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abstract

An Investigation of the Interactions of Gradient Coherence and Network Pruning in Neural
Networks

Zachary Yauney
Department of Mathematics, BYU

Master of Science

We investigate the coherent gradient hypothesis and show that the coherence measure-
ments are different on real and random data regardless of the network’s initialization. We
introduce “diffs,” an attempt at an element-wise approximation at coherence, and investigate
their properties. We study how coherence is affected by increasing the width of simple fully-
connected networks. We then prune those fully-connected networks and find that sparse
networks outperform dense networks with the same number of nonzero parameters. In addi-
tion, we show that it is possible to increase the performance of a sparse network by scaling
the size of the dense parent network it is derived from. Finally we apply our pruning meth-
ods to ResNet50 and ViT and find that diff-based pruning can be competitive with other
methods.

Keywords: Deep learning, neural networks, generalization, gradient coherence, sparsity,
pruning
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Introduction

While the study of deep learning has experienced a meteoric rise in the last decade, much

of the underlying dynamics of network training remains poorly understood. Often new

architectures are designed via trial and error rather than a priori reasoning. This is mostly

due to a lack of tools and theorems to support such reasoning. At the beginning of this

project we set out to contribute to the development of the fundamental theory of deep

learning, to aid in the design of better architectures and training protocols and perhaps even

understand what causes deep learning to be so astonishingly effective. As has often been the

case in science, empirical study is required in order to provide clues for theory to follow. To

this end, this thesis presents a series of empirical studies aimed at developing some effective

footholds for the future continued empirical and theoretical development of our collective

understanding of the fundamentals of deep learning.

As is typical in research we arrived at the ideas in this paper by following a somewhat

circuitous path. We began with an intent to study properties of networks during training

that might be correlated with superior performance, following Nelson (2022). This led us to

Chatterjee and Zielinski (2022) and the introduction of the coherent gradients hypothesis. A

misunderstanding about how computationally expensive it would be to calculate coherence

led to the creation of “diffs,” an element-wise approximation of coherence. This led to an

interest in the possibility of using such a metric for network pruning, which resulted in a

study of a few of the properties of network pruning. The result is a series of insights about the

intersection of generalization, gradient coherence, and network pruning. While we certainly

present some interesting findings, the implications of these findings are somewhat unclear.

Many opportunities for further research remain.

1



Chapter 1. Generalization and Gradient

Coherence

We begin this chapter with a study of what has already been learned about the generaliza-

tion problem in deep learning. Then we detail an idea known as the “coherent gradients

hypothesis” and investigate their position in the current literature. We conclude with an

outline for the rest of the paper.

1.1 Literature Review on Generalization

One of the chief questions in modern neural network research is why neural networks gen-

eralize so well despite being wildly overparametrized. Traditional machine learning theory

holds that generalization stems from a limiting of the hypothesis class to a small enough set

that overfitting is controlled. Neural networks, however, clearly violate this notion. There

are three main ways that they do so.

Neyshabur et al. (2015) showed that increasing the number of hidden units in a network

can actually improve network generalization instead of hindering it. In this simple experiment

the researchers looked at fully-connected networks with a single hidden layer of increasing size

trained on MNIST and CIFAR-10. They found that test error actually decreased consistently

with the size of the hidden layer. This is unexpected because we see increased capacity

resulting not in overfitting but in improved performance on the test set.

Zhang et al. (2017) provides even more shocking continuation of this idea with an ex-

periment that showed that a convolutional network was capable of memorizing a randomly

labeled dataset (clear overfitting) and yet also generalizing well when trained on properly

labeled data. This means that when training on real data the model has the capacity to

totally overfit, and yet it doesn’t. The result is unaffected by explicit regularization and

even happens when the training data is just Gaussian noise. (Zhang et al., 2021) This result

means we must rethink our understanding of generalization, because limiting capacity clearly
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isn’t necessary to enable generalization.

Finally, it was shown that a 2-layer fully-connected network has perfect finite sample

expressivity as soon as the number of parameters exceeds the number of data points. (Zhang

et al., 2021) In practice networks are far larger than this. This theoretical result solidifies the

empirical evidence that something other than limited network capacity must be responsible

for neural network generalization. Historically there have been several hypotheses to explain

generalization, with varying degrees of promise.

Classical machine learning holds that VC dimension is the key to controlling general-

ization. Baum and Haussler (1989) showed VC dimension inflates rapidly with parameter

count and thus we should need far more training data to generalize effectively. This classical

view of generalization is also directly contradicted by the previously mentioned experimen-

tal evidence. Nagarajan and Kolter (2021) also demonstrates that the notion of uniform

convergence is unsuitable because its estimation of the generalization gap can sometimes

increase with more training data when in practice more training data improves generaliza-

tion. Uniform convergence is the idea that it is possible to sufficiently restrict an algorithm’s

hypothesis class to limit the maximum generalization error for a classifier trained with that

algorithm on any sampling of the target data distribution. The authors provide a theorem

showing that with the right setup, “even the tightest uniform convergence bound is nearly

vacuous despite good generalization.” Because generalization is exhibited even when uni-

form convergence does not guarantee it will be, there must be another explanation for why

over-parametrized networks generalize.

A more sophisticated technique is to compute norms on the matrices that compose the

network parameters and try to establish a relationship between the norms and the gen-

eralization of the network. Bartlett (1998) relates the L1 norm of the parameters to the

misclassification rate, arguing that smaller parameter values might lead to better generaliza-

tion outcomes. Neyshabur et al. (2015) used an analogy to matrix factorization to suggest

the use of other matrix norms such as the trace norm. They suggest that the learning
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process works because optimization methods bias the learning process towards low-norm

models, even if the parameter count is high.

Margin bounds are another proposed generalization bound. Glasgow et al. (2023) at-

tempts to explain how generalization can occur in regimes where uniform convergence fails.

They demonstrate the existence of a class of solutions that are near-max-margin, where uni-

form convergence fails but test loss can be driven arbitrarily low given enough training data.

This is a promising line of inquiry but is not studied in this paper.

The final measure to mention in this review is sharpness. It has been proposed that

sharp minima, that is minima where the surrounding gradients are large, generalize less

well than flat minima. It was introduced Hochreiter and Schmidhuber (1997) when the

authors described an algorithm for finding “flat minima” that were meant to generalize

well. Sharpness was again linked to the generalization mystery in Keskar et al. (2017) as

part of their investigation into why large batch sizes seem to inhibit generalization. They

found that the large-batch methods “tend to converge to sharp minimizers of the training

and testing functions,” explaining why the large-batch methods seem to generalize poorly.

Neyshabur et al. (2017) established theoretical bounds on sharpness for simple feedforward

networks with RELU activations. A useful feature of these bounds is that they do not

increase exponentially with network depth, as other measures do.

1.2 Introducing Gradient Coherence

Chatterjee and Zielinski (2022) takes on the generalization question with a novel approach

centered on what they term “gradient coherence.” Informally, gradient coherence is a mea-

sure of the degree to which the gradients of different samples in the training data help the

network better classify other samples in the training data. Formally, with samples z from a

datasetD and per-sample loss function gradients gz, the equation that they give for coherence

(α) is

α =
||Ez∼D[gz]||2

Ez∼D[||gz||2]
.
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A good way to think about coherence is that it is a measure of how strong of a general-

izable patterns the network is learning during training. When training on real data where

patterns abound, coherence is high. When training on random data that provably has no

patterns, coherence is low. Chatterjee and Zielinski (2022) believe that there are essen-

tially two regimes of neural network learning. In the first regime, generalizable patterns are

learned. Then later, the “hard” samples that do not fit into any of generalizable patterns

are memorized. This is supported by the fact that some samples are consistently learned

earlier in training than others. These are the “easy” samples that fall within the generalized

learning. The “hard” samples learned later are the ones that need to be memorized.

Two important features of gradient coherence are that it is independent of the weights

or norms of the network parameters, and that it is influenced by the dataset being trained

on. We believe that it is likely that a good measure of generalization will have to involve

the dataset being trained on.

