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abstract

Rigorous Computation of the Evans Function

Devin McGhie
Department of Mathematics, BYU

Doctor of Philosophy

We develop computer-assisted methods of proof for rigorous computation of the Evans
function in order to prove stability of traveling waves. We use the parameterization method,
series solutions, and the Newton-Kantorovich Theorem to obtain precise, rigorous error
bounds for the numerical solution of the ODE used in the construction of the Evans function.
We demonstrate these methods on a scalar reaction-diffusion model and on the Gray-Scott
model.
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Chapter 1. Introduction

Many physical processes can be modeled well with partial differential equations. Traveling

wave solutions play an especially important role in PDE models of fluid flow and chemical

reactions. Of particular interest is determining the stability of traveling wave solutions. A

wave is stable if small perturbations of the wave do not significantly alter the long term

behavior of the PDE solution. If a wave is not stable, then a small perturbation of the

wave may result in the long term behavior of the solution varying drastically. This can have

significant implications. For example, an unstable wave may not even be observed in nature

since noise is always present in the physical system. Alternatively, if the model predicts a

stable wave, one expects a corresponding wave to exist in the physical phenomena.

Much work has been done studying the stability of traveling wave solutions of PDEs.

In the last several decades, huge strides have been made concerning the theory of stability

of nonlinear waves. For a very large class of systems, stability of a wave is implied by

spectral stability of the wave. Determining spectral stability of a traveling wave solution

reduces to determining the spectrum of an ODE eigenvalue problem. Typically, this ODE

is too complicated to obtain an explicit solution, and so one uses numerical methods to

approximate the solution to the ODE. By obtaining rigorous error bounds on the ODE

solutions, including using an interval arithmetic package to bound rounding error that occurs

during the computation, one may be able to prove the spectrum lies in the stability region.

The main challenge we address in this dissertation is how to rigorously compute the Evans

function, a complex analytic function whose zeros correspond to eigenvalues of the ODE

eigenvalue problem obtained from linearizing the governing equations about the traveling

wave. The wave is said to be spectrally stable if these eigenvalues, with the exception of the

zero eigenvalue corresponding to translational invariance, have negative real part. The wave

is said to be asymptotically orbitally stable if any sufficiently small perturbation of the wave

converges to a spatial translate of the wave. Spectral stability implies asymptotic orbital
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stability for all the systems we consider in this dissertation, and for a very broad class of

problems; for details see [12, 15, 16, 18, 21, 28, 29, 34, 41, 42]. Thus, to prove nonlinear-

orbital stability, one may prove that the Evans function has no zeros in the closure of the

right half of the complex plane, with the exception of the origin.

Usually one must resort to numerical methods to approximate the Evans function, which

provides compelling evidence of stability, but does not constitute a proof. In this dissertation

we develop a computer assisted method of proof, or CAMP, to prove spectral stability, hence

nonlinear-orbital stability, of traveling waves in physical systems. A detailed description of

CAMP is given, for example, in [8, 13, 31, 38]. CAMP consists of rigorous analysis as-

sisted at strategic times by rigorous computations. By a rigorous computation, we mean a

computation that provides a rigorous error bound on numerical rounding error. We use the

MATLAB based package INTLAB [33], which is a well-developed interval arithmetic pack-

age. INTLAB rigorously bounds rounding error by computing with appropriate rounding a

machine representable lower and upper bound on a quantity, that is an interval containing

the desired quantity.

We note that CAMP have been used to prove several notable results, including proving

Mitchell Feigenbaum’s universality conjecture in non-linear dynamics, the Kepler conjec-

ture, and Warwick Tucker’s proof of the existence of the Lorenz attractor (14th of Smale’s

problems).

There are a few results in the literature in which stability of waves is proven using

rigorous computation; see for example [2, 3, 5]. We note the recent result described in [7],

which describes an extremely efficient method for validated numerics for systems of a certain

form. There are many systems of interest for which this method does not apply. For these,

the Evans function is a useful tool for proving stability. In this dissertation, we develop

a general approach for proving stability of waves using rigorous computation of the Evans

function. We begin by providing more background about the Evans function.
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Chapter 2. Mathematical background

In this chapter we provide details about the theoretical tools we use. We begin by discussing

stability of traveling waves. We describe the Evans function, an analytic function whose zeros

correspond in location and multiplicity to the eigenvalues of an ODE eigenvalue problem one

obtains by linearizing the nonlinear PDE equations about a traveling wave solution. When

these eigenvalues, except for certain eigenvalues at the origin, lie in the left half plane, the

wave is said to be spectrally stable. For a large class of PDEs, spectral stability implies

nonlinear stability.

We also provide details about useful theory we use in developing computer assisted meth-

ods of proof (CAMP) for establishing stability of traveling wave solutions. We review results

regarding error bounds when interpolating analytic functions, and results that say the uni-

form limit of analytic functions is analytic. We review bounds on the modulus of ODE

solutions, and we review the Newton-Kantorovich contraction mapping principle, a main

tool used in our CAMP.

2.1 Stability of Traveling Waves

We consider evolution equations of the form

ut + f(u)x = (B(u)ux)x + (C(u)uxx)x, (2.1)

where the spatial variable x ∈ R, the time variable t ∈ R, the unknown dependent variable

u : R2 → Rn, the flux term f is a function f : Rn → Rn, and the diffusion matrix B and the

dispersion matrix C are sufficiently smooth functions

B : Rn → Rn×n, C : Rn → Rn×n.

We specifically consider traveling waving solutions which are solutions of the PDE that are

stationary in a co-moving frame as described in the following definition.
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Definition 1. A solution of (2.1) that takes the form

u(x, t) = ǔ(x− ct)

is called a traveling wave solution, where c ∈ R is the wave speed. We refer to ǔ as the

traveling wave profile.

Looking for a traveling wave solution with wave speed c is equivalent, via the transfor-

mation x→ x− ct, to looking for a stationary solution of

ut + (f ′(u)− c)ux = (B(u)ux)x + (C(u)uxx)x.

We only consider the case that the wave profile is smooth with asymptotically constant

end-states,

lim
x→±∞

ǔ(x) = u±, lim
x→±∞

ǔ(n)(x) = 0, n ≥ 1.

In the above equation, the superscript (n) denotes the n-th derivative with respect to x.

We are interested in determining the stability of these waves. Our main objective in this

dissertation is to develop computer assisted methods of proof (CAMP) for proving stability

of traveling wave solutions of PDEs of the form given in (2.1). As part of proving stability,

we must obtain an approximation of the traveling wave profile with concrete error bounds

on the approximation error. The method we use to do this proves existence of the profile as

well. We now describe what we mean by stability.

Definition 2. A solution U is asymptotically orbitally stable with respect to P, the set of

acceptable permutations, if for all V ∈ P,

U(x, t) = Ǔ(x) + V (x, t)→ Ǔ(x+ ε) (2.2)

for some ε ∈ R as t→∞.

Thus, a wave is stable if a sufficiently small perturbation of the wave converges to a spatial

translate of the unperturbed wave as time tends to infinity. Determining the nonlinear orbital

stability of a wave requires understanding the spectrum of the wave. Spectral stability, which

we introduce next, plays a central role in determining stability; see [19, 27, 28, 42].
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2.1.1 Spectral Stability. By linearizing (2.1) about the standing wave Ǔ , and then

looking for separated solutions, we obtain the eigenvalue problem,

λV = LV := −(α(Ǔ) · V ))x + (β(Ǔ) · Vx)x − (γ(Ǔ) · Vxx)x (2.3)

where α(Ǔ) · V = dg(Ǔ) · V − dβ(Ǔ) · V · Ǔx − dγ(Ǔ) · V · Ǔxx.

We are interested in the spectrum of L, which we now define.

Definition 3. We define:

• The spectrum σ(L) of L is the set of all λ ∈ C such that L− λI is not invertible.

• The point spectrum σp(L) of L is the set of all isolated eigenvalues of L with finite

multiplicity.

• The essential spectrum σe(L) of L is the entire spectrum not including the point

spectrum, i.e. σe(L) = σ(L) \ σp(L).

With the spectrum of a wave defined, we can now define what we mean by spectral

stability of a traveling wave.

Definition 4. A wave is spectrally stable if there is no spectrum of the eigenvalue problem

(2.3) in the deleted right half plane: C+ := {λ ∈ C \ {0}|Re(λ) ≥ 0}.

For a wide class of systems, spectral stability implies nonlinear orbital stability; see

[14, 19, 25, 26, 28, 27, 30, 36, 42].

We note that σp(L) 6= ∅ since 0 is always an eigenvalue corresponding to translational

invariance, as described in the following result of Sattinger.

Lemma 5. (Sattinger [35]) The derivative of the profile Ǔ ′ is an eigenfunction of L with

eigenvalue 0.

Proof. By translational invariance, we have ∀δ ∈ R that

F (Ǔ(x+ δ)) = 0,
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where

F (u) := −(f ′(u)− c)ux + (B(u)ux)x + (C(u)uxx)x.

Taking the derivative with respect to δ and setting δ = 0, we obtain

0 =
∂

∂δ
F (Ǔ(x+ δ))|δ=0 = F ′(Ǔ(x))Ǔ ′(x) = L(Ǔ ′(x)).

The main focus of this dissertation is developing computer assisted methods of proof to

obtain rigorous error bounds on numerical computations of the Evans function in order to

determine if a wave is spectrally stable. We must also verify for given systems that the

essential spectrum is well-behaved in order to prove a wave is stable. Fortunately, this is

straightforward due to the work of Henry, as we now describe.

2.1.2 Essential Spectrum. Recall the following result of Henry regarding essential

spectrum.

Theorem 6. (Henry [18])

The essential spectrum of L in (2.3) is sharply bounded to the right of σe(L+)∪σe(L−), where

L± correspond to the operators obtained by linearizing about the constant solutions Ǔ = U±,

respectively.

Thus, the essential spectrum is determined by solving the eigenvalue problem,

λV = LV := −α±Vx + β±Vxx − γ±Vxxx, (2.4)

where α± := dg(U±), β± := β(U±), and γ± := γ(U±).

We note that the linear operators L± have no point spectrum, so σ(L±) = σe(L±).

To solve the eigenvalue problem which gives the essential spectrum, we use the Fourier

transform,

(L̂− λI)−1V = (−iζα± − ζ2β± + iζ3γ± − λI)−1V, ζ ∈ R. (2.5)
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Then we can see that L − λI is singular whenever 0 ∈ σ(−iζα± − ζ2β± + iζ3γ± − λI).

Another way of saying this is this equivalence:

λ ∈ σ(L±) ⇐⇒ λ ∈ σ(−iζα± − ζ2β± + iζ3γ± − λI) (2.6)

for some ζ ∈ R. We thus have 2n-curves λ±n which correspond to

σ(−iζα± − ζ2β± + iζ3γ± − λI).

2.2 Theoretical Background of the Evans Function

In this section we describe the background needed to prove spectral stability of a traveling

wave, hence nonlinear orbital stability. By a traveling-wave solution of Ut = F (U) where F

is a differential operator in x, we mean a solution of the form

U(x, t) = Ǔ(x− ct),

where c is wave speed. Changing to co-moving coordinates x→ x− ct and linearizing about

the (now stationary) profile Ǔ , we obtain the eigenvalue problem,

λV = LV := (DF (Ǔ) + c∂x)V, (2.7)

where λ ∈ C. We say the traveling wave profile Ǔ is spectrally (orbitally) stable if first,

L has no spectrum in P = {λ ∈ C|<(λ) ≥ 0}\{0} and second, multiplicity of spectra at

λ = 0 (always present by translational invariance), appropriately defined, corresponds to the

dimension of the manifold of nearby traveling-wave solutions. Spectral stability has been

shown (for example see [12, 15, 16, 18, 21, 28, 29, 34, 41, 42]) in a variety of contexts, to

determine nonlinear orbital stability of traveling-wave solutions.

One may determine the presence of unstable eigenvalues of (2.7) when Ǔ is a viscous

shock wave by constructing the Evans function, D(λ), which consists of writing (2.7) as a

first order ODE,

7



W ′(x) = A(x, λ)W (x), A±(λ) := lim
x→±∞

A(x;λ), (2.8)

and then taking the Wronskian at x = 0 of the linearly independent spanning set of ODE

solutions W1, ...,Wk that span the unstable manifold at x = −∞ and the linearly inde-

pendent spanning set of solutions Wk+1,...,Wn that span the stable manifold at x = +∞,

where n is the dimension of the ODE system. The zeros of the Evans function, D(λ) =

det[W1, ...,Wk,Wk+1, ...,Wn]|x=0, correspond in location and multiplicity to the eigenvalues

of (2.7). With initializing basis chosen appropriately at x = ±∞, the Evans function is

analytic in λ. Consequently, the existence or absence of eigenvalues of (2.7) may be deter-

mined by computing the Evans function on appropriately chosen contours and counting the

winding number of the image.

