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ABSTRACT

GAMMA-RAY BURST AFTERGLOW DYNAMICS IN INHOMOGENEOUS
INTERSTELLAR MEDIA

Jacob Fields

Department of Physics and Astronomy

Bachelor of Science

Gamma-ray bursts (GRBs) are the most luminous electromagnetic phenomena in the

universe, but much remains unknown about them. Many models invoked to explain their

highly variable light curves are based on complicated dynamics and interactions involving

the GRB progenitor but assume simple circumstellar environments. Many long GRBs,

however, show late time optical and x-ray flares that may be an indication of a much richer

environment. Relativistic hydrodynamics simulations are used to study a family of initial

data with a relativistic blast wave encountering a dense circumstellar shell of matter, similar

to what an aging star expelling the outer layers of its atmosphere might generate. The

possibility that some of this late time curve variability results from these interactions is

tested. A characterization of the profiles of the resulting reverse shocks and a preliminary

analysis of the subsequent radiation are presented. The results suggests a noticeable increase

in the synchrotron spectrum immediately following the interaction and possible infrared and

optical emissions due to black-body shortly afterward.
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Chapter 1

Introduction

1.1 Gamma-ray Bursts

Gamma-ray Bursts (GRBs) are the most luminous electromagnetic phenomena in the known

universe [1]. Although they were first detected in the 1960s by the Vela satellites [2],

astronomers learned very little about them until 1997 when observations finally captured the

GRB afterglow in x-ray and optical wavelengths [3].

Long GRBs, which are GRB events typically lasting longer than two seconds, are

thought to be generated from relativistic jets emitted during supernova events. The popular

“fireball model” (see Fig. 1.1) suggests that internal shock waves in these jets generate

electromagnetic radiation via synchrotron emission [4]. Despite its early success and

simplicity, however, the fireball model has not been able explain some more recent GRB

observations. An excellent example is the recent GRB 190114C, whose teraelectronvolt

photons strongly favor emission mechanisms based on inverse Compton scattering [1].

These and similar observations have led to modified fireballs and alternative models for

GRBs [5].

1
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Figure 1.1 An illustration of the fireball model demonstrating how internal shock
waves in the relativistic jet collide and generate gamma rays [6].

GRB models, including modifications to the fireball model and alternatives, however,

cannot always accurately reproduce observed light curves [7]. Many models focus on

the emission mechanism itself (i.e., the behavior of the central engine or how radiation is

emitted), but their failure to explain certain observations without heavy fine-tuning suggests

that something else is missing [8]. The “reverse shock” seen in some GRB events may shed

some light on some of these missing components. In addition to the primary shock front

propagating forward (the “forward shock”) through the interstellar medium (ISM), some

GRBs produce secondary emissions which suggest that an additional shock front moves

back toward the progenitor [9, 10]. These reverse shocks could be the result of the GRB

interacting with and partially reflecting off of the ISM, but a lack of solid theoretical models

has limited investigating this somewhat.
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Figure 1.2 This diagram illustrates the general life cycle observed in smaller
Sun-like stars and more massive stars. Note that while the Sun is likely to become
a white dwarf, massive stars will go supernova [12].

1.2 Stellar Evolution

As many long GRBs are associated with supernova events, massive stars are the most likely

progenitors [11]. Fig. 1.2 shows the typical stellar evolution of both small stars, like our Sun,

and massive stars above 8–10 M�. This figure shows that before a massive star explodes, it

enters a red supergiant phase, where the star expands to many times its original size. These

massive stars blow off much of their outer layer of gas during this expansion, which then

cools and collects into a shell in the ISM. The mass and radius of this shell at the launch

of the GRB jet depend heavily on the mechanism used for mass loss, but some models

predict that it may be as much as a few solar masses located anywhere from 10−5 to 100 pc
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from the star [13]. Because these shells are quite large, they could serve as possible sources

for reverse shocks [8]. We intend to investigate this idea using relativistic hydrodynamics

(RHD) simulations. By modeling a relativistic blast wave during the afterglow phase of a

GRB, we can predict the electromagnetic signal from a collision with a dense shell of stellar

ejecta in the ISM.

1.3 Previous Work

Mesler et al. [8] previously used a Newtonian hydrodynamics code to model a complex

interstellar environment and investigate the effects of a GRB in the presence of a circumstel-

lar shell. Their predicted light curves successfully demonstrate noticeable departures from

those calculated in the presence of simpler interstellar media, while qualitatively matching

more complicated models based on delayed energy injection. However, they acknowledge

that their methodology is somewhat limited, and more sophisticated models are necessary to

construct a more quantitative picture.

Previous RHD simulations, such as those by De Colle et al. [14], provide afterglow

predictions for GRBs in simple media without inhomogeneities. Our own work follows

similar procedures and methods to these. Because the relativistic fluid equations (see

Sec. 2.1), however, can become ill-conditioned from a numerical standpoint, most of these

simulations restrict themselves to relatively weak GRBs late in the afterglow stage while

using highly diffusive slope-limiting schemes to achieve stable runs. By using a more robust

fluid solver, our simulations are more strongly relativistic and use more accurate methods

than what is typically found in the literature.