Figure 1.1 summarizes the results of their experiments, showing that coherence is in fact

significantly different when calculated for a network training from initialization on real data

as opposed to a network training on randomly generated data. For their experiments they

used a ResNet50 training on ImageNet with SGD and a learning rate of 0.5. The logic

behind this experiment is that generalization does occur when training on real data, and

cannot occur when training on random data, so differences in the network’s behavior when

training on these datasets might be able to be attributed to the way the network behaves

when when generalization is occurring as opposed to when memorization is occurring.

To summarize, the Coherent Gradient Hypothesis states that generalization occurs when

gradients from different samples tend to point in the same direction. Experiments suggest

that gradient coherence (α) is correlated with the network learning a generalizable represen-

tation of the data, as α is larger when training on real as opposed to random data.
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Figure 1.1: The original figure from Chatterjee & Zielinski. The top row provides results for
training ResNet50 on ImageNet data. Coherence sees a large peak early in training. The
second row gives results for training ResNet50 on Gaussian noise in the shape of ImageNet
images. αm/α

⊥
m is their measure of coherence multiplied by the size of the dataset, a scaled

version of the measure introduced previously. Column 3 depicts the evolution of coherence
by epoch, and column 4 shows how coherence changes as the train loss decreases. Although
training loss goes to near zero, coherence remains low throughout training. There is a much
smaller spike in coherence coinciding with the epochs where the network is memorizing the
random data.
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1.3 Gradient Coherence in the Literature

Despite the interesting claims that Chatterjee and Zielinski make about gradient coherence,

not much has been written about investigations into this phenomenon. Most of the references

to their work simply reference in passing the notion that coherent gradients are good or that

easy samples are learned more quickly than hard samples. We will, however, relate one

paper that directly touches on the subject of gradient coherence, perhaps even providing

some explanation for what causes gradient coherence.

Sabanayagam et al. (2023) examines the relationship between a network’s Hessian and

the decision boundary. The decision boundary is important because a simple decision bound-

ary is a known indicator of generalization. They first note that when the network is at a

minimum, the spectrum of the Hessian separates into a multitude of values clustered near

zero along with a few outliers. They then note that the number of outliers is generally

approximately equal to the number of classes in the dataset the network is trained on. In

addition, the gradient information “resides in a small subspace spanned by the Hessian top

eigenvectors.” These are all observations from previous works.

Their contribution is to connect the outliers in the spectrum of the Hessian to the sim-

plicity of the decision boundary. Through numerical analysis they show that not only is the

gradient information mostly spanned by these outlier eigenvectors, so is the decision bound-

ary. Each of the eigenvectors encodes its own separate section of the decision boundary.

They hypothesize that gradience coherence emerges from a simple decision boundary, which

would explain why high coherence is associated with high generalization.

1.4 Outline

Now that we have covered the background on generalization and its relation to gradient

coherence, we will attempt to explore and exploit these coherent gradients in the context of

network pruning. The outline of this thesis is as follows:
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1. We begin by reproducing the results of the original gradient coherence paper, as well

as performing an additional experiment to show that coherence is in fact a special

property of gradients trained on real data.

2. We introduce a measurement we refer to as “diffs” which function as an element-wise

approximation of coherence within a network.

3. We examine how coherence varies with layer width in feedforward fully-connected

networks.

4. We introduce diff-based pruning using diffs, and investigate properties of pruning in

the context on fully-connected networks.

5. We apply our new diff-based pruning techniques to large models such as a vision

transformer and ResNet50

Chapter 2. Reproducing The Coherent Gra-

dients Experiment

Before diving deep into an exploration of the properties of gradient coherence, we first

validate the original experiments. In addition to reproducing the original results, we will

perform other experiments to clarify whether coherence is a merely a product of movement

in weight space or actually an indicator of coherence.

2.1 Reproduction of Original Results on CIFAR-10

Here we introduce two large models and associated hyperparameters that we will use through-

out this paper. The first is ResNet50, the same network as used in the original coherent

gradients paper. We follow their protocol and use standard stochastic gradient descent with

a constant learning rate of 0.1. We train on real data for 300 epochs, and when training
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on random data we train for 1000 epochs, which is enough for the networks to memorize

Gaussian data.

The other network that we use is the Vision Transformer (ViT). We use a patch size of

4, a depth of 6, 8 QKV heads, and a fully-connected network with a width of 512. We also

use no dropout or other explicit regularization. This model is trained using Adam with a

learning rate of 1e−4. ViT models are trained for only 200 epochs on real data, and 1000

epochs on random data.

When we say that a network is trained on “real” data, that means the CIFAR-10 dataset.

“Gaussian” or “random” data is images in the shape of CIFAR-10 images, but with each

pixel being sampled from a Gaussian distribution, meaning the image is entirely random

noise. The Gaussian data is given one of the 10 CIFAR-10 labels.

Our reported calculation of coherence differs slightly from that reported by Chatterjee

and Zielinski (2022) because they scale their measurement by the size of the dataset and I

do not. They use this scaling because for a dataset with m samples, α would take on the

value 1
m

in the case that all gradients were all pairwise orthogonal, a value they call the

“orthogonal limit.” They use this scaling to distinguish their measurement of α on a sample

of the underlying distribution D from the value it would have if it could be measured on the

true distribution. Because I am concerned more with comparison of α between architectures

and datasets, I simply calculate the ratio between the norm of the expected value of the

gradient and expected value of the norm of the gradient. This means that the range of my

measurement is [0, 1]. One of my aims is to report a coherence score that is comparable

across different networks and different datasets, allowing for easier comparison. In addition,

this lack of scaling prevents confusion between my coherence measurements and theirs, as

they trained on ImageNet and not CIFAR-10 so our dataset sizes are different and we would

obtain different values for α/α⊥m.

Figures 2.1 and 2.2 detail the results of training these models on real and Gaussian data.

The ResNet is able to memorize the Gaussian training data, as in Chatterjee and Zielinski’s

9
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Figure 2.1: Results from ResNet50 trained on both real and Gaussian data. The network is
able to achieve perfect training loss even on the Gaussian data, although the test loss is still
high on the Gaussian data. Notice that coherence obtains a larger maximum when training
on real data, as is predicted by the coherent gradients hypothesis. Compare to Figure 1.1
which illustrates results for the same experiment.

10



0 50 100 150 200
Epoch

0

1

2

3

Lo
ss

Loss on Real Data
Train
Test

0 250 500 750 1000
Epoch

0

1

2

3

Lo
ss

Loss on Gaussian Data

Train
Test

0 50 100 150 200
Epoch

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Accuracy on Real Data

Train
Test

0 250 500 750 1000
Epoch

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy
Accuracy on Gaussian Data

Train
Test

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

Co
he

re
nc

e

Coherence on Real Data
Train
Test

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

Co
he

re
nc

e

Coherence on Gaussian Data
Train
Test

Real vs Random Data for ViT

Figure 2.2: Results from ViT trained on both real and Gaussian data. Unlike with ResNet50,
the ViT is unable to memorize the Gaussian training data. However, the early epochs still
show significantly higher coherence when trained on real data vs Gaussian data, which
remains in line with Figure 1.1.
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original experiment, and the ViT model was able to memorize some of the Gaussian data.

Also following their experiments, the coherence measurement on real data was noticeably

higher than the coherence on Gaussian data. This establishes a correlation between high

coherence and generalizable learning. Our next analysis will be aimed at attempting to

further establish causality for this relationship as opposed to just correlation.

It should be noted that while coherence is higher in the beginning when trained on real

data, in later epochs it is higher for the Gaussian data. Chatterjee and Zielinski address this

in their paper, explaining that as the network learns the gradients flatten out and the precise

direction they point become more stochastic near the minima found by the optimizer. This

means that coherence will naturally rise to a peak as learning progresses and then it will

fall off when no more learning is occurring. Because training on Gaussian data takes longer,

coherence is slower to drop off entirely. One takeaway of this analysis is that if we want

to examine the properties of the coherence gradients, we should be examining the model

at the specific epochs where coherence is highest. This insight will factor into our future

experiments.

