of the proposed neuron implementing NT fine tuning. The
entire neuron, synapse and weight storage occupies only 598 um2, with the neuron core
(including membrane capacitor) occupying only 132 nm2. We have validated the simulation
results from Section 6.1 using post-layout simulations in Cadence Virtuoso to model an
XOR task using spiking neurons. Two neurons were chosen to be the inputs to the XOR
“gate” and another designated as the output. A train of 10 spikes to an input neuron
constituted a “1”. No input spikes constituted a “0”. The spikes propagated through the
network according to the trained weights. The output was “0” if less than three spikes were
observed at the output, otherwise the output was a “1”. The analog simulation showed
2 spikes at the output for a 0, and 4 for a 1.

The proposed neuron achieves performance competitive with the state-of-the-art in
standalone neuron circuits (see Table 9). The total power for the neuron core varies with
spike rate. Figure 7 shows the distribution of power for two spike rates and Figure 8 shows
the energy/spike vs. spike rate.
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Figure 7. The distribution of power within the neuron core.
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Figure 8. The energy/spike decreases as VDD increases. This is because a higher VDD yields a higher
synapse current and therefore more output spikes for the same number of input spikes.

Table 9. Comparison of our proposed neuron implementing neuromodulatory tuning with the state
of the art in standalone neurons. * Total area includes neuron core, synapse, and weight storage.

This Work Joubert et al.,
2012

Cruz-Albrecht et al.,
2012

Rangan et al.,
2010 Jayawan 2008

Process (nm) 28 65 90 90 350

Area µm2 598 (Total *)
132 (Core) 538 442 897 2800

Max fspike (Hz) 3.3M 1.9M 100 7k 1M

Energy/spike (pJ) 1.08 41 0.4 1 9

7. Conclusions

Low-power analog machine learning has the potential to revolutionize multiple disci-
plines, but only if novel and physically-implementable learning algorithms are developed
that enable in situ behavior modification on physical analog hardware. This paper presents
a novel task transfer algorithm, termed neuromodulatory tuning, for machine learning
based on biologically-inspired principles. On image recognition tasks, neuromodulatory
tuning performs on test cases as well as traditional fine-tuning methods while requiring
four orders of magnitude fewer active training parameters (although the total number of
weights is comparable between methods). We verify this result using both deep forward
networks and spiking neural network architectures. We also present a circuit design for a
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neuron that immplements neuromodulatory tuning, a potential layout for the use of such
neurons on an analog chip, and a post-layout verification of its capabilities.

Neuromodulatory tuning has the advantage of being well-suited for implementa-
tion on neuromorphic hardware, enabling circuit implementations that support life-long
learning for applications that require energy-efficient adaptation to constantly changing
conditions, such as robotics, unmanned air vehicle guidance, and prosthetic limb con-
trollers. Future research in this area should focus on probing the performance of NT in
domains beyond image recognition; exploring the possibility of paired bias links in which
multiple neurons connect to a single power domain region; and designing improved SNN
update algorithms with stronger convergence properties.
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Abstract: In this work we introduce a novel method for decoupling the backward pass of backpropagation using math-
ematical and biological abstractions to approximate the error gradient. Inspired by recent findings in neuro-
science, our algorithm allows gradient information to skip groups of layers during the backward pass, such that
weight updates at multiple depth levels can be calculated independently. We explore both gradient abstrac-
tions using the identity matrix as well as an abstraction that we derive mathematically for network regions that
consist of piecewise-linear layers (including layers with ReLU and leaky ReLU activations). We validate the
derived abstraction calculation method on a fully connected network with ReLU activations. We then test both
the derived and identity methods on the transformer architecture and show the capabilities of each method on
larger model architectures. We demonstrate empirically that a network trained using an appropriately chosen
abstraction matrix can match the loss and test accuracy of an unmodified network, and we provide a roadmap
for the application of this method toward depth-wise parallelized models and discuss the potential of network
modularization by this method.

1 INTRODUCTION

There are numerous types of deep neural networks
which excel on various tasks, but they heavily rely
on a rigid error backpropagation procedure. From
multilayer perceptrons to convolutional neural nets to
transformer-based architectures, these models com-
pute the gradient of the loss with respect to each
model parameter to find a local minimum on the
model’s loss surface. Gradient computation is an ex-
pensive process and requires the gradient to be calcu-
lated layerwise backward through the neural network.
This learning paradigm is incredibly successful, but
also inflexible as gradient computation requires dif-
ferentiable operations and sequential processing of
data through the network.
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In this work we present a new tool, termed ab-
straction matrices, which enable gradient information
to be passed backward to multiple locations in the net-
work in a decoupled fashion. We show that break-
ing up the backward pass in this way does not hinder
model performance and allows more flexibility during
backpropagation. Given this result, we explore sev-
eral implications of our method: 1) theoretical depth-
wise model parallelization, 2) network modulariza-
tion, and 3) algorithm innovation.

Our method introduces a set of matrices
{M1, ...,Mn} which correspond to the abstracted
network regions. These matrices are calculated dur-
ing each forward pass in such a way that, when Mk is
multiplied by gradient information from the network
layer immediately following the kth abstracted
region, the result is a reasonable approximation of the
gradient information which would have been passed
to the preceding layer via traditional backpropagation
methods. Said another way, during the backward
pass, the abstraction matrices {M1, ...,Mn} are used
to quickly transmit error information backward across
multiple layer blocks via a simple matrix multiplica-
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tion rather than via more complex backpropagation
calculations.

The biological inspiration for this method, which
both motivates and, to an extent, justifies the use of
imperfect gradient approximation in lieu of rigorously
calculated gradients, lies in observed findings from
foundational neuroscience studies that identified feed-
back signals in biological brains are backpropagated
both through localized synaptic retrograde signalling
and through shortened feedback loops to distant lay-
ers (Seger and Miller, 2010; Sesack and Grace, 2010).
The synaptic updates are more precise, whereas the
shortened feedback loops are less accurate but facil-
itate a faster training response because they bypass
many of the intervening neurons (Gerdeman et al.,
2002; Alger, 2002). These biological foundations
provide both the inspiration and a motivating prece-
dent for our study of approximate signal mediation
via abstraction matrices.

The contributions of this paper are as follows: (a)
We present a biologically inspired paradigm for neu-
ral network training based on abstracted gradient in-
formation mediated via simple matrix multiplications
(Sections 3.1 and 3.2); (b) We present a justifica-
tion for a least-squares method for computing abstrac-
tion matrices {M1, ...,Mk} in the case that the cor-
responding layers are comprised of piecewise-linear
functions; (c) We introduce a simplification paradigm
Mk = I ∀k that reduces calculation overhead and is
rooted in biological precedents (Section 3.4); (d) We
validate the effectiveness of abstraction matrices in
both multilayer perception and transformer architec-
tures, and show that the abstraction of layer blocks
via Mk can be achieved without a drop in training ac-
curacy (Sections 4.1 and 4.2); (e) We examine antici-
pated speedups that could be obtained by implement-
ing our abstracted architecture in a fully parallelized
environment (Section 5.1): and (d) we discuss the ap-
plication of our method in algorithm innovation and
network modularization (Section 5.2).

2 RELATED WORK

Incomplete Gradient-Based Learning: Computing
the error gradient with respect to model parameters
is, in its pure form, a prohibitively intensive pro-
cess. True gradient descent involves iterating through
the entire dataset, computing each weight’s gradi-
ent with respect to calculated error, and then updat-
ing the parameters in proportion to the learning rate.
This is highly impractical, and thus gradients are usu-
ally computed for only a subset of the data at a time
(Amari, 1993). Despite using only an approximation

of the true gradient, SGD methods have proved to be
quite effective in training neural networks in a super-
vised manner. Our work builds on this precedent by
using abstraction matrices to quickly transmit approx-
imations of the calculated error gradient.

Further approximations of the error gradient
have been utilized to implement layer-parallelization
(Günther et al., 2019; Song et al., 2021). Both works
use optimized approximations of the forward pass and
(Song et al., 2021) requires additional external com-
pute power. Our method does not interfere with the
forward pass, which does exclude the possibility of a
parallelized forward pass, but addresses the more ex-
pensive backward pass. Additionally, our method is
lightweight and only requires additional computation
for solving the least squares problem.

One unexpected aspect of our work (see Section
4.2) is the superior effectiveness of a simplified ap-
proximation of the gradients over a more theoretically
sound abstraction on certain models. While this result
appears highly unintuitive, it is similar to prior work
by (Neftci et al., 2017), who have shown that in neu-
romorphic contexts a neural network can be trained
using random feedback weights multiplied by the er-
ror gradient. More generally, feedback alignment uti-
lizes randomly initialized backward weight matrices
which still facilitate learning as presented by (Lilli-
crap et al., 2016). (Lillicrap et al., 2016) also provide
some justification as to why feedback alignment is ef-
fective which we also rely on partially in motivating
our use of the identity matrix. Despite connections to
these works, we draw our inspiration for, and to some
extent justify, use of the identity matrix from biology
as described in Section 3.4.

Residual Connections: Our work also is themati-
cally related to residual connections as originally pre-
sented in (He et al., 2015; Srivastava et al., 2015).
Conceptually, our work can be viewed as an extension
of this concept to multilayer blocks, with the residual
connection taking the form of an abstraction matrix M
that delivers an approximation of what the calculated
gradients would have been.

3 METHODOLOGY

3.1 Biological Foundations

In order for supervised machine learning or biological
learning to occur, there must be an update in synap-
tic weights based on some error and resulting adjust-
ment. In traditional machine learning this adjustment
is often performed using an error signal that is back-
propagated through the same pathway as the forward
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propagating signal, a method which is very effec-
tive and in some ways analogous to the neurobiologi-
cal mechanisms of backpropagating action potentials
(Stuart and Häusser, 2001; Letzkus et al., 2006) and
release of retrograde neurotransmitters (e.g., cannabi-
noids and nitric oxide) (Wilson and Nicoll, 2001;
Hardingham et al., 2013). These are effective mech-
anisms for transmitting learning signals across local
connections (i.e., one layer of neurons). However,
such signaling mechanisms do not typically propagate
across multiple layers in biology due to interference
from ongoing activity such as ion channel activation
refractory periods (Burke et al., 2001). Instead, bio-
logical systems seem to prefer a combined approach
where local tuning is performed by backpropagating
action potentials and retrograde transmitters, while
more distant upstream layers are connected and tuned
via long indirect and short direct feedback loops that
bypass the initial layers (Sesack and Grace, 2010).
These feedback loops provide a faster method for tun-
ing upstream neurons and are used throughout the
brain, including, for example, the cortico-basal gan-
glia network for reward learning (Sesack and Grace,
2010).

