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ABSTRACT 

Application of High-Deflection Strain Gauges to 
Characterize Spinal Motion Phenotypes Among Patients with CLBP 

 
Spencer A. Baker 

Department of Mechanical Engineering, BYU 
Doctor of Philosophy 

 
Chronic low back pain (CLBP) is a nonspecific and persistent ailment that entails many physiological, 
psychological, social, and economic consequences for individuals and societies. Although there is a plethora 
of treatments available to treat CLBP, each treatment has varying efficacy for different patients, and it is 
currently unknown how to best link patients to their ideal treatment. However, it is known that 
biopsychosocial influences associated with CLBP affect the way that we move. It has been hypothesized that 
identifying phenotypes of spinal motion could facilitate an objective and repeatable method of determining 
the optimal treatment for each patient. The objective of this research was to develop an array of high 
deflection strain gauges to monitor spinal motion, and use that information to identify spinal-motion 
phenotypes. 

The high deflection strain gauges used in this endeavor exhibit highly nonlinear electrical signal due to their 
viscoelastic material properties. Two sub-models were developed to account for these nonlinearities: the first 
characterizes the relationship between quasistatic strain and resistance, and the second accounts for transient 
electrical phenomena due to the viscoelastic response to dynamic loads. These sub-models are superimposed 
to predict and interpret the electrical signal under a wide range of applications. The combined model 
accurately predicts sensor strain with a mean absolute error (MAE) of 1.4% strain and strain rate with an 
MAE of 0.036 mm/s. Additionally, a multilayered architecture was developed for the strain gauges to provide 
mechanical support during high strain, cyclic loads. The architecture significantly mitigates sensor creep and 
viscoplastic deformation, thereby reducing electrical signal drift by 74%. 

This research also evaluates the effects of CLBP on patient-reported outcomes. An exploratory factor analysis 
revealed that there are five primary components of well-being: Pain and Physical Limitations, Psychological 
Distress, Physical Activity, Sleep Deprivation, and Pain Catastrophizing. The presence of CLBP has adverse 
effects on all these components. It was also observed that different patient reported outcomes are highly 
correlated with each other, and the presence of CLBP is a significant moderating factor in many of these 
relationships. 

Arrays of high-deflection strain gauges were used to collect spinal kinematic data from 274 subjects. Seven 
phenotypes of spinal motion were identified among study participants. Statistical analyses revealed significant 
differences in the patient-reported outcomes of subjects who exhibited different phenotypes. This is a 
promising indication that the phenotypes may also provide important information to clinicians who treat 
patients suffering from CLBP. Future research will be conducted to develop and identify the optimal 
treatments for patients according to their phenotypes, which has the potential to reduce medical costs, 
expedite recovery, and improve the lives of millions of patients worldwide. 

 

Keywords: nanocomposites, high-deflection strain gauges, modeling, patient-reported outcomes, 
phenotyping, machine learning, chronic low back pain  
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CHAPTER 1 BACKGROUND 

1.1. Introduction to Low Back Pain 
Pain mitigation is one of the primary purposes of nearly every medical intervention [1]. One of the most 
common health ailments, which has even been deemed “the nemesis of medicine” [2],  is low back pain 
(LBP). The lower back, as defined by a National Institute of Health Research Consortium, refers to “the 
space between the lower posterior margin of the rib cage and the horizontal gluteal fold” [3]. 

1.1.1. Prevalence and Severity 
A plethora of studies have investigated the prevalence of LBP in modern society. Andersson and Praemer 
identified LBP as the most common subcategory of musculoskeletal impairments [4, 5]. When quantifying the 
prevalence of LBP, it is important to specify the timeframe of interest because LBP can occur (and potentially 
be resolved) at varying rates. Multiple studies have estimated the point-prevalent (i.e., the population of 
individuals with LBP at any given time). Hoy and colleagues’ literature review reported an estimated LBP 
point prevalence of 11.9% [6], while Walker et al. reported  ranges of LBP point prevalences between 12-33% 
[7]. Ricci and colleagues investigated two-week prevalence of LBP among the U.S. workforce and made an 
estimate of 15.1% [8]. Deyo and colleagues conducted an analysis of a National health Interview Survey and 
estimated the three-month prevalence of LBP in the US to be 26.4% [9]. Multiple studies of diverse 
populations have estimated the lifetime prevalence of LBP at 50-80% [10-12]. Some studies believe that the 
prevalence of LBP is on the rise [13]. One study observed a 25% increase in intervertebral disc disease, a 
152% increase in back pain, and 9% increase in early retirement due to back pain over a 15 year period; with 
an estimated 206% increase in back disorders, 628% increase in arthrosis, and 131% increase in general 
musculoskeletal disorders in the space of 10-15 years [14]. However, it may be that the prevalence of LBP has 
remained relatively constant in recent years, and the apparent rise is due to LBP receiving more attention than 
it has in the past: Skovron found that the sick-listing in Sweden due to LBP increased from 1% to 8% in the 
space of 17 years despite the overall reports of back pain remaining consistent during that time period [15]; 
and Robertson observed that “the use of health services has multiplied, the diagnostics of musculoskeletal 
disorders have improved, and the population is possibly now perceiving pain and other symptoms in a 
different way than before” [14].  Regardless, there is an overwhelming consensus that LBP is already 
prevalent among every society, and the number of individuals suffering from LBP is expected to rise as the 
population ages [6, 16]. 

Not only is LBP prevalent, but it also has the potential to be very severe. It is known to cause functional 
limitations and reduced quality of life [8], and has even been identified as the leading cause of disability 
worldwide [16, 17]. The rate of lower-back surgeries has been on the rise in recent years (even while the rate 
of LBP hospitalizations has decreased) [4, 18]. It is one of the most common reasons for medical 
consultation. Andersson and colleagues estimated that LBP-related cases account for 5.5-7.5% of office visits 
in the UK, and 30 million office visits in the US [4]. 

1.1.2. Economic Burden 
Unsurprisingly, the severity and frequency of LBP have resulted in soaring medical costs during recent 
decades. Nachemson described LBP as “the most expensive ailment from a socio-economic viewpoint ... in 
patients 30-60 years” [19]. In 1996, the direct medical costs of disability in the United States were estimated as 
$260 billion, LBP being a major contributor [20]. About 8% of the insured Swedish population are listed as 
having LBP [4], and 2% of the US workforce is compensated for annually LBP. Parthan estimated that the 
total healthcare costs for treating LBP ranges between $17.7 and 105.4 billion (in 2005 US dollars) [21]. The 
proportion of individuals seeking health care is also on the rise [22], further increasing the overall medical 
costs of LBP. 
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Furthermore, not all economic consequences are direct. A significant portion of the financial burden related 
to LBP is incurred indirectly through productivity losses. Andersson found LBP to be the single largest cause 
of work absence, accounting for 11-19% of sick days taken across multiple countries [4]. Tubach found that 
at the French national electrical and gas company, approximately 4.5% of the blue-collared workers took sick 
leaves of eight days or more due to LBP [23]. Other studies have also affirmed that back pain is one of the 
most common reasons for missing work [24]. Parthan estimated the total indirect cost due to missed work 
days for back pain reasons was $22 billion in 2005 [21]. Webster and Snook estimated that the breakdown of 
the total medical costs associated with LBP in the United States are 16-58% direct medical costs, 33-83% 
indemnity payments, and 0.1-19.9% other (varying significantly between state) [25]. 

These costs are not distributed evenly across patients. Webster and Snook also found that most of the 
economic resources (95%) were being directed towards treating a minority of cases (25% of cases) [25]. 
Rossignol and colleagues found that 6.7% of individuals who took work-leave due to LBP were still absent 
after 6 months, and these individuals accounted for 76% of the total LBP compensation [26]. Frymoyer and 
Cats-Baril estimated that of the $50-100 billion direct and indirect costs associated with LBP, 75% of it was a 
result of the temporary or permanent disability of 5% of the population [14, 27].  

1.1.3. Risk Factors 
While no population is exempt from LBP, there are certain demographics, lifestyle, and occupational factors 
that influence its prevalence and severity. A plethora of studies have been conducted to identify risk factors 
associated with LBP [6, 14, 28-38]. While the results vary between studies, some of the most common and 
significant factors are included here. 

Age: It is intuitive to suppose that age is a significant factor when assessing LBP, especially considering the 
known effects of disc degeneration and osteoporosis with time [29]. However, there are varying opinions in 
the literature regarding the relationship between age and LBP. Hoy and colleagues conducted a literature 
review of 165 articles and found  that the prevalence of LBP increased until roughly middle age (40-49 years 
for men and 60-69 years for women), then afterwards declined [6]. Dionne and colleagues also observed this 
“curvilinear” pattern in a review of related studies. However, when only considering studies that evaluated the 
prevalence of severe LBP, they found the relationship between age and LBP prevalence to be either linear or 
nonexistent [12, 29]. Svensson et al. concluded  from an observational study of a population aged 38-64 that 
age was not associated with LBP prevalence, but that LBP was more severe in the older subset of the 
population [12]. Overall, it appears that LBP prevalence increases until middle age. After this time, the 
relationship between LBP and age depends on the context of the study’s definition of LBP and potentially 
additional confounding factors. While the exact relationship between age and LBP is uncertain, the literature 
clearly demonstrates that age is an important consideration when studying LBP.  

Work Loads: A plethora of studies have investigated the relationship between LBP and workloads.  Riihimaki 
identified several “generally accepted” (i.e., detected in multiple studies) LBP risk factors relating to 
workloads (e.g., heavy physical work, heavy or frequent lifting, prolonged sitting, trunk rotating, 
pushing/pulling, vibration etc.) [2]. Frymoyer similarly found that “the complaint of medically reported LBP 
was significantly related to occupational factors such as truck driving (p<0.001), lifting, carrying, pulling, 
pushing, and twisting (p<0.001 for all variables) as well as nondriving vibrational exposure (p<0.001).” [30]. 
Multiple studies have identified blue-collar workers as being at a higher risk or musculoskeletal disorders than 
white-collar workers [31, 32]. Schneider and colleagues evaluated different risk factors in terms of odds ratios. 
Odds ratio is the probability that an outcome occurs given a particular exposure, compared to the probability 
in the absence of said exposure [39]. The odds ratio of developing LBP for individuals who were exposed to 
repetitive carrying, lifting, and holding heavy loads was 1.74 compared to those who were not subject to these 
conditions [33]. Several works have identified long-term exposure to vibrations – usually in the context of 
driving – as a risk factor for back ailments [15, 30]. Most of these workload-related injuries occur during 
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sudden, infrequent tasks. However, it should be noted that workloads applied in a controlled manner (i.e., 
loads that are tailored to the individual and are gradually increased over time, such as in weightlifting) are 
associated with positive effects on spinal health [2]. 

Sex: There are mixed opinions regarding whether sex is a factor in the prevalence of LBP. Scheider and 
colleagues found that the seven-day LBP prevalence was 39.9% for women but only 31.8% for men, and that 
women were still at a 25% higher risk of experiencing LBP after adjusting for other known risk factors [33]. 
In 2012, Hoy and colleagues found the point prevalence and monthly prevalence of LBP was statistically 
higher for women for all age groups (p<0.001). The study postulated that this difference may be attributed to 
various biophysiological (such as osteoporosis, menstruation, pregnancy), and / or sociopsychological factors 
(social influences on sex differences and somatization) [6]. Frymore et al. also found that the average number 
of pregnancies was higher for women who experienced LBP (2.6) than those without (1.6) [30]. However, 
other studies find no statistically significant differences were observed in the annual or lifetime prevalence 
comparisons of LBP between men and women [6]. Still others studies report observing a higher LBP 
prevalence among men [17, 40, 41], and that women in general exhibit fewer known risk factors associated 
with LBP than men [33]. Riihimaki identified sex as a plausible factor in LBP, but also acknowledged that it 
was not generally accepted due to conflicting findings [2]. The heterogeneity in study populations and 
contradicting literature make it difficult to determine whether sex is a relevant LBP factor or not. While this 
work will not attempt to determine whether sex plays a role in the prevalence and / or severity of LBP, it will 
consider it as a possible direct or mediating factor. 

Smoking: There is an overwhelming consensus that smoking is associated with LBP [30, 33, 37], though the 
direct cause-and-effect relationship is unknown. One hypothesis is that smoking is often used as a coping 
mechanism and was therefore a conflating factor with emotional tension [30, 33]. However, there is no 
indication to date that smokers experience greater psychological distress than their non-smoking counterparts 
[30]. Other explanations are more physiological (and causative [37]) in nature, proposing that smoking 
induces chronic cough and indirectly induces prolonged mechanical stresses on the back [30], and / or 
vasoconstriction (impaired blood supply) to intervertebral discs [30, 33]. 

Alcohol: While alcohol has been a widely proposed risk factor of LBP, there are insufficient findings in the 
literature to fully substantiate it. Riihimaki observed that while some studies have identified alcohol 
consumption as a  risk factor for LBP, there was insufficient consensus among the literature to draw 
conclusions [2]. Leboeuf-Yde conducted a literature review of nine studies and concluded that “alcohol 
consumption does not seem to be associated with low-back pain, but well-designed specific alcohol/low-back 
pain-centered studies are lacking” [36]. Lv and colleagues conducted a Mendelian Randomization study and 
found a higher-than-average odds ratio between alcohol consumption and LBP, but the results were not 
statistically significant [37]. 

BMI: It has long been observed that “an unfavorable lifestyle also correlates positively with risk of back pain” 
and that “people with back pain are more likely to be overweight” [33]. Shiri and colleagues reported in a 
literature review that there was a higher prevalence of LBP among individuals who were overweight and 
obese, even when accounting for potential confounding factors. Furthermore, these patients had the 
strongest association of seeking medical treatment for LBP [38]. Heunch and colleagues also found that a 
BMI of 30 or more was associated with increased risk of LBP occurrence and recurrence [42]. There are 
several possibilities why this may be the case. Individuals with high BMI likely experience higher spinal loads, 
increasing the risk of disc degeneration and Modic changes in vertebral endplates. However, Heunch et al. 
also noted that that increased fat mass, not lean mass, was associated with LBP and disability, indicating that 
high BMI does more than increase the mechanical load on the spine [42]. There is also a plethora of evidence 
that physical activity, which presumably also increases spinal loading, reduces pain [14, 43]. Other possibilities 
are that higher BMI has physiological effects – such as increased production of cytokines in adipose tissue 
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that activates proinflammatory pathways, or modifications in serum lip levels that inhibit the nutrition of disc 
cells – that result in LBP [42]. Overall, there is overwhelming consensus that a high BMI is a risk factor of 
LBP, even accounting for conflating factors, suggesting that a causative relationship exists. 

Socioeconomics: Socioeconomics is one of the more complex but consistently identified factors that 
influence long-term LBP and disability [4]. When evaluating the prevalence of LBP between different 
countries, Hoy and colleagues found that the prevalence of LBP was greater in countries with high-income 
economics [6]. However, within a given society, multiple studies have identified that higher socioeconomic 
classes (i.e., advanced levels of education, white-collar workers, higher job rank) have a lower prevalence of 
LBP [9, 33]. Work experience has also been identified as a factor in LBP in multiple studies [2]. 

Psychosocial Wellbeing: Many studies have investigated the relationship between social and psychological 
wellbeing with LBP. Schneider observed that patients with LBP have weaker social networks, and that 
individuals who live alone are less likely to report LBP [33]. Low social support in the workplace has been 
identified as a factor for developing LBP [43]. Multiple studies have hypothesized that higher levels of fear-
avoidance are associated with decreases in functional performance [43, 44]. This has been supported by a 
randomized study, in which some patients receiving therapy for LBP were forewarned of potential pain 
during the treatment. Individuals who received this warning exhibited decreased performance and reported 
higher pain than their counterparts in the trial [45]. However, not all studies have reported such strong 
associations between psychosocial wellbeing and LBP. While several studies report statistically significant 
correlations between psychological factors and function, the correlation strengths tend to be relatively weak 
and potentially diluted by conflating biological and social factors [34, 35]. Other studies report no association 
between major psychopathology and the development of long-term (i.e., chronic) LBP. Overall, it is clear that 
psychological wellbeing is highly intertwined with LBP, thought whether it has causative effects is less certain 
[43].  

1.1.4. Study Factors 
The diagnosis of LBP is a broad topic that encompasses many specific etiologies, which often makes it 
difficult to analyze because the context from which it is defined and investigated varies so much. For 
example, studies based on clinical data are likely to focus on individuals who sought medical treatment due to 
LBP, data from an insurance company is primarily concerned with individuals who applied for financial 
assistance. Some studies that recruited only patients with “well-documented” cases of LBP to provide a clear 
distinction between cases and controls [46]. The emphasis of study designs, the heterogeneity between subject 
populations, and publication bias all have the potential to influence study results; hence caution should be 
taken when drawing final conclusions [6]. 

Furthermore, the patient’s perception of LBP is believed to have evolved over time. As Robertson noted, 
there exists a direct link between rising LBP diagnoses with “the multiplication of health services, the 
improvement of diagnostics, [and] people perceiving pain in a different way” [14]. 

1.2. Introduction to Chronic Low Back Pain 
When the source of LBP is readily identifiable, it is classified as being acute or pathology specific. However, 
up to 95% of LBP is classified as non-specific, meaning that there is no identifiable pathology associated with 
its cause [47, 48]. A particular type of non-specific LBP that causes patients, healthcare providers, and society 
in general much distress is chronic low-back pain (CLBP).  A National Institute of Health Pain Consortium 
Research Task Force defined CLBP as “a back pain problem that has persisted at least three months and has 
resulted in pain on at least half the days in the past six months” [3]. This threshold of 3 months or 12 weeks 
has been widely used in past studies [22, 49-51], and is generally regarded as beyond the window of 
anticipated recovery. While most cases of acute LBP are resolved within that expected timeframe, there is a 
fraction that continues to have recurrent pain months and even years later that interfere with work and other 
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activities [4, 8]. The general prevalence of CLBP is estimated to be between 4-14% [21], and is most prevalent 
for individuals ages 35-65 [52]. 

Chronic LBP also entails a severe economic burden on society. Most of the economic resources associated 
with LBP are consumed by a minority of cases, usually in the form of long-term treatment and compensation 
benefits [14, 25-27]. Becker observed that patients suffering from CLBP on average have twice the direct and 
indirect costs of patients suffering from other types of LBP [53]. Hong and colleagues reported that the total 
healthcare costs for patients with CLBP were double that of matched controls [54]. 

There is disagreement as to what factors contribute the most to long-risk work absences. Rossingnol 
attributed primarily physiological issues (namely the location of the injury and the age of the patient) to be 
most predictive of long-term absences [26], while Robertson found socioeconomic influences to be more 
determinative of the results (e.g., job placement problems, psychiatric conditions, financial disincentive to 
work, and faulty medical management) [14]. 

In addition to the economic consequences to individuals and societies, CLBP can have serious implications to 
an individual’s emotional health. Rainville and colleagues found “increased prevalence of depression, anxiety, 
substance abuse/dependence, somatization and personality disorders has been documented in patients with 
CLBP (30-65%) compared with the general population (5-17%)” [43]. Polatin also found higher rates of 
substance abuse, major depression, and anxiety order among a CLBP cohort than the general population [55]. 

1.3. LBP Treatments 
Given the prevalence and multiple consequences of CLBP, it comes as no surprise that it has been the topic 
of significant research and medical interventions. A wide spectrum of potential diagnostic tests and 
treatments are available for patients. Studies have attempted to identify which treatment paradigm is superior 
to others, but without success. Only a handful of specific treatments have shown statistically significant 
benefits compared to others – and even those may lack clinical significance, long-term efficacy, and sufficient 
validation for general implementation [3, 14, 56]. It is likely that each treatment is best suited to a specific 
sub-set of patients. [57]. Unfortunately, a variety of sources (e.g., patient advocacy, professional concerns, 
increased perception to disability, and unrealistic marketing-driven expectations) often result in unrealistic 
expectations and medical interventions being applied beyond their scope of scientifically validated 
applications [14, 58]. It is therefore imperative to understand the aspects of different diagnostic methods and 
treatment paradigms, including their strengths and limitations. A review of the more commonly used 
diagnostic and intervention methods is described below. 

1.3.1. Current Diagnostic and Intervention Methods 
Imaging Techniques (MRI, Ct, X-Rays, etc.) 

One of the most commonly used diagnostic techniques is imaging of the spine and surrounding tissue.  
Because it can assist clinicians identify structural irregularities in the spine it can help find causes for acute 
LBP. However, it is less efficacious in identifying the cause of CLBP. Past studies have found “no clear 
association between pain and identifiable pathology of the spine” in cases of CLBP [3]. Even if there is 
relevant information garnered from the image, it frequently only confirms what the clinician already suspected 
rather than providing new information [19]. Furthermore, not all structural irregularities identified in spinal 
images elicit pain. Positive findings of structural deformities are also common in individuals who do not 
experience LBP [2, 14, 58]. Deyo and colleagues found that using static images to inform treatment decisions 
for patients with CLBP did not improve outcomes [58]. Consequently, it is difficult to deduce optimal 
treatment paradigms based solely on static images of the spine [48, 59]. 
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Opioids 

Opioid use is an extremely common method of treating the symptoms associated with CLBP. Deyo and 
colleagues reported that the use of opioids increased by 108% from 1997 to 2004, even while inflation-
adjusted prices increased by 431% during that same period [58]. However, the current consensus on the 
efficacy of opioids is under scrutiny. Deshpande reported that “more high quality studies are needed to 
address the benefits and risks of long‐term opioid use in CLBP, their relative effectiveness compared with 
other treatments and to better understand which patients may be most suitable for this type of intervention” 
[60]. The benefits of opioids over nonopioid analgesics only slight, and individuals who rely on opioids for 
long-term management of CLBP experience persistent pain and a low quality of life [58, 61]. There are also 
several potential adverse side-effects related to opioid use, including hyperalgesia, hypogonadism, 
constipation, nausea, sedation, increased risk of falls and fractures, depression, sexual dysfunction, and 
potentially (and ironically) increased sensitivity to pain  [58, 62]. Furthermore, the rate of deaths related to 
opioid overdoses has increased proportionally to the rate of opioid prescriptions. Overall, it is recommended 
that opioids be prescribed judiciously to individuals experiencing severe pain that is unlikely to be controlled 
by other methods and should be transitioned to other interventions when possible [58]. 

 

Spinal Injections 

Deyo and colleagues report a 271% increase in spinal injections over seven years and a 629% increase in fees 
and charges during the same approximate period. However, despite the dramatic increase in spinal injection 
applications and costs, there appear to be no physiological improvements from spinal injections: multiple 
randomized experiments show that spinal injections do not decrease the rate of subsequent surgery. The only 
benefit is temporary pain relief, and only for axial pain [58]. 

 

Surgery 

Studies highly encourage careful patient selection before opting to perform surgery. Spinal surgery is an 
aggressive form of treatment, but it does not necessarily produce better outcome for patients [58]. Keller and 
colleagues observed that patients in areas with low surgery rates had better treatment outcomes than patients 
from areas with high surgery rates. There were statistically significant differences observed in the Roland 
disability score, quality of life, and satisfaction [63]. Andersson observed that rate of LBP-related surgeries 
significantly differed between countries, and concluded the rate of LBP-related surgeries is more dependent 
on “cultural differences, differences in practice patterns, and the availability of health-care providers” than 
simply LBP prevalence [4]. 

This does not neglect the need for surgical intervention in appropriate cases. When there is a clear and severe 
source of pain – such as a nerve root compression – the rate of surgery success increases. However, the 
likelihood of a positive outcome decreases if there are less definite factors, such as a bulging disk [64]. 
Webster conducted a controlled study on 280 patients who sought treatment for LBP caused by disc 
herniation. The group was divided into three classes – those who clearly required immediate surgical 
intervention (67 patients), those who exhibited uncertain need for surgical treatment and were assigned a 
surgical intervention (126), and a third group that was assigned conservative treatment (87 – 17 of whom 
were operated on after conservative treatment proved insufficient). Surgery proved to be more effective after 
1 year, but no statistically significant difference was observed between the groups after four years [65]. 
Overall, due to the options of less-dramatic alternatives and its highly invasive nature, surgery is considered 
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the last resort for treating LBP. However, in cases where it is necessary, surgery should not be significantly 
postponed because delaying needed surgery beyond 12 weeks could compromise the outcome [14]. 

 

Exercise 

One intervention with a very low associated risk is physical activity. While it is still under investigation to 
determine the causal effects of exercise that assist patients, there is a plethora of evidence that physical 
activity is associated with better lifestyles and improved health [4, 14, 20, 43, 66-69]. Researchers propose four 
possible explanations as to how physical activity assists patients: 

1. Reduces pain: Multiple studies have found exercises treatments to reduce back pain intensities, 
ranging from 10-50% efficacy [43]. Robertson suggested that the general effects of exercise include 
improved sleep, decreased stress, and improved attitude – offering patients an alternative method of 
mitigating pain other than relying on medication [14]. 

2. Improves physical function and general health: Multiple studies have shown that stretching improves 
trunk flexibility for patients with CLBP (when long-term compliance with a therapeutic is 
maintained) [43], while prolonged rest and recovery inhibit healing [14]. Exercise has the capacity to 
enhance spinal stabilization, increase muscle strength, restore posture, and improve neuromuscular 
control [68, 69]. 

3. Facilitates the process of overcoming fears: Rainville et al. observed that patients’ attitude and beliefs 
highly affect patient outcomes, and that with repeated exposures to stresses, the human body and 
mind adapt through neurological desensitization, thereby reducing the pain experienced by patients 
with (c)LBP [43]. Fordyce et al. also recommended prescribing exercise in a quota-based manner (i.e., 
not subject to modification in response to pain) as part of a “fear-desensitizing process” [69]. 

4. Prevents the occurrence / recurrence of LBP: Multiple studies have observed that the prevalence of 
LBP is lower among healthier populations or postulated that exercise reduce the risk of LBP 
occurrence / recurrence [4, 14, 20, 43]. 

 

Despite its multiple benefits and low risks, exercise alone is not a complete solution for patients suffering 
from CLBP. Not all patients respond to conservative treatment, and even for those it assists it is not a 
complete solution. Therefore, “the role of exercise co-interventions must not be overlooked” [70].  

1.3.2. Need for a Precision Medicine Technique 
Despite the wide variety of potential treatment options, recent advancements in medical technology, and 
shocking increases in medical-related expenses (particularly in developed countries), CLBP is a growing issue. 
More individuals are reporting having CLBP and musculoskeletal disability. There are also significant 
increases in the resources being dedicated towards CLBP. Beneficiaries claiming Social Security Disability 
Insurance increased from 20.6% to 25.4% over the course of eight years, as the rate of disability for other 
conditions (e.g., circulatory, repository) has decreased. “Recent studies document a 629% increase in 
Medicare expenditures for epidural steroid injections; a 423% increase in expenditures for opioids for back 
pain; a 307% increase in the number of lumbar magnetic resonance images among Medicare beneficiaries; 
and a 220% increase in spinal fusion surgery rates” [58]. Other types of interventions - surgical, injections, 
pharmacologic, and nonpharmacologic alike – have also been applied at increasing rates. Regardless, the 
prevalence of CLBP symptoms and office visits attributed to LBP remain consistently high [3, 9, 14]. 
Unfortunately, the increased financial resources dedicated to treating CLBP is an overutilization of medical 
care and has led to increases costs rather than improved outcomes [14, 58].  

This alarming trend indicates that current interventions are not effective enough. There are two potential 
conclusions that could be taken from this. 
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1. It could be that there simply does not exist a satisfactory cure for CLBP. Efforts should be dedicated 
towards prevention and developing a “chronic care model” to manage symptoms, educate in self-
care, provide social support, and facilitate a return to work. Realistic expectations need to be set for 
what can be accomplished for patients rather than marketing false rhetoric of permanent and 
complete cures [58]. 

2. Rather than persisting in the current status quo, the basic science that drives CLBP should be 
investigated. Genetic, central nervous processing, environment, and psychological factors need to be 
reevaluated and further understood. New intervention techniques should be developed and 
rigorously tested [14, 58]. Further research should be conducted to develop a precision medicine 
technique that connects a patient to their optimal treatment paradigms [57], improving treatment 
outcomes, expediting recovery, and reducing financial costs [48]. 

 

There is likely an element of truth to both hypotheses: realistic expectations should be set for patients with 
CLBP, and there are also possible means of improving the efficacy of medical interventions. The solution to 
improving assistance for patients must be very comprehensive. It must include the promotion of healthy 
habits and prevention measures, it needs to incorporate the psychosocial components of CLBP as well as the 
physiological debilitation, it needs address the short-term need for reprieve and the long-term need for 
recovery, and it needs to be tailored according to each patient’s individual needs [57, 71]. Emphasis should be 
placed on restoring patients to functionality and work [58]. The motivation that inspires this work is to 
develop a potential precision medicine technique: motion-based phenotyping. 

1.4. Motion-Based Phenotyping – a Promising Solution 
Phenotyping is the process of classifying specimens according to their manifested, observable characteristics. 
Biomechanics is “a rich target for phenotyping [because it] represents the common final output through 
which all biopsychosocial constructs of back pain must pass” [44]. This is especially true of spinal mechanics 
due to its central role in performing physical activities. Patients intrinsically recognize motions and postures 
that trigger discomfort and compensate for degenerative spines with abnormal motions. “All biopsychosocial 
changes associated with LBP have the potential to modify how an individual tolerates, generates, balances, 
and responds to tissue loading, which in turn impacts how an individual with LBP executes a movement” 
[44]. 

Our primary objective in this application is to identify phenotypes of human spinal motion that are both 
characteristic of healthy spines and indicative of the presence of CLBP. It is our hypothesis that if we can 
identify an individual’s spinal-motion phenotype and convey that information to clinicians, that clinicians 
could then use that information to select (and potentially develop) the most relevant treatment paradigm to 
assist that patient. 