2.2 Establishing Causation Between Coherence and General-

ization

In seeking to establish causation between coherence and generalization, we seek to rule out

alternate explanations for their correlation. One such explanation is that on each dataset,

there is a particular region of weight space that contains the optimizers, and high coherence

occurs when all the weights move from their initialization point into this optimizer region. It

would then be possible that the distance between initialization and the real data optimizer is

larger than the distance between initialization and the Gaussian data optimizer, leading the

real data optimizer to exert a stronger pull on the weights and generate a stronger coherence

effect. We term this idea that faraway optimizers have a stronger pull on weights and thus

induce higher coherence the “gravity explanation” for coherence.
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Figure 2.3: Distribution of bottom 99% of weight magnitudes for ResNet50 trained on real
and Gaussian data, as well as at the network’s random initialization. The fact that the
weight magnitudes are very similar between networks trained on real and Gaussian data
suggests that a difference in how the weight magnitudes evolve is not responsible for the
difference in measured coherence.

To rule out this possibility, we first examine the distribution of weight magnitudes in the

trained networks compared to newly initialized networks. If the final weights for Gaussian

training are indeed closer to the initialization weights than the weights trained on real data,

that might point towards the gravity explanation being a reality.

Figure 2.3 shows the weight magnitude distributions for ResNet at initialization as well as

after training on real and Gaussian data. The top 1% of weights are discarded because they

are so much larger than the other weights as to destroy the histogram. Because coherence is

about the behavior of the majority of weights, this shouldn’t affect the validity of the plots for

ruling out the gravity explanation for coherence. Interestingly, we find that there are almost
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no differences between the distributions of the majority of the weights for networks trained

on both real and Gaussian data. This strengthens the case for a causal relationship between

coherence and generalization, as differences in the distribution of weight magnitudes do not

seem to be a determining factor in measured coherence. Ruling out this explanation gives

us more confidence in the explanation that coherence is genuinely linked to generalization.

We ran one more experiment to rule out the gravity explanation for coherence. We

initialized a ResNet50 network with weights derived from fully training on real data, and

then train that network on Gaussian data. If coherence is lower on Gaussian data because

the final weights are closer to the initialization point than the final weights for a network

trained on real data are to the initialization point, then this network initialized with trained

weights should exhibit high coherence when training on Gaussian data. We would expect to

see a similar level of coherence because the weights are all migrating.

Figure 2.4 shows that this is not the case. Coherence is significantly higher for the network

that is randomly initialized and trained on real data. The network trained on Gaussian data

does see a small spike in coherence between epochs 100 and 200. However, that spike is not

nearly as strong as the spike seen when the network is learning the real data. This plot is

evidence for a causal relationship between high coherence and generalization.

Now that we have demonstrated the value of coherence as a tool for investigating gener-

alization, we will use it to derive a new tool that allows us to utilize the notion of coherence

in the domain of network pruning.

Chapter 3. Diffs: An Elementwise Measure

of Coherence

We begin this chapter by defining diffs, which are intended to serve as an element-wise

approximation of gradient coherence. After defining diffs, we examine the distribution of

the diffs that result from training. These distributions support the link between diffs and

coherence. Finally, we examine how the values of high and low diffs parameters evolve over

14
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The goal is to test the hypothesis that coherence is only higher when training randomly
initialized networks on real data as opposed to random data (as in Figure 2.1) because the
optimizer for random data is closer in weight space to the random initialization point than
the real data optimizer is. If this were the case, then a network previously trained on real
data that is then trained on random data would experience comparatively high coherence
during the training on random data. However, what we observe is that the coherence in this
case is significantly lower than when a randomly initialized model is trained on real data,
suggesting that high coherence is not merely due to how far the weights are moving in weight
space.
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the course of training.

3.1 Defining Diffs

Because coherence measures the expected value of the dot product between the gradients

of two samples randomly chosen from the dataset, it is a network-level metric. Network

pruning requires a scoring of each individual parameter in order to keep only the “best”

parameters. To that end we introduce the “diff,” a parameter-level metric (a metric with a

different value for each parameter in a network) inspired by gradient coherence.

A first pass at adapting coherence to the parameter level is to simply sum up the element-

wise gradients across the training dataset. This can be seen as the expected value of the

gradient of the network in a particular direction, multiplied by the size of the dataset:

diffp =
∑
z∈D

∇`(z)p = (m)

∑
z∈D∇`(z)p

m
= (m)E[∇`(z)p]

where p is the individual parameter, m is the number of samples in the dataset, and ` is the

loss function.

However, this method is susceptible to large outliers in the dataset that generate large

gradients in a direction opposite the majority of the data points. The intuition behind

coherence suggests that it measures the extent to which each training sample helps the

network better classify other samples in the dataset. Higher coherence means that there is

a higher level of consensus amongst the various sample gradients as to which direction the

network parameters need to go, no particular training sample can dominate the coherence

calculation. If an outlier were to significantly skew the sum of the gradients it would render

the parameter ranking useless as a proxy for coherence.

To fix the outlier problem and better capture the notion of a consensus amongst the

various sample gradients, we look instead at the sign of the gradient. By adding up the signs

of the gradient we obtain the difference between the number of samples that want a weight’s
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value to go up versus the number of samples that want the value to go down. The result is a

measurement of the expected value of the sign of the gradient in a particular direction. For

a network f , element p, dataset D and loss function `, the equation is

diffp =

∑
d∈D sign(∇`(d)p)

|D|
.

We call the magnitude of this number the “diff.” If the diffs are doing what we intend

for them to do then diffs of higher magnitude should represent parameters whose values

enjoy strong consensus from all the sample gradients. If the training data is indeed a good

sample of the target distribution we are trying to learn with our network, then for a high diff

parameter (where most of the training samples agree on what the parameter’s value should

be) it is likely that the parameter’s value would help the network correctly classify a sample

randomly drawn from the target distribution. On the other hand, for a parameter whose

diff is near zero, a random sample from the target distribution would be equally likely to

want the parameter value to go up or go down, meaning that the parameter’s value is less

likely to help the network accurately predict the correct label. This reasoning leads to the

conclusion that parameters whose diffs are large have values that help a network generalize

better to the target distribution, and parameters with low diffs primarily inject noise into

the network’s labeling process.

With this in mind, diffs seem to be a terrific candidate for ranking the usefulness of

network parameters, a key step towards effective network pruning (Molchanov et al., 2019). A

network composed of predominantly high diff elements should exhibit superior generalization

compared to a network composed of low diff elements. There even seems to be the possibility

that accuracy would increase as a result of diff-based pruning because of the removal of

parameters that don’t generalize well, parameters whose values are overfit to outliers in the

dataset. In this paper we test this hypothesis by comparing diff-based pruning (using diffs)

to magnitude-based pruning and random pruning. But first we investigate some of the basic

properties of diffs.

17



When we calculate diffs, we do so by freezing the model at the end of a single epoch

of training and then calculating the gradients for the entire dataset without updating the

weights between samples.

3.2 Diff Histograms

Figures 3.1 and 3.2 show the distribution of the diffs for various layers of the ResNet50 and

ViT networks. There are two key observations to make. The first is that the diffs are roughly

normally distributed and mean centered. This means that the majority of parameters have

a diff near zero, meaning they were adjusted in both directions almost evenly. This means

that whatever the parameter’s value is, both halves of the dataset are in disagreement about

how the parameter should move, as their gradients point in opposite directions. This implies

that the parameter’s value need not change much to improve classification.

However in the case of relatively few parameters at the edge of the distribution with high

diffs, most of the samples in the dataset “agree” that the parameter’s value should move in

a given direction. After this parameter has been trained in that direction, when the network

encounters another sample, it is likely that the parameter’s value will help the network

classify that next sample because the sample is statistically likely to be similar to the rest

of the data in the dataset, most of which agreed on which direction the parameter should

move. The fact that high diffs are limited to a minority of the parameters could potentially

imply that a majority of the network’s generalizable learning is done by a minority of its

parameters, once again suggesting that diff-based pruning is a reasonable thing to try.