For many systems, an explicit representation of the Evans function is not known and

so numerical approximation is used. Computing the Evans function numerically can be

challenging due to competing growth modes in the solutions of (2.8) leading to loss of

significance. Thus numerical methods must be chosen carefully. Many algorithms have

been developed for computing the Evans function (for a few examples see [4, 20, 23]), but

special algorithms are needed for rigorous computation in order to control the wrapping

effect (computed intervals growing too large to be useful), a known challenge with CAMP.

One way to control the wrapping effect is to use analytic interpolation, which we review

next, followed by several other tools we use.

2.3 The compound matrix method

When computing the Evans function, one must carefully choose the numerical method for

computing the Evans ODE. For example, suppose that {W−
1 (x), ...,W−

k (x)} is a basis for

the solution space of the Evans ODE (3.3) that belongs to the unstable manifold of the fixed

point zero at x = −∞. The growth of these solutions near x = −∞ is similar to that of

8



the solutions of the constant coefficient ODE, Y ′(x) = A−Y (x). A basis for this solution

space is given by terms of the form eνxv where ν is an eigenvalue of A− with positive real

part and v is an eigenvector corresponding to ν. When numerically solving for a basis

{W−
1 (x), ...,W−

k (x)} of the unstable subspace at x = −∞ of the ODE (3.3), any numerical

error blows up in the direction corresponding to the eigenvalue of A− with greatest real part.

Further, components of the solution corresponding to smaller eigenvalues get lost at machine

precision as the evolution of the ODE continues. Thus the computation is not numerically

well-posed; see [10]. To overcome this, one may use the Compound Matrix Method.

The Compound Matrix Method is used to lift a manifold from Cn to the exterior product

space ∧k(Cn). Note that ∧k(Cn) ∼= C(nk). If the dimension of the system is 20 and the

dimension of the original manifold is 10, then the dimension of the lifted space is 184,756,

which is not practical. However, for small dimensional systems, the lifted space is reasonable

to work with and has the clear advantage that the k-dimensional manifold now corresponds

to the one-dimensional manifold in the lifted system that corresponds to the largest growth

rate.

Example: Let n = 4 and k = 2. Let {e1, . . . , e4} be the standard basis on C4. Our basis

for ∧2(C4) becomes (e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e4, e3 ∧ e4). Then we can lift a matrix B into

∧2(C4) by defining B(2) as follows: B(2) ◦ ei ∧ ej = (Bei) ∧ ej + ei ∧ (Aej). Then if

B =



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44


(2.9)

9



we get that

B(2) =



b11 + b22 b23 b24 −b13 −b14 0

b32 b11 + b33 b34 b12 0 −b14

b42 b43 b11 + b44 0 b12 b13

−b31 b21 0 b22 + b33 b34 −b24

−b41 0 b21 b43 b22 + b44 b23

0 −b41 b31 −b42 b32 b33 + b44


. (2.10)

The resulting ODE that we wish to solve is given by

W ′ = B(k)W, W ∈ C(nk), (2.11)

where µ− is the sum of the eigenvalues of A− with positive real part. This new ODE is

numerically well-posed as now we are only evolving a one-dimensional manifold that corre-

sponds to the largest growth mode. The Evans function is now the inner product of the one

dimensional manifold coming from the left and from the right.

Now if we let W = eµ
−xv(x), then W ′ = µ−eµ

−xv(x) + eµ
−xv′(x). So µ−eµ

−xv(x) +

eµ
−xv′(x) = B(k)eµ

−xv(x). Then our new ODE is:
v′(x) = (B(k) − µ−)v(x)

v(−L) = r−

See [6] for details.

2.4 Analytic interpolation

Chebyshev polynomials are defined recursively as follows:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x) + Tn−2 for n > 2.

To interpolate with Chebyshev polynomials we represent a polynomial in the Chebyshev

basis as pN(x) =
∑N−1

j=0 ajTj(x). To solve for the coefficients aj, one may use the following
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property,

N−1∑
j=0

cos(nθj) cos(mθj) =


N if n = m = 0

N/2 if n = m > 0

0 otherwise

where θj =
(j+ 1

2
)π

N
. Now note that if f(x) is the function that we want to interpolate, we

have the following:

f(xj) =
N−1∑
n=0

an cos(nθj), =⇒
N−1∑
n=0

an

N−1∑
j=0

cos(mθj) cos(nθj) =
N−1∑
j=0

cos(mθj)f(xj),

=⇒ am =
2− sgn (m)

N

N−1∑
j=0

cos(mθj)f(xj).

To determine the error associated with interpolating an analytic function f , we use the

error bounds described in [32]. As detailed in these papers, if f is complex analytic inside

and on the ellipse

Eρ :=

{
z ∈ C|z =

1

2

(
ρeiθ +

e−iθ

ρ

)
θ ∈ [0, 2π]

}
,

then the error bound is given by

|f(x)− pN(x)| ≤ MρLρ
(πDρ sinh η(N + 1))

,

where

η = log ρ, Dρ =
1

2
(ρ+ ρ−1)− 1, Lρ = π

√
ρ2 + ρ−2, Mρ = max

z∈Eρ
(|f(z)|).

2.5 Uniform Limit of Analytic Functions is Analytic

In obtaining a rigorous enclosure of the ODE solutions involved in computing the Evans

function, we use series solutions of the ODE problem. These series solutions have analytic

coefficients in the spectral parameter and these series converge as shown by bounding the

truncation error with a geometric series. We need the theorem stated in this section to show

the infinite series is analytic in the spectral parameter. We state the relevant definition and
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theorem now.

Definition 7 (Locally Uniform Convergence). Let U ⊂ C be an open set. Let 〈fn〉 be a

sequence of functions fn : U → C. For z ∈ U , let Dr(z) be the open disk of radius r about z.

Then fn converges to f locally uniformly if and only if for each z ∈ U , there is an r ∈ R>0

such that fn converges uniformly to f on Dr(z) and Dr(z) ⊂ U .

Theorem 8. (Lang p156 [22]) [Uniform Limit of Analytic Functions is Analytic] Let U be

an open subset of C. Let 〈fn〉 be a sequence of analytic functions, fn : U → C. Let 〈fn〉

converge locally uniformly to f on U . Then f is analytic.

2.6 Bounds on Differential Equations

To interpolate the Evans function with analytic interpolation error bounds, we need to bound

the ODE solutions associated with computing the Evans function. In doing so, the following

theorem, which we quote from [9], is useful.

Theorem 9. ([9]) Consider the system of ordinary differential equations

x′ = f(t, x) (2.12)

where x and f are n-dimensional vectors, and 0 ≤ t < ∞. We assume that f(t, x) is

continuous for 0 ≤ t < ∞, |x| < ∞, but we require no assumptions on f to assure the

uniqueness of solutions of (2.12), as our arguments do not require uniqueness. Suppose that

there exists a continuous non-negative function ω(t, r) on 0 ≤ t <∞, 0 ≤ r <∞, such that

|f(t, x)| ≤ ω(t, |x|), 0 ≤ t <∞, |x| <∞. (2.13)

It is well known [11, 40] that if x(t) is a solution of (2.12), and r(t) is the maximum solution

of the scalar equation

r′ = ω(t, r) (2.14)

with r(0) = |x(0)|, then x(t) can be continued to the right as far as r(t) exist, and

|x(t)| ≤ r(t) (2.15)
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for all such t.

2.7 Parameterization Method for Vector Fields

In this section, we describe the parameterization method, which is key to our method of

computer assisted proof. For details about this method, see [39].

Let us start with the stable manifold. Let η ∈ Rn be an equilibrium point for an analytic

vector field f : Rn → Rn. We also assume that Df(η) has m ≤ n stable distinct eigenvalues

λ1, . . . , λm ∈ R. Then Df(η) is diagonalizable, and we choose ζ1, . . . , ζm ∈ R to be the

paired eigenvectors.

Our method is going to look at solutions of the following equation:

λ1ρ1
∂

∂ρ1

Ψ(ρ1, . . . , ρm) + . . .+ λmρm
∂

∂ρm
Ψ(ρ1, . . . , ρm) = f(Ψ(ρ1, . . . , ρm)). (2.16)

If a function Ψ : (−1, 1)m → Rn solves (2.16) and fits the constraints:

Ψ(0, . . . , 0) = η, and
∂

∂ρj
Ψ(0, . . . , 0) = ηj, 1 ≤ j ≤ m, (2.17)

then it is a chart for some local stable manifold patch at η.

Note that if we rewrite 2.16 more simply, to better understand, we get:

DΨ(ρ)Λρ = f(Ψ(ρ)). (2.18)

Theorem 10. (See [39]. ) Let φ represent the flow of f , and let Ψ be a solution of (2.16)

that also satisfies (2.17). Then Ψ is a one-to-one mapping and Ψ’s image is a local stable

manifold at η. Also,

φ(Ψ(ρ1, . . . , ρm), t) = Ψ(eλ1tρ1, . . . , e
λmtρm),

for all ρ = (ρ1, . . . , ρm) ∈ (−1, 1)m and t ≥ 0.

The proof of this theorem can be found in [39]. So Ψ tells us the embedding of the local

stable manifold, and the dynamics on the manifold due to the conjugacy. We also know
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that if η is hyperbolic, then the stable and unstable manifolds exist and are of the same

smoothness as f .

2.8 Newton Kantorovich

To obtain a rigorous error bound on the numerical approximation of the solution to an

ODE, we use the Newton-Kantorovich Theorem. This theorem allows us to get rigorous

bounds on how good of an approximation one has to the zeros of a function. By setting up

the ODE problem as a root finding problem, one can obtain bounds on the ODE solution

approximation error via use of the Newton-Kantorovich theorem.

Theorem 11 (a-posteriori Newton-Kantorovich). (see [24])

Suppose that F : X → Y is continuously differentiable and that x̄ ∈ X,A† ∈ B(X, Y ), A ∈

B(X, Y ) with A one-to-one. Let Y0, Z0, Z1 > 0 be positive constants, and Z2 : [0,∞) →

[0,∞) be a positive function, all satisfying the following conditions:

• ‖AF (x̄)‖X ≤ Y0

• ‖I− AA†‖B(X) ≤ Z0

• ‖A(A† −DF (x̄)‖B(X) ≤ Z1

• supx∈Br(x̄) ‖A(DF (x̄)−DF (x))‖B(X) ≤ Z2(r)r.

If p(r) := Z2(r)r2 − (1− Z0 − Z1)r + Y0 is negative for some r ∈ (0,∞), then there is a

unique z̃ ∈ Br(z̄) such that F (z̃) = 0.

2.8.1 One-dimensional fixed point example. We demonstrate how to use the Newton-

Kantorovich Theorem for rigorous computation by using it to prove that a fixed point exists

for the function g(x) = sinx − 1. We start by reformulating the problem as a root finding

problem. We define F (x) := sinx − x − 1. Thus, if F (x0) = 0, we have g(x0) = x0. We

use Newton’s method to determine x̄ := −1.934563211 such that F (x̄) ≈ 0. We note that
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Name of Bound Bound
Y0 [0, 2.47975771 ∗ 10−10]
Z0 [0, 5.33328937 ∗ 10−12]
Z1 [0, 3.79422938 ∗ 10−10]
Z2(r) [0.6596664177, 0.7120642921]

Table 2.1: Table of bounds needed for the Newton-Kantorovich Theorem.

DF (x) = cosx − 1 and D2F (x) = − sinx. Now we let A† = −1.355797141, which comes

from evaluating cos x̄ − 1. Then A = 1
A†

= −0.7375734686. Now we will let r∗ = 0.1 and

M = | sin ([x̄− r∗, x̄+ r∗]) |, which gives us M = [0.8943738431, 0.9654147315]. Then we can

finally find the bounds for the Newton-Kantorovich Theorem, which are given in Table 2.1

Then p(r) = Z2(r)r2− (1−Z0−Z1)r+Y0 < 0 for r ∈ [−1.40437,−2.47976∗10−10]. Thus

sinx− 1 has a unique fixed point x∗ with x∗ ∈ [x̄− 2.47976 ∗ 10−10, x̄+ 2.47976 ∗ 10−10].