1.4.1. Preliminary Evidence for Phenotyping 
This phenotyping approach is highly analogous to other studies that have analyzed the relationship between 
gait and dysfunctions such as Parkinson’s disease [72], dementia [73], Alzheimer’s Disease [74], cerebral palsy 
[75], vascular burden [76], concussions [77], and musculoskeletal injuries [78]. Each of these ailments result in 
statistically significant alterations in gait mechanics, thereby making gait analysis an important tool for 
assessing patients’ conditions.  

There is also substantial evidence that supports spinal-motion phenotyping. It has long been recognized that 
LBP alters motion. A plethora of studies have found differences in the motion between persons with and 
without (C)LBP [44]. Their findings report that individuals with LBP exhibited lower range of motions [79-
81], smaller velocities [79, 81], weaker muscles [43], worse balance and proprioceptive sense [82], different 
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gait characteristics [83], and other functional tasks [83]. These differences in motion have been used to 
classify individuals as either having LBP or being LBP asymptomatic with as high as 94% accuracy [46]. 

Distinct pathologies of low back pain have been linked to specific changes in movement patterns [84]. 
Individuals with spinal instability are easily fatigued [85]. Cumulative microtrauma on the zygapophyseal joints 
cause individuals to avoid either excessive extension [86] or lateral bending to the afflicted side [87]. 
Proteoglycan decrease in the intervertebral discs result in reduced range of motion and nonspecific pain 
exacerbated pain by forward flexion [88-90]. Individuals with central stenosis in the vertebral and 
intervertebral foramina spend more time in flexion and avoid extension [91]. Patients with lateral stenosis in 
the vertebral and intervertebral foramina experience more pain from standing, walking, extension, side-
bending, and rotation. [92]. It has been postulated that medical interventions may be enhanced by targeting 
these motion deficiencies [93]. This hypothesis has been supported by Barilay and colleagues, who report that 
following treatment, patients with LBP reported lower pain scores and exhibited improvements in motion 
characteristics (i.e., their motion was more similar that of a LBP asymptomatic cohort) [83]. 

1.4.2. Challenges to Phenotyping 
Despite the promising indications and the enormous potential for motion-based phenotyping, there is yet to 
be precision medicine algorithms to guide treatment prescriptions for patients with CLBP in clinical practice 
[3, 57]. There are still significant challenges that need to be addressed before implementing a precision 
medicine phenotyping approach in a clinical setting, namely the following: (1) patients with CLBP represent a 
wide and heterogenous group, making it difficult to develop a generalized solution for the entire population; 
(2) CLBP is a multifactorial issue that involves many biopsychosocial aspects; and (3) the lack of precise, 
economic, and user-friendly motion-monitoring device [94]. 

 

Heterogenous Spectrum of CLBP 

Low back pain is a broad term that encompasses a wide spectrum of ailments and a broad scope of severities. 
Chronic low back pain is an even more obscure diagnosis that heavily relies on self-reports rather than 
standardized medical tools [4, 21]. As such, each study must make judgement calls regarding which 
individuals represent the population suffering from CLBP. Some studies only investigate patients with well-
documented LBP [46]. Other studies explicitly ignore severity or other qualifiers for being too restrictive [3, 
17]. Most studies only investigate relatively small groups (e.g., 10-30 participants per group) [44]. All these 
effects make it difficult to make conclusions general to the entire population of patients with CLBP [6, 44]. 

Furthermore, it has been suggested that subgroups of patients suffering from LBP “exhibit nearly opposing 
biomechanical performance, which, if not accounted for, could diminish the ability to discriminate between 
those with LBP and without” [44]. 

 

Multifactorial Influences 

Chronic LBP is described as nonspecific and idiopathic, meaning that it cannot be attributed to a 
recognizable pathology [3, 22]. Deyo and colleagues hypothesized that CLBP may be the effect of multiple 
biologic and behavior etiologies. Even if a specific pathoanatomic condition existed and could be identified, 
specific interventions for that condition may fail because it only accounts for one of the many underlying root 
causes [3]. 

In addition to the many potential physiological ailments that could result in CLBP, there is believed to be 
many psychological, genetic, socioeconomic, cognitive, and other factors involved as well [43, 48]. Several 
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studies have suggested that CLBP is “more socioeconomic than something that can be cured with knives, 
physiotherapy, and drugs” [14]. There has also been a significant increase in diagnostic health services in 
recent years, perhaps causing the population to perceive pain differently than before. This shift in perception 
makes it difficult to determine whether biological morbidity is actually on the rise or whether there is merely a 
heighted awareness of pain and symptoms that have always existed [95]. 

There is also evidence that LBP may be initiated as acute injuries, but then evolve into highly complex 
conditions involving functional changes in the central nervous system [3]. Christe and colleagues observed 
that individual who suffer from CLBP often demonstrate abnormal motion even when a specific task does 
not elicit pain, “implying a reorganization of motor tasks planning” [93]. Thus, dysfunctions that begin as 
recognizable pathologies morph into complex conditions that have far-reaching effects on the body’s nervous 
system and anatomical structure. 

 

Need for objective Motion-Monitoring Techniques 

The third major obstacle that is inhibiting the development of a precision medicine algorithm for treating 
patients with CLBP is the lack of objective, quantitative assessment techniques. Many clinicians will 
qualitatively and visually assess a patient’s condition and performance of different tasks, and then consider 
those assessments when prescribing a treatment paradigm for patients. Past studies have found this is only 
somewhat effective, and only when the clinicians are extensively trained to use a classification system [96]. 
Clinical inexperience and misdiagnosis can lead to delayed recovery and suboptimal use of medical resources 
[44]. Rather than rely on subjective observations, another possibility is to incorporate an objective motion-
monitoring device. This could lead to improved efficacy in selecting the optimally suited treatments for 
patients according to their individual cases and symptoms. 

1.4.3. Plan to Effectively Identify Phenotypes 
In 2019, the National Institute of Health (NIH) launched the Helping to End Addiction Long-term (HEAL) 
initiative to combat the rising rates of opioid related deaths. Part of that initiative was the Back Pain 
Consortium (BACPAC) Research Program to reduce opioid dependence for managing CLBP symptoms. 
BACPAC is a multi-stage research program that involves multiple universities to better understand the 
science of CLBP, why patients respond differently to different interventions, and develop novel treatments 
and methods for linking patients to their optimal treatment paradigms. The overarching goal is to develop a 
precision medicine approach that can be applied in clinical settings and everyday activities [57]. This initiative 
is well-equipped to overcome the current challenges listed above in developing a precision medicine approach 
to CLBP. 

First, multiple cohorts - comprised both of individuals who do and do not experience CLBP symptoms – will 
be recruited for the study at various research sites across the country. This will provide a broad and 
encompassing representation of the population who suffer from CLBP and their CLBP asymptomatic 
counterparts. The heterogeneous range of patients who suffer from CLBP and asymptomatic individuals who 
may be at risk of developing CLBP will be represented. 

Second, data is thoroughly collected from study participants to account for the different biological, 
psychological, socioeconomic, physical characteristics, and demographics that have been identified to 
influence CLBP prevalence and severity. The incorporation of these features will enable researchers to better 
account for the multifactorial aspects of CLBP, which has the potential to reveal additional biologic-
behavioral interfaces and improve our understanding and treatment of CLBP [3, 96]. 
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Third, multiple BACPAC Tech Sites are working towards developing and validating innovative tools and 
technologies to better assess individuals’ conditions. Multiple motion-monitoring technologies are being 
developed during this initiative [44]. 

1.5. Understanding Metrics of Wellbeing 
A key step of being able to assist patients who suffer from CLBP is understanding patient wellbeing. The 
effects of CLBP and other ailments are often quantified using patient-reported outcomes (PROs). PROs are 
being implemented by healthcare providers with increasing frequency to inform clinical decisions [97]. There 
are PROs that quantify pain intensity, disability, anxiety, depression, physical activity, and more [97-103]. 
Although PROs are prone to biases due to self-assessment and unique individual perceptions, individual may 
therefore be a more important metric than other standards [104]. 

Substantial research has been conducted that evaluates the average PROs among patients suffering from 
different ailments [105-107], analyzes the change of PROs prior to and following intervention [108-114], 
identifies underlying factors to reduce the dimensionality of PROs [115, 116], and quantifies the correlation 
between different PROs among symptomatic patients [117-123]. However, to the authors’ knowledge, there 
has yet to be a study that evaluates the moderating effects on the relationships between PROs. While the 
correlation between related PROs (such as disability and physical impairment) may naturally be assumed to be 
strong, confounding biopsychosocial factors may obscure the relationship when assessing patients with 
CLBP, and merit further investigation [124].  

1.6. Motion-Capture Systems 
An essential and major component of the BAPAC initiative is to monitor spinal motion. Spinal kinematics 
will be then used to inform research and clinical decisions. This approach has shown tremendous potential in 
past studies [43, 57]. An accurate and user-friendly motion-capture device is therefore needed for this 
research. 

The highest standard of motion capture may be optical cameras with reflective markers. However, although 
they provide a high level of accuracy, they require significant cost, time, and training. Furthermore, motion-
capture markers can only be implemented in a highly controlled environment, limiting the versatility and 
potential applications of this technology. There is a plethora of emerging technologies aiming to fill the need 
for adaptable and economic motion-capture devices [44]. One such device – the high deflection strain gauge 
(HDSG) – provides a particularly intriguing and innovative solution which merits further addition. 

1.6.1. Background on Strain Gauges 
Traditional strain gauges, though extremely tested and implemented in a variety of settings, are insufficient to 
meet the needs of biomechanical applications. Conventional strain gauges can only endure approximately 5% 
strain, after which the sensors become permanently deformed or fail altogether [125]. Hence the need for a 
highly elastic (up to 100% strain), robust (i.e., holds up over time and repeated applications), and 
biocompatible gauges. In addition to health and performance monitoring, it has been postulated that these 
sensors would have additional applications in robotics and entertainment technology [126]. Currently, there 
are two general classes of HDSG: capacitive and resistive. 

• Capacitive strain gauges: Capacitive-based strain gauges operate on the principle of Poison’s ratio (as 
they are stretched, the conductive cross-sectional area diminishes). This type of strain gauge exhibits 
extremely stretchable strain properties and linear gauge factor analyses. However, there are major 
drawbacks that limit its efficacy in biomechanical applications, including “low gauge factors, 
unpredictable response due to unstable overlaps of the capacitive area, and capacitive interaction 
with the human body” [126]. 
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• Piezoresistive strain gauges: In contrast to the capacitive strain gauge, piezoresistive strain gauges are 
generally comprised of a highly elastic base matrix (e.g., silicone), mixed with conductive 
nanoparticles [127]. Some of the drawbacks to piezoresistive strain gauges include creep, hysteresis, 
stress relaxation, temperature-influenced properties, and nonlinear gauge factors [125, 128-130]. 
However, they also demonstrate highly flexible material properties and a much higher gauge factor 
than the capacitive strain gauges (on the order of 103-104) [125]. They also provide the advantage of a 
relatively easy fabrication [128]. Carbon-based conductive materials, such as carbon nanotubes “have 
been extensively used as conductive fillers in wearable sensors because of their excellent electrical 
conductivity, low cost and potential for mass production, high chemical, and thermal stability, 
inherent flexibility, and ease of chemical functionalization” [128]. These are some the key property 
characteristics necessary for biomechanical applications [131]. 

 

Overall, piezoresistive strain gauges have the advantage over capacitive strain gauges. The capacitive 
interactions with the human body make capacitive strain gauges an impractical tool, and the low 
manufacturing costs of piezoresistive strain gauges is ideal for widespread application. Despite the enormous 
potential for piezoresistive strain gauges for their biomechanical and other applications, there are still 
improvements needed for the sensors to achieve their optimal properties and performance. The primary 
challenge is the viscoelasticity of the sensor matrix. Past studies have identify the poor interfacial adhesion 
between the nanoparticles and elastic matrix as the source of the viscoelasticity [126]. The mechanical and 
electrical properties of the sensors are highly intertwined. Hence the electrical signal of the sensors exhibits 
significant hysteresis, signal drift, and other stress-dependent phenomena. The relationship between 
resistance and strain is dependent on how much the sensors have been elongated. Sensors with high tensile 
strength exhibit low hysteresis [128]. It is therefore imperative to understand both the mechanical properties 
and the electrical properties of these sensors to optimize performance. Past studies have used a variety of 
models (both mechanical and electrical) to investigate sensor properties. 

• Material Models: Multiple materials models have been used in the past to describe viscoelastic 
behavior. One of the more commonly used is Burger’s model, which captures the elastic, viscoelastic, 
and viscoplastic responses of a material through a series of springs and dampers (see Figure 1.1a). 
However, it tends to oversimplify the response of viscoelastic materials and is unable to use a 
consistent set of parameters to model materials under different scenarios. The Konotou-Zacharatos 
(KZ) model, uses a similar approach but accounts for nonlinearities in model parameters (see Figure 
1.1b). This has been proven to be more accurate for modeling nonlinear viscoelastic materials, such 
as polycaprolactone [132].  

 

      

(a)                                            (b) 

Figure 1.1 Depiction of (a) Burger's viscoelastic model and (b) the KZ model that accounts for nonlinear viscoelastic 
behavior. The Burger’s model captures fundamental viscoelastic behavior (𝐸𝐸2, 𝜂𝜂2), viscoplastic behavior (𝜂𝜂1), and elastic 
behavior (𝐸𝐸1). The KZ also captures these same aspects, but accounts for nonlinearities and time-dependencies in model 
parameters. 
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• Electrical Models: There have been multiple studies dedicated to developing a model that relates 
electrical signal to the load (either in terms of strain or stress) of piezoresistive strain gauges. These 
sensors operate on the principles of percolation theory and quantum tunneling. On a microscale, the 
silicon between conductive nanoparticles acts as a barrier to quantum tunneling.  The quantum 
resistivity of the barriers is a function of the filler material properties and the distance between 
nanoparticles.  As the sensor is stretched, the nanoparticles draw closer together, thereby decreasing 
the net sensor resistance [133].  The overall effect is that the sensors are piezoresistive in nature. 
Clayton’s equation [133] describes quantum resistivity (𝜌𝜌) a function of Planck’s constant (ℎ), 
electron charge (𝑒𝑒), electron mass (𝑚𝑚𝑒𝑒), barrier height (𝜆𝜆), and junction gap distance (𝑠𝑠) as depicted 
in Equation 1.1. 

 𝜌𝜌(𝑠𝑠) =
ℎ2

𝑒𝑒2�2𝑚𝑚𝑒𝑒𝜆𝜆
𝑒𝑒4𝜋𝜋

�2𝑚𝑚𝑒𝑒𝜆𝜆
ℎ 𝑠𝑠 

 
1.1 

Multiple studies observed an exponential decay, or bi-exponential decay, in resistance following an 
incremental increase / decrease in stress applied to the sensor (similar to the stress response of the material as 
predicted by the Burger’s model) [128, 134-136]. Some of these models are explicitly restricted to modeling 
low-to-intermediate strains [128]. Other studies relied on empirical evidence to investigate the relationship 
between strain and resistance but fail to differentiate between the transient viscoelastic resistance and the 
steady-state quasistatic resistance [127, 137]. A model that accounts for both the quasistatic and dynamic 
responses of these sensors (such as the one described in Chapter 2) would be essential for implementing 
HDSG as biomechanical sensors and other desired applications. 

1.6.2. BYU Strain Gauges 
At Brigham Young University, such strain gauges have been developed. They are comprised of an Ecoflex 
00-30 silicone matrix embedded with nickel coated carbon fibers and nickel nanostrands. The concentration 
of each material (by weight) for the sensor recipe is 64% silicone, 30% NCCFs, 5% NINs, and 1% surfactant. 
The nanoparticles and surfactants are mixed in the silicone matrix, then extruded into molds. The sensors are 
cured at 88°C under a vacuum pressure of 650 mmHG for 135 minutes, and then at 192°C for an additional 
30 minutes. 

These sensors have already been applied to several biomechanical applications, such as estimating knee 
kinematics [138], calculating ground reaction forces [139], measuring ligament strain [140], estimating range of 
joint motion [141], tracking pulse [142], and monitoring fetal movements [143]. The next application of using 
an array of these HDSG to identify spinal-motion phenotypes among patients with CLBP will likely undergo 
higher and repeated strains than in previous applications. Therefore, the need for a model that interprets 
electrical resistance to strain which accounts for the viscoelasticity is needed, as well as an optimized sensor to 
mitigate undesirable performance traits. 

1.7. Dissertation Outline 
1.7.1. Summary of Accomplishments 
This research endeavor has a three-fold purpose. The first is to characterize and improve the performance of 
the HDSG described above in preparation to monitor spinal motion. The second is to understand how 
different components of wellbeing are related to each other and what the distinct components of wellbeing 
are. The third is to identify phenotypes of spinal motion, using the spinal kinematics collected using the 
HDSG described above, which have the potential to be clinically significant and inform a precision medicine 
technique for assisting patients who suffer from CLBP. The research conducted regarding these objectives is 
described in the subsequent chapters according to the following. 
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Chapter 2 describes the model that was developed to interpret strain as a function of resistance and time. This 
is the first model that the author knows of which accounts for the quasi-static and dynamic effects electrical 
responses due to sensor viscoelasticity. This work was published in 2022 in the Sensors academic journal [144]. 

Chapter 3 presents the development of a multilayered architecture to mitigate sensor viscoelasticity, 
improving the sensor performance under much higher strains. This work was presented at the 2023 
Composites and Advanced Materials Expo Student Symposium and is currently being prepared for 
publication. 

Chapter 4 describes three analyses that were conducted to better understand the relationship between CLBP 
and PROs. The first was to compare the average PROs of subjects with CLBP (i.e., cases) with the average 
PROs of subjects who do not experience CLBP (i.e., cases). The second was to evaluate the relationship 
between different PROs using linear regressions, accounting for the presence of CLBP as a potential 
moderating factor. The third was to identify the distinct components of wellbeing using an exploratory factor 
analysis on the PROs to identify latent factors (i.e., underlying dimensions which summarize the observed 
features). This work is currently being prepared to be submitted to The North American Spine Society Journal 
(“'NASSJ”). 

Chapter 5 presents the protocol for the BACPAC Research Program to identify phenotypes of spinal motion 
that will be used in future works. This includes the developing and validation of the SPInal Nanosensor 
Environment (SPINE Sense System) used to monitor spinal kinematics, the subject testing protocol, and the 
proposed data analysis methods that were developed to accomplish this task. This work was published in the 
2023 Pain Medicine academic journal [145]. 

Chapter 6 presents the results from the protocol analysis described in Chapter 5. This work analyzes the 
relationship between spinal motion and different PROs, a machine learning model that predicts PROs as a 
function of demographics and spinal kinematics, an identification of phenotypes among subjects with and 
without CLBP, and the potential clinical application of phenotypes in treating CLBP. 

1.7.2. Future Work 
The follow-up from the BACPAC study will be the Biomarkers for Evaluating Spine Treatments Trial 
(BEST) program. The BEST study will be a multi-site, multiple assignment randomized trial to evaluate four 
potential interventions: acceptance and commitment therapy, duloxetine, evidence-based exercise and manual 
therapy, and enhanced self-care. Each participant will complete two randomly assigned 12-week treatments 
and periodically assessed [57]. Treatment efficacy will be evaluated by PROs [57] and spinal kinematics to 
reduce inter-clinician variability [44]. It is our hypothesis that these clinical experiments, facilitated by the 
phenotype analysis presented in this work and from other sites, will enable clinicians to select treatment 
paradigms individually tailored according to patient conditions. This in turn will improve treatment efficacy, 
improve the quality of life for the millions of patients suffering from CLBP worldwide, and save millions of 
dollars in medical resources worldwide every year. 
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2.0. Abstract 
High deflection strain gauges show potential as economical and user-friendly sensors for capturing large 
deformations. The interpretation of these sensors is much more complex than it is for conventional strain 
gauges due to the viscoelastic nature of the strain gauges. This research endeavor developed and tested a 
model for interpreting sensor outputs that includes the time-dependent nature of strain gauges. A model that 
captures the effect of quasi-static strains is determined by using a conventional approach of fitting an 
equation to observed data. The dynamic relationship between strain and resistance is incorporated by 
superimposing dynamic components onto the quasi-static model to account for spikes in resistances that 
accompany each change in sensor strain and subsequent exponential decays. It is shown that the model can 
be calibrated for a given sensor by taking two data points at known strains. The resulting sensor-specific 
model was able to interpret strain gauge electrical signal during a cyclical load to predict strain with an average 
mean absolute error (MAE) of 1.4% strain, and to determine the strain rate with an average MAE of 0.036 
mm/s The resulting model and tuning procedure may be used in a wide range of applications such as 
biomechanical monitoring and analysis. 

Keywords: high-deflection strain gauges; nanocomposites; modeling; viscoelasticity 

 

2.1. Introduction 
It has been postulated that surface-mountable high-deflection strain gauges can provide an economical and 
user-friendly solution in myriad motion-capture applications, such as human biomechanics and soft robotics. 
Conventional strain gauges can only endure approximately 5% strain, compared with potential skin strains of 
larger magnitudes; recently developed strain gauges, composed of conductive nanoparticles embedded in a 
silicone matrix, however, perform well at higher strains [125]. These sensors operate on the principles of 
quantum tunneling and percolation theory [133]. As the strain gauges are stretched, their electrical resistance 
decreases, causing the sensors to behave as inverse-piezoresistive sensors. Such sensors can also display a 
high sensitivity factor in the desired range of deformation during a typical quasi-static response [127, 146]. 

Interpreting the sensor output during multiple cyclic strains, however, is more complex than analyzing the 
output during quasi-static behavior. Due to the viscoelastic mechanical properties of the strain gauges, the 
gauge factor is dependent not only on the instantaneous strain, but also on previously applied strains, and on 
the recovery time since those applied strains [133]. The purpose of this research endeavor is to discover the 
time-dependent relationship between sensor strain and electrical response, accounting for the relevant 
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viscoelastic mechanical properties of the strain gauges. The uncovered relationships will be captured in an 
appropriate model, and the model performance during cyclical stresses and relaxations will be assessed.   

Since deformation within the strain gauge largely happens in the polymer matrix, it could be assumed that a 
standard rheological model captures their mechanical response and provides valuable insights regarding the 
electrical behavior. Several models have been postulated to capture the viscoelastic mechanical behavior. 
Burger’s model depicts the relationship between strain, strain rate, and resulting stress of viscoelastic 
materials; and Weibull’s model predicts the strain relaxation of sensors after stresses are removed. [132, 147, 
148] These two models provided valuable insight regarding the electrical behavior of the sensors under 
dynamic loading and relaxation conditions. 

One application that motivates the current study is to detect and quantify spinal biomechanics by adhering an 
array of such sensors to a subject’s lower back. The results of this study will potentially offer valuable insights 
when used as a diagnostic tool. For example, the most common diagnostic methods for identifying the source 
of low back pain employ static imaging (e.g., CT or MRI scans) to detect anatomical anomalies. It is difficult 
to pinpoint the etiology of chronic low back pain (CLBP) [59] using these methods because CLBP patients do 
not always exhibit clear anatomical anomalies in their spine [149]. Rather, their pain is the result of multiple 
psychological, social, and biological factors [4] that cannot be depicted in a scan. An alternative to using static 
diagnostic imaging is to analyze a patient’s spinal motions. To execute this alternate method, a valid and 
reliable quantitative assessment tool is necessary in order to objectively assess and track spinal health [150]. 
Such a tool could be used for the objective monitoring of patient progress, i.e., improved movement patterns. 
In addition, it could also lead to the discovery of more efficient treatment paradigms for the millions of 
chronic low back pain patients worldwide. Furthermore, the information gleaned from the viscoelastic 
characterization of the sensors will be relevant to the application of strain gauges in other fields, such as 
applications in soft robotics, human-machine interfaces, and other biomechanical analyses [125, 129, 138, 
140, 143]. 

2.2. Materials and Methods 
The nanocomposite sensors are composed of Ecoflex 00-30 silicone with nickel-coated carbon fibers 
(NCCFs) and nickel nanostrands (NINs) mixed in the matrix. Ecoflex 00-30 Silicone was purchased from 
Smooth-On Inc., and the nanoparticles were purchased from Conductive Composites. The concentration of 
each material (by weight) for the sensor recipe is 64% silicone, 30% NCCFs, 5% NINs, and 1% surfactant. 
The nanoparticles and surfactants are mixed in the silicone matrix, then extruded into molds. The sensors are 
cured at 88°C under a vacuum pressure of 650 mmHG for 135 minutes, and then at 192°C for an additional 
30 minutes. 

In order to investigate how the strain gauge resistance responds to different loads, a series of tensile tests 
were conducted using an Instron 3345. The Instron was used to apply precise loads to the sensors and 
provide measurements of the sensor force and elongation during the loads. Polypropylene grips were applied 
to the sensor at either end, restricting elongation to the inner portion of the strain gauges (with an initial 
length of 20 mm). All tensile tests were conducted at room temperature. A pretension of approximately 0.1 N 
was applied to the sensors prior to the start of each tensile test to avoid initial slack. The sensor’s electrical 
properties during these tests were also measured using a NIH 9215 data-acquisition device. 
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(a)                                                (b)                                                (c) 

Figure 2.1 Depiction of (a) The high deflection strain gauges; (b) The strain gauge during a tensile test; and (c) A 
microscopic image of the sensors under a small load. During tensile tests (b), the sensor was secured between two 
polypropylene grips. The grips contained a copper metal interior coating to facilitate measuring the strain gauge’s 
electrical resistance at different loads. 

2.2.1. Model Development 
Due to the viscoelastic nature of the strain gauges, the resistance is dependent on the load applied to the 
strain gauge and the time that has elapsed since the load has been applied, making the electrical behavior 
highly nonlinear. A series of tensile tests were therefore conducted to understand and interpret the response 
of the sensors under different loading conditions and the time following the loading transition. 

2.2.1.1. Experimentation 
The first tests investigated the mechanical strength of the sensors, specifically to determine the (potentially 
rate-dependent) linear region of the stress-strain diagram. Guedes found that above certain stress levels, a 
viscoelastic material’s response becomes highly intricate and difficult to model [132]. Our studies have 
confirmed that beyond the linear region of the nano-composite strain gauges, the electrical output also 
becomes increasing complex. The strain gauges were pulled at a constant rate until failure at three strain rates 
– 0.05mm/s, 0.5mm/s, and 5.0mm/s, which encompassed the expected rates of human skin stretch during 
motion. The data from these tests were used to generate stress-strain diagrams. The (rate-dependent) elastic 
modulus of the sensors was estimated as the average derivative of stress with respect to strain within the first 
10% strain. The linear region of the stress-strain diagram was calculated on the same basis as estimating 0.2% 
yield strain in a typical material [147]. Subsequent analysis of the sensor’s electrical properties targeted strains 
within or near the linear region of the stress-strain diagram. 

To observe the senor’s response at different elongations, we programed the Instron 3345 to apply 
incremental displacements of 0.5 mm (i.e., 2.5% strain increments). After each incremental strain, the sensor 
was held steady for a period of five seconds to allow initial recovery of stress and resistance in the sensors. 
This process was repeated until the sensors reached an elongation of 15% strain, after which the sensors were 
incrementally relaxed in reverse order, at the same rate, back to their original length. This process was 
repeated for ten cycles. To account for the rate-dependency of the viscoelastic materials [126], the experiment 
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was repeated at multiple strain rates as before: 0.05mm/s, 0.5mm/s, and 5.0mm/s. Each test was conducted 
with three strain gauges at each strain rate. 

2.2.1.2. Quasi-Static Model 
The resistance response of the sensors during deformation involved an initial spike, or overshoot, in 
resistance relating to the initial change in strain [126], followed by an exponential decay towards a steady-state 
asymptote. Hence, the strategy for relating the strain imposed on the gauge with the resultant sensor 
resistance was as follows: 

1. Determine a functional relationship between sensor strain and sensor resistance that approximates 
the steady-state behavior, based upon tabulating and interpolating experimental data. 

2. Incorporate the short-term resistance peaks (‘spikes’) and subsequent decay into the model based on 
observations of how strain magnitude and strain rate affect resistance spike magnitude and decay 
rate. 

The quasi-static model captured only the effect of strain (under approximately static conditions) on a sensor’s 
resistance. Electrical data were collected from the tensile tests at each incremental strain after transient 
electrical behaviors had dissipated for five seconds. Spline fit curves were implemented to interpolate between 
the data points 𝜖𝜖𝑖𝑖 and 𝑅𝑅𝑖𝑖 and achieve a relationship between strain and resistance (see Eq 2.1). 

 𝑅𝑅 = 𝑓𝑓(𝜖𝜖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖𝑖𝑖,𝑅𝑅𝑖𝑖, 𝜖𝜖 ) 2.1 
 
As stated previously, sensor resistances operate on the principles of percolation theory and quantum 
tunneling. This implies that the resistance is highly dependent on the distribution of nanoparticles on a 
microscopic level [125]. During the manufacturing process, the concentration of nanoparticles embedded in 
the silicone matrices is approximately uniform. However, even slight variation in the distribution of 
nanoparticles can have significant effects [133]. The static-strain model 𝑓𝑓(𝜖𝜖) is therefore specific to each 
sensor. However, the general trends for all sensors are likely to be similar. 

Gauge factor (or sensitivity factor) is defined as the relative change in resistance with respect to strain [125]. 
High gauge factors provide higher strain resolution. The gauge factor was calculated by taking the derivative 
of the static model (Eq 2.1) with respect to strain, dividing it by the sensor resistance at its unstretched length, 
and dividing the product by strain (see Eq 2.2). 