Our work utilizes an abstraction matrix M which
is computed to allow the gradient to flow around cer-
tain groups of layers of a neural network, a function
analogous to the role feedback loops play in biologi-
cal brains. In traditional backpropagation, the gradi-
ent is computed from the output layer sequentially up
through the rest of the network. Using the matrix M,
however, the gradient calculation can be divided such
that the gradient in different regions of the network
does not have to be computed sequentially.

3.2 Layer Abstraction to Compute the
Gradient

In an effort to design a learning scheme more anal-
ogous to the human brain in deep neural networks
(DNNs), we design a method to abstract the gradient
computation process of several sequential layers of a
DNN using a single matrix we denote M. The lay-
ers abstracted by M thus become a localized learning
region with neurons whose gradient propagation pro-
cess is detached from that of upstream layers. A visu-
alization of this abstraction using M is shown in Fig-
ure 1. In some cases the identity matrix will be used in
lieu of M, as depicted in Figure 1.(3-1) and described
in Section 3.4. In all cases, we assume that the default
regions of the network are trained using backpropa-
gation. As such, during the backward pass of training
the error gradient with respect to the model weights
is computed sequentially backward through the net-

Figure 1: (1-1) shows a model composed of 4 layers, la-
beled as L1 to L4. Input is given through L1, and the for-
ward data flow is indicated by green arrows. Loss is intro-
duced through L4, and the backward data flow is indicated
by yellow arrows. (2-1) and (3-1) show the same model im-
plementing our method, with M abstracting the backward
processes. (3-1) uses identity matrix as M. As illustrated
in (1-2), backward processes of the traditional model are
sequential. In comparison,shown by (2-2) and (3-2), back-
ward processes using our method can become parallelized,
since L2 obtains loss values through M, instead of L3.

work until reaching the region of layers abstracted by
M. Then, instead of continuing the standard back-
propagation procedure, the gradient is approximated
for the abstracted layers using M, and the gradient
computation continues around these layers according
to Equation 1. Gi represents the gradient of the layer
after (from the backward pass perspective) the layers
abstracted by M, and G j is the gradient of the layer
immediately before the layers abstracted by M. Layer
j is among the ancestor layers of layer i.

GiM = G j (1)

The layers abstracted by M can then either be
trained according to standard backpropagation or a
more simple learning rule which more closely mim-
ics biological learning behavior. Assume, however,
that the layers abstracted are also trained using back-
propagation. In this case Gi is used to continue the
backward pass through the layers abstracted by M,
but, critically, there now exist two gradient compu-
tation paths after layer i. These two paths can be
computed in parallel, which thus introduces a poten-
tial new type of parallelism in which model training
can be distributed depth-wise.

3.3 Derivation of the Abstraction
Matrix

Consider a neural network N defining a function
FN (x) = ak(Wkak−1(Wk−1 . . .a1(W1x))), where ai is
the activation function for the ith layer and the matrix
Wi consists of the weights for layer i. (Note that if
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the input vector is extended with an additional 1, the
bias term can be included as an additional column in
the weight matrix). For a given i < j ≤ k and input
x let Li = ai(Wiai−1(Wi−1 . . .a1(W1x))) be the output
of the ith layer, let L j = a j(Wja j−1(Wj−1 . . .Wi+1Li)))
be the output of the jth layer (thought of as a function
of Li), and let Lk = ak(Wkak−1(Wk−1 . . .Wj+1L j))) be
the output of the kth layer.

As a fundamental part of backpropagation we

must compute gradients G j = Gi

(
∂L j

∂Li

)T

, where

∂L j

∂Li
=

∂L j

∂L j−1

∂L j−1

∂L j−2
· · · ∂Li+1

∂Li
(2)

is the derivative of the layer L j as a function of Li. It’s
relatively expensive to compute these derivatives by
computing the corresponding matrix products in (2).
Moreover, each of these matrix derivatives depends
on the value of the input x, so the product must be re-
computed for each xℓ in a given batch. To emphasize
this dependence, we use a superscript xℓ on the layers:
∂L

xℓ
j

∂L
xℓ
i

.

Expressed mathematically, the main idea of this
paper is to approximate all the different transposed

derivatives
(

∂L
xℓ
j

∂L
xℓ
i

)T

with a single abstraction matrix

M, which depends on the batch, but is the same for all
choices of xℓ.

Our choice of M is motivated by the observation
that any piecewise-linear function f satisfies the dif-
ferential relation f (x) = Dx f (x) · x, where Dx f (x) is
the derivative of f with respect to x. Specifically, if
the activation functions in the neural network N are
all piecewise linear (e.g., ReLU or leaky ReLU), then
for any input x we have

Lxℓ
j =

∂Lxℓ
j

∂Lxℓ
i

Lxℓ
i .

A matrix MT that approximates every derivative
∂L

xℓ
j

∂L
xℓ
i

should, therefore, give a good approximate solu-

tion to the system of equations
MTLxℓ

i = Lxℓ
j ∀ℓ ∈ B, (3)

where B is the set of all indices in the batch. Assem-
bling the various columns Lxℓ

i together into a single
matrix LB

i and the columns Lxℓ
j together into a single

matrix LB
j , we can write the system (3) as

MTLB
i = LB

j . (4)
The natural choice for an approximate solution to

any (potentially non-square) linear system is the least-
squares solution of (4), which can be written as

M =
(
LB

i
)T+ (

LB
j
)T

, (5)

where
(
LB

i
)T+ is the Moore–Penrose pseudoinverse

of (LB
i )

T. This motivates our choice of the abstraction
matrix M to be defined by (5).

3.4 A Simplified Abstraction Matrix

In the cortico-basal ganglia brain region from which
we take our inspiration, feedback loops that bypass
initial layers do not use an estimation of those layers’
gradients, but instead pass the error signal directly to
the more distant neurons (Sesack and Grace, 2010;
Seger and Miller, 2010). To mimic this behavior, we
also ran a number of experiments with M equal to the
identity matrix rather than the derived value given in
Eq. (5). This simplification (∀k,Mk=I) reduces calcu-
lation overhead and is better aligned with biological
precedents; however, it is a less accurate way of esti-
mating the abstracted gradients. Our expectation was
that it would result in reduced neural network perfor-
mance as compared to the more rigorously calculated
M; however, as described in Section 4.2, this was not
the case.

4 EXPERIMENTS

We explore the effectiveness of the layer abstraction
M on a variety of models and training tasks, with
the goal of establishing (a) the performance of mod-
els trained using abstraction matrices as compared to
unmodified models, and (b) the theoretical speedup
which might be gained if the model were parallelized
along the layer blocks approximated by abstraction
matrices. We further consider two distinct meth-
ods for calculating M: The theoretical derivation de-
scribed in Sec. 3.3, and a biologically motivated sim-
plification using the identity matrix (M=I).

4.1 Multilayer Perceptron

While small multilayer perceptron (MLP) (Block
et al., 1962) models are not the most suitable candi-
dates for the downstream implications of our method,
we chose them as an initial testbed due to their sim-
plicity and conformity with the constraints of Section
3.3. Our aim in this experiment is two-fold: (1) to en-
sure that training using M (which creates a decoupled
backward pass) does not decrease final model accu-
racy and (2) to establish an algorithm that enables the
separation of the backward pass into multiple proce-
dures.

To validate the mathematical theory behind layer
abstraction we verify that we can compute and use
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M on a five-layer multilayer perceptron (MLP) com-
prised of fully connected layers with ReLU activa-
tions. We train this MLP model on three simple
image recognition datasets—MNIST (Deng, 2012),
EMNIST (Cohen et al., 2017), and FashionMNIST
(FMNIST) (Xiao et al., 2017)—and compare the
abstracted model’s performance to a baseline MLP
model trained without any abstractions. In this exper-
iment different models are used for different datasets,
with some base code from (Koehler, 2020). In the
model, the computed matrix M spanned three of the
five MLP layers, leaving the input and output layers
unmodified. All models contained hidden layers rang-
ing from dimension (392,196) to (49, 10) or (49,26)
for EMNIST, with larger layers on input side and
smaller layers closer to output layers, as defined in
(Gregor Koehler and Markovics, 2020). Models were
trained for 10 epochs, using the Adam optimizer and
negative log likelihood loss, on batches of size 64 and
an initial learning rate of 0.0001.

For this experiment, we also studied the simple
M = I abstraction. One limitation of using such a sim-
ple abstraction, however, is that the gradient vectors,
Gi,G j, must be of the same size since I is a square
matrix. Thus, to apply the M = I abstraction to this
MLP model we instead utilize a block identity ma-
trix, Iblock = [I 0]. This effectively adds zero padding
to maintain the proper gradient chain. Observe that
using Iblock is essentially dropping gradient informa-
tion in order to project the gradient to a different di-
mension size.

Results are shown in Table 1. We see that the de-
rived matrix M matches the performance of the non-
abstracted model on the MNIST and FMNIST dataset
and nearly matches on EMNIST. As the model archi-
tecture is the same in both cases, this suggests that
like many other aspects of neural architecture design,
the effectiveness of the abstracted gradient calculation
technique is partially dependent on the specific task
being solved. The M = Iblock abstraction performs
measurably worse on all three datasets, validating the
worth of deriving the matrix M as presented in Sec-
tion 3.3.

4.2 Seq2Seq Transformer

Our next experiment leverages the popular Seq2Seq
transformer as presented by (Vaswani et al., 2017),
using its implementation from (Klein et al., 2017).
This model has been leveraged as a base architecture
for many modern DNNs including the GPT line of
language models (Radford et al., 2019; Brown et al.,
2020; Black et al., 2021; Ouyang et al., 2022), audio
processing models (Dong et al., 2018; Gulati et al.,

2020; Chen et al., 2021), and computer vision appli-
cations (Carion et al., 2020; Dosovitskiy et al., 2021).
Thus, examining layer abstractions in the base model
presented by (Vaswani et al., 2017) offers valuable
intuition and preliminary information about layer ab-
stractions in other, more modern, transformer-based
architectures.

We begin by highlighting that the transformer ar-
chitecture does not meet the constraints required by
Section 3.3, as the M matrix must abstract n lin-
ear layers with ReLU activations to be an exact ab-
straction. Therefore, we compare the derived ap-
proximation to both the unmodified baseline and a
biologically-inspired value for M using the identity
matrix (M=I), as discussed in Section 3.4. Per-
formance of both models was evaluated using the
German→English translation task from the Multi30k
dataset (Elliott et al., 2016). Our transformer model
consisted of six encoder layers and six decoder lay-
ers. In each abstraction model the last 3 attention lay-
ers were abstracted by a single M within the encoder
portion of the network. We evaluated performance us-
ing BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and COMET (Rei et al., 2020)
scores, all of which are established metrics in the field
of machine translation.

