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abstract

Language Modeling Using Image Representations of Natural Language

Seong Eun Cho
Department of Mathematics, BYU

Master of Science

This thesis presents training of an end-to-end autoencoder model using the transformer
[46], with an encoder that can encode sentences into fixed-length latent vectors and a decoder
that can reconstruct the sentences using image representations. Encoding and decoding
sentences to and from these image representations are central to the model design. This
method allows new sentences to be generated by traversing the Euclidean space, which
makes vector arithmetic possible using sentences. Machines excel in dealing with concrete
numbers and calculations, but do not possess an innate infrastructure designed to help
them understand abstract concepts like natural language. In order for a machine to process
language, scaffolding must be provided wherein the abstract concept becomes concrete. The
main objective of this research is to provide such scaffolding so that machines can process
human language in an intuitive manner.

Keywords: machine learning, deep learning, natural language processing, language modeling,
autoencoder, transformer, attention, Jacobian, matrix calculus
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Chapter 1. Introduction

Language is one of the most defining traits of intelligence. The ability to communicate

is often used to distinguish between intelligent and non-intelligent life, and sophisticated

language is what sets humans apart from other species. Likewise, one of the hallmarks of

intelligence in machines will be their ability to use language as we do.

Throughout the past decade, deep learning has revolutionized the field of machine learn-

ing and artificial intelligence. Not only has deep learning surpassed other machine learning

methods on simple classification or prediction tasks, it has become the state-of-the-art model

for many different tasks. Furthermore, deep learning has found success achieving tasks that

were previously unthinkable. In computer vision, for example, Generative Adversarial Net-

works [14] have found a way to generate hyper realistic human faces. AlphaGo [42], a

reinforcement learning model, was able to defeat a world champion in the game of Go.

Deep learning has also made significant progress in the field of Natural Language Pro-

cessing. Previous conversational models relied heavily on hard coded output responses and

recognizing input key words. Conversely, language models built on deep learning are not

restricted by such limitations. Recently, large language models like GPT [34] have shown a

near unlimited range in providing targeted, elaborate, human-like responses. ChatGPT [40],

in particular, has gained popularity as people experienced firsthand the depth and breadth

of its capabilities. Even so, there are many necessary improvements to be made before lan-

guage models can be truly human-like. The pinnacle of artificial intelligence will be when

machines can freely speak and communicate with us and with other machines.
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1.1 Motivation

What does it mean for a machine to process language as humans do? Machines excel in

dealing with concrete numbers and calculations. They do not, however, possess an innate

infrastructure designed to help them understand abstract concepts like natural language.

In order for a machine to process language, scaffolding must be provided wherein the ab-

stract concept becomes concrete. Word2Vec [28], a word embedding algorithm showed that

trained word embeddings can have vector-like properties. With these properties, similar

words are clustered in the latent space and simple algebraic operations can be performed us-

ing the latent vectors. A famous example of this shows vec(king) - vec(man) + vec(woman) =

vec(queen), which is an intuitive result for us. By embedding natural language into concrete

vectors, we mimic the manner in which humans process language for machines.

Word embedding proved to be successful, but difficulties arise when the embedding is

scaled to sentences. While the English vocabulary is finite, vocabulary combinations allow

for infinite sentence possibilities. Within the field of Natural Language Processing, this is

an ongoing area of research, and much has been done to address the challenge of embedding

sentences. Many of the current methodologies will be presented in section 2.8.

The motivation for this research comes from a desire to create an image representation of

natural language. Much of human language is used to describe objects of the real world. In

a sense, language and images are different ways of describing the world. Another motivation

is to encode language into latent variables with vector-like properties. Using the latent

vectors, machines could develop a way to understand human language and also find ways to

communicate. The goal of this research is to design an encoder that can encode sentences

into latent vectors of such space and a decoder that can use these vectors to generate new

sentences using image representations.
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1.2 Approach

The current state-of-the-art transformer [46] encoder model encodes sentences while preserv-

ing the length of each sentence. One of the primary challenges focused on in this research is

discovering a method to find an optimal method to transform the variable-length encodings

of the transformer into a fixed-length vector while preserving all the necessary properties

and information that it contains. Another challenge is that the transformer decoder relies

on attention. A single fixed-length vector is not suitable to be used as an input for the

transformer decoder’s attention mechanism.

The methodology presented in this research is to design an end-to-end autoencoder model

by simultaneously training an encoder and a decoder, both of which utilizes the transformer

architecture. The encoder first encodes the input sentence into a fixed-length vector, after

which an image representation is generated from this vector. Then, the transformer decoder

attends on this image to reconstruct the original sentence. Encoding and decoding sentences

to and from these image representations are central to the model design. This method

allows new sentences to be generated by traversing in the latent space, which makes vector

arithmetic, similar to those shown in Word2Vec, possible with sentences as well.

3



Chapter 2. Background

This chapter provides necessary background on deep learning and the different types of

learning objectives it can have. As this research focuses on building an autoencoder, there is

an extensive discussion about autoencoders and their advantages, as well as different types of

autoencoders and their respective strengths. Following, a brief overview of natural language

processing is described along with a discussion of recurrent neural networks and the rise of

the attention mechanism. A mathematical description of the transformer model is shown,

after which relevant works concerning language modeling and the different approaches to the

problem are presented.

2.1 Deep Learning

Deep learning is a subset of machine learning where a deep neural network model is trained

for a specific objective with a given dataset. Deep neural network architecture is made

possible through many layers of linear transformation with parameters θ and non-linear

activation functions. By using non-linear activation functions at each layer, a deep enough

neural network model can learn to approximate any function. This is part of the universal

approximation theorem [12, 23, 32].

Given a data space X where each datapoint is a tuple (xi, yi) ∈ X , a neural network

model f is tasked with predicting the target label yi given xi as follows: f(xi | θ) = ŷi. A

cost function C is chosen for each task to give a metric to determine how close or similar the

prediction is to the target. The model learns by optimizing the objective, which is to minimize

the cost C(yi, ŷi) by altering the values of θ. This is done by using calculus, where the

gradient of C with respect to θ at each layer shows how the values of the parameters should

change in order to lower the cost. With a sufficiently large dataset, suitable architecture,

and a feasible objective, a deep neural network model can be trained to perform any given

task.
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2.2 Supervised, Unsupervised, and Semi-supervised Learning

Machine learning problems can be largely categorized into supervised learning and unsu-

pervised learning. Supervised learning, as the name suggests, is where the machine learns

through human supervision. This is accomplished through the use of labeled datasets; for

each data point (xi, yi) ∈ X , the target yi is a desired output that has been labeled by a

human. The goal of a supervised learning task is to be able to predict the labeled target

given the input, ultimately being able to generalize to new unlabeled inputs. Examples of

supervised tasks include image recognition, where the dataset consists of image label pairs;

and speech recognition, where the input data is an audio clip of human speech with its text

transcription as the label.

In unsupervised learning, the data is not humanly labeled. Instead, the target yi may

be part of the data, generated by an algorithm, or may even be an abstract concept. Unsu-

pervised learning has the advantage in that the data available is nearly unlimited; it takes a

great deal of resources and man power to curate a large labeled dataset, whereas unlabeled

data is abundant. However, the correct training scheme for a given task is not obvious and

is frequently a very difficult problem to solve. But when a solution is found, the results are

often astounding.

Semi-supervised learning attempts to take advantage of the best of both learning schemes.

Often in semi-supervised learning, a model is first trained unsupervised to learn important

patterns about the data and is then fine-tuned using a relatively smaller amount of labeled

data in order to perform specific tasks. Many impressive works done with deep learning

comes from unsupervised and semi-supervised learning.

2.3 Autoencoders

One unsupervised learning method that has found success with deep learning is an autoen-

coder, which is a training method where the target is identical to the input, or yi = xi, and

5



Figure 2.1: Autoencoder design

the training objective of the model is simply to reconstruct the given input. Let X be the

data space and Z be the encoding space. An auto-encoder consists of two parts: an encoder

E : X → Z that encodes a given data x ∈ X into a latent variable z ∈ Z and a decoder

D : Z → X that reconstructs the input from the encoded representation. It is important for

Z to be a lower dimensional space than X so that the autoencoder model does not reduce

to an identity function. This is often referred to as the bottleneck.

Autoencoders may be trained for many different reasons. Due to the bottleneck, the

encoder must learn to identify important aspects of the data in order to compress the data

while still preserving information. This can help the autoencoder model identify deep rela-

tionships among data that are not immediately obvious. If the data space X and the latent

space Z are from the same domain, say a Euclidean space where X = Rm and Z = Rn

for some n < m, then autoencoders can act as a dimensionality reduction algorithm. Often

in deep learning however, the data space may be from a completely different domain than

the latent space. For example, the inputs may be images or text white the latent space is

Euclidean.

Different types of autoencoders were developed in order to meet the needs of various tasks.

One such type is denoising autoencoder (DAE) [3, 47], which tries to improve representation

by adding an additional transformation to the input data. Let T : X → X be a noise

function randomly sampled from a family of noise functions µT . Given an input x ∈ X , a

noisy version T (x) is generated as the input for an autoencoder. This noise may be random

6



noise added to an image or an audio clip, or masking of certain words in text. The decoder is

then tasked with reconstructing the input without the added noise. A trained DAE can not

only act as a noise remover, but is more robust in encoding input representations because of

its ability to better identify key features of the input data.

Variational autoencoder (VAE) [21] is another type of autoencoder that incorporates

variational Bayesian methods during its training. The goal of a VAE is not only to encode

and reconstruct, but to sample from a distribution imposed by a prior — often a standard

Gaussian. Given an input x, the encoder is tasked with producing a mean µx and a variance

σx. A latent variable is then sampled from z ∼ N (µx, σx), and the decoder reconstructs

x using z. The objective of a VAE includes minimizing the difference between the sample

distribution N (µx, σx) and the prior distribution. This causes the distribution of the latent

variables to match the prior. Once trained, a new random variable can be sampled from

a known prior distribution, from which the decoder can generate a new object from the

otherwise complex and abstract data distribution.

2.4 Natural Language Processing

Let L be the space of a natural language (i.e. English), and let V be the set of vocabulary in

L. An element s ∈ L is a sentence in that language and can be described as s = (τ1, τ2, ..., τℓ)

with τi ∈ V , representing a sentence as an ordered ℓ long list of tokens from the vocabulary

set. An element in L could also be multiple sentences or an entire document, but for the

ease of describing and training models, the space will be limited to single sentences.