2.8.2 2-Dimensional Root Example. We now demonstrate how to use the Newton-

Kantorovich Theorem for a slightly more complicated rigorous computation. We prove a

root exists for the following 2-d system:

f(x1, x2) =

2(x1 − π) + sinh x2

x1 − 2x2 − π

 .

We will use the obvious root of (π, 0) to inspire our guess at the zero,

x̄ =

3.141592654

0

 .

We will use a value of r∗ = 1 ∗ 10−10. Now we need to calculate Df and evaluate it at our x̄:

Df(x1, x2) =

2 coshx2

1 −2

 ,
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A† = Df(x̄) =

2 1

1 −2

 .

Next we calculate our D2f(x1, x2) which ends up being 2× 2× 2,

D2
x1
f(x1, x2) =

0 0

0 0

 ,

D2
x2
f(x1, x2) =

0 sinhx2

0 0

 .

And then when we evaluate the derivatives at x̄, yielding,

D2
x1
f(π, 0) =

0 0

0 0

 , D2
x2
f(π, 0) =

0 0

0 0

 .

We choose

A† =

2 1

1 −2

 and A =

0.4 0.2

0.2 −0.4

 .

Then ‖A‖M = 0.6, which gives us:

f(x̄) = 10−10 ∗

8.2041

4.1021

 ,

‖Af(x̄)‖M =

∥∥∥∥∥∥∥10−10 ∗

4.1021

0


∥∥∥∥∥∥∥
M

∈ [0, 4.1021 ∗ 10−10] = Y0,

‖1− AA†‖ = 0 = Z0,

‖A(A† −Df(x̄))‖ = 0 = Z1,

M ∈ [0, 1 ∗ 10−10],

‖M ∗ A‖ ∈ [0, 4 ∗ 10−10] = Z2.
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Then plugging these values into the Newton-Kantorovich equation yields

p(r) = Z2(r)r2 − (1− Z0 − Z1)r + Y0 = (4 ∗ 10−10)r2 − r + 4.1021 ∗ 10−10,

so that p(r) < 0 when r = 10−9. Thus a root of f exists within a neighborhood of x̄ of size

10−9.

Chapter 3. A reaction-diffusion equation

We now demonstrate how we compute the Evans function rigorously to determine stability of

a traveling wave solution. We illustrate our method with a scalar reaction-diffusion equation,

ut = uxx − u+ u2, x ∈ R. (3.1)

A traveling wave solution satisfies the corresponding profile equation,

u′′ = cux + u− u2,

where c ∈ R is the wave speed. With zero wave-speed, a standing wave solution is given by

q(x) := (3/2) sech2(x/2).

We linearize (3.1) about the profile q(x) and then seek separated solutions to obtain the

eigenvalue problem

λu = u′′ + (2q − 1)u.

Writing this as a first order system, where W = (w1, w2)T = (u, u′)T , we have

W ′(x) = A(x;λ)W (x),

A(x;λ) :=

 0 1

1 + λ− 2q(x) 0

 .
(3.2)

We define A±(λ) := limx→±∞A(x;λ).

We note that the ODE given in (3.2) is invariant under the coordinate change x→ −x,

w2 → −w2. This invariance allows us to define the Evans function, without loss of generality,
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as

D(λ) = w1(0;λ)w2(0;λ),

where W : (−∞, 0]→ R2, W (x;λ) = (w1(x;λ), w2(x;λ))T , is a solution of (3.2) that belongs

to the unstable manifold of the fixed point zero.

As detailed in Section 2.2, the Evans function is constructed by solving for a basis of

solutions of (3.2) that belong to the unstable manifold at x = −∞, and for a basis of

solutions of (3.2) that belong to the stable manifold at x = +∞, and then forming a

matrix for these solutions and evaluating the determinant of that matrix at x = 0. For this

simple example, the unstable and stable manifolds are one dimensional. In this situation, to

make (3.2) better conditioned, it is standard practice to factor out the asymptotic growth

of the ODE solution as x → ±∞. This rescaling is accomplished by defining a function

V by W (x) = eµxV (x), where µ is the the eigenvalue of A− with positive real part, or

the eigenvalue of A+ with negative real part. The new ODE to solve is then of the form

V ′(x) = (A(x;λ) − µI)V (x). The solution V posed on a half-line converges at asymptotic

rate as x → ±∞ to the eigenvector of A± that corresponds to µ. We recall that under the

rescaling, W (0) = V (0), so the roots of the Evans function remain the same.

In our computer assisted proof, we make a different choice than the usual one for rescaling

(3.2), which allows us to use the parameterization method, described in Section 2.7, to

obtain a tight enclosure of the solution to (3.2) on an interval (−∞, x0] for some x0 < 0.

In particular, we rescale (3.2) via W (x) = eµxV (x) where µ is chosen so that the positive

eigenvalue of A− − µI is the same as that of the Jacobian of the profile ODE. If we do

not make this scaling choice for µ, the series expansion for the solution to (3.2) will have a

different basis than the series expansion for the solution of the profile equation. If we use the

usual scaling used in an Evans function computation, then the solution we seek will belong

to the center manifold rather than the unstable manifold, and there will not be an analytic

expansion of the solution in the basis we use. Thus, our careful choice of the scaling factor

µ is key to the method.
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For the scalar reaction-diffusion system (3.1), choosing µ =
√

1 + λ−1 results in A−−µI

having a single positive eigenvalue, 1 ∈ σ(A−−µI), which corresponds to the single positive

eigenvalue of the Jacobian of the profile ODE equation evaluated at the fixed point zero.

Parameterizing by µ, rather than by the spectral parameter λ, leads to the new ODE system

to solve,

V ′(x) = (A(x;µ)W (x),

A(x;µ) :=

 −µ 1

(µ+ 1)2 − 2q(x) −µ

 .
(3.3)

We newly define A±(µ) := limx→±∞A(x;µ).

To obtain a rigorous enclosure of a solution of (3.3) on the interval (−∞, 0] belonging to

the unstable manifold of the fixed point zero, we carry out the following steps:

(i) We augment (3.3) with the profile equation to form a larger system.

(ii) We formulate finding the solution of this augmented system as a root finding problem.

(iii) We obtain a solution of the augmented system on the interval (−∞, x0] for some x0 < 0

using the parameterization method.

(iv) We obtain a solution of the augmented system on small intervals [xj, xj+1], where

x0 < x1 < x2 < ... < xJ , via a series solution.

(v) We use the Newton-Kantorovich Theorem, described in Section 2.8, to obtain a rigorous

bound on the error of our numerical approximation of the solution to the augmented

problem.

The augmented system is given by
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

y

z

v

w



′

=



z

y − y2

w − µv

((µ+ 1)2 − 2y)v − µw


, (3.4)

where µ =
√

1 + λ − 1, the first two components are the profile equation, and the last two

components are those given in (3.3).

3.1 Formulating a zero finding problem

Next, we form a function whose roots correspond to the existence of an ODE solution of

(3.4). First, we define Φ(θ) to be a parameterization of the unstable manifold of the fixed

point zero of the ODE system (3.4). We define Φ(y, z, v, w,∆x) to be the solution at ∆x of

the initial value problem (3.4) with initial conditions (y, z, v, w) at x = 0. We then form the

function

F (X) =



V0 − Φ(θ)

V1 − ψ0(V0,∆x)

V2 − ψ1(V1,∆x)

...

VN − ψN−1(VN−1,∆x)

zN


where X = (θ, y0, z0, v0, w0, y1, z1, v1, w1, · · · , yN , zN , vN , wN) and

Vk =

(
yk zk vk wk

)T
.

The zero of F will give the solution to (3.3) at the nodes

x0 = −N∆x < x1 < ... < xN = 0,

where xj+1 − xj = ∆x for each 0 ≤ j ≤ N − 1. That is, (yj, zj, vj, wj) is the value of the

solution to (3.3) at xj. This is demonstrated in Figure 3.1. Red dots indicate the ordered
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pairs (xj, yj). The solid black line indicates the actual profile solution.

Figure 3.1: Plot of the profile solution with a solid line, and plots of the ordered pairs (xj , yj) that
form some of the components of the vector that is a root of F .

To apply the Newton-Kantorovich Theorem to obtain a rigorous bound on the error of a

good approximation X̄ of the zero of F , we need the Jacobian of F , which is given by

DF (X) =



−dΦ
dθ I4×4 0 · · · 0 0

0 −Dψ(V0,∆x) I4×4 · · · 0 0

0 0 −Dψ(V1,∆x) I4×4 · · · 0

...
...

...
. . .

...
...

0 0 0 · · · −Dψ(VN−1,∆x) I4×4

0 0 0
. . . 0 eT2


,

where eT2 is the standard Euclidean basis vector (0, 1, 0, 0)T .

We also need the second derivative D2F , which we do not record here as it is a large 3D

array, but we note that it is convenient to code it by using a for loop ranging from 1 to N

and using the fact that DF is band-diagonal.

Next, we describe how we obtain a rigorous enclosure of the parameterization Φ(θ) of the

unstable manifold of the fixed point zero of (3.3).
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3.2 Parameterization of the unstable manifold

We obtain a solution of (3.3) on the interval (−∞, x0] that belongs to the unstable manifold

of the fixed point zero by making the Ansatz that

y(x)

z(x)

v(x)

w(x)


=
∞∑
n=0



yn

zn

vn

wn


θn(x),

where θ(x) = θ0e
x and θ0 ∈ R is constant. Plugging the Ansatz into (3.3), we obtain



∑∞
n=0 ynθ

n(x)∑∞
n=0 znθ

n(x)∑∞
n=0 vnθ

n(x)∑∞
n=0 wnθ

n(x)



′

=



∑∞
n=0 znθ

n(x)∑∞
n=0 ynθ

n(x)− (
∑∞

n=0 ynθ
n(x))

2∑∞
n=0 wnθ

n(x)− µ
∑∞

n=0 vnθ
n(x)

−2(
∑∞

n=0 ynθ
n(x))(

∑∞
n=0 vnθ

n(x)) + (1 + λ)
∑∞

n=0 vnθ
n(x)− µ

∑∞
n=0 wnθ

n(x)


.

This leads to the following recurrence relation for n ≥ 2,
nI −



0 1 0 0

1 0 0 0

0 0 −µ 1

0 0 (µ+ 1)2 −µ







yn

zn

vn

wn


=



0

−
∑n−1

k=1 yn−kyk

0

−2
∑n−1

k=1 yn−kvk


. (3.5)

We define

Bn :=



n −1 0 0

−1 n 0 0

0 0 n+ µ −1

0 0 −(µ+ 1)2 n+ µ


,

and note that Bn is invertible with inverse

B−1
n =



n
n2−1

1
n2−1

0 0

1
n2−1

n
n2−1

0 0

0 0 n+µ
(n+µ)2−(µ+1)2

1
(n+µ)2−(µ+1)2

0 0 (µ+1)2

(n+µ)2−(µ+1)2
n+µ

(n+µ)2−(µ+1)2


,
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so long as (n + µ)2 − (µ + 1)2 6= 0. For <(λ) ≥ 0, we have <(µ) ≥ 0, and so Bn is always

invertible for n ∈ N, n ≥ 2. That is, there are no resonances. Thus we can solve for

(yn, zn, vn, wn)T in equation (3.5).

The series is initialized with (y0, z0, v0, w0) = (0, 0, 0, 0) and with the first order coefficients

given by (y1, z1, v1, w1) = (1, 1, 1, 1 + µ), the eigenvector with corresponding eigenvalue 1 of

the Jacobian of (3.4) evaluated at the fixed point zero,

J(0, 0, 0, 0) =



0 1 0 0

1 0 0 0

0 0 −µ 1

0 0 (µ+ 1)2 −µ


.

With these choices and inside the radius of convergence of the series, the series gives

a solution of (3.4) that belongs to the unstable manifold of the fixed point zero. The

parameterization of the unstable manifold of interest is thus given by

Φ(θ) =
∞∑
n=0

(yn, zn, vn, wn)T θn.

To determine a lower bound on the radius of convergence of the series, we bound the

series by a geometric series as described in the following proposition.

Proposition 12. If <(µ) ≥ −1 and C = 4 ·max(1, |1 + µ|), then

|yn|, |zn|, |vn|, |wn| ≤
(

1

2

)n+1

Cn

for all n ∈ N ∪ {0}.