1.4 Overview 5

1.4 Overview

This thesis discusses an RHD code used to simulate the collision between a relativistic blast

wave and a dense shell of matter and such a collision’s implications. Chapter 2 presents the

methodology for our simulations. I begin by detailing a numerically suitable formulation of

the relativistic fluid equations (see Sec. 2.1) and an equation of state for a relativistic gas (see

Sec. 2.2). Following that, Sec. 2.3 describes the specific numerical methods used to solve

the fluid equations, including the grid discretization, the implementation of a high-resolution

shock-capturing (HRSC) scheme, and the time integrator. I present results from this work

in Chap. 3. Section 3.1 illustrates the initial conditions for a blast wave propagating into a

dense shell. Section 3.2 discusses the development of reverse shocks, the energy deposited

in the shell by the collision, and sources of radiation. I summarize the results and discuss

their implications in Sec. 3.3. Finally, Sec. 3.4 provides some possible avenues for future

research.
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Chapter 2

Simulation Methodology

2.1 Relativistic Fluids

The relativistic fluid equations are typically derived from two requirements: conservation of

energy and momentum in the stress-energy tensor and the conservation of baryon number

[15]. Assuming a perfect fluid, i.e., a fluid having neither viscosity nor heat conduction, the

stress-energy tensor T µν in natural units (c = 1) is

T µν = huµuν +Pgµν , (2.1)

where h is the total enthalpy is

h = ρ(1+ ε)+P, (2.2)

where ρ is the rest mass density, uµ is the fluid four-velocity, P is the pressure, ε is the

internal energy density, and gµν is the inverse metric. The equations of motion for the fluid

are

∇µT µν = 0. (2.3)

7
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Baryon conservation requires

∇α(ρUα) = 0, (2.4)

giving us five equations for six unknowns (ρ , ε , P, and ui). An equation of state relates ε ,

ρ , and P and closes the system. Equations of state used in this work are discussed more in

Section 2.2.1.

The fluid equations derived in this form are not well-suited to numerical applications.

Consequently, we use a variation of the Valencia formulation of the fluid equations (see

Ref. [16]), which allows us to use high-resolution shock-capturing methods similar to

those used in traditional inviscid Newtonian fluid dynamics. We define a set of “primitive”

variables

v≡


ρ

vi

P

 , (2.5)

where ρ , again, is the rest-mass density, P is the pressure, and vi is the ith component of the

three-velocity. We then define a set of “conserved” quantities

D≡ ρW, (2.6)

Si ≡ hW 2vi, (2.7)

τ ≡ hW 2−P−D, (2.8)

where D is the a relativistic density, Si is momentum density, τ is an energy term that reduces

to kinetic energy in the Newtonian limit, and W =
(
1− vivi

)−1/2 is the Lorentz factor.

We improve the stability of the equations near coordinate singularities in curvilinear
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coordinates by introducing a set of “densitized” conserved variables

D̃≡
√

γD, (2.9)

S̃i ≡
√

γSi, (2.10)

τ̃ ≡
√

γτ, (2.11)

u≡


D̃

S̃i

τ̃

 . (2.12)

The geometric factor γ is the determinant of the 3-metric γi j for the coordinate system,

which is γ = r4 sin2
θ for the spherical coordinates used in our simulations (leading to the

familiar r2 sinθ integration weight in spherical coordinates). With these definitions, the

fluid equations can be written as a system of conservation laws

∂tu+∂i f i (u) = s(u) , (2.13)

where the flux terms are

f i (u)≡


D̃vi

viS̃ j +
√

γPγ i
j

S̃i− D̃vi

 , (2.14)

and the source terms s(u) depend on the coordinate system. Our simulations use spherical

symmetry, so we can fix the angular coordinates to be θ = π/2 and φ = 0. Consequently,

γ = r4, sS̃r
(u) = 2rP, and all other source terms are zero. This additionally guarantees that

∂θ f θ (u) = ∂φ f φ (u) = 0, so we only have to include the radial flux. For a more thorough

description on this formalism in general curvilinear coordinates, see Ref. [17].
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2.2 Equation of State and Primitive Solver

2.2.1 Choosing an Equation of State

As mentioned in Sec. 2.1, the relativistic fluid equations are underdetermined without an

equation of state (EOS). Generally speaking, an EOS defines the functional relationship

between internal energy, pressure, and density

P = f (ρ,ε). (2.15)

Precise formulation of the EOS is determined by the thermodynamic characteristics of the

fluid. A common example is the ideal gas law, PV = NkBT . Assuming the specific heat

ratio (or adiabatic index) Γ =CP/CV is temperature-independent, i.e., a perfect gas, we can

write this EOS following Eq. 2.15 as

P = (Γ−1)ρε. (2.16)

This is the EOS used in this work. The specific enthalpy h̄ = h/ρ for this EOS is

h̄ = 1+
Γ

Γ−1
P
ρ
. (2.17)

The challenge is defining Γ for a relativistic fluid. In a monatomic Newtonian gas

(P/c2� ρ), the limiting value of Γ is Γ = 5/3, while in an ultrarelativistic gas (P/c2� ρ),

Γ = 4/3, and Γ can take all values in between for other gases. Since our simulations cover

both extremes and everything in between, we must treat Γ as a function of ρ and P that

transitions between both states. Synge [18] presented the fully relativistic EOS solution

h̄ =
K3 (1/Θ)

K2 (1/Θ)
, (2.18)

where Θ = P/ρ , and Ki is the ith modified Bessel function of the second kind. This is ex-

tremely expensive from a computational standpoint, so we instead rely on an approximation
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5/3 (Newtonian)

4/3 (Ultrarelativistic)

Synge (Exact)

Ryu et al. (Approx.)

0.01 0.10 1 10 100
P/ρ

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70
Γ

Figure 2.1 This plot shows how the equation of state affects the adiabatic constant
Γ. Notice the transition from 5/3 to 4/3 by both the Synge EOS and the Ryu EOS
and the relatively small difference between them.

described by Ryu et al. in Ref. [19]

h̄ = 2
6Θ2 +4Θ+1

3Θ+2
. (2.19)

Neither EOS is explicitly a function of Γ, but the relationships for these EOSes between Γ

and Θ (which are omitted for brevity) are easily derived by equating Eq. 2.17 to Eq. 2.18 and

Eq. 2.19. As seen in Fig. 2.1, both EOSes recover Γ at the Newtonian and ultrarelativistic

limits. In addition to recovering the proper limits, the approximate EOS is in good agreement

(within 0.5%) with the Synge EOS for all values of Γ in between.