 𝐺𝐺𝐺𝐺 =
Δ𝑅𝑅/𝑅𝑅0
𝜖𝜖

=
𝑓𝑓′(0)/𝜖𝜖

𝜖𝜖
 2.2 

 

Previous studies have found that rubbers “exhibit an appreciable change in their mechanical properties 
resulting from the first extension” [151] due to the Mullins effect. Initial sensor tests indicate that the strain 
gauges’ electrical properties during preliminary strains also significantly differ from the electrical properties 
during later strains. Therefore, during cyclic stresses and relaxations, the first stress-and-relaxation cycle(s) 
served to precondition the strain gauge pass any initial viscoelastic phenomena that caused inconsistent 
electrical behavior. In order to determine how many preconditioning cycles were necessary to achieve 
consistent electrical behavior, the steady-strain model (Eq 2.1) was derived using data from the first, second, 
third, and fourth cyclic strain cycles. These models (𝑓𝑓(𝜖𝜖)) were used to predict the steady-state strain-
resistance relationship for the remainder of the ten stress-relaxation cycles. The mean average error (MAE) of 
the predictions were used to evaluate model performances and determine how many stress-relaxation cycles 
were necessary for preconditioning. 
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2.2.1.3. Dynamic Model 
The dynamic strain model accounts for the transient spikes that were ignored in the steady-state strain model. 
Previous studies have attributed these spikes to viscoelastic stress relaxation [126].  Every time the sensor is 
pulled or relaxed to a new strain, the internal sensor stresses cause a “change [in] the distance between several 
[conductive] nanomaterials” [125], resulting in a resistance spike. By this explanation, the sensor’s electrical 
behavior under dynamic conditions will be heavily influenced by the sensor’s viscoelastic mechanical 
properties. 

For a given applied (macroscopic) strain, the time dependent distance between filler particles will relate 
strongly to the stress localization in the soft polymer between the ‘hard’ particles, and the subsequent stress 
relaxation over time. Hence, the magnitude of the resistance spike will presumably be inversely related to the 
increase of internal sensor stresses. Time dependence of stress and strain in a typical polymer is commonly 
modeled via the Burger’s rheological model (see Figure 2.2). This mode predicts a rate-dependent increase in 
stress during application of the macro strain, followed by an approximately exponential decay during the 
stress-relaxation phase. This view motivates the superposition of rate-dependent spikes and subsequent 
exponential decays in resistance on top of the quasi-static resistance model. The data collected from the 
incremental strain tests were used to estimate the relative increase in resistance (𝑆𝑆) following an incremental 
strain step under different strains and strain rate conditions (e.g., if the sensor’s resistance under static 
conditions is 100Ω and the sensor resistance including the spike is 200Ω, the relative resistance spike 
magnitude 𝑆𝑆 is equal to one). 

 

Figure 2.2 Burger's rheological model of viscoelastic materials. The spring and damper in parallel (𝐸𝐸2 and 𝜂𝜂2) capture the 
senor’s viscoelastic behavior, the spring in series (𝐸𝐸1) models the elastic behavior, and the damper in series (𝜂𝜂2) accounts 
for the viscoplastic behavior. 

During a series of stepwise strain changes applied to the sensor, once the sensor reaches its new macroscopic 
strain, the internal stresses relax, causing the resistance spike to dissipate. Weibull’s equation describes 
viscoelastic strain recovery as an exponential decay transition [147]. Preliminary experimental data indicated 
that the transient mechanical and electrical behavior followed a similar dissipation rate. The time constant (𝜆𝜆) 
of this exponential decay was estimated from experimental data using MATLAB’s gradient-based 
optimization algorithm fminunc. The criterion for the optimal 𝜆𝜆 was the predicted stress relaxation response 
that minimized the sum squared differences between the predicted stresses and the observed stresses. The 𝜆𝜆 
constants were tabulated by strain rate and strain magnitude and were used to predict the rate of resistance 
spike dissipation. 

2.2.1.4 Combined Model 
Using the steady-state strain-resistance model (Eq 2.1) and the viscoelastic-dependent parameters (𝑆𝑆 and 𝜆𝜆), 
an equation was developed that predicts the sensor response during transitions between strain levels (see Eq 
2.3). The model is a function of the quasi-static resistance-strain relationship (𝑓𝑓(𝜖𝜖)), the resistance spike 
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magnitude (𝑆𝑆), the stress-relaxation coefficient (𝜆𝜆), and the time since the previous resistance spike 
occurrence (𝑡𝑡 − 𝑡𝑡𝑠𝑠). 

 𝑅𝑅 = 𝑓𝑓(𝜖𝜖) ∗ �1 + 𝑆𝑆 𝑒𝑒−𝜆𝜆(𝑡𝑡−𝑡𝑡𝑠𝑠)� 2.3 

2.2.2 Model Validation 
The model was evaluated with a series of tensile tests, during which different strains and strain rates were 
applied to the sensors. The model performance was evaluated by calculating the r-squared correlation 
between the observed and predicted response as well as the mean absolute error (MAE) of the model 
predictions. Three validation tests were conducted to assess the model accuracy. 

• Quasi-Static Interpretation: The static-strain resistance model (Eq 2.1) was used to interpret the 
sensor resistance under static conditions to predict the sensor strain. 

• Sensor Output Predictions: The combined static and dynamic-strain resistance model (Eq 2.3) was 
used to predict sensor resistance as a function of a known strain and strain rate. 

• Biomechanical Application: The combined static and dynamic-strain -strain resistance model (Eq 2.3) 
was used to interpret sensor strain and strain rate during a tensile test that imitates cyclical 
biomechanical function. 

 

As stated previously, the static-strain model (Eq 2.1) for each sensor is unique due to the variation in the 
microscopic distribution of nanoparticles in the silicone matrix, and the resistance response during the first 
stress-relaxation iteration(s) is significantly different than during subsequent repetitions. The first cycle(s) 
therefore served to precondition the sensors. After preconditioning was complete, the steady-state strain 
model (Eq 2.1) was calibrated by measuring the sensor resistance at 0% strain and 15% strain. The data point 
taken at 0% strain was collected after the transient spike had dissipated. The resistance spike at 15% strain 
had not yet dissipated when the resistance was measured. Instead, the steady-state strain resistance was 
estimated by dividing the sensor reading by (1 + 𝑆𝑆). A template of the static strain resistance was obtained 
from the incremental strain tensile tests, which was scaled and shifted using the two data points to represent 
the static-strain response of the sensor of interest. The dynamic model parameters (spike magnitude 
coefficients 𝑆𝑆 and spike decay coefficients 𝜆𝜆) were obtained from the incremental strain experiments 
described above. The model was then used to analyze and interpret the output from the stress-relaxations 
cycles following the calibration cycle (see Figure 2.3). 

 
Figure 2.3 Depiction of the strain profile that the tensile tester applied to a sensor, and which cycles constitute 
preconditioning, calibration, and evaluation stress-relaxations. 
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2.2.2.1. Quasi-Static Interpretation 
The second validation test evaluates the model’s ability to interpret strains under approximately quasi-static 
conditions. After the sensors were preconditioned, and the static-strain model was developed as described 
above, the sensors were pulled to a series of random strains between 5-15% strain (strains were selected using 
a uniformly distributed random number generator). The sensors were held at each randomized strain for five 
seconds, and then relaxed back to the original length. The minimal resistance during the static period was 
extracted from each repetition and compared the static-strain model (Eq 2.1). This reading was used to 
interpret sensor strain. A total of ten stress-relaxation cycles were conducted (including preconditioning 
cycles). These tests were conducted at a strain rate of 0.5 mm/s and repeated with 10 strain gauges. 

2.2.2.2. Sensor Output Predictions 
The first validation test conducted analyzes the model’s ability to predict strain gauge resistance during a 
known strain and strain rate. Following preconditioning and calibration cycles, the sensors were pulled to 
15% strain, immediately relaxed to initial length, and held for five seconds. This process was repeated until 10 
stress-relaxation cycles were completed. Using the dynamic-strain model (Eq 2.3) and the known strain and 
strain rates, the sensor resistance for the evaluation stress-relaxation cycles was predicted. These tests were 
conducted at rates of 0.05mm/s, 0.5mm/s, and 5.0mm/s. Three sensors were tested at each strain rate. 

2.2.2.3. Model Evaluation during Simulated Biomechanical Application 
The intended purpose of the high deflection strain gauges is to monitor biomechanical motion. The final 
evaluation test analyzed the model’s ability to interpret elongations such as would be typical during repetitive 
biomechanical activities. Random strain rates between 0.05 and 5.0mm/s were selected for this evaluation 
(using a logarithmically distributed random number generator). Strain magnitudes for the analysis were 
selected between 5 and 15% strain (using a uniformly distributed number generator). The sensors were 
preconditioned (at the strain rate that was randomly selected) and calibrated using the methods described 
above to obtain the dynamic-strain model (Eq 2.3). After this, the sensors were repeatedly pulled to the 
randomly selected strain at the randomly selected strain rate. The dynamic-strain model was used to estimate 
the sensor strain magnitude by tracing the resistance values to the nearest strain. The strain rate was estimated 
by dividing the estimated strain magnitude by the time required to reach the maximum strain. 

2.3. Results 
2.3.1. Model 
From the strain to failure diagrams, it was found that the linear portion of the stress-strain curve did not 
significantly vary between strain rates (see Table 2.1). 

Table 2.1 The average yield strain from sensors pulled at 5.0 mm/s, 0.5 mm/s, and 0.05 mm/s. Notice that the linear 
strain range of the stress-strain diagram was not significantly affected by strain rate. 

Strain Rate (mm/s) Linear Strain (percent) 

5.00 11.26 

0.50 12.35 

0.05 12.41 
 

These results provided us with an initial indication of the linear range of the stress-strain diagram. Subsequent 
characterization tests of the sensor’s electrical and mechanical properties were limited to strains near the 
linear stress-strain region. 
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2.3.1.1. Quasi-Static Model 
During the incremental strain tests, both the transient and ‘steady-state’ (i.e., the post-spike) response of the 
sensors were observed. For the preliminary sensor model, we desired to capture only the effect of steady-state 
strains on the sensor’s electrical resistance. This was accomplished by collecting data points at each 
incremental strain level (Figure 2.4a) after the transient spike had dissipated (Figure 2.4b). The resulting 
stress-strain relationship and sensitivity factor are depicted in Figure 2.4c and d. 

  

(a) (b) 

 

(c) 

 

(d) 

Figure 2.4 (a) The strain profile of an incremental strain test (black line indicates the sensor performances as it is being 
pulled in tension, and the gray line indicates the sensor performance as it is being relaxed; dots represent the points at 
which empirical data was collected from the resistance test after the transient spike had dissipated for all sub-figures). (b) 
The electrical response from the sensors over time as the strain gauges were pulled to different incremental strains. (c) 
The strain-resistance relationship interpolated from the tensile tests. (d) The gauge factor (relative change in resistance 
with respect to strain). Spline fit curves were used to interpolate the resistance of the sensor under static conditions 
between the empirical points. The derivative of the spline fit curves over the spline fit depicts the relative sensitivity of 
the sensor at different strains. 

 

Using the resistance data points collected during static strains after the resistance spike had dissipated, we 
determined the strain-resistance relationship by interpolating between data points with polynomial fit curves 
(see Equation 2.4, Table 2.2). 

 𝑅𝑅 = 𝑓𝑓(𝜖𝜖) = 𝑐𝑐0 + 𝑐𝑐1(𝜖𝜖 − 𝜖𝜖0) + 𝑐𝑐2(𝜖𝜖 − 𝜖𝜖0)2 + 𝑐𝑐3(𝜖𝜖 − 𝜖𝜖0)3, 𝜖𝜖0 < 𝜖𝜖 2.4 
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Table 2.2 Coefficients for equation in Eq 4 to describe the strain-resistance relationship during tension. 

𝜖𝜖0 𝑐𝑐0 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 

0 1.468 E6 -1.793 E5 4.520 E3 1.383 E2 

0.025 1.468 E6 -6.906 E4 -1.697 E3 1.622 E2 

0.05 3.629 E5 4.120 E4 -2.394 E3 9.940 E1 

0.075 -6.710 E4 1.399 E4 -1.014 E3 5.963 E1 

0.10 -8.356 E4 8.941 E3 -4.400 E2 4.194 E1 

0.125 -8.356 E4 2.674 E3 -1.496 E2 3.522 E1 
 

The critical strain is defined as the point after which the sensor response becomes monotonic (the strain after 
which the resistance will only increase / decrease with additional strain) [146]. The critical strain for these 
sensors is approximately 1.5% strain. 

The gauge factor is highly nonlinear. The optimal performance of the sensor occurs at approximately 7-8% 
strain, after which the magnitude of the gauge factor decreases. 

We observed that the resistance of the sensors during the first cycles exhibited significantly different behavior 
than during the following cycles as well due to primary creep (see Figure 2.5). The model is not intended to 
capture this highly transient behavior; hence it is calibrated against data from a subsequent cycle. As stated 
previously, steady-state strain-resistance models 𝑓𝑓(𝜖𝜖) (Eq 2.1) were generated using data collected during the 
first, second, third, and fourth stress-relaxations cycles to predict the static-strain response of the sensor for 
the remainder of the ten stress-relaxations cycles. The resulting mean absolute errors (MAEs) are shown in 
Table 2.3. 

 

Figure 2.5 Depiction of the strain-resistance relationship during the first five stress-relaxation cycles. 

Table 2.3 The steady-state strain-resistance model (Eq 1 was estimated using the first, second, third, and fourth cycles. 
The resulting mean-squared error of this model (in Ohms) was used to determine how many cycles were needed for 
preconditioning purposes. 

Strain Rate (mm/s) f̂(ϵ)1 MAE (Ω) f̂(ϵ)2 MAE (Ω) f(ϵ)3 MAE (Ω) f̂(ϵ) MAE (Ω) 

0.05 8.51 8.50 5.69 4.64 

0.5 17.92 15.18 7.38 5.05 

5.0 16.79 11.16 6.40 6.51 
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It was observed that the MAE generally decreased with each additional preconditioning cycle. However, it 
was also desirable to develop the static-strain model with as few cycles as possible to maximize the predictive 
power of the model (e.g., if three preconditioning cycles were necessary, the model would be calibrated 
during the fourth stress-relaxation cycle and will only be capable of predicting the resistance of the sensor 
during the fifth stress-relaxation cycle and beyond). The largest reduction in error occurred between 𝑓𝑓(𝜖𝜖)2 
and 𝑓𝑓(𝜖𝜖)3. The first two stress-relaxations cycles were therefore utilized for preconditioning the sensors, and 
the third cycle was used for calibrating the steady-strain resistance model (Eq 2.1). 

2.3.1.2. Dynamic Model 
During each transition from one strain level to the next, the sensor exhibited a transient resistance spike. The 
spike magnitude was defined as the increase of resistance from its static-strain resistance (see Figure 2.6). 
From the incremental strain tests, the increase in resistance under each strain and strain rate condition were 
obtained. The average 𝑆𝑆 parameters are depicted in Table 2.4. 

 

(a) 

 

(b) 

Figure 2.6 The sensor electrical response following (a) an incremental strain step of 0.5mm and (b) following an 
incremental relaxation step of 0.5mm. The solid black lines indicate the sensor resistance. The dotted red lines indicate 
the peak of the resistance spike during the transition between strains. 

 

Table 2.4 The spike magnitude, 𝑆𝑆, (in units of 𝛺𝛺/𝛺𝛺) was found to be dependent on strain rate. At higher strain rates, the 
magnitude of the resistance spikes increased. Notice that at low strains, the spike magnitudes are significantly smaller, 
most likely due to sensor buckling. 

Strain Rate 
(mm/s) 

Strain (Percent) 
0 2.5 5.0 7.5 10.0 12.5 15.0 

0.05 0.182 0.187 0.263 0.319 0.230 0.264 0.214 

0.5 0.429 0.534 0.673 0.785 0.700 0.566 0.449 

5.0 0.915 0.981 1.192 1.358 1.173 0.899 0.751 
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As expected, strain changes at higher strain rates results in higher resistance spikes. As discussed earlier, if the resistance 
spike relates to localized and short-lived stress levels between conductive particles, these observations correlate with 
Burger’s rheological model relating stress to strain and strain rate in viscoelastic materials. Similarly, the stress relaxation 
behavior of the sensors demonstrated a strong correlation with the resistance spike dissipation (see Figure 2.7). This 
observation validated our hypothesis that both can be approximated as an exponential decay with time constant, 𝜆𝜆, such 
as is done in Weibull’s model that captures the strain recovery of viscoelastic materials. The time constant, 𝜆𝜆, was found 
to be both rate and strain dependent. The average lambda values observed in the sensors under a variety of strains and 
strain rates are depicted in Table 2.5 (one outlier was discarded from the data). 

  

(a) (b) 

Figure 2.7 Stress relaxation (orange) and transient resistance response (blue) during stress relaxation following an 
incremental step in tension (a) and following an incremental step in relaxation (b). 

Table 2.5 The time constant, 𝜆𝜆, (in units of s-1) was found to be rate and strain dependent. At higher strains and strain 
rates, the sensors exhibited a faster transient response. Notice that at low strains, the stress relaxation constants are 
significantly lower, possibly due to strain gauge buckling. 

Strain Rate 
(mm/s) 

Strain (Percent) 
0 2.5 5.0 7.5 10.0 12.5 15.0 

0.05 0.433 0.718 0.778 0.804 0.818 0.815 0.736 

0.5 0.875 1.914 1.979 2.011 2.089 2.220 1.641 

5.0 1.121 4.390 3.178 4.051 4.176 4.231 3.391 
 

2.3.1.3. Combined Model 
The aim of this study is to provide a model that relates measured resistance to skin strain during a set of 
cyclical exercises performed by a human subject. The quasi-static and dynamic components of the model 
described in the previous sections are combined into the final model by taking the following steps. For a 
given sensor, two preconditioning stress and relaxation cycles from 0 to 15% strain (at any strain rate) are 
applied to the sensors to mitigate Mullins effects, and a third stress and relaxation cycle is used to calibrate the 
sensor-specific model. The quasi-static model (Eq 2.1) is fitted to these data points to depict the relationship 
between static strains and resistance. For the initial sensor used in this study, the parameters of this model are 
given in Table 2.4; for a different sensor, the curve given by Eq. 2.4 and Table 2.4 is shifted based upon two 
data points taken at strain of 0 and 0.15. 

The parameters for the dynamic component of the model (Eq 2.3) are then obtained by incorporating the 
resistance spike and exponential decay rate parameters (𝑆𝑆 and 𝜆𝜆) from Table 2.4 and Table 2.5 (which remain 
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constant for all sensors made by the same route). This model can then be used to predict and interpret sensor 
output during any sequence of static and dynamic loading conditions. 

2.3.2. Model Validation 
2.3.2.1. Quasi-Static Model Performance 
The model’s ability to interpret strains under static condition was evaluated by preconditioning and calibrating 
10 sensors. The strain gauges were pulled to a series of randomly selected sequenced strain changes, and the 
strain was estimated using the quasi-static model described above (Eq 2.1); note that the original sensor used 
to calibrate the model is not included in the 10 test sensors. The quasi-static sensor model, along with its 
strain predictions and measured strains are depicted in Figure 2.8a. The results from all ten sensors, 
comparing the randomly selected strain to the model’s estimation is depicted in Figure 2.8b. The static-strain 
model evaluated achieved an MAE of 1.6% strain for all the sensors tested and r-squared score of 0.64 (see 
Figure 2.8b). It was observed, however, that the prediction error varied for each sensor – MAE for each 
individual sensor ranged between 0.5 and 4.4% strain. Resistance measurements outside the model range were 
neglected. As seen in Figure 8a and 8b, the model tended to overestimate the magnitude of the quasi-static 
strains. It was observed that the quasi-static strain-resistance relationship generally drifted downward (i.e., the 
sensor would exhibit a lower resistance for a given strain than it had during prior strains at the same 
magnitude). This is consistent with observations in other investigation of viscoelastic sensors [137] and is 
likely due to viscoplastic deformation as described in the Burger’s model. 

 

  

(a) (b) 

Figure 2.8 (a) The quasi-static strain model (black line), the model prediction at the randomly selected strain points 
(black dots), and the actual strains (red dots) for a single sensor. Vertical distances between black and red line represent 
the model error. (b) Scatterplot of the randomized strains (x-axis) compared to the model prediction (y-axis) for all 10 
sensors (each strain gauge is indicated by a different color). Predictions that fall on the dotted black line are exactly 
accurate. 

2.3.2.2. Dynamic Model Performance 
The full model was then used to predict the time-dependent strain from the resistance measured during the 
random sequence of strain changes mentioned in the previous section. When predicting the resistance values 
of sensors pulled from 0 to 15% strain at low to intermediate strain rates (0.5mm/s or slower), the model 
achieved r-squared values of greater than 0.9 (see Table 2.6). For all strain rates, the model captured the 
general trends in the resistance data exhibited by the viscoelastic sensors, but the MAE increases slightly for 
faster rates (Figure 2.9). 
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Figure 2.9 The predicted resistance value (dotted blue line) compared to the true sensor resistance (black line) during the 
validation test. The top plot was conducted at a rate of 0.05 mm/s, the middle plot was the validation test conducted at a 
rate of 0.50 mm/s, and the bottom plot was the validation test conducted at a rate of 5.0 mm/s. 

 

Table 2.6 Model application test results (r-squared and mean-averaged error) conducted at each different strain rates. 

Strain Rate (mm/s) R2 MAE (Ω) 

0.05 0.96 5.00 

0.50 0.96 4.03 

5.00 0.80 8.59 
 

2.3.2.3. Model Evaluation during Simulated Biomechanical Application 
As stated previously, one of the most important potential applications of the strain gauges is to provide 
estimate of biomechanics (e.g., range of motion, velocity, etc.). The sensors were therefore tested in a broad 
envelope of strains and strain rates to evaluate how the model interprets strain and strain rate during potential 
biomechanical activities. The strain gauges were preconditioned, calibrated, and then pulled to randomly 
selected strains (between 5 and 15%) at randomly selected strain rates (between 0.05 mm/s and 5.0 mm/s) on 
the Instron machine to imitate the range of expected strains and strain rates that a sensor would undergo 
during a repetitious, biomechanical applications. Ten sensors were evaluated during this application. The 
dynamic-strain model achieved an MAE of 1.4% strain when used to predict strain and an MAE of 0.036 
mm/s when used to predict strain rate; the corresponding r-squared values for predicted strain magnitude 
and strain rate are 0.80 and 0.99, respectively (see Figure 2.10). Two sensors were ignored that exhibited 
resistance readings outside the range of the model. 
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(a) (b) 

Figure 2.10 (a) Scatterplot of the true strain compared to the predicted model strain for different sensors, each pulled to 
a random strain (between 5 and 15% strain). (b) Scatterplot of the true strain rate of each sensor compared to the 
predicted strain rate, pulled at a random strain rate between 0.05 and 5.0 mm/s. Each sensor is represented by a single 
scatter point. 

2.4. Discussion 
The present work investigates the output of high deflection, resistance-based strain gauges. The findings from 
this research concurs with previous works that viscoelastic sensors exhibit highly nonlinear outputs [125, 126, 
137] builds on these findings by quantifying the relationship between strain and resistance under quasi-static 
and dynamic conditions during cyclical strains. The quasi-static relationship between resistance and strain of 
high-elongation viscoelastic sensors (Eq 2.1) was determined by fitting an equation to the observed data of a 
single sensor. The model was subsequently calibrated for other sensors by taking two resistance data points at 
known strains and shifting the fitted curve to the new points. The dynamic relationship between strain and 
resistance, which is heavily influenced by the sensor’s viscoelastic properties, was then superimposed onto the 
quasi-static model to account for the resistance spikes and their subsequent dissipation (Eq 2.3).  

The resulting model was validated in a variety of tests to determine its ability to correctly interpret both quasi-
static and dynamics strains of sensors from resistance measurements. When used to interpret static strains, 
the model achieved a MAE of 1.6% strain. The model prediction of sensor output of dynamic strain 
applications captured the general trends of the viscoelastic resistance behavior and achieved high accuracy at 
low to intermediate strain rates (MAE values of 5.00Ω, 4.03Ω, and 8.59Ω at elongation rates of 0.05 mm/s, 
0.50 mm/s, and 5.0 mm/s, respectively). The model interpretation of dynamic strains was able to estimate 
strain magnitude with an MAE of 1.4% strain and strain rate with an MAE of 0.036 mm/s. These validation 
tests provide an estimate of the model’s ability to predict and interpret a wide range of strains and strain rates 
that encompass the expected sensor loads potential applications. 

The intended purpose of the model is to interpret spinal biomechanics from an array of sensors adhered to a 
patient’s lower back. The findings from this endeavor will be valuable in the analysis of the strain gauge 
outputs to extract biomechanical features from the subject’s spinal motion (e.g., range of motion, velocity, 
etc.). This innovative motion-monitoring technique may be used by clinicians to objectively assess a patient’s 
spinal movement patterns. This in turn could be used to monitor movement changes and progress and to 
help identify the optimal treatment paradigms for millions of chronic low back pain patients worldwide. 
Additionally, these findings provide a foundation for interpreting all viscoelastic, resistance-based sensors, 
which can be used in other applications.  
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Because this model was restricted to the linear region of the stress-strain diagram where the strain gauges 
exhibited a predominately elastic and viscoelastic response, the effects of viscoplasticity on the electrical 
output were neglected. However, this model does account for nonlinear response with respect to load and 
time. Future iterations of the model could improve performance by further quantifying the relationship 
between viscoplasticity and sensor resistance, which would be become increasing relevant to interpreting 
sensor outputs with additional stress and relaxation cycles (i.e., with additional stress and relaxation cycles, the 
effects of viscoplastic creep become more pronounced in the sensor output). 

Future research can also be conducted to fine tune the sensor recipe to achieve desired material properties 
and model parameters (e.g., reducing the nanoparticles to expedite resistance spike dissipation). Additional 
investigation into preconditioning methods may lead to more effective methods and improved model 
performance. 

There were slight instrumentation errors during tensile tests at high strain rates (the incremental strain tests 
pulled the sensors by increments of 0.6mm rather than 0.5mm). This may have affected the specific 
parameters used for estimating the sensor resistance being tested at a strain rate of 5.0mm/s. However, the 
general trends observed, model performance, and conclusions regarding the effect of viscoelasticity on a 
strain gauge’s electrical output are still valid for the resistance-based sensors. 
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3.0. Abstract 
Conventional strain gauges are a valuable sensing technology used in a variety of fields but are limited in their 
applications due to their low strain capacity. In contrast, high deflection strain gauges are capable of much 
larger deflections and are therefore more suitable for specialized applications such as biomechanics or soft 
robotics. One type of high deflection strain gauges is piezoresistive sensors, which are composed of 
nanoparticles embedded in silicone, and are therefore economic to manufacture and exhibit large gauge 
factors. However, combining stiff nanoparticles with a soft silicone matrix leads to high stress concentrations 
and a highly non-linear time-dependent electrical response to strain that is difficult to simulate, and therefore 
interpret. 

This paper proposes a multi-layered sensor architecture, whereby silicone support layers regulate the 
mechanical response of the internal sensor, leading to a more repeatable and predictable electrical signal. The 
multilayer strain gauge exhibits 60% less signal drift than the stand-alone sensor under high strain. It also 
results in strain measurements with 60% more accuracy. The application of this multi-layered compound may 
be used to facilitate new biomechanical discoveries, including a reliable method of identifying the optimal 
treatment paradigm for each patient suffering from chronic low back pain, improving outcomes for millions 
of patients worldwide. 

Keywords: nanocomposites, viscoelasticity, modeling 

 

3.1. Introduction 
Many of the advances in the medical field are the result of innovative sensing technology. It has been 
postulated that skin-mounted strain gauges would provide significant contribution to this field as an 
economical means of capturing biomechanics. Strain gauges offer numerous advantages over other motion-
capture techniques, such as cameras that track reflective markers, which require expensive equipment, 
complex set-up, and controlled environments. Although conventional strain gauges are unsuited for 
biomechanical application due to their limited strain capacity (approximately 5%), the development of high-
deflection strain gauges in recent years has led to promising new solutions [125]. 

While conventional strain gauges, which rely on metals and semiconductors, high deflection strain gauges are 
governed by different by very different mechanisms. Capacitive-based strain gauges operate on the principle 
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of Poison’s ratio: as they are stretched, the conductive cross-sectional area diminishes. This type of strain 
gauge exhibits extremely stretchable strain properties and linear gauge factor analyses. However, there are 
major drawbacks that limit its efficacy in biomechanical applications, including “low gauge factors, 
unpredictable response due to unstable overlaps of the capacitive area, and capacitive interaction with the 
human body” [126]. Piezoresistive strain gauges, on the other hand, are generally comprised of a highly elastic 
base matrix (e.g., silicone), mixed with conductive nanoparticles [127]. These sensors exhibit highly flexible 
material properties and a much higher gauge factor than the capacitive strain gauges (on the order of 103-104) 
[125]. They also provide the advantage of a relatively easy fabrication [128]. However, the electrical signals 
from these high-deflection strain gauges are highly influenced by their time-dependent, viscoelastic material 
properties. At large strains, the mechanical properties become increasingly non-linear due to the stress 
concentrations between the stiff nanoparticles in the soft matrix. Furthermore, the local stress concentrations 
lead to accelerated creep of the material and accompanying drift of the sensor response. This results is 
complex electrical signals that are difficult to simulate and interpret, in terms of accurate strain values [144]. 
The objective of this research is to ameliorate the drawbacks of current high deflection strain gauges via a 
novel multi-layer architecture that increases linearity of response and reduces creep. By providing a 
supporting structure of pure silicone around the strain gauges, the proposed multi-layered architecture 
mitigates the drawbacks of the high-contrast composite, and results in enhanced characteristics and better 
performance as a sensor material. 