In order to input a sentence into a machine learning model, it must first be embedded

as vectors. This is done using an embedding model that maps each token into a single

d-dimensional vector, E : V → Rd, where d is usually referred to as the dimension of the

model. In practice, this is done by creating a parameter matrix WE of size |V| × d that acts

as a lookup table. Each unique token τ ∈ V is assigned a unique index k = 1, 2, . . . , |V| by

using an index map idx : V → {k ∈ Z+ : k ≤ |V|}. Using these tools, the embedding model

7



can be defined as E(τ | θ) := (WE)Tidx(τ) where θ = (WE). Applying the embedding model

to an entire sentence can be defined as an element-wise operation:

E(s) := (E(τ1), E(τ2), . . . , E(τℓ))

=
[
x1 x2 · · · xℓ

]T
= X ∈ Rℓ×d .

(2.1)

The embedded sentence X can then be described either as a sequence of d-dimensional

vectors with length ℓ or a single matrix of shape ℓ× d.

2.5 Recurrent Neural Network

The embedded input vectors in X are nothing more than a dissociated sequence of words.

Meaning in a sentence is not found in the words but from the words in relation to each

other. Given X, the goal of a language model is to extract the meaning of the sentence

by associating the meaning of the words together as a whole. Recurrent neural networks

(RNNs) initially found great success in this domain. The RNN function ρ : Rd × Rd → Rd

with parameters θ is defined recursively as:

ρ(xt, ht−1 | θ) = ht (2.2)

where xt represents the input vector at time t and the h vectors are the hidden states

produced by the model. Hence, given a sequence of inputs (x1, x2, . . . , xT ) and an initial

hidden state h0, ρ produces the output sequence of hidden states (h1, h2, . . . , hT ). These

hidden states act as the encoded memory of all the data that has been input so far. The

last hidden state vector hT can then be used to perform various tasks, such as predicting the

next data point or extracting information from the data.

In theory, RNNs should be able to keep track of arbitrary long-term dependencies in the

input sequences. In practice, however, RNNs have a hard time learning with long input

sequences because of the vanishing gradient problem [29, 17]. The problem arises from

hyperbolic tangent (tanh) function, which is used as the activation function for RNNs, and

8



Figure 2.2: Encoder decoder RNN diagram

the image of its derivative that is bounded between 0 and 1. This means that as the gradients

gather during back-propagation [38], the output values of tanh′(x) repeatedly get multiplied,

causing the gradients to quickly shrink to zero. As a result, learning will only occur with

the last few values of the input sequence and will fail to consider the earlier values.

Different architectures have been designed in order to overcome the short-term memory

problem with RNNs. Two of the most widely used RNN architectures are the Long Short-

Term Memory (LSTM) [18] and the Gated Recurrent Unit (GRU) [10]. Given an input

vector xt and a hidden state ht−1, the LSTM model is designed as:

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(2.3)

where θ =
(
Wk, Uk, bk; k ∈ {f, i, o, c}

)
are the parameters, ⊙ represents the Hadamard prod-

uct (otherwise known as the element-wise product), and σ is the sigmoid function defined

9



as

σ(x) :=
1

1 + e−x
.

The idea behind the LSTM model design is to allow multiple gates for the input to go

through, and the model will learn to selectively choose which inputs will be remembered and

which will be forgotten over a long sequence. This can be achieved through ct which also

acts like a hidden state vector that contains memory of all of the input sequences so far, but

is updated only by multiplication and addition, thus preventing its gradient from shrinking

over time. The GRU model has a similar design, but with less complexity:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = zt ⊙ ĥt + (1− zt)⊙ ht−1 .

(2.4)

The GRU architecture allows the hidden state vectors ht to have the functionality of LSTM’s

ct, instead of having a separate context vector.

Although RNNs perform decently well with language, it is evident that there are some

clear drawbacks even with the LSTM and the GRU architecture. By the nature of their

design, RNNs are effective in dealing with sequential or time-series data. However, natural

languages are fundamentally different from time-series data in that they have grammati-

cal/syntactic structures embedded in them. When predicting weather, for example, recent

data are far more important than past data. Conversely, the first few words of a sentence

are no more or no less important than the last few words. Language is not sequential, but

RNNs would consider it to be so, limiting its performance.

2.6 Attention

The attention mechanism was first introduced for machine translation [2]. It is a very

simple, but powerful algorithm where an RNN decoder uses all of the encoder hidden states

10



Figure 2.3: The attention mechanism learns to focus on different words of the sentence as
the model translates the above sentence from English to Spanish. Darker shade represents
higher attention score.

H = (h1, . . . , hT ) instead of solely relying on the last hidden state hT during the decoding

phase. Let (y1, . . . , yt) be the embedded decoder inputs and (s1, . . . , st) be the decoder hidden

states produced so far by a decoder RNN, so si = ρd (yi, si−1). The attention function first

produces a context vector ct by taking a weighted sum of the encoder hidden states,

ct =
n∑
i=1

αt,ihi

= αT
t H

(2.5)

where 1
Tαt = 1. The weights αt are given by an alignment score function that calculates

the relevance between the next word to be generated ŷt+1 and each word from the source

sentence (x1, . . . , xT ). In practice, the encoder hidden states, H, are used instead of the

encoder inputs since the information of the source sentence is encoded in the hidden vectors.

As yt+1 has not yet been generated, the last hidden state vector st is used as the input for

this function. This gives us the following equation for the alignment weights:

αt = σ
(
score(st, H)

)
where σ is the softmax function defined as

σ(w)i =
ewi∑K
j=1 e

wj

for i = 1, . . . , K and w = (w1, . . . , wK) ∈ RK .

In translation tasks, the attention mechanism treats the words to be generated in the

target language and the words from the source sentence as a fully connected graph. As

11



illustrated from Figure 2.3, the model learns to know which word to attend to while generat-

ing in the target language. Different types of attention come from how the alignment score

function is defined. The table below describes the most notable types of attention and their

corresponding alignment score functions:

Name Score function Citation

Content-
based
attention

score(st, hi) =
sTt ht

||st|| ||hi||
Graves 2014 [15]

Additive score(st, hi) = vTa tanh(Wasi−1 + Uahj) Bahdanau 2015 [2]

Dot-product score(st, hi) = sTt hi Luong 2015 [24]

Scaled
dot-product

score(st, hi) =
sTt hi√
n

Vaswani 2017 [46]

2.6.1 Image Captioning. The attention mechanism was initially introduced to be used

in conjunction with an RNN encoder and decoder for translation tasks, but it soon proved

to be useful in many other areas. One such usage demonstrated an effective way of creating

a model that can generate precise and accurate descriptions of images using the attention

mechanism [49]. To summarize, the model is trained using labeled data pairs of an image

and its caption. The image is first fed into convolutional networks, which process the image

and downsamples it. The resulting output is a 3-dimensional tensor with much smaller image

dimensions, but with a large number of channels. For example, a square input image may

be of shape 3× 128× 128, where the channel dimension represents the RGB color channels.

After being processed through convolutional layers, the resulting output might be of shape

256× 4× 4.

By treating each “pixel” of the downsampled image as individual vectors, this results

in 16 different 256-dimensional vectors. Hence, the output tensor can essentially be seen

as a sequence of d-dimensional vectors, commonly referred to as the convolutional filters of

the image. The filter vectors contain local, high level information about the image. These

12



Figure 2.4: Image captioning using attention. The model learns to attend to specific parts
of the image that corresponds to the word that is being decoded. The brighter areas of the
image correspond to higher attention score.

vectors are then used for the attention mechanism, where the decoder RNN will attend to the

filter vectors as it generates each word. The result was shown to be remarkably successful,

as seen from Figure 2.4. This research showed that it is possible to use attention on image

data in the same manner as it is used with language data.

2.6.2 Self-attention. Another usage of the attention mechanism is self-attention [9].

Self-attention is a mechanism where the sequence which a word attends to comes from the

sentence itself. As a result, each word of the sentence attends to every other word in the

sentence to calculate how they are similar, related, and/or connected. This mechanism was

used for machine reading that showed how attention can be used to find correlation between

the current word and all words that come before it.

Self-attention is effective in machine reading when used with RNNs, but it proves to be
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Figure 2.5: a) RNNs treat the input sentence as a sequence of words. b) Self-attention
mechanism treats the sentence as a fully connected graph, with each word as a node. c)
Dependency grammar of the sentence used in linguistics is similar to self-attention.

far more useful when RNNs are not involved at all. RNNs treat all inputs as a sequential

data with a temporal element. Language is written and spoken sequentially, but it is not

understood sequentially — we process the sentence holistically, taking into account syntactic

and pragmatic rules, context, and so on. On the other hand, the self-attention mechanism

treats words in a sentence as nodes of a fully connected graph. This is much closer to how

language is modeled linguistically, such as with syntax trees and dependency grammar, which

is a sign that attention mechanism is better suited for language modeling compared to the

RNN. The self-attention mechanism is a core design of the transformer.
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2.7 Transformer

The transformer [46] is a modern language processing architecture that does not involve

RNNs. Instead, it fully utilizes the power of the attention and self-attention mechanisms.

By solely relying on attention, it bypasses RNN’s weakness in viewing language as sequential

data. The full transformer model is a combination of the transformer encoder model and the

transformer decoder model. The two models have near identical architectures, but with a

key difference: the encoder model only uses self-attention along with a fully connected layer

to encode the input sentence, whereas the decoder model has an additional attention layer

to attend to the encoder outputs. The goal of this section is to describe the transformer

architecture using simple mathematical expressions.

Let X =
[
x1 · · · xℓx

]T ∈ Rℓx×d be the embedded vectors of the input sentence and Y =[
y1 · · · yℓy

]T ∈ Rℓy×d be the embedded vectors of the target sentence. The transformer

model can be divided into two models: The transformer encoder, Te : Rℓx×d → Rℓx×d, and

the transformer decoder, Td : Rℓx×d×Rℓy×d → Rℓy×d. In order to describe these two models

in detail, it is necessary to first describe the architectures of the attention layer and the fully

connected layers.