Results are shown in Table 2. Somewhat unex-
pectedly, we find that the biologically-inspired gradi-
ents M=I performed much better than the mathemati-
cally derived gradients from Section 3.3. Despite the
transformer model not meeting the constraints of our
derived abstraction we did not expect performance to
suffer as it did. We hypothesize that this is due to vari-
ations in the magnitude and direction of the difference
between M and the true gradients Gi. To validate this
unusual result, we applied the gradient approximation
M = I to a much larger dataset, IWSLT17 (Cettolo
et al., 2017), again using the German→English trans-
lation as our benchmark and comparing to our base-
line model. The results, shown in Table 3, confirm
that the approximate gradients transmitted by M=I are
sufficient for effective learning. This means that de-
coupling of the backward pass can be achieved with-
out any significant reduction in model performance.

4.3 Ablation Study

This study shows that the strong performance of M=I
is not caused by skipping unnecessary layers on the
backward pass and that M=I does not cause the ab-
stracted layers to become irrelevant. For this exper-
iment, we set up multiple Seq2Seq transformers us-
ing the same structure presented by (Vaswani et al.,
2017). We held the model dimension fixed at 512, us-
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Table 1: Test set accuracy and standard deviation across five training runs for each MNIST variant. Test set accuracy is
selected as the maximum test set accuracy after each epoch. Model architectures are as described in Section 4.1.

MNIST FMNIST EMNIST
(acc, stddev) (acc, stddev) (acc, stddev)

baseline model (0.9763, 0.002) (0.8793, 0.003) (0.9022, 0.002)
abstracted gradients (derived) (0.9762, 0.001) (0.8724, 0.002) (0.8948, 0.002 )

abstracted gradients (M = Iblock) (0.9612, 0.002) (0.8642, 0.003) (0.8584, 0.003)

Table 2: Model performance of a baseline transformer as compared to models leveraging both derived and biologically
inspired abstraction matrices M. Evaluations were performed using the Multi30k dataset, en→de task. The first number of
each tuple shows the average accuracy across ten training runs. The second number shows the standard deviation across the
ten trials.

baseline model abstracted gradients (M=I) abstracted gradients (derived)
(acc, stddev) (acc, stddev) (acc, stddev)

BLEU (0.386, 0.008) (0.383, 0.008) (0.199, 0.033)
METEOR (0.708, 0.006) (0.705, 0.004) (0.477, 0.042)
COMET (0.774, 0.004) (0.772, 0.004) (0.627, 0.025)

ing a batch size of 32 and Adam optimizer with adap-
tive learning rate. While the original structure from
(Vaswani et al., 2017) used 6 encoder layers and 6
decoder layers, we also tried variants with 3 encoder
layers and 3 decoder layers. We used n to represent
the numbers of encoder and decoder layers. When
using M and n = 6, the last 3 layers of the encoder
block are abstracted. When n = 3, the last layer of the
encoder block are abstracted. We trained each model
setup for 14 epochs with five trials on the Multi30k
German→English training data. Then, we picked the
model with lowest validation loss from each trial to
perform the translation task on Multi30k test set. We
measure each trial’s BLEU and METEOR score and
take average across five trials with the same model
setup. We also measured scores after removing those
layers which would have become abstracted layers if
M had been used. The results are in Table 4.

As seen in Table 4, we can first conclude that
the effectiveness of M=I isn’t due to redundancy in
the trained model. Before ablation of the baseline
model, n= 6 baseline performs better than n= 3 base-
line, demonstrating that the extra complexity of the
model is matched by a corresponding increase in per-
formance. It is therefore not the case that the abstrac-
tion matrix is merely approximating a smaller model;
it is instead successfully retaining the complexity of
the larger one. Moreover, ablation of the baseline
model resulted in reduced performance, suggesting
that the layers that would have been abstracted by M
are impactful to the tasks. Therefore, we can con-
clude that M did not skip unnecessary layers during
the backward pass. To determine whether layers still
retain their importance after abstraction using M=I,
we compare the performance of M=I and the baseline
both before and after abstraction. Our data indicates

that both M=I models and the corresponding baseline
models lost similar amounts of performance after re-
moving layers of abstraction locations. This indicates
that those layers retain their importance even after the
abstraction process. We present additional ablation
studies varying the position and size of M in the ap-
pendix.

5 DISCUSSION

5.1 Theoretical Speedup

Efficient, large-scale parallelization of deep learn-
ing models is a highly specialized field, requir-
ing the successful navigation of challenges includ-
ing partitioning, re-materialization, and data trans-
fer (Griewank and Walther, 2000; Chen et al., 2016;
Huang et al., 2019). Such an endeavor is beyond
the scope of this work, and we note in particu-
lar that a naive parallelization implementation of
this novel decoupling method using, for example,
torch.multiprocessing (Foundation, 2023) is un-
likely to be effective. However, we provide here a
small theoretical analysis showing the predicted im-
pact on wall clock time of the backward pass of a
parallelized implementation of our abstracted neural
network.

In Section 3.2, we showed that we can approxi-
mate the gradient calculation of certain groups of lay-
ers which are abstracted by M. Our gradient deriva-
tion method for nonadjacent layers can be written as,

GiM = G j (6)

where Gi represents the ith layer’s gradient and G j
represents the jth layer’s gradient. This allows the
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Table 3: Model performance of a baseline transformer compared to a model using the M=I abstraction matrix. Evaluations
were performed using the IWSLT17 dataset, en→de task. Column values show average accuracy and standard deviation
across ten data runs.

baseline model abstracted gradients (M=I) abstracted gradients (derived)
(acc, stddev) (acc, stddev) (acc, stddev)

BLEU (0.294, 0.002) (0.291, 0.002) (0.194, 0.006)
METEOR (0.706, 0.004) (0.705, 0.005) (0.652, 0.006)

Table 4: Model performance of de→en translations on Multi30k test set, average of five trials. Only models from each trial,
scored lowest validation loss, were picked for translation tasks. The term “ablated” following a scoring metric means that
translation tasks were performed after removing certain layers from the models. n refers to the number of encoder layers.
When n=6, ablation removed the last 3 attention layers from model’s encoder block. When n=3, ablation removed the last
attention layer from model’s encoder. The removed layers occupied the same positions as the layers replaced by M in the
abstracted models.

n=6 (baseline) n=3 (baseline) n=6 (M=I) n=3 (M=I)
BLEU 0.386 0.385 0.383 0.374
BLEU (ablated) 0.374 0.380 0.374 0.372
METEOR 0.708 0.709 0.705 0.702
METEOR (ablated) 0.698 0.704 0.696 0.697

gradient for the layers after layer i to be computed us-
ing M, rather than sequentially computing the gradi-
ent through layers j through i. Importantly, the layers
abstracted by M are still updated using backpropaga-
tion, but this occurs after the abstracted matrix M has
mediated the approximate gradients. Networks can
use more than one M to have a parallelized backward
pass through the layers abstracted by M, as shown in
Figure 2. A speedup can be obtained even though
computing M for each backward pass requires addi-
tional matrix operations.

We can model the backward process computation
time of the layers abstracted by M (the light blue
boxes in Figure 2) as shown below:

tR ≈ ml and tM ≈ mo+ l. (7)
where tR is the backward time on a regular neu-

ral network without M, tM is the backward time con-
sumption on a neural network with M implemented.
In these equations m is the amount of M matrices we
have in a network. l is the estimated computation time
needed to perform the backward pass on the layers
skipped by a single M matrix. o is the amount of over-
head needed to derive M and passing gradient through
M.

If we require the backward pass of a network to be
δ times faster, then:

tM ≈ tR
1
δ
⇒ om+ l ≈ 1

δ
ml (8)

For example, when m = 6, o = 2 and l = 6, we
have a δ = 2 times speed up on a transformer model’s
backward processes. In other words, a 2 times speed
up can be achieved when there are 6 M and overhead
time for each M is only one third of the amount of
time of a group of abstracted layers’ backpropagation.

5.2 Optimization Algorithm Innovation
and Network Modularization

With abstraction matrices used to transfer error sig-
nals across intermediate layers, abstracted layers are
no longer required to perform traditional gradient de-
scent to generate loss values for their upstream layers.
Consequently, abstracted layers could potentially em-
ploy optimization algorithms other than gradient de-
scent, while gradient descent could still be used on
some layers to maintain the network’s performance.
This could open up research opportunities for new
optimization algorithms. More concretely, a network
trained with backpropagation and another optimiza-
tion algorithm, denoted as algorithm A and algorithm
B respectively, could utilize algorithm A in all layers
except the layers abstracted by M and the layers ab-
stracted by M could learn according to algorithm B.
The incoming gradient to the layers abstracted by M
could be ignored, modified or substituted according
to whatever details are required by algorithm B. Thus,
training using M is a robust approach to utilizing dif-
ferent optimization strategies in different regions of
a network. We leave the exploration of these alter-
native optimization strategies to future work, but we
acknowledge their potential in introducing network
modularization.

Assuming a network trained using one such opti-
mization method on the abstracted regions of the net-
work can still achieve acceptable test accuracy, then
an imperfect learning signal could coerce the network
to learn a sort of network modularization. This be-
havior has been proven to be true in biological brains,
where some neurons exhibit learning behavior more
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Figure 2: A comparison of backpropagation computation with and without M. Observe that the backward computation of the
layers abstracted by multiple M matrices have their gradient computation decoupled.

attuned to learning XOR logic than to other logic (Gi-
don et al., 2020).

While network modularization of this form has
yet to be explored in artificial neural networks, bi-
ological neural network modularization is well un-
derstood. There is a link between how optimization
algorithms are associated with network modulariza-
tion in the biological brain. In the biological brain,
neuronal connections are maintained and updated by
different neurotransmitters, which influences neurons
to exhibit different weight update behaviors (Amunts
et al., 2010; Huang and Reichardt, 2001). More-
over, in different brain regions, neurotransmitter types
vary (Amunts et al., 2010; Amunts and Zilles, 2015;
Huang and Reichardt, 2001; Paxinos and Mai, 2003).
Such variation results in different weight update be-
haviors forming distinct brain regions which carry out
different functions (Amunts et al., 2010), (Amunts
and Zilles, 2015; Huang and Reichardt, 2001; Paxinos
and Mai, 2003). With our M algorithm enabling usage
of different optimization algorithms, we can mimic
the existence of different neurotransmitters in differ-
ent brain regions. Therefore, training with M enables
a way toward bringing biological brain modulariza-
tion into artificial neural networks.