Proof. We first recall that y0 = z0 = v0 = w0 = 0, so the result is true for n = 0. We recall

that (y1, z1, v1, w1) = (1, 1, 1, 1 + µ), so the result is true for n = 1. Let n ≥ 2 be an integer.

Assume that the result holds for indices 0 through n − 1. We show that |wn| ≤
(

1
2

)n+1
Cn.

Showing the other three nth coefficients satisfy this bound is similar, but more straight
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foward. Using B−1
n to solve (3.5), we have

|wn| ≤

∣∣∣∣∣−2
n+ µ

(n− 1)(n+ 1 + 2µ)

n−1∑
k=1

yn−kvk

∣∣∣∣∣
≤ 2

n+ µ

(n− 1)(n+ 1 + 2µ)

n−1∑
k=1

(
1

2

)n+2

Cn

≤
(

1

2

)n+1

Cn

[
n+ µ

n+ µ+ (1 + µ)

]
≤
(

1

2

)n+1

Cn.

When using the Newton-Kantorovich Theorem, we need to compute Φ(θ) and its first

two derivatives. Let r = |Cθ/2| where C = 4 · max(1, |1 + µ|). If r ≥ 1, the geometric

series bounding the coefficients of Φ does not converge. Otherwise, excluding the terms of

the series of index N + 1 or bigger, the truncation error bound satisfies∣∣∣∣∣
∞∑

n=N+1

χnθ
n

∣∣∣∣∣ ≤ 1

2

∞∑
n=N+1

rn,

≤ 1

2

rN+1

1− r
,

where χn represents yn, zn, vn, or wn. To bound the truncation error involved in computing

Φ′(θ) and Φ′′(θ), we define f(r) := 1
2
rN+1

1−r . The bound on the truncation error involved in

computing Φ′(θ) is Cf ′(r)
4

, and for Φ′′(θ) it is C2f ′′(r)
8

.

Next, we obtain the recurrence relation for the series solution over a finite interval.

3.3 Series solution on a finite interval

To obtain the solution of (3.4) as an initial value problem with initial condition (y0, z0, v0, w0)T

at x = 0, we make the ansatz

(y(∆x), z(∆x), v(∆x), w(∆x)) =
∞∑
n=0

(yn, zn, vn, wn)(∆x)n.
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The recurrence relations are thus given by

yn+1 =
zn

n+ 1
,

zn+1 =
1

n+ 1

(
yn −

n∑
k=0

ykyn−k

)
,

vn+1 =
1

n+ 1
(wn − µvn) ,

wn+1 =
1

n+ 1

(
(µ+ 1)2vn − µwn − 2

n∑
k=0

ykvn−k

)
,

for n ≥ 1, where y0, z0, v0, w0 are given by the initial condition.

We define χ = (y0, z0, v0, w0)T . For 1 ≤ i ≤ 4, we obtain the derivatives

∂yn+1

∂χi
=

1

n+ 1

∂zn
∂χi

,

∂zn+1

∂χi
=

1

n+ 1

(
∂yn
∂χi
−

n∑
k=0

(
∂yk
∂χi

yn−k + yk
∂yn−k
∂χi

))
,

∂vn+1

∂χi
=

1

n+ 1

(
∂wn
∂χi
− µ∂vn

∂χi

)
,

∂wn+1

∂χi
=

1

n+ 1

(
(µ+ 1)2∂vn

∂χi
− µ∂wn

∂χi
− 2

n∑
k=0

(
∂yk
∂χi

vn−k + yk
∂vn−k
∂χi

))
.

We note that

∂yn+1

∂v0

=
∂yn+1

∂w0

=
∂zn+1

∂v0

=
∂zn+1

∂w0

= 0.

The second derivatives are then given by

∂2yn+1

∂χi∂χj
=

1

n+ 1

∂2zn
∂χi∂χj

,

∂2zn+1

∂χi∂χj
=

1

n+ 1

(
∂2yn
∂χi∂χj

−
n∑
k=0

(
∂2yk
∂χi∂χj

yn−k +
∂yk
∂χi

∂yn−k
∂χj

+
∂yk
∂χj

∂yn−k
∂χi

+ yk
∂2yn−k
∂χi∂χj

))
,

∂2vn+1

∂χi∂χj
=

1

n+ 1

(
∂2wn
∂χi∂χj

− µ ∂2vn
∂χi∂χj

)
,

∂2wn+1

∂χi∂χj
=

1

n+ 1

(
(µ+ 1)2 ∂2vn

∂χi∂χj
− µ ∂2wn

∂χi∂χj

)
− 2

n+ 1

n∑
k=0

(
∂2yk
∂χi∂χj

vn−k +
∂yk
∂χi

∂vn−k
∂χj

+
∂yk
∂χi

∂vn−k
∂χj

+ yk
∂2vn−k
∂χi∂χj

)
.

Next, we establish a result which allows us to use computer assisted proof to bound the
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coefficients and their first two derivatives by a geometric series.

Proposition 13. Let N ∈ N, m ∈ N, C > 0, and define C0 = 2m max(|y0|, |z0|, |v0|, |w0|).

If for all 0 ≤ n ≤ N and each φn ∈ {yn, zn, vn, zn} it holds that |φn|, |∂φn∂χi
|, | ∂2φn

∂χi∂χj
| ≤ C0Cn

2m
,

and if

1 ≥ 1

C

(
1

N + 1
+ 22−mC0

)
,

1 ≥ 1 + |µ|
C(N + 1)

,

1 ≥|1 + µ|2 + |µ|
C(N + 1)

+
23−mC0

C
,

then |yn|, |zn|, |vn|, |wn| ≤ C0Cn

2m
for all integers n ≥ 0.

Proof. We prove the result for ∂2wn+1

∂χi∂χj
using induction. Proving the result for the other terms

is similar, but less involved. Assume the hypothesis holds. Let n ≥ N be an integer. We

note the following bounds on representative terms, which hold by the inductive hypothesis,∣∣∣∣ ∂2yn
∂χi∂χj

∣∣∣∣ ≤ C0C
n

2m∣∣∣∣∂yk∂χi

∂vn−k
∂χj

∣∣∣∣ ≤ C2
0C

n

22m
,∣∣∣∣ ∂2yk

∂χi∂χj
vn−k

∣∣∣∣ ≤ C2
0C

n

22m
.

Using the appropriate analogous bounds on all the terms, we see that∣∣∣∣∂2wn+1

∂χi∂χj

∣∣∣∣ ≤ 1

n+ 1

(
(|µ+ 1|2 + |µ|)C0C

n2−m + 2
n∑
k=0

4
C0C

n

2m

)
,

≤ C0C
n+12−m

(
|µ+ 1|2 + |µ|
C(n+ 1)

+
23−mC0

C

)
.

Hence, if 1 ≥ |1+µ|2+|µ|
C(N+1)

+ 23−mC0

C
, then

∣∣∣∂2wn+1

∂χi∂χj

∣∣∣ ≤ C0C
n+12−m. Thus, by induction the

result holds for all integers n ≥ 0.

With these propositions in place, we are ready to use the Newton-Kantorovich Theorem

described in Section 2.8.
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3.4 Newton Kantorovich Theorem

Applying the Newton Kantorovich Theorem described in Section 2.8 to the function F

described in Section 3.1, we obtain a rigorous enclosure of the Evans function for a single

value of µ. We record statistics for the case that µ = 1.

We choose θL so that x0 corresponds to x = −5. We use ∆x = 0.1. We obtain an

initial guess x̄ to the zero of F by computing with double arithmetic the solution to (3.4)

initialized with Φ(θL). We use the first 21 terms of the series to compute Φ(θ), and we

use the first 36 terms of the series to rigorously approximate the solution of (3.4) over an

interval of width ∆x, although we only use 21 terms to compute the second derivative as only

a rough upper bound on the modulus is needed. We took r = 5e− 9 to compute p(r) in the

Newton-Kantorovich Theorem, though we bounded the second derivative using r = 1e− 5.

We choose A† to be the midpoint of the Jacobian, DF , of F . We use double arithmetic

to set A to the numerical approximation of the inverse of A†.

The resulting bounds associated with the Newton-Kantorovich Theorem are

Y0 ≈ 6.850× 10−10

Z0 ≈ 8.559× 10−13

Z1 ≈ 2.7710× 10−10

Z2(r) ≈ 7.2521× 105

p(r) = Z2(r)42 − (1− Z0 − Z1)r + Y0|r=5e−9

≈ −4.296× 10−9.

Since p(5e − 9) < 0, the zero of F lies within r = 5e − 9 of the initial guess x̄. It took

833 seconds to run the code.

The next step is to determine for which values of µ we need to compute the Evans

function. In the next section, we obtain a bound on the modulus of unstable eigenvalues,

which in turn gives a bound on µ.
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3.5 Energy Estimate

We recall that the reaction-diffusion equation of interest is given by

ut = uxx − u+ u2. (3.6)

Recall that a standing wave solution is given by q(x) := (3/2) sech2(x/2). Linearizing (3.6)

about the standing wave q, and looking for separated solutions leads to the eigenvalue prob-

lem

λu = u′′ − u+ 2qu. (3.7)

We note that the essential spectrum consists of (−∞,−1]. We use an energy estimate to

obtain a bound on how large the modulus of an unstable eigenvalue can be. We multiply

both sides of (3.7) by ū and integrate over the real line to obtain

λ‖u‖2
L2 = −‖u‖2

L2 +

∫ ∞
−∞

ūu′′ + 2

∫ ∞
−∞

quū

= −‖u‖2
L2 − ‖u′‖2

L2 + 2

∫ ∞
−∞

q|u|2,
(3.8)

where the last line comes from doing integration by parts on the second term. Taking the

real part of (3.8) leads to

<(λ)‖u‖2
L2 ≤ 2‖q‖∞‖u‖2

L2 − ‖u‖2
L2 − ‖u′‖2

L2

≤ 2‖u‖2
L2 ,

since ‖q‖∞ ≤ 3/2. Thus, <(λ) ≤ 2. Since the right hand side of (3.8) is real valued, we

conclude =(λ) = 0. Thus it suffices to find any point spectra in the real interval [0, 2].

The next step is to determine where nodes should be placed in the interval [0, 2] for

analytic interpolation.

3.6 Analytic interpolation

We now describe the various choices we make to carry out analytic interpolation, as described

in Section 2.4. We use the coordinate change µ = (µL + µR)/2 + (µR − µL)µ̃/2, where
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µ̃ ∈ [−1, 1] and µL and µR are the left and right bounds of the values of µ that we consider.

We choose ρ = 3 and verify that <(µ) > −0.5 for µ̃ inside and on the ellipse given by

Eρ := {(ρeiθ+ρ−1e−iθ)/2}. We then divide [0, 2π] into 10 equally spaced intervals and obtain

a bound, using interval arithmetic computations, on the modulus of the Evans function

evaluated at each of those subintervals. To bound the Evans function, we evaluate Φ(θL)

and verify that the series, by which Φ(θL) is defined, converges. This gives a bound on

the size of the solution (y, z, v, w)T of (3.4) at x0. We then use the method described in

Section 2.6 to obtain a crude bound on the growth of the solutions over the interval [x0, 0].

We then use these bounds to bound the modulus of D(µ) = v(0)w(0). We request that

the interpolation error be no more than 10−10, which results in the number of interpolation

nodes needed being 59.

3.7 Results

In Figure 3.2 we plot the Evans function, as computed rigorously, against the spectral pa-

rameter λ at the interpolated nodes needed for rigorous interpolation. We note that the sign

of the Evans function changes at approximately λ = 1.25, which indicates the existence of

an unstable eigenvalue.

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

D
(

)

Figure 3.2: Plot of the rigorously computed Evans function at the nodes needed for rigorous
interpolation.
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If the there were no eigenvalues and we wanted to prove the wave is stable, we would

choose enough interpolation nodes to have a good approximation of the derivative of the

Evans function by the derivative of the Chebyshev interpolant; see [32, 37]. We would then

evaluate the interpolant all along the interval [0, 2] to ensure that there are no zeros of the

Evans function except at λ = 0. In a small neighborhood of λ = 0, the interval enclosure of

the Evans function evaluation would include zero. However, in that neighborhood, we would

use the derivative of the interpolant to show that the derivative is of one sign only, hence

the Evans function has only one zero at the origin.

With this scalar reaction-diffusion model, we have demonstrated how to obtain rigorous

error bounds on the computation of the Evans function. We recall a few key points of this

method before demonstrating in the next chapter how to deal with some other situations

that arise when computing the Evans function for other systems.