The specific application which inspires this research is monitoring and analyzing the spinal motion of patients 
suffering from chronic low back pain using an array of the high deflection strain gauges [145]. Past studies 
have found that spinal motion patterns correlate with functional limitations associated with the condition that 
causes the pain [152]. Additional spinal motion research may lead to the identification of phenotypes, which 
could assist clinicians identify the optimal treatment paradigm for each patient suffering from chronic low 
back pain [44]. It is our hypothesis that the improved performance of the multi-layered sensor will render 
even more accurate spinal-motion estimates and improve the identification of phenotypes, which in turn may 
have the potential to link millions of patients to their optimal treatment worldwide [57, 145]. Furthermore, 
this multi-layer architecture may offer similar improvements to high-deflection strain gauges in other fields, 
including soft robotics, human-machine interfaces, and more [125]. 

3.2. Materials and Methods 
Silicone has very linear mechanical properties. The nanocomposite strain gauge requires both the linear, 
elastic properties of silicone and the conductive properties of the metallic nanoparticles to perform its 
intended function. However, as stated previously, it has been found that the elasticity of the silicone matrix is 
greatly inhibited by the stress concentrations due to the nanoparticle filaments. 

3.2.1. Nanocomposite Sensors 
The conventional strain gauge design from Brigham Young University [127] are composed of an Ecoflex 00-
30 silicone matrix (64% of the composite by weight) with nickel-coated carbon fibers (30%) and nickel 
nanostrands (5%) embedded in the matrix with surfactant (1%). The sensors are cured under vacuum at 88 
°C for 135 minutes, followed by a flashing period of 192 °C for an additional 30 minutes (see Figure 3.1a). 

The multi-layered architecture is designed to provide a support structure for the conventional sensors and 
modify the mechanical response. The proposed design is comprised of a conventional nanocomposite strain 
gauge encased in a layer of pure silicone prior to flashing. A lower layer of silicone is allowed to cure for 60 
minutes in a mold, after which the strain gauge is laid on this layer, and an upper layer of silicone is poured 
over the gauge, and the mold is closed. The entire structure is then flashed at 192 °C for 30 minutes (Figure 
3.1b-c). 
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Figure 3.1 A depiction of (a) the conventional nanocomposite sensor and (b) the multi-layered sensor in a 
relaxed state and (c) the multi-layered sensor under combined torsion and tensile train. 

The following experiments were conducted to evaluate the effects of the multi-layered architecture on 

1. The mechanical properties of the viscoelastic strain gauges, 
2. The electrical signal of the viscoelastic strain gauges under quasistatic and dynamic conditions, and 
3. The sensor performance in a simulated biomechanical application. 

3.2.2. Viscous Properties 
Past endeavors have shown that polymers, such as our sensors, exhibit three types of mechanical properties – 
elastic, viscoelastic, and viscoplastic. We hypothesized that the multi-layered architecture would mitigate the 
viscoplastic creep of the nanocomposite sensors and lengthen the linear region of the multi-layered 
nanocomposite sensors. The regulated mechanical properties would in turn facilitate more consistent and 
interpretable electrical signals, especially at high strains. 

The mechanical properties of the single-layered sensors, the multi-layered sensors, and pure silicone in the 
form of the conventional single-layered sensor were evaluated and compared. Samples of each type of sensor 
were tested on the Instron tensile tester to measure performance during a strain to failure test and a cyclic 
loading test up to 75% strain. Viscoelasticity was quantified as the work done on the strain gauge material 
during a stress and relaxation cycle (i.e., the integration of the force over distance). Viscoplasticity was 
quantified as the difference between the work done on the strain gauge material during the first stress and 
relaxation cycle and each subsequent cycle (i.e., if the work done on the material was the same for each cycle, 
it would indicate that the material was completely viscoelastic and exhibited on viscoplastic deformation). 

3.2.3. Electrical Signal 
The electrical signals of the nanocomposite sensors were evaluated, with and without the multi-layered 
architecture. Past studies have developed a model to relate electrical resistance to strain for the viscoelastic 
sensors. The model was comprised of (1) the quasistatic model which related strains under stationary 
conditions to resistance and (2) the dynamic model which related stress relaxation to resistance as a function 
of time. The full electrical response of the sensors was obtained by superimposing the quasistatic and 
dynamic models. The model was developed by testing the sensors during 10 incremental stress and 
relaxations cycles with maximum strains of 15% (see Figure 3.2a). The quasistatic response of the model was 
evaluated by reading the sensor resistance during the incremental strain tests after the sensor had been held at 
each strain for a period of for a specified duration, thus allowing the transient spikes to dissipate (see Figure 
3.2b). A spline curve was fit to interpolate the quasistatic resistance at all strains (see Figure 3.2c) and evaluate 
the relative change in sensor signal with response to strain (see Figure 3.2d). The dynamic response was 
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evaluated by examining the relative increase in resistance during the transitions between strains and using the 
stress-relaxation exponential decay factor to account for the transient spike dissipations (see Figure 3.2e-f). 
[144]. 

 

Figure 3.2 Findings from previous study, in which (a) incremental strains were applied to a sensor, (b) the 
sensor output was captured, (c) a quasistatic model was developed ignoring transient outputs, (d) the relative 
signal (in terms of 𝛥𝛥𝛥𝛥/𝑅𝑅0) of the sensor at different strain levels, (e-f) the relationship between resistance 
while the sensor is held at a constant stain [144]. 

Equations that describe the quasistatic, dynamic, and composite models are described below. The resistance 
as a function of quasistatic strain (𝑅𝑅𝑠𝑠) is a spline fit curve taken from sensor readings (𝑅𝑅𝑖𝑖) at different steady-
state strains (𝜖𝜖𝑖𝑖) (Eq 3.1). The resistance of the sensor under dynamic conditions (𝑅𝑅𝑑𝑑) is described as a 
transient resistance spike (𝑆𝑆) which decays exponentially with respect to time (𝑡𝑡) after the dynamic strain 
occurs (𝑡𝑡𝑠𝑠) with a time constant of 𝜆𝜆 (Eq 3.2). The composite model (𝑅𝑅) is a superposition of the quasistatic 
and dynamic models (Eq 3.3). 

 𝑅𝑅𝑠𝑠 = 𝑓𝑓(𝜖𝜖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖𝑖𝑖,𝑅𝑅𝑖𝑖, 𝜖𝜖) 3.1 

 𝑅𝑅𝑑𝑑 = 𝑆𝑆 exp�−𝜆𝜆(𝑡𝑡 − 𝑡𝑡𝑠𝑠)� 3.2 

 𝑅𝑅 = 𝑓𝑓(𝜖𝜖) ∗ �1 + 𝑆𝑆 exp�−𝜆𝜆(𝑡𝑡 − 𝑡𝑡𝑠𝑠)�� 3.3 
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This methodology was implemented in this endeavor, but the strain gauges were exposed to much more 
rigorous conditions. Both the single- and multi-layered nanocomposite sensors were tested up to 50% strains. 
Data was collected from four samples of each sensor type. 

3.2.4. Sensor Performance 
To evaluate and compare how well the sensors would perform during their intended uses, the single-layered 
and multi-layered strain gauges were used to predict strain levels from a simulated biomechanical application. 
The sensors were preconditioned, and models were fitted to the sensors using a linear interpolation at the 0 
and 50% strain points. The sensors were then pulled to ten strains – randomly selected between 10 and 40% 
strain – and used to interpret the strains to which they were pulled. This is intended to imitate the intended 
biomechanical applications and obtain an estimate of how reliable the sensors will perform. 

3.3. Results 
3.3.1. Viscous Properties 
It was observed that the multi-layered architecture mitigated the sensor stresses and exhibited a lower 
modulus of elasticity, which remained more consistent at higher strains and much more similar to silicone 
(Figure 3.3a). It was also observed that by adding a multi-layered architecture, the sensors still exhibited 
viscoelasticity (as can be observed by the energy absorbed the single- and multi-layered sensors in Figure 
3.3b). However, when the strain gauges were exposed to multiple high strains and relaxations, it was observed 
that the multilayered sensors experienced significantly less viscoelastic deformation. Viscoplastic deformation 
was quantified as the difference between the energy absorbed by the material the initial cycle and the energy 
absorbed during cycles 2-5, as depicted in Figure 3.3c. 

 

Figure 3.3 (a) The stress-strain diagram for single-layered nanocomposite sensor (light gray) and the multi-layered strain 
gauge (dark gray) and pure silicone (black) pulled at a constant rate of 3.0 mm/s. (b) Force vs strain during a cyclic test 
between 0 and 75% strain, depicted for a silicone sensor (black), conventional sensor (light gray), and multilayered 
sensor (dark gray). Notice that during the recovery, the multilayered sensor recovers more than the conventional sensor 
(the sensor buckles at approximately 15% strain rather than 20% strain). (c) the viscoplasticity of the different strain 
gauges during repeated cyclic loads, quantified as the energy absorbed and not recovered by the material. 

Unsurprisingly, these effects also greatly influenced the electrical signals of the sensors during the cyclic tests. 

3.3.2. Electrical Signal 
As observed in past studies, the first stress-relaxation cycle exhibited significantly different mechanical and 
electrical properties [144], presumably due to the Mullins effect [151]. The first cycle therefore served to 
precondition the sensors and was ignored in the electrical signal processing. 
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3.2.1 Quasi-static model 
The quasistatic response of the model (see 3.1) was evaluated by sampling the sensor resistance during the 
incremental strain tests after the sensor had been held at each strain for a period of one second (thus allowing 
the transient spikes to dissipate). The spline fit curve, using the methodology described in Section 2.2, are 
depicted below in Figure 3.4. 

 

Figure 3.4 Comparison of the resistance-strain relationship (top) and the relative signal change at different 
strains (bottom) of the single-layered sensors (left) and the multi-layered sensors (right) during tension. The 
shade of each line indicates the cycle performed (darker shades represent later cycles). 

The monotonic region (i.e., the region during which the resistance only decreased with increased strains) was 
approximately 18-50% strain for the single-layered sensors, while the monotonic region for the multi-layered 
sensors was approximately 5-50% strain. It was also observed that the variation in sensor resistance was much 
lower for the multi-layered sensors than the single-layered sensors (see Table 3.1). 

 

Table 3.1 Summary of the relative variation in sensor readings as a percentage of the average sensor resistance, 100 ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝜖𝜖)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑅𝑅𝜖𝜖)
, at each strain level for the single- and multi-layered sensors for the four samples taken of each and the 

perfect drift-reduction. 

Strain 
(percent) 

Single-Layered 
Drift 

Multi-Layered 
Drift 

Drift Reduction 
(percent) 

0 4.52 2.78 38.5 

10 4.78 1.52 68.2 

20 4.21 1.35 67.9 

30 3.24 1.37 57.7 

40 2.85 1.24 56.5 

50 2.75 0.71 74.2 
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3.2.2 Dynamic model 
The parameters of the dynamic model (see Eq 3.2) were determined by analyzing the change in resistance as 
the strain gauge was transitioned between quasistatic strains (see Figure 3.5). 

 

Figure 3.5 Depiction of the strain profile (blue) and corresponding resistance (orange). The spike magnitude 
is indicated by the dashed red line and the spike dissipation under constant strains is estimated as an 
exponential decay with a time constant of 𝜆𝜆. 

The parameters for the spike magnitude, 𝑆𝑆, are summarized in Table 3.2. Note that the multi-layered sensors 
exhibited higher resistance spikes than the single-layered counterparts, especially at strains below 20 percent. 
However, at higher strains, the spike magnitudes were very similar. 

Table 3.2 Summary of the resistance spikes, in percent increase in sensor resistance 100 ∗ �𝛺𝛺
𝛺𝛺
�, after an increase / 

decrease in strain, for the single- and multi-layered strain gauges. 

Strain 
(percent) Single-Layered Multi-Layered 

0 6.36 31.43 

10 7.57 33.91 

20 13.85 29.69 

30 20.24 23.45 

40 17.14 18.29 

50 14.45 14.23 
 

The rate of resistance spike was estimated by applying an exponential resistance spike decay choosing a 
coefficient that minimized the squared difference between the observed and estimated resistances using 
Matlab’s fminunc function. This method was repeated for estimating the exponential decay coefficient for 
stresses, 𝜆𝜆𝜎𝜎, for the single-layered and multi-layered sensors. 

The 𝜆𝜆 values for the strain gauges were both dependent on the strain magnitude and the sensor architecture 
(the multi-layered sensors had higher coefficient values than the single-layered counterparts). 
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Table 3.3 A summary of the spike exponential decay coefficients (𝜆𝜆) and stress relaxation coefficients (𝜆𝜆𝜎𝜎) for the single- 
and multi-layered strain gauges. The stress relaxation coefficients were ignored when the initial stress was less than or 
equal to zero. 

Strain 
(percent) 

Single-
Layered 𝜆𝜆 

Single-
Layered 𝜆𝜆𝜎𝜎 

Multi-
Layered 𝜆𝜆 

Multi-
Layered 𝜆𝜆𝜎𝜎 

0 3.23 ~ 4.75 ~ 

10 3.31 ~ 5.11 4.51 

20 3.40 ~ 6.83 4.71 

30 4.96 4.63 8.32 4.70 

40 4.74 4.62 7.28 4.68 

50 5.83 4.39 6.33 4.38 
 

3.3.3. Sensor Performance 
A multi-layered and single-layer sensor were both tested to evaluate their ability to interpret strain levels as a 
function of electrical signal at ten randomly selected strains. The mean absolute error of the prediction for the 
single-layered sensor was 14.99 percent strain, while the mean absolute error of the multi-layered sensor was 
4.77 percent strain (see Figure 3.6). 

 

Figure 3.6 A summary of the strain interpretation performance for the multi-layered sensor (black) and the single-layered 
sensor (gray). Any dot that falls on the slanted black line is correct, and the mean absolute error is the vertical distance 
between a dot and the slanted dashed line. 

3.4. Discussion 
It was observed that high-deflection, nanocomposite strain gauges exhibited significantly different material 
and electrical properties when reinforced with a multi-layered silicone architecture. It was observed that the 
multi-layered architecture mitigated internal stresses at high strains and made the strain gauges less prone to 
buckling during cyclic strains. 
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The change in material properties also resulted in notable differences in the electrical signal. One of the key 
improvements of the multi-layered sensors was that of signal monotonicity (i.e., that the resistances changes 
only in one direction – either increasing or decreasing – with additional strain) [146]. The multi-layered 
sensors exhibit a much larger monotonic region, which is likely be related to the region at which the strain 
gauges were under tension. 

A previous study hypothesized that the resistance spikes and dissipation were correlated with internal stresses 
[144]. The resistance spikes of the multi-layered sensors were significantly larger than the resistance spikes of 
the single-layered sensors at low strains. It is presumable that this is also due to the multi-layered architecture 
which prevented the strain gauge from buckling at low strain levels, thereby resulting in larger changes in 
stress per incremental strain at low strains. 

It was also found that rate of spike dissipation (𝜆𝜆) was higher for the multi-layered sensors than the single-
layered sensors. The 𝜆𝜆 values for the single-coated sensors were very similar to the rate of dissipation of 
internal stresses after an incremental strain (𝜆𝜆𝜎𝜎). However, the 𝜆𝜆 values of the multi-layered strain gauges 
were slightly higher than the 𝜆𝜆𝜎𝜎 values, indicating that the resistance spikes dissipate faster than the internal 
stresses for the multi-layered sensors. It’s possible that the multi-layered architecture causes an expedited 
recovery along the interface with the nanocomposite sensor, and therefore an accelerated spike dissipation, 
while the stresses of the internal nanocomposite continue to dissipate as a similar rate as the single-layered 
strain gauges. 

It is important to note that this study refers to stress as the measured forced divided by the nominal cross-
sectional area of the single- and multi-layered strain gauges. Force measurements during the Instron tests for 
the multi-layered sensors were larger than the force measurements for the single-layered sensors, but the but 
the cross-sectional area was more than five times larger due to the added thickness and width, resulting in 
lower net stresses. Additional studies ought to consider differentiating between the average cross-sectional 
stress and local stress concentrations, particularly at the interface between the multi-layered architecture and 
the internal nanocomposite sensor. 

Overall, the multi-layered sensors were able to interpret strain levels with much higher accuracy than the 
single-layered counterpart during extremely high-strain applications. The enhanced performance of the high-
deflection strain gauges will facilitate more accurate spinal motion monitoring and improved phenotype 
identification for patients suffering from chronic low back pain. This will assist clinicians to prescribe 
treatment paradigms according to each patient’s individual case and improve outcomes for millions 
worldwide [44]. 
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4.0. Abstract 
Background Context: Chronic low back pain (CLBP) is a prevalent ailment that has been associated with 
many physiological, psychological, social, and economic consequences. There is a plethora of available 
patient-reported outcomes (PROs) that quantify the effects of CLBP on the different aspects of an 
individual’s well-being, some of which are highly correlated with each other, but it is currently unknown 
whether CLBP is a moderating factor in the relationships between PROs. 

Purpose: (1) Assess the effects of CLBP on various legacy and PROMIS patient-reported outcomes (PROs). 
(2) Evaluate the relationship between PROs in the context of CLBP. (3) Identify a concise set of features to 
summarize multiple PROs. 

Study Design: Cross-sectional study. 

Patient Sample: 233 subjects, 133 of whom experience CLBP. 

Outcome Measures: Pain Intensity, Oswestry Disability Index (ODI), General Anxiety Disorder 2 (GAD), 
Pain Catastrophizing Scale 6 (PCS), International Physical Activity Questionnaire Metabolic Equivalent Task 
(IPAQ MET) minutes / week, PROMIS Pain Interference 4a, PROMIS Physical Function 6b, PROMIS 
Sleep Disturbance 6a, PROMIS 4-item Depression, and PROMIS 4-item Anxiety. 

Methods: Welch T-tests were used to compare the scores from cases (individuals who experience CLBP) and 
controls (individuals who are CLBP asymptomatic). Linear regressions, accounting for presence of CLBP as a 
binary variable, were fitted to evaluate the relationship between different reported outcomes. An exploratory 
factor analysis was conducted to identify a concise set of factors summarizing the variance in the PROs. 

Results: Case participants reported a lower quality of life in terms of Pain Intensity, ODI, PROMIS Pain 
Interference, General Anxiety, Pain Catastrophizing, PROMIS Physical Function, PROMIS Anxiety, and 
PROMIS Depression than control participants. Strong correlations were observed between several PROMIS 
metrics with Pain Intensity and ODI (|𝑟𝑟| ranging 0.83-0.91). CLBP was a significant moderating variable in 
these relationships. Moderate to strong correlations were observed between PROMIS metrics with PCS and 
GAD (|𝑟𝑟| ranging 0.35-0.81). Small correlations were observed between PROMIS metrics and IPAQ MET 
minutes / week (|𝑟𝑟|<0.28). Most of the variance from the PROs included in this study can be attributed to 
five latent factors: (1) Pain and Physical Limitations and (2) Psychological Distress, (3) Physical Activity, (4) 
Sleep Deprivation, and (5) Pain Catastrophizing. 

mailto:dfullwood@byu.edu
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Conclusions: PROs that quantify physiological and psychological well-being are strongly related to each other. 
When monitoring patient well-being and progress, researchers should account for the biopsychosocial effects 
of CLBP by including control subjects to make evaluations against a baseline. 

Keywords: Patient-reported outcomes, PROMIS, moderating factor, regressions, biopsychosocial, chronic 
low back pain, lumbar spine 

 

4.1. Introduction 
Pain mitigation is one of the primary components of nearly every medical intervention [1]. One of the most 
common health ailments, which has even been deemed “the nemesis of medicine” [2],  is low back pain 
(LBP). Studies have estimated the lifetime prevalence of LBP of the general population between 50-80% [10-
12]. Not only is LBP prevalent, but it also has the potential to be very severe. It is known to cause functional 
limitations and reduced quality of life [8], and has even been identified as the leading cause of disability 
worldwide [16, 17]. 

When LBP persists beyond or recurs after three months, it is characterized as chronic (CLBP) [3]. 
Approximately 10% of LBP cases will develop into CLBP [153], which has been associated with direct and 
indirect medical costs, reduced physical activity, decreased quality of life, anxiety, and depression [21, 43, 55, 
154]. 

The effects of CLBP and other ailments are often quantified using patient-reported outcomes (PROs). PROs 
are being implemented by healthcare providers with increasing frequency to inform clinical decisions [97]. 
Substantial research has been conducted that evaluates the average PROs among patients suffering from 
different ailments [105-107], analyzes the change of PROs prior to and following intervention [108-114], 
identifies underlying factors to reduce the dimensionality of PROs [115, 116], and quantifies the correlation 
between different PROs among symptomatic patients [117-123]. However, after an exhaustive review of the 
literature it appears there are few  current studies that investigate PRO correlations using data from subjects 
with and without CLBP [107], and none that considered the moderating effects of CLBP on the relationship 
between PROs. While the correlation between related PROs (such as disability and physical impairment) may 
naturally be assumed to be strong, confounding biopsychosocial factors may obscure the relationship when 
assessing patients with CLBP, and merit further investigation [124]. Chronic pain is a complex, multifactorial 
phenomenon that differs from transient, acute pain. This is due to the prolonged nature of chronic pain that 
alters the biopsychosocial sensation of pain. Over an extended period of time, the psychological, social, 
emotional, and behavioral consequences of pain intertwine to characterize pain perception and clinical 
manifestations [155, 156]. Imaging studies have shown that individuals suffering from chronic pain exhibit 
changes in the central nervous system synapsing that may influence the feeling of pain[157], independent of 
the pain stimuli itself [156]. Furthermore, the ability to self-regulate and adapt is an important resource to 
coping with pain and distress. However, this resource can be fatigued by prolonged conditions. As individuals 
who experience chronic pain are depleted of their ability to self-regulate, they also experience other 
exacerbated biopsychosocial comorbidities [158]. These key differences must be thoroughly understood in 
order to provide more effective medical intervention for patients suffering from chronic pain [156]. This 
study therefore seeks to fill the current knowledge gap regarding how different aspects of well-being (as 
quantified by PROs) relate to each other for individuals who suffer from CLBP, and how these relationships 
differ for individuals who experience either no LBP or mild transient LBP (which most of the population will 
experience at some point). This was done by performing the following analyses:  

(1) Quantify the difference in PROs between the cases (study participants who suffer from CLBP) and 
the controls (participants who do not experience CLBP symptoms). 
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(2) Evaluate the correlation between the relatively new PROMIS metrics with more established PROs 
and investigate the moderating effects of CLBP on these correlations. 

(3) Identify the latent factors (i.e., underlying dimensions which summarize the observed features) of the 
PROs data via an exploratory factor analysis to identify the distinct aspects of well-being. 

 

The PROs of interest in this work include several commonly used and thoroughly validated questionnaires 
(referred to in this study as legacy PROs) and the relatively new Patient-Reported Outcomes Measurement 
Information System (PROMIS) Short Forms metrics. These measurements encompass the PROs collected by 
the Back Pain Consortium Research Program [159] and additional metrics. A brief description of each PRO is 
as follows: 

• Pain Intensity: Low-back pain intensity was measured using a numeric rating scale from 0-10 (0 
representing ‘no pain’ and 10 representing the most severe pain possible). Pain mitigation is one of 
the primary purposes of nearly every medical intervention [1]; and low-back pain is also one of the 
most frequent causes for hospitalizations, physician visits, and medical consultation [21, 104].It is a 
vital metric to consider when assessing patient well-being. 

• Oswestry-Disability Index (ODI): Spine-related disability was measured using the widely used ODI 
metric [98]. The ODI metric has been thoroughly vetted and is frequently used as the gold standard 
for quantifying disability related to LBP [118, 160] and has shown strong experimental reliability 
when evaluating patients with chronic pain [104]. 

• General Anxiety Disorder 2 (GAD): General anxiety disorder is an ailment in which an individual 
suffers from a generic worry. It is not caused by current stressful events in an individual’s life, though 
stress can aggravate the condition [161]. The GAD-2 questionnaire is used to identify depression of 
mood over a two-week period, and has shown acceptable accuracy in past studies [162]. 

• Pain Catastrophizing Scale 6 (PCS): Pain catastrophizing is “an exaggerated negative orientation 
towards actual or anticipated pain experiences”, which past studies have found to be associated with 
higher pain intensities [163]. The PCS-6 is designed to capture three psychological components of 
catastrophizing: helplessness, rumination, and magnification [164]Short Form International Physical 
Activity Questionnaire (IPAQ): Self-assessed physical activity in the week prior to subject 
participation in the study was estimated in terms of Metabolic Equivalent Task (MET) minutes per 
week. Previous studies have compared IPAQ scores to objective metrics of physical activity, and 
found it to be moderately reliable for estimating vigorous physical activity [99] but an uncertain 
metric for evaluating total aerobic activity [99, 100]. However, due to the innately subjective nature of 
patient-satisfaction, an individual’s self-perception of physical activity may be more valuable than  
precise estimations of activity [104]. 

• Patient-reported outcomes measurement information systems (PROMIS) metrics: PROMIS scores 
are “a set of person-centered measures that evaluates and monitors physical, mental, and social health 
in adults and children” [101]. Past studies have evaluated PROMIS metrics and concluded them to be 
“efficient, flexible, and precise” [97]. Questionnaire responses for each PROMIS metric are used to 
calculate T-scores, which are intended to achieve a normal distribution with a mean metric score of 
50 and  a standard deviation of 10 for the general population [102, 103]. Past studies have found that 
PROMIS metrics T-scores are less prone to floor effect, easier to implement in clinical settings, and 
more comprehensive than other metrics such as the ODI [118, 120]. The short-form PROMIS 
metrics implemented in this research included the PROMIS Pain Interference 4a, PROMIS Physical 
Function 6b, PROMIS Sleep Disturbance 6a, PROMIS 4-item Depression, and PROMIS 4-item 
Anxiety. 
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4.2. Methods 
4.2.1. Data Collection 
Two cohorts of subjects were recruited for this study – individuals who suffer from CLBP and control 
subjects who do not experience CLBP symptoms [145]. The control group was recruited via flyers to the local 
community. The group that was CLBP symptomatic was recruited from individuals who are already 
scheduled for physical therapy relating to CLBP. Participants were between the ages of 35 and 65 (which is 
the age range with the greatest CLBP prevalence [153]). For purposes beyond the scope of this work, it was 
required that all participants be capable of standing and moving without an assistive device and be eligible for 
an MRI scan. As stated previously, CLBP is a persistent ailment that affects a subset of the population [21], 
but nearly every individual will experience an acute episode of LBP at some point [10]. Hence, the “control” 
population and the “case” population tend to be very heterogeneous, often making it difficult to differentiate 
between the effects of varying severities of CLBP and with those of intermittent acute LBP [44]. In order to 
mitigate this issue, past studies have recruited only individuals with well-documented cases of LBP [46]. In 
our study, an important aspect was to avoid conflating the effects of persistent CLBP and the symptoms of 
severe transient LBP symptoms or other acute ailments. Therefore, the exclusion criteria for participants in 
the control group were current or history of treatment for lumbar spine pain, known scoliosis, and LBP pain 
intensity of greater than 2.5 on a scale of 0-10. The CLBP had to be primarily axial (as opposed to radiating, 
as seen in radiculopathy), persistent for at least three months prior to the study, and the Pain Intensity score 
had to be at least 2.5 on a scale of 0-10. Individuals with knee or hip surgery were excluded from the study 
for both cases and controls. See also Figure 4.1. 

 
Figure 4.1 Individuals who were invited to participate in study and met eligibility criteria. 

A total of 233 subjects were recruited for the study – 133 who experienced CLBP symptoms and 100 subjects 
who served as controls. Participant demographics are summarized in Table 4.1. 
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Table 4.1 Summary of the subject demographics, in terems of the average values and standard deviation (stdev), for the 
study participants. 

Demographic Control Subjects Subjects with CLBP 

Number of subjects 100 133 

Age [Stdev] (yrs) 47.8 [7.5] 49.0 [8.8] 

Height [Stdev] (cm) 174.3 [9.5] 172.2 [18.0] 

Weight [Stdev] (kg) 79.5 [15.9] 85.2 [20.2] 

BMI [Stdev] (kg/m2) 26.1 [4.5] 28.3 [6.1] 

Sex at Birth (Female / Male) 43 / 57 64 / 69 

 

All demographic data and PROs were collected using an electric survey sent to the study participants. (the 
IPAQ questionnaire was included in the study shortly after it was initiated, hence the IPAQ MET minutes / 
week scores for the first 30 participants are missing from this study). The participant responses were de-
identified, then uploaded to the Back Pain Consortium Data Portal [159], along with other features of 
interest, to be used in ongoing and future research initiatives [57]. 

4.2.2. Data Processing 
It has been observed that IPAQ MET scores are prone to overestimations [165]. Past studies have warned 
that including extreme outliers in a dataset can lead to spurious findings [166], so can the removal of outliers 
without due cause and documentation [167]. To mitigate both risks, subsequent statistical tests including the 
IPAQ MET scores were conducted twice. The first analyses were conducted after filtering extreme outliers in 
the IPAQ responses (i.e., z-scores > 3, which is slightly more aggressive than the recommendation by 
Tabachnik and Fidell [168]) and reported. The second analysis was conducted including the entire dataset. 
The effects of including the entire dataset in the analyses were noted. 

Several of the analyses performed in this study assume the data have a normal distribution. While the 
PROMIS metrics are designed to achieve a normal distribution [102, 103], the other PROs of interest in this 
study were not designed with the intention of achieving any particular spread. The skewness of the PRO 
distributions was quantified using Python’s skew function to calculate the Fisher-Pearson coefficient. 
Significant skewness (designated in this study as having a Fisher-Pearson coefficient outside the bounds of -1 
to 1, which indicates right- and left-skewness respectively) was mitigated by transforming the data prior to 
conducting statistical analysis. 