6 CONCLUSIONS

This work has presented a biologically-inspired learn-
ing mechanism whereby approximate gradient infor-
mation is propagated quickly through the network via

a set of abstraction matrices Mk. This decouples gra-
dient computation of each set of abstracted layers.
Decoupled computation allows the weight updates
within each block of abstracted layers to be theoret-
ically executed in parallel, with potential applications
for speeding up the backward pass of large compu-
tationally expensive networks. The next logical step
in this line of research would be the utilization of ab-
straction matrices to create a depth-wise parallelized
network architecture, and to explore potential appli-
cations toward online learning and real-time network
updates.

The gradient abstraction techniques introduced in
this work have research potential that extends beyond
gradient decoupling. In biological brains, cortico-
basal ganglia pathways – mimicked in our work by
abstraction matrices – and localized logic updates are
not mutually exclusive. It is often the case that im-
precise learning signals are propagated quickly via
the cortico-basal ganglia feedback loops, then fol-
lowed by more precise updates mediated by retro-
grade synaptic connections between neurons (Sesack
and Grace, 2010; Wilson and Nicoll, 2001). Our
method for propagating abstracted gradients could be
leveraged toward a similar setup where network pa-
rameters are updated both via the abstraction matrix
and also via more traditional methods. This idea has
particular relevance in the domain of neuromorphic
computing and spiking neural networks.
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Stuart, G. J. and Häusser, M. (2001). Dendritic coincidence
detection of epsps and action potentials. Nature Neu-
roscience, 4(1):63 – 71. Cited by: 279.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need.

Wilson, R. and Nicoll, R. (2001). Endogenous cannabi-
noids mediate retrograde signalling at hippocampal
synapses. Nature, 410(6828):588 – 592. Cited by:
1267.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmarking ma-
chine learning algorithms. CoRR, abs/1708.07747.

APPENDIX

Extended Ablation Results and
Additional Experiments

Extended Results. We present here an expanded ta-
ble demonstrating results on both derived M and M=I,
along with the additional SacreBLEU scoring metric.

This experiment seeks to answer the following
question: Is it possible that the use of the M=I ab-
straction is effective, not because M=I is a reasonable
approximation for the gradients, but because the net-
work is learning, in effect, to ignore the intervening
network layers. In other words, would it be more ef-
fective to simple train a smaller network rather than
using M=I as an abstracted gradient representation?

We address this question by comparing abstracted
models of various size with corresponding non-
abstracted models in which the layers bridged by M
have been entirely removed. If the ablated version of
each model matches the performance of the abstracted
model, then that would suggest that the abstraction is
in fact not useful for learning, and is instead simply
functioning as a mechanism to simulate a model with
fewer layers overall. Results are shown in Table 5.

Abstraction Position Experiment. Here we in-
vestigate the impact of abstraction layer positioning
on model performance. We provide an ablation study
where we vary the position of the abstraction matrix
within the transformer model. Results are shown in
Table 6.

Abstraction Size Experiment. The power of
potential parallelization increases as we define addi-
tional abstractions or increase abstraction size. As the
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results show in Table 7, abstraction on different po-
sitions perform similar to each other before ablation.
This is a positive result as the abstraction’s usefulness
is not necessarily limited by position. However, after
ablation, A3(D234) has the most amount of perfor-
mance drop. We do not yet have an conrete explana-
tion for this behavior, so we will explore it in future
works.

We observe that for each pair of corresponding
models, the ablated version performs less well than
the abstracted version, suggesting that the model is
indeed leveraging the inherent learning capacity of
the additional layers. Additionally, the performance
drop from the abstracted models is about the same as
the drop seen in the baseline model when the same
layers are removed. We therefore conclude that the
question above can be answered in the negative. The
abstraction M=I is indeed preserving useful learning
capacity in the abstracted layers. We note, however,
that the performance of the model does seem slightly
better when only one layer is abstracted rather than
three. This raises the question of how many network
layers can be effectively abstracted at one time before
network performance begins to degrade. Further re-
search is needed before this question can be answered
with confidence.

Additional Biological Foundations

Our work is inspired by recent findings in neuro-
science. In both biological learning and machine
learning via artificial neural networks, an update
mechanism must exist which adjusts the synaptic
weights based on observed error in the output signal.
Traditional machine learning achieves this via back-
propagated error signals, a method which is analo-
gous to the neurobiological mechanisms of backprop-
agating action potentials (Stuart and Häusser, 2001;
Letzkus et al., 2006) and release of retrograde neuro-
transmitters (e.g. cannabinoids and nitric oxide) (Wil-
son and Nicoll, 2001; Hardingham et al., 2013)

Our work expands upon this foundation by intro-
ducing an alternate approach to the transmission of
error gradients. Researchers have observed that, in
biological brains, neither backpropagating action po-
tentials nor retrograde neurotransmitter signals typi-
cally propagate across multiple layers due to interfer-
ence from ongoing activity and ion channel activation
refractory periods (Burke et al., 2001). Instead, bio-
logical systems seem to rely on feedback loops more
distant upstream layers are connected via feedback
loops that bypass the initial layers (Sesack and Grace,
2010). We attempt to implement a similar system via
the abstraction matrix M, which is inspired in partic-

ular by the cortico-basal ganglia network for reward
learning (Sesack and Grace, 2010).

Research on cortico-basal ganglia dopamine net-
work connectivity and behavioral implications is on-
going, and much of the circuit framework is still hy-
pothetical. However, a consistent theme is that ven-
tral tegmental area (VTA) dopamine cell bodies re-
ceive sensory input and project to the ventral striatum
(i.e. nucleus accumbens) where dopamine release oc-
curs in response to rewards and associated sensory
stimuli to encode valence and form learned associ-
ations (Sesack and Grace, 2010). When a sensory
stimuli is reinforcing, it drives dopamine release onto
output medium spiny neurons (MSNs), concomitant
to glutamate signals from cortical, thalamic, amyg-
dala and hippocampal inputs encoding additional im-
portant aspects of the stimuli (such as its emotional
value) (Seger and Miller, 2010). The dopamine sig-
nal acts as a gain modulator to facilitate or diminish
propagation of that signal through MSNs. The MSNs
then propagate the signals to their respective output
layers called the direct and indirect pathways. Im-
portantly, those two pathways also form two parallel
feedback loops that have different numbers of layers
and can thus influence future VTA dopaminergic ac-
tivity through either a short or long feedback mech-
anism (Seger and Miller, 2010; Sesack and Grace,
2010). Furthermore, local striatal synaptic activity
is still tuned by retrograde cannabinoid neurotrans-
mission (Gerdeman et al., 2002; Alger, 2002). Thus,
biological mechanisms can include backpropagating
techniques (i.e. retrograde transmission) or feedback
loops that skip layers to tune upstream activity.

The complexity of neurobiological feedback
mechanisms in biological brains are too complex to
imitate in their entirety. However, we take inspiration
from the behavior of dopamine signals in the cortico-
basal ganglia network in the creation of an abstraction
matrix M which allows error signals to bypass clus-
tered groups of layers in an artificial neural network.
Traditionally, artificial neural networks have ignored
these longer feedback loops and have typically fo-
cused only on backpropagating error signals between
proximate neurons. We believe that this oversight
fundamentally limits the opportunities for learning in
deep neural networks. The abstraction matrix M in-
troduces an alternative pathway for the propagation of
error signals, and as such may open new computation
paradigms for deep learning systems.
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Table 5: Ablation study. B=BLEU, SB=SacreBLEU, M=METEOR, (a)=ablated model. Each tuple shows average final
accuracy and standard deviation across five training runs.

n=6 (baseline) n=3 (baseline) n=6 (M=I) n=3 (M=I) n=6 (derived) n=3 (derived)
B (0.386, 0.008) (0.385, 0.011) (0.383, 0.008) (0.374, 0.010) (0.199, 0.033) (0.317, 0.017)
B(a) (0.374, 0.010) (0.380, 0.006) (0.374, 0.007) (0.372, 0.006) (0.153, 0.038) (0.299, 0.009)
SB (0.386, 0.008) (0.385, 0.011) (0.383, 0.008) (0.374, 0.010) (0.199, 0.033) (0.317, 0.017)
SB(a) (0.374, 0.007) (0.380, 0.006) (0.374, 0.007) (0.372, 0.006) (0.153, 0.038) (0.299, 0.009)
M (0.708, 0.006) (0.709, 0.007) (0.705, 0.004) (0.702, 0.007) (0.477, 0.042) (0.623, 0.016)
M(a) (0.698, 0.006) (0.704, 0.004) (0.696, 0.007) (0.697, 0.007) (0.407, 0.058) (0.603, 0.011)

Table 6: Performances of different abstraction sizes on Multi30k dataset over 10 trials. Models are transformer models with
6 encoder layers and 6 decoder layers. Abstraction method is M = I. A3(E345) means abstract 3 consecutive layers with
a single M, from 3rd to 5th encoder layers. E and D means the encoder and decoder layers respectively. And (a) means
performances measured after ablated abstracted layers.

A3(E234) A3(E345) A3(D234) A3(D345)
(acc, stddev) (acc, stddev) (acc, stddev) (acc, stddev)

BLEU (0.368, 0.010) (0.371, 0.008) (0.362, 0.007) (0.362, 0.010)
BLEU(a) (0.332, 0.006) (0.353, 0.011) (0.307, 0.010) (0.334, 0.011)
COMET (0.759, 0.004) (0.759, 0.005) (0.751, 0.004) (0.753, 0.005)

COMET(a) (0.734, 0.005) (0.749, 0.006) (0.679, 0.017) (0.715, 0.008)
METEOR (0.692, 0.007) (0.690, 0.006) (0.679, 0.007) (0.683, 0.007)

METEOR(a) (0.642, 0.009) (0.671, 0.009) (0.614, 0.014) (0.644, 0.009)

Table 7: Performances of different abstraction sizes on Multi30k dataset over 10 trials. Models above are transformer models
with 6 encoder layers and 6 decoder layers. Abstraction method in this experiment is M = I. A6(L3-5) means abstracted 6
layers in total, with two blocks of 3 consecutive layers, from 3rd to 5th layers in both the encoders and decoders.