(i) Using the parameterization method is essential in order to represent the solution of

(3.4) on the interval (−∞, x0]. We note that the choice of θL for all values of the spectral

parameter λ makes it so Φ(θL;µ), which is Φ(θL) for a given µ, varies analytically with

respect to µ. This is important in order for the Evans function to be analytic.

(ii) The careful choice of scaling factor µ is key to be able to represent the unstable manifold

of the fixed point zero of (3.4) using the parameterization method. We must choose µ

so that an analytic solution exists for the manifold we wish to obtain.

(iii) The use of the standard polynomial basis for the series solution on the finite intervals of

width ∆x is convenient since we can use a proof by induction to bound the coefficients

of the series with a geometric series. We note that many other rigorous methods work

for computing the solution on these intervals, including the use of a series with a basis

consisting of the Chebyshev polynomials. Some of these other methods are far more

computationally efficient, but also more involved to implement.
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(iv) Finally, we note that in more complicated systems, one may have to solve for an

unstable or stable manifold that is of dimension larger than one. We outline how to

deal with this situation in the next chapter.

Chapter 4. Multi-dimensional manifolds

In this chapter, we use the Gray-Scott system to demonstrate how to deal with the situation

that the dimension of the stable/unstable manifold of a fixed point (the limit of the profile

as x → ±∞) of the profile equation is greater than one. All other aspects of rigorously

computing the Evans function are demonstrated in Chapter 3. We begin by introducing the

system.

4.1 The Gray-Scott system

The Gray-Scott system of equations is given by

ut = uxx − uv2 + α(1− u),

vt = vxx + uv2/γ − v/γ,
(4.1)

where α, γ > 0. A stationary traveling wave solution satisfies the profile equations,

u′′ = uv2 − α(1− u),

v′′ =
1

γ
(v − uv2).

(4.2)

Setting w = u′, and z = v′, we arrive at the first order system,

u

w

v

z



′

=



w

uv2 − α(1− u)

z

1
γ
(v − uv2)


. (4.3)

The Jacobian of this system is given by,
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J =



0 1 0 0

v2 + α 0 2uv 0

0 0 0 1

−v2
γ

0 1
γ
(1− 2uv) 0


. (4.4)

The fixed points of the system (4.1) are (1, 0, 0, 0)T and (u0, 0, 1/u0, 0)T , where we define

u0 :=
1±
√

1−4/α

2
. The eigenvalues of the Jacobian evaluated at the fixed point (1, 0, 0, 0)T are

given by µ±1 = ±
√
α and µ±2 = ± 1√

γ
. Corresponding eigenvectors are given by (1, µ±1 , 0, 0)T

and (0, 0, 1, µ±2 )T , respectively.

We note that the unstable manifold of the fixed point that corresponds to x = −∞ is

two-dimensional, as is the stable manifold of the fixed point that corresponds to x = +∞.

Parameterizing these manifolds is more involved then what we described in Chapter 3 since

the manifolds are now two-dimensional. To parameterize the unstable manifold of the fixed

point (1, 0, 0, 0), we make the ansatzu(x)

v(x)

 =
∞∑

m,n=0

umn
vmn

(θ0
1e
µ+1 x
)m (

θ0
2e
µ+2 x
)n
.

The unstable manifold is then parameterized by θ1 := θ0
1e
µ+1 x and θ2 := θ0

2e
µ+2 x. This

again leads to a recursion formula that we can show yields coefficients that are bounded

by a geometric series inside a certain radius. The main difference is in how we rescale the

Evans function given that the profile requires an ansatz of this form. We recall that for the

system described in Chapter 3, we rescaled the Evans function which in practice resulted in

subtracting µ multiplied by the identify from the matrix A(x;λ) given in (3.3). We recall

that µ was chosen so that the eigenvector corresponding to the eigenvalue of A− with positive

real part was an eigenvector of the rescaled system, A−−µI, with corresponding eigenvalue

matching that of the Jacobian of the profile ODE. The main point of this chapter is to

describe how to rescale the Evans function (what to choose for µ) when the parameterization

of the profile in a neighborhood of infinity is multidimensional.
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Before discussing this issue, we must introduce some additional details, but we first note

that when αγ = 1 and 0 < γ < 2
9
, an analytic solution (see [17]) is given by

u(t) = 1− 3γ

1 +Q cosh(t/
√
γ)
,

v(t) =
3

1 +Q cosh(t/
√
γ)
,

(4.5)

where Q :=
√

1− 9γ/2. Derivatives of the profile are given by

u′(t) = −
3Q
√
γ sinh(t/

√
γ)

(1 +Q cosh(t/
√
γ))2

,

v′(t) =
3Q(1/

√
γ) sinh(t/

√
γ)

(1 +Q cosh(t/
√
γ))2

.

(4.6)

We plot u, v, and their derivatives in Figure 4.1.

Figure 4.1: The graphs of the profile equations.

4.1.1 The eigenvalue problem. Linearizing (4.1) about the profile (4.5) and looking

for separated solutions leads to the eigenvalue problem,

λu = u′′ − uv̂2 − 2ûv̂v − αu,

λv = v′′ + uv̂2/γ + 2ûv̂v/γ − v/γ,
(4.7)

where û and v̂ are the profile solutions. Rearranging terms, we have

u′′ = λu+ v̂2u+ 2ûv̂v + αu,

v′′ = λv − v̂2

γ
u− 2ûv̂

γ
v +

v

γ
.

(4.8)
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Note that, due to the symmetry of û and v̂, eigenfunctions may be symmetric about the

origin, or reflexive about the origin.

We write (4.8) as a first order system as follows,

u

u′

v

v′


=



0 1 0 0

λ+ v̂2 + α 0 2ûv̂ 0

0 0 0 1

−v̂2/γ 0 λ+ (1− 2ûv̂)/γ 0





u

u′

v

v′


. (4.9)

The asymptotic matrices are given by

A± =



0 1 0 0

λ+ α 0 0 0

0 0 0 1

0 0 λ+ 1/γ 0


. (4.10)

The eigenvalues of A± are given by µ±1 = ±
√
λ+ α and µ±2 = ±

√
λ+ 1/γ. The associated

eigenvectors are given by v±1 = (1, µ±1 , 0, 0)T and v±2 = (0, 0, 1, µ±2 )T . Thus, to compute the

Evans function, we need to solve for the two-dimensional unstable manifold of (4.9) corre-

sponding to x = −∞, and for the two-dimensional stable manifold of (4.9) corresponding to

x = +∞. Even for computations using double arithmetic, this is an extremely challenging

problem that requires specialized numerical solvers due to the conditioning of the problem;

for example see [4, 20].

Rather than use specialized solvers, we may raise the dimension of the system using

exterior products and solve for manifolds W±∞(x;λ) of dimension one. An intersection of

these one-dimensional manifolds in the larger system corresponds to an intersection of the

two-dimensional manifolds in the original system. This method of using exterior products is

known as the compound matrix method and is described in Section 2.3; for details see [1].

We note that in practice, the compound matrix method can only be used if the dimension of

the system is sufficiently small since the dimension of the raised system can be much larger.

We note that using the compound matrix method reduces the ODE problem we must solve
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for the Gray-Scott equation to the same situation considered in Chapter 3. That is, we only

need solve for a one-dimensional manifold.

The compound matrix corresponding to (4.9) is given by

B(2) =



0 2ûv̂ 0 0 0 0

0 0 1 1 0 0

0 λ+ (1− 2ûv̂)/γ 0 0 1 0

0 λ+ v̂2 + α 0 0 1 0

v̂2/γ 0 λ+ v̂2 + α λ+ (1− 2ûv̂)/γ 0 2ûv̂

0 v̂2/γ 0 0 0 0


.

The ODE to solve is then

W ′
±(x) = B(2)(x;λ)W±(x), (4.11)

where W+ : [0,∞)→ R6 belongs to the one-dimensional manifold of the fixed point zero of

(4.11) corresponding to the eigenvalue of B
(2)
+ := limx→+∞B

(2)(x) with the most negative

real part, and W− : (−∞, 0] → R6 belongs to the unstable manifold of the fixed point zero

of (4.11) corresponding to the eigenvalue of B
(2)
− := limx→−∞B

(2)(x) with the most positive

real part. The Evans function is given by the inner product of W+(0) and W−(0).

At this point, we are ready to discuss the choice of µ in rescaling the Evans ODE.

4.2 Rescaling the Evans ODE

We discuss how to rescale the Evans ODE system (4.11) on the interval (−∞, 0]. Rescaling

on [0,+∞) follows an analogous procedure. We note that the eigenvalues of B
(2)
− are given

by the sum of the eigenvalues of A−, and the corresponding eigenvectors of B
(2)
− are given

by the exterior products of the eigenvectors of A−. We recall that the eigenvalues of A− are

given by ±
√
λ+ α and ±

√
λ+ 1/γ. Thus, the eigenvalues of B

(2)
− are given by

−
√
λ+ α−

√
λ+ 1/γ, −

√
λ+ α +

√
λ+ 1/γ,

√
λ+ α−

√
λ+ 1/γ,

−
√
λ+ α +

√
λ+ α = 0, −

√
λ+ 1/γ +

√
λ+ 1/γ = 0,

√
λ+ α +

√
λ+ 1/γ.
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The one dimensional manifold of the solution space of (4.11) that we wish to solve corre-

sponds to eigenvalue µ∗ :=
√
λ+ α +

√
λ+ 1/γ, the eigenvalue of B

(2)
− with largest real

part. If we rescale (4.11) so that B(2)(x;λ) goes to B(2)(x;λ) − µ∗I, then the solution we

seek will converge at asymptotic rate to a non-zero multiple of the eigenvector corresponding

to µ∗. However, this solution will belong to the center manifold of the fixed point zero of

the rescaled system

W ′
±(x) = (B(2)(x;λ)− µI)W±(x), (4.12)

where µ = µ∗. We would not be able to obtain an analytic expansion of the desired manifold

using the parameterization method because the solution we seek would not belong to the

unstable manifold. We could instead choose µ = µ∗ − C where C > 0 is a constant that is

small enough that the only eigenvalue of B
(2)
− − µI that is greater than or equal to zero is

µ∗ −C. We could then use the parameterization method to obtain an analytic basis for the

unstable manifold of the ODE system obtained from coupling the profile ODE and (4.12)

into one system. The unstable manifold of this coupled system would be three-dimensional.

The unstable manifold of the profile is two-dimensional, and the unstable manifold of (4.12)

is one dimensional with the choice µ = µ∗ − C. However, we can do better than this. If we

choose µ more carefully, we only need solve for a two-dimensional unstable manifold, which

is easier to implement.

Recall that the eigenvalues of the Jacobian of the profile ODE at the fixed point corre-

sponding to x = −∞ are given by ±
√
α and ±

√
1/γ. Without loss of generality, assume

that
√

1/γ >
√
α. If we choose µ = µ∗−

√
α, then only one eigenvalue,

√
α, of B

(2)
− −µI will

have positive real part, and the eigenvector corresponding to
√
α will be the same eigenvector

of B
(2)
− that corresponds to the eigenvalue µ∗. Then the unstable manifold of the coupled

system will be two-dimensional instead of three-dimensional. This is the same strategy we

used for the system described in Chapter 3, only here the strategy is more involved since the

profile has a two-dimensional unstable manifold.

We note that for m,n ≥ 0, m + n ≥ 2, if m
√
α + n

√
1/γ is an eigenvalue of B

(2)
− − µI,
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or equals
√
α or

√
1/γ, then the recursion formula corresponding to the parameterization

method is not solvable because the system is not invertible, something referred to as res-

onance. Our choice of µ, that is µ = µ∗ −
√
α, guarantees that the only possibility that

m
√
α + n

√
1/γ is an eigenvalue of B

(2)
− − µI is if m

√
α + n

√
1/γ =

√
α, but this can not

happen for m+ n ≥ 2 since
√
α <

√
1/γ by assumption (without loss of generality). Thus,

a resonance only arises in the computation of the unstable manifold for the Evans function

if it does for the profile.

With this example of choosing the rescaling of the Evans ODE complete, we are almost

ready to state our algorithm in its general form, but first we mention one other aspect of

rigorous computation of the Evans function. We must obtain a bound on the region where

unstable eigenvalues may occur. For the Gray-Scott system, we can do this with an energy

estimate. For many systems, obtaining an energy estimate is much more difficult. For

those systems, one may use other methods, but we propose that computer assisted proof

can be used to make this process easier. First, we provide an energy estimate to bound the

eigenvalues for the Gray-Scott system. Comparing this energy estimate to the one given in

Section 3.5, we see how the level of difficulty already increases between these two systems.