The second key observation is that the diffs have a larger standard deviation when calcu-

lated during an epoch with high coherence as opposed to low coherence. This link between

high coherence and large diffs is evidence that diffs are a correct quantization of coherence.

A third observation, one which urges caution when comparing diffs to coherence, is that

the diffs for the networks trained on Gaussian data do not necessarily have smaller diffs. If it

were truly the case that generalization large diffs are both direct results of large coherence,
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Diff Distributions for ResNet50 Layers on Real and Gaussian Data

Figure 3.1: Histograms showing the distribution of diffs for various layers of ResNet50. The
column on the left shows diffs for a network trained on real data, and the column on the right
shows diffs for a network trained on Gaussian data. Each row gives the diffs for a different
layer of the network. Diffs are calculated for both the epoch with the highest measured
gradient coherence as well as the lowest gradient coherence. These plots show that diffs
calculated during the epoch when coherence was highest are larger than diffs calculated when
coherence was smallest. This correlation between average diff magnitudes and coherence
measurement strengthens the case that diffs are a useful parameter-wise approximation of
coherence.
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Figure 3.2: The same plots as 3.1 for ViT instead of ResNet50. Again, we see that average
diff magnitude is larger when coherence is larger, suggesting that diff magnitudes are a good
parameter-wise approximation of coherence.
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we would expect that Gaussian data would generate very small diffs. To the contrary,

memorizing data in a Gaussian network generates very large diffs. In particular, note the

spikes at the edges of the Gaussian diff histograms for the ViT in Figure 3.2. Those spikes

occur for the parameters where every single gradient pointed in the same direction.

We are then left with two contradictory pieces of evidence. Diffs are larger when coherence

is higher, as is expected if diffs are tied to coherence. At the same time, diffs are not small

when coherence is small during training on Gaussian data. It may simply be that the size

and distribution of diffs is not itself an indicator of generalization, meaning that we can’t

look at a plot of diffs and tell whether the network will be able to generalize. This is because

diff distributions are similar for both real and random training data. However, it is possible

that in the case where we train on real data and generalization does occur, diff magnitudes

tell us which parameters most contributed to the generalization. In hopes that this is the

case, we investigated the usefulness of diffs for network pruning. But first, we will look at

how the values of parameters with high and low diffs evolve over time.

3.3 High-Diff and Low-Diff Parameters During Training

One concern with the calculation of diffs is that even if it is not the case for coherence in

general (as was shown in Section 2.2) perhaps high diff parameters are simply the ones that

need to move further from their initialization point than low diff parameters. If this is true,

then diff magnitude is correlated more strongly with weight magnitude than coherence, and

diff-based pruning is just a convoluted form of magnitude pruning.

Figures 3.3 and 3.4 refute that hypothesis by showing no discernible qualitative difference

between the evolution of parameter values with high and low diffs.

Now that we have shown that diffs are not a proxy for magnitude, we will examine the

relationship between the width of hidden layers in shallow MLPs and the coherence of the

resulting networks.
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Figure 3.3: The evolution of parameter values for the top 10 high and low diff ResNet50
parameters throughout training on CIFAR-10 data. The high diff parameters do not seem to
consistently migrate further than the low value parameters, meaning there must be another
mechanism responsible for the diff discrepancy, such as a difference in coherence.
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Figure 3.4: The same plot as 3.3 but for a ViT network instead of a ResNet50 network.
Again, there is no discernible qualitative difference between the evolution of the two sets of
parameters.
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Figure 4.1: The train/test loss and accuracy of fully-connected networks of increasing size.
As expected, the larger networks are able to perfectly fit the training data.

Chapter 4. The Influence of Width on Co-

herence and Generalization in Linear

Networks

In this chapter we will examine fully-connected networks with 3 hidden layers of varying

width trained on CIFAR-10 data. We will study the affect of width on the network’s per-

formance, generalization gap, and coherence. We will also examine the diffs associated with

fully-connected networks of various widths, and what affect network width has on them. The

purpose of this chapter is to establish a baseline of fully-connected network characteristics

as width increases so that we can compare the results with those of pruned networks.

4.1 Performance vs Width

The first question we ask is how networks of various sizes perform at classifying CIFAR-10

images. Neyshabur et al. (2015) showed that increasing the size of hidden layers in a fully-

connected network strictly improved performance. Figure 4.1 replicates this finding, showing
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Figure 4.2: The generalization gap (training accuracy − test accuracy) of fully-connected
networks as a function of the hidden layer width. In keeping with Neyshabur et al. (2015),
the size of the generalization gap does not grow indefinitely with increasing network size,
but instead levels off.

that as the number of parameters increases the training loss goes to zero and the training

accuracy nears 100%, while the test loss does not increase with the increasing overfitting as

size increases.

Figure 4.2 plots the generalization gap as a function of network width. It climbs steadily

until 1500 neurons per hidden layer, at which point it levels out because perfect train

accuracy is reached and test accuracy has leveled out. This leveling out of the generalization

gap is line with Neyshabur et al. (2015).
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Figure 4.3: Max coherence of fully-connected networks plotted as a function of the width
of the hidden layers. This plot suggests that a network’s measured coherence is roughly
proportional to its size, or at least that wider fully-connected networks demonstrate greater
coherence than narrower ones.
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4.2 Coherence and Diffs vs Width

Having seen the increasing performance and widening generalization gap, we ask how the

width of the networks affects coherence. Figure 4.3 plots the largest coherence measurements

for each network width.

An initial observation to make is that the coherence is much smaller for these fully-

connected networks than it was for the ResNet50 and ViT networks trained on real data.

Coherence seems to increase as network width increases. One hypothesis that would explain

why coherence increases with size is that the larger networks are able to search a larger space

of parameter value paths and find those that generalize better. These parameters generalize

so well that they have very strong gradients pointing in the same direction across all the

training data, pulling up the average coherence with them. There is, however, contradictory

evidence to consider. According to the coherent gradients hypothesis, if coherence is rising

then the network should generalize better. However, the generalization gap widens with

increased width instead of shrinking. It is possible that the variation in size between the

networks is responsible for both increasing the size of the generalization gap and increasing

coherence, meaning their simultaneous increases are a correlative rather than causative. This

would suggest that (at least in fully-connected networks) comparing coherence is best done

between networks of similar size, because variations in coherence due to generalization are

drowned out by variations caused by differences in size.

Finally, we examine the effect of increasing network width on the network’s diffs. Fig-

ure 4.4 shows that the diffs do seem to decrease in standard deviation as width increases.

Strangely, the diff distributions are at their narrowest with width 2800, which is when coher-

ence is at its highest. A potential explanation for this is that with larger networks, more of

the “work” of classification can be done in the earlier layers and so there is less meaningful

information being captured in the values of the parameters in the later layers.

Now that we have established a baseline for the performance, coherence, and diffs of

fully-connected networks as a function of hidden layer width, we are prepared to study the
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Figure 4.4: Diff distributions for various fully-connected network widths, calculated once
when coherence was at its maximum, and again when coherence was at its minimum. Each
column contains diffs for a different width, and each row contains diffs for a different layer.
Once again, average diff magnitudes are larger when coherence is larger, and it is smaller
when coherence is small. The distribution of the diffs seems to narrow as the width of the
network increases. In contrast, coherence tends to rise as network size increases. This casts
some doubt on the connection between diffs and coherence.
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effects of pruning on these increasingly wide fully-connected networks.

Chapter 5. Pruning Linear Networks

We have now arrived at the point we have been building up to; we will now try to prune

neural networks using diffs. We will begin by pruning the fully-connected networks similar

to the ones in the previous section. We will combine this analysis of diff-based pruning

with a comparison to traditionally pruned networks and dense networks of the same size.