4.2.3. Data Analysis 
Several statistical analyses were conducted to achieve the aims described in the Introduction. In each test, a p-
value of less than 0.05 was considered statistically significant, after accounting for multiple comparisons using 
the Holm correction factor. 

 

Aim One: Comparison of PROs from Cases and Controls 

Welch T-Tests were used to evaluate the differences of the PROs distributions between the cases and 
controls. The p-value of the comparison of Pain Intensity between the two groups was not calculated 
(calculating this statistic would have been improper due to the inclusion-exclusion criteria – individuals with a 
Pain Intensity below 2.5 were excluded from the cases, and individuals with a Pain Intensity were excluded 
from controls). 
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Aim Two: Correlations between PROs 

The second objective of this study was to evaluate the strength of the correlation between legacy PROs (Pain 
Intensity, ODI, GAD, PCS-6, and IPAQ MET Minutes/Week) with the PROMIS metrics (Pain Interference, 
Physical Function, Sleep Disturbance, Depression, Anxiety), and test whether CLBP is a moderating factor in 
the relationships. Linear regressions were employed to quantify the strength and statistical significance of the 
correlations (after skewness has been corrected for, when necessary). The linear regression models were of 
the following forms: 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 4.1 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 4.2 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽3𝑥𝑥𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  4.3 
 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽2𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 4.4 
 

In each equation, 𝑦𝑦 represents one of the five legacy PROs and 𝑥𝑥 represents one of the five PROMIS 
metrics, for a total of 25 regressions analyses performed. 

• In Eq 4.1, the simplest form of linear regression is considered. The 𝛽𝛽0 coefficient represents the y-
intercept and the 𝛽𝛽1 coefficient represents the slope depicting the average effect on the dependent 
variable 𝑦𝑦 per unit increase in the independent variable 𝑥𝑥. In this model, the relationship between the 
legacy and PROMIS PRO is independent of the presence of CLBP. 

• In Eq 4.2, the additional coefficient 𝛽𝛽2 represents the difference in y-intercepts between cases and 
controls. CLBP status is indicated by 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which has a value of 1 for subjects who suffer from 
CLBP and a value of 0 for control subjects. The nature of the relationship between PROs (i.e., the 
slope of the regression) in this model is the same for both cases and controls, but the presence of 
CLBP is associated with an offset of the dependent variable. 

• In Eq 4.3, the 𝛽𝛽3 coefficient represents the difference in slope for the y-intercept between cases and 
controls, indicating that the nature of the relationship between PROs (i.e., the slope) is altered by the 
presence of CLBP and therefore differs for the two groups. 

• In Eq 4.4, the dependent variable 𝑦𝑦 is estimated using the average value for the two groups. This 
model is applicable when the average value of the legacy PRO (𝑦𝑦) differs, but the legacy PRO and 
PROMIS score (𝑥𝑥) are not related to each other. 

 

The most appropriate equation to model the relationship between the PROMIS metric, legacy PRO, and the 
effect of CLBP was determined using the logic displayed in the decision tree in Figure 4.2. 
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Figure 4.2 Decision tree indicating the process for selecting whether a relationship between the legacy and PROMIS 
PRO exists, and if so in what manner the presence of CLBP influences the relationship. 

To reduce the risk of Type I Error, each additional model feature was added incrementally after the base 
model was proven statistically significant (Eq 2 was not considered unless Eq 1 was proven statistically 
significant, and Eq 3 was not considered unless Eq 2 was proven statistically significant). At each decision 
tree node, the F-statistic and corresponding p-value was calculated to determine the statistical significance of 
the additional model feature (Eq 4.5). 

 𝐹𝐹 =
(𝑅𝑅𝑃𝑃2 − 𝑅𝑅𝑄𝑄2)/(𝑃𝑃 − 𝑄𝑄)

(1 − 𝑅𝑅𝑝𝑝2)/(𝑛𝑛 − 𝑃𝑃 − 1)
~𝐹𝐹𝑃𝑃−𝑄𝑄,𝑛𝑛−𝑃𝑃−1 4.5 

 
𝑅𝑅𝑃𝑃2 – The variance explained by the model with 𝑃𝑃 features. 
𝑅𝑅𝑄𝑄2  – The variance explained by the model with 𝑄𝑄 features. 
𝑃𝑃, 𝑄𝑄 – The number of variables in the regression models being compared (Eq 1 and Eq 4 have one variable, Eq 2 has two variables, 
and Eq 3 has three variables). When testing the statistical significance of Eq 1 and Eq 4, 𝑄𝑄 = 𝑅𝑅𝑄𝑄2  = 0. 
𝑛𝑛 – The number of datapoints observed. 
 

The strength of the correlations was evaluated using the Cohen cut points for the absolute values of the 
Pearson’s correlation coefficients 𝑟𝑟 (|𝑟𝑟|=0.10-0.30 is considered small, |𝑟𝑟|=0.31-0.50 is considered moderate, 
and |𝑟𝑟|>0.50 is considered large [165, 169]). 

 

Aim 3: Identify Distinct Components of Well-Being 

The third aim of this analysis was to uncover the minimal set of independent theoretical constructs that could 
account for the observed trends in the PRO data (including both the legacy and PROMIS metrics). These 
constructs are comprised of latent factors, which are unobservable independent variables that are either 
causally related to or associated with the observed variables. Latent factors are essentially linearly independent 
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hidden components that summarize the variance in the raw data. In contrast, however, to the original PROs, 
there is no covariance between latent factors. We utilized a machine learning algorithm to identify these latent 
factors through an Exploratory Factor Analysis (EFA) [170].  

Prior to analysis, the z-scores of each observed PRO were calculated so that each would have an equal weight 
in the EFA. The PROMIS metric z-scores were calculated according to the theoretical distribution by 
subtracting 50 and dividing by 10 [103]. Other PRO z-scores were calculated using Python’s zscore function 
(after mitigating skewness when necessary). 

The latent factors were identified by conducting a principal component analysis on the z-score data and 
applying a varimax rotation, which maximizes the variance explained by each original component by a single 
factor. This process was repeated multiple times to determine how many resultant latent factors were needed 
to capture at least 50% the variance in each of the original z-score data. I.e., the first EFA analysis identified a 
single latent factor, the second EFA analysis identified two latent factors, etc., until the resultant latent factors 
identified could account for at least 50% of the variance in every PRO z-score data. 

The Coefficients of Determination were calculated between the PRO z-scores and the resultant latent factors 
to provide an interpretation of the factors. 

 

4.3. Results and Discussion 
A summary of the Fisher-Pearson coefficients for each PRO investigated in this study (prior to and post 
transformation) are recorded in Table 4.2. 

Table 4.2 Summary of the data collected and the normality skewness before and after transformation (~ in the after-
transformation column indicates that no transformation was applied, and the Fisher-Pearson coefficient remained 
constant). 

PRO Fisher-Pearson 
(before transformation) 

Transformation 
Applied 

Fisher-Pearson 
(after transformation) 

Pain Intensity 0.178 None ~ 

ODI 1.005 Square-root 0.001 

IPAQ MET Minutes / Week 3.106 Square-root 0.685 

PROMIS Pain Interference T-Score 0.148 None ~ 

PROMIS Physical Function T-Score -0.095 None ~ 

PROMIS Sleep T-Score 0.189 None ~ 

PROMIS Depression T-Score 0.726 None ~ 

PROMIS Anxiety T-Score 0.599 None ~ 

 

It was noted that the ODI and IPAQ MET minutes / week scores were both right-skewed. This was 
mitigated with a square-root transformation, (in both cases, this was the minimal transformation needed to 
achieve a Fisher-Pearson coefficient within the range of -1 to 1 while maintaining as much of the original data 
characteristics as possible).  

4.3.1. Impact of CLPB on Well-Being 
Boxplots were used to visually depict the differences in the PRO scores between cases and controls in Figure 
4.3. 
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Figure 4.3 Boxplots contrasting the PRO values between controls (blue) and cases (red). The raw data collected (prior to 
the transformation to achieve normal sample distributions) are depicted here. 

A summary of the results from the Welch T-tests is recorded in Table 4.3. 

Table 4.3 Summary of the Student T-tests to evaluate the difference in PRO among the control and case groups (group 
averages and standard deviations are reported in terms of the raw data, and the t-statistic and corresponding p-values are 
reported in terms of the normalized dataset when necessary to satisfy the assumptions of a Welch T-test). 

PRO Control Cohort 
Mean [Stdev] 

Cohort w/ CLBP 
Mean [Stdev] t-statistic Adjusted 

p-value 

Pain Intensity 0.59 [0.74] 5.45 [1.52] -30.61 N/A** 

ODI 3.57 [4.83] 27.41 [15.32] -19.85 0.000* 

GAD 0.63 [1.04] 1.56 [1.75] -5.01 0.000* 

PCS-6 5.54 [4.53] 9.50 [5.79] -5.85 0.000* 

IPAQ MET Minutes / Week 5648 [5758] 4678 [5958] 1.72 0.087 

PROMIS Pain Interference 44.84 [5.71] 61.56 [6.99] -20.07 0.000* 

PROMIS Physical Function 55.34 [5.61] 41.29 [7.10] 16.91 0.000* 

PROMIS Sleep Deprivation 46.12 [7.24] 55.78 [8.36] -9.43 0.000* 

PROMIS Depression 45.86 [6.89] 42.46 [9.45] -6.17 0.000* 
PROMIS Anxiety 47.16 [7.09] 51.98 [9.44] -4.45 0.000* 

* Statistical significance was observed in the comparison  
** The p-value of the Pain Intensity comparison was not calculated due to the threshold criterion involving this metric 

It was observed that individuals who reported experiencing CLBP symptoms also reported PROs that reflect 
a statistically significant lower quality of life in terms of ODI, GAD, PCS, PROMIS Pain Interference, 
PROMIS Physical Function, PROMIS Depression, and PROMIS Anxiety. A stark difference in the Pain 
Intensity scores between the two cohorts was also observed. These findings are consistent with results from 
past studies that employed similar metrics [106, 107]. 

There was no statistically significant difference in the IPAQ MET Minutes / Week scores of the cases and 
controls, neither after removing outliers nor when considering the entire dataset. Several previous reported 
works have evaluated the role of CLBP on self-reported or measured physical activity, sometimes with 
conflicting results. Several review articles have reported a similar conclusion that CLBP may either prompt 
normal or increased physical activity (i.e., an ignore and persist approach) [171] or reduced physical activity 
consequent to fear avoidance [150, 152], depending upon other psychosocial factors.  Consequently, there 
may exist sub-groups of patients with CLBP who exhibit reduced, altered, or increased physical activity, and 
the contrasting effects of the different sub-groups appear to negate each other when evaluating patients with 
CLBP as a whole [172, 173]. 
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While evaluating the PRO scores from study participants, this study also afforded the opportunity to evaluate 
one of the purported advantages of the PROMIS metrics, namely, robustness against flooring effects. While 
the distribution of PROMIS metric scores in this study affirmed that flooring effects did not occur 
(consistent with past investigations [123]), a significant number of controls subjects reported the same lower 
value for PROMIS Pain Interference and PROMIS Depression, resulting in some of the same negative 
effects as flooring.  

4.3.2. Relationships Between Reported Outcomes 
The resulting correlations between PROs were generated and depicted as shown in Figure 4.4. The type of 
regression is indicated by the line(s) of best fit on each subplot. Relationships best described by Eq 4.1, 4.2, 
4.3, and 4.4 are indicated by a single purple line of best fit, two parallel purple lines of best fit, and two non-
parallel lines of best fit, and two horizontal dashed lines of best fit, respectively. 

 
Figure 4.4 Scatterplots and the respective line of best fit (when applicable) depicting the relationship between the 
different PROs for subjects who experience CLBP symptoms (red) and asymptomatic subjects (blue).  
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The different model parameter values, statistical test results, and the absolute value of the Pearson’s 
correlation coefficient (|𝑟𝑟|) from the regressions are summarized in Table 4.4. 

Table 4.4 Summary of the model parameters and overall p-values and |𝑟𝑟| values for each PRO combination correlation. 
Note that the interaction terms (𝛽𝛽2 and 𝛽𝛽3) indicate the difference in the y-intercept and slope from the baseline values 
(𝛽𝛽1 and 𝛽𝛽2). If no statistically significant model was found to depict the relationship, the statistically insignificant 
parameters from Eq 4.1 were reported. 

Legacy 
PRO 

PROMIS T 
Score 𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 𝛽𝛽3 Adjusted 

p-value 𝑟𝑟 

Pa
in

 In
te

ns
ity

 

Pain Interference -1.874 0.055 -0.367 0.070 0.000 0.913*** 

Physical Function 2.218 -0.029 7.890 -0.083 0.000 -0.906*** 

Sleep Deprivation -1.102 0.037 4.513  0.000 0.88*** 

Depression -0.505 0.024 4.709  0.000 0.881*** 

Anxiety -1.005 0.034 4.704  0.000 0.884*** 

O
D

I 

Pain Interference -5.815 0.160 1.009  0.000 0.910*** 

Physical Function 10.124 -0.158 1.456  0.000 -0.909*** 

Sleep -1.434 0.060 0.524 0.046 0.000 0.852*** 

Depression -1.863 0.070 3.224  0.000 0.832*** 

Anxiety -1.957 0.070 3.343  0.000 0.833*** 

PC
S 

Pain Interference -7.073 0.273   0.000 0.510*** 

Physical Function 22.413 -0.309   0.000 -0.523*** 

Sleep Deprivation -8.062 0.307   0.000 0.503*** 

Depression -9.434 0.327 1.798  0.000 0.600*** 

Anxiety -10.759 0.346 2.290  0.000 0.627*** 

G
A

D
 

Pain Interference -0.910 0.030   0.000 0.405** 

Physical Function 2.121 -0.029   0.000 -0.354** 

Sleep Deprivation -1.179 0.037   0.000 0.436** 

Depression -2.172 0.059   0.000 0.675*** 

Anxiety -2.803 0.069 0.148  0.000 0.808*** 

IP
A

Q
 M

E
T 

M
in

ut
es

 /
 W

ee
k 

Pain Interference 107.843 -0.860   0.003 -0.222* 

Physical Function 5.770 1.170   0.000 0.276* 

Sleep Deprivation 127.155 -1.284   0.000 -0.283* 

Depression 111.710 -1.021   0.003 -0.232* 

Anxiety 99.133 -0.764   0.018 -0.167* 

* small correlation strength (|𝑟𝑟| is between 0.10 - 0.30) 
** moderate correlation strength (|𝑟𝑟| is between 0.30 - 0.50) 
*** large correlation strength (|𝑟𝑟| is between 0.50 - 1.00) 
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The relation between the back-specific legacy PROs (Pain Intensity and ODI) with the PROMIS metrics that 
inquire as to an individual’s general physiological well-being (PROMIS Pain Interference and Physical 
Functionality) demonstrated a strong correlation. Moderate to strong correlations were also observed 
between the legacy metrics that evaluate psychological well-being with the PROMIS metrics. These findings 
are consistent with observations from past investigations [94, 118, 123, 160, 163]. A novel finding from this 
study is that the presence of CLBP is a significant moderating factor in several of these correlations (i.e., the 
regression model for case participants had differing slopes and / or y-intercepts than the regression model for 
control participants). Specific observations regarding the relationships between PROs include the following. 

• PROMIS metrics with Pain Intensity: Large positive correlation strengths were observed between 
Pain Intensity with PROMIS Pain Interference, PROMIS Sleep Depression, PROMIS Anxiety, and 
PROMIS Depression for both cohorts, and a negative correlation with PROMIS Physical Function. 
The presence of CLBP altered the y-intercept in each of these cases – individuals with CLBP 
reported higher pain intensities for any average PROMIS score, e.g., individual with higher PROMIS 
Sleep Deprivation scores reported higher Pain Intensity scores for both cohorts, but at any given 
Sleep Deprivation score, the cases reported higher Pain Intensities than their control counterparts. 
Furthermore, the presence of CLBP had an interactive effect on the slope of the correlation for the 
cases of Pain Interference and Physical Function: the slopes of the relationships were steeper for 
cases than controls. This indicates that on average, a step increase of Pain Interference and Physical 
Function reported a more dramatic change in pain intensity for cases than controls. 

• PROMIS metrics with ODI: Similar trends were observed between the PROMIS metrics and ODI 
scores. Increases in Pain Interference, Sleep Deprivation, Anxiety, and Depression as measured by 
the PROMIS metrics were associated with increases in disability as measured by ODI. Increases in 
PROMIS Physical Function were associated with decreases in ODI. The presence of CLBP was 
again a significant moderating factor that influenced the y-intercept in each of these correlations. 
Cases had higher ODI scores on average than controls who reported similar PROMIS metrics. 
Furthermore, the presence of CLBP also had an interactive effect on the slope of the relationship 
between PROMIS Sleep Deprivation and ODI – increases in Sleep Deprivation scores were 
associated with a more dramatic increase in ODI scores for cases than controls. 

• PROMIS metrics with PCS: Large correlation strengths were observed between the Pain 
Catastrophizing metrics with the PROMIS metrics. For the PROMIS metrics that evaluate Pain 
Interference, Physical Function, and Sleep Deprivation, the presence of CLBP was not a significant 
moderating factor in the relationship. E.g., the relationship between Pain Interference and Pain 
Catastrophizing followed the same trend for both cohorts. However, CLBP was a significant 
moderating factor in the correlations for PROMIS Depression and PROMIS Anxiety. In both 
relationships, the presence of CLBP was associated with a higher y-intercept. E.g., increases in 
PROMIS Depression were associated with increases in Pain Catastrophizing for both cases and 
controls, but for a given PROMIS Depression score, cases on average had a higher Pain 
Catastrophizing score than controls. 

• PROMIS metrics with GAD: Moderate to large correlation strengths were observed between 
General Anxiety with the PROMIS metrics. The presence of CLBP was considered a moderating 
factor only in the relationship with PROMIS Anxiety, in which cases had a higher y-intercept than 
controls. 

• PROMIS metrics with IPAQ Minutes per Week: Statistically significant small correlations were 
observed between the PROMIS metrics and individuals’ IPAQ MET Minutes per Week ratings. 
IPAQ MET Minutes / Week demonstrated a negative correlation with Pain Interference, Sleep 
Deprivation, Depression, and Anxiety. A moderate positive correlation with Physical Function. 
These observations were consistent when outliers were removed from the dataset and when all 
observations were included. Past studies have also found physiological and psychological benefits to 
physical activity [174-177]. Future studies may find stronger correlations between physical activity 
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and reported outcomes by using objective activity measurements rather than self-reports activity [99, 
100]. 

 

The presence of CLBP significantly influenced the relationship between PROs for several of the relationship. 
Future studies that examine the correlation between PROs ought to also consider the interaction effects of 
whether study participants are diagnosed with an ailment that can impact the relationship between patient-
reported metrics. 

4.3.3. Distinct Components of Well-Being 
From the EFA analysis, a total of five latent factors were required to account for at least 50% of the variance 
in the original PRO z-score data. The latent factors were identified, and the Pearson’s correlation coefficient 
(𝑟𝑟) between the latent factors and PROs was calculated. The first factor demonstrated a strong correlation 
with Pain Intensity, ODI, PROMIS Pain T-score, and a strong negative correlation with the PROMIS 
Physical Function T-score. Due to its strong correlation with PROs that describe an individual’s physiological 
limitations, this latent factor was labeled “Pain and Physical Limitations”. The second factor identified 
demonstrated a strong correlation with PROMIS Depression T-score, PROMIS Anxiety T-score, and the 
General Anxiety Disorder metric, and was consequently labeled “Psychological Distress”. The final three 
latent factors nearly replicated the PROMIS Sleep Deprivation, IPAQ MET Minutes / Week metrics, and 
Pain Catastrophizing 6 scores. These were subsequently named “Sleep Deprivation”, “Physical Activity”, and 
“Pain Catastrophizing”. See Figure 4.5a, Table 4.5. These findings coincide with the correlation of 
determinations observed between the original features (see Figure 4.5b). 

Table 4.5 Summary of the Pearson’s correlation between the original PROs of interest and the identified latent factors. 

PROs Pain and 
Physical 

Limitations 

Psychological 
Distress 

Physical 
Activity 

Sleep 
Deprivation 

Pain Cata-
strophizing 

IPAQ MET Minutes / Week -0.099 -0.059 0.983 -0.077 -0.064 
Pain Intensity 0.905 0.152 0.022 0.098 0.091 
ODI 0.875 0.274 -0.079 0.217 0.142 
PROMIS Pain Interference 0.906 0.234 -0.077 0.156 0.121 
PROMIS Physical Function -0.878 -0.184 0.145 -0.173 -0.174 
PROMIS Depression 0.442 0.265 -0.121 0.833 0.149 
PROMIS Anxiety 0.284 0.791 -0.157 0.112 0.183 
PROMIS Sleep Deprivation 0.186 0.893 -0.059 0.067 0.199 
GAD 0.174 0.894 0.064 0.160 0.081 
PCS 0.309 0.409 -0.096 0.148 0.838 
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Figure 4.5 (a) The correlation of determination between the five factors identified -Physiological Ailment, Psychological 
Ailment, Sleep Deprivation, Physical Activity, and Pain Catastrophizing- with the original features PROs of interest and 
(b) and the correlation of determination between the PROs of interest. 

In summary, there are several PROs designed to quantify physiological well-being (Pain Intensity, ODI, 
PROMIS Pain Interference, and PROMIS Physical Function) that are highly correlated with each other, as 
are PROMIS metrics and GAD scores that quantify psychological well-being. However, PROMIS Sleep 
Deprivation, IPAQ MET Minutes / Week, and the Pain Catastrophizing Scale were relatively independent of 
the other PROs investigated in this study and appear to represent distinct components of well-being. 

4.3.4. Limitations 
There were certain limitations in this study. The sample size was relatively small and was recruited by a single 
institution. Due to CLBP being a very heterogeneous ailment, caution should be taken before generalizing 
results to a population [6, 44]. Because the subjects were being recruited as part of a larger, ongoing study, 
inclusion criteria for the study required that the subjects be eligible to receive an MRI scan and perform a 
variety of functional motions [145], which may have deterred individuals with metal implants or more severe 
CLBP symptoms from participating. Additional studies that collect data from control subjects may be of 
value to further develop this line of work. An additional, innate limitation of any PRO is that all self-
assessments are prone to biases: e.g., past investigations have observed that self-reported physical activity is 
generally higher than objective activity measurements [165], and self-reported pain intensity is associated with 
direct observations of pain behavior but influenced by several moderating factors [178]. However, many 
studies consider individual’s self-perception as a vital (and sometimes superior) metric of back pain due to its 
highly subjective nature [21, 104, 179]. 

4.3.5. Conclusions 
There is a plethora of PROs that are frequently used in clinical settings, and several of them show strong 
correlations with each other. However, from the PROs in this study there were five generalized and 
independent dimensions of well-being identified: Pain and Physical Limitations, Psychological Distress, Sleep 
Deprivation, Physical Activity, and Pain Catastrophizing. 

It was observed that CLBP is associated with worse quality of life in terms of Pain and Physical Limitations, 
Psychological Distress, Sleep Deprivation, and Pain Catastrophizing. Although it is a common supposition 
that individuals with CLBP would be less active than their asymptomatic counterparts, CLBP was not 
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associated with a decrease in Physical Activity in this study. This finding is consistent with reports from past 
studies [171, 180]. There is stronger evidence, however, that individuals with CLBP exhibit different motion 
patterns than controls during specified tasks [150, 152]. Furthermore, the relationships between the PROMIS 
metrics with IPAQ MET Minutes / Week were relatively weak. This implies that while the total time an 
individual spends in physical activity is an important metric, it may be more vital to consider the quality of 
physical activity (i.e., the range of motion, proper technique, etc.). 

Another key finding, which was also the primary motivation of the investigation, was that PROs take on 
different meanings according to an individual’s experience with CLBP. Unsurprisingly, there were strong 
relationships observed between the PROMIS metrics (which quantify how much pain limits activities and 
common tasks) with the legacy PROs of Pain Intensity and ODI (which quantify more of how much pain is 
being experienced by an individual) for both cases and controls. However, at any given PROMIS score, cases 
reported higher Pain Intensity and ODI scores than their controls counterparts on average. This indicates 
that cases experience higher pain levels than even their control counterparts who report similar same 
functionality (i.e., PROMIS) scores. While this study cannot infer a causal relationship based on observational 
data, it does highlight the important distinction between pain being experienced by an individual and pain 
hindering an individual’s ability to perform tasks. This finding re-emphasizes the need to develop new 
techniques to assist individuals with CLBP to manage their symptoms, even if those symptoms cannot be 
eliminated [156]. 

These findings provide important context for interpreting PROMIS and legacy PROs in future clinical 
investigations. This in turn may enable clinicians to more effectively monitor patient progress compared to 
the baseline of asymptomatic subjects, make more quantitative assessments of patients, and perhaps 
eventually contribute to the objective selection of treatment paradigms according to patient needs [44]. 
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5.0. Abstract 
Chronic low back pain (CLBP) is a prevalent and multifactorial ailment. No single treatment has been shown 
to dramatically improve outcomes for all CLBP patients, and current techniques of linking a patient with their 
most effective treatment lack validation. It has long been recognized that spinal pathology alters motion. 
Therefore, one potential method to identify optimal treatments is to evaluate patient movement patterns (i.e., 
motion-based phenotypes). Biomechanists, physical therapists, and surgeons each utilize a variety of tools and 
techniques to qualitatively assess movement as a critical element in their treatment paradigms. However, 
objectively characterizing and communicating this information is challenging due to the lack of economical, 
objective, and accurate clinical tools. In response to that need, we have developed a wearable array of 
nanocomposite stretch sensors which accurately capture the lumbar spinal kinematics, the SPINE Sense 
System. Data collected from this device are used to identify movement-based phenotypes and analyze 
correlations between spinal kinematics and patient-reported outcomes. 

The purpose of this paper is twofold: first, to describe the design and validity of the SPINE Sense System; 
and second, to describe the protocol and data analysis towards the application of this equipment to enhance 
understanding of the relationship between spinal movement patterns and patient metrics, which will facilitate 
the identification of optimal treatment paradigms for CLBP. 

Keywords: Chronic low back pain; Machine learning; Phenotypes; Clusters; Spinal motion; Optimization 

 

5.1. Introduction 
Low back pain (LBP) is a prevalent ailment. In the United States alone, it is estimated that 80% of the 
population will experience a back problem at some point in their lives [10], and that at any given time 31 
million Americans are suffering from LBP [181]. Not only is LBP common, but it also has the potential to be 
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very severe. Back pain is the single leading cause of disability [17]. Treating back pain imposes a significant 
economic cost as well. In the United States alone, over $100 billion are annually lost from treatment costs and 
productivity losses associated with LBP [182]. Unfortunately, the increased costs of treating lower back pain 
have not mitigated the issue [58]. 

The ineffectiveness of LBP treatments is due in part to the limitations in current diagnostic techniques. The 
most common diagnostic methods employ static imaging (e.g., CT or MRI scans) to detect anatomical 
anomalies. However, it is difficult to pinpoint the etiology of chronic and other types of non-specific low 
back pain (CLBP) using these methods [59]. Virtually all static images are acquired with the patient lying 
down or standing, failing to capture the dynamic aspect of lower back pain which could be critical to the 
diagnosis. Furthermore, many patients suffering from CLBP do not exhibit clear anatomical anomalies in 
their spine [149]. Rather, the pain is the result of myriad psychological, social, and biological factors [4]; 
additionally, many subjects who exhibit anatomical anomalies do not experience corresponding symptoms, 
indicating that anatomical anomalies are often unrelated to the underlying cause of the subject’s pain [183]. In 
summary, it is very difficult to prescribe treatments that will resolve the underlying cause of CLBP because 
those underlying causes might have been resolved, or in case that they are still present, cannot be captured 
with static images or existing biomarkers. 

Several methods and many studies have attempted to identify linkages between patients and their most 
effective treatment paradigm. One intriguing approach is to evaluate patient motion patterns (i.e., movement 
phenotypes).  It is well known that individuals with acute and chronic back pain move differently than 
asymptomatic controls, a phenomenon that potentially becomes more pronounced the longer the symptoms 
last [184-186]. Patients intrinsically recognize motions and postures that cause pain and alter their position 
accordingly. Usually, a reduction in spinal range of motion in uniplanar [81, 187] and multiplanar directions 
[188] is involved. Biomechanists, physical therapists, chiropractors, and surgeons each utilize a variety of tools 
and techniques to assess and interpret qualitative movement changes as a window to understanding potential 
mechanical and neurological sources of low back pain, and as a critical element in their treatment paradigm. It 
is therefore reasonable to postulate that motion-based phenotyping of CLBP could be valuable in finding 
effective treatment options [189] and in evaluating patients’ rehabilitation progress. Past studies that have 
investigated phenotyping as a means to identify optimal LBP treatments, and have found that while several 
classifications methods show promise, the margin of improved treatment outcomes currently fall short of 
clinical significance [96]. These and related studies often rely on qualitative assessments of LBP symptoms 
[190] or highly trained individuals [191] to classify patients according to their respective phenotypes, making 
these methods liable to misdiagnosis due to either the subjective nature of the assessment [96, 192] or clinical 
inexperience [44]. 