The attention mechanism used in the transformer is based on scaled dot-product atten-

tion. The inputs for the attention function are the Queries Q ∈ Rℓ1×d, the Keys K ∈ Rℓ2×d,

and the Values V ∈ Rℓ2×d. These are all sentences represented as matrices, where each row

represents a token vector of the sentence. In essence, each token from the Query sentence

attends to each token from the Key sentence using a dot product. This is done simply using

matrix multiplication QKT. The output is scaled by a factor of
√
d so that the variance

of the dot products are normalized even when d is very large. Softmax function σ is then

applied to the output matrix along the row dimension, so each row-sum becomes 1. The

resulting matrix is then multiplied with the Value matrix. This can be summarized as:

A(Q,K, V ) := σ

(
QKT

√
d

)
V . (2.6)

Using this attention function as the base attention model, the transformer introduces a
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Figure 2.6: The transformer-model architecture

novel attention architecture called multihead attention. In essence, each of the matrices Q,

K, and V are projected onto a lower dimensional space, using trainable parameters, from

where the attention is performed. The attention output is called a head, and multiple heads

are concatenated to restore the original dimension. Multihead attention with h heads is

formalized as follows:

M(Q,K, V | θ) :=
[
H1 · · · Hh

]T
WO (2.7)

Hi = A
(
QWQ

i , KW
K
i , V W

V
i

)
(2.8)

where θ =
(
WQ
i ,W

K
i ,W

V
i ; i = 1, . . . h

)
and the projection parameters are shaped WQ

i ∈

Rd×dk , WK
i ∈ Rd×dk , W V

i ∈ Rd×dv , and WO ∈ Rhdv×d so that the dimensions of the output

is consistent. In practice, dk = dv = d/h.

The fully connected layer in transformer architecture is just a two layer linear network

with a Rectified Linear Unit (ReLU) activation function, defined as ReLU(x) = max(0, x).
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The full architecture of this network is:

F(x | θ) = W2 ReLU(W1x+ b1) + b2 (2.9)

where θ = (W1, b1,W2, b2).

With the attention layer and the fully connected layer defined, the transformer architec-

ture can be described using a simple and concise set of equations. The transformer encoder,

Te : Rℓx×d → Rℓx×d with N layers is defined as

Te := EN ◦ EN−1 · · · E1

Ei := Fe,i ◦Me,i

(2.10)

where

Me,i :=M(X,X,X | θe,i) +X

Fe,i := F(X | θe,i) +X

represent residual connections [16] between the input and the output. Similarly, the trans-

former decoder Td : Rℓx×d × Rℓy×d → Rℓy×d with N layers is defined as:

Td := DN ◦ DN−1 · · · D1

Di := Fd,i ◦M(2)
d,i ◦M

(1)
d,i

(2.11)

with

M(1)
d,i :=M(Y, Y, Y | θ(1)

d,i) + Y

M(2)
d,i :=M(Y,X,X | θ(2)

d,i) + Y

Fd,i := F(Y | θd,i) + Y .

As can be seen, the transformer encoder and decoder layers are nearly identical. There

is an additional attention sub-layer that the decoder uses to attend to the encoder outputs.

The final part of the transformer is the generator, which takes in the d dimensional vectors of

the decoder output and maps them into a probability distribution with |V| possible outputs,

each of which represents a token in V . The output distribution is what is used to predict

the next token. Given a vector input x ∈ Rd, the generator function G : Rd → R|V| can be
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summarized as:

G(x | θ) = σ(Wx+ b)

where θ = (W, b).

Given an embedded input X, an embedded target Y , the transformer encoder function

Te, the transformer decoder function Td, and the generator function G, the full transformer

model with all of its parameters represented as θ can be summarized as a function T :

Rℓx×d × Rℓy×d → R|V|×d and is given by:

T (X, Y | θ) = G ◦ Td
(
Te(X), Y

)
(2.12)

2.8 Language Models

In this section, a discussion of current language models and their approaches will take place.

This section focuses on the training objectives of the different models rather than the archi-

tectural designs, since all of the current state-of-the-art language models utilize the powerful

transformer architecture. Transformer has shifted the approach in language modeling away

from RNNs and have shown incredible performance and flexibility across all language related

tasks.

2.8.1 Skip-Thought Vectors. The Skip-Gram model [28] [27], the model design behind

Word2Vec, is an unsupervised word embedding model that attempts to extract the meaning

of a word by predicting the words that come before and after the input word. Given an

embedded word vector wt, the Skip-Gram model is tasked to predict the surrounding n-gram

(wt−n, . . . , wt−1, wt+1, . . . , wt+n). The Skip-Thought Vectors [22] use the same conceptual

idea, but extend its application from words to sentences. The model takes a sentence as its

input and attempts to predict the sentences that come before and after the input sentence.

More formally, each datapoint can be represented as an ordered triplet (si−1, si, si+1). An

encoder is first tasked to encode si to some latent vector z. Then, one decoder is tasked

to predict si−1 given z and another is tasked to predict si+1 given z. By predicting the
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surrounding context of the input sentence, the model is able to extract the meaning of si

and embed it in the vector z.

2.8.2 Universal Sentence Encoder. The Universal Sentence Encoder [7] was the first

sentence encoding language model developed using the transformer. The goal is to show

how sentences can be encoded into a continuous representation which can then perform

various NLP tasks, such as calculating semantic textual similarity, transfer learning, and

Word Embedding Association Tests [6]. The transformer based model is constructed and

trained through a procedure described as follows:

The transformer based sentence encoding model constructs sentence embed-

dings using the encoding sub-graph of the transformer architecture. . . The con-

text aware word representations are converted to a fixed length sentence encoding

vector by computing the element-wise sum of the representations at each word

position. The encoding model is designed to be as general as possible. This is

accomplished by using multi-task learning whereby a single encoding model is

used to feed multiple down-stream tasks. The supported tasks include: a Skip-

Thought like task for the unsupervised learning from arbitrary running text;

a conversational input-response task for the inclusion of parsed conversational

data; and classification tasks for training on supervised data.

2.8.3 GPT. Generative Pre-Trained Transformers (GPT) [34] is trained semi-supervised

using a decoder-only transformer. The model is pre-trained using unsupervised data with

the objective of predicting the next token given an input corpus of tokens T = (τ1, ..., τn) by

maximizing the following likelihood:

L1(T) =
∑
i

logP (τi | τi−k, . . . , τi−1;θ)

where k is the size of the context window, and the conditional probability P is modeled

using a transformer with parameters θ.

The simple training objective allows for near unlimited amounts of data. The GPT model
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is then fine-tuned using supervised data, labeled to perform four different linguistic tasks:

classification, textual entailment, similarity, and question answering. The training procedure

is described as follows:

We assume a labeled dataset C, where each instance consists of a sequence of input

tokens, x1, . . . , xm, along with a label y. . . This gives us the following objective

to maximize:

L2(C) =
∑
(x,y)

logP (y | x1, . . . , xm) .

We additionally found that including language modeling as an auxiliary objec-

tive to the fine-tuning helped learning by (a) improving generalization of the

supervised model, and (b) accelerating convergence. . . Specifically, we optimize

the following objective (with weight λ):

L3(C) = L2(C) + λ ∗ L1(C) .

The results showed that large language models trained on large amounts of unsupervised

data have a great capacity for transfer learning, which “aims at improving the performance

of target learners on target domains by transferring the knowledge contained in different but

related source domains. [50]”

2.8.4 BERT. Bidirectional Encoder Representations from Transformers (BERT) [13] is

similar to GPT, but has one significant difference in its architectural design; BERT is a

bidirectional transformer, meaning it can predict the previous token as well as the next token

given an input corpus. BERT also follows pre-training and fine-tuning method to train for

downstream tasks but with a different training objective from GPT. The pre-training for

BERT uses two unsupervised tasks: masked LM and next sentence prediction.

In masked LM, 15% of the input words are masked and BERT is tasked with predicting

the masked words. This training method is reminiscent of the denoising autoencoders dis-

cussed in 2.3, but differs in that the model only predicts the masked portions rather than

reconstructing the entire input. The second unsupervised task used to train BERT is next
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sentence prediction. Given sentences A and B, 50% of the time B is the actual next sentence

and 50% of the time B is a random sentence selected from the corpus. BERT is tasked with

predicting whether sentence B is the true next sentence or not. The fine-tuning phase for

BERT also involves four linguistic tasks: paraphrasing, entailment, question answering, and

classification.
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Chapter 3. Model Design

This research presents a way to represent language with images and to train an autoencoder

model end-to-end using transformer encoder and decoder. There are a few challenges with

encoding and decoding language with a latent vector. The first challenge is that sentences

come with varying number of words or tokens. With many of the existing language models

that utilizes the transformer, the approach often times is to sum or average the transformer

outputs. For autoencoder training however, the aim is to not only encode, but also to decode,

hence it is necessary for the latent vector to fully encapsulate the semantics and the syntactic

structure of the input sentence for reconstruction.

Another major difference with the existing language models is the decoder half. Since

a key design in the transformer decoder is attention on the encoder outputs, no known

attempts have been made to use the transformer decoder on a single vector. As the encoder

and decoder trains simultaneously on the same latent space, there is an advantage of being

able to generate new sentences from a latent vector. This research presents a novel method in

encoding and decoding language to and from latent vectors by using image representations.

3.1 Encoder Design

The main task of the encoder is to take the sequential vectors of the transformer output and

contain all the necessary information about these vectors into a single vector representation.

The challenge here is that the length of each sentence varies, and many sentences are struc-

tured differently linguistically. For example, some sentences start with a subject pronoun,

followed by a verb and an object, whereas other sentence may start with an article, then a

subject noun. Even more, interrogative sentences start with an auxiliary verb (such as be,

can, do, etc.) and is then followed by the subject. With so many possible configurations

for every sentence, reducing the transformer output vectors, where each vector represents

corresponding input token, into a single vector without the loss of semantic and syntactic
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information is challenging.

Given an embedded sentence input X ∈ Rℓx×d, let Te(X) = A. Since the output dimen-

sion of Te is consistent with the input dimension, A ∈ Rℓx×d. The approach that is used

in order to first eliminate the dimension ℓx is to multiply the transpose of A by itself. For

B = ATA, B ∈ Rd×d is free of the sequence-length dimension ℓx. Define Ψ : Rℓx×d → Rd×d

as the transpose multiplication function:

Ψ(A) := ATA . (3.1)

Since the dimension of the model is much larger than the sequence length, A almost always

will be full-rank, and the d × d matrix B is a much larger matrix than A. Therefore, Ψ is

almost always an injective function, which means that all of the necessary information of A

is preserved in B.

