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abstract

Unique K3 Surfaces with Purely Non-Symplectic Automorphisms: Insights from Weighted
Projective Space

Elizabeth Melville
Department of Mathematics, BYU

Master of Science

K3 surfaces have garnered attention across various fields, from optics and dynamics to
high energy physics, making them a subject of extensive study for many decades. Recent
work by mathematicians, including Brandhorst [1], has focused on non-symplectic auto-
morphisms, aiming to categorize K3 surfaces that admit such automorphisms. Brandhorst
made a list of unique K3 surfaces with purely non-symplectic automorphisms and established
specific criteria for a K3 surface to be isomorphic to one on his list.

This thesis aims to provide an alternative representation of select K3 surfaces from Brand-
horst’s list. While Brandhorst predominantly characterizes these surfaces as elliptic K3 sur-
faces, we offer a description of these surfaces as hypersurfaces in weighted projective space.
Our approach involves verifying the criteria established by Brandhorst, thereby establishing
an isomorphism between the surfaces in question. Through this study, we contribute to the
understanding of K3 surfaces and their automorphisms while also demonstrating the corre-
spondence between different spaces and methodologies for analyzing K3 surfaces. This work
lays the groundwork for further investigations into K3 surfaces with purely non-symplectic
automorphisms, paving the way for deeper insights into their structural properties and geo-
metric intricacies.

Keywords: K3 surfaces, purely non-symplectic automorphisms, weighted projective space,
Brandhorst
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Chapter 1. INTRODUCTION

K3 surfaces boast a long and rich history, dating back to 1957 when Weil coined the term(see

e.g [4]). They pique particular interest due to myriad geometric and algebraic properties.

Many studies have focused on analyzing K3 surfaces with symplectic automorphisms,

delving into the classification of associated symmetries and structures. Recently, mathemati-

cians such as Brandhorst [1] have turned their attention to non-symplectic automorphisms,

aiming to categorize that admit such automorphisms.—- Isomorphism between two K3 sur-

faces allows interchangeable usage of their descriptions, enabling us to leverage structural

advantages from each depiction.

Weighted projective space is as an intriguing framework for studying K3 surfaces, offering

significant flexibility in their analysis. The incorporation of weighted coordinates plays a

pivotal role in understanding these surfaces. This is the main focus of this thesis.

Our focus centers on a list compiled by Brandhorst in [1] of unique K3 surfaces with

purely non-symplectic automorphisms of finite order (see Table 3.1). These automorphisms,

denoted as σ satisfy the equation σ · ω = ζnω, where n is the order, ω is a non-vanishing

2-form, and ζn represents a primitive nth root of unity. Brandhorst’s theorem establishes

specific criteria for a K3 surface to be isomorphic to one on his list.

– Our exploration encompasses automorphisms of orders 13, 26, 11, 22, 10, 5, 14, 7, and

12, providing a representative example for each listed n. While other surfaces in weighted

projective space may meet the criteria, we present only one instance for each order—though

in some cases we make mention of additional examples and possible future research directions.

Our methodology unfolds through the construction of K3 surfaces by resolving singu-
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larities, followed by an examination of how the automorphism σ interacts with exceptional

curves. We leverage essential lattices like the Picard lattice and multiple invariant lattices to

ascertain the eigenvalues of our Picard lattice. An absence of primitive eigenvalues signifies

an isomorphic surface.

While many other authors have analyzed K3 surfaces in weighted projective space, to the

best of our knowledge, no one has applied this analysis to the surfaces Brandhorst identified—

this is what we attempt to do in this work. Through comparative analysis between hyper-

surfaces in weighted projective space and those on Brandhorst’s list, we demonstrate the

correspondence between different spaces and methodologies for analyzing K3 surfaces.

In chapter 2, we begin with fundamental background information on lattices, K3 surfaces,

weighted projective space, automorphisms, and related tools. In chapter 3, we proceed to

integrate prior works, including Brandhorst’s contributions and studies focused on weighted

projective space, while providing illustrative examples. In chapter 4, we systematically ex-

plore each order listed above, detailing the construction of K3 surfaces in weighted projective

space and navigating the steps required for Brandhorst’s theorem. To conclude, we outline

avenues for future research and highlight the significance of our contributions in advancing

the understanding of uniquely determined K3 surfaces.
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Chapter 2. BACKGROUND

There are a few fundamental concepts to understand, including lattices, K3 surfaces, and

weighted projective space. As mentioned earlier, the K3 surfaces we want to study are

hypersurfaces in weighted projective space. Thus, they are defined by a polynomial W and a

group of symmetries G. In this section we define the conditions for W and G as well as how

to construct K3 surfaces. We begin by defining a very useful tool in K3 surfaces, namely

integral lattices.

2.1 Lattice

One of the more valuable tools for studying K3 surfaces comes from integral lattices. We

define these together with other useful tools.

Definition 2.1. A lattice is free abelian group L of finite rank with a non-degenerate

symmetric bilinear form B : L × L → Q. Non-degenerate in this context means that for

x ∈ L, B(x, y) = 0 for all y ∈ L if and only if x = 0.

We work with integral lattices: that is B : L × L → Z, or in other words, the bilinear

form maps to the integers. Furthermore, an integral lattice is even if B(x, x) ∈ 2Z for all x.

Definition 2.2. The Gram matrix of our lattice is the matrix defined by [B(xi, xj)]ij

where {xi} is a minimal generating set for the lattice.

We reference both the bilinear form and gram matrix by B.
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Definition 2.3. The signature of a lattice is the signature of the gram matrix. As our

lattices are non-degenerate the signature is an invariant (t+, t−), where t+ is the number of

positive and t− the number of negative eigenvalues of the matrix.

The rank of a lattice is determined by the total number of generators in a minimal

generating set. In fact, we have rkL = t+ + t−.

There are a few more key tools to describe. We consider the discriminant quadratic form.

Let L∗ = Hom(L,Z); then the discriminant group HL is defined by embedding L into L∗

via B, and HL = L∗/L. If L is even, then the bilinear form B extends to a quadratic form

on HL, resulting in the discriminant quadratic form qL : HL → Q/2Z. The minimal

number of generators of HL is the length of L. When we look at the Gram matrix, the

order of HL is | detB|.

For example, there are two important unimodular lattices, denoted U and E8. In fact,

every unimodular lattice that is not not negative definite or positive definite is a direct sum

of these two lattices.

The lattice U , also know as the hyperbolic lattice, is a rank 2 lattice with symmetric

bilinear form given by 0 1

1 0

 .

It has signature (1, 1). Since it is unimodular, HL is trivial for this lattice.
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The lattice E8 is a negative definite lattice of rank 8, whose bilinear form is given by



−2 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 1 1 0 0 0

0 0 1 −2 0 0 0 0

0 0 1 0 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2



.

Finally, for a lattice L, HL ≡ (Z/pZ)a and we say L is p-elementary. In this case notice

that a is the length of L.

2.2 K3 surfaces

Next we describe a major focus of our study, the K3 surface. A K3 surface is a complex,

compact surface with trivial canonical bundle and dimH1(X,OX) = 0 where OX is the sheaf

of regular functions on X. K3 surfaces have been an important topic of study for many years.

In this thesis, we will take a closer look at some specific K3 surfaces and verify that they are

isomorphic. Since a K3 surface has a trivial canonical bundle, there exists a 2-form ω that

is nowhere vanishing. In fact H2,0(X) is 1-dim and generated by ω. It is widely known that

K3 surfaces are determined by a certain integral lattice, called the Picard lattice.

Certain K3 surfaces possess specific automorphisms which we now describe. On the
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K3 surface X any automorphism σ induces a map σ∗ on H2,0(X). Since H2,0(X) is one-

dimension, generated by ω, we have σ∗ω = cσω for some cσ ∈ C∗. If cσ = 1 then σ is called

symplectic; otherwise, it is non-symplectic. In the case σ has order n, then cσ is an

nth root of unity. Furthermore, if cσ = ζn, a primitive nth root of unity, then σ is called a

purely non-symplectic automorphism.

We have a few important lattices associated with our K3 surface: the Picard lattice

Pic(X), the transcendental lattice T (X), and if σ is purely non-symplectic, the invariant

lattice of σ denoted by SX(σ).