2.2.2 The Primitive Solver

As indicated in Sec. 2.1, the fluid equations in conservative form still depend on both

the conserved and primitive variables, but the differential equations only directly evolve

the conserved variables. The reason for this is simple: the general transformation from
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conserved to primitive variables cannot be expressed in closed-form.1 Since the primitive

variables, however, are part of the calculation, we must update them at every step in the

evolution from the conserved variables.

Using Eq. (2.19) as our EOS, we reduce the inversion problem to solving the equation

h̄(Θ)W (Θ)− Θ

W (Θ)
−1− τ

D
= 0 (2.20)

for Θ, where we use the following identity for W ,

W 2 (Θ) = 1+
SiSi

D2h2 (Θ)
. (2.21)

See Ref. [14] for a more thorough discussion of this method. Additionally, note that the

undensitized conserved variables are used in these equations. This system is solved with

a numerical root solver, and the initial guess will determine if and how fast the system

converges. We calculate an upper and a lower limit to bound the root solver, selecting the

midpoint as the first estimate of Θ. The derivations for these bounds are simple but not

necessarily intuitive, so they will be described briefly.

Upper Bound

We begin by deriving the upper bound for Θ. Since W 2≥ 1, Eq. (2.20) leads to the inequality

h̄(Θ)−Θ≤ 1+
τ

D
.

Substituting in Eq. (2.19) gives

9Θ2 +6Θ+2
3Θ+2

≤ 1+
τ

D
.

1Strictly speaking, this is not always true. In an EOS with fixed Γ in flat space, the primitive variables can

be calculated analytically from the roots of a quartic polynomial [20], and Ryu et al. [19] demonstrate that

a less accurate approximation to Eq. (2.18) reduces to a cubic polynomial. Nevertheless, calculating these

analytic solutions in practice turns out to be at least as computationally difficult as using a well-designed root

solver.
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Since 9Θ2 +6Θ = 3Θ(3Θ+2)< 9Θ2 +6Θ+2, the final upper bound becomes

Θ <
1
3

(
1+

τ

D

)
. (2.22)

The right-hand side is nearly an equality for W ≈ 1 and Θ� 1.

Lower Bound

We now move our attention to the lower bound of Θ. Completely eliminating the Θ/W term

(corresponding to Θ� 1 or W � 1) in Eq. (2.20) leads to

h̄(Θ)W (Θ)≥ 1+
τ

D
.

Substituting in Eq. (2.21), squaring both sides, and solving for h̄(Θ) gives

h̄(Θ)≥
√(

1+
τ

D

)2
− S2

D2 .

The numerator 12Θ2 +8Θ+2 in Eq. (2.19) only has complex roots, but replacing it with a

somewhat larger polynomial with (3Θ+2) as a factor does not violate the inequality and

eliminates the fraction. Thus, after using (3Θ+2)(4Θ+1) = 12Θ2 +11Θ+2 in place of

the original numerator in h̄,

Θ >
1
4

(√(
1+

τ

D

)2
− S2

D2 −1

)
. (2.23)

More precise bounds will reduce the number of iterations required to find a solution, but the

ones provided here worked reasonably well.

Limiting Cases

Occasionally, the conservative variables fall into a limiting scenario that greatly simplifies

the inversion procedure. If SiSi/(τ +D)� 1, we can assume that Si ≈ 0, and the inversion
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has a closed-form solution:

ρ = D, (2.24)

vi = 0, (2.25)

Θ =
1
6

(
α−1+

√
α2 +6α +1

)
, (2.26)

P = ρΘ, (2.27)

where α = τ/D. The precise derivation is omitted here because it is not particularly insight-

ful, but it immediately follows from Si ≈ 0 because Eq. (2.21) reduces to 1, simplifying

Eq. (2.20) enough to reduce it to a quadratic equation. Additionally, if τ/D� 1 or τ/D� 1,

the EOS becomes Newtonian or ultrarelativistic, respectively, and we revert to the solver for

fixed adiabatic constant described in Sec. 2.8 of Ref. [17].

2.3 Numerical Methods

2.3.1 Discretization

The first step to solving Eq. 2.13 is discretizing the solution domain into grids, which is

shown in Fig. 2.2. This discretization occurs as follows:

1. A domain of length R (0.25 pc in our specific case) is split into N discrete cells (N +1

grid points) of width ∆r.

2. This grid is further split into P subgrids, where P is the number of processors.

3. Three ghost points are added to either end of each subgrid. These ghost points are

used to calculate boundary conditions, maintain consistency between neighboring

subgrids, and ensure that all the physical points have enough neighbors to use the

numerical methods described below in Sec. 2.3.2.
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Interprocessor
Boundary

Processor
Ghost
Points

Physical Domain
Processor 1

Physical Domain
Processor 2

Physical Boundary

Boundary
Ghost
Points

Δr

Figure 2.2 The domain is split up into discrete cells of size ∆r. Three ghost points
are added on either side for implementing boundary conditions and transferring
data across processor boundaries.