The next step is to compress the matrix B into a single latent vector z ∈ Rd through

some function Φ : Rd×d → Rd with as little loss of information as possible. First, imagine

the goal is not to transform B into a vector, but rather an image. An image can be thought

of as a 3-dimensional tensor of shape C×k×k, where C is a channel dimension and k is the

width and height of a square image. Allow d to be a divisor of C so that each ith column of

B multiplies with some Ck2

d
× d parameter matrix Wi, resulting in a vector that is reshaped

to be an image of shape C
d
× k × k. These are then stacked on top of each other along the

channel dimension, producing a desired image of shape C × k × k.

In order for the encoding to be a vector, simply set k = 1 and C = d. Then, the output

image is of shape d × 1 × 1, which is just a d-dimensional vector. Each parameter matrix

also reduces to a d-dimensional vector wi, and simply dot-products with the ith column of

B. Let W =
[
w1 · · · wn

]
and B =

[
b1 · · · bn

]
. The process can be summarized as:

Φ(B |W ) := diagonal(WTB) =


wT

1 b1

wT
2 b2
...

wT
nbn

 . (3.2)

Define z := Φ(B |W ) to be the encoded latent vector for future reference.

23



3.2 Decoder Design

From the latent vector z, the image representation is generated using traditional methods.

The vector is repeatedly upsampled and fed into a CNN until a desired shape of the image

is reached. The fact that images can be attended on is one of the inspirations of the decoder

design. The convolutional filters of the image representation is obtained following a similar

procedure as shown in Section 2.6.1, which is then used for attention by the transformer

decoder model. The transformer decoder then reconstructs the original input sentence.

The generated image representation space may act as a prior to the Euclidean latent

space, since the transformer decoder model only “sees” the image representation and never

actually interacts with the latent vector. This is unproven, but empirical results show that

using a linear network instead to generate multiple vectors to be attended on doesn’t perform

nearly as well. This suggests that using image representation is actually advantageous for

the decoder’s performance.

3.3 Full Model Pipeline

The details of the entire model design is presented in this section. The model is coded in

Python, and the neural network model is built using the PyTorch [30] library. A detailed

diagram describing the model architecture is shown in Figure 3.1.

The first part of the model is the embedding model E : |V| → d as described in equation

2.1. The embedding model is built using nn.Embedding module, in which ME also acts as

trainable weights. The model dimension d was set to be 256. The embedded input then

passes through transformer encoder Te. There are no major changes to the transformer

architecture, so refer to equation 2.10 for how the transformer encoder is designed. The

code for building the transformer was obtained from The Annotated transformer [39]. The

number of encoder layers N was set to be 6, the number of attention heads for multihead

attention h was set to be 8, and the dimension of the feed-forward network was set to be 1024.
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Figure 3.1: Full model diagram

The output of the transformer encoder progresses through the model exactly as outlined in

equations 3.1 and 3.2 to produce the latent vector z.

To generate the image encoding from z, it passes through a convolutional upsampling

function Cup : Rd → R3×dI×dI , where 3 represents the RGB channel of the resulting image,

and dI is the width and height of the square image. First, z passes through a linear layer

of output size 2d and is then reshaped to be a d
8
× 4 × 4 tensor. It then passes through an

initial convolutional layer with 2d output channels, square kernels of size 3, and stride set

to be 1. All convolutional layers are built using nn.Conv2d module. By padding the edges

by 1, this kernel size and stride preserves the shape of the image, resulting in a 2d × 4 × 4

tensor output. Padding is done using nn.ReflectionPad2d, which pads the edges using

values from the opposite edges. This helps the values at the boundaries to stay consistent

with the other values during upsampling.
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The output tensor then passes through a series of upsampling and convolutional layers,

designed to increase the dimensions of the image while decreasing the number of channels.

For each layer, the upsampling is done using nn.Upsample module with bilinear interpolation,

and each convolution halves the input channels while preserving the size of the image with

kernel size of 3 and stride of 1 with padding. After each layer, a ReLU function is applied as

the activation function. The number of layers NC is set to be 4, hence the resulting output

tensor will be of shape d
8
× 64 × 64. This tensor is then inputted to a final convolutional

layer that reduces the channel dimension to 3, so that the output is a visual image with

RGB color channels. A hyperbolic tangent function is applied at the end to bound the pixel

values between -1 and 1. This whole process will be summarized as:

Cup(z) = I . (3.3)

The downsampling method to obtain the filter vectors from the image works similarly to

the upsampling method. The image tensor I passes through convolutional downsampling

function Cdown : R3×dI×dI → RNf×d, where dI is the dimension of the image I and Nf is

the number of filter vectors. The image first goes through an intial convolutional layer with

kernel size 3 and stride 1 to set the channel dimension to be d/2NC . Then, it passes through a

series of convolutional layers, where each layer contains a convolution that halves the number

of channels and also halves the image dimension by using kernel size 2 and stride 2, then

another convolution that preserves the channel and image dimensions with kernel size 3 and

stride 1. ReLU function is applied after as well for activation. The number of layers for

downsampling is identical to the number of upsampling layers, which is set to 4. This results

in 16 filter vectors of dimension d that will be used as inputs for the transformer decoder.

This process will be summarized as:

Cdown(I) = F =
[
f1 f2 · · · fNf

]T
. (3.4)

For the decoding phase, the target sentence for the transformer decoder Td is identical

to the input sentence since the model is trained as an autoencoder. The only difference is

that the tokens are all shifted one to the right. For example, given the filter vectors F and
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tokens (τ0, . . . , τk) up to position k, the decoder’s job is to predict the next token τk+1. τ0 is

always a start of sentence token that is used in predicting τ1. Since the input and target are

the same, they also share the same embedding model. The number of layers and the number

of attention heads for the decoder model are identical to that of the encoder model.

Let s = (τ1, τ2, . . . , τℓ) be the input sentence and E(s) = X be the embedded sentence.

Let s′ = (τ0, τ1, . . . , τℓ−1) be the input sentence that is shifted one index to the right and

s′k = (τ0, . . . , τk) where 0 ≤ k ≤ ℓ− 1. This gives E(s′k) = X′
k. Using these inputs, below is

a summary of the entire model pipeline:

Te(X) = A

Ψ(A) = B

Φ(B) = z

Cup(z) = I

Cdown(I) = F

(G ◦ Td)(F,X′
k) = p(τk+1 | τ1, . . . , τk) .

(3.5)

The resulting output of the model is the probability distribution over V for the next token

τk+1.
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Chapter 4. Gradient Analysis

In this chapter, the back-propagation of the model at the layers Ψ and Φ will be analyzed to

show that the model is designed to learn effectively during training. Attention mechanism

also involve similar matrix operations, so the analysis not only applies to this model, but all

models that use dot product attention and the transformer.

4.1 Back-propagation

Before analyzing the layers of the model, the basics of back-propagation will be shown for

a simple case. Suppose the model is an L-layer neural network, where each layer is a linear

layer with an activation function. The forward-propagation of the model can be defined

recursively with the equation:

fl(Wlal−1 + bl) = al

where al is the activated output of the lth layer, Wl and bl are the trainable weight and

bias, and fl is some activation function, most commonly the ReLU function, or the Sig-

moid/Softmax function at the output layer. (Note that f needs to be differentiable almost

everywhere.) Also define zl as the lth weighted input, zl = Wlal−1 + bl, hence al = fl(zl).

Let a0 = x, where x is the input of the model, and let y be the corresponding target

with ŷ being the prediction of y. Then, the Lth, or the final output of the model is aL = ŷ.

The cost function C is some differentiable function that measures how close the prediction

ŷ is to the target y. It maps y and ŷ to a scalar-valued metric, commonly referred to as the

cost. The training objective of a neural network model is to minimize this cost, which can

be achieved through the back-propagation algorithm.

Back-propagation works in a similar way to forward-propagation. Just as how the input

flows forward through each layer starting from the initial layer to the final layer, the gradient

of the cost function flows backward through each layer from back to front using chain rule.
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First, observe that at each layer l, the following derivatives are given:

∂al
∂zl

= f ′
l (zl)

∂zl
∂Wl

= aTl−1

∂zl
∂bl

= I

∂zl
∂al−1

= WT
l .

Then, to calculate the derivatives with respect to the cost function C, define the error

at the lth layer to be δl =
∂C

∂zl
. Using chain rule, the derivatives of C with respect to the

variables at each layer can be recursively calculated as follows:

δL =
∂C

∂zL
=
∂C

∂ŷ

∂ŷ

∂zL
= ∇ŷC f ′

L(zL)

δl =
∂C

∂zl
=

∂C

∂zl+1

∂zl+1

∂al

∂al
∂zl

= W T
l+1δl+1 f

′
l (zl)

∂C

∂bl
=
∂C

∂zl

∂zl
∂bl

= Iδl = δl

∂C

∂Wl

=
∂C

∂zl

∂zl
∂Wl

= δla
T
l−1 .

As the gradients are computed at each layer, the weights and biases are updated by

taking a small step in the direction of their gradient to the cost function. Let η be that

small step, or learning rate of the model. The weight and bias at each layer l are updated

as below:

Wl ← Wl − η
∂C

∂Wl

bl ← bl − η
∂C

∂bl
.

This is called the gradient descent [37, 19]. As the model trains with many data over multiple

epochs, the cost may eventually reach its minimum.
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4.2 Gradient of Ψ

Before attempting to solve for the gradient of the matrix function Ψ(X) = XTX, the gradient

of a general vector function will be reviewed. Let F : Rn → Rm be a vector function, where

F =
[
f1 f2 · · · fm

]T
, with respect to an input vector x =

[
x1 x2 · · · xn

]T
. We can

solve for the gradient of F with respect to x by solving for the partial derivatives of each

function fi with respect to each input xj. This is written as

∇xF =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


. (4.1)

This matrix with all of its first-order partial derivatives is also commonly referred to as the

Jacobian matrix of the function F , written as JF .

Since the gradient of a vector-to-vector function F is an m× n matrix, we can logically

conclude that the gradient of a matrix-to-matrix function Ψ must be a 4-dimensional tensor

of shape (n×n)× (m×n) that, when right multiplied by an m×n matrix produces an n×n

matrix, and when left multiplied by an n× n matrix produces an m× n matrix. Although

this may be true, multiplication between a matrix and a higher-order tensor is not very well

established, so it won’t be a suitable method in computing the gradient of Ψ.