Definition 2.4. [1] The transcendental lattice is the smallest primitive sublattice of

T (X) ⊆ H2(X,Z) whose complexification contains H2,0(X) ⊆ T (X)⊗ C.

Definition 2.5. We define the Picard lattice as follows:

Pic(X) = H2(X,Z) ∩H1,1(X,C).

In other words, the Picard lattice is the intersection of the second integral cohomology group

and the group of (1, 1) forms on X.

For a K3 surface X, the second cohomology group H2(X,Z) is isomorphic to a unique

even unimodular lattice of rank 22 and signature (3, 19). Thus H2(X,Z) ≡ U3 ⊕ (E8)
2.

The Picard lattice is orthogonal to the transcendental lattice T (X) in H2(X,Z). Hence,

rk Pic(X) + rkT (X) = 22.

Definition 2.6. Given a non-symplectic automorphism σ, the invariant lattice SX(σ) is
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the sublattice of Pic(X) fixed by σ. In other words,

SX(σ) = {x ∈ H2(X,Z) : σ · x = x}.

For any automorphism σ, the invariant lattice is a sublattice of H2(X,Z) and in the

case of a non-symplectic σ it is a sublattice of Pic(X). Given our focus on non-symplectic

automorphisms, we rely on these invariant lattices to help us understand the Picard lattice.

2.3 Weighted projective space

One way of constructing K3 surfaces is via hypersurfaces in weighted projective space, which

we will now discuss. In fact, there is a famous list of 95 so-called weight systems that give

rise to K3 surfaces (see [5]). Weighted projective space is similar to usual projective space,

with coordinates weighted by positive integers. Given w1, w2, · · · , wn ∈ Z>0, the weighted

projective space P(w1, w2, · · · , wn) is defined as the quotient space (Cn+1 \ {0})/C∗. For

λ ∈ C∗, the action is given by:

λ(̇x1, x2, · · · , xn) = (λw1x1, λ
w2x2, · · · , λwnxn).

K3 surfaces can be constructed in many ways. In this thesis, we will focus on those

defined by a polynomial in weighted projective space. In order to define these, we need a

few more definitions.

Definition 2.7. A polynomial W (x1, x2, · · · , xn) is quasihomogeneous of degree d with

7



weight system (w1, w2, · · · , wn; d) if for λ ∈ C∗

W (λw1x1, λ
w2x2, · · · , λwnxn) = λdW (x1, x2, · · · , xn).

Definition 2.8. A quasihomogeneous polynomial W is non-degenerate when it has an

isolated critical point at the origin and the weights wi can be uniquely determined from the

polynomial W .

In the following, we require gcd(w1, · · · , wn) = 1. As we are focusing on K3 surfaces, we

set n = 4 and consider a quasihomogenous polynomial with coordinates x, y, z, w weighted

by w1, w2, w3, w4.

Example 2.9. Let W = x2y+xy2+ z4+w12. This is a quasihomogeneous polynomial with

weight system (4, 4, 3, 1; 12). For λ ∈ C∗,

W (λw1x, λw2y, λw3z, λw4w) = (λ4x)2λ4y + λ4x(λ4y)2 + (λ3z)4 + (λ1x)12

= λ8x2λ4y + λ4xλ8y2 + λ12z4 + λ12x12

= λ12x2y + λ12y2x+ λ12z4 + λ12x12

= λ12(x2y + y2x+ z4 + w12).

Definition 2.10. [6] A non-degenerate and quasihomogeneous polynomial is invertible

when it has an equal number of variables and monomials. Such polynomials can be repre-

sented by an exponent matrix AW = (aij) where aij is the exponent of the ith variable

and jth monomial. As such, the rows represent the monomials of W and the columns rep-

resent the variables. When a polynomial is invertible, its associated exponent matrix is also
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invertible.

We use the exponent matrix to assist in selecting an automorphism. We will discuss this

use of the exponent matrix in Sections 2.4 and 2.6.1.

Example 2.11. Let W = x2y + xy2 + z4 +w12. We denote the exponent matrix as follows:

AW =



2 1 0 0

1 2 0 0

0 0 4 0

0 0 0 12


.

As invertible polynomials are an important part of our work, we include the following

theorem to assist in recognizing invertible polynomials.

Theorem 2.12. [7]: A quasi-homogeneous polynomial W is non-degenerate and invertible

if and only if it can be written as a direct sum of the three atomic types:

• Wfermat = xa;

• Wloop = xa1
1 x2 + xa2

2 x3 + · · ·+ xan
n x1;

• Wchain = xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n .

Here the exponents are all integers greater than 1.

2.4 Automorphisms

For an invertible polynomial W , there are several groups of automorphisms that we need.

9



Definition 2.13. Given a nondegenerate quasihomogenous polynomial W , the group of

diagonal symmetries is the group

GW = {(c1, c2, · · · , cn) ∈ (C∗)n : W (c1x1, c2x2, · · · , cnxn) = W (x1, x2, · · · , xn)}.

If W is invertible, then |GW | = det(Aw). It is also well known that GW is generated by the

columns of A−1
W .

For λ = (c1, c2, · · · , cn) ∈ GW , we have a few notations. The ci are all roots of unity and

thus can be written ci = e2πigi for gi ∈ Q/Z. These gi essentially represent the fractional

version of ci. Instead of writing complex numbers for our automorphisms, we use an additive

notation by writing (g1, g2, · · · , gn) ∈ (Q/Z)n to represent the symmetry (c1, c2, · · · , cn) =

(e2πig1 , e2πig2 , · · · , e2πign). We use additive notation unless otherwise stated. Considering

λ = (g1, g2, . . . , gn) as representative of the diagonals of a matrix allows us to compute

| det(λ)|.

When we are in weighted projective space an important automorphism comes from the

weights and degree. For a quasihomogenous polynomial with weights (w1, w2, w3, w4; d), we

define jW = (w1

d
, w2

d
, w3

d
, w4

d
) ∈ GW . Then jW has order d. An important group for analyzing

the symmetries that arise is JW = ⟨jW ⟩. This is a significant group in mirror symmetry

analysis especially. However, its usefulness extends further as we frequently use jW to gain

insight into quotient K3 surfaces where it aids in determining equivalent automorphisms and

understanding the transformations performed on our surface.

Indeed, every element λ ∈ GW induces an automorphism on P(w1, w2, w3, w4). Since GW

fixes W , λ will also define an automorphism on the hypersurface defined by W . However, the
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automorphism jW acts trivially on P(w1, w2, w3, w4), so any two automorphism in GW are

equal if they differ by an element of JW (see Example 2.15). Another group of automorphisms

that we use is the following.

Definition 2.14. The group SLW is defined by

SLW = {λ = (g1, g2, · · · , gn) ∈ GW :
∑
i

gi ∈ Z.

Note that when
∑

i wi = d, the group JW is in SLW . Thus in this case,

JW ⊆ SLW ⊆ GW .

2.5 Constructing K3 surfaces

We consider a nondegenerate quasihomogeneous polynomial W with weight system (w1, w2,

w3, w4; d). In weighted projective space P(w1, w2, w3, w4), W defines a hypersurface YW . If

W is quasihomogeneous with respect to one of the 95 weight systems, then the minimal

resolution XW of YW is a K3 surface.

A surface defined by a nondegenerate quasihomogenous polynomial is quasismooth. Thus

when W is nondegenerate, all singularities on YW occur on coordinate curves x = 0, y =

0, z = 0, and w = 0, or as we will refer to them, Cx, Cy, Cz, and Cw. When we resolve

singularities we obtain a diagram of curves on our K3 surface. We illustrate the creation of

these diagrams further in Chapter 3.

We can view elements of GW as automorphisms on YW , and these extend as expected to

automorphisms on XW . Weighted projective space is an equivalence relation based on the
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weight system and since JW is defined by the weights of the polynomial, JW acts trivially

on YW . Because JW acts trivially on YW , it is necessary for any subgroup acting on YW to

contain JW . Thus the non-symplectic automorphism σ on YW extends to a non-symplectic

automorphism on XW . We also denote this as σ. Sometimes two elements of GW induce the

same automorphism, as mentioned previously.