Overall, the identification of LBP classes—particularly those that account for spinal-motion phenotypes—is a 
concept that shows enormous potential, but is stymied by the lack of cost-effective, objective, and accurate 
tools that are compatible with the clinical setting.A valid and reliable quantitative assessment tool is therefore 
necessary to objectively measure and monitor spinal motion [150] in order to identify and analyze said 
phenotypes. Our BACPAC Technology Research Site team has addressed this challenge through the use of 
unique, inexpensive, elastomer-based nano-composite piezoresponsive sensors. Specifically, we have 
integrated these sensors into a SPInal Nanosensor Environment (SPINE Sense System), which provides an 
objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of movement changes 
associated with CLBP. The raw data that are collected from the subjects are comprised of electrical signals 
from an array of these piezoresponsive sensors that are optimally arranged on the skin of the lower back. 
These sensors measure local skin strains, which, in turn, correlate with the kinematic motion of the lumbar 
spine [193, 194]. This method of using externally mounted sensors offers advantages over alternative 
kinematic-measuring methods, such as percutaneous skeletal trackers or radiographic imaging, which either 
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involve invasive tools or extended exposure to radiation [193]. It is also a more economical solution than 
other motion-capture techniques such as optical cameras, which require expensive equipment and elaborate 
set up. These sensors have already been used in several biomechanical applications, such as estimating knee 
kinematics [138], calculating ground reaction forces [129], measuring ligament strain [140], estimating range of 
joint motion [141], tracking pulse [142], evaluating upper limb posture [195], and monitoring fetal 
movements, [143] with promising results. 

To make this technology applicable to biomechanical phenotyping of the spine, our laboratory has engaged in 
multiple phases. The overall purpose of this paper is to describe the completed and promising phases of our 
work. 

• In Section 2, we will describe our completed work focused on the design and development of our 
SPINE Sense array, along with our experiments that describe the validity, reliability, and usability of 
our equipment to capture spinal kinematics objectively. 

• Section 3 presents the current step of our BACPAC study, describing our current human subject 
testing protocol. 

• Section 4 describes how the data collected from this protocol will be analyzed to leverage spinal 
kinematics to determine to what extent they are related to patient-reported outcomes (PROs) and 
how they can be leveraged to identify dominant motion phenotypes. Some preliminary findings from 
the early stages of data collection are also presented in this section. It is expected that the outcomes 
from these analyses will lead to enhanced diagnostics, patient monitoring, and eventually to more 
effective clinical treatment paradigms [44]. 

These three phases of research and development are depicted in Figure 5.1. 

 

 
Figure 5.1 Overview of methodology to identify and analyze movement-based phenotypes among symptomatic and 
asymptomatic subjects by (1) developing and validation system design (2) collecting data from symptomatic and 
asymptomatic subjects during several single-planar and multi-planar spinal motions, and (3) analyzing the spinal motion 
data to identify and interpret different motion-based phenotypes among subjects. 

5.2. System Design and Validation 
The primary objective of this article is to present the protocol that is being used to collect spinal motion data 
from control participants and participants with CLBP subjects and the proposed methods to analyze those 
data to determine the correlation between spinal motion and PROs. We previously reported on the 
development of the SPINE Sense System which is used to effectively monitor spinal motion. A brief recap of 
the elements of that design will follow (see also references [194, 196-198] for additional information). 
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• Array Design: To obtain the clearest reading from the sensors and an accurate estimation of spinal 
kinematics, the skin-mounted strain gauges were optimally placed on the lines of maximum extension 
(LoME) of the skin.  

• Array Implementation: A prototype of the strain gauge array to be used in clinical applications was 
presented to prospective users. The usability of the system was evaluated, and suggestions were 
recorded to improve future iterations of the design. 

• Electronics Design: A key aspect of the system was to provide patients and clinicians with a user-
friendly device that can monitor spinal motion. An app was designed to collect and store the data in 
an efficient manner and provide the users with an intuitive interface. 

5.2.1 Array Design 
In previous endeavors, skin-mountable nanocomposite sensors (composed of nickel nano strands and nickel 
coated carbon fibers embedded in a silicone matrix) have been developed by researchers at Brigham Young 
University [127]. In this endear, these sensors are being used to detect the skin strain in the area of the lumbar 
spine to obtain an estimate of the underlying spinal kinematics (related studies have also used skin-mounted 
sensors to obtain estimates of knee [131] and spinal motions [199]).In order to extract an accurate estimate of 
spinal kinematics, the sensors must be strategically placed to detect skin stretch during different motions. 
Specifically, we desire to estimate the primary kinematics of the spine, which are comprised of flexion-
extension along the sagittal plane, lateral bending (left and right) along the coronal plane, and axial rotation 
(clockwise and counterclockwise) along the axial plane [200, 201]. In a related study, researchers seeking to 
optimize the placement of skin-mounted motion capture markers to estimate knee kinematics approached 
this task by placing sensors along the lines of maximum extension (LoME) during different motions [202], 
which facilitated accurate knee kinematic estimations along multiple degrees of freedom [131]. 

In order to determine the LoME, spinal motion and skin elongation data were extracted during a motion-
capture experiment [203]. Data were collected from 28 subjects. This sample size was selected to provide 
sufficient distinguishing power, accounting for differences between genders and other subject demographics, 
and is consistent with or exceeds the sample sizes used in related studies [193, 199]. A summary of the subject 
demographics of the participants in this study are shown in Table 5.1. 

Table 5.1 Summary of the subject demographics in motion-marker study (the average of each demographic and the 
corresponding standard deviation of the motion capture participants) 

Demographic  

Age (years) [stdev] 25.3 [9.2] 

Height (cm) [stdev] 176.5 [8.4] 

Weight (kgs) [stdev] 73.6 [14.24] 

BMI (kg/m3) [stdev] 23.5 [3.3] 

Sex (M/F) 15 / 13 
 

Participants were asked to perform three repetitions of several single-planar and multi-planar motions. Skin 
stretch at different areas of the low back was measured during these motions via an array of 36 reflective 
markers on subjects’ lower backs (see Figure 5.2) and tracked using a 10-camera motion capture system. 
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(a)                                                                   (b) 

Figure 5.2 (a) Placement of reflective markers for motion-capture study and (b) the markers on a subject’s lower back. 
The skin stretch during different spinal motions was estimated by calculating using the distance between markers.  

The engineering strain (Δ𝐿𝐿/𝐿𝐿0) was calculated between the adjacent reflective markers during each motion. 
The LoME for each of the six single-planar motions (flexion, extension, lateral bending left, lateral bending 
right, axial rotation left, axial rotation right) were identified (see Figure 5.3a). Strain gauge locations were 
chosen to capture the clearest signal of spinal motion along specific spinal degrees of freedom by considering 
the LoME and the strain limitations of the gauges (see Figure 5.3b); four sensors were selected to primarily 
capture flexion-extension (marked by blue), six sensor locations were chosen to detect lateral bending motion 
(marked by red), and six sensors were placed to optimally capture axial rotation motion (marked by green). 

  

                                                         (a)                                                                           (b) 

Figure 5.3 Summary of the extension magnitude for (a) each single-planar motion – higher magnitudes of extension 
indicated by darker shades of red and higher magnitudes of compression indicated by darker shades of blue – and (b) the 
result array design. The reflective markers are indicated by the circles, following the placement depicted in Figure 5.2. 

The array design was evaluated by its ability to differentiate between different spinal movements in a support 
vector classification model. The model input was the maximum skin strain between reflective markers 
included in the final design (Figure 5.3b) for each subject-motion combination. The output was the model 
prediction of which spinal motion was performed. The spinal motions considered in the evaluation included 
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single-planar movements (lateral bending left, lateral bending right, flexion, extension, axial rotation left, and 
axial rotation right) and multi-planar movements (flexion-left, flexion-right, extension-left, and extension-
right). Data from 20 subjects were randomly selected for training the model, and the data from the remaining 
8 subjects were selected for evaluating the model. This process of training and testing the model was repeated 
10 times. The model achieved an average of 90% classification accuracy (see Figure 5.4). Ten other designs 
(randomly generated placements of the 16 strain gauges) were also evaluated using the same methods for 
comparison, which achieved an average of 76% classification accuracy. None of the random designs achieved 
greater than 83% accuracy. From this evaluation, we validated that skin stretch can be a reliable metric for 
evaluating different spinal motions, and that the quality of data for inferring spinal kinematics may be 
optimized by placing markers along the LoME of the lumbar spine. 

 
Figure 5.4 Confusion matrix, depicting the true class of exercise being performed by a subject and the corresponding 
predicted class, using the skin strains captured by the optimized strain gauge array design as predictors in a machine 
learning classification model. Predictions along the diagonal represent accurate exercise classifications. 

During desired applications, the strain gauges must be applied to the lumbar spine to capture skin strains and 
estimate spinal kinematics. One option is an adhesive layer to hold the strain gauges to the lower back (such 
as kinesiology tape, which is commonly used in athletics and biomechanical applications). A validation test 
was conducted to compare the skin strain under normal conditions and when kinesiology tape is applied to 
the lumbar spine. It was determined using a finite-element model that although an adhesive layer diminishes 
the strain magnitude, general strain patterns during motion were not significantly affected [204]. This finding 
further validated the use of kinesiology tape to adhere the strain gauges to the spine, and further emphasizes 
the need to place sensors along the LoME to obtain the clearest signal possible. 

Finally, a validation tested was performed to evaluate the device’s ability to estimate spinal kinematics. The 
array of the 16 sensors was adhered to the lumbar spine of a cadaver specimen. The specimen was supported 
using a harness and manually manipulated in a series of spinal motions along the sagittal plane. The flexion of 
the cadaver spine was measured using an electromagnetic tracking system, adhered to the L1-S1 functional 
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spinal units via bone pins. A lasso regression model was developed to predict spinal motion as a function of 
sensor readings root-mean squared error of less than 10% (for full details, see [194]). 

5.2.2. Array Implementation  
Once the array was designed and its ability to capture spinal motion was shown, its usability in the context of 
clinical practice was assessed. A prototype of the SPINE Sense System – composed of the 16 nanocomposite 
sensors adhered to kinesiology tape with a scripted explanation about how the device is used including its 
integration with its smartphone application (see Figure 5.5) –  was presented to 32 potential users of the 
device including clinicians and patients with CLBP [196]. 

 
Figure 5.5 The vertebral motion tracking system of 16 nanocomposite sensors (two are visible from underneath the 
cover in the lower right side) on kinesiology tape with stitched wiring. 

Reviewers were asked to fill out the System Usability Scale, which is a common validated industry standard to 
evaluate the general usability of a system [205]. The System Usability Scale score is from 0-100 – a score 
above a 68 indicates a device that is intuitive to use [206]. The mean value of our study usability score was 72, 
which is considered above average. A more comprehensive breakdown of the results is presented in Table 
5.2. It was concluded from these results that the device is usable and attractive to clinicians and patients who 
are potential users of the device. 

Table 5.2 System Usability Scale scores from clinicians and patients.  

Item Clinicians Patients Total 

Participants 19 13 32 

Mean Score 70.79 73.85 72.03 

Standard Deviation 13.74 6.69 11.51 
 

The reviewers were also asked open ended questions about the design of the device and given the 
opportunity to voice ideas, questions, and concerns regarding the design of the device. Common feedback 
and comments about the design of the device included the following: 
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• The easy application and flat compact design of the device was common positive feedback received. 
• The simplicity of the system of its use with a smartphone application was also well received amongst 

the potential users. 
• Some concerns and questions included the concerns of the device only coming in one size, the 

duration of adherence, and ease of removal. 
• There was also a concern about the tackiness of the kinesiology tape with recommendations of other 

commonly preferred athletic tapes.  
5.2.3 Electronics Design 
The electronics portion of the system, required to read data from the 16 strain gauges, was designed to be 
minimal in both size and complexity to facilitate a national clinical study and obtain consistent results across 
investigation sites. A custom printed circuit board assembly (PCBA) was designed and fabricated with a 16-
channel switcher to cycle through all the sensors and sample at a rate of 800 Hz. This PCBA measures 54.61 
mm x 50.8 mm (2.15 in x 2 in) and is 4.6 mm (0.181 in) tall at its highest point, with a mass of 12.00 g. The 
planar, lightweight design enables it to be tucked into a small fabric pouch mounted to the sensor array, 
without disturbing the subject being tested, adding significant weight, or impacting the motion of the sensor 
array during exercises. Custom cables using the micro-HDMI connection standard further reduce the size, 
weight, and complexity of the system. This provides a flexible 17 channel (16 sensors & common ground) 
connection between the array and the custom PCBA (see Figure 5.6).  

    

(a)                                                                              (b) 

Figure 5.6 (a) Custom PCB for reading the resistance across all 16 piezoresistive sensors and (b) integration of PCB with 
final SPINE Sensor System. 

The board is powered by a standard 9V alkaline battery (nominal mass 45 g), which is readily available across 
the country. The battery is connected to the custom PCBA using a small power cable and wire (for a total 
system mass of 64 g), so that the battery can be mounted off to the side of the test subject, while providing 
multiple hours of charge to the PCBA. A user-friendly switch and LED system allows the clinician to know 
(a) the board is powered on and (b) the battery has a good charge and/or needs to be replaced. This simple 
system reduces the possibility of failure on the part of the electronics and custom PCBA due to 
battery/charging concerns. 

To extract and record sensor readings from the device, a smartphone app was developed for Android® 
smartphones, and is currently available on the Google Play® app store. The app has an easy-to-use interface, 
designed to reduce options or confusion for the clinician.  

5.3. Subject Testing Protocol 
Using the SPINE Sense System developed as described above, data are acquired from two cohorts (150 
healthy, 150 symptomatic) of participants during clinician-guided diagnostic movements, in order to provide a 
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sufficient body of data to identify major spinal movement deviation phenotypes. Subjects are between 35-65 
years old. This is the age range with the greatest prevalence of CLBP [153]. Demographic characteristics (sex, 
age, BMI) are approximately matched across the two cohorts. Data gathering will occur at BYU, along with 
various partner BACPAC sites, such as University of Pittsburgh, UCSF, OSU, and Harvard. The 
symptomatic cohort is recruited from individuals who are already scheduled for physical therapy for 
complaints of CLBP. The exclusion criteria for asymptomatic participants are current or history of lumbar 
spine pain for which treatment was sought at any point during the participant’s lifetime (‘treatment’ is defined 
as having seen a physiotherapist, chiropractor, osteopath, or medical doctor for the condition), known 
scoliosis and inability to receive MRI (e.g., metal or electrical implants, claustrophobia or possible pregnancy). 
In addition, all participants (symptomatic and asymptomatic) must be able to assume a vertical position and 
move without an assistive device. Participants are screened for exclusion criteria, and after consent is given, 
receive our standardized diagnostic movement examination and are scheduled for their MRI. 

With the participant in standing position the spinous process of L5 is palpated and marked. The participant 
then transfers onto a treatment table into prone position. The lower back is sprayed with a commercially 
available pre-tape spray adhesive and the array is attached as depicted in Figure 5.7.  

    

(a)                                                                               (b) 

Figure 5.7 The SPINE Sense System is placed to the lower back using the L5 spinal process unit as a to guide the 
placement (a) and is aligned vertically on the lower back (b). The kinesiology tape adherence is reinforced on the edges 
(depicted in yellow in the figures above) using pre-tape spray. 

After the array is adhered, the participant is ready to begin the spinal motion tests. Each movement is 
performed six times with a two-second break between repetitions. The clinician demonstrates each 
movement, and the participant is allowed to practice the movement once. Participants are instructed to 
perform the motions to the extent possible without inducing pain. The ‘SPINE Sense’ app, available on Play 
Store, is used to guide the clinician and participant through the spinal motion tests. Once the app is 
connected to the PCBA via Bluetooth (Figure 5.8a), it requests basic biometric data along with a de-identified 
subject ID (Figure 5.8b). Then, it provides a sequential series of one-click-one-action buttons that first 
demonstrates the spinal motion for the participant, initiates the recording of data as the subject then performs 
six repetitions of the movement, and stops recording the data and downloads them via Bluetooth from the 
PCBA (Figure 5.8c). Once the data are downloaded, the app continues to the next motion. After all spinal 
motions are completed and confirmed by the clinician, the app uploads the data to a cloud server via WiFi or 
cellular internet to be accessed by the researchers for analysis (Figure 5.8d). 
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(a)                                         (b)                                         (c)                                         (d) 

Figure 5.8 Summary of the SPINE Sense App during the different stages of motion capture. The clinician or participant 
(a) opens the app, (b) enters participant demographic information, (c) is guided through the series of spinal motions to 
perform, and (d) uploads data to the cloud server. 

Our project involves classic uniplanar movements (flexion, extension in the sagittal plane, rotation in the 
transverse plane and side bending in the frontal plane), but also combination of those (flexion and extension 
with rotation) and a functional sit-to-stand motion. Further details of each movement and the order in which 
they were performed, are listed below: 

1. Knee Touch: the participant is instructed to round their lower back and reach with their hands to the 
respective knees from an upright position. 

2. Extension: The participant extends their spine in the sagittal plane as far as comfortably possible. 
3. Extension Fast: The participant extends their spine similarly, but as fast as comfortably possible. 
4. Extension-Right: The participant extends their spine in the sagittal plane while rotating it in the 

transverse plane to their right. 
5. Extension-Left: The participant extends their spine in the sagittal plane while rotating it in the 

transverse plane to their left. 
6. Rotation-Right: The participant crosses their arms over their chest and rotated their spine in the 

transverse plane towards their right side while maintaining pelvis position (facing anteriorly). 
7. Rotation-Left: The participant crosses their arms over their chest and rotates their spine in the 

transverse plane toward their left side while maintaining pelvis position (facing anteriorly). 
8. Side Bending-Right: The participant flexes their spine to their right in the frontal plane while 

maintaining a forward-facing trunk orientation. 
9. Side Bending-Left: The participant flexes their spine in the frontal plane to their left while 

maintaining a forward-facing trunk orientation. 
10. Flexion-Right: The participant flexes their spine and hips in the sagittal plane while rotating the spine 

in the transverse plane to the right. 
11. Flexion-Left: The participant flexes their spine and hips in the sagittal plane while rotating the spine 

in the transverse plane to the left.  
12. Up and Go: The participant sits on a short stool and rises, without the assistance of their hands, and 

walked two steps forward. 
13. Flexion: The participant flexes their spine and hips in the sagittal plane as far as comfortably possible 

(slight flexion of the knees is allowed). 
14. Flexion Fast: The participant flexes their spine similarly, but as fast as comfortably possible. 
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After the motion tests are complete, the SPINE Sense System is removed with the help of paper towels and 
baby oil. The duration of the test, including the don and doff of the SPINE Sense System, is approximately 
15 minutes [44]. 

As reported in the Anchor paper, the BACPAC Minimum Dataset is used as patient reported outcomes [57]. 
Briefly, the assessment consists of 19 questions/questionnaires that investigate demographics and pain 
location (radicular/ non radicular and if it is widespread), pain intensity, pain duration and frequency, pain 
interference, pain catastrophizing, pain somatization, physical function, sleep, depression, anxiety, substance 
use and opioid use. In addition, our site added a physical activity questionnaire [99]. Participants are requested 
to complete the questionnaire during the week prior to the motion-capture study. 

5.4. Data Analysis 
After the PCBA uploads the electrical signal from the 16 piezoresistive strain gauges measured during the set 
of exercises, the data will be processed and analyzed. This section will present the methods that used to 
analyze said data. Results from early stages of subject testing will also be presented as a preview of anticipated 
findings. 

High deflection strain gauges are a relatively new innovation, and the interpretation of such is a complex task 
due to the nonlinear output of the sensors [125]. Past studies have used a variety of curve-fitting analyses and 
machine learning algorithms to extract biomechanical information from the skin-mounted strain gauges [131, 
207-209]. For the purposes of this research, a model that accounts for the viscoelastic material properties of 
the sensors was developed to extract stretch magnitude and strain rate (for full details, see [144]). Additional 
metrics, such as asymmetry of motion, will be extracted by comparing the calibrated sensor outputs on mirror 
sides of the sagittal plane. These metrics will be calibrated for each participant using the knee touch motion 
performed during the first stage of subject testing to account for inter-subject variations of subcutaneous 
tissue and anthropologies. The metrics will then be used to run two general analyses: 

1. Biomechanical Analysis: Analyze the relationship between spinal kinematics and PROs. 
2. Phenotype Analysis: Cluster participants by similarity of motion patterns and demographics, identify 

dominant features of each cluster (i.e., the motion-based phenotype), and investigate correlation 
between phenotype and PROs. 

 

The Biomechanical Analysis will provide a conceptual understanding of how and to what extent spinal 
kinematics correlate with patient well-being, and the Phenotype Analysis will provide clinicians and patients 
with information that may facilitate the prescription of more effective treatment paradigms. 

5.4.1. Biomechanical Analysis 
One objective of this research endeavor is to quantify the extent to which spinal kinematics correlate with 
different PROs. Past studies have attempted to differentiate between the motion of subjects with chronic and 
acute low back pain from the motion of asymptomatic subjects, with promising results as described below 
[46, 93, 210, 211]. This research endeavor will complement previous findings and make further contributions 
to this topic by analyzing spinal kinematics during a broader range of motions and testing the correlation 
between spinal kinematics and additional patient-reported metrics. These tests will be accomplished by (1) 
identifying features of interest that may correlated with PROs and (2) running a series of statistical tests to 
investigate the correlation.  

5.4.1.1. Features of Interest 
Two obvious biomechanical features relating to CLBP are spinal range of motion for a given exercise and the 
velocity at which the exercise is performed. Previous studies have found that patients with CLBP have 
statistically lower ranges of motion and velocities in certain exercises than control subjects [46, 210]. It is 
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expected that the range will change with pathology. However, there are few other specifically identified 
biomechanical features that have been correlated with CLBP phenotypes in a quantifiable way. Two recently 
studied attributes of patient motion include time-of-rise [93] and jerk level (rate of change of acceleration 
during a given motion) [211]. 

In order to provide guidance for the identification of features of the SPINE Sense data, a recent study was 
undertaken by the BACPAC Technology Site at Brigham Young University using participants with CLBP and 
control subjects who did not suffer from CLBP, that followed the same set of exercises described above (5.3. 
Subject Testing Protocol). The participants were fitted with three inertial measurement units (IMUs) on the 
sacrum, L4, and C7 spinal segments. Kinematics including acceleration, angular velocity and jerk were 
recorded and are currently being analyzed for motion features that most clearly identify CLBP (e.g., features 
with high variance across the subject set). 

Other potential metrics available from the SPINE Sense system include asymmetry of motion, a range of 
other derivative metrics from strain, time, and surface shape features of the back (such as angular velocity, 
back curvature, etc.), as well as changes in metrics with repeated exercises (such as variance and gradients). 

5.4.1.2. Statistical Tests and Regression Models 
Statistical tests will evaluate the difference between the spinal motion subjects with CLBP and asymptomatic 
subjects, as well as the motion of subjects who do and do not take opioids. Student t-tests are ideal for this 
analysis because CLBP status and opioid use are binary, categorical variables (i.e., a subject either experiences 
CLBP or does not). An example of the results obtained from Student t-tests analyses conducted on 
preliminary data collected with the IMU placed on the C7 of the spine during flexion left is depicted in Figure 
5.9a. The Bonferroni correction will be applied in the statistical analyses to account for the multiple 
comparisons that will be conducted. Quantitative patient-reported outcomes (ODI, PROMIS, and IPAQ 
scores) will be correlated with spinal kinematics by running several regression analyses. Multiple linear 
regression models will be developed to predict PROs as functions of spinal kinematics and demographics. 
Model features will be selected using Stepwise Regression techniques (a hybrid of forward and backward 
feature selection). The number of features included in the final models will be determined by evaluating the 
adjusted R-squared of each model with different number of explanatory variables. A sample of the correlation 
between a single kinematic measurement and a PRO is depicted in Figure 5.9b. 

    
(a)                                                                             (b)  

Figure 5.9 (a) An example of a comparison between the velocity, acceleration, and jerk between 16 control subjects 
(blue) and 28 subjects with CLBP (red) during Flexion Left collected from the IMU placed on the C7 (p-values of 0.26, 
0.08, and 0.60 for velocity, acceleration, and jerk respectively) and (b) scatterplot of asymmetry of motion during flexion 
-estimated by the absolute value of the difference in the sensor readings during the Flexion Left and Flexion Right 
motions – and the PROMIS Pain T-score for participants with CLBP (blue dots) with the corresponding best fit line 
(red). 
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The IPAQ questionnaire categorizes persons’ activity levels into one of three bins: low, medium, and high. 
This data format is well suited for F-statistic and ANOVA tests to investigate whether physical activity is 
correlated with spinal kinematics. 

It is anticipated that the results of these analyses will provide clinicians and researchers with an understanding 
of how spinal kinematics can be used to interpret the different metrics of patient well-being, to what extend 
spinal kinematics correlate with PROs, and which features are most informative in assessing a subject’s 
condition. 

5.4.2. Phenotype Identification and Interpretation 
The primary objective of this research endeavor is to identify and analyze movement phenotypes of spinal 
motion. Different etiologies of acute cases of low back pain are often associated with specific changes in 
spinal motion and specific treatment paradigms exist [85-92, 212]. It is therefore reasonable to suppose that 
patients with CLBP who exhibit similar abnormalities in spinal motion respond similarly to a certain 
treatment [96]. Objectively identifying and analyzing these motion patterns may lead to more personalized 
treatment paradigms and improved outcomes for patients suffering from CLBP [213]. Phenotype 
identification will be accomplished via an unsupervised clustering analysis. The approach of this endeavor 
involves three steps: 

1. Cluster participants (from both the symptomatic and asymptomatic cohort) according to spinal 
motion characteristics observed during the standard exercise routine and demographics by their 
respective phenotypes. 

2. Rank the features of each cluster to determine the features most useful for phenotype segmentation, 
identify the predominant characteristic(s) of each cluster / phenotype, and quantity the difference of 
dominant features between clusters. 

3. Analyze the relationship between phenotype cluster and patient-report outcomes using one-way 
analysis of variance (ANOVA) statistical tests. 

5.4.2.1 Phenotype Identification 
The clustering analysis entails selecting which features ought to be included in determining phenotypes, 
choosing an appropriate algorithm for grouping participants with similar features together, and determining 
the optimal number of clusters that will be conveyed to clinicians and patients. 

 

Features of Interest 

Several features will be included in the clustering analysis to identify phenotypes among subjects with CLBP; 
they are: 

• Spinal kinematics collected from the skin-mounted sensors. The kinematic measurements of spinal 
motion that most clearly differentiate between the motion of CLBP and asymptomatic subjects will 
be prioritized in the clustering analysis (see 5.4.1. Biomechanical Analysis). 

• Subject demographics as collected from the questionnaires.  
• Anatomical assessment of the lumbar spine as determined by a radiologist from MRI scans. 

Although MRI scans of the spine are insufficient on their own to provide adequate detail regarding a 
patient’s condition to indicate the optimal treatment paradigm [149], evidence suggests that MRI 
images still provide valuable information (such as ailment severity [214], which has the potential for 
clinical application [215]) when considered in conjunction with additional metrics. The presence of 
specific anatomical anomalies will be included as binary variables (e.g., degenerated intervertebral disc 
in the lumbar spine – 0 if no, 1 if yes). 
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Each feature will be normalized to objectively compare its impact on the final phenotype identification. A 
principal component analysis will then be used to reduce the number of data dimensions and eliminate 
feature collinearity. 

 

Clustering Algorithm 

The objective of the phenotype identification is to group together datapoints (i.e., participants) that exhibit 
similar features. Clustering analyses are ideal for identifying predominant spinal-motion phenotypes because 
the algorithms will dissect data such that the variance between clusters is maximized while the variance within 
a cluster is minimized (i.e., the clusters are dissected along the natural segmentation in the data) [216].  
Hierarchical clustering is well-suited for the phenotype-identification analysis due to its ability to cluster both 
quantitative features (such as spinal kinematics) and categorical features (such as demographics and MRI 
features) in the same dataset. 

Hierarchical clustering will yield different results depending on the linkage type, which is used to quantify 
similarity / dissimilarity between data points (Figure 5.10, obtained from [217], depicts how different linkage 
types employed in clustering analyses cause different results for several hypothetical data set).  Due to its 
robust nature, the Ward Linkage will be implemented in the phenotype analysis [218]. 

 
Figure 5.10 A depiction of how different linkage methods perform for hypothetical data sets, obtained from [217]. Single 
Linkage performs well on non-globular data, but performance is diminished by noisy data. Average Linkage and 
Complete Linkage perform well on data that exhibits clean separations between clusters, but the quality of the results is 
diminished if the separations are not as distinct. Ward Linkage is optimal when clustering noisy data and will be 
implemented in this endeavor [218]. 

 

Determining the desired number of clusters 

One decision during the clustering process involves determining the desired number of clusters. An example 
of how the results of a clustering algorithm may vary according to the number of clusters into which a dataset 
is segmented is depicted by the dendrogram Figure 5.11 (generated from a hypothetical dataset). The height 
of the dendrogram tree demonstrates the dissimilarity score between pairs of observations. A higher 
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dendrogram cutoff score will result in fewer clusters with more observations per cluster. Lower dendrogram 
cutoff scores will result in more clusters with fewer observations per cluster. 

 
Figure 5.11 An example of a cluster dendrogram [219]. By using a cutoff distance score of 8, three clusters were 
extracted from the data, marked by orange, green, red, and purple. A cutoff distance score of >8 would have resulted in 
fewer clusters with more observations per cluster, and a cutoff distance score of <8 would have resulted in more clusters 
with fewer observations.  

The objective to minimize the variance within clusters and maximize the variance between clusters can be 
quantified using the Calinski-Harabasz criterion [216]. Higher Calinski-Harabasz scores indicate better 
segmentation of the data. The Calinski-Harabasz score will be calculated for a wide range of potential targeted 
number of clusters, and the number of clusters that result with the highest score will be implemented in the 
final analysis. This will provide clinicians with the clearest distinction between participant phenotypes. A 
hypothetical dataset and the corresponding Calinski-Harabasz scores at a variable number of clusters is 
depicted in Figure 5.12. 

