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ABSTRACT 
 

Novel Fire and Herbivory Regime Impacts on Forest 
Regeneration and Plant Community Assembly 

 
Devri A. Tanner 

Department of Plant and Wildlife Sciences, BYU 
Doctor of Philosophy 

 
Human activities are increasing the occurrence of megafires that have the potential to 

alter the ecology of forest ecosystems. The objective of this study was to understand the impact 
of a 610-km2 megafire on patterns of forest regeneration and herbivory of three forest types 
(aspen/fir, oak/maple, and pinyon/juniper) within the burn scar. Sapling density, meristem 
removal, and height were measured across a transect network spanning the area of the burn scar 
over three years from 2019-2021. The network consisted of 17 burned/unburned transect pairs in 
adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper). Species 
that regenerated through sprouting generally responded positively to fire while regeneration from 
seed showed very little post-fire response. Browse pressure was concentrated on deciduous tree 
species and tended to be greater in burned areas but the effect diminished over time. Meristem 
removal of sprouting species was below the critical threshold resulting in positive vertical 
growth across years. Our results indicate that forest regeneration within the megafire scar was 
generally positive and experienced sustainable levels of ungulate browsing that are likely to 
result in forest recruitment success. 
 

Novel fire regimes are becoming increasingly common and megafires have burned across 
ecotonal boundaries across multiple forest types. Plant community structure and composition 
may be critically affected by changing fire regimes. Our objective was to investigate how a 
megafire that burned across multiple forest types impacted understory plant community 
assembly and biodiversity. Paired vegetation transects were installed in burned and unburned 
areas across aspen/fir, oak/maple, and pinyon/juniper forests within the 2018 Pole Creek 
Megafire burn scar. Percent cover of understory plants was measured in the summer of 2022 and 
plants were identified to the species level. Richness and diversity indices were then calculated 
and analyzed using mixed effects models.  Fire decreased species richness of the aspen/fir forest 
understory and increased plant cover in pinyon/juniper forests, while not significantly impacting 
oak/maple understories. The significant effects of fire were largely driven by changes in forb 
species.  Fire decreased the richness of native plants in aspen/fir forests but increased the 
richness of non-native plants in oak/maple and pinyon/juniper forests. Non-native plant 
abundance also increased in post-fire pinyon/juniper forests. Our results suggest that forest 
understory communities show variable responses to megafires that burn across multiple forest 
types with important implications for post-fire plant community structure, diversity, and 
invasibility. 
 

Large mammal herbivores (ungulates) are increasing in number and spreading into novel 
habitats throughout the world. Their impact on forest understory plant communities is strong and 
varies by herbivore, plant growth form, and season. The objective of this study was to determine 
the individual and collective herbivory impacts of native versus domestic ungulates on the 



 
 

 

understory plant community composition of post-fire aspen forests. Four-way fencing treatments 
were installed in 2012 to separate ungulate species, and Daubenmire frames were used to collect 
percent cover estimates for each understory plant species. Vegetation data were later used to 
calculate richness and diversity indices. Total understory plant cover, richness, and diversity 
were not significantly impacted by the herbivory fencing treatment. However, woody plant 
species’ percent cover was 90% greater in full ungulate exclusion plots than in the fenceless 
controls. Herbivores likely targeted woody plant species due to their high nutrient levels that last 
longer into the winter than those of forb or graminoid species. Herbivory treatment did not affect 
non-native species. Our results indicate that herbivore fencing can protect forest understory plant 
communities, particularly the woody species. Successful regeneration of woody species can 
benefit the diversity of the entire understory plant community and preserve forest structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: wildfire, novel fire regime, disturbance, sapling, forest recruitment, ungulate browse 
ungulate herbivory, exclosures, forest understory, woody plants, aspen, megafire, native plants, 
non-native species, forbs, fir, oak, maple, pinyon, juniper  
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CHAPTER 1 
 

Novel Fire and Herbivory Regime Impacts on Forest 
Regeneration and Plant Community Assembly 

 
Impacts of changing ungulate populations and behaviors  

on habitat and plant communities 
 

Devri A. Tanner, Benjamin W. Abbott, Richard Gill, Neil C. Hansen, Samuel B. St. Clair 
 

Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 
Doctor of Philosophy 

 

INTRODUCTION 

Plant and Ungulate Coevolution 

Plants and animals have strong, and often long-term, coevolutionary histories (Hobbs, 

1996). The coevolution of ungulates and plants (i.e. the foraging history) in a landscape is often 

characterized by plant diversity shifting to favor plants that can either tolerate or avoid foraging 

by the resident herbivores (Boavista et al., 2019; Eldridge et al., 2018). The coevolution of plants 

and herbivores has created an enhanced capacity for plants to avoid or tolerate defoliation by 

evolving to be prostrate or decumbent, have deciduous leaves or high shoot density, grow from 

stolons or rhizomes or underground nutrient reserves, or have faster rates of transpiration and 

photosynthesis (Boavista et al., 2019; Briske, 1996; Hobbs, 1996; Milchunas & Lauenroth, 

1993). Plant regrowth capacity after herbivory damage is increased with longer histories of 

foraging by the same herbivore (B. V. Li & Jiang, 2021; Milchunas & Lauenroth, 1993). Plants 

with a long foraging history have higher growth responses to nitrogen in the form of urea and 

ammonium (which largely come from dung and feces) as compared to other soil nitrogen, 

especially when they are damaged by defoliation (Hobbs, 1996). Foraging history can affect 

habitats and plant communities by modulating the effects of novel ungulate herbivory in concert 
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with ecosystem productivity and herbivory intensity (Milchunas & Lauenroth, 1993). Although 

long foraging histories are less common in deserts, uneaten, drought-tolerant plants are less 

affected by novel foraging because adaptations for plant tissue loss to drought are similar to 

those for herbivory damage (Milchunas & Lauenroth, 1993). The co-evolution of ungulates and 

plant communities is integral to understanding how biomes will shift when the historic herbivory 

regime is altered (Eldridge et al., 2018). 

 Disrupting the coevolutionary history between large mammal herbivores and the plant 

community leads to novel herbivory regimes (B. V. Li & Jiang, 2021; Milchunas & Lauenroth, 

1993; Whitehead et al., 2014; Yan et al., 2015). Altered foraging histories are often perceived as 

the introduction of novel herbivores (Salgado-Luarte et al., 2018); however, foraging histories 

can be disturbed through novel ungulate abundances, different temporal dynamics, new 

behaviors, altered forage selectivity or strategy, or any combination thereof (Figure 1) (Eldridge 

et al., 2018; Milchunas & Lauenroth, 1993). While areas with long grazing histories and high 

productivity are often more resilient and reap benefits from moderate herbivory (Boavista et al., 

2019; Salgado-Luarte et al., 2018), increasing herbivory intensity past the historic thresholds of 

any ecosystem can alter primary productivity and nutrient cycling (Díaz et al., 2007; B. V. Li & 

Jiang, 2021), decrease plant diversity, functional diversity, canopy height and coverage (Côté et 

al., 2004; Egelkraut et al., 2018; Yan et al., 2015), and ultimately diminish habitat and 

conservation value (Bernes et al., 2018). Unaltered herbivory regimes resist invasion (A. K. 

Knapp et al., 1999); however, novel grazing can reduce biotic resistance and give herbivory-

resistant plants a competitive advantage (Briske, 1996; Olofsson & Post, 2018; Ward et al., 

2013). Adding domestic ungulates to ecosystems with no history of grazing can greatly impact 

biodiversity (Whitehead et al., 2014), though ecosystems that have evolved with livestock are 
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less impacted by modern-day livestock grazing (B. V. Li & Jiang, 2021). When foraging 

histories are disrupted in the short term, such as when livestock are added and then removed, 

biomes can either revert to pre-herbivory status or be invaded by exotics (Whitehead et al., 

2014). Future research must take foraging history into account as it can help explain variation 

between biome responses and possible adaptations that have come from their histories and may 

influence future herbivory regimes (B. V. Li & Jiang, 2021; Milchunas & Lauenroth, 1993). 

 

HERBIVORY INTENSITY 

Ungulate Abundance 

Biodiversity Changing ungulate abundance alters plant diversity by affecting niche space 

and plant regeneration (Connell, 1978; Pruszenski & Hernández, 2020; Schütz et al., 2003). As 

suggested by the intermediate disturbance hypothesis, moderate levels of herbivory create high 

plant diversity by opening niche space and stimulating regeneration (Connell, 1978; A. K. Knapp 

et al., 1999; Pruszenski & Hernández, 2020; Schütz et al., 2003). Moderate levels of herbivory 

often increase the diversity of both woody and herbaceous species by reducing plant-plant 

competition and opening niche space (Faison et al., 2016); but at consistently high levels of 

herbivory, species richness declines because growth rates may not be fast enough for successful 

plant regeneration (Adey & Loveland, 2007; A. K. Knapp et al., 1999; Rhodes, Larsen, & St. 