Example 2.15. We consider x2y+xy2+ z4+w12. This polynomial is invertible, nondegen-

erate and quasihomogenous with weights (4, 4, 3, 1; 12). The corresponding jW = (1
3
, 1
3
, 1
4
, 1
12
)

helps us determine equivalent automorphisms. Let σ = (0, 0, 1
4
, 0) and σ′ = (0, 0, 0, 1

4
). Using

j3W = (0, 0, 3
4
, 1
4
), we can see that σ = σ′ + j3W . Thus σ = (0, 0, 1

4
, 0) ≡ (0, 0, 0, 1

4
) = σ′. The

fixed locus of σ also includes things fixed by σ′.

When we construct XW as a K3 surface, in some cases we can construct another K3

surface by considering the quotient by a group of symmetries. We demonstrate what this

looks like. As our quotient must preserve our canonical bundle, we must quotient by a

subgroup of SLW . Let G be a group of symmetries such that JW ⊆ G ⊆ SLW . Then

G̃ = G/JW preserves the canonical bundle and the polynomial W now defines a hypersurface

in the quotient weighted projective space P(w1, w2, w3, w4)/G̃. We call this YW,G. The

minimal resolution XW,G of YW,G is a K3 surface. You may also construct XW,G by taking

the quotient XW/G̃. Similarly to XW , a non-symplectic automorphism σ acting on XW

extends to XW/G̃. Thus we obtain a non-symplectic automorphism σ of XW,G. We denote

each version of this as σ.

The diagram for a quotient K3 surface is related to the original K3 surface. By looking

at the fixed points on the old diagram, you can determine the singularities for the quotient

12



surface XW/G̃. The automorphism σ on XW or XW,G leaves the coordinate curves invariant

and induces an action on the set of exceptional curves. We will leverage this fact to determine

the action of σ on Pic(XW,G)

2.6 Tools

There are some extra tools that we will use in our analysis, including dual spaces, quotient

spaces, and the genus of curves. However, before introducing these tools, we introduce the

following lemma to assist in Chapter 4.

Lemma 2.16. If a primitive nth root of unity is an eigenvalue of σ|Pic⊗C, then each primitive

nth root of unity is an eigenvalue of σ|Pic⊗C.

Proof. Suppose we have a K3 surface with a purely non-symplectic automorphism σ of order

n. We consider the action of σ on Pic(X)⊗C as a integer matrix. There exists a polynomial

p(x) ∈ Z[x] that is considered the characteristic polynomial of the action. We wish to show

that if ζn, a primitive root of unity, satisfies p(ζn) = 0, then all other primitive nth roots of

unity are also roots of p(x).

Since ζm is of order m, then there are ϕ(m) other primitive roots of unity. Now the

minimal polynomial of ζn over Q is the m-cyclotomic polynomial fm(x). The zeros of fn(x)

are all the nth primitive roots. Since ζm is a root of both p(x) and fm(x) and fm(x) is

minimal, we have that fm(x) divides p(x). This means that p(x) = fm(x)
th(x), where t is

the multiplicity of the primitive root of unity. Note that all primitive roots of unity have

the same multiplicity. The zeros of fm(x) are all the mth primitive roots of unity and thus

are also roots of p(x), as desired.
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2.6.1 Dual spaces. One use for K3 surfaces is in mirror symmetry. In [6], Comparin and

Priddis discuss a particular form of mirror symmetry called BHK mirror symmetry. Dual

spaces are an integral part of studying mirror symmetry. We won’t use the full implications,

but we will briefly discuss the dual polynomial and dual group. The dual group is defined

by

GT
W = {g ∈ GWT | gAWhT ∈ Z for all h ∈ G}.

The dual group is not strictly necessary for our analysis; however, we need to understand the

dual polynomial W T . This is as follows: after we form AW , the exponent matrix of W , we

can create the dual matrix by taking the transpose of AW . Then W T is the unique invertible

polynomial determined by AWT , i.e. AWT = AT
W . A polynomial is self dual when AW is a

diagonal matrix. We denote the degree of W T by dT .

The following theorem will be used frequently in determining the rank of the Picard

lattice. In [8], Lyons and Olcken use W as an invertible quasihomogenous polynomial and G

as a group of symmetries containing JW . As stated before, we will not use the construction

of the dual group but will use the dual degree dT to determine the rank of the Picard lattice.

Theorem 2.17. [8, Theorem 1.2] Let XW,G be a K3 surface of BHK type that are BHK

mirrors. Let d and dT denote the degree of the quasihomogeneous polynomials: W and W T .

The Picard number of XW,G is:

rk(Pic(XW,G)) = 22− ϕ(dT )

where ϕ denotes Euler’s totient function.
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Using this, we can compute rkPic(X) = 22 − ϕ(n) = 22 − ϕ(dT ). As we are seeking to

identify a basis for the Picard lattice, the rank tells us how many elements we are looking

for. Understanding these elements is essential for analyzing K3 surfaces and determining

isomorphisms.

2.6.2 Quotient spaces. Having discussed the construction of a quotient space, we now

introduce the calculations to determine when a quotient is possible. As our quotient G must

fall between JW and SLW , that narrows the possibilities for G. The first step is to calculate

|SLW/JW | and determine how many options for G exist. One can find |SLW/JW | by hand.

Alternatively, there is an easy way to determine |SLW/JW |, and that is by the dual group

GT
W . In the following paragraphs, we use the dual group to assist our calculations.

We use a couple of facts along with this diagram:

{0} ↪→ JW ↪→ SLW ↪→ GW .

Since | det(AW )| = |GW |, we can use the determinant of AW to determine |SLW/JW |.

The natural inclusions above illustrate that |GW | can be factored into pieces:

|GW | = |JW | · |SLW/JW | · |GW/SLW |.

Because |GW/SLW | = |SLT
W/GT

W | = |JT
W/{0}| (see [9]), we can simplify our equation:

|GW | = |JW | · |SLW/JW | · |JT
W |.
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# N c configuration G
1 2 8 8A1 C2

2 3 12 6A2 C3

3 4 12 12A1 C2
2

4 4 14 4A3 + 2A1 C4

5 5 16 4A4 C5

6 6 14 3A2 + 8A1 D6

7 6 16 2A5 + 2A2 + 2A1 C6

8 7 18 3A6 C7

9 8 14 14A1 C3
2

10 8 15 2A3 + 9A1 D8

Table 2.1: Classification of types quotients and their fixed points, reproduced from [2].

Thus, we can divide | det(AW )| by |JT
W | and |JW | to receive |SLW/JW |. If the value is greater

than 1, we have a quotient. Note that if |SLW/JW | = 1, then we only have one choice for G,

namely JW . In fact, JW acts trivially on XW , so XW = XW,G.

When resolving the singularities of the quotient surface XW,G, it is important to start

with a list of singularities and fixed points of the original surface X. From there you can

determine how many are in an orbit together, and which ones are missing partners. Those

not manifesting the quotient relationship are new singularities on the quotient surface. [2]

provides a table describing how many new singularities are added based on the quotient

taken. We have reproduced a portion of that list in Table 2.1. We use this to check our work

and verify we have found all singularities. These singularities are resolved and give us our

XW,G diagram.

2.6.3 Genus. The genus of a curve in P(w1, w2, w3; d) is calculated using the following

formula (found, e.g., in [10]):

g(C) =
1

2

( d2

w1w2w3

− d
∑
1≤j<i

gcd(wi, wj)

wiwj

+
3∑

i=1

gcd(wi, d)

wi

− 1
)
.
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The genus of a curve aids in the classification of curves on a K3 surface and is used in

determining the rank of a lattice. An example calculation demonstrates the application of

this formula.