A4(L4-5) A6(L3-5) A8(L2-5)
(acc, stddev) (acc, stddev) (acc, stddev)

BLEU (0.362, 0.010) (0.359, 0.008) (0.360, 0.011)
COMET (0.754, 0.006) (0.750, 0.005) (0.746, 0.007)

METEOR (0.684, 0.009) (0.678, 0.008) (0.678, 0.008)
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Abstract

We present a novel spiking bias neuron design inspired from
the biological stimuli, output, and construction of dopamine
neurons in biological organisms. Our spiking biases receive
the input signal and supply a decaying bias current to the con-
nected neuron(s). We show the effectiveness of these spiking
biases in a fine tuning objective on EEG data to classify emo-
tion. We compare the performance between traditional (non-
spiking) biases and spiking biases and show that our method
provides a 5% performance boost on average. We leverage
our design of spiking bias neurons to optimize additional pa-
rameters during fine tuning to further increase model perfor-
mance by 13% on average. Finally, we present a bias tun-
ing variant, which we name volumetric tuning, where a sin-
gle spiking bias neuron propagates its signal to a group or
volume of neurons in the pretrained network. This method is
analogous to the chemical transmission mechanisms of neu-
rotransmitters in biological brains and results in an average
test accuracy of 94% when optimizing only 1000 parameters
during fine tuning.

1 Introduction
Spiking neural networks (SNNs) are a unique class of neural
networks which seek to model the spiking behavior of bio-
logical neurons. Spiking neuron models have shown to be
effective in processing time varying data, and have gained
particular prominence with the deployment of commercially
available neuromorphic accelerators (Davies et al. 2018; Or-
chard et al. 2021; Akopyan et al. 2015; Posey 2022). Us-
ing these accelerators, SNNs can run with incredibly low-
latency and low-power. With these advantages come chal-
lenges in training high performing models on complex tasks.

Emotion classification is a complex task that has many
downstream applications in the field of Affective Comput-
ing, Human Computer Interaction and Brain-Computer In-
teraction (BCI). One source of data to classify emotion
is time-varying physiological signals such as electroen-
cephalogram (EEG) signals. In fact, (Picard, Vyzas, and
Healey 2001) observed that physiological signals can be
more beneficial than visual or audio data in machine intel-
ligence. Training an artificial SNN to classify EEG signals
yields numerous opportunities in the aforementioned fields.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furthermore, if a small and low-power SNN can learn to
classify EEG signals, such a network could be deployed on
neuromorphic hardware to perform on-chip emotion classi-
fication.

We tackle this challenge by adapting existing network fine
tuning algorithms for a small, low-power SNN. Just as SNNs
are inspired by the spiking function of biological neurons,
we too draw inspiration from discoveries in neuroscience to
develop tuning methods. More explicitly, we design spiking
biases whose stimulus, output, and structure are more bio-
logically accurate than traditional bias input. Our contribu-
tions are summarized as below:

• We extend previous work on bias, or neuromodulatory,
tuning by applying it to a LOOCV fine tuning objective
on a complex EEG emotion classification dataset.

• We present a novel design of spiking bias neurons in-
spired from findings in neuroscience. We show this de-
sign’s effectiveness in bias tuning.

• We utilize our spiking bias neuron design to present a
bias tuning variant, termed volumetric tuning, to fine tune
a SNN to higher accuracies than bias tuning.

This work first reviews SNNs, their training, and biases in
SNNs (Section 2.1), and then discusses modern, lightweight
fine tuning methods (Section 2.2). Next we introduce the
DEAP emotion classification dataset (Section 2.3). In Sec-
tion 3 we present biological motivations, our spiking bias
neuron design, and the volumetric tuning method. Following
which, we put forward a series of experiments in Section 4.
Finally, we review some limitations and directions for future
work in Section 5.

2 Background
2.1 Spiking Neural Networks
Spiking Neural Networks (SNNs) aim to mimic some of
the functionality and capabilities of biological neural net-
works, but there exist numerous levels of biological abstrac-
tion and various classes of SNNs. Generally, however, SNNs
process signals in the form of a spike train, and the neu-
rons within them only fire when the input signal exceeds
a certain threshold. This design can yield much more effi-
cient networks than traditional non-spiking networks as the
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stored activations are binary. Recently, specialized neuro-
morphic accelerators have been developed which offer in-
credibly fast and low-power simulation of SNNs such as In-
tel’s Loihi (Davies et al. 2018; Orchard et al. 2021), IBM’s
TrueNorth (Akopyan et al. 2015) and BrainChip’s Akida
(Posey 2022). (Carpegna, Savino, and Carlo 2024) describe
the modern SNN space in detail, but we will focus on feed-
forward, fully-connected SNNs utilizing Leaky Integrate-
and-Fire neurons.

Surrogate Gradient Descent Gradient descent is an in-
credibly powerful algorithm which minimizes a neural net-
work’s loss or error over time. The algorithm accomplishes
this by computing partial derivatives of different parts of the
network. Therefore, using gradient descent requires a net-
work be differentiable.

Spiking neural networks, however, utilize a non-
differentiable spiking activation function. This activation
function is often described by the Heaviside step function.
A popular technique to leverage some of the power of gra-
dient descent to train SNNs is to supplement the Heaviside
step function with a differentiable surrogate function. The
sigmoid, and variations of it, are common surrogate func-
tions used to train SNNs.

We leverage the work presented by (Eshraghian et al.
2023) and we utilize their implementation of backpropa-
gation through time (BPTT) to compute the error gradient
using the fast sigmoid function as the Heaviside surrogate.
Their approach to computing the gradient is similar to back-
propagation in recurrent neural networks. BPTT essentially
involves summing the loss at each time step for a particular
input, and is described mathematically as,

∂L

∂W
=
∑

t

∂L[t]

∂W
=
∑

t

∑

s≤t

∂L[t]

∂W

∂W [s]

∂W
(1)

where W [s] represents the application of weight W at
step s, and t represents a discrete time step. Note that in
the case of computing bias weights, W is in fact a vector
instead of a matrix. Further explanation of the BPTT proce-
dure is described by (Eshraghian et al. 2023).

Leaky Integrate-and-Fire Neurons Unlike the artificial
neuron model utilized in modern deep networks often con-
sisting of a ReLU activation function on the summed input,
Leaky Integrate-and-Fire (LIF) neurons integrate input over
time with leakage. LIF neurons describe this integrated input
using an internal voltage or membrane potential. When the
membrane potential exceeds some threshold, the LIF neuron
emits a spike. The dynamics of the membrane potential of a
LIF neuron are defined as,

U [t] = βU [t− 1] +WX[t] + Sout[t− 1]θ (2)

where U [t] is the membrane potential of the neuron at time
t, β is the decay rate, WX[t] describes the input, and
Sout[t − 1]θ subtracts the threshold θ from the membrane
potential if the neuron spiked at time t− 1. Sout ∈ {0, 1} so
this term only affects the membrane potential when a spike
occurred at the previous time step. These dynamics are de-
scribed further in (Eshraghian et al. 2023).

The Role of Biases in SNNs Biases play an important
role in training traditional feed forward neural networks as
they allow a neuron to shift its activation function by a con-
stant to better fit to data (Mitchell 1980). In SNNs, activa-
tion functions are modeled as step functions which output a
1 when the input exceeds some threshold. Biases in SNNs
essentially scale this threshold by addition which can also
be described as modulating the firing threshold of a spiking
neuron. This mechanism is reminiscent of the role of neuro-
transmitters, like dopamine, in modulating the sensitivity of
neurons to incoming signals. Traditional bias inputs in SNNs
are active at every time step, and are sometimes modeled on
hardware as a adjustable constant current.

Besides adding bias input to a spiking neuron, there exist
other methods to modulate a spiking neuron’s firing thresh-
old. Some of these methods include, spike-frequency depen-
dent dynamic thresholds (Diehl and Cook 2015), intrinsic
plasticity (Weerasinghe et al. 2023), and dynamic energy-
temporal thresholds (Ding et al. 2022). Other previous works
have also explored incorporating bias inputs to modulate fir-
ing thresholds, such as (Lin et al. 2023) who constrained bias
addition to ensure that membrane potential does not increase
in the absence of non-bias input.

2.2 Low Rank Adaptations for Fine Tuning
Fine tuning pretrained models is popular for both large and
small models, as it allows adapting a pretrained model to
learn a specific task on a potentially small set of data. A pre-
trained model can be directly fine tuned by continuing to op-
timize the pretrained weights for a new task. This approach,
however, changes and in some sense disregards the general
knowledge the model learned in pretraining. To avoid this,
methods such as bias tuning and low rank adaptations fine
tune parameters which adapt the pretrained model to the new
task.

Previous works have explored fine tuning the biases of a
pretrained model as a means for a lightweight fine tuning
method on larger image classification and large language
models (LLMs) (Barton et al. 2022; Zaken, Ravfogel, and
Goldberg 2022). (Barton et al. 2022) also present an analog
chip design with bias, or neuromodulatory, tuning capabili-
ties to solve a simple XOR task. Both works show success
in fine tuning a large pretrained model, but do not explore
this parameter-efficient tuning method on smaller spiking
networks learning complex tasks such as emotion classifi-
cation.

Another work, presented by (Hu et al. 2021), builds on
this foundation and injects trainable rank decomposition ma-
trices into LLMs such as GPT and BERT models, which can
be exclusively used for fine tuning. Different from (Barton
et al. 2022) and (Zaken, Ravfogel, and Goldberg 2022), (Hu
et al. 2021) fine tune rank decomposition matrices rather
than bias vectors which increase the number of tuned pa-
rameters, but still does not change the knowledge learned by
the pretrained model.

In this work, we explore the effectiveness of bias tuning to
tune a small SNN on a complex task, and we present a novel,
biologically-inspired, design of spiking bias neurons which
are stimulated via a trainable input projection. Furthermore,
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we demonstrate a novel bias tuning variant, termed volumet-
ric tuning, which achieves higher performance in fine tuning
a SNN on a complex task.

2.3 Emotion Classification Using DEAP Dataset
Spiking neural networks have promising potential applica-
tions to brain-computer interface (BCI) tasks because of
their capability to run on low-power neuromorphic chips.
One interesting BCI task that has been utilized in evaluating
SNNs is the Database of Emotion Analysis using Physio-
logical Signals (DEAP) (Koelstra et al. 2012). DEAP is a
collection of electroencephalogram (EEG) signals recorded
from 32 human subjects while the subjects were stimulated
by 40, 1-minute snippets, of music videos. After each partic-
ipant viewed a 1-minute video he/she then rated each video
by giving it an arousal, valence, liking and dominance score
on a 1-9 scale. The EEG signals were collected by 32 sepa-
rate electrodes arranged on a subject’s scalp.