Clair, 2018). Chronic overgrazing as a result of increasing ungulate abundance thus favors 

browse-tolerant species and low plant diversity (Adey & Loveland, 2007; Frank, 2005; X. lai Li 

et al., 2013; Royo & Carson, 2006). Decreasing ungulate abundances offers fewer disturbances, 

which allows the best plant-plant competitors to dominate and reduce plant diversity in the 

ecosystem (Bernes et al., 2018; Faison et al., 2016). 
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Structure & Function  Changing ungulate abundance alters plant structure and function 

by affecting plant growth and productivity (Lloyd et al., 2010; Manier & Hobbs, 2007; Rhodes, 

Larsen, Maxwell, et al., 2018). Moderate herbivory levels create microsites with increased bare 

ground, light, and soil water availability, which increases seedling emergence and regulates 

competition among plants (Bernes et al., 2018; Manier & Hobbs, 2007; Martin & Wilsey, 2006). 

Increased herbivory levels can alter the structure of an ecosystem by changing the composition 

of plants to mainly consist of grazing-avoidant species that are short or flat, graze-tolerant, 

stoloniferous, or annuals (Lloyd et al., 2010; Royo & Carson, 2006). Unsustainably high 

browsing can prevent woody species from reaching canopy levels, which creates stunted, bush-

like growth forms of tree species (Milne-Rostkowska et al., 2020; Royo & Carson, 2006). 

Increasing ungulate abundances can also alter plant productivity by increasing decomposition 

and nutrient cycling at foraging and defecation sites (Staver et al., 2021); however, if ungulate 

populations rise or fall too dramatically, increased plant productivity will be lost due to inhibited 

plant regeneration. 

Invasion  Increased ungulate abundance can leave ecosystems more susceptible to 

invasion by increasing plant resource availability, reducing biotic resistance, and increasing 

dispersal rates (Baltzinger et al., 2019; Kuebbing et al., 2013; MacLaren et al., 2014; Parker et 

al., 2006). Greater plant resource availability due to increased herbivory rates can weaken 

resistance to invasion by increasing the amount of light, space, and soil nutrients available for 

invasive plants (Davis et al., 2000; Kuebbing et al., 2013). Additionally, reduced plant diversity 

due to ungulate overabundance can decrease plant community resistance to invasion (Kuebbing 

et al., 2013). Invasion depends heavily on the dispersal of diaspores to susceptible landscapes, 

and dispersal rates increase alongside increases in ungulate abundance (Kalisz et al., 2014; 
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Myers et al., 2004). In biomes where ungulate populations are shrinking, invasion rates will be 

lower as resource availability and dispersal decrease while biotic resistance will increase. The 

longer a site remains undisturbed by herbivory the more difficult invasion becomes due to a lack 

of available resources, niche space, and dispersal for new species (Olofsson & Post, 2018). 

Biome Trends in Ungulate Abundance  Ungulate abundances are changing worldwide, 

with forest and grassland biomes typically increasing in abundance, and tundra biomes typically 

stabilizing or decreasing in abundance. Overabundant ungulates in forest biomes throughout the 

world are increasing invasion rates (Kalisz et al., 2014; Ward et al., 2013), reducing biotic 

resistance and resilience (Katona et al., 2013; Meier et al., 2017), suppressing plant recruitment 

(Mason et al., 2010; Rhodes et al., 2017; Shelton et al., 2014), and threatening conversion to 

alternative stable states (Royo & Carson, 2006). Increased deer density specifically decreases 

species richness in forests (Vavra et al., 2007). In the Great Smoky Mountains National Park, 

USA, the invasive grass Microstegium vimineum increased as ungulate browsing created more 

available space and light by decreasing woody plant cover and richness (Kuebbing et al., 2013). 

A study of overabundant ungulates in British Columbian forests found a positive effect on 

bryophyte diversity due to ungulates reducing their competition with vascular plants (Chollet et 

al., 2013). Increasing ungulate populations in grasslands worldwide are changing plant diversity 

by promoting herbivory tolerant communities (Schütz et al., 2003) and reducing native grasses 

which increases invasive grass abundance (Berger et al., 2020). Ungulate population sizes in the 

arctic tundra naturally fluctuate due to forage quality and availability, weather, insects, and 

human influences (Egelkraut et al., 2018; Jandt et al., 2017; Zamin & Grogan, 2012). While 

current Alaskan caribou populations are relatively stable (Jandt et al., 2017), herds in Canada and 

elsewhere are in decline (Zamin & Grogan, 2012). Novel increases in ungulate abundance can 
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shift plant communities to be graminoid-dominated in the space of a few years, lasting up to a 

decade without grazing (Egelkraut et al., 2018), while novel decreases can encourage shrub 

encroachment (Olofsson & Post, 2018). Ungulate herbivory can cause shifts in tundra vegetation 

by increasing soil temperatures and nutrient turnover, and by favoring plants that can tolerate 

repetitive herbivory and trampling (Egelkraut et al., 2018; Meier et al., 2017; Zamin & Grogan, 

2012). 

 

Temporality 

Ungulate temporality refers to movements such as migration, grazing rotations, seasonal 

shifts, and diurnal patterns.  

Biodiversity  Temporal ungulate movement can increase plant species richness and 

abundance through seasonal shifts, rotational grazing, and migration that allow plants to 

regenerate during a resting period (Augustine & McNaughton, 1998; Boavista et al., 2019; 

Kauffman et al., 2021). In ecosystems that experience seasonal winters, ungulate diets vary 

temporally due to exclusion from preferred foraging sites that become inaccessible in the snow 

or ice (Bee et al., 2010; Rhodes, Larsen, & St. Clair, 2018). Many ecosystems are experiencing 

shorter winters due to climate change, which means ungulates will spend more time foraging in 

those areas to the potential detriment of plant diversity (Kauffman et al., 2021; Rhodes, Larsen, 

& St. Clair, 2018). Rotational grazing can increase species richness by decreasing competition 

and increasing facilitation of grazing-sensitive species (Boavista et al., 2019). In contrast, 

continuous grazing can decrease species richness by altering palatable species' spread and 

abundance (Boavista et al., 2019). Decreased migratory behavior in ungulates due to habitat 
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fragmentation leaves less time for browsed plants to regenerate, and plant diversity may be lost 

(Vavra et al., 2007). 

Structure & Function  Ungulate temporality is an important yet diminishing component 

of global herbivory regimes because it affects ecosystem structure and function by altering 

productivity and resource availability (Boavista et al., 2019; Munyati, 2018; Vavra et al., 2007). 

Temporal fluctuations in herbivore pressure (e.g., migration, sustainable livestock rotations) 

relieve top-down pressures long enough to allow plant community regeneration (Aikens et al., 

2020; Boavista et al., 2019; Rhodes, Larsen, Maxwell, et al., 2018). Temporal ungulate 

movement can increase productivity by increasing the biomass of dominant plant species and 

allowing the growth of new species that were excluded under continuous herbivory (Boavista et 

al., 2019). Continuous grazing can lead to differentially grazed patches due to herbivore 

preferences, while rotational grazing encourages less selective herbivory which improves 

ecosystem resilience and diverse resource use (Boavista et al., 2019). Regeneration through 

temporal herbivory relief will be more challenging to maintain as ungulate population densities 

increase (Augustine & McNaughton, 1998). Ungulate communities are migrating less due to 

human infrastructure, which increases the concentration of grazing, nutrient cycling, and soil 

compaction or erosion, leading to a homogenization of the plant community (Munyati, 2018; 

Vavra et al., 2007).  

Invasion  Altered ungulate temporality can increase plant invasion by increasing dispersal 

rates and resource availability (Boavista et al., 2019; Dorrough et al., 2007; Vavra et al., 2007). 

Increased livestock movement and transportation can promote invasion via dispersal across even 

broader ranges (Dorrough et al., 2007). Invasion potential is also increased as heightened 

herbivore pressure increases resource availability due to declining migration rates (Vavra et al., 
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2007). Constant herbivory creates many open soil patches that are highly susceptible to invasion 

(Boavista et al., 2019). 