Example 2.18. In P(5, 2, 2, 1), we look at the hypersurface defined by x2+y5+z5+w10 = 0

of degree 10. A curve Cx can be defined on the hypersurface YW by setting x = 0. We can

think of this curve as living in P(2, 2, 1) defined by W |x=0, so we are looking at a polynomial

of degree 10 in P(2, 2, 1). We then do similarly for each variable and obtain curves Cx, Cy, Cz,

and Cw in P(2, 2, 1), P(5, 2, 1), P(5, 2, 1), and P(5, 2, 2). We can compute the genus as follows:

g(Cx) =
1

2

(
102

4
− 10

(
2

4
+

1

2
+

1

2

)
+

(
2

2
+

2

2
+

1

1

)
− 1

)

=
1

2
(25− 5 (3) + (3)− 1) = 6;

g(Cy) =
1

2

(
102

10
− 10

(
1

10
+

1

5
+

1

2

)
+

(
5

5
+

2

2
+

1

1

)
− 1

)

=
1

2
(10− 8 + (3)− 1) = 2;

g(Cz) =
1

2

(
102

10
− 10

(
1

10
+

1

5
+

1

2

)
+

(
5

5
+

2

2
+

1

1

)
− 1

)

=
1

2
(10− 8 + (3)− 1) = 2;

g(Cw) =
1

2

(
102

20
− 10

(
1

10
+

1

10
+

2

4

)
+

(
5

5
+

2

2
+

2

2

)
− 1

)

=
1

2
(5− 7 + (3)− 1) = 0.

Knowing the genus of a curve is essential for our analysis of the fixed locus of a non-

symplectic automorphism σ.
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Finally, the genus of Cx, Cy, Cz, and Cw helps us find the genus of C ′
x, C

′
y, C

′
z, and C ′

w when

we work in a quotient K3 surface. We use the curve’s old genus, the order of quotient N , and

a count of points with ramification eρ to calculate the new genus with the Reimann-Hurwitz

formula:

2− 2gold = N(2− 2gnew)−
∑
ρ∈S′

(eρ − 1).

Example 2.19. Continuing from above example, we calculate the new curve genus. Here

N = 5. We use Figure 2.1 and Section 4.5 to determine ramification points. For Cx, we have

gold = 6 with no ramification points. Thus:

2− 2gold = 5(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2(6) = 5(2− 2gnew)− 0

2 = gnew.

For Cy, we have gold = 2 with three ramification points index 5.

2− 2gold = 5(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2(2) = 5(2− 2gnew)− (5− 1)(5− 1)(5− 1)

−2 = 10− 10gnew − 12

0 = gnew.
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C0
w

C2
x

C0
y

C0
z

Figure 2.1: Quotient Curve configuration for XW,SLW
, n = 10

For Cz, we have gold = 2 with three ramification points index 5. Thus:

2− 2gold = 5(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2(2) = 5(2− 2gnew)− (5− 1)(5− 1)(5− 1)

−2 = 10− 10gnew − 12

0 = gnew.

For Cw, we have gold = 0 with two ramification points index 5. Thus:

2− 2gold = 5(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2(0) = 5(2− 2gnew)− (5− 1)(5− 1)

2 = 10− 10gnew − 8

0 = gnew.

19



Chapter 3. METHODS

3.1 Brandhorst

In [1], Brandhorst proves that under some conditions, certain K3 surfaces are uniquely

determined by a purely non-symplectic automorphism, as in the following theorem.

Theorem 3.1. [1, Theorem 5.9] Let X be a K3 surface and f a purely non-symplectic

automorphism of order n such that rkT = ϕ(n) and ζn is not an eigenvalue of σ|Pic(X)⊗C.

Set d = | det Pic(X)|, then X is determined up to isomorphism by the pair (n, d). Con-

versely, all possible pairs (n, d) and equations for X and (some) f are given in Table 3.1.

As stated in Theorem 3.1, we see that each of these K3 surface is uniquely determined

by two things, the order of the automorphism and the determinant of the Picard lattice.

As we can see from Table 3.1, each of the K3 surfaces in Brandhorst’s list is given as either

an elliptic surface or a double cover of P2. Our goal is to use Theorem 3.1 and show that

each K3 surface on Brandhorst’s list can be represented as (the resolution of) a hypersurface

in weighted projective space. Brandhorst’s theorem demands three steps. First, that we

have a purely non-symplectic automorphism σ of order n on our surface X. Second, that

rkT (X) = ϕ(n). Finally, that ζn is not an eigenvalue of σ|Pic(X).

Recall, T (X) is the transcendental lattice, which is orthogonal to the Picard lattice

in H2(X,Z). Thus, rkT (X) + rkPic(X) = 22 = rkH2(X,Z). So we can show either

rkT (X) = ϕ(n) or rkPic(X) = 22− ϕ(n).
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n detPic(X) X f
3, 6 3 y2 = x3 − t5(t− 1)5(t+ 1)2 (ζ3x,±y, t)
4 22 y2 = x3 + 3t4x+ t5(t2 − 1) (−x, ζ4y,−t)
5, 10 5 y2 = x3 + t3x+ t7 (ζ35x,±ζ25y, ζ

2
5 t)

8 22 y2 = x3 + tx2 + t7 (ζ68x, ζ8y, ζ
6
8 )

24 t4 = (x20 − x21)(x
2
0 + x21 + x22) (ζ8t;x1 : x0 : x2)

12 1 y2 = x3 + t5(t2 − 1) (−ζ3x, ζ4y,−t)
2233 y2 = x3 + t5(t2 − 1)2 (−ζ3x, ζ4y, t)
24 y2 = x3 + t5(t2 − 1)3 (−ζ3x, ζ4y,−t)

7, 14 7 y2 = x3 + t3x+ t8 (ζ73x, 7± ζ7y, ζ
2
7 t)

9, 18 3 y2 = x3 + t5(t3 − 1) (ζ29x,±ζ39y, ζ
3
9 t)

33 y2 = x3 + t5(t3 − 1)2 (ζ29 ,±y, ζ39 t)
16 22 y2 = x3 + t2x+ t7 (ζ216x, ζ

11
16y, ζ

10
16 t)

24 y2 = x3 + t3(t4 − 1)x (ζ616x, ζ
9
16y, ζ

4
16t)

26 y2 = x3 + x+ t8 (−x, iy, ζ16t)
20 24 y2 = x3 + (t5 − 1)x (−x, ζ4y, ζ5t)

2452 y2 = x3 + 4t2(t5 + 1)x (−x, ζ4y, ζ5t)
24 22 y2 = x3 + t5(t4 + 1) (ζ3ζ

6
8x, ζ8y, ζ

2
8 t)

26 y2 = x3 + (t8 + 1) (ζ3x, y, ζ8t)
2234 y2 = x3 + t3(t4 + 1)2 (ζ3ζ

6
8x, ζ8y, ζ

6
8 t)

2634 y2 = x3 + x+ t12 (−x, ζ624y, ζ24t)
15, 30 52 y2 = x3 + 4t5(t5 + 1) (ζ3x,±y, ζ5t)

34 y2 = x3 + t5x+ 1 (ζ1015x,±y, ζ15t)
11, 22 11 y2 = x3 + t5x+ t2 (ζ511x,±ζ211y, ζ

2
11t)

13, 26 13 y2 = x3 + t5x+ t (ζ513x,±ζ13y, ζ
2
13t)

26 13 y2 = x3 + t7x+ t4 (ζ1013x,−ζ213y, ζ13t)
26 13 w2 = x40y

4
0 + x41y

3
1y2 + x0x

3
1y

4
1 ((ζ13x0 : x1), (ζ

9
13y0 : y2),−ζ713w)

21, 42 1 y2 = x3 + t5(t7 − 1) (ζ242x, ζ
3
42y, ζ

18
42 t)

21, 42 72 y2 = x3 + 4t4(t7 − 1) (ζ3ζ
6
7x,±ζ27y, ζ7t)

21, 42 72 y2 = x3 + t3(t7 + 1) (ζ3ζ
3
7x,±ζ7y, ζ

3
7 t)

21 72 x30x1 + x31x2 + x0x
3
2 − x0x

3
3 (ζ7x0 : ζ7x1 : x2, ζ3x3)

28 1 y2 = x3 + x+ t7 (−x, ζ4y,−ζ7t)
26 y2 = x3 + (t7 + 1)x (−x, ζ4y, ζ7t)
26 y2 = x3 + (t7 + 1)x (x− (y/x)2, ζ4(y − (y/x)3), ζ7t)

17, 34 17 y2 = x3 + t7x+ t2 (ζ717x,±ζ17y, ζ
2
17t)

34 17 x0x
5
1 + x50x2 + x21x

4
2 = y2 (−y;x0 : ζ17x1, ζ

5
17x2)

32 22 y2 = x3 + t2x+ t11 (ζ1832x, ζ
11
32y, ζ

2
32t)

24 y2 = x0(x
5
1 + x40x2 + x1x

4
2) (ζ32y; ζ

2
32x0 : x1 : ζ

24
32x2)