After data collection, (Koelstra et al. 2012) preprocessed
the EEG signals to use with classification or regression algo-
rithms. Specifically, they downsample the data to 128Hz, re-
move EOG artefacts, apply a bandpass frequency filter from
4-45Hz, segment the data into 60 second trials, and reorder
the EEG channels and trials to standardize them. Following
this preprocessing stage, several researchers have utilized
DEAP to evaluate the performance of various SNN archi-
tectures and training algorithms.

In many previous works, emotion classification is simpli-
fied into a binary valence classification (low vs. high va-
lence) because of the noisy nature and limited features of
EEG signals (Hasan et al. 2021; Marjit, Talukdar, and Haz-
arika 2021; Luo et al. 2020; Tripathi et al. 2017; Xu et al.
2024; Singh, Shaw, and Patra 2023). We show two record-
ings labeled low and high valence in Figure 1. Some of these
works also increase the difficulty of the task by adding more
classes. Splitting the dataset into binary valence classifica-
tion also enables neural network-based approaches to learn
with limited and imbalanced data. Even despite this split,
the overall dataset is still slightly imbalanced and is more
imbalanced when considering data from a single participant
as shown in Table 1.

Additionally, feature extraction is an essential part of
classifying these complex EEG signals. Popular feature ex-
traction methods include Fast Fourier Transform, Discrete
Wavelet Transform, and creating feature vectors from statis-
tical measurements (Hasan et al. 2021; Marjit, Talukdar, and
Hazarika 2021; Luo et al. 2020; Khateeb, Anwar, and Al-
nowami 2021). These feature extraction methods aim to de-
compose the EEG signal across time, frequency and wavelet
domains. Finally, some works choose to only utilize a subset
of the 32 recorded EEG channels to reduce noise and input
to the model (Marjit, Talukdar, and Hazarika 2021; Khateeb,
Anwar, and Alnowami 2021).

3 Methodology
3.1 Biological Motivations
Dopamine as a Neuromodulator Similar to previous
works, we draw inspiration from discoveries in neuroscience

Figure 1: Two EEG recordings from participant 3 on channel
0 labeled as LOW and HIGH valence.

to motivate our method. Specifically, we focus on the role
of dopamine as a neuromodulator in the brain. Dopamine
can alter the excitability and synaptic transmission of neu-
rons without directly causing them to fire. This is accom-
plished via the activation of dopamine receptors located
on the surface of neurons in various brain regions. When
dopamine binds to these receptors it triggers intracellular
signaling cascades that can modify the neuron’s response to
other inputs such as glutamate or GABA (Yorgason, Zeppen-
feld, and Williams 2017; Beaulieu and Gainetdinov 2011;
Depue and Collins 1999; Frank 2005; Stoof and Kebabian
1984; Reiner and Levitz 2018). Dopamine affects neurons
by a process termed volume transmission, where a group
or volume of neurons are influenced by a concentration of
dopamine (Clements 1996; Agnati et al. 1995). In our work,
we model this modulation of neural circuits via biases in an
artificial spiking neural network, which modulate the incom-
ing signal either positively or negatively.

Stimulation of Dopamine Neurons Dopamine neurons,
primarily located in the ventral tegmental area (VTA) and
substantia nigra, are stimulated by a wide range of inputs
from various brain regions. These inputs convey different
types of information, such as sensory stimuli, reward sig-
nals, and cognitive and emotional states. The integration of
these inputs to dopamine neurons plays a crucial role in
modulating downstream neural circuits.

One significant input to dopamine neurons comes from
brain regions involved in processing rewards. When a re-
ward is encountered, neurons from these regions increase
their firing leading to a corresponding increase in the ac-
tivity of dopamine neurons in the VTA. Dopamine neurons
also receive inputs from the prefrontal cortex where higher-
order cognitive functions take place. The prefrontal cortex
sends projections to the VTA, providing information about
the current cognitive state of the organism. Additionally,
dopamine neurons respond to salient sensory stimuli like
sounds, visuals or tactile sensations (Yorgason, Zeppenfeld,
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Table 1: DEAP dataset class distribution for each human participant’s data. The number of samples of LOW and HIGH valence
are shown with their percentage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LOW 21 18 18 24 16 10 12 18 20 20 16 19 23 20 20 25
HIGH 19 22 22 16 24 30 28 22 20 20 24 21 17 20 20 15

LOW % 0.53 0.45 0.45 0.60 0.40 0.25 0.30 0.45 0.50 0.50 0.40 0.48 0.58 0.50 0.50 0.63
HIGH % 0.48 0.55 0.55 0.40 0.60 0.75 0.70 0.55 0.50 0.50 0.60 0.53 0.43 0.50 0.50 0.38

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 overall
LOW 18 16 17 17 19 22 14 22 21 14 10 15 17 13 17 20 572
HIGH 22 24 23 23 21 18 26 18 19 26 30 25 23 27 23 20 708

LOW % 0.45 0.40 0.43 0.43 0.48 0.55 0.35 0.55 0.53 0.35 0.25 0.38 0.43 0.33 0.43 0.50 0.45
HIGH % 0.55 0.60 0.58 0.58 0.53 0.45 0.65 0.45 0.48 0.65 0.75 0.63 0.58 0.68 0.58 0.50 0.55

and Williams 2017; Beaulieu and Gainetdinov 2011; Depue
and Collins 1999; Frank 2005; Stoof and Kebabian 1984;
Reiner and Levitz 2018).

We model this stimulus in our bias neurons by both updat-
ing the weights connecting the biases to the rest of the net-
work via a global error signal, and by projecting the model
input directly to the spiking bias neurons. In this design,
bias neurons are effectively integrating information about
the current state of the network and the desired output. We
do acknowledge that biological dopamine neuromodulation
is a highly complex mechanism and our design and model-
ing is a simplification of this biological process. Neverthe-
less, we hypothesize that our design has potential to exhibit
more adaptive learning, similar to how dopamine modulates
learning in the brain.

Temporal Dynamics of Dopamine Signaling When
dopamine neurons fire, they release dopamine into the
synaptic cleft which then binds to dopamine receptors on the
postsynaptic cleft. The effect of this dopamine is not instan-
taneous, but rather persists for some time, influencing the
postsynaptic neuron’s activity. Moreover, the clearance of
dopamine from the synaptic cleft is not immediate, but grad-
ual. Dopamine transporters actively remove dopamine from
the synapse, leading to a gradual decay in dopamine con-
centration over time (Yorgason, Zeppenfeld, and Williams
2017; Beaulieu and Gainetdinov 2011; Depue and Collins
1999; Frank 2005; Stoof and Kebabian 1984; Reiner and
Levitz 2018). We model this decay via a leaking bias cur-
rent which increases in magnitude only when the connected
spiking bias neuron fires. Otherwise the bias current decays
exponentially over time.

3.2 Spiking Bias Neurons
Overview Inspired by the biological role of dopamine
neurons and to further develop biologically-inspired fine
tuning algorithms, we model spiking bias neurons as LIF
neurons with a leaking current over time. Unlike traditional
biases in non-spiking artificial neural networks, these spik-
ing biases only fire at a specific time step when their internal
voltage exceeds a predefined threshold. When a bias spike
is emitted, the bias weight is added to the internal voltage of
the connected neuron(s). This bias current to connected neu-
ron(s) then decays exponentially approximating the decay

Figure 2: A high-level diagram of the spiking bias setup.
The input spike train is fed to both the spiking bias neu-
rons (in blue) and the regular LIF neurons (in orange). The
spike trains are represented by the horizontal line with sparse
vertical lines corresponding to spikes at discrete time steps.
During network training the weights (solid lines) connecting
to the regular LIF neurons can be optimized, and the weights
(dashed lines) connecting to the spiking bias neurons can be
optionally held fixed. The blue dashed line from the spiking
bias neuron bs connecting to ns is the leaking bias current.
The bias weights are also optimized.

in dopamine concentration over time. This design is shown
simply in Figure 2.

Stimulating the Spiking Biases In order to increase the
internal voltage of the bias neurons at a certain time step, the
bias neurons are stimulated by the input spike train. As pre-
viously mentioned this is biologically motivated. Practically,
a randomly-initialized matrix of weights connects each layer
or group of bias neurons to the input. We explore leaving
these input to bias matrices static and tuning them using sur-
rogate gradient descent.

Leaking Bias Current Once a bias neuron, modeled by a
LIF neuron, emits a spike it then supplies a bias current of
the bias weight to the connected neuron(s). This current then
decays across time steps as described in Equation 3. The
variables are defined as: α is the decay rate, C is the leaking
bias current, Wb represents the bias weights, and Soutb [t]
is the output spike train for the bias neuron. The connected
neuron(s) dynamics’ are then described by Equation 4. Not
only does this function mimic the decaying concentration
of dopamine neurotransmitters, but it also allows a single
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Figure 3: Recording of leaking bias current for a single neu-
ron on one input. The recording is done at the beginning of
training. The current is shown as the blue line, and spikes
are shown as the vertical red lines. In this example, the bias
weight is positive, but it could also be negative.

bias neuron to stimulate its connected neurons(s) across time
steps, without needing to spike at every time step.

C[t] = αC[t− 1] +WbSoutb [t] (3)

U [t] = βU [t− 1] +WX[t] + αC + Sout[t− 1]θ (4)

A recording of the leaking current of a spiking bias neuron
is shown in Figure 3. In this figure, a single bias neuron’s
leaking current is recorded for one input that is simulated for
25 discrete time steps. From this recording it is clear how a
spiking bias neuron can affect its connected neuron(s) over
multiple time steps without needing fire at each time step.

3.3 Volumetric Spiking Biases
Drawing further inspiration from biology, we also ex-
plore the volumetric property of dopamine neuromodula-
tion. When dopamine is released its effect is often not ex-
clusively localized to a single neuron, but rather groups
or populations of neurons (Clements 1996; Agnati et al.
1995). This process is called volume transmission. Our de-
sign places more responsibility in each spiking bias neuron
to distribute global error signal to groups of neurons within
the network. While biologically motivated, this design can
also reduce the total number of spiking bias neurons nec-
essary and may lead to localized learning regions within an
artificial network. Localized learning regions can occur in
biology as a consequence of various types neurotransmitters
(Amunts et al. 2010; Amunts and Zilles 2015; Huang and
Reichardt 2001). We utilize our custom spiking bias neu-
rons to define volumetric groups of neurons across layers
and measure the performance of our network in Section 4.6.