Biome Trends in Temporality  Ungulate temporality is globally shifting, with most 

biomes experiencing decreased ungulate temporality due to habitat fragmentation and climate 

change (Kauffman et al., 2021; Vavra et al., 2007). In forests, decreased migration rates can 

harm plant diversity and plant reproduction by decreasing dispersal and colonization rates, and 

by increasing temporal overlap between herbivory and plant flowering times (Frank, 2005). 

Forest biomes may experience winters that create seasonal variation in ungulate movements (Bee 

et al., 2010; Rhodes, Larsen, & St. Clair, 2018), though climate change is decreasing snowfall in 

some biomes (Kauffman et al., 2021). Grassland biomes are experiencing less migratory 

behavior across the board (Geremia et al., 2019; Kauffman et al., 2021) and increased grazing 

rotations in productive grasslands (Boavista et al., 2019; Dorrough et al., 2007) which both affect 

productivity, diversity, and invasibility (Boavista et al., 2019; Dorrough et al., 2007; Geremia et 

al., 2019; Kauffman et al., 2021). An African rangeland study found that browser and most 

grazer distributions changed seasonally, but mixed feeders and one grazer changed diurnally 

(Schuette et al., 2016). In tundra biomes, snow governs ungulate temporality by making it more 

difficult for them to move and obtain food, thus expending more energy if they remain in snowy 

areas rather than leaving to more desirable locations (Kauffman et al., 2021; Olofsson et al., 

2009). Across biomes, large populations can be supported if they are migratory but habitat 

fragmentation, climate change, and barriers to movement are threatening and disrupting 

migrations of many biomes (Kauffman et al., 2021). 
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Behavior 

 For the purposes of this section, ungulate behavior refers to activities such as rooting, 

trampling, vigilance, and the animals’ tendency to be solitary or in a herd (Fortin et al., 2005; 

Vavra et al., 2007). These behaviors are relevant in a discussion of global herbivory regimes 

because they accentuate the effect that herbivores have on habitat and plant communities (Vavra 

et al., 2007). 

Biodiversity  Ungulate behavior affects plant species richness and abundance through 

altered soil quality and biomass removal (Lima & Dill, 1990; Mishra & Upadhyay, 2021; J. 

Ignacio Ramirez et al., 2018). Ungulate trampling causes soil compaction that can alter plant 

abundance by reducing seedling emergence (J. Ignacio Ramirez et al., 2018). Body size further 

accentuates the impact of trampling, as larger ungulates like cattle trample more area because 

they typically have shorter legs and thus shorter strides (Cumming & Cumming, 2003). The 

amount of forage that ungulates eat affects plant abundance, and the "landscape of fear" caused 

by predators keeps the herbivores from overeating (Mishra & Upadhyay, 2021). Herbivores often 

have to balance tradeoffs between optimal forage and predation risks (Lima & Dill, 1990) but as 

predation risks change due to predator losses herbivore vigilance may decrease, leading to higher 

herbivory levels (Berger et al., 2020; Bernes et al., 2018) 

Structure & Function  Ungulate behavior alters structure and function by affecting plant 

cover, nutrient cycling, and soil quality (Calkoen et al., 2021; J. Ignacio Ramirez et al., 2018; 

Vavra et al., 2007). Herbivores must balance plant toxin levels with predator threats, which can 

indirectly help plant survival and thus plant cover (McArthur et al., 2012). Even the perceived 

presence of large carnivores reduces the browse intensity and visitation time of large herbivores 

(Calkoen et al., 2021). Nutrient cycling within an ecosystem can be altered when ungulates eat 
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lower-quality diets because they think they are at risk of predation (Calkoen et al., 2021). Waste 

deposition from lower-quality diets can lead to plants with decreased digestible content, yet 

higher protein content (Dorrough et al., 2007; Hamel & Côté, 2007). Altered ungulate 

populations may also lead to novel behaviors of rooting and trampling that can affect structure 

and function by exposing soil, increasing erosion, and slowing decomposition rates (Muñoz et 

al., 2009; Vavra et al., 2007). Trampling will affect the ecosystem functions of soil compaction 

and water infiltration, which in turn will affect seedling survival and regeneration (Cumming & 

Cumming, 2003; J. Ignacio Ramirez et al., 2018). Trampling effects can be cumulative in the 

long term and difficult to reverse (Cumming & Cumming, 2003). 

Invasion  Ungulate behavior can enhance invasion potential by altering biotic resistance 

and resource availability (Roberts & Johnson, 2021; Vavra et al., 2007). Increased trampling 

negatively affects biotic resistance by elevating runoff and erosion rates, and by disrupting soil 

through compaction or detachment (Vavra et al., 2007). Large herbivores can also disrupt soil on 

wet slopes through displacement (solifluction), which creates large patches of bare ground that 

can be readily invaded (Vavra et al., 2007). Disruption of the soil and loss of plant cover will 

also increase the amount of resources available for invasive plants to use (Shen et al., 2016). 

Biome Trends in Behavior  Ungulate behavior is changing across biomes, with behavioral 

effects on plant communities typically being elevated or diminished by changing ungulate 

abundance or species of ungulate. Forests are seeing increases in behavioral effects of ungulates 

such as trampling that can be beneficial to stands with low ungulate abundance (Hancock et al., 

2010) but detrimental to overpopulated stands (J. Ignacio Ramirez et al., 2018). Heightened 

ungulate vigilance in forests due to increased predator abundance can reduce herbivory stress on 

preferred forage (Calkoen et al., 2021; Fortin et al., 2005). Some behavior is based on ungulate 
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population size, such as when larger herds lead to more daytime herbivory caused by either 

safety in numbers or intraspecific competition (Juan Ignacio Ramirez et al., 2021). Non-native 

ungulates suppress valuable plant species in Hawaii through rooting and trampling to the point 

that the plants must be actively recolonized to maintain the community structure (Cole & Litton, 

2014). Lichen is an important forage source in tundra biomes and reindeer can trample a year’s 

worth of lichen forage in one week; however, humid lichen shows moderate to insignificant 

damage following ungulate trampling while dry lichen is severely damaged (Heggenes et al., 

2017). In alpine tundra and subalpine forests, female mountain goats traded better forage for 

safety from predation while they had young offspring, which led to a vegetation pattern with 

more digestible plants farther from safety (Hamel & Côté, 2007). Humans can alter ungulate 

behavior by creating a landscape of fear, which is more apparent in open spaces where it is easier 

to detect ungulates and harder for them to escape (Mols et al., 2022). 

 

PLANT TISSUE TARGETED 

Grazer vs Browser 

Ungulate forage strategies include that of browsers, grazers, and intermediate feeders 

(Hofmann, 1989; Rhodes, Larsen, & St. Clair, 2018). Browsers primarily eat high-quality forage 

from woody plants or forbs while grazers tend to eat lower-quality graminoids (Rhodes, Larsen, 

& St. Clair, 2018; Sankey et al., 2006). Intermediate or mixed feeders will eat a combination of 

graminoids, forbs, and woody plant tissue, according to what is most available (Rhodes, Larsen, 

& St. Clair, 2018). Different forage strategies exist because of morphophysiological differences 

such as body size and digestive system (Hanley, 1982; Rhodes, Larsen, & St. Clair, 2018). 
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Biodiversity  Ungulate forage strategy alters plant species richness and abundance by 

changing ratios of woody to herbaceous plant matter (Box et al., 2016; Kuebbing et al., 2013). 

Browsing can have both negative and positive effects on plant diversity, as it can decrease 

woody species richness while indirectly increasing graminoid richness (Kuebbing et al., 2013). 

Grazers can also increase species richness locally, particularly as ecosystems become 

increasingly productive (Frank, 2005). Plant diversity will be affected when one foraging 

strategy becomes more prevalent than the other has been historically, such as when grazers take 

the place of browsers, which typically leads to an increase of woody plants due to herbivory 

release from browsers (Box et al., 2016). 

Structure & Function  Changes in ungulate forage strategy alter plant composition, 

productivity, and nutrient cycling (Box et al., 2016; Hofmann, 1989; Sitters et al., 2017; Staver et 

al., 2021). Furthermore, when changing ungulate populations alters the ratio of woody to 

herbaceous plants, the ecosystem will no longer support the same herbivore community 

(Espunyes et al., 2019). Browsing allows grasses to grow easier than trees because browsing 

inhibits sapling growth and recruitment, which reduces canopy biomass (Box et al., 2016). 