We will conclude with an examination of the effect of the size of the parent network on a

sparse network’s accuracy; while holding the number of non-zero parameters constant, does

increasing the size of the parent network improve performance? How much?

5.1 Literature Review on Network Pruning

State of the art neural networks keep getting bigger and bigger, becoming ever more compute

hungry. At the same time, these networks are becoming significantly more useful which

incentivizes their use on lower-powered devices at the edge, for example smartphones. Much

research has been done on methods for capturing all of the power of a large model on a

smaller model. While distillation and fine-tuning have had remarkable success, the holy

grail technique for shrinking a neural network is pruning. Pruning means replacing a larger

network with a sparse subnetwork. A sparse subnetwork is the network that remains when

a significant fraction of the original network’s weights are clamped at zero. These sparse

networks are less compute intensive at both training and inference time. Ideally these sparse

networks would retain most if not all of the parent network’s performances. Unfortunately,

a review of the literature suggests that we have yet to discover a pruning method that

works on complex datasets and can produce sparse networks that compete with their dense

counterparts.

We know that sparse, performant subnetworks exist. Frankle and Carbin (2019) is a
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seminal work in the field that introduces the “Lottery Ticket Hypothesis.” They state the

Lottery Ticket Hypothesis as: “A randomly-initialized, dense neural network contains a

subnetwork that is initialized such that—when trained in isolation—it can match the test

accuracy of the original network after training for at most the same number of iterations.”

They then develop a technique for discovering these “winning tickets,” or performant sparse

subnetworks, using a technique called Iterative Magnitude Pruning (IMP). IMP prunes the

network by starting with the full network and training the parameters in the network and

then removing a percentage of the weights, repeating the process until a desired level of

sparsity is reached. The weights to be removed are the ones with the smallest magnitudes.

Interestingly, the subnetworks obtained this way can train to higher accuracies in fewer

epochs than the original networks. This suggests that many of the parameters in the original

networks are at best useless, and potentially even harmful to the functioning of the network.

One final feature of the networks identified by IMP is that they are dependent on starting

with the same initialization as the original network. That is, if the network is randomly re-

initialized then the sparse subnetwork will no longer perform as well. This suggests that

part of the magic of IMP is identifying a subnetwork that has been initialized in a fortuitous

region of weight-space, perhaps one near a particularly good minimum.

Frankle et al. (2020) improves on the original IMP algorithm by searching for networks

that could have been obtained by pruning early in training (0.1% to 7% through) instead

of at initialization. Instead of resetting the weights of unpruned parameters back to what

they were at initialization, they are rewound and assigned their values from some point early

in the training process. This modification allows IMP to discover subnetworks for deeper

networks that it was previously unable to prune.

Although these initial results are promising, they might not be transferable out of the

realm of simple CNNs on MNIST and CIFAR-10. Gale et al. (2019) found that when IMP

and similar techniques are scaled and used to train Transformers and ResNet50 on a variety

of tasks the sparse networks cannot be trained to a performance level on par with the original
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network. They actually found that simple magnitude pruning more performant when pruning

these large networks, even if the pruned networks do not achieve the same performance as

the originals.

Molchanov et al. (2019) explores an interesting implication of the existence of sparse

trainable networks, attempting to estimate the importance of each neuron to the network’s

capacity. They define importance as “the squared change in loss induced by removing a

specific filter (neuron) from the network.” A Taylor expansion is applied to the square change

in loss to get the parameter-wise importance estimation. They then iteratively remove the

least important parameters. While they were not able to achieve parity with unpruned

models for large networks, they were able to improve upon other methods and get similar

error with fewer parameters and fewer FLOPS of computation.

Another issue with IMP is that while it is successful, it is very expensive, requiring

a significant amount a re-training. Much of the literature following the Lottery Ticket

paper seeks to find pruning mechanisms that require significantly less computation. Once

the network is fully trained, magnitude pruning seems to remain the most effective method.

These new methods seek to achieve parity with dense networks while training “from sparsity,”

meaning that the network begins training as a sparse network and stays sparse throughout

training. Some approaches modify the architecture while training occurs to redistribute the

sparse parameters to sections of the network where they might be more useful. The following

two algorithms follow this pattern.

Evci et al. (2021) and their algorithm RigL is one such attempt at training from sparsity.

They start with a random sparse network and then at regular intervals update it by dropping

low magnitude weights and re-growing new weights. The trick is that the weights are re-

grown by selecting the neuron connections where the gradient is the highest. The idea is

that large gradients mean that a parameter’s value contains important information. They

achieve performance superior to previous pruning methods that trained with fix sparsity

from scratch.
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Dettmers and Zettlemoyer (2019) demonstrates “the possibility of training sparse net-

works that rival the performance of their dense counterparts with a single training run - no

re-training is required.” Their algorithm, sparse momentum, uses exponentially smoothed

gradients to perform parameter importance estimation. This is similar to Molchanov et al.

(2019) where they used a Taylor expansion of the loss function (whose first order approxi-

mation is just the gradient) estimate importance. The difference in their approach is that

they focus on mean momentum (gradient average) per layer, and then follow an approach

similar to Evci et al. (2021) where the prune and re-grow neurons. They prune 50% from

each layer (using magnitude as a criteria) and then use the mean momentum measurements

to apportion the new neurons. While they are still not as accurate as dense networks, they

do perform well.

We will also mention several more attempts at pruning at initialization. The differ-

ence with these is that they don’t modify the network during training like RigL and sparse

momentum do. They instead seek to do all the pruning before training even begins.

Lee et al. (2019) introduces and algorithm they call SNIP (Single-Shot Network Pruning).

As with other pruning algorithms, they attempt to calculate a “saliency measure” to guide

them in pruning the network. They also use the gradients to derive this measure. They

measure sensitivity as the largest normalized gradients at initialization. Thus they pruned

the parameters with the smallest normalized gradient magnitudes. One important feature

of this method is that it does take the dataset into consideration, so the subnetwork that it

identifies is specifically tuned to the problem domain.

Where the scoring function used by SNIP is a first-order method based on the magnitude

of the gradient of the loss function L with respect to a particular parameter θ.

S(θ) =
∣∣∂L
∂θ

∣∣.
The goal of this method is to score parameters based the magnitude of their respective

gradients. Parameters with larger gradients are ones where the loss is more “sensitive”

to that parameter being removed. Pruning only parameters with low sensitivity scores is
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intended to preserve as much of the network’s performance as possible.

Wang et al. (2020) introduces a new algorithm called GraSP which computes scores as

S(θ) = −θ ·H∂L
∂θ

where H is the Hessian of the loss function with respect to θ.

They do this because they want to preserve “gradient flow,” the magnitude of the gradi-

ents throughout training. They believe that pruning with SNIP ignores how the parameters

interact with each other to produce gradients, and as a result the gradients are too muted

during training, hindering optimization. Pruning based on the Hessian is intended to cap-

ture the interaction between the neurons and improve the total amount of gradient during

training. GraSP achieved similar results to SNIP, besting it on some network/pruning ratio

combinations and being surpassed by it for others.

Tanaka et al. (2020) examines whether or not it is possible to prune a network without

even looking at the data. Their algorithm, SynFlow, seeks to avoid what they call “layer

collapse,” in which a single layer gets pruned too much and inhibits the network’s training.

They show that SNIP and GraSP are more prone to this kind issue. In addition to their

empirical evidence, they show theoretically that any score based on gradient magnitudes will

be subject to the same issue. This is why their pruning method is data-independent. They

instead use Synaptic Flow, which is a generalization of scoring by magnitude. On CIFAR-10,

CIFAR-100, and Tiny ImageNet, SynFlow was able to out-perform GraSP and SNIP.

Frankle et al. (2021) makes the point that despite the fact that these three measures

(SNIP, GraSP, and SynFlow) perform better than random pruning, they are still not as

good as magnitude pruning after training, which is again surpassed by IMP. The authors

demonstrate that if you shuffle which weights are pruned within each layer yields just as

good of results. This suggests that the pruning methods are only effective at apportioning

layer-wise pruning percentages, and don’t actually identify which weights within the layers

are most important. Interestingly, this means that SynFlow’s lack of use of the dataset when

pruning doesn’t harm it. It is unclear if that means that data is unnecessary or (more likely)
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that there has yet to be an algorithm that makes full use of the information gained from the

dataset.