Instead, a way to work around this problem is by vectorizing the matrices. Vectorization

is a linear transformation that converts a matrix into a vector, essentially by “flattening”

the matrix. Given an m × n matrix A, vectorization transforms it into an mn-dimensional

vector vec(A), which is defined as follows:

vec(A) :=
[
a1,1 · · · am,1 a1,2 · · · am,2 · · · a1,n · · · am,n

]T
By vectorizing both the input and the output matrix, the function Ψ can be converted

to be a vector-valued function, from which its Jacobian can be solved. Let X be an m × n

matrix, where X =
[
x1 x2 · · ·xn

]
and xi =

[
x1,i x2,i · · ·xm,i

]T
for each i = 1, . . . , n.
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Then, Ψ can be rewritten as:

Ψ =



ψ1,1 ψ1,2 · · · ψ1,n

ψ2,1 ψ2,2 · · · ψ2,n

...
...

. . .
...

ψn,1 ψn,2 · · · ψn,n


=



xT
1x1 xT

1x2 · · · xT
1xn

xT
2x1 xT

2x2 · · · xT
2xn

...
...

. . .
...

xT
nx1 xT

nx2 · · · xT
nxn


(4.2)

For each ψi,j, its partial derivatives with respect to each xk,l can be solved. Below shows

each of these derivative calculations in all cases:

i ̸= j i = j

ψi,j = xT
i xj = xT

i xi

=
m∑
k=1

xk,ixk,j =
m∑
k=1

x2k,i

∂ψi,j
∂xk,i

= xk,j = 2xk,i

∂ψi,j
∂xk,j

= xk,i = 2xk,i

Trivially, whenever l ̸= i or l ̸= j, we have
∂ψi,j
∂xk,l

= 0.

Using the above results, the gradient of Ψ is ready to be solved using vectorization. Let

vec(Ψ) : Rmn → Rnn be the vectorized Ψ function:

vec(Ψ) =
[
ψ1,1 · · · ψn,1 ψ1,2 · · · ψn,2 · · · ψ1,n · · · ψn,n

]T
with respect to the input vectorized matrix

vec(X) =
[
x11 · · · xm,1 x1,2 · · · xm,2 · · · x1,n · · · xm,n

]T
.

Then, the Jacobian matrix of this function, which will be simply referred to as JΨ, is an

nn×mn matrix. This matrix is essentially a “flattened” version of the 4-dimensional tensor

∇XΨ. Whenever a matrix is multiplied to ∇XΨ, we can first vectorize the input, multiply

it with JΨ, and unvectorize the output back into a matrix of desired shape. JΨ is given in

block matrix form as follows:
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JΨ =



∂ψ1,1

∂x1,1
· · · ∂ψ1,1

∂xm,1

∂ψ1,1

∂x1,2
· · · ∂ψ1,1

∂xm,2

∂ψ1,1

∂x1,n
· · · ∂ψ1,1

∂xm,n

∂ψ2,1

∂x1,1
· · · ∂ψ2,1

∂xm,1

∂ψ2,1

∂x1,2
· · · ∂ψ2,1

∂xm,2

∂ψ2,1

∂x1,n
· · · ∂ψ2,1

∂xm,n

...
. . .

...
...

. . .
... · · · ...

. . .
...

∂ψn,1

∂x1,1
· · · ∂ψn,1

∂xm,1

∂ψn,1

∂x1,2
· · · ∂ψn,1

∂xm,2

∂ψn,1

∂x1,n
· · · ∂ψn,1

∂xm,n

∂ψ1,2

∂x1,1
· · · ∂ψ1,2

∂xm,1

∂ψ1,2

∂x1,2
· · · ∂ψ1,2

∂xm,2

∂ψ1,2

∂x1,n
· · · ∂ψ1,2

∂xm,n

∂ψ2,2

∂x1,1
· · · ∂ψ2,2

∂xm,1

∂ψ2,2

∂x1,2
· · · ∂ψ2,2

∂xm,2

∂ψ2,2

∂x1,n
· · · ∂ψ2,2

∂xm,n

...
. . .

...
...

. . .
... · · · ...

. . .
...

∂ψn,2

∂x1,1
· · · ∂ψn,2

∂xm,1

∂ψn,2

∂x1,2
· · · ∂ψn,2

∂xm,2

∂ψn,2

∂x1,n
· · · ∂ψn,2

∂xm,n

...
...

. . .
...

∂ψ1,n

∂x1,1
· · · ∂ψ1,n

∂xm,1

∂ψ1,n

∂x1,2
· · · ∂ψ1,n

∂xm,2

∂ψ1,n

∂x1,n
· · · ∂ψ1,n

∂xm,n

∂ψ2,n

∂x1,1
· · · ∂ψ2,n

∂xm,1

∂ψ2,n

∂x1,2
· · · ∂ψ2,n

∂xm,2

∂ψ2,n

∂x1,n
· · · ∂ψ2,n

∂xm,n

...
. . .

...
...

. . .
... · · · ...

. . .
...

∂ψn,n

∂x1,1
· · · ∂ψn,n

∂xm,1

∂ψn,n

∂x1,2
· · · ∂ψn,n

∂xm,2

∂ψn,n

∂x1,n
· · · ∂ψn,n

∂xm,n



=



2x1,1 · · · 2xm,1 0 · · · 0 0 · · · 0

x1,2 · · · xm,2 x1,1 · · · xm,1 0 · · · 0
...

. . .
...

...
. . .

... · · · ...
. . .

...

x1,n · · · xm,n 0 · · · 0 x1,1 · · · xm,1

x1,2 · · · xm,2 x1,1 · · · xm,1 0 · · · 0

0 · · · 0 2x1,2 · · · 2xm,2 0 · · · 0
...

. . .
...

...
. . .

... · · · ...
. . .

...

0 · · · 0 x1,n · · · xm,n x1,2 · · · xm,2

...
...

. . .
...

x1,n · · · xm,n 0 · · · 0 x1,1 · · · xm,1

0 · · · 0 x1,n · · · xm,n x1,2 · · · xm,2
...

. . .
...

...
. . .

... · · · ...
. . .

...

0 · · · 0 0 · · · 0 2x1,n · · · 2xm,n


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=



xT
1 0T 0T

0T xT
1 0T

...
... · · · ...

0T 0T xT
1

xT
2 0T 0T

0T xT
2 0T

...
... · · · ...

0T 0T xT
2

...
...

. . .
...

xT
n 0T 0T

0T xT
n 0T

...
... · · · ...

0T 0T xT
n



+



XT 0n,m · · · 0n,m

0n,m XT · · · 0n,m

...
...

. . .
...

0n,m 0n,m · · · XT


. (4.3)

Another way to solve for JΨ is by using vectorization’s properties with the Kronecker

product and the commutation matrix. If A is an m×n matrix and B is a p× q matrix, then

the Kronecker product A⊗B is defined as the pm× qn block matrix:

A⊗B =



a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a1,nB

...
...

. . .
...

an,1B an,2B · · · an,nB


.

Now, let A, B, and C be k × l, l × m, and m × n matrices respectively. The following

formulation is given using the Kronecker product [25]:

vec(ABC) = (CT ⊗ A)vec(B) .

From this, the following formulations can also be derived:

vec(ABC) = vec
(
(AB)CIn

)
= (In ⊗ AB)vec(C)

= vec
(
IkA(BC)

)
= (CTBT ⊗ Ik)vec(A) .
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Furthermore, the formulations in the case of two matrices is derived as follows:

vec(AB) = vec(ABIm) = (Im ⊗ A)vec(B) (4.4)

= vec(IkAB) = (BT ⊗ Ik)vec(A) . (4.5)

The commutation matrix K(m,n) is the nm × mn matrix that transforms vec(A) into

vec(AT) for any m× n matrix A:

K(m,n)vec(A) = vec(AT) , (4.6)

which can be defined as the following block matrix

K(m,n) =



K1,1 K1,2 · · · K1,n

K2,1 K2,2 · · · K1,n

...
...

. . .
...

Km,1 Km,2 · · · Km,n


where each Ki,j is an n×m sub-matrix whose jith (not ijth) entry is 1 and is 0 everywhere

else. The commutation matrix has a special property with the Kronecker product where,

given an m× n matrix A and p× q matrix B,

K(p,m)(A⊗B)K(n,q) = B ⊗ A . (4.7)

The last notable properties of the commutation matrix are K(n,m)K(m,n) = Imn and K(n,m)T =

K(m,n), both of which can easily be verified.

Using all of the tools above, we are now ready to symbolically solve for the gradient of

the function Ψ. Given an m× n matrix X and the function Ψ, we have:

Ψ = XTX

dΨ = d(XTX) = (dXT)X +XT(dX)

vec(dΨ) = vec
(
(dXT)X

)
+ vec

(
XT(dX)

)
= (XT ⊗ In)vec(dXT) + (In ⊗XT)vec(dX) by 4.4 and 4.5

= (XT ⊗ In)K(m,n)vec(dX) + (In ⊗XT)vec(dX) by 4.6

=
(

(XT ⊗ In)K(m,n) + (In ⊗XT)
)

vec(dX)
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= JΨvec(dX) .

It can be verified that JΨ = (XT⊗ In)K(m,n) + (In⊗XT) by comparing the results with 4.3.

From here, we can calculate how ∇XΨ behaves when it is left multiplied by a matrix.

It is not as important to calculate the right multiplication case since, in back-propagation,

the gradients are gathered from back to front by the chain rule. However, it can still be

useful to understand the behavior of right-multiplication for other applications. It can also

demonstrate properties of multiplication between the higher order tensor ∇XΨ and a matrix,

so both will be shown. Let A be an m× n matrix. Right-multiplying JΨ by vec(A) gives

JΨ vec(A) =
(

(XT ⊗ In)K(m,n) + (In ⊗XT)
)

vec(A)

= (XT ⊗ In)K(m,n)vec(A) + (In ⊗XT)vec(A)

= (XT ⊗ In)vec(AT) + (In ⊗XT)vec(A)

= vec(ATX) + vec(XTA)

= vec(ATX +XTA) .