Grazing, on the other hand, indirectly increases woody plants by decreasing fire frequency 

through consuming continuous fine fuel loads (Staver et al., 2009). Thus, increasing grazer-to-

browser ratios (often by increasing cattle livestock) leads to woody plant encroachment (Burke, 

2004). Unlike grazers or browsers, mixed feeders are much more flexible in their diet and can 

adjust their foraging behavior to changes in the plant community structure (Espunyes et al., 

2019; Sankey et al., 2006). Grazing can increase plant productivity by increasing decomposition 

rates and nutrient cycling through defecation and urination, and by increasing light availability 

(Sitters et al., 2017; Staver et al., 2021). However, it is important to note that the biggest 
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increases in productivity come when grazing is either constant and intermediate, or episodic and 

intense (Staver et al., 2021). Both graminoids and woody plants benefit from grazing-induced 

improvements in nutrient cycling rates (Staver et al., 2021).  

Invasion  Ungulate forage strategy can change invasion potential by altering biotic 

resistance, nutrient availability, and soil quality (Beever et al., 2006; Dorrough et al., 2007; Nilar 

et al., 2019). All forage strategies modulate plant-plant competition, which can dampen the 

competitive advantage of invasive plants (Nilar et al., 2019; Royo & Stanovick, 2019). Browsers 

may decrease biotic resistance and impede ecosystem regeneration by preventing native seedling 

establishment due to leaf and stem damage (Nilar et al., 2019). Occasionally, browsers can help 

recover biotic resistance through targeted herbivory that reduces woody invasive plants, and in 

turn improves the quality of the herbaceous understory (Mundahl & Walsh, 2022). While grazing 

typically opens niche space for invasion by unpalatable plants, invasion brought on by heavy 

grazing can also help native plants grow when unpalatable species exhibit a nursing effect for 

grazing-sensitive plants (Dorrough et al., 2007; Oduor et al., 2018). Increased grazing pressure 

often harms native species richness and redistributes an increased amount of nutrients to the 

benefit of invasive plants (Beever et al., 2006; Dorrough et al., 2007). Grazing can disturb soils 

by increasing bare patches, and thus erosion probability, which creates space for invasive species 

to take hold and begin to thrive (Beever et al., 2006).  

Biome Trends in Forage Strategy  Grazer-to-browser ratios are shifting, with forest, 

grassland, and desert biomes typically increasing in grazer abundance (Fleischner, 1994) and 

forest biomes typically increasing in browser abundance as well (Côté et al., 2004). In forests, 

grazer abundance is becoming unsustainably high due to woody plant expansion (Espunyes et 

al., 2019), although ungulate browsers can suppress woody biomass by limiting sapling 



 
 

14 

recruitment and thinning mature tree canopies (Box et al., 2016). Browsers can prevent forest 

recovery if saplings are not protected through recruitment (Nilar et al., 2019). Goats can be used 

as managed browsers to significantly reduce invasive woody plants, but only with consistent 

management over many years, and may result in a reduction of only some of the invasive plants 

rather than a complete eradication (Mundahl & Walsh, 2022). Grasslands are experiencing 

woody plant encroachment due to an increase of grazers (Burke, 2004) or mixed feeders (Manier 

& Hobbs, 2007; Pruszenski & Hernández, 2020; Staver et al., 2021), which reduces forage and 

habitat for native grassland ungulates (Schreiner-McGraw et al., 2020) if the woody plants 

become dominant (A. K. Knapp et al., 1999; Manier & Hobbs, 2007). The Taylor Grazing Act of 

1934 was created to protect lands from being overutilized, but overgrazing still occurs in deserts 

and other biomes (Beever et al., 2006). Removal of grazers in the Mojave desert led to increases 

in non-native and ruderal plants that could outcompete native perennials (Beever et al., 2006). 

 

Specialist vs Generalist 

 Whether an ungulate is a specialist (i.e. selective) forager or a generalist is not 

determined by the same morphophysiological characteristics that sort ungulates into grazers, 

browsers, or mixed feeders (Codron et al., 2019). However, the behavioral and 

morphophysiological differences in ungulates may create different preferences and prevent the 

overlap of desired forage (Hofmann, 1989; Rhodes, Larsen, & St. Clair, 2018; Sankey et al., 

2006; Schuette et al., 2016). Lastly, selective foraging effectively disappears under high densities 

of ungulates which leads to feeding competition (Katona et al., 2013). 

Biodiversity  Ungulate selectivity affects plant biodiversity by altering both species 

richness and abundance (Augustine & McNaughton, 1998; Weng et al., 2017). Selective 
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herbivory affects plant diversity through the mechanism of negative-density-dependence, where 

the consumption of one species allows space for others to grow (Weng et al., 2017); however, 

selective herbivory can lead to decreased biodiversity when foraging rates become unsustainably 

high (Augustine & McNaughton, 1998; Côté et al., 2004). Plant diversity is especially altered 

when selective foragers drastically increase in abundance (Olsen & Hansen, 1977). At high 

levels of herbivory species richness typically declines and ungulate forage strategy determines 

which functional groups of vegetation are most affected (i.e. grazers alter herbaceous understory 

plants while browsers impact forest regeneration) (Hofmann, 1989; Rhodes, Larsen, & St. Clair, 

2018). At unsustainably high ungulate densities, plant abundance is at risk as forage competition 

outweighs foraging selectivity (Katona et al., 2013; Olsen & Hansen, 1977). Increasing herbivore 

pressure and selective foraging can alter the composition of plant communities by decreasing the 

relative abundance of more palatable plants (Augustine & McNaughton, 1998; Endress et al., 

2012). Generalist herbivores also affect species diversity, but they browse multiple species which 

often allows for a constant fluctuation of diversity (Weng et al., 2017).  

Structure & Function  Ungulate selectivity alters plant structure and function by changing 

the abundance of palatable plants, decomposition, and nutrient cycling (Boulanger et al., 2015; 

Codron et al., 2019; Olsen & Hansen, 1977). Selective herbivores spend more time and energy 

looking for palatable, preferred forage that will give them more energy in return (Olsen & 

Hansen, 1977). When selective herbivory increases past sustainable levels, no matter if the 

herbivores are browsers or grazers, palatable plants may be eradicated from the ecosystem 

(Codron et al., 2019). The highest quality of forage for ungulates is found in newly sprouted 

plants, which can put plant recruitment at risk if the sprouts are overexploited (Aikens et al., 

2020; Dorrough et al., 2007). Palatable species often have higher productivity, lower C:N ratios, 
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and lower lignin content that allow them to decompose faster (Kasahara et al., 2016), which 

means that increasing the abundance of unpalatable plants through selective herbivory will alter 

the microbial community and decrease productivity, nutrient cycling, and decomposition rates 

(Hobbs, 1996; Lloyd et al., 2010). Selective grazing can also alter ecosystem growth rates and 

nutrient cycling by changing the plant community composition (Augustine & McNaughton, 

1998; Endress et al., 2012). Consuming more nutritious, palatable plants leads to faster nutrient 

cycling, where ungulate waste deposition can increase plant growth by improving nutrient 

availability (Murray et al., 2013).  

Invasion  Ungulate selectivity can enhance invasion rates by increasing resource 

availability and decreasing biotic resistance (Olson et al., 1997; Shen et al., 2016; Vavra et al., 

2007). Selective herbivory can alter nutrient cycling to increase resource availability when 

ungulates deposit higher concentrations of nitrogen in their waste, which may allow invasives to 

dominate as strong competitors under high nutrient availability (Vavra et al., 2007). Declining 

biodiversity, which decreases biotic resistance, naturally accompanies invasion (Vavra et al., 

2007). Selective browsing that targets non-native species can prevent invasion (Katona et al., 

2013); however, ungulates often selectively forage on familiar (native) plants and disturb the 

vegetation through trampling and soil compaction which increases the chance of invasion (Shen 

et al., 2016). 

Biome Trends in Selectivity  Ungulate selectivity is changing in biomes worldwide, with 

grassland biomes typically increasing in selective ungulate abundance while forest biomes have 

high levels of both generalist (i.e. deer, moose) (Faison et al., 2016) and selective (i.e. cattle) (de 

Luca & Pardini, 2017; Kuijper et al., 2009; Veblen & Young, 2010) ungulates. Many ungulate 

species (e.g., Lowland tapirs in Brazil’s Atlantic Forest, moose in boreal forests, and ungulates in 
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temperate European forests) can alter forest succession by preferentially foraging for young, 

palatable plants that have less defense chemistry, higher primary productivity rates, and are 

within grazing height (de Luca & Pardini, 2017; Kuijper et al., 2009). A study in Austrian forests 

found that high levels of selective browsing can notably reduce palatable woody plant species 

and increase browse-tolerant grasses, which decreases the ecosystem’s protection against climate 

change and pest outbreaks by homogenizing and delaying forest regeneration (Meier et al., 

2017). Kuijper et al. (2016) found moose to increase their preferred forage by accelerating the 

nutrient cycling where they feed, which they theorize offsets the otherwise negative effects of 

selective herbivory. Few papers have discussed the possibility of such trophic rebounding, which 

could be vital in maintaining plant community structure as ungulate populations expand. 