Further muddying the waters, Blalock et al. (2020) surveyed 81 papers on pruning and

found that a lack of consistent benchmarks makes it difficult to compare different pruning

methods. It is hard to see how much progress has been made in the field of pruning.

Alizadeh et al. (2022) aims to improve on prior pruning methods by taking into account

the trainability of the network identified by a given saliency criteria. They do this by

incorporating higher order gradients, or meta-gradients. The estimate the effect of pruning

a neuron by performing multiple iterations of backpropagation and weight updates and then

backpropagating the change in the loss function through the entire computation graph. This

change favors parameters that have a large impact on the loss function after several steps

of training, even if they might not have demonstrated large gradients at initialization. This

method outperformed other methods of pruning at initialization.

Sreenivasan et al. (2022) is a more recent attempt to do better at pruning at initialization.

Instead of relying on gradient based methods, they search for a sparse subnetwork that has

a non-trivial degree of accuracy pre-training. They then fine-tune that subnetwork to more

closely match the accuracy of the final network.

To summarize, the current state of the field is that there are no methods of pruning that

reliably compete with dense networks outside of toy architectures and datasets. Iterative

pruning is strong in toy situations but expensive and doesn’t scale well. There are many

attempts at pruning at initialization, many of them based on gradient magnitudes. However,

none of them are significantly better than magnitude pruning. Pruning, and especially

pruning at or near initialization, remains an open problem.

5.2 Why Coherence Based Pruning?

One of the most fundamental challenges in network pruning is parameter importance esti-

mation. Many of the experiments in the preceding literature review were based on trying
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different methods for deciding which parameters are more important than others. To this,

we add coherence-inspired diff pruning. As we have alluded to before, the logic behind diff-

based pruning is that if high coherence does in fact indicate generalization, and large diffs

are an indicator of a parameter contributing to high coherence, then pruning a network to

contain only those parameters with large diffs should reveal an effective subnetwork. This

focus on consensus rather than magnitude makes this pruning method robust to outliers in

the dataset. Nelson (2022) found that coherence doesn’t seem to correlate with final low

training loss. However, diffs might help us understand which parameters most contribute to

low loss, allowing us to create performant sparse networks.

Another nice property of diff pruning is that the information needed to rank parameters

can be obtained much earlier in the training process. Where magnitude pruning requires

fully training the model to have access to parameter magnitudes, peak coherence is typically

achieved relatively early in the training process when training on real data. This means that

the training process can be run for fewer epochs before a mask can be obtained.

Compared to methods that seek to prune at initialization such as SynFlow, diff-based

pruning prunes based on the specific dataset that is to be trained on. When doing deep

learning, the final model is always a function of the architecture, optimization algorithm,

and the dataset. It seems like a pruning method that uses information about the dataset

should outperform one that doesn’t. Diff based pruning takes advantage of this information

without too much of the extra training burden that pruning at initialization methods seek

to avoid.

5.3 Pruning Increasingly Wide Linear Networks To 10% Spar-

sity

In our first pruning experiment we start with the same set of widths we used in our investi-

gation of coherence as a function of width. Due to the quadratic way that parameter count

increases with width, for each width we compute a second width that results in a network
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with 10x the parameter count. For input vectors of length 3072 (like CIFAR-10 images) and

10 output classes, scaling a network of width w by a factor r to get the scaled width w′ is

calculated with the equation:

w′ = w + (
1

3
)(
√

3rw(3w + 3082) + 2374681− 3w − 1541).

We then use one of three masking techniques to prune the network to 10% sparsity,

recovering the original number of parameters in the dense network up to a difference in the

number of bias parameters, which are not pruned. These pruned networks are trained for

200 epochs with Adam using a learning rate of 1e−4. Importantly, we do not prune every

single layer of the network. We skip layers that are small, so as not to create a bottleneck

in the architecture. For ResNet50 this means pruning only the convolutional layers and the

larger shortcut layers. We also skip pruning batch norm and bias layers.

The first masking technique that we use is diff-based masking, where we select only the

parameters with the largest diff magnitudes. The second is magnitude based masking, where

we select the parameters with the largest magnitudes. The third mask is random masking,

where the decision of which weights to keep is completely random.

To select the diff mask we calculate the diffs using the epoch for which the highest

coherence was measured during training. While we cannot know which epoch exhibited the

highest coherence until the network is fully trained, the tendency of coherence to peak early

when training on real data means that we should be able to identify the max coherence

epoch relatively early in the training process, saving compute. For the magnitude mask, we

use the network weights at the end of training.

Each network is trained from a random initialization. We do not keep with the Frankle

and Carbin (2019)’s procedure of re-using the same exact initialization between the original

training run and the masked training run. Our aim is to discover whether or not pruning

can identify a subnetwork whose innate structure grants it performance, rather than finding

a particular initialization that works well. Our pruning methods are intended to be a search

in architectural design space that may help to inform future architectural design.
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Figure 5.1: Performance of pruned fully-connected networks. Each parent network was
pruned to 10% sparsity using one of several difference pruning techniques and then re-
initialized and trained from scratch. The line labeled “none” represents a dense network
with the same number of parameters as the sparse networks. It is clearly demonstrated that
the sparse networks derived from larger parent networks are more performant than the dense
network of comparable size.
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Figure 5.2: Generalization gap for pruned fully-connected networks.Each parent network
was pruned to 10% sparsity using one of several difference pruning techniques and then
re-initialized and trained from scratch. The line labeled “none” represents a dense network
with the same number of parameters as the sparse networks. All sparse networks generalized
better than the dense network, but diff-based pruning generalized significantly better than
magnitude based pruning when the network size was small. Interesting, random pruning
generalized the best.

Figure 5.1 shows the loss and accuracy on train and test sets for each type of pruning, as

well as for the original dense network. We can clearly see that the dense network does the

most overfitting - it has the best performance on the training data and the worst performance

on the test data. Surprisingly, the randomly pruned network performed very well as network

size increased, achieving the highest accuracy at large widths. The coherence and magnitude

pruning methods required significantly smaller parent networks to reach the highest levels

of accuracy. Magnitude pruning seems to out-perform diff-based pruning in this setting.

Figure 5.2 analyzes the performance of these pruned models through the lens of the
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generalization gap. Here we see that, especially in smaller networks, diff-based pruning does

actually outperform magnitude based pruning. This suggests that our coherence approach

does in fact bias networks towards better generalization. This is a promising result. It

remains surprising that random pruning is so effective at controlling the generalization gap,

even more effective than diff-based pruning. Further research is needed to understand this.

5.4 Fixed Size Networks With Increasingly Large Parent Net-

works

In the previous section we help the level of sparsity constant at 10%, meaning that as the

parent networks grew in size so did the sparse child networks. Here we investigate sparse

networks from a slightly different perspective - if we hold the number of non-zero parameters

in a sparse child network constant, how does its performance change as we increase the

size of the parent network it was derived from? In other words, is it better to prune a

comparatively smaller parent network to a moderate level of sparsity, or to prune a much

larger parent network to a much higher level of sparsity?

We started with a fully-connected network with 3 hidden layers, as in the previous ex-

periments. The base network had a hidden layer width of 512 neurons, totalling 2.3M

parameters. We then trained a series of increasingly large parent networks, up to 62x larger

than the original network. Each of these larger networks was pruned so that the resulting

sparse network had the same number of nonzero parameters as the original 512 width dense

network. The training protocol was the same, re-initialization followed by training for 200

epochs with Adam and a learning rate of 1e−4.