4 Experiments and Analysis
4.1 DEAP Preprocessing and Feature Extraction
As discussed in Section 2.3, DEAP is a popular and chal-
lenging emotion classification task for many types of neural
networks. Like many previous works, we also reduce emo-
tion classification to binary valence classification. We ac-
knowledge the dataset imbalance, and instead introducing
a biased amount of synthesized data, we allow the training
datasets to be imbalanced while the test set is forced to be
balanced. We enforce this construction of the test set by re-
peatedly sampling the dataset until the classes are balanced
within 10%. Observe that this further increases the diffi-
cultly of this task. To cope with this increased difficulty and
limited data, we do augment each piece of data (regardless
of class) with three different augmentations. They are: (1)
a random 1D rotation or shuffling, (2) a horizontal flip, and
(3) adding random Gaussian noise. These augmentations are
shown in Figure 4. We also apply normalization to the raw
signals. We found that these augmentations yielded much
more generalized models in preliminary experiments.

Next, we utilize the Fast-Fourier Transform to extract rel-
evant features for our network with spiking biases, as done
by many previous works such as (Hasan et al. 2021). For
each participant’s recorded data, we decompose the raw
EEG signals into predefined frequency bands. We define
these frequency bands as theta (4-7) Hz, alpha (8-13) Hz,
low beta (14-20) Hz, high beta (21-29) Hz and gamma (30-
47) Hz as done in (Hasan et al. 2021). Next, we get the mean
power of each of these frequency bands across all of a single
participant’s data. We define a spike threshold at this mean
power to define a 5-dimensional spiking array for each chan-
nel in each instance. We utilize 32 channels for each instance
so our final input to the SNN is a spiking array of length
160. Figure 5 shows this preprocessing and feature extrac-
tion process.

4.2 Network Architecture
We choose a simple three layer SNN using LIF neurons.
The network is fully connected by default, and we choose
the network layer sizes to be [400,800,100]. These decisions
were motivated by preliminary experiments. Since our pre-
processed input data is already in the form of a spike train,
we can directly multiply the input signal by the first weight
matrix in the network. Since we are predicting low and high
valence, the final layer assigns the first 50 neurons to the
label for low valence (0) and the second 50 neurons to the
label for high valence (1). This is known as a population
code and is common to use with SNNs (Eshraghian et al.
2023). The base network architecture does not include bi-
ases on each layer, rather we experiment with adding both
traditional always-on and spiking bias neurons. The network
architecture with spiking bias neurons is shown in Figure 6.

4.3 Experimental Setup
While many previous works have solved the DEAP binary
valence classification, few have solved the task using leave
one out cross validation (LOOCV). In this case, we refer to
the one as all of the data of a single participant. For example,
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Figure 4: Visualization of the augmentation techniques applied on a single EEG channel recording from the video trial from
participant 4. The label for this instance is high valence. We apply a random rotation of the 1D time series data which essentially
shifts the data a random number of indices. To flip the signal, we simply reverse the indices of the time series, and finally for
the noised signal, we add noise sampled from a Gaussian distribution with mean 0 and standard deviation of 0.1.

Figure 5: Data preprocessing and feature extraction method for one participant’s data. The DEAP Preprocessing stage is de-
scribed in detail in Secion 2.3. The shape of the data after processes is shown on the arrows. x, y refers to the input and label
respectively. As explained in Section 2.3, each participant’s data contains recordings from 40 trials and these recordings are
preprocessed to have a length of 8064.

Figure 6: SNN architecture with spiking bias neurons. X describes the input. The arrows represent data passing between layers
of neurons. Arrows between non-bias layers, and between the input and any layer are fully connected. The arrows between bias
layers and non-bias layers are connected by a vector of bias weights. The sizes of each layer of LIF neurons are listed as well.
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we can train our SNN using data from participants 1-31, but
then test or fine tune on only data from participant 32. Part
of the reason that few works have explored this validation
technique is because EEG recordings across human partic-
ipants and their corresponding recorded valence scores can
vary significantly. Despite this challenge, this experimental
setup has valid downstream applications, where a low-power
on-chip network may be trained offline on an assortment of
EEG data from different people, but it’s evaluation on-chip
will be specific to only the human’s EEG signals in which
it’s deployed. Thus, exploring low-power fine tuning meth-
ods to fine tune the more general model on a specific hu-
man’s EEG data is a worthy pursuit in the brain-computer
interaction (BCI) field.

In addition to LOOCV, we also run five trials for each
of our experiments to account for variation in network ini-
tialization and dataset ordering. For each trial, unless stated
otherwise in subsequent sections, we pretrain the fully con-
nected weight matrices on 31 participants’ data for 15
epochs. Recall that each data instance is augmented by 3
augmentations to increase the size of our training dataset.
Following this pretraining phase, the model is then fine
tuned on the left out participant’s data by training some num-
ber of the bias parameters and by leaving the standard weight
matrices static. This not only limits the number of parame-
ters needed to fine tune the network, but it also preserves the
knowledge learned by the network in the pretraining phase.
We fine tune the network for a maximum of 500 epochs,
but we select the best validation/test accuracy and loss as
our result. While 500 epochs is significantly more epochs
than used in pretraining, the model actually receives nearly
the same amount of total input data when pretrained for 15
epochs since the training dataset is 31 times larger. Addi-
tionally, we empirically find that this high number of epochs
is necessary for fine tuning the bias parameters to converge.

We present the input spike train of features data to the
SNN for T = 25 discrete time steps. The input remains the
same on each time step. This is not uncommon approach
when presenting time-invariant data to a SNN. Note that
while the EEG signal was time-varying before feature ex-
traction, it is not anymore. We utilize the Adam optimizer
with a learning rate of 0.0001, and apply L1 spike sparsity
regulation with a rate sparsity value of 0.001 to ensure are
networks have efficient internal spiking behavior. We use a
batch size of 32 and split our training/tuning dataset into
train/tune and test sets using a 80-20 split.

4.4 Applying Bias Tuning on DEAP
In this first set of experiments we first examine how effective
bias, or neuromodulatory, tuning is on a small network solv-
ing a complex task. Following our experimental LOOCV
setup as described in Section 4.3, we find that by fine tuning
only the bias parameters of each layer in our SNN we can
achieve decent binary valence classification. In this specific
network, 465.3K weights and biases are optimized during
pretraining and only 1.3K parameters are optimized during
fine tuning.

We run this experiment for both traditional biases and
spiking biases stimulated by the input. For this experiment

with spiking biases we do not optimize the input matrices
to the biases during pretraining or fine tuning. Thus, the
number of optimized parameters during pretraining and fine
tuning are the same between the two types of biases. Our
LOOCV results are shown in Table 2 and Figure 7. We omit
the pretraining results for brevity, but we list that the mean
pretraining test accuracy for with both types of biases is al-
ways between 96-98%.

Table 2: LOOCV fine tuning results when using bias/neuro-
modulatory tuning with both spiking and traditional biases.
Test ID refers the participant’s data used for fine tuning. The
mean and standard deviation of accuracy across 5 trials are
displayed for both our spiking biases, denoted by (s), and for
traditional biases. The final column lists the difference in the
mean accuracy for each test participant. Positive differences
showing the improvement of spiking biases are bolded. Fi-
nally, the mean across all participants is listed in the last row.

test ID mean acc (s) std acc (s) mean acc std acc mean acc diff
0 0.86250 0.025000 0.80625 0.050000 0.05625
1 0.71875 0.044194 0.75000 0.044194 -0.03125
2 0.75625 0.053765 0.83125 0.061237 -0.07500
3 0.86875 0.072349 0.88125 0.036443 -0.01250
4 0.89375 0.031869 0.78125 0.073951 0.11250
5 0.85625 0.050775 0.76875 0.089704 0.08750
6 0.81250 0.088388 0.64375 0.080526 0.16875
7 0.91875 0.015309 0.84375 0.027951 0.07500
8 0.88750 0.064348 0.85000 0.053765 0.03750
9 0.92500 0.046771 0.85000 0.072349 0.07500

10 0.86250 0.080526 0.70625 0.133463 0.15625
11 0.78750 0.060596 0.62500 0.044194 0.16250
12 0.92500 0.057960 0.95000 0.050775 -0.02500
13 0.91875 0.050775 0.81875 0.036443 0.10000
14 0.77500 0.036443 0.85000 0.053765 -0.07500
15 0.86250 0.064348 0.75625 0.045928 0.10625
16 0.86250 0.046771 0.82500 0.119570 0.03750
17 0.90625 0.079057 0.86250 0.064348 0.04375
18 0.68750 0.086150 0.62500 0.094786 0.06250
19 0.93125 0.069597 0.93125 0.023385 0.00000
20 0.85625 0.072887 0.78750 0.072349 0.06875
21 0.87500 0.081490 0.84375 0.068465 0.03125
22 0.83750 0.023385 0.76875 0.042390 0.06875
23 0.83750 0.063738 0.82500 0.050775 0.01250
24 0.76250 0.046771 0.68125 0.077560 0.08125
25 0.85625 0.025000 0.86250 0.057960 -0.00625
26 0.80625 0.053765 0.73750 0.105697 0.06875
27 0.88125 0.072349 0.71875 0.079057 0.16250
28 0.79375 0.050775 0.78750 0.095607 0.00625
29 0.81250 0.081490 0.73750 0.080526 0.07500
30 0.83750 0.063738 0.76875 0.098027 0.06875
31 0.97500 0.030619 0.86875 0.053765 0.10625

Mean 0.848437 0.055969 0.791992 0.066842 0.056445

From these results, we acknowledge that fine tuning on
the test participant does not reach the same test/validation
accuracy obtained during pretraining. This shows the dif-
ficulty of the task and also difference in EEG recordings
across people. This is further seen in the variation across test
participants. We also see large standard deviations across tri-
als for many of the participants which is explained by the
importance of network initialization which is magnified for
smaller and spiking networks. Without any level of fine tun-
ing, though, the model only predicts randomly, so we do see
some capacity of this small parameter set to tune the model.
We do see a slight performance increase when using spiking
biases, but since this improvement is within one standard de-
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Figure 7: LOOCV fine tuning test results when using bias tuning with both spiking and traditional biases. The fine tuning test
set is balanced and is 20% of the total fine tuning dataset. The mean test accuracy for spiking biases across all participants is
84.84% ∓ 5.60, and the mean accuracy for traditional biases across all participants is 79.20% ∓ 6.68. Error bars representing
∓1 standard deviation from the mean are shown as well.

viation from the traditional biases we do not consider it sta-
tistically significant across all participants. However, we do
see gaps in error bars between spiking and traditional biases
for several specific participants, which does not guarantee
statistical significance but may suggest it.