The fluxes calculated by the Riemann solver are actually at the cell centers rather than

the grid points, so spatially discretizing Eq. 2.13 gives

du j

dt
=−

(f r)
(
û j+1/2

)
− (f r)

(
û j−1/2

)
∆r

+ s
(
u j
)
, (2.28)

where û represents the reconstructed state at the center of the cell. After spatial discretization,

we have effectively replaced our PDE with N +1 coupled ODEs, which we evolve forward

in time using the classic fourth-order Runge-Kutta (RK4) integrator.

Axis Interpolation and Boundary Conditions

Now that the grid is properly discretized, there is one point in the primitive solver that must

be addressed. Because we are working in spherical coordinates, the densitized variables at

r = 0 are all fixed to 0, so the undensitized form is indeterminate. However, we can use

symmetry conditions to set these variables. In spherical symmetry, the radial velocity vr = 0

at the origin, and ρ and P are even functions. By requiring ∂rρ = ∂rP = 0, we can construct

a sixth-order interpolation operator for the values of ρ and P at the center. Using the first
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two ghost points (see Fig. 2.2) to the left (which are identical to the first two points to the

right) and the first four points to the right defines the state at r = 0 as

f (r0) =
1

35
[56 f (r1)−28 f (r2)+8 f (r3)− f (r4)] , (2.29)

substituting in ρ and P for f .

The right physical boundary uses an outflow condition, which turns out to be much

simpler than the axis condition. By copying the state of the rightmost physical point into its

neighboring ghost region, the term (f r)
(
û j+1/2

)
in Eq. 2.28 goes to zero at the boundary.

This effectively prevents the fluid flow in the ghost region from propagating back into the

solution, so any data moving to the right simply disappears from the grid.

2.3.2 High-Resolution Shock-Capturing Methods

A naïve approach to solving the relavistic fluid equations might involve discretizing the

equations using finite differences. As long as the solutions are smooth and continuous,

this can actually work well—for a short time. However, nonlinear hyperbolic equations,

including inviscid fluids, often admit discontinuities, or “shocks,” as valid solutions. Because

derivatives cannot exist at discontinuities, formal solutions with shocks do not strictly satisfy

Eq. 2.13, but are actually so-called “weak solutions” based on the integral formulation of a

conservation law [21]. Consequently, as Fig. 2.3 demonstrates, traditional finite-difference

operators only work for smooth data, even on linear equations. Since the derivative no

longer exists at discontinuities, the estimate from finite differences blows up, generating

noise in the form of rapidly growing oscillations and making the solution unusable.

We can avoid these sorts of problems by replacing centered finite differences with

one-sided derivatives, or so-called “upwind” methods. By only considering information

propagating toward the point of interest (hence the name “upwind”), we can eliminate these
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(a) A Gaussian pulse. (b) A square pulse.

Figure 2.3 Both (a) and (b) show solutions to the linear advection equation
∂tφ − ∂xφ = 0. The blue dashed line shows the exact solution, and the red line
shows the numerical solution calculated with the Crank-Nicolson method, which is
second-order in space and time and unconditionally stable for smooth data. While
(a) evolves smoothly and quite accurately, (b) shows uncontrollable oscillations
near the discontinuities in the wave pulse.

oscillations. Unfortunately, these solutions are not very accurate, as Fig. 2.4 demonstrates.

The solution is quite stable and has no oscillations, but the upwind method is so diffusive

that it smears the square pulse into something resembling a Gaussian. An initial response

might be to use a higher order operator. This turns out, however, not to work; because of

Godunov’s theorem (see Ref. [22]), only first-order linear methods can resolve shocks and

discontinuities without generating spurious oscillations.

To obtain higher order accuracy for smooth fluid flows, we turn to high-resolution shock-

capturing schemes (HRSC) as an alternative. These methods typically have two components:

an approximate Riemann solver and a reconstruction or slope-limiting method [21].

Riemann solvers are a class of numerical methods used to calculate the flux in Riemann

problems, or discontinuities separating constant left and right states. HRSC methods assume

every grid cell contains a Riemann problem, thus allowing us to calculate the flux terms in

Eq. 2.28 with a Riemann solver [21]. Since exact methods are expensive, we use the HLLE
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(a) A Gaussian pulse calculated with an up-
wind scheme.

(b) A square pulse calculated with an upwind
scheme.

Figure 2.4 As in Fig. 2.3, we have a (a) Gaussian pulse and a (b) square pulse being
evolved using the linear advection equation. By using an upwind scheme, only
the points to the left are considered in this right-going wave, and the oscillations
disappear. However, we have traded those oscillations for diffusion and smearing,
which is why the solution to (b) resembles (a).

scheme (see Ref. [23]) to estimate these flux terms. The HLLE solver is rather diffuse, but

it generally produces solutions obeying thermodynamic constraints (a common issue with

other solvers, as weak solutions are not always unique or physical).

We calculate the left and right states we need for the Riemann problem using reconstruc-

tion. Taking the possibility of a discontinuity into account, reconstruction calculates these

states with a nonlinear interpolation operator with high-order accuracy in smoother regions

while limiting oscillations near shocks. In our case, we use a fifth-order weighted essentially

non-oscillatory (WENO5) scheme based on the WENO-Z variant [24].

2.3.3 Putting it All Together

Now that we have decided on an equation of state, discretized the equations, and decided

on a Riemann solver, we have all the necessary pieces for a fluid solver. Combining them
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together, a full time step looks something like this:

1. For each stage in the RK4 solver:

(a) Solve the Riemann problem:

i. Reconstruct the left and right states of the cell centers using WENO5.

ii. Calculate the flux term at each cell center using HLLE.

(b) Calculate the spatial derivative and add the source term.

(c) Estimate the next time step.

(d) Apply boundary conditions.

(e) Exchange ghost point regions between neighboring grids.

(f) Calculate the primitive variables.