Grassland plant diversity decreases as elevated grazing by selective ungulates locally excludes 

preferred forage (Boavista et al., 2019), and herbivory by multiple selective ungulate species 

have additive effects on changing plant nutrient content and soil processes despite their foraging 

differences (Lloyd et al., 2010). In Kenyan savannas, plant diversity was maintained by native, 

non-selective wildlife that suppressed an invasive grass, while cattle and mega-herbivores 

reduced positive herbivory effects by selectively overgrazing the most palatable plant (Mandlate 

& Rodrigues, 2020; Veblen & Young, 2010). Unpalatable plants can have positive effects on 

habitat and plant communities when they protect neighboring palatable plants from selective 

herbivory by creating an unpalatable patch (Oduor et al., 2018). 

 

Novel vs Native 

 Ungulate origin defines the status of an ungulate as native, non-native, introduced, or 

domestic. 
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Biodiversity  Ungulate origin alters the richness and abundance of plant species due to 

differences in foraging history (Fleischner, 1994; Parker et al., 2006). Ungulate species favored 

for domestication and hunting are often added to the landscape without regard to their effect on 

plant diversity (Spear & Chown, 2009; Vavra et al., 2007) even though introduced ungulates can 

cause deleterious effects according to the species of herbivore and their co-evolution with plants 

(Eldridge et al., 2018; Fleischner, 1994). Introduced ungulates significantly reduce plant density 

and lead to losses of plant biodiversity, specifically of native plants (Fleischner, 1994; Spear & 

Chown, 2009; Travers et al., 2018). Novel herbivores often eat native plants that are not adapted 

to foraging, which affects plant diversity by allowing non-native plants that have co-evolved 

with grazing to outcompete the natives (Fleischner, 1994; Schlierenzauer et al., 2021). It is 

important to note that native herbivores suppress exotic plants, but exotic herbivores increase the 

biodiversity of exotic plants (Parker et al., 2006). Altered nutrient cycling will change plant 

diversity when novel ungulates exhibit differences from native ungulates in their grazing 

selection, movement, and amount of forage consumed (Endress et al., 2012; Hobbs, 1996). 

Decreases in biodiversity can decrease nutrient uptake, biomass production, tourism value, 

beauty, spiritual value, and more (Allen et al., 2010; Isbell et al., 2011). Much work is still 

needed to more precisely differentiate the ecosystem impacts of non-native, native, and domestic 

ungulates (Schlierenzauer et al., 2021). 

Structure & Function  Changes in ungulate origin can alter structure and function by 

modifying plant cover, forage availability, and ecohydrological processes (Bhattacharya & 

Sathyakumar, 2011; Fleischner, 1994; Fortini et al., 2021; Schieltz & Rubenstein, 2016). Non-

native ungulates are problematic for the conservation of ecosystem structure and function 

by threatening biodiversity even if they are socially or economically valuable (Spear & Chown, 
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2009). Simultaneous increases in native and domestic ungulates threaten plant regeneration 

(Bernes et al., 2018; Côté et al., 2004; Sankey et al., 2006). Domestic livestock are commonly 

introduced into many biomes, and their heavy impact on plant structure and cover has been 

found to negatively affect species that require dense cover while positively affecting species that 

require open spaces (Schieltz & Rubenstein, 2016). Expanding populations of both indigenous 

and introduced ungulates over the same or decreased habitat sizes leads to a greater likelihood of 

interference competition and behavioral changes, which can be detrimental to native species 

(Carusi et al., 2017; Côté et al., 2004; Gooch et al., 2017; Kiffner et al., 2020). Increasing non-

native ungulate populations, such as livestock or other economically desirable species, has led to 

competition with native ungulates for both forage quantity and quality (Bernes et al., 2018; Olsen 

& Hansen, 1977; Sankey et al., 2006; Schieltz & Rubenstein, 2016). Grazing rotations that 

provide livestock with optimal forage can leave the wild ungulates in poor habitats with poor 

forage and the need to expend more energy to escape disturbances (Bhattacharya & 

Sathyakumar, 2011). Ecosystem functions have been altered to be either dependent on or 

inhibited by ungulates, dependent on ungulate species and biome (de Groot et al., 2002; Gawel et 

al., 2018). Invasive ungulates can negatively affect soil infiltration, water quality, and other 

ecohydrological functions (Fleischner, 1994; Fortini et al., 2021). Novel herbivores themselves 

can drive tipping points through differences in their abundance, behavior, 

or morphophysiology (Olofsson & Post, 2018). 

Invasion  Ungulate invasions are often followed by plant invasions (Cole & Litton, 2014) 

by altering the mechanisms of dispersal and biotic resistance (Baltzinger et al., 2019; Fleischner, 

1994; Parker et al., 2006). It is increasingly common for native, introduced, and domestic 

ungulates to live in the same ecosystem, with all of them contributing to long-distance seed 
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dispersal of both native and exotic plants (Baltzinger et al., 2019; Fleischner, 1994). Ungulates 

can disperse diaspores through both endozoochory and epizoochory, meaning that increased 

ungulate activity from the addition of non-native ungulates elevates potential invasion from 

many plants across expansive grazing ranges (Baltzinger et al., 2019). The invasibility of an 

ecosystem also changes with novel ungulate populations, as new herbivores open niche space 

and increase long-range dispersal rates (Baltzinger et al., 2019; Spear & Chown, 2009; Vavra et 

al., 2007). A meta-analysis revealed that native herbivores provide biotic resistance to invasion 

by eating exotic plants across a majority of biomes, while non-native herbivores eat native plants 

that did not evolve to resist them (Parker et al., 2006). 

Biome Trends in Ungulate Origin  Ungulate origins are shifting worldwide, with forest, 

grassland, and desert biomes typically increasing in non-native ungulate abundance. Forest 

biomes are typically affected by the conversion to pastoral lands for non-native ungulate grazing 

that changes the structure of the remaining forest (MacLaren et al., 2014) or by increased 

invasion of exotic, non-palatable species through dispersal and novel grazing behavior (Questad 

et al., 2018; Spear & Chown, 2009). In Guam forests, however, novel ungulates negatively and 

positively affect biodiversity and ecosystem function: non-native deer are decreasing seedling 

and vine abundance while non-native pigs are increasing seed dispersal in dung, a function that 

was previously lost (Gawel et al., 2018). The creation of short-term corrals for cattle in African 

savannas increased nutrient inputs, leading to hotspots of novel plant diversity vastly different 

from the surrounding vegetation (Veblen & Young, 2010). Introduced cattle in the Mojave 

Desert have increased the spread of an invasive grass by improving nutrient and water 

availability through defecation (St. Clair, 2021). Introducing livestock negatively impacts native 

ecosystems, and their grazing damage is magnified in semiarid and arid biomes where livestock 
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preferentially graze in riparian areas (Fleischner, 1994). Novel browsers are threatening 

ecosystem health in arid Australia by suppressing structurally important woody biomass (Box et 

al., 2016).   
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FIGURES 

 
 
Figure 1-1. Herbivory intensity and the type of plant tissue herbivores target are the two main 

factors that shape an ungulate herbivory regime. Foraging history ties the two components 

together through the co-evolution of plants and ungulates. Altered herbivory regimes can shift 

biodiversity, ecosystem structure & function, and plant invasions to the point of creating an 

alternative stable state that may reshape the ungulate community in a cyclical process. 
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ABSTRACT 

Human activities are increasing the occurrence of megafires that have the potential to 

alter the ecology of forest ecosystems. The objective of this study was to understand the impact 

of a 610-km2 megafire on patterns of forest regeneration and herbivory of three forest types 

(aspen/fir, oak/maple, and pinyon/juniper) within the burn scar. Sapling density, meristem 

removal, and height were measured across a transect network spanning the area of the burn scar 

over three years from 2019-2021. The network consisted of 17 burned/unburned transect pairs in 

adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper). Species 

that regenerated through sprouting generally responded positively to fire while regeneration from 

seed showed very little post-fire response. Browse pressure was concentrated on deciduous tree 

species and tended to be greater in burned areas but the effect diminished over time. Meristem 

removal of sprouting species was below the critical threshold resulting in positive vertical 

growth across years. Our results indicate that forest regeneration within the megafire scar was 

generally positive and experienced sustainable levels of ungulate browsing that are likely to 

result in forest recruitment success. 
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INTRODUCTION 

The size, frequency, severity, and timing of wildfires in many ecosystems are changing 

due to human activity resulting in novel fire regimes that are likely to affect forest regeneration 

and ecosystem stability (Abatzoglou & Williams, 2016; Allen et al., 2010; Bowman et al., 2009). 