    
Figure 5.12 (a) The Hypothetical dataset is composed of data normally distributed around three centers and (b) the 
corresponding Calinski-Harabasz Criterion for 2 through 14 clusters. The Calinski-Harabasz score is the highest when 
the number of clusters is three, indicating three clusters provide the clearest segmentation between groups of datapoints. 

5.4.2.2 Feature Ranking – Phenotype Description 
While a principal component analysis of the original dataset will be used to remove the collinearity between 
features and reduce the number of dimensions in the clustering analysis, the resulting phenotypes will be 
described in terms of the original biomechanical features to preserve interpretability for clinicians and 
patients. The normalized original feature values will be averaged for each cluster. The difference between 
average feature values will be calculated for each pair of clusters, which will indicate which features had the 
largest effect in differentiating the phenotypes. This will enable us to rank feature importance for each cluster 
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and interpret the dominate subject characteristics (e.g., subjects from cluster A demonstrated limited motion 
during lateral bending exercises, while subjects from cluster B experience high levels of anxiety, etc.). 

Additionally, this feature ranking will enable us to determine which features had the least impact on 
distinguishing between clusters. We can make future analyses more efficient by neglecting the features of little 
consequence in future studies. 

5.4.2.3. Clinical Significance of Phenotypes 
Once the phenotypes are distinguished, and the dominant features of each phenotype are determined, we will 
analyze the relationship between phenotypes and the PROs. It is our hypothesis that some phenotypes will be 
associated with more severe symptoms and lower quality of life, while other phenotypes will be associated 
with positive PROs scores and a higher quality of life. This hypothesis will be tested using one-way ANOVA 
tests to evaluate whether the PROs associated with the different phenotypes significantly differ one from 
another. As multiple PROs will be tested, the Bonferroni correction factor will be implemented to mitigate 
the risk of Type I error. An F-statistic with a p-value of less than 0.05 (after implementing the Bonferroni 
correction factor to account for multiple comparisons) will be considered statistically significant. An example 
of a preliminary phenotype analysis (conducted on data from the first 40 participants - 27 symptomatic and 
13 control) and its corresponding implicated regarding Pain Intensity scores (on a scale of 0-10) from the 
participants in each phenotype is depicted in Figure 5.13. 

    
(a)                                                                                    (b) 

Figure 5.13 An example of the results of a phenotype identification analysis and its corresponding clinical interpretation 
from preliminary data. (a) Depicts the different phenotypes by color on the first two principal components of the 
motion and demographic data. Phenotype A was comprised of participants who exhibited significantly different 
velocities between their flexion right and flexion left motions (i.e., performing flexion towards one side was much faster 
than the other); Phenotype B was comprised of mostly participants with CLBP, high BMI scores, and who performed 
flexion right and flexion left with similar velocities; and Phenotype C was comprised of mostly asymptomatic patients 
with low BMI scores and a dominant side during lateral bending. (b) Depicts boxplots of the Pain Intensity scores for 
the participants, grouped by phenotype. A one-way ANOVA test calculated an F-statistic of 7.23 and a corresponding p-
value of 0.002 comparing the Intensity scores between the phenotypes. 

It is also our expectation that each phenotype will be dominantly comprised of either control or symptomatic 
participants (i.e., there will be little mixing of controls in any given phenotype). Exceptions to this supposition 
may indicate a participant is on the verge of transitioning between chronic low back pain and asymptomatic 
status (i.e., participants who experience CLBP but exhibit phenotypes typical of asymptomatic participants 
may indicate that they have managed their chronic pain well and thereby mitigated its severity).The PRO 
scores of participants with CLBP who exhibit “asymptomatic phenotypes” will be compared with the PRO 
scores of all other participants with CLBP using Student t-tests, applying a cutoff p-value of 0.05 before 
implementing the Bonferroni correction factor. Likewise, an asymptomatic participant who exhibits a 
phenotype typical of participants with CLBP may indicate that the asymptomatic individual is performing 
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suboptimal spinal motions and could benefit from preventative treatment. The PRO scores from these 
groups will also be compared using Student t-tests. 

 

5.5. Discussion 
Although many people suffer from CLBP, treatment efficacy is limited in part due to the difficulty of 
pinpointing the etiology of chronic and other types of non-specific LBP using the conventional methods of 
taking static images of the spine. A potential alternative method of assessing spinal health through an analysis 
of spinal motion and movement patterns. Previous studies have investigated the effects of CLBP on spinal 
motion and found significant differences between the motion of subjects who do and do not experience 
CLBP symptoms [46, 93, 210, 211]. Other studies have attempted to leverage this phenomenon for clinical 
application by tailoring treatments according to patient spinal motion patterns with promising results, but 
there are currently still insufficient data that warrants validation and widespread clinical implementation [96]. 
However, more quantitative analyses of spinal motion could lead to more objective classification methods 
that are robust to clinical subjectivity [48] and provide clinicians with the information needed to prescribe 
more personalized treatments and facilitated improved treatment outcomes [44]. 

In order to acquire the requisite objective and quantitative biomechanical insights relating to CLBP, this 
protocol manuscript presents (1) the development and validation of a spinal-motion monitoring device that is 
economical and practical for clinical and personal implementation – the SPINE Sense System – and (2) the 
methods that will be used to analyze the spinal kinematic data to provide clinicians and patients with valuable 
information in assessing and treating CLBP.  

Spinal kinematics will be estimated via an array of high-deflection, inversely-piezroresistive strain gauges. 
These sensors were optimally placed on LoME of the lower back to extract the clearest and most reliable 
signal from the sensors during different motions. This design was validated by assessing the ability to 
interpret exercise type using skin-strain predictors with 90% accuracy. A model to predict spinal motions as a 
function of sensor output was developed using spinal motion data from an electromagnetic tracking system, 
adhered to a cadaver spine via bone pins. The model provided an estimate of the spinal kinematics along the 
sagittal plane with a root-mean squared error of less than 10% [194].This device – the SPINE Sense System – 
has already been presented to prospective users among clinicians and CLBP patients, who rated the appliance 
as user-friendly [196]. As a result of the provided feedback from the study, future iterations of the SPINE 
Sense System will be produced in multiple sizes to produce a better fit for users. A corresponding phone 
application has been developed to provide an intuitive and efficient means of storing and transferring data 
collected from the sensor array.  

Data collected from the SPINE Sense system device will be used to validate previous research findings and 
provide additional information by analyzing data from a broader range of single- and multi-planar spinal 
functional movements. Regression models will be developed to quantify the correlation between spinal 
kinematics and additional PROs, including opioid-use, anxiety, self-assessed disability, and activity level. 
Finally, an unsupervised machine learning clustering algorithm will be implemented to identify distinct spinal-
motion phenotypes. Additional statistical tests will analyze the relationship between subject phenotype and 
PROs to provide additional information regarding the clinical significance of each phenotype cluster. the 
anticipated outcomes of this study will include (1) a set of identified movement-based and demographical 
features that are most important in the clustering of phenotypes, (2) the phenotype identification of each 
participant in the study, and (3) initial observations of the relationship between biomechanical response and 
PROs that may guide treatment response for patients with CLBP going forward. Future validation regarding 
the clinical significance of the diagnosed phenotypes may include treatment-based classification studies to 
evaluate which treatment paradigms are best suited for patients in each phenotype. 
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It is our hypothesis that this information regarding subject phenotypes and their corresponding descriptions 
will enable clinicians to select treatment paradigms individually tailored according to patient conditions. This 
in turn will improve treatment efficacy and the quality of life for the millions of patients suffering from CLBP 
worldwide. 
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6.0 Abstract 
Introduction: Chronic low back pain (CLBP) is a prevalent ailment that has many adverse effects on patients’ 
quality of life. Significant time and resources have been spent attempting to alleviate these effects and 
improve quality of life. However, these interventions are largely hampered by the multifactorial nature of 
CLBP, which hinders clinicians’ ability to identify a personalized and therefore possibly optimal treatment 
paradigm according to a patient’s needs. This work provides the initial results of a promising technique – 
motion-based phenotyping – which has the potential to be clinically relevant for the evaluation, treatment, 
and progress assessment of people with CLBP. 

Methods: Several features of motion and demographics were identified that have been shown to be associated 
with CLBP prevalence, severity, and general patient wellbeing. These features were used to develop a model 
that predicts patient-reported outcome (PRO) scores, which was trained and tested using 5-fold cross 
validation. The features were then used to cluster study participants into their respective phenotypes. One-
way analysis of variance with a post hoc Holm correction factor followed by Student t-tests were conducted 
to evaluate the potential clinician implications of the phenotypes. 

Results: Models were developed that capture 33-41% of the variance of physiological wellbeing metrics and 
39-58% of the variance of psychological wellbeing metrics. Seven phenotypes of spinal motion were 
identified, which showed strong statistical significance in the context of PROs. 

Discussion: Identifying motion-based phenotypes of patients with CLBP that are correlated with subjective 
and functional outcome measures could be a powerful first step to identifying patient-specific treatment 
paradigms that have the highest likelihood of success. Future work will be dedicated towards identifying the 
optimal treatment paradigm for these patients. 

Acknowledgements: Research reported in this publication was supported by the NIH HEAL Initiative under 
award number NIAMS UH3AR076723. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health. 

 

6.1. Introduction 
Pain mitigation is one of the primary components of nearly every medical intervention [1]. One of the most 
common health ailments, which has even been deemed “the nemesis of medicine” [2],  is low back pain 
(LBP). The lower back, as defined by a National Institute of Health Research Consortium, refers to “the 
space between the lower posterior margin of the rib cage and the horizontal gluteal fold” [3]. Multiple studies 
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have identified LBP as the leading cause of disability worldwide [16, 17], and it is estimated that up to 80% of 
the population will experience LBP at least once in their lifetime [10-12]. LBP also imposes serious economic 
consequences as well. Studies have estimated the direct medical costs of treating LBP ranges between $17.7 
and $105.4 billion annually, with an additional $22 billion lost indirectly through sick days and reduced 
productivity in patients [21]. 

When the source of LBP is readily identifiable, it is classified as being acute or pathology specific. However, 
up to 95% of LBP is classified as non-specific, meaning that there is no identifiable pathology associated with 
its cause [47, 48]. A particular type of non-specific LBP that causes patients, healthcare providers, and society 
in general much distress is chronic low-back pain (CLBP).  A National Institute of Health Pain Consortium 
Research Task Force defined CLBP as “a back pain problem that has persisted at least three months and has 
resulted in pain on at least half the days in the past six months” [3]. This threshold of 3 months or 12 weeks 
has been widely used in past studies [22, 49-51], and is generally regarded as beyond the window of 
anticipated recovery. While most cases of acute LBP are resolved within that expected timeframe, there is a 
fraction that continues to have recurrent pain months and even years later that interfere with work and other 
activities [4, 8]. In addition to the persistent physiological impediments, CLBP also imposes significant social, 
physiological, and physiological challenges in a patient’s life [43]. Chronic LBP also entails a severe economic 
burned on society. Most of the economic resources associated with LBP are consumed by a minority of cases, 
usually in the form of long-term treatment and compensation benefits [14, 25-27]. 

Given its prevalence and serious consequences, CLBP has been the frequent topic of medical research and 
intervention. There is a plethora of treatments available to patients suffering from CLBP, but no single 
treatment has proven to be superior to the others for all patients [56]. Classifying sub-groups of patients 
suffering from CLBP and identifying their optimal treatment paradigm has been the goal of clinical 
researchers for many years in an effort to provide more effective patient treatments, improve patient 
outcomes and reduce financial costs [48]. However, CLBP is a highly multifactorial ailment, influenced by 
structural, psychological, social, genetic, and other factors [48]. Consequently, it is difficult to develop optimal 
treatment paradigms based solely on traditional assessment methods such as static images of the spine (e.g., 
MRI or CT scans) [48, 59]. 

An alternative method of assessing a patient’s case and consequently devising a personalized treatment plan is 
through a quantitative assessment of spinal kinematics. Biopsychosocial influences associated with CLBP 
affect the way that we move [44, 220]. Past studies have identified several motion characteristics that are 
associated with CLBP (such as lower ranges of motion, slower velocities, longer rise times, and smaller jerk 
levels [46, 93, 210, 211]) and that different pathologies of acute LBP that are linked with specific changes in 
movement [81, 93, 187]. However, most clinical assessments of spinal motion rely on qualitative assessments 
[191]. Past studies have found that incorporating spinal motion to inform treatment paradigms is only 
somewhat effective, and only when the clinicians are extensively trained to use a classification system [96]. 
Rather than rely on subjective observations, the use of an objective accurate, economic, and user-friendly 
motion-monitoring device is preferable. In addition, this could be employed in widespread clinical 
applications. 

As part of the 2019 initiative by the National Institute of Health (NIH) to form the Back Consortium 
(BACPAC), several university programs have developed innovative devices to objectively monitor spinal 
motion, which will be used to inform clinicians who treat patients with CLBP [44, 57]. At Brigham Young 
University, the Applied Biomechanics Lab has developed an inexpensive, wearable array of nanocomposite 
sensors that measure the skin strain field of the lumbar spine and derive segmental spine kinematics. This 
device is known as the SPInal Nanosensor Environment (SPINE Sense System). Past reports detail the 
development of the SPINE Sense System [145], its validation [221], and clinical usability [196]. 
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The objective of this research is to  

1. Reaffirm and further analyze the relationship between motion characteristics and demographics with 
different aspects of well-being. 

2. Identify and interpret the dominant spinal-motion phenotypes (i.e., dominant motion patterns) 
exhibited by participants, using data collected from the SPINE Sense System and questionnaires. 

3. Demonstrate the potential clinical significance of the phenotypes. 
Data was collected from two cohorts of subjects – one cohort that experiences CLBP symptoms and another 
cohort that is CLBP asymptomatic. This will enable the identification of phenotypes representative of 
individuals with spines in good health and contrast them with phenotypes of individuals who are suffering 
from CLBP. 

The results from this work will lay the foundation for future research that will conduct randomized 
experiments to identify the optimal treatment paradigm for patients according to their phenotypes (see Figure 
6.1). Different etiologies of acute LBP are often associated with specific changes in spinal motion that are 
indicative of the optimal treatment paradigm [85-92, 212]. It is therefore anticipated that the findings from 
this and subsequent studies will result in a precision medicine approach to treating patients with CLBP. This 
in turn would improve treatment outcomes, expedite recovery, and reduce medical costs worldwide [44, 145]. 

 
Figure 6.1 Overview of the NIH BACPAC initiative. An individual’s biopsychosocial well-being influences spinal 
biomechanics, which can be objectively monitored using the SPINE Sense System. The objective of this work is to 
analyze the data from the SPINE Sense System and other relevant factors to identify phenotypes of spinal motion, 
which in future work will be conveyed to clinicians, who can then identify the optimal treatment paradigm for patients 
according to their phenotype. This can then be implemented on a widescale to reliable apply treatments best suited to 
patients’ needs, improving treatment outcomes and saving medical costs worldwide. 

6.2. Methods 
6.2.1. Data Collection 
The protocol for conducting human-subject tests was described previously in [145]. A summary of the 
methodology used in this study is provided here for reference. 

Two cohorts of participants were recruited for this study – individuals who report having experienced CLBP 
(cases) and CLBP asymptomatic (control) individuals. Both cohorts were 35-65 years of age (which is the age 
range of the highest prevalence of CLBP [52]). Part of the test procedures included an MRI scan – hence the 
exclusion criteria included metal or electrical implants, claustrophobia, and possible pregnancy. Furthermore, 
each subject had to be capable of assuming a vertical position without an assistive device. Individuals who 
had undergone hip or knee surgery were excluded from this study. 

The control group was recruited via flyers to the local community. Due to the prevalence of LBP and its wide 
range of severities, controls, individuals with CLBP, and individuals with acute LBP are very heterogeneous 
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populations and at times difficult to differentiate [44]. Past studies have recruited only individuals with well-
documented cases of LBP to mitigate this issue [46]. In this study, CLBP asymptomatic individuals with 
diagnosed disorders known to influence motion – including known scoliosis or history of treatment for 
lumbar spine pain – were excluded to avoid conflating effects between CLBP and other ailments. 

The CLBP symptomatic cohort was recruited from individuals who were already scheduled for physical 
therapy for complaints of CLBP. The symptoms had to be primarily axial (as opposed to radicular, radiating 
into one leg), and persistent for at least three months prior to the study. 

6.2.1.1. Motion Testing 
After being screened for eligibility, participants were fitted with the SPINE Sense System adhered to their 
lower back (see Figure 6.2). 

 
Figure 6.2 Depiction of (a) the SPINE Sense System adhered to a subject’s back and (b) the SPINE Sense System 
collecting data during motion. 

With the SPINE Sense System in place, the participants were directed through a series of single-planar 
motions (as have been used in a variety of past studies to investigation the motion of individuals with CLBP 
[150]) and multi-planar motions (which is more representative of daily tasks), each repeated six times. The 
motions included in this test are depicted in Figure 6.3. See also [145] for full details regarding the motion-
collection protocol. 

 

 
Figure 6.3. Depiction of the different single- and multi-planar motions included in this research with the full motion 
name and abbreviated motion name listed below each figure. 
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The high deflections strain gauges respond to skin stretch during motions, and the outputs are recorded by 
the SPINE Sense System as a proxy for spinal kinematics. The SPINE Sense System outputs were calibrated 
using a knee-touch exercise [145]. The calibrated outputs were then processed using a model that converts 
strain gauge outputs to estimations of motion [144]. The following motion features were estimated from the 
data. 

• Range of motion (“delta”): The maximum range of motion performed during a motion. 
• Velocity of motion (“dot”): The velocity of motion. 
• Duration of motion (“interval”): The time required to achieve the max range of motion.  
• The spread of time ratios (“spread”): The ratio of the time to complete a preliminary repetition to the 

final repetition of the same motion. E.g., a value > 1 indicates the participant took longer to 
complete the final repetition compared to previous repetitions. 

• Asymmetry (“asym”): The absolute value of the difference between the left and right side of the body 
during single-planar motions (for both range of motion and velocity). This feature corresponds to 
exercises performed along a single plane: namely Flexion, Flexion Fast, Extension, and Extension 
Fast. 

• Twist (“twist”: The absolute value of the difference between the left and right side of the body, in 
terms of range and velocity, between exercises performed on either side of the sagittal plane. 
Relevant exercises for this feature include Flexion left-right, Extension left-right, and Lateral bending 
left-right. 

Each motion is performed six times, the first being regarded as a practice repetition.  The median value of the 
2nd-6th repetitions was included in the subsequent analyses. The eccentric motion was the primary 
consideration for each feature. Each variable is referred to by both the exercise name and the feature being 
monitored – e.g., the range of motion during Flexion Max is referred to as “Fmax_delta”. 

6.2.1.2. Demographics 
A series of studies have found that certain demographics, lifestyle, occupational, and psychological factors 
influence the prevalence and severity of LBP [6, 28, 33, 43], which need to be accounted for when developing 
classification techniques to identify the optimal treatments for sub-groups of patients with CLBP [96]. Some 
of the more commonly identified risk factors from past studies have been included in this work and are 
described below. 

Age: Past studies have observed that the prevalence of LBP increases with age to approximately 55 years, and 
CLBP is the most prevalent among individuals 35-65 years of age CLBP [52]. Age was therefore included as a 
quantitative variable. 

Socioeconomics: A plethora of studies have identified work-related factors to increase the risk of LBP and 
CLBP, especially for blue-collared workers who are exposed to heavy loads and prolonged vibrations (such as 
experience during driving) [2, 14, 15, 30-32]. Furthermore, past studies have found that populations from a 
higher socioeconomic background (i.e., advanced levels of education, white-collar workers, higher job rank, 
increased salaries) have a lower prevalence of CLBP [9, 33]. Both income and education were included in the 
study as ordinal variables. 

• Income (in USD / year): 1=<10,000, 2=10-25,000, 3=25-35,000, 4=35-50,000, 5=50-75,000, 6=75-
100,000, 7=100-150,000, 8=150-200,000, 9=200,000+ 

• Education (in terms of degree completed): 1=<HS, 2=some HS, 3=HS, 4=Associates, 5=College, 
6=Postgraduate. 

 

Physical Fitness / Activity: It has long been observed that unhealthy lifestyles and high BMI score are 
associated with LBP prevalence, severity, and medical treatment – even when accounting for potential 
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confounding factors [33, 38]. There is also a plethora of evidence that physical activity has the potential to 
reduce pain [14, 43], improve functionality [43, 68, 69], and mitigate the risk of LBP occurrence / recurrence 
[4, 14, 20, 43]. The following features were included to capture these aspects of health. 

• Body mass index (BMI): BMI is a commonly used indicator of body type and used to identify healthy 
and unhealthy ranges of weights according to an individual’s height [33]. 

• Short Form International Physical Activity Questionnaire (IPAQ): Self-assessed physical activity in 
the week prior to subject participation in the study was estimated in terms of Metabolic Equivalent 
Task (MET) minutes per week using the IPAQ Questionnaire. Previous studies have compared 
IPAQ scores to objective metrics of physical activity and found it to be a moderately reliable for 
estimating vigorous physical activity [99]. 

 

Psychological Wellbeing: Many studies have investigated the relationship between psychosocial and 
physiological wellbeing. Patients with LBP tend to have weaker social networks [33], and low social support 
in the workplace has been identified as a factor for developing LBP [43]. Multiple studies have hypothesized 
that higher levels of fear-avoidance are associated with decreases in functional performance [43-45]. This is an 
especially important factor to consider when evaluating CLBP, which some studies describe as more of a 
psychosocial dysfunction than even a physiological impairment [4]. Psychosocial influences were considered 
in the subsequent analyses using the following metrics. 

• Pain Catastrophizing Scale 6 (PCS-6): Pain catastrophizing is “an exaggerated negative orientation 
towards actual or anticipated pain experiences”, which past studies have found to be associated with 
higher pain intensities [163]. The PCS-6 is designed to capture three psychological components of 
catastrophizing: helplessness, rumination, and magnification [164]. 

• General Anxiety Disorder 2 (GAD-2): The GAD-2 questionnaire is used to identify General Anxiety 
Disorder (i.e., depression of mood over a two-week period), which has exhibited acceptable accuracy 
in past studies [162]. 

• Relationship: Participant marital status was included as a binary feature. 
 

Smoking: There is an overwhelming consensus that smoking is associated with a higher risk of LBP [30, 33, 
37], possibly due to stresses caused by smoking-induced chronic cough [30] and / or vasoconstriction 
(impaired blood supply) to intervertebral discs [30, 33]. Smoking was included as an ordinal feature (0=non-
smoker, 1=<monthly, 2=monthly, 3=weekly, 4=daily). 

Opioids: Opioid use is an extremely common method of treating the symptoms associated with CLBP. 
However, the current consensus on the efficacy of opioids is under scrutiny and additional studies are needed 
to evaluate their benefits and long-term effects [60]. There are also several potential adverse side-effects 
related to opioid use that can impact an individual’s psychological and physiological health, such as 
hyperalgesia, hypogonadism, constipation, nausea, sedation, increased risk of falls and fractures, depression, 
sexual dysfunction, and potentially (and ironically) increased sensitivity to pain  [58, 62]. Participants were 
therefore asked to report whether they were currently using prescribed opioids, which was included in the 
study as a binary factor (0=no opioid use, 1=opioid use). 

Sex: Sex has been identified in past studies as a potential feature that impacts LBP severity and prevalence [2, 
6, 17, 33]. Some studies have postulated that sex has direct biopsychological implications that influence LBP 
(e.g., osteoporosis, menstruation, pregnancy, smoking, BMI) [30], while others believe that sex is plays a more 
indirect role through psychosocial influences [6]. To account for the potential direct and indirect influences, 
sex was included in subsequent analyses as a binary variable (0=female, 1=male). 
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Within the week prior to the motion testing and collecting MRI spinal scans, subjects were asked to fill out a 
survey reporting these demographics, which were included in subsequent analyses as binary, categorical, and 
continuous variables. 

6.2.1.3. Patient-Reported Outcomes 
The different aspects of an individual’s biopsychosocial well-being can be quantified using patient-reported 
outcomes (PROs). PROs are being implemented by healthcare providers with increasing frequency to inform 
clinical decisions [97]. Substantial research has been conducted that evaluates the average PROs among 
patients suffering from different ailments [105-107] and analyzes the change of PROs prior to and following 
intervention [108-114]. The PROs measured in this study include those collected in the Back Pain 
Consortium Research Program [159] and additional metrics. A brief description of each PRO is as follows: 

Pain Intensity: Low-back pain intensity was measured using a numeric rating scale from 0-10 (0 representing 
‘no pain’ and 10 representing the most severe pain possible) in the previous week. Pain mitigation is one of 
the primary components of nearly every medical intervention [1]; and low-back pain is also one of the most 
frequent causes for hospitalizations, physician visits, and medical consultation [21, 104]. It is a vital metric to 
consider when assessing patient well-being. 

Oswestry-Disability Index (ODI): Spine-related disability was measured using the widely used ODI metric 
[98]. The ODI metric has been thoroughly vetted and is frequently used as the gold standard for quantifying 
disability related to LBP [118, 160], and has shown strong experimental reliability when evaluating patients 
with chronic pain [104]. 

Patient-reported outcomes measurement information systems (PROMIS) metrics: PROMIS scores are “a set 
of person-centered measures that evaluates and monitors physical, mental, and social health in adults and 
children” [101]. Past studies have evaluated PROMIS metrics and concluded them to be “efficient, flexible, 
and precise” [97]. The short-form PROMIS metrics implemented in this research included the PROMIS Pain 
Interference 4a, PROMIS Physical Function 6b, PROMIS Sleep Disturbance 6a, PROMIS 4-item 
Depression, and PROMIS 4-item Anxiety. 

6.2.2. Data Analysis 
Using the data described above – subject motion as measured by the SPINE Sense System and the 
demographics and PROs collected via questionnaires – the following analyses were performed. 

6.2.2.1. Features that Relate to Patient Reported Outcomes 
For this study, the features of interest include the motion characteristics and the subject demographics 
described previously. Substantial evidence indicates that there exists a relationship between different motion 
and demographics data with subject well-being as quantified by PROs [6, 28, 33, 43]. The first analysis 
conducted was to quantify the strength of the correlation between each feature of interest and PRO for 
patients with CLBP. This was calculated using Pearson’s correlation coefficient (𝑟𝑟) and the Cohen evaluation 
thresholds: |𝑟𝑟|=0.10-0.30 is considered small correlation strength, |𝑟𝑟|=0.31-0.50 is considered moderate 
correlation, and |𝑟𝑟|>0.50 is considered large correlation strength [165, 169]. This analysis was conducted to 
substantiate past findings and support the logic for using these features to identify phenotypes among 
patients to be considered by clinicians when treating patients who suffer from CLBP. 

The second analysis is to utilize all the features of interest (all the demographics and motion data collected) to 
predict each PRO. A gradient boosted decision tree machine learning algorithm – Python’s XGBRegressor – 
will be employed, which is a very versatile algorithm that performs well with nonlinear data. Models were 
trained and evaluated using a five-fold cross validation. A Shapley Additive Explanation (SHAP) chart was 
generated to depict the specific relationship between features and model outcomes. 
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6.2.2.2. Phenotype Identification 
The primary objective of this investigation is to identify dominant phenotypes of motion and assign 
participants to their respective phenotypes [145]. This task is well-suited for unsupervised machine learning 
algorithms. These algorithms quantify the difference between each datapoint (in this case, each study 
participant) and identify clusters (sub-groups of the original dataset) that minimize variance within clusters 
and maximize the variance between clusters [216]. The analysis defines sub-groups of the original dataset that 
exhibit similarities across all the motion and demographic features considered – namely, the phenotypes of 
interest. 

Data processing: Prior to the clustering analysis, outliers (|zscore| > 3) were filtered from the IPAQ scores 
(which past studies have shown is prone to biases and overestimations [165]) and motion metrics. This was 
done to prevent the results from being skewed by unrealistic anomalies [167]. Missing values in the dataset 
were replaced by the average feature values. Each feature was then scaled between 0-1 to give all features of 
interest an equal weight in the analysis. Finally, a principal component analysis of the filtered, scaled data will 
be performed to reduce the dimensionality and eliminate feature collinearity. The number of principal 
components (n) will be selected by including the first n components (ordered from largest to smallest in 
eigenvalue rank) that captures 95% of the variance from the original dataset.  

Determining the optimal number of clusters: The first step to the clustering analysis is to define how many 
clusters to parse the dataset into. It was important to select an appropriate number of clusters that is practical 
for clinical use and provides clear segmentation between the clusters. A range of 4-11 potential clusters were 
evaluated. The Silhouette criterion, which quantities how well-defined cluster segmentation is, was used to 
select the optima number of clusters from this range. 

Selecting the clustering algorithm and linkage method: The subsequent clustering analysis will be performed 
using a hierarchical clustering, which is well-suited for this application due to its ability to incorporate both 
quantitative features (such as spinal kinematics) and categorical features (such as demographics). Python’s 
AgglomerativeClustering algorithm was used in this endeavor. The results of the clustering analyses also depend 
on the linkage type, which is used to quantify the similarity / dissimilarity between data points. Due to its 
robust nature against noise, the Ward Linkage was implemented [218]. 

Phenotype interpretation: Once the clustering analysis is complete, each phenotype-cluster will be described 
in terms of which features most differentiated it from the other clusters in terms of the original, scaled 
features. This will provide both an intuitive explanation of what each phenotype identification entails and will 
identify which features are most important in detecting dominant spinal motion patterns. 