2. Combine the estimates from each stage to calculate the next time step.

3. Apply boundary conditions.

4. Exchange ghost point regions between neighboring grids.

5. Calculate the primitive variables.
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Chapter 3

Results and Conclusion

As indicated in Chap. 1, observations of GRB spectra show variations in time that are difficult

to explain with simple models focusing only on the dynamics of the GRB progenitor. It

could be that inhomogeneities in the ISM explain some of this variation. Using the code

described in Chap. 2, we studied possible GRB blast waves interacting with a dense shell

of matter, similar to what a massive dying star might generate in the red supergiant phase.

This chapter discusses the different simulations performed and a preliminary analysis of the

results.

3.1 Initial Conditions

In the GRB community, a common choice for modeling blast waves is the Blandford-McKee

(BMK) similarity solution (see Appendix A) [14,25]. The BMK solution is an exact solution

to the relativistic fluid equations for an ultrarelativistic blast wave in spherical symmetry.

Although GRBs are typically emitted in cone-shaped jets, a spherical blast provides an

excellent first-order approximation because only a small portion of the radiated energy will

be directed toward the Earth as is. We assume that the ISM has a stellar wind density and

21
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Figure 3.1 The initial conditions based on the BMK solution. The dashed lines in
(a) and (b) depict the medium without the blast wave, and the solid line represents
the initial data itself. The units in every case are arbitrary; these graphs illustrate
a general profile, not necessarily a specific setup. The labels ρ0 and p0 are the
reference density and pressure at r0, Rs is the location of the shock front, and rsi
is the radial point where the shell starts. Finally, ρjump is the density of the shell.
Because the shell is in thermal equilibrium, it appears in (a) but not in (b). Since
the shell is fixed, it also does not appear in (c).

pressure profile that goes as r−2.

A circumstellar shell of uniform density represents the envelope of ejected matter

surrounding the star. This shell is approximately 5 M� and begins at 0.2 pc from the star.

The combined BMK-shell initial conditions are displayed in Fig. 3.1. The shell only appears
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in the density profile; since the shell is in mechanical equilibrium, its pressure matches the

surrounding environment. All tests were performed on a grid with 128 001 physical points

running from r = 0 to r = 0.25 pc with the BMK solution initialized at t = 0.10 in code units

(roughly 1.03×107 s) and run for 320 000 steps, or ∆t = 0.15 625 (about 1.61×107 s).

We tested two different shell widths, three different energies, and four different medium

densities for a total of 24 different tests (see Table 3.1). We note that only the most energetic

observed supernovae are typically on the order of 1052 erg [26], putting the 5×1052 and

1053 erg tests at the edge of plausible sources. However, these higher energy tests serve a

few purposes: (1) some, such as Metzger et al. [27], have hypothesized that supernovae up

to ∼ 1053 erg are possible, (2) these tests can possibly be used to determine the limitations

of our code, and (3) we can use these other tests to identify general trends to extrapolate

results in other cases.
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Energy (erg) ρ0 (cm−3) Shell Amplitude Shell Width (pc)

1052 10 1.06×107 0.0015
1052 50 2.135×106 0.0015
1052 100 1.06×106 0.0015
1052 300 3.5×105 0.0015
1052 10 3.00×105 0.0435
1052 50 6.00×104 0.0435
1052 100 3.00×104 0.0435
1052 300 1.00×104 0.0435
5×1052 10 1.06×107 0.0015
5×1052 50 2.135×106 0.0015
5×1052 100 1.06×106 0.0015
5×1052 300 3.5×105 0.0015
5×1052 10 3.00×105 0.0435
5×1052 50 6.00×104 0.0435
5×1052 100 3.00×104 0.0435
5×1052 300 1.00×104 0.0435
1053 10 1.06×107 0.0015
1053 50 2.135×105 0.0015
1053 100 1.06×106 0.0015
1053 300 3.5×105 0.0015
1053 10 3.00×105 0.0435
1053 50 6.00×104 0.0435
1053 100 3.00×104 0.0435
1053 300 1.00×104 0.0435

Table 3.1 The initial conditions for our simulations. The energy column cor-
responds to the initial energy of the blast wave, ρ0 represents the density at a
reference point r0 = 0.01 pc in a r−2 medium, and shell amplitude represents the
multiplicative factor used to set its density relative to its medium. All shell masses
integrate to ∼ 5 M�.
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3.2 Analysis

3.2.1 Reverse Shock

The simulations based on the initial data above predict a strong reverse shock being launched

during the collision. Although these shocks are easy to identify by visual inspection,

processing the data to get quantitative information about them is more difficult. Additionally,

while the high resolution of the data means that sharp discontinuities are well-refined, it also

makes the data cumbersome to analyze. We consequently wrote a utility that identifies the

reverse shock and compresses the data. Because the position of the shell is known prior to

the collision, the utility can locate the time of the collision by looking for a relative change in

the density of the front of the shell above a certain threshold. From here, the data is trimmed

to 50 frames before and 50 frames after the collision in half-day intervals. We identify the

reverse shock in each frame by scanning for the point with the highest left-going velocity

(back toward the origin) from the front of the shell to a point somewhat past where the shock

can realistically propagate based on the collision time. The data is then compressed using

wavelets (see Ref. [28]) to reduce the number of points while preserving fine details like the

reverse shock.