36 1 y2 = x3 − t5(t6 − 1) (ζ236x, ζ
3
36y, ζ

30
36 t)

34 y2 = x3 + x+ t9 (−x, ζ4y,−ζ9t)
2632 x0x

3
3 + x30x1 + x41 + x42 (x0 : ζ

3
9x1 : ζ4ζ

3
9x2 : ζ9x3)

40 24 z2 = x0(x
4
0x2 + x51 − x52) (x0 : ζ20x1 : ζ4x2; ζ8z)

48 22 y2 = x3 + t(t8 − 1) (ζ248x, ζ
3
48y, ζ

6
48t)

19, 38 19 y2 = x3 + t7x+ t (ζ719t,±ζ19y, ζ
2
19t)

38 19 y2 = x50x1 + x0x
4
1x2 + x62 (x0 : ζ19x1 : ζ

16
19x2;−ζ1019y)

27, 54 3 y2 = x3 + t(t9 − 1) (ζ227x, ζ
3
27y, ζ

6
27t)

27 33 x0x
3
3 + x30x1 + x2(x

3
1 − x32) (x0 : ζ

3
27x1 : ζ

21
27x2 : ζ27x3)

25, 50 5 z2 = (x60 + x0x
5
1 + x1x

5
2) (z;x0 : ζ

5
25x1 : ζ

4
25x2)

33, 66 1 y2 = x3 + t(t11 − 1) (ζ266x, ζ
3
66y, ζ

6
66t)

44 1 y2 = x3 + x+ t11 (−x, ζ4y, ζ11, t)

Table 3.1: Brandhorst’s [1] list of K3 surfaces with purely non-symplectic automorphism.
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In order to show that all eigenvalues of σ are non-primitive, we consider the invariant

lattices SX(σ
p) of powers of σ which are sublattices of the Picard lattice. With these, we

can count the eigenvalues associated with each pth root of unity. For example, SX(σ) is the

invariant lattice of σ and | rkSX(σ)| counts how many eigenvalues are equal to 1. Then σ2

contributes eigenvalues that are equal to −1, and σ3 gives eigenvalues that are third roots

of unity, etc. In this way, we can account for all the eigenvalues.

3.2 Methods for K3 surfaces in weighted projective space.

Many mathematicians study K3 Surfaces and categorize the invariant lattices and Picard

lattices. Recall that we are interested in K3 surfaces with a purely non-symplectic automor-

phism σ of order n. A few papers are of particular importance. Comparin et al., in [9], find

the rank of lattices in the case when n is prime and not equal to 2. In [6], Comparin and

Priddis consider different methods for analyzing a surface when n is not prime except for

n = 4, 8, 12. Bott et al., in [11], analyze the case when n = 4, n = 8, and n = 12. In each

paper, the invariant lattice is computed by finding the rank and the discriminant quadratic

form.

Some relevant results are as follows:

Theorem 3.2. [6, Theorem 3.1] Given a K3 surface with a non-symplectic automorphism

σ of prime order p, the invariant lattice SX(σ) is p-elementary.

Theorem 3.3. [6, Theorem 3.2] For a prime p ̸= 2, a hyperbolic, p-elementary lattice L

with rank r ≥ 2 is completely determined by the invariants (r, a) where a is the length. An

indefinite 2-elementary lattice is determined by the invariants (r, a, δ), where δ ∈ 0, 1 and
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Figure 3.1: Diagram for p = 2 and |σ| = 2. Reproduced from [3]. In this case there are no
isolated fixed points.

δ = 0 if the discriminant quadratic form takes values 0, or 1 only and δ = 1 otherwise.

Thus if n is prime, we can easily find the rank of the invariant lattice using the following

theorem. Similarly, if n is not prime we can find powers of σ that are of prime order and use

their invariant lattices to understand the Picard lattice.

In what follows, given a lattice L, we will generally denote the rank of L by r. Artebani

et al., in [3], provide equations that relate the fixed locus of σ to the rank of the invariant

lattice. The fixed locus for σ includes one curve with genus g ≥ 0, l isolated fixed points,

and k additional genus 0 curves. Then (g, l, k) and (r, a) are two sets of surface invariants.

There is a direct relationship between the two sets of invariants, so knowing one allows us

to calculate the other (see [9]). For a σ of order p = 2, see Figure 3.1.

Theorem 3.4. [9, 2.4] Let X be a K3 surface with a non-symplectic automorphism σ of

prime order p ̸= 2. Then the fixed focus Xσ is nonempty, and consists of either isolated

points or a disjoint union of smooth curves and isolated points of the following form:

Xσ = C ∪R1 ∪ · · · ∪Rk ∪ {p1, · · · , pl}.
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Here C is a curve of genus g ≥ 0, Ri are rational curves and pi are isolated points.

Furthermore, if Xσ contains a curve and S(σ) has invariants (r, a) then the following

hold:

• m = 2g + a;

• if p = 3 then 1− g + k = (r − 8)/2 and l = 10−m;

• if p = 5 then 1− g + k = (r − 6)/4 and l = 16− 3m;

• if p = 7 then 1− g + k = (r − 4)/6 and l = 18− 5m;

• if p = 13 then (g, l, k) = (0, 9, 0) and S(σ) = H13⊕ E8.

Here the invariant k does not include the curve C.

3.3 Process

This process is described in [6]; we provide an example here.

Consider n = 12. In Table 3.1(see also [1]), there are three unique surfaces with a purely

non-symplectic automorphism of order 12. In weighted projective space P(4, 4, 3, 1), we can

look at the surface defined by

W = x2y + xy2 + z4 + w12.

Our polynomial is invertible with weight system (4, 4, 3, 1; 12). The surface XW has a

purely non-symplectic automorphism defined by σ = (0, 0, 0, 1
12
).
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C1
z

C3
x

C0
w

Figure 3.2: Curve configuration, n = 12

We will be demonstrating that XW is actually one of 3 surfaces in Table 3.1. According

to Theorem 3.1, we need to verify three conditions: Firstly, that σ is purely non-symplectic

of order 12; secondly, that rkT (X) = ϕ(12); and thirdly, that ζ12 is not an eigenvalue of

σ|Pic(X)⊗C.

We start by finding all the singularities. Notice if z = w = 0 then λ = i acts trivially

on (x, u, 0, 0). Then all points satisfying w = 0 satisfy x2y + xy2 = xy(x + y) = 0, giving

us 3A3 singularities. There are no other singularities. Figure 3.2 is a diagram illustrating

the resolution of our singularities. Each horizontal line represents the curves on XW defined

by x = 0, y = 0, z = 0 and w = 0, respectively. We will denote these by Ca
x , where the

superscript a represents the genus. The vertical trees map out the singularities. We should

note that each of these curves has genus 0.

Step 1. First we verify that σ is purely non-symplectic. Since 1
12

represents a primitive

12th root of unity, we have a purely non-symplectic automorphism with order 12.
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Step 2. Since our surface is self dual, i.e., W T = W , it follows that dT = 12. So

ϕ(dT ) = ϕ(n) = 4 and we find that our Picard lattice has rank 22 − ϕ(dT ) = 22 − ϕ(n) =

22− ϕ(12) = 22− 4 = 18 by Theorem 2.17. This verifies the second condition.

Step 3. This step is to find the eigenvalues of σ|Pic(X)⊗C. Because the rkPic(X) = 18,

we need to find 18 eigenvalues and verify none are primitive 12th root of unity.

Figure 3.2 is the blow-up of exceptional curves on our surface. Applying σ, we see each

curve is in its own orbit. When W is of the form wn+f(x, y, z), then we can use this helpful

theorem to count the rank of our invariant lattice.

Theorem 3.5. [6] The rank rX of S(σ)is equal to 1 plus the number of orbits of exceptional

curves in the blow-up XW,G → YW,G.

For this specific example, we see that there are 9 exceptional curves. Since each curve is

its own orbit, rk sX(σ) = 1 + 9 = 10. These represent ten eigenvalues equal to 1. The rank

of the Picard lattice is 18, so we are still looking for eight. We look at powers of σ and their

associated invariant lattices to find the remaining eigenvalues.