Megafires are becoming more common and are classified as being expansive (greater than 

40,000 hectares) and having a uniquely large ecological and societal impact (Geographic, 2020; 

Linley et al., 2022). Megafire probability varies by season and increases during warmer and drier 

periods, which are increasing due to climate change (Allen et al., 2010; Westerling et al., 2003). 

Extreme drought brought on by climate change makes large, high-severity fires more frequent 

and extreme (Allen et al., 2010; Westerling et al., 2006). A comprehensive analysis of large fires 

conducted by Westerling et al. (2006) found regional temperature to explain 66% of annual 

variation in fire frequency, with fires burning more often in warmer than cooler years. Early 

spring snowmelt due to warming temperatures also increases wildfire activity (Westerling, 

2016), and because snowpack melts earlier in burned areas (Maxwell, Call, et al., 2019), fires are 

creating a self-perpetuating cycle. Fire suppression in forests leads to increased fuel loads which 

increases wildfire extent and severity (García-Llamas et al., 2019). Megafires create burn 

mosaics across the landscape, which may significantly alter the vegetation structure, 

productivity, and successional pathways in forest ecosystems that likely have strong habitat 

feedbacks on the wildlife communities (Arroyo-Vargas et al., 2019; Carlson et al., 2011; 

Commander & White, 2019; Fang et al., 2019; Keane et al., 2008; Stevens-Rumann & Morgan, 

2019; H. Y. Wan, Olson, et al., 2014). However, more studies are needed to understand the novel 

effect of megafires on forest communities and wildlife. 
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Megafires are burning across broad elevation gradients and multiple plant communities, 

which may lead to dramatic changes in ecological processes that operate at landscape scales. 

Species are differentially adapted to elevation, meaning that when a megafire burns, it will have 

different effects on plant species based on their diverse natural histories (Abutaha et al., 2019; 

Tanaka & Sato, 2013). A natural history of fire disturbance promotes post-fire regeneration 

tactics, such as root and stem suckering, which is common in aspen, oak, and maple species 

(Aubin et al., 2005; Del Tredici, 2001; Harper et al., 1985; H. Y. Wan, Olson, et al., 2014). In 

contrast, other species such as fir, pinyon, and juniper trees regenerate almost exclusively by 

seed, making re-establishment success more precarious in post-fire environments (Keane et al., 

2008). Large fires can lengthen the timetable of ecosystem recovery by increasing the dispersal 

distances of propagules (Gill et al., 2022; Kunzler & Harper, 1980; Meng et al., 2015; Noble & 

Slatyer, 1980; Sparks et al., 2018; Van Lear et al., 2000). Sparks et al. (2018) found that forests 

containing fire-adapted species have the lowest reduction in net primary production one year 

post-fire, though persistent differences in productivity between burned and unburned temperate 

forests lasted up to twelve years. Megafires can elicit even longer recovery timetables when they 

burn multiple forest types, especially when the forests are not fire-resilient. The ecological effect 

of megafires that cross multiple forest types on forest regeneration is not well understood. 

Burn severity mosaics within megafires leave a spectrum of conditions that differentially 

affect forest regeneration and wildlife habitat conditions. Low to moderately severe fire in 

resilient forests may stimulate vegetative growth that provides beneficial ecosystem services or 

improved rangelands (Kunzler & Harper, 1980; H. Y. Wan, Rhodes, et al., 2014). For example, 

Kunzler & Harper (1980) found that Gambel oak becomes sparser when moderately burned and 

provides better forage and habitat for deer. However, regeneration fails if the fire is severe 
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enough to kill the reproductively mature individuals and their root systems (Fang et al., 2019; 

Van Lear et al., 2000). Further, high-severity fires often create moonscapes with elevated 

temperatures and scarce shelter that may displace wildlife habitat (Lamont et al., 2019). The 

mosaic of contiguous burn severities within a megafire has the potential to create novel 

conditions that have yet to be studied in depth. 

Herbivores are attracted to highly visible and nutritious new growth, and burn mosaics 

within megafires may influence browsing pressure (Arroyo-Vargas et al., 2019; D. S. Smith et 

al., 2016). Wan, Olson, et al. (2014) found that increasing fire size and severity reduced ungulate 

herbivory impact on aspen regeneration through bottom-up and top-down regulation. In contrast, 

Smith et al. (2016) found that elevated populations of Cervus elaphus (Rocky Mountain elk) 

inhibited regeneration of aspen forests due to high levels of herbivory in a megafire burn scar. 

Arroyo-Vargas et al. (2019) found that native plants failed to regenerate due to overgrazing 

following burns of variable severity, and unpalatable species invaded the open habitat. The 

legacy of megafire burn characteristics on ungulate herbivory needs further research as there is 

no clear consensus in the literature on its impacts on forest recruitment success.  

Few long-term data sets exist to address pressing questions of post-megafire regeneration 

patterns (Arroyo-Vargas et al., 2019; Gustafsson et al., 2019; Swanson et al., 2011), yet the 2018 

Pole Creek megafire in central Utah provides an ideal study system for looking at the long-term 

legacy effects of megafires and novel fire regimes. The mixed deciduous forests that were 

burned across a wide elevational gradient in this montane system include Populus tremuloides 

(quaking aspen) and Abies lasiocarpa, Abies concolor (subalpine fir, white fir) referred to as 

aspen/fir forests, Quercus gambelii (Gambel’s oak) and Acer glabrum, Acer grandidentatum 

(mountain maple, bigtooth maple) referred to as oak/maple forests, and Pinus edulis, Pinus 



 
 

56 

monophyla (pinyon, single-leaf pinyon) and Juniperus osteosperma (Utah juniper) referred to as 

pinyon/juniper forests. Megafire effects on forest regeneration can be more objectively measured 

in our study area because the ecological response will not be limited to one forest type or 

variable fire events. Further, our study system is ideal for testing herbivory’s effect on forest 

regeneration because the megafire burned major wildlife food sources: quaking aspen, Gambel 

oak, and maples (Flagel et al., 2016; Harper et al., 1985; Kunzler & Harper, 1980; H. Y. Wan, 

Rhodes, et al., 2014). No previous studies that we are aware of have been conducted to analyze 

the effect of megafire burn characteristics on the regeneration success of multiple forest types. 

The objective of this study is to examine how burn conditions and herbivory impact the 

regeneration of three forest types within a megafire. This study addressed the following 

questions: 1) Do megafires differentially influence patterns of multi-forest regeneration and does 

the response vary depending on tree regeneration strategy (vegetative suckering vs. seed 

regeneration)? and 2) How do patterns of ungulate herbivory vary across multiple forest types 

and burn conditions? 

 

MATERIALS AND METHODS 

Study Area 

The study was conducted in the Pole Creek megafire complex located within the Uinta-

Wasatch-Cache and Manti-La Sal National Forests in northern Utah (40.0838° N, 111.5960° W). 

Elevation ranged from 1622 to 2693 meters and slope was held constant across sites. The Coal 

Hollow fire, Bald Mountain fire, and Pole Creek fire were all lightning-ignited fires beginning on 

August 4, 24 and September 6, 2018. The three fires converged to create a 610-km2 burn scar 

referred to as the Pole Creek megafire that ended on October 6, 2018. 
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Dominant vegetation was characterized by three distinct forest types that varied along an 

ecotonal elevational gradient. Aspen/fir forests were dominant at the highest elevation, 

oak/maple forests at mid-elevation, and pinyon/juniper forests at low elevations of the fires’ 

extent. Of the key species in this study, aspen, maple, and oak saplings regenerate via clonal or 

vegetative regeneration, while the fir, pinyon, and juniper species regenerate via seeds. 

Ungulates common to the area include Cervus canadensis (elk) and Odocoileus spp. (deer). Bos 

taurus (domestic cattle) and Ovis aries (domestic sheep) grazing allotments exist within the 

study area as well.  