After processing the data, we can examine specific features of the reverse shock alone. In

Figs. 3.2–3.4, we see the evolution of the reverse shock’s Lorentz factor as a function of the

post-collision time for all three initial blast energies. In every case, it increases with time as

it propagates back toward the origin. Given that the reflected wave gradually pushes through

a medium with decreasing pressure and density, this seems reasonable. For relatively low

energies, decreasing the density of the medium and the shell generally results in a more

powerful reflection because the incident wave is moving faster. Blast waves with higher

energies, however, start propagating through the shell, resulting in a weaker reflection.
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Figure 3.2 The reverse shock’s Lorentz factor for an initial blast energy of 1052 erg
as a function of time since the collision, where ρ indicates the number density at
r0 = 0.01 pc and s is the thickness of the shell.
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Figure 3.3 The reverse shock’s Lorentz factor for an initial blast energy of 5×
1052 erg as a function of time since the collision, where ρ indicates the number
density at r0 = 0.01 pc and s is the thickness of the shell.
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Figure 3.4 The reverse shock’s Lorentz factor for an initial blast energy of 1053 erg
as a function of time since the collision, where ρ indicates the number density at
r0 = 0.01 pc and s is the thickness of the shell.
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3.2.2 Shell

To start understanding the collision dynamics, we calculate the kinetic energy deposited into

the shell during the collision. Table 3.2 illustrates the fraction of the available energy that

is deposited into the shell for each simulation run. Generally speaking, collisions with the

thicker, less dense shell deposit more energy into it, as expected. Because the less dense

media generally lead to higher Lorentz factors, both before and after the collision, one might

expect that these collisions would also deposit more energy; the data, however, does not

strongly support this hypothesis one way or another; decreasing the medium density can

increase or decrease this fraction in different situations.

ρ0 (cm−3) Shell Width (pc) 1052 erg 5×1052 erg 1053 erg

10 0.0015 0.026 0.26 0.030
50 0.0015 0.030 0.48 0.019
100 0.0015 0.024 0.096 0.059
300 0.0015 − 0.062 0.11
10 0.0435 0.35 0.40 0.17
50 0.0435 0.15 0.16 0.066
100 0.0435 0.13 0.34 0.18
300 0.0425 − 0.26 0.39

Table 3.2 The fraction of kinetic energy deposited into the shells after the collision
for specific medium densities, shell thicknesses, and blast energies. As a general
rule, more energy is deposited in the thicker, less dense shell. Because of an
initial spike in kinetic energy during the collision followed by a decay as matter
reflects off, this fraction is calculated after the shell energy settles to an equilibrium
state. Both 1052 erg simulations with ρ0 = 300 cm−3 collided late enough in the
simulation that there were too few frames left to find this equilibrium state.

3.2.3 Radiation

We can divide radiation emission mechanisms into thermal and non-thermal processes. For

this work, we have considered thermal black-body radiation and non-thermal synchrotron
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emissions. The radiation analysis is still in progress, but this section will provide a brief

overview on what we might expect to see from these processes.

Thermal Radiation

In thermal equilibrium, black-body radiation is simply determined by Planck’s law for

spectral radiance:

B(λ ,T ) =
2hc2

λ 5(ehν/kBT −1)
, (3.1)

where λ is the wavelength, T is the temperature, h is the Planck constant, and kB is the

Boltzmann constant. Using Wien’s displacement law, the peak intensity will occur at

λpeak =
b
T
, (3.2)

where b = 2.8978×10−1 cm·K.

With the pressure post collision at the front of the shell being on the order of 10−1 bar

and the density around 10−18 g/cm3, a quick calculation with the ideal gas law shows

that T ∼ 109 K, corresponding to λpeak ∼ 10−10 cm. This represents a photon of energy

E ∼ 100 keV, which is comfortably in the gamma-ray spectrum. Although this seems

promising, it is likely too high.

The issue is that the simulation is not in thermal equilibrium: a blast wave propagates

through a medium and collides with a dense shell, continuously exchanging energy along

the way. Even in cases where the blast wave does not propagate much through the shell, we

will have a population of very hot particles and one of very cold particles. Nevertheless, if

we assume that electrons (which are light and easily accelerated) dominate thermal emission,

we can still estimate the black-body radiation. Under these circumstances, we can model a

black-body spectrum based on the temperature of the electrons, Te, which, following Gericke

et al. [29], obeys the equation
dTe

dt
=

1
τ
(Ti−Te) , (3.3)
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Figure 3.5 Using approximate values (ρ ∼ 10−18 g/cm3, Te (0)∼ 1 K, Ti∼ 109 K),
this plot shows how electron temperature increases as a function of time. Notice
that the timescale is in years, suggesting that the coupling constant is too large for
significant black-body radiation in the gamma-ray spectrum.

where τ is a coupling parameter dependent on Ti (the ion temperature), Te, and the number

density.

Using Approximation 1 from Table 1 in Ref. [29] to calculate τ , we can integrate

Eq. (3.3) with the approximate values used earlier to get a better idea for how fast Te might

increase. As seen in Fig. 3.5, the time to equilibrium at these densities is on the order of

hundreds of years, and the coupling constant increases too fast for the electron temperature

ever to approach to the ion temperature. Clearly, there will be no significant radiation in the

gamma-ray spectrum. After roughly one day, however, the temperature should increase to

Te ∼ 103 K, suggesting that there may be some radiation in the infrared and optical ranges

on shorter time scales.
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Non-thermal Radiation

In strongly relativistic regions, emissions will be dominated by non-thermal radiation

mechanisms. The usual channel considered for GRB simulations is synchrotron radiation

[14, 30].