First we consider σ4 = (0, 0, 0, 1
3
). Note that it is purely non-symplectic of order 3. We

start with finding the fixed locus and then use Theorem 3.4 to find the rank of its invariant

lattice.

The blue lines and points in figure represent the fixed locus of σ4. CW has genus 0 and

is fixed and each third line in the trees is also fixed. The three intersection points are fixed

and isolated. σ can also be written as (2
3
, 2
3,0,0

), from which we see that when x = y = 0 we

have z4 +w12 = (z + ζ4w)(z + ζ24w)(z + ζ34w)(z +w), thus 4 more intersection points. So we

have (g, l, k) = (0, 7, 3). Then by Theorem 3.4, (r, a) = (16, 3). Thus | rk(SX(σ
4)| = 16 and
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we have 16 of our 18 eigenvalues needed.

To review the eigenvalues we have checked, we have 10 equal to 1, and six more equal to

either −1 or ±i. Note that we are still missing two eigenvalues.

Looking at the fixed locus of σ3 = (0, 0, 0, 1
4
), we have CW genus 0 and 13 points. Each

curve has its own orbit so we have | rkSX(σ
3)| = 10, the same amount as SX(σ). This means

that we have no third root of unity as an eigenvalue. This is significant as we look at σ6.

We seek to show that the final two eigenvalues are not primitive 12th roots of unity.

Proof. We proceed by Contradiction. Assume that one of the remaining two eigenvalues is

ζ12. Then by Lemma 2.16, all 4 primitive 12th roots of unity must be eigenvalues as well.

This is too many eigenvalues, thus contradiction.

Since there are no third roots of unity the only other choice for eigenvalues are primitive

sixth roots of unity.

This verifies the third condition, thus we have no primitive 12th roots of unity and this

surface is isomorphic to one on Brandhorst’s list. On Table 3.1, we see that there are three K3

surfaces with a non-symplectic automorphism of order 12. A future work will be determining

which of Brandhorst’s surfaces is isomorphic to our XW with by finding the determinant d.

3.4 Purpose of Thesis

In [1], Brandhorst has a complete list of K3 surfaces with purely non-symplectic automor-

phisms. As we can see from the preceding example, working with automorphisms on K3

surfaces in weighted projective space is rather straightforward. Our goal is to use Theorem
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3.1 and show that each K3 surface on Brandhorst’s list is isomorphic to a hypersurface in

weighted projective space.
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Chapter 4. WEIGHTED PROJECTIVE

SPACE K3 SURFACES

Our goal is to show that each of the K3 surfaces in Table 3.1 can be represented by a hypersur-

face in weighted projective space. In this thesis, we will look at n = 13, 26, 11, 22, 10, 5, 14, 7,

and 12. We proceed by choosing a value n and giving an example of a weighted projective

K3 surface that is isomorphic to those on Table 3.1. We conjecture that there are more

surfaces and automorphisms than those studied here that are isomorphic to a surface on 3.1.

Having chosen W , we demonstrate that the surface XW meets the 3 conditions listed

in Theorem 3.1. First, we can consider each λ ∈ GW as a diagonal matrix. As mentioned

previously, λω = (detλ)ω). We will find σ in GW , and we can see that σ is a purely

non-symplectic automorphism of order n by showing the determinant is a primitive root of

unity.

Second, we will use theorem 2.17 to show that that rkT = ϕ(n) or rkPic(X) = 22 −

ϕ(n) = 22− ϕ(dT ).

Third, we demonstrate that all eigenvalues of σ∗ on Pic(X) ⊗ C are not primitive nth

roots of unity. This last step is the most difficult, and we describe the details in each case.
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C0
w

C2
y

C1
z

Figure 4.1: Curve configuration, n = 13

4.1 Order 13

We consider Brandhorst’s surface (13, 13). We find an isomorphic K3 surfaces with corre-

sponding automorphism in weighted projective space P(5, 4, 3, 1). Let

W = x2z + xy2 + yz3 + w13, and σ =

(
0, 0, 0,

1

13

)
.

Let us begin by describing the process of resolving the singularities of YW . Since W is

nondegenerate, YW is quasismooth and all singularities are inherited from weighted projective

space.

The point (1, 0, 0, 0) has a Z5 isotropy group or A4 singularity. The point (0, 1, 0, 0) has

a Z4 isotropy group or A3 singularity. The point (0, 0, 1, 0) has a Z3 isotropy group or A2

singularity. When we blow up each of these points we get the configuration pictured in

Figure 4.1.
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Step 1. n = 13 and |σ| = 13. Since det(σ) = 1
13
, the determinant is a primitive root of

unity and so σ is a purely non-symplectic automorphism.

Step 2. Our surface is self dual. Thus dT = 13 so ϕ(n) = ϕ(dT ) = ϕ(13) = 12. Our

Picard lattice has rank 22− ϕ(13) = 10 by Theorem 2.17, as desired.

Step 3. Next we check that each of the ten eigenvalues are non-primitive. If we consider

the action of σ on the exceptional curves, we see that each is invariant under the action

as σ fixes the curve Cw. Thus by Theorem 3.5, we see that | rk sX(σ)| = 10. This means

the invariant lattice of σ contains all the eigenvalues of the Picard lattice and all are non-

primitive roots of unity. This means that this example corresponds with the Brandhorst

surface.

The last part is finding the determinant of the Picard lattice. This case is easy since there

is only one option for determinants when n = 13. So our Picard lattice has determinant

13. Hence, XW is isomorphic to the (13, 13) Brandhorst surface. In particular, Pic(XW ) is

generated by the curves in the invariant lattice.

4.2 Order 26

We consider Brandhorst’s surface (26, 13). This appears 3 times in Table 3.1. This means

that there is one surface with invariants (26, 13) but three different automorphisms of order

26. We leave for a future work distinguishing the three different automorphisms. In weighted

projective space P(9, 5, 3, 1), we find an isomorphic surface with purely non-symplectic au-
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w

C2
y

C1
z

Figure 4.2: Curve configuration, n = 26

tomorphism. Let

W = x2 + y3z + z6 + yw13, and , σ =

(
1

2
, 0, 0,

1

13

)
.

We begin by describing the resolution of singularities on YW . The point (0, 1, 0, 0) has a Z5

isotropy group and so an A4 singularity. When y = w = 0, W = x2+ z6 = (x+ iz3)(x− iz3).

This gives us 2 points with Z3 isotropy. So we have two A2 singularities. When we blow up

these points we get the curve configuration in Figure 4.2.

Step 1. n = 26 and |σ| = 26. We check that

det(σ) =
1

2
+

1

13
=

13

26
+

2

26
=

15

26
.

Since this is a primitive 26th root of unity we have a purely non-symplectic automorphism.
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Step 2. Our surface is not self dual, so we check the dual. The dual surface is W T =

x2 + y3w + yz6 +w13 with weight system (13, 8, 3, 2; 26). Thus dT = 26. Thus 22− ϕ(dT ) =

22− ϕ(n) = 22− ϕ(26) = 22− 12 = 10 and our Picard lattice has rank 10, as desired.

Step 3. We check all the eigenvalues. If we consider the action of σ on the exceptional

curves, we see that each is invariant as σ fixes Cw. Thus by Theorem 3.5, we see that

| rk sX(σ)| = 9. Since | rk sX(σ)| = 9, we have nine eigenvalues equal to 1.

Next we look at powers of σ for the final eigenvalue, specifically σ2 = (0, 0, 0, 1
13
). The

fixed locus of σ2 contains Cw of genus 0 and 9 fixed points, highlighted blue in Figure

4.2. This gives us the invariant (0, 9, 0). Now comparing with Theorem 3.4 in [9], we have

(r, a) = (10, 1). This means the final eigenvalue is −1 and all ten eigenvalues are non-

primitive eigenvalues. This example corresponds with the Brandhorst surface.

Since there is only one determinant on Brandhorst’s list for n = 26 determinants, our

lattice has determinant 13 and XW is isomorphic to the (26, 13) on Brandhorst list.