6.2.2.3. Evaluating the Potential Clinical Implications of Phenotypes 
It is expected that patients who exhibit similar phenotypes will also respond in a like-manner to different 
intervention techniques. Future work will investigate which treatment paradigm is most effective for patients 
suffering from CLBP according to their phenotype. Additionally, the potential clinical implications of these 
phenotypes were investigated by analyzing the relationship between phenotypes and the PROs of interest. 
This was done using one-way analysis of variance (ANOVA) tests to evaluate whether the PROs associated 
with the different phenotypes significantly differ from one another. An F-statistic with a 𝑝𝑝 value < 0.05 is 
considered significant, after applying a post-hoc Holm correction factor. If the ANOVA test showed 
statistical significance, Student t tests were performed on each pairwise comparisons between the phenotypes 
to evaluate for which phenotypes differed statistically between each other for each PRO of interest, again 
using an alpha of 0.05 after applying a post-hoc Holm correction factor. 
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6.3. Results 
6.3.1. Participants 
A total of 217 participants were included in this study – 126 who reported experiencing CLBP and 91 who 
were CLBP asymptomatic. A summary of the demographics for the two cohorts are described in Table 6.1. 

Table 6.1 Summar of the demographics of the two cohorts of interest - those who were CLBP asymptomatic (controls) 
and those who reported having experienced CLBP symptoms (cases). 

Demographic Controls Cases 

Age (Mean [stdev]) 47.32 [7.80] 48.82 [8.89] 

Income (USD / year) 
<10,000 
10,000-24,999 
25,000-34,999 
35,000-49,999 
50,000-74,999 
75,000-99,999 
100,000-149,999 
150,000-199,999 
>200 

 
1 
2 
2 
9 
15 
10 
31 
13 
8 

 
2 
1 
7 
13 
23 
17 
31 
18 
14 

Education (degree) 
No High School 
Some High School 
High School 
Associate’s 
Baccalaureate 
Postgraduate 

 
0 
0 
7 
12 
33 
39 

 
2 
5 
20 
17 
45 
37 

BMI (kg/m2) 27.03 [4.78] 28.32 [6.52] 

IPAQ MET (Mean [stdev]) 6271 [9030] 5839 [9197] 

PCS-6 (Mean [stdev]) 5.68 [4.48] 9.74 [5.64] 

GAD (Mean [stdev]) 0.68 [1.04] 1.61 [1.73] 

Not married / married 10 / 81 19 / 107 

No Opioid Use / Opioid Use / No 
Answer 

91 /0 / 0 11 / 114 / 1 

Female / Male 42 / 49 62 / 64 
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6.3.2. PRO Correlations 
6.3.2.1. Features that correlate with PROs 
Moderate to strong correlations (𝑟𝑟 > 0.3) were observed between several of the demographic features tested 
in this study demonstrated with the PROs of interest (see Figure 6.4a and b). Some of the more notable 
trends observed are as follows: 

• Small correlations were observed between participant BMI with the different metrics of interest, the 
strongest being the relationship between BMI and PORMIS Physical Function T (reverse), indicating 
high BMI is associated with physical dysfunction. 

• Negative correlations were observed between the socioeconomic features (Income and Education) 
with the PROs, indicating that higher education and income are associated with better health. 

• Positive correlations were observed between opioid use and the PROs. 
• Being in a marital relationship was associated with better PROs metrics. The strongest correlations 

observed were negative relationships with pain interference and depression. 
• Small to moderate correlation strength was observed between IPAQ MET Minutes / Week (IPAQ 

#) was with most of the PROs. These correlations were negative, reinforcing the finding that 
physical activity (as self-reported) is associated with better health. 

• Strong correlations were observed between metrics that evaluate pain catastrophizing and general 
anxiety with the PROs of interest, especially the PROMIS Anxiety and Depression scores. 

 

 
Figure 6.4 Summary of the Pearson’s correlation strength (𝑟𝑟) between (a) demographics with PROs and (b) metrics of 
Psychological Wellbeing with PROs. Again, the reverse of the PROMIS Physical Function T score is depicted above to 
provide consistent interpretation of the visualization (higher scores are indicative of worse participant health in each 
area). 

Small to moderate correlations (|𝑟𝑟| ranging 0.1-0.35) were observed between several of the motion 
characteristics with the PROs of interest (see Figure 6.5). Specific observations include the following. 

• Range of motion (ROM): Higher ranges of motion (ROM) during extension are generally negatively 
correlated with PRO scores, indicating that individuals with high ROM during extension have better 
health in the areas of interest. However, higher asymmetry of ROM during extension is positively 
correlated with PRO scores, indicating that asymmetric extension is indicative of worse outcomes. 
Asymmetric motions during multiplanar motions (Flexion Left-Right, Lateral Bending Left-Right) 
were also positively correlated with the PRO scores. Other relationships were too weak or varied to 
draw conclusions. 

• Velocity of motion: Similar to ROM, negative correlations between Extension velocity with PROs 
were observed, but positive correlations between extension asymmetric velocity with the PROs. 
Asymmetry during lateral bending is also positively correlated with the PROs. However, negative 
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correlations between Flexion asymmetry and PROs, indicating that having a faster side during flexion 
is associated with better health. 

• Duration of interval: Unsurprisingly, longer times to complete an exercise were (generally) positively 
correlated with different PROs. The one notable exception was Emax, where longer duration times 
were weakly correlated with better health outcomes. 

• Spread of interval: The strongest correlations between the Spread of Intervals with PROs were 
observed for the SitToStand motion. The Spread was weakly negatively correlated with most of the 
PROs of interest, indicating that subjects who took the same amount of time (or less) to complete 
the final repetitions as the first generally had better health. 

 

 
Figure 6.5 Summary of the Pearson's correlation strength (𝑟𝑟) observed between the motion features collected in this 
study and the PROs of interest for patients suffering from CLBP. Shades of red indicate positive correlations and shades 
of blue indicate negative correlations. Note: The reverse of PROMIS Physical Function T (i.e., 100 – PROMIS Physical 
Function T) is depicted above for visualization purposes (lower PRO scores for each metric depicted are indicative of 
better wellbeing). 



83 
 

6.3.2.2. Modeling PROs 
The accuracies of the XGBRegressor machine learning model predicting each PRO of interest are listed in 
Table 6.2. 

Table 6.2 A summary of the model accuracies (in terms of Pearson's correlation squared) for modeling each PRO of 
interest. 

PRO 𝒓𝒓𝟐𝟐 

Pain Intensity 0.351 

ODI 0.412 

PROMIS Physical Function T 0.332 

PROMIS Pain Interference T 0.388 

PROMIS Sleep Deprivation T 0.091 

PROMIS Depression T 0.396 

PROMIS Anxiety T 0.575 
 

The model did moderately well (𝑟𝑟2 ranging from 0.33 to 0.41) at predicting PROs that relate to physiological 
wellbeing (Pain Intensity, ODI, PROMIS Physical Function T, and PROMIS Pain Interference T). The 
model performance for predicting PROs related to psychological wellbeing (PROMIS Depression T, 
PROMIS Anxiety T) was also moderate (𝑟𝑟2 0.40 – 0.58). However, the model performed poorly predicting 
PROMIS Sleep Deprivation (𝑟𝑟2 < 0.10). Overall, it was observed that motion features and demographics can 
be used to approximate subject wellbeing regarding metrics physiological function (Pain Intensity, ODI, 
PROMIS Physical Function T, and PROMIS Pain Interference T) as well as psychological distress (PROMIS 
Depression T, PROMIS Anxiety T), but though they exhibit little association with sleep deprivation. 

SHAP values were generated to quantify the effect of each feature on the resulting outcome. An example of 
the how different features affect two specific predictions are depicted in Figure 6.6.  

 
Figure 6.6 SHAP waterfall plots, depicting the effect of different features on two specific instances: (a) the ODI of a 
subject and (b) the PROMIS Pain Interference T of a different subject. The default value prediction (the average of all 
observations) is represented at the bottom of the SHAP waterfall plots (e.g., 17.5 for ODI). The values of key features 
are presented on the left, and the effect on the prediction are depicted by the colors and length of the horizontal bars. 
The net prediction for the instance (i.e., for the subject of interest) is represented by 𝑓𝑓(𝑥𝑥) at the top of the waterfall plot. 
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SHAP scatterplots were used to depict the general effects of each feature across all instances. Figure 6.7 
depicts the SHAP values for the SitToStand_interval motion feature and the IPAQ MET Minutes / Week 
demographic feature on different PROs of interest. 

 
Figure 6.7 SHAP plots depicting the relationship of IPAQ Met Minutes / Week (left) and the SitToStand_interval (right) 
for different PROs of interest. The PRO of interest is noted by the subplot title. Notice that higher IPAQ MET Minutes 
/ Week are associated with better ODI, PROMIS Pain Interference, and PROMIS Anxiety scores, and that longer 
SitToSTand_interval durations are associated with higher ODI, PROMIS Pain Interference T, and PROMIS Depression 
T scores. 

6.3.3. Phenotype Analysis 
6.3.3.1. Phenotype Identification 
After outliers in the dataset were removed, a principal component analysis then revealed that the first 39 
principal components captured 95% of the variance demonstrated in the original 56 features. Those 39 
principal components were then used in the subsequent clustering analysis. The Silhouette Criterion scores of 
the dataset were calculated for a range of potential number of clusters (see Figure 6.8). It was observed that 
the best segmentation of the subjects was achieved when they were assigned to seven phenotype-clusters. 
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Figure 6.8 The Silhouette Criterion score for a range of clusters from 2-12. It was observed that at a separation of seven 
clusters, the Silhouette Criterion score was the greatest, indicating the best segmentation of clusters was achieved when 
the subjects were divided into seven phenotype-clusters. 

The study participants were then clustered into different phenotypes. The phenotypes were named according 
to the features that had the most impact in differentiating between the clusters. The phenotypes identified in 
the analysis were (A) control females with large flexion spread; (B) control males with consistent flexion 
motions; (C) case males with large Rright spread; (D) elder case females; (E) younger females with quick, 
consistent motions; (F) single case females with short Ffast durations; (G) cases with longer motion durations 
and prescription medications. A depiction of the phenotypes on the first two principal components is shown 
in Figure 6.9. A summary of the average values for the key features for each phenotype are described in Table 
6.3. 

 

 
Figure 6.9 Scatterplot of the study participants on the first two principal components of the data, color-coded by 
phenotype.  
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Table 6.3 A summary of the average values for the key features for each phenotype, in terms of their unscaled values. 

Phenotype Distinguishing 
Features 

Feature        
Averages 

A 
CLBP 

Sex 
Fright_Spread 

0.00 
0.11 
1.21 

B 
CLBP 

Sex 
Fleft_spread 

0.00 
1.00 
0.97 

C 
CLBP 

Sex 
Rright_spread 

1.00 
1.00 
1.38 

D 
CLBP 

Sex 
Age 

1.00 
0.05 
52.51 

E 

Sex 
Age 

Employment 
Ltwist_delta 

Lright_interval 
Ftwist_dot 

Ftwist_delta 

0.00 
44.4 
0.50 
1.24 
2.34 
0.43 
0.80 

F 

CLBP 
Sex 

Relationship 
Eleft_spread 
Ffast_interval 

1.00 
0.00 
0.00 
0.85 
1.29 

G 

Opioids 
SitToStand_Interval 

Rright_interfal 
Fright_interval 
Eright_interval 
Emax_interval 
Eleft_interval 

1.00 
11.57 
4.07 
3.96 
4.47 
0.67 
4.05 

 

6.3.3.2. Phenotype Significance 
The ANOVA tests revealed that there were statistically significant differences between the phenotypes for 
each of the PROs of interest (see Table 6.4). Once the ANOVA tests established statistically significant 
differences between the phenotypes for each PRO, Student t tests were conducted between each pair of 
phenotypes, and post-hoc Holm correction factors were applied. Phenotypes that exhibited no statistically 
significant differences in the t tests were marked with a common underline underneath their corresponding 
boxplots (see Figure 6.10). 
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Table 6.4 Summary of the resultant F-statistics, p-values, and adjusted p-values (corrected for multiple comparisons use 
the Holm post-hoc test) 

PRO F-statistic 𝑝𝑝-value adjusted 𝑝𝑝-
value 

Intensity 40.38 1.71E-32 1.19E-31 

PROMIS Pain Interference T 33.68 2.51E-28 1.51E-27 

ODI 32.25 2.59E-27 1.30E-26 

PROMIS Physical Function T 31.93 3.63E-27 1.45E-26 

PROMIS Sleep Deprivation T 11.65 2.98E-11 8.93E-11 

PROMIS Depression T 11.15 8.54E-11 1.71E-10 

PROMIS Anxiety T 5.25 4.66E-05 4.66E-05 
 

 
Figure 6.10 Summary of the comparisons between phenotypes for each PRO of interest. Each ANOVA test revealed 
that there were statistically significant differences between the phenotypes. Student t tests were then conducted to 
evaluate which phenotypes differed. Phenotypes that showed no statistically significant differences for a particular metric 
were indicated by underling the two or more boxplots. 

The following statistically significant observations were noted in the pairwise comparisons. 

Pain Intensity: The phenotypes comprised primarily of controls (A and B) differed from all other phenotypes, 
which were comprised of either primarily of cases or were a mix of cases and controls (C-G). 

ODI: Again, there were no statistical differences between phenotypes A and B. Cases with longer motion 
duration and prescriptions (G) differed from case males with large Rright spread (C), elder case females (D), 
and younger females with quick, consistent motions (E). Single case females with small Ffast durations (F) 
differed from the control phenotypes but overlapped with both the G phenotype and the C-E case 
phenotypes. 

PROMIS Physical Function T: The control phenotypes (A and B) had higher physical function scores than 
the case phenotypes (C-G). Again, the case phenotypes C-E had higher function scores than cases with 
longer motion duration and prescriptions (G), and single case females with small Ffast durations (F) 
overlapped with all other case phenotypes. 
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PROMIS Pain Interference T: The control phenotypes (A-B) differed from the case and mixed phenotypes 
(C-G). Case males with a large Rrigth spread (C) differed from single females with small Ffast durations (F) 
and cases with longer motion and prescriptions (G). Cases with longer motion durations and prescriptions 
(G) also differed from elder case females (D). Younger females with quick, consistent motions overlapped (E) 
overlapped with all other case and mixed phenotypes. 

PROMIS Sleep Deprivation T: The only case phenotype that differed from the control phenotypes (A-B) 
were case males with large Rright spread (C). However, no statistically significant differences were observed 
between the case phenotypes (C-G) regarding sleep deprivation. 

PROMIS Depression T: There were three case phenotypes that had higher depression scores than the control 
phenotypes (A-B), namely case males with large Rright spread (C), single case fmales with small Ffast 
duration (F), and cases with longer motion duration and prescriptions (G). However, no differences were 
observed between the case phenotypes. 

PROMIS Anxiety T: The only case phenotype that differed from the control phenotypes (A-B) in terms of 
anxiety were cases with longer motion durations and prescriptions (G), who exhibited higher anxiety scores. 
However, no statistically significant differences were observed between any of the case and mixed phenotypes 
(C-G). 

6.4. Discussion 
Past studies have reported relationships between CLBP severity and prevalence with subject demographics [6, 
28, 33, 43]. In this study, small to moderate correlation strengths (|𝑟𝑟| ranging from 0.10-0.50) were observed 
between several demographics with the PROs of interest. Some of the most prominent trends observed were 
that higher education and income levels were associated with lower anxiety, pain, and disability. Being in a 
marital relationship was associated with better health scores, as was having an active lifestyle. These findings 
are consistent with past studies [9, 14, 33, 43, 68, 69]. However, the strongest correlation with the PROs of 
interest were exhibited by the demographics that quantify psychological distress, namely the PCS-6 and GAD 
responses, which quantify negative orientation towards pain [163] and general anxiety [162], respectively. The 
Pearson’s correlation (𝑟𝑟) between these metrics with pain intensity, disability, physical dysfunction, and pain 
interference scores ranged 0.13-0.60. They also demonstrated moderate correlations with sleep deprivation (𝑟𝑟 
0.29-0.43), and strong correlation with the PROMIS Anxiety and Depression scores (𝑟𝑟 ranging 0.57-0.80). 
This is hardly surprising given the current consensus that CLBP is a highly psychological ailment [4, 43-45]. 

Past studies have also noted relationships between human motion with different metrics of wellbeing [44, 46, 
93, 210, 211, 220]. In this study, correlations between motion metrics and PROs were also observed, though 
to a lesser extent than the correlations between PROs with demographics. It was noted that having a higher 
range of motion and velocity during extension exercises were associated with better PROs in almost every 
category. Asymmetry during extension, on the other hand, tended to be associated with worse health metrics. 
Asymmetry during lateral bending was also associated with worse PROs. It was surprising, however, to note 
that asymmetry during flexion demonstrated did not follow this trend. Longer times to complete a motion 
were generally associated with worse PROs, especially the Sit to Stand test. It was also noted that shorter 
spread of durations (i.e., taking less time to complete the final repetition of a motion compared to the first 
repetition) was also associated with better PROs. 

Overall, these features can be used to train a model to predict different metrics of physiological and 
psychological wellbeing. The model was unable to predict Sleep Deprivation with significant accuracy. 
However, the model was able to capture 33-41% of the variance of different metrics of psychological 
wellbeing (e.g., Pain Intensity, ODI, PROMIS Physical Function T, and PROMIS Pain Interference T), and 
39-58% of the variance of different psychological metrics (PROMIS Depression T and PROMIS Anxiety T). 
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The SHAP values of the model also revealed the nature of the relationship between different demographic 
and motion metrics. Several nonlinearities were observed. Often, distinct thresholds were observed at which 
noticeable differences in PROs occurred (such as the sudden drop in PROMIS Pain Interference T once the 
IPAQ MET scores reached above 2000). 

The driving motivation for this research was to assist in developing a precision medicine algorithm for 
treating patients suffering from CLBP. No single treatment for assisting patients with CLBP has proven to be 
superior to all others. It has been hypothesized that treatment outcomes could be vastly improved by linking 
patients to their optimal treatment paradigm [44]. Past efforts in this endeavor have been hampered by the 
highly heterogenous spectrum of CLBP severities, the multifactorial nature of CLBP [96], and the lack of 
objective motion monitoring techniques [96]. This study provides a vital step towards developing this 
precision medicine technique by accounting for a variety of subject demographics as well as a quantitative and 
user friendly means of monitoring spinal motion [145]. It was demonstrated in this work that by phenotyping 
individuals according to their motion patterns and demographic characteristics, statistically significant 
differences in PROs are revealed between these phenotypes. An analysis of these phenotypes revealed that 
although there is a wide spectrum of CLBP severities, sub-groups among patients can be identified that 
exhibit significantly worse scores (such as individuals who are taking opioid prescriptions and require longer 
time to perform a task). Furthermore, a phenotype of spinal motion was identified that is comprised of both 
cases and controls. Control individuals who exhibit this phenotype may benefit from preventative treatment. 

The statistically significant differences in the PROs between phenotypes is a promising indicator that the 
phenotypes also will have relevance for clinicians. The results from this study can be conveyed to clinicians 
and patients as a next step towards developing a precision medicine algorithm, along with the SPINE Sense 
System and a means of classifying future participants to their respective phenotype. This will facilitate studies 
in which patients suffering from CLBP will undergo randomized treatment experiments to identify what is 
the optimal method for assisting patients in each phenotype. Additionally, the interpretation of each 
phenotype may provide clinicians with an additional understanding of which elements of the biopsychosocial 
triad are the primary causative elements in the patient’s pain, and thus the primary targets for clinical 
intervention. 
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CHAPTER 7 DISCUSSIONS 

This dissertation presents research conducted to monitor and analyze spinal motion with the intent of 
identifying sub-groups of individuals who exhibit similar motion patterns and demographic characteristics – 
i.e., phenotypes. Preliminary chapters in this work presented work done with high deflection strain gauges, 
motivated by the purpose of monitoring spinal motion. Later chapters investigate different metrics of subject 
wellbeing, as well as the methods used to identify phenotypes of motion, the results obtained, and the 
potential clinical application of these phenotypes. 

7.1. High Deflection Strain Gauge Modeling 
In Chapter 2, a model is presented that converts strain to resistance, as well as interprets strain as a function 
of resistance. This model accounts for the nonlinearities in the electrical response and time-based transient 
phenomena exhibited by the high deflection strain gauges. The model is comprised of two components: the 
first is a spline fit curve that captures the relationship between quasistatic strain and resistance, and the 
second is a dynamic model that predicts transient resistance spikes and their subsequent exponential decay as 
a function of the stress relaxation time coefficient. The two model components are superimposed to interpret 
sensor output under a wide range of applications. 

The model was tested on the Instron tensile tester, programmed to imitate biomechanical strains. The model 
achieved a MAE of 1.6% strain when used to interpret static strains. The model prediction of sensor output 
of dynamic strain applications captured the general trends of the viscoelastic resistance behavior and achieved 
high accuracy at low to intermediate strain rates – MAE values of 5.00Ω, 4.03Ω, and 8.59Ω at elongation rates 
of 0.05 mm/s, 0.50 mm/s, and 5.0 mm/s, respectively. The model interpretation of dynamic strains was able 
to estimate strain magnitude with an MAE of 1.4% strain and strain rate with an MAE of 0.036 mm/s. 

7.2. Mitigating Viscoplastic Deformation with Multilayered Architecture 
During the model developed described above, it was noted that the sensor performance and strain range was 
limited due to viscoelastic and viscoplastic deformation of the sensors. While the base material of the sensors, 
silicone, is highly elastic, the conductive nanoparticles in the silicone matrix induce stress concentrations. The 
resulting effects on the electrical signals are difficult to simulate and interpret in terms of accurate strain 
values [144]. In the application of repeated stress and relaxation, the viscoplastic creep influences become 
more pronounced on the sensor output. 

Understanding that the sensor electrical signal is highly intertwined with the material properties, a multi-
layered silicone architecture was developed to encase the nanocomposite strain gauges as described inChapter 
3. It was observed that the multi-layered architecture mitigated internal stresses at high strains and made the 
strain gauges less prone to buckling during cyclic strains. One of the key improvements in the sensor 
performance as a result of this change was an increase of signal monotonicity (i.e., that the resistances 
changes only in one direction – either increasing or decreasing – with additional strain) [146]. The monotonic 
region was approximately 18-50% strain for the single-layered sensors and approximately 5-50% for the 
multi-layered sensors. Furthermore, the multilayered architecture reduced the quasi-static electrical signal drift 
by as much as 74% during cyclic application. 

7.3. Relationship between PROs and Moderating Effects of CLBP 
The objective of the strain gauge characterization and optimization for this application was to be used in 
subject motion testing. In addition to the motion tests, study participants were asked to fill out questionnaires 
regarding their quality of life in different areas. These questionnaires provide quantitative metrics, known as 
patient-reported outcomes (PROs). There were seven patient-reported outcomes included in this study: Pain 
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Intensity, Oswestry Disability Index (ODI), PROMIS Physical Function, PROMIS Pain Interference, 
PROMIS Sleep Deprivation, PROMIS Anxiety, and PROMIS Depression. Chapter 4 describes several 
analyzes conducted to understand the effects of CLBP on these metrics and their relationship to one another. 

From an exploratory factor analysis, these PROs appear to be summarized by four generalized dimensions of 
well-being represented: Pain and Physical Limitations, Psychological Distress, Physical Activity, and Sleep 
Deprivation. Individuals who suffer from CLBP reported a significantly lower quality of life in metrics that 
quantify Pain and Physical Limitations (Pain Intensity, ODI, PROMIS Pain Interference, and PROMIS 
Physical Function), Psychological Distress (PROMIS Depression and PROMIS Anxiety), and PROMIS Sleep 
Deprivation. 

Moderate to strong relationships were observed between the different PROs, indicating that the different 
components of wellbeing are highly related to each other. Furthermore, the presence of CLBP is a statistically 
significant moderating factor in the relationship between the PROMIS Metrics with physiological wellbeing 
(Pain Interference and ODI). This provides an important context for interpreting PROMIS and legacy PROs 
in future clinical investigations. This in turn may enable clinicians to more effectively monitor patient 
progress compared to the baseline of asymptomatic subjects, make more quantitative assessments of patients, 
and perhaps eventually contribute to the objective selection of treatment paradigms according to patient 
needs [44]. 

7.4. Phenotype Identification and Analysis 
The primary purpose of this research endeavor was to identify phenotypes of spinal motion and 
demographics. In this analysis, skin stretch on the lower back served as a proxy for spinal kinematics. High 
deflection strain gauges were placed on the lines of lines of maximum extension during different spinal 
motions. The array of the sensors, along with the corresponding wiring and PCB is known as the SPInal 
Nanosensor Environment (SPINE Sense System). Chapter 5 describes the development of the SPINE Sense 
System, the subject testing protocol, and anticipated data analysis methodology. Chapter 6 details the results 
from the final analysis. 

The first analysis evaluated the strength of the correlation between individual features (namely motion 
patterns and subject demographics) with the PROs of interest. Small to moderate Pearson’s correlation 
strengths (|𝑟𝑟| ranging from 0.10-0.50) were observed between several demographics with the PROs of 
interest. Some of the most prominent correlations were that higher education and income levels were 
associated with lower anxiety, pain, and disability. Being in a marital relationship was associated with better 
health scores, as was having an active lifestyle. These findings are consistent with past studies [9, 14, 33, 43, 
68, 69]. The strongest correlation with the PROs of interest were exhibited by the demographics that quantify 
psychological distress, namely the PCS-6 and GAD responses, which quantify negative orientation towards 
pain [163] and general anxiety [162], respectively. The Pearson’s correlation (𝑟𝑟) between these metrics with 
pain intensity, disability, physical dysfunction, and pain interference scores ranged 0.13-0.60. They also 
demonstrated moderate correlations with sleep deprivation (𝑟𝑟 0.29-0.43), and strong correlation with the 
PROMIS Anxiety and Depression scores (𝑟𝑟 ranging 0.57-0.80). This is hardly surprising given the current 
consensus that CLBP is a highly psychological ailment [4, 43-45]. 

Correlations between motion metrics and PROs were also observed, though to a lesser extent than the 
correlations between PROs with demographics. It was noted that having a higher range of motion and 
velocity during extension exercises were associated with better PROs in almost every category. Asymmetry 
during extension, on the other hand, tended to be associated with worse health metrics. Asymmetry during 
lateral bending was also associated with worse PROs. It was surprising, however, to note that asymmetry 
during flexion demonstrated did not follow this trend. Longer times to complete a motion were generally 
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associated with worse PROs, especially the Sit to Stand test. It was also noted that shorter spread of durations 
(i.e., taking less time to complete the final repetition of a motion compared to the first repetition) was also 
associated with better PROs. 

These input features were combined to train a model to predict different metrics of physiological and 
psychological wellbeing. The model was unable to predict Sleep Deprivation with significant accuracy. 
However, the model was able to capture 33-41% of the variance of different metrics of psychological 
wellbeing (e.g., Pain Intensity, ODI, PROMIS Physical Function T, and PROMIS Pain Interference T), and 
39-58% of the variance of different psychological metrics (PROMIS Depression T and PROMIS Anxiety T). 

The input features were also used to cluster subjects who exhibited similar motion patterns and 
demographics. Seven phenotype clusters were identified in this analysis: (A) control females with large flexion 
spread; (B) control males with consistent flexion motions; (C) case males with large Rright spread; (D) elder 
case females; (E) younger females with quick, consistent motions; (F) single case females with short Ffast 
durations; (G) cases with longer motion durations and prescription medications. Statistically significant 
differences were observed between the control phenotypes (A-B) and the case and mixed phenotypes (C-G). 
Phenotype G generally exhibited the most severe symptoms, even exhibiting statistically significant 
differences from other case phenotypes regarding ODI and PROMIS Physical Function T.  

These results provide a vital step towards developing this precision medicine technique by accounting for a 
variety of subject demographics as well as a quantitative and user friendly means of monitoring spinal motion 
[145]. The statistically significant differences in the PROs between phenotypes is a promising indicator that 
the phenotypes also will have relevance for clinicians. This will facilitate studies in which patients suffering 
from CLBP will undergo randomized treatment experiments to identify what is the optimal method for 
assisting patients in each phenotype. In addition to identifying sub-populations among cases and controls, 
Phenotype E was comprised of both cases and controls, it is possible that the controls in this phenotype 
could benefit from preventative treatment. 

7.5. Future Work 
The results from this work, in addition to their innate contributions to the fields of engineering and medicine, 
will also facilitate future research. 

Clinical Application of Phenotypes: The follow-up from the BACPAC study will be the Biomarkers for 
Evaluating Spine Treatments Trial (BEST) program. The BEST study will be a multi-site, multiple assignment 
randomized trial to evaluate four potential interventions: acceptance and commitment therapy, duloxetine, 
evidence-based exercise and manual therapy, and enhanced self-care. It is our hypothesis that this information 
regarding subject phenotypes and their corresponding descriptions will enable clinicians to select treatment 
paradigms individually tailored according to patient conditions. This in turn will improve treatment efficacy, 
improve the quality of life for the millions of patients suffering from CLBP worldwide, and save millions of 
dollars in medical resources worldwide every year. 

Sensor Characterization and Optimization: Additional characteristics the HDSG can be altered to optimized 
performance, such as the cross-sectional area and the concentration of nanoparticles in the silicone matrix. 
Preliminary work has already demonstrated that altering these aspects of the sensors has the potential to 
further enhance the quality and performance of the sensors. These optimized HDSGs will have immense 
impact in the field of biomechanics, soft robotics, human-machine interfaces, and more fields [125]. 

Evaluating sex as a moderating factor in relationships between PROs: Further investigation, using the 
methods described in Chapter 4, can be used to determine whether other moderating factors influence the 
relationship between PROs. Potential moderating factors include sex (male or female) and the presence of 
other ailments other than CLBP.  
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