Figure 5.3 gives the results of this experiment. Because the number of nonzero parameters

is equivalent to a dense network with width 512, we should expect coherence and magnitude

pruning to dominate like the did in the low width setting in the previous experiment. The

results indicate that this is true. In addition, we see that there is in fact an increase in

accuracy with the scale of the parent model, and the top-end accuracy achieved was similar
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Figure 5.3: Performance of sparse networks derived from increasingly large parent networks.
While the number of parameters in the dense parent networks increased, each was pruned
to a different sparsity level so that each parent network yielded a sparse child network of
equivalent nonzero parameter count. The figure shows that the performance of the sparse
network can be improved simply be increasing the number of parameters in the parent
network it is derived from. Once again, magnitude pruning seems to be outperforming diff-
based pruning. In contrast to the previous experiment where the pruning level was kept
constant at 10%, we can see that random pruning starts to struggle when the network is
pruned too heavily.
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to what was achieved with the 10% sparsity pruning of smaller models. The difference is that

where the 10% sparsity model accuracy peaked when the parent network had 50M parame-

ters, in this setting we needed a parent model size of between 60M and 100M parameters to

achieve similar results, depending on the network size.

The conclusions that can be drawn from this chapter are quite striking, given that they

are only shown to hold in this limited setting of fully-connected networks with 3 hidden layers.

First, we found that sparse networks perform better than their counterparts of equivalent

parameter count. Second, we find that scaling the parameter count of the parent network

without increasing the number of nonzero parameters in the resulting sparse network will

still improve accuracy. This means that efforts to prune a model should really be thought

of as lying on two different axes. The first axis, which is traditionally the one investigated,

is that of varying sparsity ratio. The second axis is the size of the parent network. Future

attempts at creating sparse models should consider experimentation along both these axes

to produce the most performant final model with the fewest parameters.

Chapter 6. Pruning Large Networks

Having demonstrated the effectiveness of pruning on simple fully-connected networks, we

now turn our attention to the pruning of industrial-strength networks with more complex

architectures. Here we will evaluate coherence, magnitude, and random pruning on the ViT

and ResNet50 networks that we examined in the first two chapters.

6.1 Global Pruning

For our first experiments we used a global pruning strategy, in which different layers can

be pruned to different sparsities based on the rankings of their respective parameters. This

is the approach favored by most of the existing pruning literature, including Frankle and

Carbin (2019). Because some pruning methods prune single layers too heavily, thus creating
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a bottleneck, we establish a 2% sparsity floor for each individual layer, not pruning it further.

We prune each network to 10% sparsity and then train it from initialization. As with our

fully-connected networks, we do not preserve initializations between training runs. ResNet

is trained with SGD and learning rate 0.5, while ViT uses Adam and learning rate 1e−4.

Both are trained for 300 epochs.

In addition to employing masks which keep only the parameters with the highest coher-

ence or magnitude, we test the efficacy of these pruning methods by employing masks that

invert those parameter ranking. That is, if the “coherence best” mask takes the param-

eters with the top 10% of diff magnitudes, the “coherence worst” mask will keep only the

parameters with the lowest diff parameter. This is also true for “magnitude best” and “mag-

nitude worst.” The “random 10” mask means that a random subset of 10% of parameters

are kept.

Figure 6.1 list the results of this pruning. For the ResNet we see that magnitude pruning

is most effective, and it is surprisingly followed by the “coherence worst” mask. It seems that

diff-based pruning actually has an inverse effect on the efficacy of training pruned ResNet

models, and taking the parameters with small diffs is actually belonging to two different

classes.

Figure 6.2 shows the results for the ViT, and surprisingly we see diff-based pruning as the

clear winner. In fact, it matches the performance of the full dense network. This plot shows

that there is a very clear distinction in how different networks respond to different pruning

methods. We also see that random pruning actually outperforms magnitude pruning in this

scenario.

6.2 Pruning By Layers

What explains the poor performance of diff-based pruning on ResNet? Figure 6.3 shows

that coherence worst pruning (as well as magnitude best pruning) performed poorly because

many of the layers were pruned all the way to the 2% sparsity minimum. Figure 6.4 shows
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Figure 6.1: Results for pruning ResNet50 to 10% sparsity using various techniques. Layers
were pruned non-uniformly, meaning layers with parameters that ranked higher in “impor-
tance” were pruned less than “unimportant” layers.
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Figure 6.2: Results for pruning ViT to 10% sparsity using various techniques. Layers were
pruned non-uniformly, meaning layers with parameters that ranked higher in “importance”
were pruned less than “unimportant” layers.
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that ViT, on the other hand, had its layers pruned much more evenly, without any layers

hitting the sparsity minimum. It is unclear why coherence/diffs seem to be concentrated

near the terminal layers of the network for ResNet but not for ViT.

Because disproportionate layer pruning seems to be responsible for the poor performance

of diff-based pruning on ResNet, we re-run our pruning experiment with the modification

that each layer is uniformly pruned to a 10% sparsity. Because parameter scores are only

compared with other parameters in the same layer, we refer to this as “local” pruning.

Figure 6.5 shows that under uniform pruning, diff-based pruning results are no longer

inverted, with the “worst” pruning prevailing over the “best” pruning. Another interesting

takeaway from this table, however, is that 10% random pruning nearly matched global

magnitude pruning for ResNet, which was the most successful masking strategy for ResNet.

This result drives home just how effective random pruning can be, and should perhaps cause

us to question our current understanding of pruning methods.

Figure 6.6 shows that diff-based pruning is still the best way to prune ViT, although

with uniform layer pruning it was unable to achieve parity with the original dense network.

Chapter 7. Analysis and Conclusion

In this thesis we have covered a lot of ground and performed a lot experiments. We tested

the coherent gradients hypothesis, introduced diffs, evaluated coherence on fully-connected

networks, pruned fully-connected networks, and then pruned larger networks. In the Anal-

ysis section we will review and analyze the results of these experiments, highlighting the

conclusions that can be drawn. In the Future Work and Conclusions section we will list the

questions that remain unanswered.
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Figure 6.3: Layer-wise sparsity levels resulting from pruning ResNet50 with a variety of
methods. ResNet50 layers are divided into two different groups, convolutional layers and
shortcut layers. The x-axis represents increasing depth within the network. “coherence best”
and “magnitude worst” severely pruned the early layers, which is likely responsible for the
lesser performance of the resulting networks.
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Figure 6.4: Layer-wise sparsity levels resulting from pruning ViT with a variety of methods.
ResNet50 layers are divided into three different groups: QKV layers, feedforward hidden
layers, and block output layers. The x-axis represents increasing depth within the network.
In contrast to Figure 6.3 where some layers were pruned much more than others, ViT layers
are pruned far more evenly with no sparsity levels going beyond 5%.
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Figure 6.5: Results for pruning ResNet50 to 10% sparsity using various techniques. As
opposed to Figure 6.1, layers were pruned uniformly to 10% sparsity, which corrected the
poor performance of the “coherence best” mask.
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Figure 6.6: Results for pruning ViT to 10% sparsity using various techniques. As opposed
to Figure 6.2, layers were pruned uniformly to 10% sparsity
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7.1 Analysis

Coherence behaves differently on real and random data, regardless of initializa-

tion.

Chatterjee and Zielinski (2022) showed that when a network is trained from a random

initialization it will have different levels of diff-based on whether the data was real or random,

i.e. whether generalization was occurring. In this paper we showed that not only does this

conclusion hold when the network is randomly initialized, it also holds when a network is

initialized with fully trained weights and trained on random data. Coherence is not merely

an indication of movement in weight space, it seems to be genuinely linked to generalization.

Diffs measured on the same network are distributed differently when coher-

ence is high versus when coherence is low, hinting at a link between diffs and

coherence.

Given that large diff magnitudes should theoretically be associated with high coherence,

Figures 3.1 and 3.2’s illustration of the larger spread of diffs during the max coherence epoch

gives empirical evidence for the fact that diffs might somehow align with coherence.

Diffs are not necessarily larger on real data than on random data, calling into

question the link between diffs and coherence.