 

Study Design 

Study plots were chosen within each forest type by pairing proximate burned and unburned 

patches of comparable size to control for topographic variation. Burn severity maps were created 

in ArcGIS Pro using differenced normalized difference of vegetation indices (dNDVI) derived 

from Landsat-8 imagery courtesy of the United States Geological Survey (USGS). The derived 

maps were then used to identify patches of high burn severity, which we later ground-verified by 

visiting each location. Six transect pairs were identified for aspen/fir and pinyon/juniper forest 

types, and five pairs for oak/maple forests (Fig. 1) (Esri, 2012; Esri, 2013). Transects were 

installed across the entire megafire to the extent that species distribution, burn severity, and 

human access allowed. 

 

Stand Characterization and Field Measurements  

Stand composition and structure of both burned and unburned stands were characterized 

using estimates of stand density and by identifying tree species. Forest regeneration responses 
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were measured yearly from 2019 to 2021 in late July when ungulate browsing was heaviest 

(Rhodes, Larsen, Maxwell, et al., 2018). Sapling density, browse, and height of key tree species 

(quaking aspen and Abies spp. in aspen/fir forests, Gambel oak and Acer spp. in oak/maple 

forests, Utah juniper and pinyon species in pinyon/juniper forests) were measured along 50x2 

meter belt transects at each of the 34 study sites (Fig. 1). Sapling density was measured by 

counting all saplings of each key species within the belt transect. Clumped individuals were 

treated as a single organism for density measurements because they self-thin over time (Keyser 

et al., 2019). The height of each sapling within the transect was determined using a measuring 

stick. The browse percentage of saplings was calculated by counting the missing and intact 

apical meristems after the manner of Rhodes, Larsen, & St. Clair (2018). The average slope and 

aspect of sites were determined using topographical analysis of USGS Landsat data in ArcGIS 

Pro. 

 

Statistical Analysis 

Data exploration was conducted according to the methods of (Zuur et al. 2010) to test that 

all model assumptions were met. All response variables met equal variance assumptions. To 

assess the data, we compared the average density, browse percentage, and height for each tree 

species and year using a repeated measures analysis of variance (ANOVA) using JMP software 

(SAS Institute Inc., 2021). Tukey’s HSD was used to test pairwise comparisons to test across 

year burn effects.  
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RESULTS 

Fire Effects on Regeneration by Species 

The density of stand sapling regeneration exhibited variable responses depending on 

species and year. Oak sapling density increased by 99% in burned areas compared to unburned 

areas when averaged across years (P ≤ 0.05) (Fig. 2). In contrast, maple, pinyon, and fir densities 

were reduced by 133%, 200% and 200% along burned transects compared to unburned transects 

when averaged across years (P ≤ 0.1) (Fig. 2). Fire did not significantly affect aspen or juniper 

densities (P = 0.20 and P = 0.27). Oak sapling density decreased by 19% from 2019 to 2021 

while maple and fir sapling densities increased by 32% and 125% during the same three-year 

period when averaged across burn levels (P ≤ 0.1) (Fig. 2). Year did not significantly affect 

aspen, juniper, or pinyon densities (P = 0.30, P = 0.39, P = 0.36). The fire-by-year interaction 

term was only significant for fir sapling density (P ≤ 0.1) (Fig. 2). 

 

Fire Effects on Browse Pressure on Deciduous Species 

Deciduous saplings were browsed 66% more in burned areas compared to unburned areas 

when averaged across years (P ≤ 0.05) (Fig. 3). In 2019, deciduous sapling browse was 94% 

greater in burned areas than unburned areas (P ≤ 0.1) (Fig. 3). The main effect of year and the 

fire by year interaction term did not significantly affect browsing of deciduous species 

collectively or individually (Figs. 3 and 4).  Maple saplings were browsed 117% more in burned 

areas than in unburned areas when averaged across years (P ≤ 0.05) (Fig. 4). Fire did not 

significantly affect the browse of oak and aspen saplings (P = 0.3 and P = 0.5) (Fig. 4). 

Coniferous species showed essentially no evidence browsing. 
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Fire Effects on Recruitment Potential 

Sapling height increased by 48% over the three years from 2019 to 2021 (P ≤ 0.001) (Fig. 

5). The main effect of fire and the fire-by-year interaction term did not significantly affect 

sapling height throughout the study (P = 0.30 and P = 0.11) (Figure 5).  

 

DISCUSSION 

Assessing the regeneration responses of multiple forest types in the Pole Creek Fire 

provided insights into landscape-scale forest regeneration responses in the boundaries of a 

megafire scar.  The results demonstrated that post-fire environments elicited highly variable 

forest regeneration responses depending on tree species (Fig. 2). Ungulate herbivory that has 

been implicated in forest regeneration failure (Rhodes et al., 2017; Rhodes, Larsen, & St. Clair, 

2018) was widespread across the forest landscape (Figs. 3 and 4). There was support for our first 

hypothesis that post-fire regeneration varied by species with quicker responses from root 

sprouting species (Fig. 2). Ungulate browsing was moderately greater in post-fire environments 

and varied by tree species (Figs. 3 and 4). While ungulate browsing was widespread across the 

study area, meristem removal was not chronically high even in burned areas and attenuated over 

time indicating that forest recruitment is likely to be successful over time (Bristow et al., 2014; 

Harper et al., 1985; Kulakowski et al., 2006; H. Y. Wan, Olson, et al., 2014).  

 

Fire Effects on Regeneration by Species 

Regeneration densities tended to show strong positive or negative responses to fire, 

which may be partially tied to regeneration strategy (Fig. 2). Sprouting species such as aspen and 

oak showed strong positive responses to fire, which is in line with previous research (Harper et 
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al., 1985; E. A. Smith et al., 2011; H. Y. Wan, Olson, et al., 2014). High-severity fires have been 

found to trigger strong suckering responses due to increased light availability, nutrient pulses, 

and reduced competition (Ficken & Wright, 2017; H. Y. Wan, Rhodes, et al., 2014; X. Wan et 

al., 2006).  Tree species that primarily reproduce by seed, including maple, fir, pinyon, and 

juniper, showed strong negative responses to fire in our study (Fig. 2), which is consistent with 

previous studies (Bristow et al., 2014; Christensen & Nixon, 1964; Lee Molinari et al., 2022). 

Post-fire seed regeneration is often slower than sprouting due to the added barriers of seed 

dormancy (Kildisheva et al., 2020), reduction in nurse plants (Bristow et al., 2014; Buck & St. 

Clair, 2014; Calder & St. Clair, 2012), and long distances to seed sources (Gill et al., 2022; 

Stevens-Rumann & Morgan, 2019). Bigtooth maple can regenerate through sprouting but is also 

heavily reliant on seed regeneration following high-severity fires (Christensen & Nixon, 1964). 

Post-fire fir regeneration is primed by aspen facilitation that can take several decades after a fire 

(Buck & St. Clair, 2014; Calder & St. Clair, 2012; Lee Molinari et al., 2022). As long as mature 

seed source trees exist within 5-10 kilometers junipers can regenerate from seed relatively 

quickly under ideal weather conditions, while pinyon trees are more reliant on protective cover 

and can take much longer to establish (Bristow et al., 2014; Harris & Taylor, 2020). 

 

Fire Effects on Browse 

Browse pressure was greater in burned areas than in unburned areas for sprouting species 

but the effect diminished over time (Fig. 3). Ungulate herbivores can favor foraging in burned 

areas (Allred et al., 2011; Lewis et al., 2022) because fire instigates sapling regeneration 

(Rhodes, Larsen, & St. Clair, 2018; Rhodes, Larsen, Maxwell, et al., 2018; X. Wan et al., 2006) 

with high nutrient and protein content (Allred et al., 2011; Anderson et al., 2007; Chard et al., 
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2022; Lloyd et al., 2010; Sardans et al., 2005). However, high burn severity can elevate foliar 

defense chemistry (Rhodes, Larsen, Maxwell, et al., 2018; H. Y. Wan, Rhodes, et al., 2014) that 

deters ungulate herbivory (Wooley et al., 2008). Selective herbivory of palatable post-fire 

saplings can lead to an increase in unpalatable saplings (Chard et al., 2022), which may partially 

explain the decrease in browse pressure over time (Fig. 3). Furthermore, increasing time since 

fire is inversely related to plant tissue nutrient concentrations that can affect ungulate herbivore 

browsing preferences (Allred et al., 2011; Sardans et al., 2005). As the vegetation regenerates, 

the burn scar "magnet effect” on herbivores diminishes (Allred et al., 2011; Archibald et al., 

2005) and the animals likely return to pre-fire foraging behavior (Fig. 3) (Cherry et al., 2018). 