Unvectorizing the result gives the desired output(
∇XΨ

)
A = ATX +XTA . (4.8)

For left multiplication, let B be an n× n matrix. Left-multiplying vec(B)T with JΨ gives:

vec(B)TJΨ = vec(B)T
(

(XT ⊗ In)K(m,n) + (In ⊗XT)
)

= vec(B)T(XT ⊗ In)K(m,n) + vec(B)T(In ⊗XT) .

From here, each part will be solved separately, starting with the second part:

vec(B)T(In ⊗XT) =
(
(In ⊗XT)Tvec(B)

)T
=
(
(In ⊗X)vec(B)

)T
= vec(XB)T , and

vec(B)T(XT ⊗ In)K(m,n) =
(
K(n,m)(XT ⊗ In)Tvec(B)

)T
=
(
K(n,m)(X ⊗ In)TK(n,n)K(n,n)vec(B)

)T
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=
(
(In ⊗X)K(n,n)vec(B)

)T
by 4.7

=
(
(In ⊗X)vec(BT)

)T
= vec(XBT)T .

Therefore, this results in:

vec(B)TJΨ = vec(XBT)T + vec(XB)T

= vec(XBT +XB)T .

Finally, unvectorizing the result gives:

B
(
∇XΨ

)
= (XBT +XB)T

= BXT +BTXT

= (B +BT)XT . (4.9)

Observe that in both cases, symbolically solving for the multiplication with the gradient

is much less costly than multiplication with the vectorized Jacobian. Speicifically, left-

multiplication with 4.3 has a temporal complexity of O(mn3), where as following the results

given in 4.9 is O(mn2), reducing the temporal complexity by a factor of n.

4.3 Gradient of Φ

Solving for the gradient of the function Φ(X |W ) = diagonal(WTX) for an n × n matrix

input X and an n × n parameter matrix W is much simpler. Since Φ : Rn×n → Rn we can

imagine that much like before, ∇XΦ (and similarly ∇WΦ) is a 3-dimensional tensor of shape

n× (n× n), where, when left-multiplied by an n-dimensional vector, gives an n× n matrix

output, and when right-multiplied by an n×n matrix, gives an n-dimensional vector output.

First, let X =
[
x1 x2 · · ·xn

]
and W =

[
w1 w2 · · ·wn

]
. This gives

Φ =


ϕ1

ϕ2
...
ϕn

 =


wT

1 x1

wT
2 x2
...

wT
nxn

 .
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Then, the scalar-by-vector derivatives of each ϕi with respect to each xj is given by

∂ϕi
∂xi

=
∂wT

i xi
∂xi

= wT
i

∂ϕi
∂xj

=
∂wT

i xi
∂xj

= 0T whenever i ̸= j.

Putting these results together gives us the n× nn Jacobian matrix JΨ as follows:

JΦ =



∂ϕ1
∂x1

∂ϕ1
∂x2

· · · ∂ϕ1
∂xn

∂ϕ2
∂x1

∂ϕ2
∂x2

· · · ∂ϕ2
∂xn

...
...

. . .
...

∂ϕn
∂x1

∂ϕn
∂x2

· · · ∂ϕn
∂xn


=



wT
1 0T · · · 0T

0T wT
2 · · · 0T

...
...

. . .
...

0T 0T · · · wT
n


.

Given v ∈ Rn, where v =
[
v1 v2 · · · vn

]T
, left-multiplying it with ∇XΦ results in:

vT
(
∇XΦ

)
= unvec(vTJΦ)

= unvec(
[
v1w

T
1 v2w

T
2 · · · vnw

T
n

]
)T

=


v1w

T
1

v2w
T
2

· · ·
vnw

T
n

 = v ∗WT .

(4.10)

The ∗ operation is defined as a broadcast multiplication, where each row of the matrix is

multiplied by the corresponding value of the vector exactly as shown above. For right-

multiplication, let A be an n × n matrix, where A =
[
a1 a2 · · · an

]
. Right-multiplying

A with ∇XΦ gives:

(
∇XΦ

)
A = JΦvec(A) = JΦ


a1

a2
...
an

 =


wT

1 a1

wT
2 a2
...

wT
nan

 = diagonal(WTA) (4.11)

Without loss of generality, the derivative of Φ with respect to its parameter matrix W

can be calculated in the exact same way, hence vT
(
∇WΦ

)
= v ∗ XT and

(
∇WΦ

)
A =

diagonal(XTA).
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4.4 Back-propagation of the model at Φ and Ψ

Using the gradients found in the previous sections, the back-propagation of the model during

training phase at the layers Ψ(A) = ATA = B and Φ(B |Wφ) = diagonal(WT
φB) = z will

be shown. Refer back to section 3.3 on the full forward-propagation of the model.

Given a cost function C, let ∂C
∂z

be given as an n-dimensional row-vector δTz . Then, the

gradients ∂C
∂Wφ

, ∂C
∂B

, and ∂C
∂A

is given using chain rule as follows:

∂C

∂Wφ

=
∂C

∂z

∂z

∂Wφ

= δTz
∂Φ

∂Wφ

= δTz
(
∇WφΦ

)
∂C

∂B
=
∂C

∂z

∂z

∂B
= δTz

∂Φ

∂B
= δTz

(
∇BΦ

)
∂C

∂A
=
∂C

∂z

∂z

∂A
=
∂C

∂z

∂z

∂B

∂B

∂A
= δTz

∂Φ

∂B

∂Ψ

∂A
= δTz

(
∇BΦ

)(
∇AΨ

)
.

Using the results from 4.9 and 4.10, these then give the following results:

∂C

∂Wφ

= δTz
(
∇WφΦ

)
= δz ∗BT

∂C

∂B
= δTz

(
∇BΦ

)
= δz ∗WT

φ

∂C

∂A
= δTz

(
∇BΦ

)(
∇AΨ

)
=
(
δz ∗WT

φ

)(
∇AΨ

)
=
((
δz ∗WT

φ

)T
+
(
δz ∗WT

φ

))
AT .

With the right algorithm, each of the gradient calculations should be fast and numerically

stable, with a smooth gradient surface for training the model.
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Chapter 5. Method

In this chapter, the specifics of how the model was trained will be presented. First, there

will be a discussion about how the data was curated, prepared, and processed. Then, the

details of the training procedure will be shared, including the cost function and the optimizer.

Finally, results of the training will be shown.

5.1 Dataset

The data used to train the model is from a book dataset, where texts from many different

books were collected into a single corpus. The data is prepared by assigning each word or

symbol with a token. Unique tokens are gathered from the corpus to create a vocabulary

set. Then, each element of the vocabulary is assigned an integer value to create a Python

dictionary object. Initially the data consisted of 40 million lines of English sentences with

over a million unique vocabulary tokens. In order to reduce the number of tokens, several

preprocessing strategies were used. Below is a list of preprocessing that was done to reduce

the size of the vocabulary:

• replace all numbers with a unique number token

• convert all % and $ symbols to words ‘percent’ and ‘dollars’

• add spaces around all non-letter symbols

• remove all remaining non-punctuation symbols

• remove all low frequency tokens (occurs n times or less throughout the dataset)

• normalize all texts by changing all letters to lowercase

• remove all sentences that are too long (over max len number of tokens)
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At first, n was set to 10 and max len was set to 50. After processing the data, the

size of vocabulary was reduced from over a million to just over 73 thousand. However,

training a large model with this size was still unsuccessful, so further processing was done

to reduce both the size of the vocabulary and the data. In order to further reduce the size

and normalize the data, more dramatic approaches were used:

• max len was set from 50 to 20.

• Using the PyEnchant library, an English dictionary was used to remove any lines that

contained words not in the dictionary. This removed all lines with uncommon proper

nouns, and odd spelling of words.

• Only a tenth of the data was kept.

• Vocabulary was further reduced by setting n to 20.

In the end, the vocabulary size reduced down to 16,138 and the number of lines to just under

1.3 million.

The processed dataset was then split into training, validation, and testing sets. First,

10 thousand lines were randomly selected to be the testing set. This dataset is reserved

for the end of all model trainings in order to evaluate the performance of the final model.

The remaining data was split into training and validation set, with 90% of the data used

for training and 10% of the data for validation. The training dataset is used for the actual

training of the model with an optimizer, and the model is evaluated after each epoch with

the validation dataset to track the progress of the training. Because neural network models

can often overfit to the training data, validation data is used to evaluate the model’s ability

to generalize to new data as it trains.

Below are some example sentences from the dataset after preprocessing:

i finally got my shot at some screen time .

he looked tired and worn , which troubled me more than anger would have .

i stumbled down to the ground , still making a spectacle of myself .
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in turn they whispered their name , acknowledging their presence .

i spun around and backed up , unnerved by his angry look .

she climbed back up the pool steps .

it had been months since the last visit .

bored and victorious , what more could a man ask for ?

she s resting , so i do nt want you to disturb her .

the demon inside you .

so he provides a remedy for your rightful passions .

but , hey , it s a million times better than the institute !

listening carefully could produce two clues .

call me when you can , and be safe .

i ca nt connect at all in this wretched valley .

5.2 Opimizer and Cost Function

Since the majority of the model is the transformer, it was ideal to follow much of the training

procedure from the original paper [46]. Optimization was done using the Adam [20] optimizer

with β1 = 0.9, β2 = 0.98, and ϵ = 10−9. The learning rate η varied over the course of the

training according to the formula

η = d−0.5min(i−0.5, iω−1.5)

where d is the dimension of the model, i is the current number of iterations of training,

and ω is a hyperparameter for the number of warm-up steps. The learning rate η increases

linearly until i = ω, from which point η decreases gradually proportional to i−0.5. ω was set

to 2000.

For the cost function, Kullback-Leibler divergence, DKL, is used, which is defined as:

DKL(P ||Q) :=
∑
x∈X

P (x)log(
P (x)

Q(x)
) (5.1)

where P represents the target output probability distribution and Q is the predicted output

probability distribution produced by the model. In the context of language model training,
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the probability space is a discrete space over all vocabulary words, where the desired output

distribution, P , has a concentrated mass at the index that maps to the correct next token.

In practice, this usually means that 100% of the mass is at the correct token and is zero

everywhere else. For this training, label smoothing strategy was used, where the confidence of

the correct token is subtracted by a smoothing value. The remaining mass is then spread out

evenly across all other tokens. This causes the model to learn to be more unsure about the

next token prediction, but helps with regularization during evaluation phase. The smoothing

value was set to 0.1.