After providing the energy estimate, we present a strategy for using computer assisted proof

to obtain a bound on the eigenvalues.

4.3 High frequency energy estimates

The eigenvalue problem is given by

λu = u′′ − uv̂2 − 2ûv̂v − αu,

λv = v′′ + uv̂2/γ + 2ûv̂v/γ − v/γ,
(4.13)

where û and v̂ are the profiles.

Our goal is to obtain a bound on the region in the right-half complex plane where eigen-

values may occur. Using an energy estimate, we obtain the following result.
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Theorem 14. If λ is an eigenvalue of the ODE eigenvalue problem (4.13) and if <(λ) ≥ 0,

then

|=(λ)| ≤

√
2||v̂||3∞||û||∞

|γ|
, (4.14)

and

<(λ) ≤ max

(
||v̂||2∞ + 2||û||∞||v̂||∞ − α,

1

|γ|
||v̂||2∞ +

2

|γ|
||û||∞||v̂||∞ −

1

γ

)
. (4.15)

Proof. We multiply the first equation in (4.13) by ū and the second equation in (4.13)

by v̄ where the bar indicates the complex conjugate, and then we integrate. We also use

integration by parts on
∫
u′′ū and

∫
v′′v̄. This leads to

λ||u||2 = −||u′||2 −
∫
v̂2|u|2 − 2

∫
ûv̂ūv − α||u||2,

λ||v||2 = −||v′||2 +
1

γ

∫
v̂2uv̄ +

2

γ

∫
ûv̂|v|2 − 1

γ
||v||2.

(4.16)

Taking the imaginary part of both sides, we have

=(λ)||u||2 = =
(
−2

∫
ûv̂ūv

)
,

=(λ)||v||2 = =
(

1

γ

∫
v̂2uv̄

)
.

(4.17)

Taking the absolute value of both sides and using standard bounds, we arrive at the inequal-

ities

|=(λ)|||u||2 ≤ 2||û||∞||v̂||∞
∫
|ūv|,

|=(λ)|||v||2 ≤ 1

|γ|
||v̂2||∞

∫
|uv̄|.

(4.18)

Multiplying the second equation above by |=(λ)| and using the first inequality we find

|=(λ)|2||v||2 ≤
2||v̂||3∞||û||∞

|γ|
||v||2, (4.19)

which implies that

|=(λ)| ≤

√
2||v̂||3∞||û||∞

|γ|
. (4.20)
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We now take the real part of both sides of (4.16) to obtain

<(λ)||u||22 = −||u′||22 −<
(∫

v̂2|u|2
)
− 2<

(∫
ûv̂ūv

)
− α||u||22,

<(λ)||v||22 = −||v′||22 +
1

γ

∫
v̂2uv̄ +

2

γ

∫
ûv̂|v|2 − 1

γ
||v||2.

(4.21)

Bounding some terms on the right using standard techniques including Hölder’s inequality

leads to

<(λ)||u||22 ≤ ||v̂||2∞||u||22 + 2||û||∞||v̂||∞||u||2||v||2 − α||u||22,

<(λ)||v||22 ≤
1

|γ|
||v̂||2∞||u||2||v||2 +

2

|γ|
||û||∞||v̂||∞||v||22 −

1

γ
||v||22.

(4.22)

We note that ||u||2 > 0 and ||v||2 > 0 if (u, v) forms an eigenfunction, so dividing the first

equation above by ||u||22 if ||u||2 > ||v||2, and dividing the second equation above by ||v||22 if

||v||2 > ||u||2, we arrive at

<(λ) ≤ max

(
||v̂||2∞ + 2||û||∞||v̂||∞ − α,

1

|γ|
||v̂||2∞ +

2

|γ|
||û||∞||v̂||∞ −

1

γ

)
. (4.23)

This completes our proof on a bound on the region where unstable eigenvalues of (4.13)

can exist, if there are any.

4.4 A strategy for obtaining bounds on unstable eigenvalues

In this section, we return to suggesting a strategy for bounding unstable eigenvalues using

computer assisted proof. The Evans ODE often takes the form,

W ′ = A(x) + λB(x).

Let R = |λ| and rescale the Evans ODE to obtain

W ′ =
1

R
A(x) +

λ

R
B(x).

Now one can use rigorous computation to enclose the solution to this rescaled Evans ODE

and show that for R sufficiently large, the manifold coming from the left and the right can

not intersect.
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We are now ready to summarize our algorithm for rigorous computation of the Evans

function in its full generality.

Chapter 5. Summary

In this chapter, we summarize the algorithm that we presented in Chapters 3 and 4, and we

discuss future directions.

5.1 The algorithm

We now summarize the algorithm that we presented in Chapters 3 and 4. The steps are as

follows,

(i) Use the compound matrix method to lift the Evans ODE system.

(ii) Rescale the Evans ODE system so that the one dimensional manifold of the lifted

Evans ODE system we wish to approximate corresponds to the eigenvalue of the Profile

Jacobian at x = −∞ with the smallest positive real part, or to the largest negative

real part eigenvalue at x = +∞.

(iii) Use the parameterization method to parameterize the unstable/stable manifold at

x = ∓∞ of the coupled profile and Evans ODE system.

(iv) Use a standard series solution to represent the solution to the coupled system over

finite intervals.

(v) Form a zero-finding problem by forming a function F whose zero corresponds to a

solution to the coupled ODE system.

(vi) Use the Newton-Kantorovich Theorem to obtain a bound on the error involved in our

best approximation of the ODE solution.

40



(vii) Use analytic interpolation to interpolate the Evans function with rigorous error bounds.

In Chapter 3, we successfully demonstrated that this algorithm works for a diffusion

equation. In Chapter 4, we showed how to deal with the case that the profile has a fixed

point with a multi-dimensional stable/unstable manifold. This provides an algorithm for

rigorously establishing spectral stability of traveling waves using the Evans function. For

many systems, proving spectral stability is the last open problem in order to prove that

traveling waves are stable.

5.2 Future directions

In this dissertation, we have developed a computer assisted method of proof for rigorously

approximating the Evans function. This method enables proving spectral stability of travel-

ing waves, the last open problem for proving stability of traveling waves for many physical

systems. We have demonstrated this method for a scalar reaction-diffusion equation, and we

have shown how to deal with more complicated cases as occur in the Gray-Scott equations

we discussed in Chapter 4. The next step is to use this computer assisted method of proof

to prove stability of traveling waves in physical models. This method would especially be

helpful for proving stability of traveling waves in the compressible Navier-Stokes equation

with a non-isentropic ideal gas equation of state and with a Van der Waal gas equation of

state, and for the equations of magnetohydrodynamics with the same gas equations of state.

Appendix A. MATLAB Code

In this appendix, we provide our code for the scalar reaction-difusion system described in

Chapter 3.

A.1 The driver
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1 % s c a l a r r eac t i on−d i f f u s i o n example

2 c l e a r a l l ; c l o s e a l l ; beep o f f ; c l c ; i n t v a l i n i t ( ’ DisplayMidRad ’ ) ;

3

4 s c a l e 1 = 1 ;

5 s c a l e 2 = 1 ;

6 N = 30 ;

7

8 % s o l v e f o r the Evans func t i on non−r i g o r o u s l y and p lo t i t

9 LAM = f l i p l r ( l i n s p a c e (1 e−3 ,3 ,30) ) ;

10

11 D = ze ro s ( s i z e (LAM) ) ;

12

13 opt ions = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−8) ;

14

15 f o r j = 1 : l ength (LAM)

16

17

18 lambda = LAM( j ) ;

19 mu L = s q r t (1+lambda ) ;

20 mu R = −s q r t (1+lambda ) ;

21

22 VL = [ 1 ; mu L ] ;

23 VR = [ 1 ; mu R ] ;

24

25 odefun L = @(x , y ) [−mu L∗y (1 )+y (2) ; ( mu Lˆ2−3∗ sech ( x/2) ˆ2)∗y (1 )−

mu L∗y (2 ) ] ;
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26 odefun R = @(x , y ) [−mu R∗y (1 )+y (2) ; ( mu Rˆ2−3∗ sech ( x/2) ˆ2)∗y (1 )−

mu R∗y (2 ) ] ;

27

28 s o l L = ode15s ( odefun L , [ −15 ,0 ] ,VL, opt ions ) ;

29 so l R = ode15s ( odefun R , [ 1 5 , 0 ] ,VR, opt ions ) ;

30

31

32 temp L = deval ( so l L , 0 ) ;

33 temp R = deval ( sol R , 0 ) ;

34

35 D( j ) = temp L (1) ∗temp L (2) ;

36

37 end

38

39 % f i g u r e ;

40 p lo t (LAM,D, ’−k ’ , ’ LineWidth ’ , 2 ) ;

41 h = x l a b e l ( ’\ lambda ’ ) ;

42 s e t (h , ’ FontSize ’ , 18) ;

43 h = y l a b e l ( ’D(\ lambda ) ’ ) ;

44 s e t (h , ’ FontSize ’ , 18) ;

45 h = gca ;

46 s e t (h , ’ FontSize ’ , 18) ;

47

48 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49 % Obtain a bound on the Evans func t i on ODE mani fo lds
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50 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

51

52 % obta in the l e f t and r i g h t s i d e o f the i n t e r v a l o f mu va lue s f o r

our Evans

53 % func t i on comptuation

54 l ambda l e f t = iv (0 ) ;

55 lambda r ight = iv (2 ) ;

56 mu le f t = s q r t (1+ lambda l e f t )−1;

57 mu right = s q r t (1+ lambda r ight )−1;

58

59 % Choose rho f o r the stadium f o r g e t t i n g the bound on

i n t e r p o l a t i o n o f the

60 % Evans func t i on ODE mani fo lds . The c o e f f i c i e n t s o f the l e f t

mani fo ld are

61 % a n a l y t i c i f the r e a l part o f mu i s g r e a t e r than −0.5.

62 rho mu = 3 ;

63

64 % compute the mani fo ld at i n f i n i t y

65 d = m a n i f o l d a t i n f t y (0 ) ;

66

67 % choose the f i n i t eva lue o f x where the l e f t mani fo ld meets the

middle

68 % manifo ld

69 x L = −5;

70
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71 % get the value o f the p r o f i l e at x = x L

72 y L = 1.5∗ sech ( x L /2) ˆ2 ;

73

74 % Determine which value o f theta cor re sponds to the mani fo ld

connect ing to

75 % the p r o f i l e

76 fun = @( theta ) mid ( [ 1 , 0 ] ∗ e v a l m a n i f o l d a t i n f t y (d . y n , d . z n , theta

, 0 )−y L ) ;

77

78 opt ions = opt imset ( ’ Display ’ , ’ o f f ’ , ’ Jacobian ’ , ’ o f f ’ , . . .

79 ’ Algorithm ’ , ’ Levenberg−Marquardt ’ , ’ TolFun ’ ,1 e−8) ;

80

81 [ theta L , r e s e r r , s u c c e s s ] = f s o l v e ( fun , 0 . 0 1 , opt ions ) ;

82

83 % Get the stadium f o r a n a l y t i c i n t e r p o l a t i o n

84 theta = l i n s p a c e (0 , sup (2∗ i v ( ’ p i ’ ) ) ,11) ;

85 theta = iv ( theta ( 1 : end−1) , theta ( 2 : end ) ) ;

86

87 mu ti lde = ( rho mu∗exp (1 i ∗ theta ) +1./( rho mu∗exp (1 i ∗ theta ) ) ) /2 ;

88 mu = ( mu le f t+mu right ) /2+( mu right−mu le f t )∗mu ti lde /2 ;

89

90 min( i n f ( r e a l (mu) ) )

91 i f min ( i n f ( r e a l (mu) ) ) <= −1/2

92 e r r o r ( ’ Real (mu) > −0.5 r equ i r ed f o r the c o e f f i c i e n t s to be

a n a l y t i c ’ ) ;

93 end

94
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95 % Find a bound f o r the a n a l y t i c i n t e r p o l a t i o n e r r o r bound

96 M rho = 1 ;

97 max C0 = 0 ; % Also , f i n d the max o f C0 and C

98 max C = 0 ;

99 f o r j = 1 : l ength ( theta )

100

101 d = m a n i f o l d a t i n f t y (mu( j ) ) ;

102

103 C0 = max( sup ( abs ( [ 1 , d . y n (1 ) ,d . z n (1 ) ,d . v n (1 ) ,d . w n (1) ] ) ) ) ;

104 C = 0 ;

105 f o r k = 2 : l ength (d . y n )

106 temp = [ ( d . y n ( k ) /C0) ˆ(1/( k−1) ) , ( d . z n ( k ) /C0) ˆ(1/( k−1) ) ,

. . .