If the connection between diffs and coherence were perfect, then Figures 3.1 and 3.2

would show diffs much larger on real data than on random data. This is not the case. The

interpretation of the data most critical to the theory of diffs being an approximation of

coherence is that diffs are large when training is occurring because weights have to move in

the right direction. When training has slowed down, more weights are already mostly set

and so their values oscillate more, leading to low diffs. High coherence seems to coincide

with rapid learning, and coherence drops when learning has mostly finished. Therefore diffs

and coherence are seem to be largest during the period of rapid learning and small at the

end of training, but this is merely a correlation and not a causation. In this scenario, while

coherence is not merely a proxy measurement for movement in weight space, diffs are.
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Coherence generally increases with the width of a fully-connected network.

Figure 4.3 shows that coherence increases fairly consistently as network width increases.

This, however, contradicted by the fact that as coherence grows the generalization gap is also

growing. This suggests that increasing coherence may not be a strict indicator of increased

generalization.

Just because a network achieves higher max coherence than another network,

that doesn’t imply that the diffs will be larger

Figure 4.4 shows that even though the width 2800 network has higher max coherence (as

seen in Figure 4.3), the diffs are generally narrower than the other. In fact, diff distributions

seem to narrow with the width of the network, inversely correlated to coherence. This is

another blow to the theory that diffs are linked to coherence.

Pruned networks generalize better than comparably sized dense networks

Figure 5.2 shows that the generalization gap is smaller for the pruned networks, but how

are they closing the gap? Do they overfit less at the cost of accuracy, or do they simply

achieve better accuracy. Figure 5.1 shows that the pruned networks actually do both. They

achieve lower training accuracy and yet higher test accuracy - exactly the results one would

expect to see if pruning the network helped to improve generalization.

The performance of sparse networks can be improved without increasing

nonzero parameter count, simply by scaling the size of the parent network they

are derived from.

Building on the previous point, we discovered that not only do sparse networks perform

better than their dense counterparts, but their performance can be improved simply by

increasing the size of their dense parent network. In the search for ever more powerful yet

compact models, this suggests that it might be possible to expend more resources at training

time training a larger dense model and be rewarded with a more powerful model at inference

time, without increasing the cost of inference compute.

While diff-based pruning can outperform random pruning, it seems to be
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inferior to magnitude pruning for fully-connected and ResNet networks. Diff-

based pruning seems to work well on ViT networks.

Looking again at Figures 5.2, 5.1, and 5.3, we see that magnitude pruning generally

performed better than diff-based pruning on the fully-connected networks. Figure 6.1 shows

that magnitude pruning outperforms diff-based pruning on ResNet as well. Figure 6.2 shows

that diff-based pruning performs very well on ViT, to the degree that it is able to match its

dense counterpart in performance at a 10% sparsity level.

7.2 Questions Remaining

Why do networks trained on Gaussian data have such large diffs?

Figures 3.1 and 3.2 show that networks trained on random data can still have large diffs.

If there is no generalizable pattern to be learned, how can so many samples agree on the

direction that parameters should be moving? Shouldn’t each gradient be roughly random,

meaning that by the law of large numbers the diffs should average out to be near zero?

Why are diffs small when coherence is high

Figure 4.4 shows that even when coherence is high (width 2800) the diffs are narrowly

distributed. Our hypothesis is in such an over-parametrized context relatively few parameters

are needed to fit the data, and the gradients on the rest of the parameters are more random,

meaning the majority of parameters have small diffs. However, this hypothesis needs further

investigation.

Why is coherence high when generalization gap is high?

Figure 4.3 shows that coherence increases with the width of a full-connected network,

and Figure 4.2 shows that the generalization gap increases monotonically with width. If

generalization is meant to increase with width, this forms a contradiction. The performance

results show that the test accuracy did not increase with width, only the training accuracy

did. With this being the cause of the generalization gap growth, our hypothesis is that

the high coherence and high generalization gap have separate causes. The generalization
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gap is caused by overfitting due to increased network capacity. The increasing with must

be responsible for increased coherence in a way that does not necessarily capture increased

generalization. Understanding this relationship requires further investigation.

Why is random pruning so effective, particularly in controlling the general-

ization gap

In Figure 5.2, the fact that random pruning generalizes so well calls into question the

efficacy of other pruning methods. If random pruning does well, are we sure that our other

pruning methods are adding much additional value?

The effectiveness of random pruning hints that the effectiveness of our pruning methods is

not due to their cleverness but rather due to the inherent properties of large sparse networks.

Perhaps our existing pruning methods are not actually choosing the “best” subnetworks, and

really any subnetwork will perform reasonably well. Either we don’t currently know enough

to predict the best subnetworks, or the gap between a really good subnetwork and a random

one is rather small.

Magnitude pruning might be good, but it really isn’t that much better than

magnitude worst, so do we actually understand pruning nearly as well as we

would like to think we do? Building on the previous question, tables 6.1, 6.2, 6.5, and

6.6 show that the gap between magnitude pruning and its complete converse (keeping only

the weights with the smallest magnitudes) is rather small. If magnitude pruning were really

effective at producing especially powerful subnetworks, one should expect this gap to be

significantly wider. This “mask inversion problem” needs to be investigated further.

Early magnitude pruning vs late magnitude pruning? How soon can you

stop?

In our analysis we noted that diff-based pruning requires information that is available

relatively early in training, whereas magnitude pruning requires a fully trained network. We

would like to know how soon into training the relative magnitudes of the network’s weights

is established. That is, at one point in training does the mask derived from magnitude
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pruning stabilize? Is it variant throughout all 200 epochs of our training, or does it stabilize

maybe 10% of the way through? The answer to this question will determine whether or not

diff-based pruning actually saves computational resources over magnitude pruning. If we can

compute a magnitude mask after a few epochs of training and get roughly the same mask

as one computed at the end of training, we should be doing that.

Why do different networks respond differently to different pruning tech-

niques? Why does ViT respond really well to diff-based pruning when ResNet

doesn’t? Our results in Chapter 6 show that ResNet50 and ViT respond differently to dif-

ferent pruning methods, both in terms of how well the pruned networks compare to the dense

network and in which pruning methods are most effective. In particular, ViT responded very

well to diff-based pruning. It is unclear what difference in the architectures is responsible for

this difference. Nelson (2022) found that fully-connected networks and CNNs have different

“typical ranges” for coherence. Here we showed that different networks respond differently

to pruning and coherence.

Does the success of diff-based pruning on ViT mean that it would work well

when pruning LLMs?

Given that ViT is a network based on the transformer and it responds very well to

diff-based pruning, would LLMs also respond similarly well to diff-based pruning? If so

this represents an opportunity to reduce LLM inference costs, which would be a major

achievement.

How does pruning scale into the hundreds of billions of parameters

All of our experiments were performed with networks with less than 200M parameters.

State of the art LLMs have up to an order of magnitude more parameters and are trained

on datasets far more complex than CIFAR-10. How well do these sparsity techniques work

at such a scale? If our experiments with fully-connected networks are to be believed, then

for any number of parameters a sparse network will outperform a dense network with the

same number of parameters. Does this mean that we can generate sparse networks that are
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competitive with dense LLMs with the same number of parameters?

7.3 Conclusion

Gradient coherence seems to have some merits as a theory. At the very least, it certainly

is a measure that can distinguish between training on real and random data. Diffs as an

element-wise approximation of coherence might be a good idea, but the analogy is imperfect

as their behaviors don’t always match.

In investigating fully-connected networks, we found that increased network width in-

creases coherence. Pruned fully-connected networks perform better than dense ones with

the same number of nonzero parameters. Increasing the size of the dense parent network

can improve the performance of sparse fully-connected networks.

Pruning also seems to be effective for more complex architectures like ViT and ResNet.

While only ViT permitted a pruned model competitive with the dense model, pruned versions

of both models were within a few percentage points of parity. In particular, random pruning

performed much better than might have been expected.

There are many avenues for further research. For most questions that were answered,

several more have arisen in their place. The intersection of generalization and pruning shows

promise of being a rich vein to be mined for future progress.
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