4.5 Tuning the Input Matrices of Spiking Biases
While traditional and spiking biases performed similarly in
the larger LOOCV fine tuning experiment, our spiking bi-
ases design provides the opportunity to include additional
parameters when fine tuning to boost their performance. As
shown in Figure 2, each spiking bias neuron is connected to
the input via a randomly initialized fully connected matrix.
In this set of experiments, we train some of these input ma-
trices to the spiking biases. This significantly increases the
number of optimized parameters during fine tuning, but it
does not change the existing knowledge in the standard net-
work layers learned in pretraining. We also apply different
sparsity values to these input matrices to reduce the param-
eter count dramatically.

For the subsequent experiments we only gather results of
LOOCV for the first 12 participants for the sake of com-
putation time. First, we optimize all input matrices to the
biases along with the bias weights during tuning. With the
addition of thousands of weight parameters, we fine tune to
a much higher accuracy as shown in Table 3. In this exper-
iment we do not pretrain the input matrices to the biases
such that the number of optimized parameters during offline
training does not increase. Instead we tune these parame-

ters only on the left out participant’s data and witness 100%
test accuracy on all but one of the participants. This is not
surprising as our total optimized parameter count when tun-
ing is the same amount as when training but using different
parameters. Thus, we still freeze the pretrained and gener-
alized model, but adapt the model via the spiking biases to
perform well on new data from a new human subject. This
is valuable in scenarios where a fine tuned model may need
to be fine tuned on different tasks or data from a generalized
model. In the BCI space, this may occur when calibrating, or
fine tuning, a pretrained model for a specific individual, only
to then fine tune the model for another individual. Since our
input to biases matrices are not pretrained, we can fine tune
the pretrained model any number of times for new human
data by simply tuning the spiking bias parameters.

Next, we introduce sparsity into the input matrices to the
biases to reduce the number of optimized parameters dur-
ing fine tuning. We make these input matrices to the bi-
ases 90% sparse, and find that we can still achieve decent
performance with much fewer parameters. Concretely we
reduce the number of optimized parameters during tuning
from 465K to 48K. These results are shown in Table 4. Sim-
ilar to the result for test participant 2 in Table 3, performance
suffered the most for this same participant with sparse input
matrices. One challenge with solving the DEAP dataset is
its limited amount of data. Despite applying augmentations,
the total number of data instances used during pretraining
is less than 5K. We suspect that with additional data used
in pretraining, we could obtain a more generalized model

44



test ID 0 1 2 3 4 5 6 7 8 9 10 11
mean 1.000 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

std 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3: Mean and standard deviation of 5 trials LOOCV results on the first 12 participant when tuning the input matrices to
the spiking biases.

Figure 8: Our experimental setup for evaluating volumet-
ric tuning on the original network architecture. Each spik-
ing bias neuron is connected to four spiking neurons in
LIF1. The connection between the first spiking bias neuron
is shown by the blue dashed line, and is a leaking current as
in previous experiments.

which would increase the performance for test participant 2.

4.6 Volumetric Tuning for Spiking Biases
Now that we have shown the value of both bias tuning and
tuning the input to our spiking biases, we explore another
biological trait of dopamine pertaining to the diffusion of
dopamine across a volume of neurons. We modify our net-
work such that we define spiking bias neurons numbering
only 1

10 of the neurons in the first layer. Thus, each spik-
ing bias neuron is connected, by the same bias weight and
current, to 10 neurons in the first layer of the network. Ad-
ditionally, drawing on our results in the previous section, we
define the input matrix to these 40 spiking bias neurons to be
85% sparse. This setup is visualized in Figure 8. In this con-
struction, we have exactly 1000 tunable parameters, which is
300 less than we use in bias tuning using either traditional or
spiking biases. In a set of intermediate experiments we dis-
cover that we can achieve similar performance using volu-
metric tuning when only tuning the first layer biases. We find
this volumetric tuning, incredibly effective, and we present
our results in Table 5. The volumetrically tuned model sig-
nificantly outperforms our previous results shown in Table
2.

To ensure that volumetric spiking bias neurons are the
cause for such high performance, we conduct an ablation
study where we utilize 1000 traditional bias parameters in
the first layer of our network. To make a fair comparison,
we also ensure that this ablated model has nearly the same
number of total parameters in the model. Specifically, our
abalated model features an architecture of 3 layers with sizes
[1000,277,98]. Using this architecture we obtain a differ-
ence of only 221 optimized parameters during pretraining
between our ablated model and our model tuned by volu-

metric tuning; where the ablated model has 221 more pa-
rameters. Recall, that spiking biases and their input matrix
are not used during pretraining. During testing the number
of optimized parameters is exactly 1000 in both cases. We
also ensure that the ablated model still achieves the same
test accuracy during pretraining as our original network. The
results of our ablated model are shown in Table 6.

From these results, we see that volumetric tuning is in
fact more effective on all but one of the twelve participants
when fine tuning on EEG data from a new participant. For
participant 1 we see a slight drop in performance, but it is
not significant when consider the standard deviation of the
ablated result for this participant. Furthermore, we see that
the mean performance across all participants is significantly
higher. Interestingly, we also see a smaller deviation across
all participants when using volumetric tuning which shows
that it is less volatile and less dependent on the exact pre-
trained network weights.

5 Limitations and Future Work
We have presented biologically-inspired spiking bias neu-
rons which model some of the stimulus and output mech-
anisms of dopamine neurons in the VTA. While our re-
sults showed promising results, the path to utilize spiking
bias tuning (volumetric or otherwise) on on-chip networks
is not short. The next step in applying our method to low-
power neuromorphic devices depends largely on the de-
vice specifications, but we caution researchers that creating
many spiking bias neurons may not be power efficient com-
pared to the implementation of traditional biases on hard-
ware. Non-spiking biases can be implemented via a variable
current directly to each spiking neuron in the network. On
the contrary, our spiking biases require that the biases spike
which requires additional hardware neurons. This problem
is somewhat reduced by our development of volumetric tun-
ing where the number of spiking bias neuron drops signif-
icantly. However, there does exist certain design concerns
with our method on physical hardware that require further
exploration.

Another area for future work revolves around the use of
the input matrix to a group of bias neurons. From our course
of experiments we determined to use gradient descent on
some elements within those matrices. Conversely, a different
weight adjustment algorithm that is more lightweight could
be utilized. One such example is Spike Time Dependent
Plasticity (STDP) which is an unsupervised spike-frequency
based algorithm that is popular in the SNN field. Several re-
cent works exist that consider combining backpropagation
in SNNs with STDP (Gong et al. 2024; Furuya and Ohkubo
2021; Bengio et al. 2017) that may provide insight in adjust-
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test ID 0 1 2 3 4 5 6 7 8 9 10 11
mean 0.993 1.000 0.825 0.938 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000

std 0.013 0.000 0.025 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.000 0.000

Table 4: Mean and standard deviation of 5 trials LOOCV results on the first 12 participant when tuning the 90% sparse input
matrices to the spiking biases.

Table 5: Original network architecture using volumetric tuning to fine tune on each left out participant. The mean test accuracy
and standard deviation over 5 trials are shown, with the mean of all participants are bolded and shown in the final column.

test ID 0 1 2 3 4 5 6 7 8 9 10 11 Mean
mean 0.994 0.819 0.894 0.956 1.000 0.975 0.931 0.981 0.938 0.994 0.988 0.831 0.942

std 0.012 0.023 0.025 0.015 0.000 0.031 0.061 0.025 0.034 0.012 0.025 0.054 0.027

Table 6: Ablated network using bias tuning to fine tune on each left out participant. The mean test accuracy and standard
deviation over 5 trials are shown, with the mean of all participants are bolded and shown in the final column.

test ID 0 1 2 3 4 5 6 7 8 9 10 11 Mean
mean 0.806 0.850 0.888 0.900 0.788 0.763 0.788 0.950 0.938 0.831 0.875 0.800 0.848

std 0.061 0.041 0.015 0.046 0.127 0.051 0.130 0.032 0.020 0.058 0.044 0.106 0.059

ing the input matrices to the spiking biases via STDP while
still using BPTT for the bias weights.

6 Conclusions
In this work we have designed biologically-inspired spiking
bias neurons which performs similarly in fine tuning a small
pretrained SNN to classify valence from EEG signals from
a new subject. Our spiking bias neuron design mimics some
of stimuli, output mechanisms and structures of biological
dopamine neurons. We first extend previous work using bias,
or neuromodulatory, tuning on larger models, to our smaller
model solving binary valence classification by evaluating the
method using traditional bias inputs and our spiking biases.
We found that on some subjects, that our spiking biases out-
performed the traditional biases without adding additional
optimized parameters during tuning.

Given the construction of our spiking biases we take ad-
vantage of the stimulus mechanism, the input matrix to
the bias, and show by tuning only 10% of the matrix, we
can achieve much higher accuracies without changing the
learned features in the pretrained model. This is not unsur-
prising, as this approach can be viewed as a modification
of the work presented by (Hu et al. 2021). Finally, we ap-
ply a simplified form of biological volumetric transmission
where we reduce the number of bias neurons for a certain
layer. Each bias neuron then distributes its signal to a group
of neurons rather than a single neuron. Additionally, we op-
timize 15% of the input weights to the spiking biases. This
construction places more responsibility in each spiking bias
neuron to learn to modify input signals to adapt groups of
neurons similar to dopamine neurons responsibility to inte-
grate information from multiple sources and affect a volume
of neurons. Our variant of neuromodulatory tuning, termed
volumetric tuning, achieves higher accuracy than neuromod-
ulatory tuning while utilizing a fewer number of optimized
parameters during fine tuning.
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Chapter 5

Conclusion

This thesis has demonstrated the substantial benefits of leveraging insights from
neuroscience to address persistent challenges in machine learning, particularly in the areas
of parameter-efficient fine-tuning and depth-wise parallelization. By mimicking biological
structures and processes, we have shown that it is possible to overcome some of the lim-
itations inherent in conventional methods such as backpropagation. The introduction of
neuromodulatory tuning has proven to be a significant advancement, allowing fine-tuning
of pretrained networks with a dramatically reduced parameter count, while our exploration
of abstracted gradients has introduced a novel paradigm that challenges the necessity of
sequential backpropagation.

Moreover, the development of biologically-inspired spiking bias neurons and volumetric
tuning has shown promise in improving the performance of neuromodulatory tuning on
complex tasks like EEG emotion classification. These innovations not only address specific
technical challenges but also open up exciting new possibilities for the implementation of
machine learning algorithms in hardware, particularly for low-power and edge computing
applications. The practical applications of this work, from tunable CMOS hardware to
personalized BCI devices, underscore the potential of continued interdisciplinary research.
By drawing inspiration from biological intelligence, we can push the boundaries of what is
possible in artificial intelligence, paving the way for future breakthroughs in the field.
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