107 (d . v n ( k ) /C0) ˆ(1/( k−1) ) , ( d . w n ( k ) /C0) ˆ(1/( k−1) ) ] ;

108 C = max ( [C, max( sup ( abs ( temp ) ) ) ] ) ;

109 end

110

111 max C0 = max ( [ C0 , max C0 ] ) ;

112 max C = max ( [C, max C ] ) ;

113

114 VL = e v a l m a n i f o l d a t i n f t y (d . v n , d . w n , theta L , d .C) ;

115 M rho = max( M rho , max( sup (norm(VL) ) ) ) ;

116

117 end

118

119 max mu = iv (max( sup ( abs (mu) ) ) ) ;

120 max lam = iv (max( sup ( abs ( (mu+1).ˆ2−1) ) ) ) ;
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121 operator bound = s q r t (24+2∗max muˆ2+6∗max lam+max lam ˆ2) ;

122

123 % the number o f nodes needed to t rack j u s t one component o f Evans

product .

124 M rho = M rho∗exp ( abs ( x L )∗ operator bound ) ;

125

126 % f i n d out how many Chebyshev nodes are needed f o r the d e s i r e d

e r r o r bound

127 p i e = iv ( ’ p i ’ ) ;

128 D rho = ( rho mu+1/rho mu ) /2−1;

129 L rho = pie ∗ s q r t ( rho muˆ2+1/rho mu ˆ2) ;

130

131 M = 1 ;

132 eta = log ( rho mu ) ;

133 i n t e r p o l a t i o n e r r o r = 10ˆ5 ;

134 whi le sup ( i n t e r p o l a t i o n e r r o r ) > 1e−10

135 M = M+1;

136 i n t e r p o l a t i o n e r r o r = M rho∗L rho /( p i e ∗D rho∗ s inh ( eta ∗(M+1) ) ) ;

137 end

138 M

139

140 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

141 % Evans func t i on us ing the re−s c a l e d mani fo ld

142 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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143

144 ode opt i ons = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−8) ;

145

146 theta = (2∗ i v ( 0 : 1 :M−1)+1)∗ p i e /(2∗M) ;

147 mu ti lde = cos ( theta ) ;

148 mu = ( mu le f t+mu right ) /2+( mu right−mu le f t )∗mu ti lde /2 ;

149 LAM = (mu+1) .ˆ2−1;

150 D = iv ( z e r o s (1 , l ength (LAM) ) ) ;

151

152 di sp ( ’ Computing the Evans func t i on ’ ) ;

153 f i g u r e ;

154 hold on ;

155 h = x l a b e l ( ’\ lambda ’ ) ;

156 s e t (h , ’ FontSize ’ , 18) ;

157 h = y l a b e l ( ’D(\ lambda ) ’ ) ;

158 s e t (h , ’ FontSize ’ , 18) ;

159 h = gca ;

160 s e t (h , ’ FontSize ’ , 18) ;

161 t s t a r t = t i c ;

162 f o r j = 1 : l ength (LAM)

163 j

164 lambda = LAM( j ) ;

165

166 mu L = s q r t (1+lambda )−1;

167

168 D( j ) = NK(mu L , theta L , x L ) ;
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169

170 Dlam = D( j ) ;

171

172 p lo t (mid ( lambda ) , mid (D( j ) ) , ’ . k ’ , ’ MarkerSize ’ ,18) ;

173 drawnow ;

174

175

176

177 end

178 evans run t ime = toc ( t s t a r t ) ;

179

180

181 f i g u r e ;

182 p lo t (LAM, mid (D) , ’−b ’ , ’ LineWidth ’ , 2 ) ;

183 h = x l a b e l ( ’\ lambda ’ ) ;

184 s e t (h , ’ FontSize ’ , 18) ;

185 h = y l a b e l ( ’D(\ lambda ) ’ ) ;

186 s e t (h , ’ FontSize ’ , 18) ;

187 h = gca ;

188 s e t (h , ’ FontSize ’ , 18) ;

A.2 Evaluation of the unstable manifold

1 f unc t i on [ out , out der , ou t de r de r ] = e v a l m a n i f o l d a t i n f t y (A n ,

B n , theta ,C)

2

3 % sum the f i n i t e number o f terms

4 out = ze ro s (2 , 1 ) ;
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5 f o r n = f l i p l r ( 0 : l ength ( A n)−1)

6 out = out + theta ˆn ∗ [ A n (n+1) ; B n (n+1) ] ;

7 end

8

9 % sum the f i n i t e number o f terms in d e r i v a t i v e

10 out der = ze ro s (2 , 1 ) ;

11 f o r n = f l i p l r ( 1 : l ength ( A n)−1)

12 out der = out der + n∗ theta ˆ(n−1) ∗ [ A n (n+1) ; B n (n+1) ] ;

13 end

14

15 % sum the f i n i t e number o f terms in second d e r i v a t i v e

16 ou t de r de r = ze ro s (2 , 1 ) ;

17 f o r n = f l i p l r ( 2 : l ength ( A n)−1)

18 ou t de r de r = out de r de r + n∗(n−1)∗ theta ˆ(n−2) ∗ [ A n (n+1) ; B n (

n+1) ] ;

19 end

20

21 % Get a bound on the t a l e o f the dominating geometr ic s e r i e s

22 r = abs (C∗ theta /2) ;

23 i f sup ( r ) >= 1

24 e r r o r ( ’0<r<1 r equ i r ed ’ ) ;

25 end

26

27 % Add the t runcat i on e r r o r bound

28 N = length ( A n)−1;

29 f = r ˆ(N+1)/(1− r ) /2 ;

30 out = out + iv (− f , f ) ;
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31

32 f d e r = ( (N+1)∗ r ˆN/(1− r )+r ˆ(N+1)/(1− r ) ˆ2) /2 ;

33 out der = out der + iv ( f d e r ∗C/4,− f d e r ∗C/4) ;

34

35

36 temp1 = (N+1)∗N∗ r ˆ(N−1)/(1− r ) ;

37 temp2 = 2∗(N+1)∗ r ˆN/(1− r ) ˆ2 ;

38 temp3 = r ˆ(N+1)/(1− r ) ˆ3 ;

39 f d e r d e r = ( temp1+temp2+temp3 ) /2 ;

40 ou t de r de r = out de r de r+iv ( f d e r d e r ∗Cˆ2/8,− f d e r d e r ∗Cˆ2/8) ;

A.3 The interval

1 f unc t i on out = iv (num1 , num2)

2 % func t i on out = iv (num)

3 %

4 % retu rn s a mathematica l ly r i g o r o u s e nc l o su r e o f the number o f

i n t e r v a l

5 % given .

6

7 i f narg in == 1

8 out = i n t v a l (num1) ;

9 e l s e i f narg in == 2

10 out = h u l l ( i n t v a l (num1) , i n t v a l (num2) ) ;

11 end

A.4 Obtaining the unstable manifold

1 f unc t i on d = m a n i f o l d a t i n f t y (mu)
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2

3 %{

4 mu = s q r t (1+lambda )−1;

5 %}

6

7 t s t a r t = t i c ;

8

9 % N = 20 s u f f i c e s y e i l d s the d e s i r e d e r r o r bound (0 \ l e q mu \ l e q

1)

10 N = 20 ;

11

12 % i n i t i a l i z e the c o e f f i c i e n t s

13 y n = iv ( z e r o s (N+1 ,1) ) ;

14 z n = iv ( z e r o s (N+1 ,1) ) ;

15 v n = iv ( z e r o s (N+1 ,1) ) ;

16 w n = iv ( z e r o s (N+1 ,1) ) ;

17

18 % Record the e i g e n v e c t o r cor re spond ing to e i g enva lue 1

19 y n (2) = 1 ;

20 z n (2 ) = 1 ;

21 v n (2) = 1 ;

22 w n (2) = 1+mu;

23

24 % d e f i n e C as needed f o r the p r o p o s i t i o n

25 C = iv (4∗max( sup ( [ 1 , abs(1+mu) ] ) ) ) ;

26

27 % Compute the c o e f f i c i e n t s

52



28 f o r n = 2 :N

29

30 % sum that shows up in the RHS

31 sm1 = y n ( 2 : n) . ’∗ f l i p u d ( y n ( 2 : n) ) ;

32

33 % Solve f o r the f i r s t two components

34 temp = ( [ n 1 ; 1 n ]∗ [ 0 ; − sm1 ] ) /(nˆ2−1) ;

35

36 % Record the c o e f f i c i e n t s

37 y n (n+1) = temp (1) ;

38 z n (n+1) = temp (2) ;

39

40 % sum that shows up in the RHS o f the l a s t two components

41 sm2 = y n ( 2 : n) . ’∗ f l i p u d ( v n ( 2 : n) ) ;

42

43 % Solve f o r the l a s t two components

44 temp = ( [ n+mu, 1 ; (mu+1)ˆ2 , n+mu]∗ [0 ;−2∗ sm2 ] ) / ( ( n+mu) ˆ2−(mu+1)

ˆ2) ;

45

46 v n (n+1) = temp (1) ;

47 w n (n+1) = temp (2) ;

48

49 end

50

51 % record C

52 d .C = C;

53
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54 % record the c o e f f i c i e n t s

55 d . y n = y n ;

56 d . z n = z n ;

57 d . v n = v n ;

58 d . w n = w n ;

59

60 % record the run time f o r t h i s func t i on

61 d . run t ime = toc ( t s t a r t ) ;

A.5 The series solutions on finite intervals

1 f unc t i on d = midd l e r i g (U0 , delx ,mu,N)

2

3 d .mu = mu;

4 d .N = N;

5 d . de lx = delx ;

6 d . U0 = U0 ;

7

8 t s t a r t = t i c ;

9

10 m = 1 ;

11

12 % i n i t i a l i z e c o e f f i c i e n t s

13 Q = iv ( z e r o s (4 ,N+1) ) ;

14 DQ = iv ( z e r o s (4 , 4 ,N+1) ) ;

15 D2Q = iv ( z e r o s (4 , 4 , 4 ,N+1) ) ;

16

17 Q( : , 1 ) = U0 ;
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18

19 DQ( : , : , 1 ) = eye (4 ) ;

20

21 % obta in $C 0$

22 temp1 = max( sup ( abs (Q( : , 1 ) ) ) ) ;

23 temp2 = max(max( sup ( abs (DQ( : , : , 1 ) ) ) ) ) ;

24 temp3 = max(max(max( sup ( abs (D2Q( : , : , : , 1 ) ) ) ) ) ) ;

25

26 C0 = 2ˆm∗ i v (max ( [ temp1 , temp2 , temp3 ] ) ) ;

27

28 C = 0 ;

29 f o r n = 0 :N

30

31 % sum( y n−k ∗ y k )

32 sm1 = newconvolution ( squeeze (Q( 1 , : ) ) , squeeze (Q( 1 , : ) ) ,n ) ;

33

34 % sum( y n−k ∗ v k )

35 sm2 = newconvolution ( squeeze (Q( 1 , : ) ) , squeeze (Q( 3 , : ) ) ,n ) ;

36

37 % sum( Dy {n−k} ∗ y k + y {n−k} ∗ Dy k )

38 sm3 = iv ( [ 0 , 0 , 0 , 0 ] ) ;

39 f o r i = 1 :4

40 sm3 (1 , i ) = newconvolut ionbig ( squeeze (DQ(1 , i , : ) ) , squeeze (Q

( 1 , : ) ) ,n ) . . .

41 + newconvolut ionbig ( squeeze (Q( 1 , : ) ) , squeeze (DQ(1 , i , : ) )

,n ) ;

42 end
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43

44 % sum( Dy k ∗ v {n−k} + y k ∗ Dv {n−k})

45 sm4 = iv ( [ 0 , 0 , 0 , 0 ] ) ;

46 f o r i = 1 :4

47 sm4 (1 , i ) = newconvolut ionbig ( squeeze (DQ(1 , i , : ) ) , squeeze (Q

( 3 , : ) ) ,n ) . . .