5.3 Training

Training was done using a single NVIDIA GeForce RTX 2080 Ti GPU for 20 epochs over

the training set. Each training session was done 10 epochs at a time, and after each epoch,

validation loss was computed using the validation set, and a checkpoint of the model was

saved. Two full training sessions were done before the validation loss started to increase, at

which point a saved model with minimum validation loss was chosen to be the final model

for testing. The graph from Figure 5.1 shows both the train and validation loss over the

entire training, where the validation loss achieved a minimum score of DKL = 0.5587. In

total, the training took about 26 hours.

5.4 Evaluation

Using the final model, testing was done using 10,000 sentences from the test set that had

been reserved during model training and selection phase. The model achieved a loss value of

DKL = 0.5478 averaged over the test set. To evaluate the model’s performance on decoding

without the use of the target inputs, two different decoding strategies are used: greedy

decoding and beam search decoding.

Greedy decoding is a näıve method where the token with the highest likelihood is chosen
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Figure 5.1: Graph of train and validation loss. The validation loss is lower because the model
is set to evaluation mode, turning off all regularizations such as normalization layers and
dropout layers. The spike at epoch 10 signifies a new training session with warm-up steps.

at each generation. More precisely, given the latent vector z, the inputs for the transformer

decoder are the filter vectors F and E(τ0, ..., τk) for the kth decoding step. Then, the generator

produces the output distribution p(τk+1 | τ0, . . . , τk). The greedy decoding method chooses

τk+1 = argmax
(
p(τk+1 | τ0, . . . , τk)

)
for the next token τk+1, which is then appended to the end of the current sequence as the

next decoder input. This is repeated recursively until τk+1 = EOS, which signifies that the

end of the sentence has been reached.

Beam search is a breadth-first search algorithm that builds a search tree, where, at each

level, β best states are stored and the rest are pruned. The stored states are then expanded

further in the next level and pruned in the same way. In context of language generation,

the best states refer to the most probable sequences for each generation. Observe that beam

search with β = 1 is equivalent to greedy decoding. Given a trained model and a latent

vector z, the following code snippet shows the details of the beam search algorithm. The

code is simplified for readability.

43



1 def Beam_Search(z, model , beta=5, max_len =20)

2 # Obtain the convolutional filters from z

3 filters = model.extract_filters(z)

4 # Initialize the first token using the SOS token

5 ys = SOS

6 # Initialize a list to store the sequences

7 top_seqs = [(ys, 0, False)] # (sequence , log -prob , is EOS)

8 for i in range(max_len - 1):

9 # Initialize a new list to store next generations

10 new_seqs = []

11 for seq , score , is_eos in top_seqs:

12 # Keep and skip if sequence reached eos ,

13 if is_eos:

14 new_seqs.append ((seq , score , is_eos))

15 continue

16 decoder_out = model.decode(seq , filters)

17 prob_dist = model.generator(decoder_out)

18 log_probs , words = torch.topk(prob_dist , beta)

19 # Update and store next generation

20 for log_prob , word in zip(log_probs , words):

21 new_seq = torch.cat(seq , word)

22 new_score = score + log_prob

23 new_is_eos = True if word == EOS else False

24 new_seqs.append ((new_seq , new_score , new_is_eos))

25 # Sort the sequences by log probability score

26 top_seqs = sorted(new_seqs , key=lambda x: x[1], reverse=True)

27 # Only keep beta sequences

28 top_seqs = top_seqs [:beta]

29 # If all current sequences reached EOS , break and return

30 if sum(eos for _, _, eos in top_seqs) == beta:

31 break

32 return top_seqs
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Below are some of the sentences from the test set, the image representations of the

sentences, and the decoded outputs of the model using greedy decoding and beam search

decoding. The beam width β for all beam search decoding is set to 5, although not all 5

candidates are shown for all instances. The beam search outputs are ordered from most

likely to least.

Input sentence:
well , maybe this once .

Greedy decode output:
well , maybe this once .

Beam search outputs:
well , maybe this once .

well , maybe this time .

well , maybe this afternoon .

Input sentence:
oh , there are some things i can work with them on .

Greedy decode output:
oh , there are some things i can work with them on .

Top beam search output:
oh , there are some things i can work with them on .

Input sentence:
he based that on the number of times a cell could

divide .

Greedy decode output:
he on that page the years of answering a force would sell

youth .

Top beam search output:
he regained that number on the force of a student who lay .
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The following are a few more interesting examples from the test set. The first two shown

are instances where the beam search clearly outperforms greedy decoding in terms of exact

word-for-word matching with the input sentence.

Input sentence:
if i am to train you , you re going to have to

trust me .

Greedy decode output:
if you are to train , i m going to have to trust me i .

Top beam search output:
if i am to train you , you re going to have to trust me .

Input sentence:
he cheated on me with other women while we were

married .

Greedy decode output:
he dated on me after other kids we went with harm .

Top beam search output:
he cheated on me with other women while we were married .

The next two examples show all five decoded outputs of the beam search decoding. These

examples demonstrate that words that are semantically similar have higher likelihoods in

the output distribution p(τk+1 | τ0, . . . , τk).

Input sentence:
sure , i replied softly .

Beam search outputs:
sure , i replied softly .

sure , i softly replied .

sure , i murmured softly .

sure , i replied quietly .

sure , i replied gently .
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Input sentence:
they disappeared up the drive .

Beam search outputs:
they disappeared up the drive .

they disappeared up the road .

they disappeared up the hallway .

they disappeared up the hospital .

they disappeared up the walk .

The following example shows a case where the greedy decoding and the top beam search

decoding are both not very semantically close to the input sentence, but the less likely

candidates from the beam search decoding are.

Input sentence:
i ll go get the other drinks , i said smiling as i

turned back toward the kitchen .

Greedy decode output:
i ll go get the other plate , i said as i walked back toward

the tea meeting .

Beam search outputs:
i ll go get the other evening , i said as i leaned back

toward the waitress .

i ll go get the other drinks , i said as i walked back

toward the kitchen smiling .

i ll go get the other drinks , i said as i walked back

toward the kitchen .

The last example shows a case where the decoded sentences are semantically similar in

interesting ways with the input sentence.

Input sentence:
a kiss that still made the roots of her hair tingle .

Greedy decode output:
a kiss that still made the fabric of her scalp shiver .

Beam search outputs:
a kiss that still made the softness of her hair quiver .

a kiss that still made the softness of her flesh curl .

47



Chapter 6. Experiments and Analysis

Using the trained model, different experiments were conducted to find interesting proper-

ties about the latent space and the encoded vectors. Understanding the model’s encoding

and decoding capabilities can help us understand how the model can be used for further

applications and its limitations. Throughout this chapter, let E : L → Rd be defined as the

encoding half of the entire model, E := Φ ◦ Ψ ◦ Te ◦ E, and let D : Rd → L be defined as

the top beam search decoding of the latent vector with β = 5. With a well trained model,

E and D are theoretically the inverse functions of each other. Therefore, we first make sure

D
(
E(s)

)
≈ s whenever an example sentence s ∈ L is chosen.

6.1 Gaussian Mixture Model Fitting

One of the underlying assumptions that led to the model design choices is that Gaussian

distribution should not be used as the prior distribution of large language data. To test

this assumption, a Gaussian Mixture Model was fitted on the set of latent vectors obtained

from the test set. A Gaussian mixture model fitted on a distribution of data will attempt

to estimate the data distribution with multiple Gaussian components, each ith component

weighted with some scalar αi with its own mean µi and covariance matrix Σi. Specifically,

the prior distribution is given by

p(θ) =
K∑
i=1

αiN
(
µi,Σi

)
The values of the parameter for each component is updated conditioned on the data x by

using the Expectation-Maximization algorithm and will result in a posterior distribution

p(θ | x) =
K∑
i=1

α̃iN
(
µ̃i, Σ̃i

)
In Python, this can be done easily with the help of the Scikit-Learn library [31].

In this experiment, a Gaussian mixture model with 20 components was used to fit the

latent vectors. Afterwards, vectors were sampled from each Gaussian and decoded. For each
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Figure 6.1: Gaussian mixture model can approximate a given distribution [43]

component i, the sampling process can be described as

zi ∼ N
(
µi,Σi

)
D(zi)→ decoded sentence

The following shows some of the sampled vectors from three different Gaussian com-

ponents decoded into sentences. The scores are the log-likelihood of the sentences defined

as

score
(
D(z)

)
:= log

(
p(τ1, . . . , τℓ)

)
Component 1

Sentence 1.1 score: -14.57

Decoded: i do , but i just arrived a small oven from another jet .

Sentence 1.2 score: -18.10

Decoded: i pushed against the air , not sure he could notice sorrow in me of a intercom .

Sentence 1.3 score: -16.01

Decoded: i wrapped my head to kiss her , when things she picked away from his father .

Sentence 1.4 score: -24.49

Decoded: i laughed in front of her lungs so softly i pushed myself forward , and immediately

toward his spell .

Sentence 1.5 score: -12.55
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Decoded: i grabbing their food for the point so that it creaked back .

Component 5

Sentence 5.1 score: -16.63

Decoded: what have yourself in there , do nt she come !

Sentence 5.2 score: -11.71

Decoded: was huh there focus to world ?

Sentence 5.3 score: -12.52

Decoded: how could this baby how your parents we re with him ?

Sentence 5.4 score: -18.36

Decoded: are you wondering why to do it down the family time in home ?

Sentence 5.5 score: -12.81

Decoded: you know who was everything , was her ?

Component 18

Sentence 18.1 score: -14.47

Decoded: the rest might change in any amount of worlds .

Sentence 18.2 score: -11.44

Decoded: the houses shall look complete , both of prison .

Sentence 18.3 score: -6.44

Decoded: men to the field too .

Sentence 18.4 score: -6.97

Decoded: the prince will leave very somewhat surprised .

Sentence 18.5 score: -8.49

Decoded: the last skill disappear .

From the decoded sentence, it can be observed that when a Gaussian mixture model is

used, the type of sentences that cluster around each of the components are largely influenced

by the first few words of the sentence. However, most of the decoded sentences are nonsensi-

cal. This is reflected by the sentence scores, which can be used as a metric to determine how
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likely a given vector can be decoded as a sensible sentence. This metric is used for further

experiments to measure the viability of the decoded sentences.