For modeling the synchrotron radiation, we assume that a certain fraction εe of the

electrons are shock-accelerated, and the density distribution follows a broken power law,

i.e., n(γ) ∝ γ−p for some Lorentz factor γ > γm. Because we did not model a magnetic

field, we also assume that the energy in the magnetic field is a fixed ratio of the internal

energy density, or B2/8π = εBe. By Eq. (2.16), e ∝ T , suggesting that B ∝
√

T . The power

per frequency per volume is Ptot (ν) ∝ B(p+1)/2 for a power-law distribution (see Eq. (6.36)

in Ref. [31]), so we expect Ptot ∝ T (p+1)/4. A typical value for p in a shock-accelerated

population of electrons is ∼ 2.3 (see Ref. [25]). Since the power of the black-body spectrum

goes as T 4
e , we anticipate that synchrotron radiation will matter mostly for regions where

the increase in T is too short for the electrons to heat up. This occurs mostly in the reverse

shock and simulations where the forward shock propagates through the shell.
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ρ0 (cm−3) Shell Thickness (pc) 1052 erg 5×1052 erg 1053 erg

10 0.0015 21 200 69
50 0.0015 37 140 60
100 0.0015 74 88 190
300 0.0015 3.0 52 45
10 0.0435 n/a n/a n/a
50 0.0435 38 41 99
100 0.0435 24 98 26
300 0.0435 6.9 54 79

Table 3.3 The ratio of internal energy density in the shock immediately after to
immediately before the collision based on medium density, shell thickness, and
blast energy. Cases labeled “n/a” correspond to weak reflections with strong
propagation; analyzing the reverse shock makes little sense here. In nearly every
other case the ratio is at least ∼ 10, suggesting an increase in the radiated power by
at least a factor of ∼ 6.

As previously mentioned, a more precise analysis is currently underway, but we can

compare the internal energy density of the forward shock and the reverse shock to estimate

how much extra radiation we expect to see. Table 3.3 provides the results from all the

simulations. Except in cases with strong blast waves and less-dense shells, the internal energy

of the shock rapidly spikes during the collision and rapidly decays afterward. Combined

with limited time resolution in our data, the true difference may be higher than Table 3.3

reports. Nevertheless, we can safely conclude based on these ratios that the internal energy

density typically increases at least by a factor of ∼ 10, suggesting the the synchrotron power

per frequency for the shock increases by at least a factor of ∼ 6, and sometimes much more.

3.3 Conclusions

Our preliminary analysis supports the findings from Mesler et al. [8] that inhomogeneities in

the ISM should leave a distinct electromagnetic signature. The reflection that launches the
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reverse shock results in a substantial increase in the internal energy in most cases, possibly

leading to a strong burst of additional radiation. Additionally, the increase in temperature

may produce infrared and optical signatures within a day or so after the collision. Because the

energy distribution of electrons is likely more complicated than the power-law distribution

in the shock, we did not consider non-thermal processes in the shell post-collision which

may contribute to the observable radiation as well.

Although our analysis suggests that radiation should increase after the collision, further

work is necessary to determine if it is observable. We anticipate that absorption effects will

change the spectrum of the emitted radiation, and only a small amount of this radiation will

actually be directed toward Earth; determining precisely how much will indicate whether or

not we can detect it.

If such an emission is visible on Earth, however, it could help determine the precise

location of the hydrogen envelope and characterize GRB events. As suggested in Ref. [8],

many GRBs currently described by late-time energy injection models could be more easily

described by an inhomogeneous medium. Examining the exact features of these GRB events,

including the time between the original burst and the apparent collision, would help indicate

the size and location of the hydrogen envelope, perhaps also telling astronomers something

about GRB progenitors.

3.4 Future Work

This work presents an initial analysis of relativistic GRB jet interactions with an inhomo-

geneous ISM. There are many other interesting questions based on this research. One of

the first that we intend to explore is determining exactly how collisions scale as the relative

sizes of the blast wave and shell change. By varying the thickness of the shell while holding
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its density constant (effectively changing mass instead of density, as was done here), we can

determine exactly when a blast wave will propagate through a shell.

We also plan to extend our work to higher dimensions. Blasts propagating through

inhomogeneities (rather than reflecting off of them) typically exhibit turbulence, which

cannot be modeled in spherical symmetry. Additionally, we can also replace our spherical

blast wave with a conical jet, which is both more realistic and introduces another avenue

for exploring relativistic turbulence. Another similar question would be modifying the

inhomogeneity, which is not necessarily uniform or even spherical [32].

Future simulations could also add magnetic fields to investigate the effects on the emis-

sions. Our work, like De Colle et al. [14] and van Eerten [25], simply assumes that a fraction

of the internal energy is from a magnetic field. A full relativistic magnetohydrodynamics

simulation would provide a more accurate calculation for synchrotron radiation.

The current code is unsuitable for some of these questions; it uses a rather simple paral-

lelization scheme and uniform grids. Consequently, we are currently adding a relativistic

fluid solver to the Dendro-GR framework. Dendro benefits from both wavelet-based adaptive

mesh refinement and more sophisticated parallel programming techniques, making it far

more suitable for large-scale simulations involving turbulence, two or three dimensions, and

additional physics like magnetic fields [33].
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Appendix A

Blandford-McKee Similarity Solution

In the context of differential equations, a self-similar solution is one in which a set of

assumptions reduces all the dependent variables of the system to functions of a single

dimensionless scaling variable, or “similarity” variable. This effectively reduces a system of

PDEs in several variables to a system of ODEs which may be solved more simply.

A common example that occurs in fluid dynamics is the Sedov-Taylor solution [34].

Famously used to determine the blast yield of the Trinity test after declassified photos

were released to the public, this particular solution results in a spherically symmetric blast

wave that is uniquely determined only by the initial blast energy and the time following the

original explosion.