48 + newconvolut ionbig ( squeeze (Q( 1 , : ) ) , squeeze (DQ(3 , i , : ) )

,n ) ;

49 end

50

51 % sum( D2y {n−k} ∗ y k + y {n−k} ∗ D2y k + 2 Dy {n−k} ∗ Dy k )

52 sm5 = iv ( z e r o s (4 , 4 ) ) ;

53 f o r i = 1 :4

54 f o r k = 1 :4

55 sm5 (1 , i , k ) = newconvolut ionbig ( squeeze (D2Q(1 , i , k , : ) ) ,

squeeze (Q( 1 , : ) ) ,n ) + . . .

56 newconvolut ionbig ( squeeze (Q( 1 , : ) ) , squeeze (D2Q(1 , i ,

k , : ) ) ,n ) . . .

57 + 2∗ newconvolut ionbig ( squeeze (DQ(1 , i , : ) ) , squeeze (

DQ(1 , i , : ) ) ,n ) ;

58 end

59 end

60

61 % sum( D2y n−k ∗ v k + y n−k ∗ D2v k + 2 Dy n−k ∗ Dv k )

62 sm6 = iv ( z e r o s (4 , 4 ) ) ;

63 f o r i = 1 :4

64 f o r k = 1 :4
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65 sm6 (1 , i , k ) = newconvolut ionbig ( squeeze (D2Q(1 , i , k , : ) ) ,

squeeze (Q( 3 , : ) ) ,n ) . . .

66 + newconvolut ionbig ( squeeze (Q( 1 , : ) ) , squeeze (D2Q(3 ,

i , k , : ) ) ,n ) + . . .

67 2∗ newconvolut ionbig ( squeeze (DQ(1 , i , : ) ) , squeeze (DQ

(3 , i , : ) ) ,n ) ;

68 end

69 end

70

71 Q(1 , n+2) = Q(2 , n+1)/(n+1) ;

72 Q(2 , n+2) = (Q(1 , n+1)−sm1) /(n+1) ;

73 Q(3 , n+2) = (Q(4 , n+1)−mu∗Q(3 , n+1) ) /(n+1) ;

74 Q(4 , n+2) = ( (mu+1)ˆ2∗Q(3 , n+1)−mu∗Q(4 , n+1)−2∗sm2) /(n+1) ;

75

76 f o r k = 1 :4

77 DQ(1 , k , n+2) = DQ(2 , k , n+1)/(n+1) ;

78 DQ(2 , k , n+2) = (DQ(1 , k , n+1)−sm3( k ) ) /(n+1) ;

79 DQ(3 , k , n+2) = (DQ(4 , k , n+1)−mu∗DQ(3 , k , n+1) ) /(n+1) ;

80 DQ(4 , k , n+2) = ( (mu+1)ˆ2∗DQ(3 , k , n+1)−mu∗DQ(4 , k , n+1)−2∗sm4( k

) ) /(n+1) ;

81 end

82

83 f o r k = 1 :4

84 f o r j = 1 :4

85 D2Q(1 , k , j , n+2) = D2Q(2 , k , j , n+1)/(n+1) ;

86 D2Q(2 , k , j , n+2) = (D2Q(1 , k , j , n+1)−sm5(k , j ) ) /(n+1) ;

87 D2Q(3 , k , j , n+2) = (D2Q(4 , k , j , n+1)−mu∗D2Q(3 , k , j , n+1) ) /(n
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+1) ;

88 D2Q(4 , k , j , n+2) = ( (mu+1)ˆ2∗D2Q(3 , k , j , n+1)−mu∗D2Q(4 , k , j ,

n+1) . . .

89 −2∗sm6(k , j ) ) /(n+1) ;

90 end

91 end

92

93 temp1 = max( sup ( abs (Q( : , n+2) ) ) ) ;

94 temp2 = max(max( sup ( abs (DQ( : , : , n+2) ) ) ) ) ;

95 temp3 = max(max(max( sup ( abs (D2Q( : , : , : , n+2) ) ) ) ) ) ;

96

97 maxabs = 2ˆm∗ i v (max ( [ temp1 , temp2 , temp3 ] ) ) ;

98

99 i f n > 0

100 C = max(C, sup ( ( maxabs/C0) ˆ( iv (1 ) /n) ) ) ;

101 end

102

103 end

104 C = iv (C) ;

105

106 out = iv ( z e r o s (4 , 1 ) ) ;

107 f o r n = f l i p l r ( 0 :N)

108 out = out + Q( : , n+1)∗de lx ˆn ;

109 end

110

111 out der = iv ( z e r o s (4 , 4 ) ) ;

112 f o r n = f l i p l r ( 0 :N)
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113 out der = out der + DQ( : , : , n+1)∗de lx ˆn ;

114 end

115

116 ou t de r de r = iv ( z e r o s ( 4 , 4 , 4 ) ) ;

117 f o r n = f l i p l r ( 0 :N)

118 ou t de r de r = out de r de r + D2Q( : , : , : , n+1)∗de lx ˆn ;

119 end

120

121 r = abs (C∗de lx ) ;

122 i f sup ( r )>= 1

123 e r r o r ( ’ bounds are not v a l i d ’ ) ;

124 end

125 err bound = C0∗ r ˆ(N+1)/(1− r ) ;

126

127 e r r = 2ˆ(−m)∗ i v (−err bound , err bound ) ;

128

129 d . C0 = C0 ;

130 d .C = C;

131

132 d .U = out + e r r ;

133 d .DU = out der + e r r ;

134 d .D2U = out de r de r+e r r ;

135

136 d . e r r = e r r ;

137 d . r = r ;

138

139 d . run t ime = toc ( t s t a r t ) ;
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A.6 The convolution of vectors

1 f unc t i on out = newconvolut ionbig (u ,w, n)

2 % convo lut ion o f u ( 1 : n) and w( 1 : n)

3

4 u=squeeze (u) ;

5 w=squeeze (w) ;

6

7 i f s i z e (u , 2 ) < s i z e (u , 1 )

8 u=u . ’ ;

9 end

10

11 i f s i z e (w, 1 ) < s i z e (w, 2 )

12 w=w. ’ ;

13 end

14

15 out = u ( 1 : n)∗ f l i p u d (w( 1 : n) ) ;

A.7 The Newton-Kantorovich Theorem

1 f unc t i on D = NK(mu, theta L , x L )

2

3 de lx = 0 . 1 ; % step s i z e

4

5 r newton = 1e−5; % goa l i s to show e r r o r i s no b igge r than t h i s

6

7 ode opt i ons = odeset ( ’ RelTol ’ ,1 e−14, ’ AbsTol ’ ,1 e−14) ;

8
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9 % get the paramete r i za t i on o f unstab le mani fo ld at x = − i n f t y

10 d i n f = m a n i f o l d a t i n f t y (mu) ;

11

12 % eva luate the unstab le mani fo ld at $\ theta L$

13 VL = e v a l m a n i f o l d a t i n f t y ( d i n f . v n , d i n f . w n , theta L , d i n f .C) ;

14

15 % Solve the Evans ODE non−r i g o r o u s l y

16 mud = mid(mu) ;

17 odefun L = @(x , y ) [−mud∗y (1 )+y (2) ; ( ( mud+1)ˆ2−3∗ sech ( x/2) ˆ2)∗y (1 )−

mud∗y (2 ) ] ;

18 s o l L = ode15s ( odefun L , [ x L , 0 ] , mid (VL) , ode opt i ons ) ;

19

20 % form $\bar x$ , the guess at the s o l u t i o n to $F$ f o r the

21 % Newton−Kantorovich method

22 dom bar = x L : de lx : 0 ;

23 evans bar = deval ( so l L , dom bar ) ;

24 pro f ba r = [ 1 . 5 ∗ sech ( dom bar /2) . ˆ 2 ; −1.5∗ sech ( dom bar /2) . ˆ 2 . ∗ tanh (

dom bar /2) ] ;

25

26

27 N = 4∗ l ength ( dom bar ) +1; % number o f equat ions

28

29 % i n s t a n t i a t e $F$ and i t s d e r i v a t i v e $DF$

30 F = iv ( z e r o s (N, 1 ) ) ;

31 DF = iv ( z e r o s (N,N) ) ;

32

33 % equat ions 1−4 regard ing v a r i a b l e theta L
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34 [ pf1 , pf2 , pf3 ] = e v a l m a n i f o l d a t i n f t y ( d i n f . y n , d i n f . z n , theta L ,

d i n f .C) ;

35 [ e f1 , e f2 , e f 3 ] = e v a l m a n i f o l d a t i n f t y ( d i n f . v n , d i n f . w n , theta L ,

d i n f .C) ;

36

37 % The f i r s t f our equat ions r e q u i r e the mani fo ld coming from x = −

i n f t y

38 % to match the ODE s o l u t i o n at $x 0$

39 F( 1 : 2 ) = pf1−pro f ba r ( : , 1 ) ;

40 F( 3 : 4 ) = ef1−evans bar ( : , 1 ) ;

41

42 DF( 1 : 2 , 1 ) = pf2 ;

43 DF( 3 : 4 , 1 ) = e f 2 ;

44 DF( 1 : 4 , 2 : 5 ) = −eye (4 ) ;

45

46 % Now compute the s e r i e s s o l u t i o n at the nodes $x 1 , x 2 , . . . ,

x n$

47 dm{ l ength ( dom bar ) −1}=[];

48 dmr{ l ength ( dom bar ) −1}=[];

49 r i n t = iv (−r newton , r newton ) ;

50 f o r j = 1 : l ength ( dom bar )−1

51

52 dm{ j } = midd l e r i g ( [ p r o f ba r ( : , j ) ; evans bar ( : , j ) ] , delx ,mu, 3 5 ) ;

53 dmr{ j } = m idd l e r i g ( [ p r o f ba r ( : , j )+r i n t ; evans bar ( : , j )+r i n t

] , delx ,mu, 2 5 ) ;

54

55 end
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56

57 % Now use the s e r i e s s o l u t i o n s on the f i n i t e i n e t e r v a l s $ [ x j , x { j

+1}]$ , to

58 % f i l l out $F$ and $DF$ , and to get a bound on $D 2F$ .

59 B = max( sup ( abs ( [ pf3 ; e f 3 ] ) ) ) ;

60 Id = iv ( eye (4 ) ) ;

61 f o r j = 1 : l ength ( dom bar )−1

62

63 d = dm{ j } ;

64 dr = dmr{ j } ;

65 F(4∗ j +1:4∗ j +4) = d .U−[ p r o f ba r ( : , j +1) ; evans bar ( : , j +1) ] ;

66

67 DF(4∗ j +1:4∗ j +4 ,4∗( j−1)+2:4∗ j +1) = d .DU;

68 DF(4∗ j +1:4∗ j +4 ,4∗ j +2:4∗( j +1)+1) = −Id ;

69

70 B1 = max(max(max( sup ( abs ( dr .D2U) ) ) ) ) ;

71 B = max ( [ B, B1 ] ) ;

72

73 end

74 B = iv (B) ;

75

76 % Fina l ly , f i l l out $F$ and $DF$ f o r the l a s t equat ion which has

to do with

77 % the d e r i v a t i v e o f the p r o f i l e be ing zero at $x = 0$

78 F( end ) = pro f ba r (2 , end ) ;

79 DF( end , end−2) = 1 ;

80
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81 % Choose $A {dagger}$ and $A$ and get the bounds needed f o r the

82 % Newton−Kantorovich Theorem .

83 J = mid (DF) ;

84

85 A dagger = iv ( J ) ;

86 A = iv ( J\ eye ( s i z e (J , 1 ) ) ) ;

87

88 Y0 = norm(A∗F) ;

89 Id = eye ( s i z e (A, 1 ) ) ;

90 Z0 = norm( Id−A∗A dagger , ’ f r o ’ ) ;

91 Z1 = norm(A∗( A dagger−DF) ) ;

92 Z2r = norm(A, 2 ) ∗norm( iv (−B,B)∗ones ( s i z e (A) ) ) ;

93

94 % Now show that the polynomial eva lua t e s to be negat ive f o r r newt

,

95 % which guarantees the e r r o r i s no b igge r than r newt

96 r newt = 5e−9;

97 newton kantorov ich po ly = Z2r∗ r newtˆ2−(1−Z0−Z1)∗ r newt+Y0 ;

98

99 i f sup ( newton kantorov ich po ly ) >= 0

100 e r r o r ( ’ Fa i l ed to v e r i f y the s o l u t i o n ’ ) ;

101 end

102

103 % add on e r r o r bound to Evans func t i on computation

104 e r r = iv (−r newt , r newt ) ;

105

106 D = ( evans bar (1 , end )+e r r ) ∗( evans bar (2 , end )+e r r ) ;
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