6.2 Linear Interpolation

Let s1, s2 ∈ L and let E(s1) = z1, E(s2) = z2. One simple experiment that can be done

using these two vectors is a linear interpolation

zt = (1− t) z1 + t z2 for 0 ≤ t ≤ 1 .

By decoding zt for different values of t, it can be observed whether zt shows a smooth

transition between the sentences s1 and s2. The linear interpolation experiment was first

conducted with the sentences

s1 = he stayed completely still for the next moment .

s2 = then she continued as calmly as she could .

The following shows the images and the decoded sentences of zt for varying values of t:

t D(zt) score

0 he stayed completely still for the next moment . -1.09

0.2 he stayed completely still for the next then . -4.12

0.4 she stayed now as his head barely i wondered . -9.13

0.6 then she stayed silent as he ever watched . -6.92

0.8 then she continued quietly as she could at my wounds . -5.11

1 then she continued as calmly as she could . -0.99

The result shows a smooth transition of the images, and the token-wise transition of
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D(zt) seems acceptable but don’t make a lot of sense grammatically or semantically, which

is evident from the increased log-probability scores of the transition sentences. This is likely

because the two sentences are not similar enough, so the experiment was repeated with more

similar pairs of sentences. Below shows a linear interpolation between the sentences

s3 = my mom was upset when she saw me .

s4 = my dad is happy to see you .

t D(zt) score

0− 0.2 my mom was upset when she saw me . -0.76

0.5 my mom was happy to see me now . -5.94

0.6 my dad is upset to see you happy . -5.66

0.7 my dad is happy to see you upset . -2.37

0.8− 1 my dad is happy to see you . -0.99

These results show a smoother transition between the two sentences and the transitions are

grammatically correct as well. This suggest a sparsity of vectors in the latent space that are

likely to be sentences.

Finally, a linear combination between three different sentences was done using words of

emotion.

shappy = i am happy . E
(
shappy

)
= zhappy

sdisappointed = i am disappointed . E
(
sdisappointed

)
= zdisappointed

sexcited = i am excited . E
(
sexcited

)
= zexcited

Below is a few combinations that produced interesting results:

D
(
0.5 zdisappointed + 0.5 zexcited

)
= i am angry .

D
(
−0.7 zhappy + 0.8 zdisappointed + 0.9 zexcited

)
= i am annoyed .

D
(
−zhappy + zdisappointed + zexcited

)
= i am humor curious .

These results show that emotions may lie in a particular subset of the latent space, which

may be traversed to produce different emotion for the output sentence.
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6.3 Vector Operations

The Word2Vec [28] model showed that it is possible to perform vector operations of encoded

words to manipulate the semantics of words. One famous example is king - man + woman

= queen which is the expected and desired output. In this section, similar experiments are

performed with encoded sentences.

6.3.1 Subject Pronoun Manipulation. For the first experiment, the goal is to ma-

nipulate the subject pronouns. The following sentences are identical except for their subject

pronouns:

s1he = he stayed completely still for the next moment . E
(
s1he

)
= z1he

s1she = she stayed completely still for the next moment . E
(
s1she

)
= z1she

s1they = they stayed completely still for the next moment . E
(
s1they

)
= z1they

s1I = i stayed completely still for the next moment . E
(
s1I
)

= z1I

s1you = you stayed completely still for the next moment . E
(
s1you

)
= z1you

s1we = we stayed completely still for the next moment . E
(
s1we

)
= z1we

Since each of these sentences are identical except for the subject pronouns, the difference

of two sentences would represent the difference in the pronouns used. For example, since

‘I’ is a first-person singular pronoun and ‘we’ is a first-person plural pronoun, the difference

z1we − z1I will represent the plurality element. Then, the expected outcome when adding

this difference to z1he, a third-person singular pronoun, would be a vector close to z1they, a

third-person plural pronoun. The following shows the result of the experiment.

D
(
z1we − z1I + z1he

)
= they stayed completely still for the next moment .

D
(
z1they − z1he + z1I

)
= completely we stayed still for the next moment .

D
(
z1they − z1he + z1you

)
= you stayed completely still for their next time .

Although there were some changes to the sentence itself for some, the subject pronouns of

the output were changed as intended. The reverse of this experiment was conducted and
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Figure 6.2: Illustration of vector operations between
two pairs of vectors and their difference.

showed a similar result.

D
(
z1I − z1we + z1they

)
= completely he stayed still for her next moment .

D
(
z1he − z1they + z1we

)
= i stayed completely still for the next moment .

Similar experiment was conducted but instead adding the difference of sentences in s1 to

a new sentence s2

s2he = then he continued as calmly as he could . E
(
s2he

)
= z2he

D
(
z1they − z1he + z2he

)
= then they continued as calmly as he could .

D
(
z1we − z1i + z2he

)
= then they continued as he calmly as we could .

D
(
z1she − z1he + z2he

)
= then she continued as calmly as he could .

The subject pronouns changed as desired, but subject-object agreement wasn’t achieved,

which suggest that the vectors for the subject and the object may be parts of a separate

subset of the latent space.

6.3.2 Tense Manipulation. The following experiment shows manipulation of tense for

the predicate. The sentences used and the result of the vector operations are shown below.
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s3present = i am there . E
(
s3present

)
= z3present

s3future = i will be there . E
(
s3future

)
= z3future

s3past = i was there . E
(
s3past

)
= z3past

s4present = i am going with you . E
(
s4present

)
= z4present

D
(
z3future + z3past

)
= i m there .

D
(
z3future − z3present + z4present

)
= i will be going with you .

D
(
z3past − z3present + z4present

)
= i was going with you .

Using the sentences from s1, further experiment is done to manipulate both the subject

pronoun and the tense at once.

D
(
z1they − z1i + z4present

)
= they are going with you .

D
(
z1they − z1i + z3future − z3present + z4present

)
= they will be going with you .

D
(
z1they − z1i + z3past − z3present + z4present

)
= they was going with you .

The result shows that both the subject and the predicate changed as intended. Although the

first result achieved subject-verb agreement, the third did not. This was fixed by adjusting

the weight of the differences, as shown below:

D
(
z1they − z1i + 0.5(z3past − z3present) + z4present

)
= they were going with you .

Further experiment was done using the verbs ‘run’ and ‘ran’. The results weren’t as

consistent but produced some interesting outputs.

s5present = i run in the morning . E
(
s5present

)
= z5present

s5past = i ran in the morning . E
(
s5past

)
= z5past

D
(
z3future − z3present + z5present

)
= i ll run in the morning being .

D
(
z3past − z3present + z5present

)
= i run in the morning .

D
(
1.2(z3past − z3present) + z5present

)
= i slid in the morning run .

D
(
z5past − z5present + z3present

)
= i were there .
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6.3.3 Negation. This experiment shows negations of sentences using the word ‘not’.

s3not = i am not there . E
(
s3not

)
= z3not

D
(
z3not − z3present + z5future

)
= i will not be there .

D
(
z3not − z3present + z5past

)
= i was not there .

D
(
z3not − z3present + z5present

)
= i run not in the morning .

D
(
z3not − z3present + z4present

)
= i am not going with you .

D
(
z3not − z3present + z1he

)
= he stayed completely not still for the next moment .

D
(
z3not − z3present + z2he

)
= then he continued not as calmly as he could .

When there isn’t an auxiliary (be, will, can, do, etc.) verb, negation is done by inserting

the ‘do’ verb. Although the model wasn’t able to achieve that, it still placed ‘not’ in the

grammatically correct places.

6.3.4 Statements vs. Questions. Next, experiments were conducted to see whether

statements could be turned into questions and vice-versa.

s6statement = you can go home . E
(
s6statement

)
= z6statement

s6question = can you go home ? E
(
s6question

)
= z6question

s3question = am i there ? E
(
s3question

)
= z3question

s4question = am i going with you ? E
(
s4question

)
= z4question

D
(
z6question − z6statement + z3present

)
= am i there ?

D
(
z6question − z6statement + z3future

)
= will i be there ?

D
(
z6question − z6statement + z3past

)
= i was there ?

D
(
1.5(z6question − z6statement) + z3past

)
= was i there ?

D
(
z6question − z6statement + z4present

)
= am i going with you ?

D
(
z6statement − z6question + z3question

)
= i am there .

D
(
z6question − z6statement + z4question

)
= i am going with you .
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6.3.5 Command vs. Request. Finally, experiments were conducted to see whether

commands could be turned into requests and vice-versa.

s7command = clean your room . E
(
s7command

)
= z7command

s7request = can you clean your room ? E
(
s7request

)
= z7request

s8command = come to my house . E
(
s8command

)
= z8command

s8request = can you come to my house ? E
(
s8request

)
= z8request

D
(
z7request − z7command + z8command

)
= can you come to my house ?

D
(
z7command − z7request + z8request

)
= come to my house .

D
(
z8request − z8command + z7command

)
= can you clean your room ?

D
(
z8command − z8request + z7request

)
= clean your room .

The results for this and the previous experiment suggest that the structure of the sentence

may be a subset of the latent space as well. Isolating these elements could lead to a new

way of building output sentences within the latent space.

57



Chapter 7. Future Work

The results and experiments of the trained model shows promise. One of the biggest chal-

lenges for this work was training a larger model with a bigger dataset, so that is the most

important next step. Because the corpus only came from a book dataset, language of the

data was limited to a single domain. It would be better to use a corpus gathered from multi-

ple domains for a more general-purpose model. With a larger model, it could be possible to

extract specific information from the encoded word vectors and also generate new sentences

in the latent space by using different vectors as building blocks. This could lead to a new

way of modeling a conversational AI.

It would also be beneficial to explore alternate model architectures or training schemes

and compare their empirical results. The model could be designed as a denoising autoencoder

by masking some of the input words, or as a variational autoencoder by sampling the latent

vectors from a Gaussian. One thing that lacked in this work is empirical results using

standard methods. Comparing this model to other existing language models in standard

LM tasks could show unique properties of the model.

Another important work to be done is implementing the symbolic derivatives of the

matrix-by-matrix functions to autograd libraries. Current autograd systems are not com-

pletely optimized for solving the gradients of matrix-by-matrix functions during the backward

pass. By using the results from 4.9, the complexity of these derivative calculations and gra-

dient multiplications can be reduced by a factor of 2. The rise in usage of transformers and

attention mechanism leads to more and more matrix-by-matrix operations, hence a more

optimal algorithm will greatly reduce time and cost of training large language models.
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