Remark: While it is not necessary to calculate the determinant for this example, we

include the calculation here as we already have all the elements needed. Above we identified

a = 1 which means our determinant is 13a = 13 by [9]. Similarly, this defines a sublattice

corresponding to (0, 0, 0, 1
13
) with determinant 13. This is an additional example of (13, 13)

Brandhorst surface, i.e. this surface and the previous surfaces are isomorphic.
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Figure 4.3: Curve configuration, n = 11

4.3 Order 11

We consider Brandhorst’s surface (11, 11). In weighted projective space P(15, 8, 6, 1), we find

an isomorphic surface defined by

W = x2 + y3z + z5 + yw22, and σ =

(
0, 0, 0,

1

11

)
.

We start by resolving the singularities on YW . When y = w = 0, we have W = x2 + z5

so we have one A2 singularity. The point (0, 1, 0, 0) has a A7 singularity. Finally, when

x = w = 0, W = y3z + z5 = z(y3 + z4). This gives us two A1 singularities. The curve

configuration in Figure 4.3 shows the blow up of the singularities.

Step 1. n = 11 and |σ| = 11. Since 1
11

is primitive 11th root we have a purely non-

symplectic automorphism.

Step 2. Since our surface is not self dual, we check the dual. The dual polynomial

is W T = x2 + y3w + yz5 + w22 with weight system (11, 7, 3, 1; 11), so dT = 22. Thus
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ϕ(dT ) = ϕ(22) = 10 = ϕ(11) and 22− ϕ(dT ) = 22− ϕ(n) = 22− ϕ(22) = 22− 10 = 12. This

shows that our Picard lattice has rank 12, as desired.

Step 3. When we consider the action of σ on our exceptional curves, we see that each

is invariant under our action. Thus by Theorem 3.5, we find that | rk sX(σ)| = 12. All

eigenvalues are 1 and so are non-primitive roots of unity. There is only one determinant

choice for n = 11, so the determinant is 11. Hence, XW is another Brandhorst surface.

4.4 Order 22

We consider Brandhorst’s surface (22, 11). This has one representation in Brandhorst’s

paper. In weighted projective space P(11, 6, 4, 1), we find an isomorphic surface with auto-

morphism defined by

W = x2 + y3z + yz4 + w22, and σ =

(
0, 0, 0,

1

22

)
.

We start by resolving the singularities on YW . The point (0, 1, 0, 0) has a A5 singularity.

The point (0, 0, 1, 0) has a A3 singularity. When x = w = 0, we haveW = y3z+yz4 = yz(y2+

z3), so we get three A1 singularities. We blow each singularity up to get the configuration

in Figure 4.4.

Step 1. n = 22 and |σ| = 22. Since 1
22

is primitive 22th root we have a purely non-

symplectic automorphism.

Step 2. Since our surface is self dual, dT = 22. So 22−ϕ(dT ) = 22−ϕ(n) = 22−ϕ(22) =

22− 10 = 12. Our Picard lattice has rank 12.
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Figure 4.4: Curve configuration, n = 22.

Step 3. Next we check that each of the twelve eigenvalues are non-primitive. The action

of σ leaves all exceptional curves invariant, so | rk sX(σ)| = 12. This means we have all twelve

eigenvalues as non primitive eigenvalues. There is only one determinant choice for the n = 22

Brandhorst’s surface so the Picard lattice has determinant 11. Thus XW corresponds with

the (22, 11) Brandhorst surface.

Remark: If we consider σ = (0, 0, 0, 1
11
), we get another representation of the (11, 11)

surface on Brandhorst’s list.

4.5 Order 10

We consider Brandhorst’s surface (10, 5). This has only one representation of surface and

automorphism ( see Table 3.1). In weighted projective space P(5, 2, 2, 1), we define the K3

surface with

W = x2 + y5 + z5 + w10, and σ =

(
0, 0, 0,

1

10

)
.
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C0
w

C6
x

Figure 4.5: Curve configuration for XW , n = 10

We start by finding all the singularities. When x = w = 0, then W = y5 + z5 =

(y + ζ5z)(y + ζ25z)(y + ζ35z)(y + ζ45z)(y + z) and so this gives us five A1 singularities.

The surface XW is not on Brandhorst’s list, but we will consider a further quotient.

det(AW ) = det



2 0 0 0

0 5 0 0

0 0 5 0

0 0 0 10


= 500 = 10 ∗ 10 ∗ 5.

Because det(AW ) = |GW | = |JW | · |SLW/JW | · |JWT |, and we have |JW | = 10 and

|JWT | = 10, we find |SLW/JW | = 5. We let G = SLW and so G̃ = G/JW = SLW/JW ∼= Z5.

We quotient XW by G̃.

SLW/JW is generated by (0, 1
5
, 4
5
, 0), which is equivalent (via JW ) to (0, 0, 3

5
, 2
5
), and also to

(0, 2
5
, 0, 3

5
). Hence the fixed points can be found where y = z = 0, where y = w = 0 and where

z = w = 0. The first conditions (y = z = 0) means that W = x2+w10 = (x+ iw5)(x− iw5),
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Figure 4.6: Quotient Curve configuration for XW,SLW
, n = 10

which contributes two A4 singularities. The other sets of conditions each contribute another

A4 singularity. Furthermore, the five A1 curves in Figure 4.5 are permuted by SLW . Thus

we arrive at the configuration of curves described in Figure 4.6.

Step 1. Since 1
10

is primitive 10th root we have a purely non-symplectic automorphism.

Step 2. Since our surface is self dual, dT = 10 and ϕ(hT ) = ϕ(n) = 4. So our Picard

Lattice has rank 22− ϕ(dT ) = 22− ϕ(n) = 22− 4 = 18.

Step 3. Now consider the action of σ on these exceptional curves. Each is invariant as σ

fixes the curve Cw. Thus by Theorem 3.5, | rk sX̃(σ)| = 18 and we have eighteen eigenvalues

equal to 1. Thus XW,SLW
corresponds with the Brandhorst surface (10, 5).

Remark: As there is only one determinant choice for n = 10, we don’t need to find the

determinant for the Picard lattice. However, it can be calculated by looking at the fixed

locus of σ2 = (0, 0, 0, 1
5
), as in the next example.
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4.6 Order 5

We see from Table 3.1 that the surface with invariants (5, 5) is the one we just analyzed.

However, we did not give an automorphism of order 5. But the automorphism (0, 0, 0, 1
10
)

from the previous surfaces gives us also a purely non-symplectic automorphism of order 5

on this surface as well, namely σ2 =
(
0, 0, 0, 1

5

)
.

In the previous calculations, we saw that SX(σ) = Pic(XW,SLW
), so in fact, we also have

SX(σ
2) = Pic(XW,SLW

), and so again all 18 eigenvalues are equal to one for this automorphism

as well. Since all 18 eigenvalues are non-primitive, by Theorem 3.1 XW,SLW
is isomorphic to

the K3 surface (5, 5) on Brandhorst’s list.

Remark: As there is only one n = 5, it is not necessary to find the determinant. However

we can verify it by looking at the fixed locus, which contains a curve Cw of genus 0 and

13 fixed points (marked in blue in Figure 4.6). As we are really considering the class of

automorphisms equivalent to σ we use JW to check if there are alternate versions that yield

extra information.

Note that JW = (1
2
, 1
5
, 1
5
, 1
10
) and so J8

W = (0, 3
5
, 3
5
, 4
5
). Since σ ≡ σ+J8

W then (0, 0, 0, 1
5
) ≡

(0, 3
5
, 3
5
, 0).

Furthermore, to construct this surface, we took a quotient by G̃, which is generated by

(0, 1
5
, 4
5
, 0). Thus we can further see that σ can be represented by (0, 1

5
, 0, 0) and (0, 0, 1

5
, 0).

Thus the fixed locus also contains the curves Cy and Cz, both of which have genus 0.

So g = 0, k = 2 and l = 13. The invariant (0, 13, 2) using Theorem 3.4 gives (r, a) =

(18, 1). Thus the determinant of our Picard lattice is 5a = 5.
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C3
y

Figure 4.7: Curve configuration for XW , n = 14

4.7 Order 14

We consider Brandhorst’s surface (14, 7). This has one representation on Brandhorst’s paper.

In weighted projective space P(7, 4, 2, 1), we find an isomorphic surface with automorphism,

given by

W = x2 + y3z + yz5 + w14, and σ =

(
0, 0, 0,

1

14

)
.