The Blandford-McKee (BMK) solution is a relativistic analogue of the Sedov-Taylor

solution. Derived in 1976, the BMK solution has since become common in relativistic

astrophysics due to its status as one of the few exact solutions of the relativistic Euler

equations with physical relevance. We will simply quote the solution here; readers interested

in a full derivation are referred to the original paper [35].
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Assume that the blast wave is propagating through a medium of density

ρk(r) = ρ0

(
r
r0

)−k

, (A.1)

where r is the distance from the origin, k is an integer, and ρ0 is a fixed density such that

ρk(r0) = ρ0. The pressure of our medium is proportional to the density. Therefore, we

choose a dimensionless constant ε (in our case, ε = 10−10) and define the pressure as

p(r) = ερk(r) (As a reminder, c = 1, so pressure has units of mass density).

For an initial blast energy E and a time t, the position of the blast wave’s shock front is

R = t
(

1− 1
2(4− k)W 2

sh

)
, (A.2)

where

W 2
sh =

(17−4k)E
8πρk(R)t3 (A.3)

is the squared Lorentz factor of the shock. Where W 2
sh is extremely large, we may approx-

imate (A.2) as R ≈ t. Late in the time evolution or in a high-density medium, this is no

longer accurate, but it may be used as the first guess to find R and W 2
sh using a root solver.

With these quantities defined, the interior of the blast wave can be described in terms of

the similarity variable

χ(r) = 1+2(4− k)W 2
sh

(
1− r

R

)
. (A.4)

Written in terms of χ(r), the BMK solution defines the density, pressure, and Lorentz factor

(respectively) of the post-shock region as

ρ(r) = 23/2
ρk(R)Wshχ(r)−(10−3k)/[2(4−k)], (A.5)

p(r) =
2
3

ρk(R)W 2
shχ(r)−(17−4k)/[3(4−k)], (A.6)

W 2(r) =
1
2

W 2
shχ(r)−1. (A.7)

The reader may notice that Eq. (A.7) is nonphysical for small r; because the BMK solution

assumes the blast wave is ultrarelativistic (W (r)� 1), these equations are only valid near the
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shock. One solution is simply to add an extra term that forces W 2 ≥ 1; van Eerten suggests

adding 1 to the equation [25]. We improve this by enforcing the spherical symmetry

condition W 2(0) = 1. With the addition of an extra term, Eq. (A.7) becomes

W 2(r) =
1
2

W 2
shχ(r)−1 +

b
1+ r/rref

. (A.8)

Evaluating Eq. (A.8) at r = 0 with the symmetry condition and solving for b defines it

uniquely as

b =
2+(15−4k)W 2

sh

2+4(4− k)W 2
sh

. (A.9)

The choice of rref is not unique; the only constraint is that Eq. (A.8) should increase

monotonically. If W 2(R)� 1, rref = ∞ is a suitable choice. In our simulations, we found

that

rref = Ls =

(
(3− k)E
4πρ0rk

0

)1/(3−k)

, (A.10)

which is the Sedov length, worked quite well.
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Appendix B

Code Validation

An important part of any scientific code is validating its results against known solutions.

Despite the nonlinear nature of the relativistic fluid equations, a handful of exact solutions

do exist. By comparing the code’s output to these analytical results, we can show that our

code will give correct results in cases where no exact solution exists.

B.1 Shock Tube Test

One exact solution for the relativistic fluid equations comes in the form of a shock tube

problem. Essentially a one-dimensional problem, the shock tube consists of a fluid with

different states on the left and right. For our tests, we assume a density ρ = 1 (in arbitrary

units) and velocity v = 0 across the entire fluid with the pressure on the right Pr = 0.01 and

the pressure on the left Pl = 1000 (again in arbitrary units). We also fixed the adiabatic

constant Γ to 5/3. We did tests for 128, 256, 512, and 1024 grid cells, which are shown

compared to the analytic solution in Fig. B.1. Lower resolution runs smear the discontinuity,

but the important features of the solution are still located in the correct places. As the

resolution increases, so does the quality of the solution. Overall, the code agrees very well
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Figure B.1 The density results from a shock tube test in one dimension. The
discontinuity at ∼ 0.4 is smeared at lower resolutions, but higher resolutions have
very little smearing and approach the analytical solution.

with the analytical result.

B.2 Blandford-McKee Test

While shock tubes are useful for validating that our numerical methods work as expected,

they are not particularly difficult to simulate. On the other hand, the Blandford-McKee

solution has a wide range of densities and pressures, and the Lorentz factors are very

high, making it an excellent stability test for our code. We assume a reference density

ρ0 = 100 cm−3 at r0 = 0.01 pc in an r−2 medium, a blast energy E0 = 1052 erg, and an

initial time t = 1.02927×107 s. We also use the fully relativistic EOS described in Sec. 2.2.
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Figure B.2 Plots of the density during a Blandford-McKee blast wave tests. The
agreement will not be exact even at very high resolutions because the analytic
solution is only approximate in the post-shock region. However, the agreement in
the position of the shock does improve, even at these lower resolutions.

The results of this test are shown in Figure B.2. Higher resolution generally improves

the accuracy of the solution and pushes the shock closer to the position and magnitude

described by the analytic position. We do not expect to see exact agreement in the post-shock

region; because the Blandford-McKee solution assumes the blast wave is ultrarelativistic,

the solution is only approximately correct behind the shock and breaks down far away from

it. We additionally remind the reader that production runs with the shell inserted were

performed at a resolution of 128000 cells, resulting in a much smoother post-shock region

and a more accurate shock position than the tests here demonstrate.
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ultrarelativistic, 10, 14, 21, 44

RHD, see relativistic, hydrodynamics

shock, 2, 16–18, 22
forward, 2, 32, 33
reverse, iii, 2, 4, 5, 25–28, 32–34
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