We start by describing the process of resolving singularities of YW . The point (0, 1, 0, 0)

has an A3 singularity. When x = w = 0, we have W = y3z + yz5 = yz(y2 + z4) =

yz(y + iz2)(y− iz2). When y = 0, we see that the point (0, 0, 1, 0), which we just described,

gives us an A3 singularity. The other three points satisfying W = 0 each give us an A1

singularity. Once we blow up these points, we get the curve configuration in Figure 4.7.

This surface is not in Table 3.1. To find a surface that is in Table 3.1, we take a further

quotient. We proceed by checking if there is a quotient surface by looking at our AW . We

find that
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det(AW ) = det



2 0 0 0

0 3 1 0

0 1 5 0

0 0 0 14


= 392 = 14 ∗ 14 ∗ 2.

Because det(AW ) = |GW | = |JW | · |SLW/JW | · |JWT | and |JW | = |JWT | = 14, we calculate

|SLW/JW | = 2. As discussed in Sections 2.5 and 2.6.2, we have two choices for G: JW and

SLW . As JW acts trivially on YW , our initial analysis corresponds to JW . We let G = SLW

and so G̃ = G/JW = SLW/JW . We quotient XW by Z2.

Table 2.1 says we have 8A1 singularities in the quotient. We look at the singularities and

fixed points of YW to find isotropies. The blue points are fixed points, we proceed to discuss

each one.

If we look at the original 3A1, they come from x = w = 0, so W becomes y3z + yz5 =

yz(y+ iz2)(y− iz2) = 0. The (y+ iz2)(y− iz2) have the Z2 structure and do not contribute

any new A1 to our quotient but become equivalent under our quotient operation. Finally, the

yz represent the final A1 and A3. We discuss each one. The A1 has two fixed points occurring

on either end. These points do not preserve the structure under the quotient operation so

they are singularities on our quotient surface. These are two new A1.

Looking at our original A3 singularity, there are four fixed points occurring at the in-

tersection points. These points do not preserve the structure under the quotient operation

so they are singularities on our quotient surface. They yields 4A1 making our A3 look like

an A7. The original A3 in Figure 4.8 are drawn as wavy lines, while the four new A1 are

straight.
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Figure 4.8: Quotient Curve configuration for XW,SLW
, n = 14

Finally, SLW/JW is generated by (0, 1
2
, 1
2
, 0). Thus, all points of the form y = z = 0.

There are two of these (x + w7)(x − w7). So SLW/JW also fixes the points (0, 1, 0, 0) and

(0, 0, 1, 0) which we blew up. So we get fixed points as depicted on Cy. These blow up into

two new A1 singularities. Figure 4.8 shows all eight of the new 8A1 singularities and depicts

the quotient curve configuration.

Step 1. n = 10 and |σ| = 10. Since det(σ) = 1
14

is primitive 14th root, we have a purely

non-symplectic automorphism.

Step 2. Since our surface is self dual, dT = 14 and ϕ(hT ) = ϕ(n) = 6. So our Picard

Lattice has rank 22− ϕ(dT ) = 22− ϕ(14) = 22− 6 = 16.

Step 3. The trees of curves off of Cw are all invariant under the action of σ. But the

other 2 exceptional curves are permuted. Hence by Theorem 3.5, | rk sX̃(σ)| = 13. That

leaves us with three eigenvalues. Now if Pic(XW,SLW
) has a primitive 14th root of unity as

an eigenvalue, then it has all six. This is a contradiction so the remaining three eigenvalues

are −1. This means that XW,SLW
corresponds with the Brandhorst surface.

As there is only one option for n = 14 determinant, our Picard lattice has determinant

42



7. Hence, XW,SLW
is isomorphic to the (14, 7) Brandhorst surface.

4.8 Order 7

We see from Table 3.1 that the surface with invariants (7, 7) is the one we just analyzed.

However, we did not give an automorphism of order 7. But the automorphism (0, 0, 0, 1
14
)

from the previous surface gives us also a purely non-symplectic automorphism of order 7 on

this surface as well, namely σ2 = (0, 0, 0, 1
7
).

We look at the fixed locus σ2. The blue lines and points in Figure 4.8 assist in pointing

out the fixed locus. CW has genus 0 and is fixed; furthermore the seventh curve in the A7

tree is fixed. We count five fixed intersection points on the A7 tree, three fixed intersection

points on the A3 tree, and one fixed intersection point on A1. The Cy and Cz hold four more

fixed intersection points. This gives us a total of 13 fixed points with two curves of genus 0.

Thus, we have (g, l, k) = (0, 13, 1) and by Theorem 3.4, (r, a) = (16, 1).

Furthermore, we have SX(σ
2) = Pic(XW,SLW

), so in fact, all 16 eigenvalues are non

primitive. Since all 16 eigenvalues are non-primitive, by Theorem 3.1 XW,SLW
is isomorphic

to the K3 surface (7, 7) on Brandhorst’s list.

4.9 Order 12

Finally for the sake of completeness, we return to the surface described in Section 3.3. We

give an abbreviated version here. We have n = 12. Recall, in weighted projective space

43



C1
z

C3
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w

Figure 4.9: Curve configuration, n = 12

P(4, 4, 3, 1), we look at the surface defined by

W = x2y + xy2 + z4 + w12, and σ =

(
0, 0, 0,

1

12

)
.

We begin by resolving the singularities of YW . When z = w = 0, we have three A3

singularities. We blow up these singularities to get Figure 3.2

Step 1. Since 1
12

is primitive 12th root we have a purely non-symplectic automorphism.

Step 2. Since our surface is self dual, dT = 12. So our Picard lattice has rank 22 −

ϕ(dT ) = 22− ϕ(n) = 22− ϕ(12) = 22− 4 = 18.

Step 3. Next we check that each of the 18 eigenvalues are non-primitive. The action of

σ on our exceptional curves we see that each is invariant. Thus by Theorem 3.5 we see that

| rk sX(σ)| = 10. This means that we have ten eigenvalues equal to 1.

We look at σ4. The blue lines and points in Figure 3.2 represent the fixed locus of

σ4 = (0, 0, 0, 1/3). CW has genus 0 and is fixed. Furthermore each third curve in each of the
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trees, as well as the three intersection points. Recall, σ is equivalent to (2
3
, 2
3
, 0, 0) so when

x = y = 0, we have 4 more fixed intersection points. So we have (g, l, k) = (0, 7, 3) and

therefore (r, a) = (16, 3). Thus | rk(SX(σ
4)| = 16.

In summary, we have ten eigenvalues equal to 1 and six equal −1 or ±i eigenvalues. We

are still missing two. Further analysis of σ3 helps us place the last two eigenvalues.

The fixed locus of σ3 has CW genus 0 and 13 points. So σ3 leaves the curves invariant

and we have | rk sX(σ3)| = 10. Hence we have no third root of unity.

If one of the remaining two eigenvalues are ζ12, then all four primitive 12th roots of unity

are also eigenvalues by Lemma 2.16. This would be too many eigenvalues. Since there are no

third roots of unity the only other choice for eigenvalues are primitive sixth roots of unity.

Thus we have no primitive 12th roots of unity and this surface is isomorphic to one on

Brandhorst’s list.
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Chapter 5. FUTURE WORK

We have examined K3 surfaces in weighted projective space and determined which ones are

isomorphic to the (n, d) K3 surfaces listed by Brandhorst. This list includes many n values

that we have not discussed in detail. In future work, we can explore other values of n.

In analyzing the Picard lattice and invariant lattice of σ, we have gathered theorems that

relate (g, l, k) invariants to (r, a) invariants for σ of order 2, 3, 5, 7, and 13. This should allow

analysis for surfaces with n having factors of 2, 3, 5, 7, and 13.

Some of these surfaces will require additional tools not discussed here. For example, with

n = 12, we may be able to determine a surface is on the list without being able to point to

which one. A future work would gather and apply tools needed to find the determinant of

the Picard lattice and thus complete the identification.

Similarly, with surface n = 26, there are three different purely non-symplectic automor-

phisms identified. Another future work involves distinguishing these automorphisms on the

K3 surfaces in weighted projective space.

In conclusion, our analysis not only identifies isomorphic K3 surfaces within Brandhorst’s

list, but also lays the groundwork for future investigations into a broader spectrum of auto-

morphisms and the differentiation of K3 surfaces with purely non-symplectic automorphisms

in weighted projective space.
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