 

Fire Effects on Recruitment Potential (in the context of browsing) 

Sapling height increased with time since fire showing progression toward stand 

recruitment (Fig. 5). Large fires remove plant-plant competition and can accelerate the vertical 

growth rate of saplings (H. Y. Wan, Olson, et al., 2014). Large fires can also widely disperse 

ungulate herbivores that would otherwise suppress vertical growth through selective overgrazing 

(H. Y. Wan, Olson, et al., 2014). When herbivory levels drop below 30-40% meristem removal, 

vertical growth and recruitment potential increase (Rhodes, Larsen, & St. Clair, 2018; Strand et 

al., 2009). The average meristem removal in burned areas in this study remained below the 

critical browse threshold one year post-fire and dropped even lower in years two and three (Figs. 

3 and 4). Maintaining apical meristems which drive vertical sapling growth (Rhodes, Larsen, & 

St. Clair, 2018; Strand et al., 2009) likely explains the increased sapling height over time (Fig. 

5). Relatively low levels of meristem removal in this study are likely explained by the large size 

and high burn severity of the Pole Creek Megafire. Both fire size and high burn severity are 
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known to reduce meristem removal by ungulate herbivores by stimulating aspen regeneration 

vigor and defense and by changing animal foraging behavior (H. Y. Wan, Olson, et al., 2014; H. 

Y. Wan, Rhodes, et al., 2014). 

 

Conclusions 

 Our results show that tree species burned within the same megafire event respond 

differently to fire, likely due to growth strategy, abiotic conditions, and palatability. Wildfires 

strongly influence regeneration in aspen/fir, oak/maple, and pinyon/juniper forest regeneration 

with strong potential implications for herbivory (Harper et al. 1985, Wan et al. 2014). 

Understanding the effect of megafires on forest ecosystems in North America is important 

because they are becoming more common due to climate change (Abatzoglou & Williams 2016). 

Our results provide insight into how forest regeneration strategies (seed vs. sprouting) may affect 

post-fire regeneration responses, but more research is needed to better understand these 

responses. Further research on how forest regeneration and recruitment respond to novel fires 

would aid in understanding the simultaneous recovery of multiple forest types and form a more 

complete picture of the resilience of forest ecosystems in a changing world.  
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FIGURES 

 

Figure 2-1. Transect locations of aspen/fir, oak/maple, and pinyon/juniper forest types within the 

Pole Creek Megafire burn scar in northern Utah, USA. 
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Figure 2-2. Effect of fire on the density of aspen, fir, oak, maple, pinyon, and juniper saplings 

across years. Asterisks represent p-value significance: * P ≤ 0.1, ** P ≤ 0.05, *** P ≤ 0.001. 

Letters that are different between bars (within each year, for each species) indicate a significant 

difference between burned and unburned (P ≤ 0.1). 
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Figure 2-3. Effect of fire on browse levels of aspen, oak, and maple saplings across years. 

Asterisks represent p-value significance: * P ≤ 0.1, ** P ≤ 0.05, *** P ≤ 0.001. Letters that are 

different between bars (within each year) indicate a significant difference between burned and 

unburned (P ≤ 0.1). 

 

Figure 2-4. Effect of fire on browse levels of aspen, oak, and maple saplings across years. 

Asterisks represent p-value significance: * P ≤ 0.1, ** P ≤ 0.05, *** P ≤ 0.001. Letters that are 

different between bars (within each year, for each species) indicate a significant difference 

between burned and unburned (P ≤ 0.1). 
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Figure 2-5. Effect of fire on the height of aspen, fir, oak, maple, pinyon, and juniper saplings 

across years. Asterisks represent p-value significance: * P ≤ 0.1, ** P ≤ 0.05, *** P ≤ 0.001. 

Letters that are different between bars (within each year) indicate a significant difference 

between burned and unburned (P ≤ 0.1).  
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ABSTRACT 

Novel fire regimes are becoming increasingly common and megafires have burned across 

ecotonal boundaries across multiple forest types. Plant community structure and composition 

may be critically affected by changing fire regimes. Our objective was to investigate how a 

megafire that burned across multiple forest types impacted understory plant community 

assembly and biodiversity. Paired vegetation transects were installed in burned and unburned 

areas across aspen/fir, oak/maple, and pinyon/juniper forests within the 2018 Pole Creek 

Megafire burn scar. Percent cover of understory plants was measured in the summer of 2022 and 

plants were identified to the species level. Richness and diversity indices were then calculated 

and analyzed using mixed effects models.  Fire decreased species richness of the aspen/fir forest 

understory and increased plant cover in pinyon/juniper forests, while not significantly impacting 

oak/maple understories. The significant effects of fire were largely driven by changes in forb 

species.  Fire decreased the richness of native plants in aspen/fir forests but increased the 

richness of non-native plants in oak/maple and pinyon/juniper forests. Non-native plant 

abundance also increased in post-fire pinyon/juniper forests. Our results suggest that forest 

understory communities show variable responses to megafires that burn across multiple forest 



 
 

98 

types with important implications for post-fire plant community structure, diversity, and 

invasibility. 

INTRODUCTION 

Anthropogenic climate change and fire suppression are increasing the size, frequency, 

and severity of wildfires (Bowman et al., 2009). The largest of these fires (Harvey et al., 2016) 

are termed megafires, which have distinct societal and ecological impacts (Adams, 2013). The 

frequency of megafires has increased dramatically in recent decades, largely due to increased 

drought frequency (Petropoulos et al., 2011; Westerling et al., 2006). Climatic variability also 

increases the frequency and severity of fires due to the build-up of fuel loads during wet years 

between droughts (Newman, 2019; Westerling et al., 2006). Megafires can affect plant 

regeneration success through plant mortality due to high burn severity or limitations to 

pollination or seed dispersal across the large burn scars (Adams, 2013; Gill et al., 2022). 

Additional studies are needed to fully understand the ecological impacts of megafires. 

Megafires can cross ecotonal boundaries to burn multiple forest types. This may lead to 

shifts in tree regeneration success based on fire adaptation of species across forest types 

(Swetnam et al., 1999). Forrestel et al. (2011) found that the distribution of plant species changed 

following a large fire, with fire-adapted and drought-tolerant species growing into fire-opened 

niche spaces that were previously outside their range. Insolation and topographic variables such 

as elevation and slope were distinguished as key factors in long-term post-fire plant communities 

(Springer et al., 2018). Insolation and elevation specifically were negatively correlated with plant 

biodiversity post-fire (Springer et al., 2018). Another effect of large fires burning multiple forest 

types is the broad-scale reduction of plant cover and habitat, which may lead to significantly 
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elevated temperatures and displaced wildlife. Research is scarce on how multiple forest types are 

simultaneously affected by a megafire. 

Post-fire vegetation community assembly is dependent on the natural history of pre-fire 

vegetation and burn characteristics. Fire-adapted species are those that either require fire for 

germination, can grow back to pre-fire conditions before the next fire, or can survive low-

severity fires (Station, 2008). While natural histories strongly influence post-fire regeneration 

and resilience, novel fire regimes are causing changes in post-fire community assembly because 

organisms are not adapted to the new fire characteristics (Catling, 1991). Frequent fires lead to 

simplified vegetation structure by reducing canopy layers (Catling, 1991; Robinson et al., 2013). 

Moradizadeh et al. (2020) found high post-fire heterogeneity of vegetation that decreased over 

time. Swetnam et al. (1999) further state that disturbance causes a competitive release that opens 

niche space for new growth. These findings suggest that post-fire benefits of increased 

heterogeneity decrease with increasing fire frequency. In the case of a California study, post-fire 

niche spaces were filled with different species that had been adjacent to the areas preceding the 

large fire (Forrestel et al., 2011). It is unclear how burn conditions affect post-fire plant 

community assembly across neighboring forest types with different fire histories. 

Plant functional types (i.e., shrubs, forbs, and graminoids) and the native status of 

understory plant species can affect ecosystem function and habitat quality (Hartsell et al., 2020; 

Isbell et al., 2011). Woody species provide litter that decomposes slower for better nutrient 

absorption (Lindroth et al., 2002), nursing effects for young plants (Bristow et al., 2014), 

nutritious year-round forage (Rhodes et al., 2018; Villalba et al., 2014) and shelter for wildlife 

(Allred et al., 2011). Forb species can improve nutrient uptake and nutrient cycling (Cong & 

Eriksen, 2018), restore degraded soil (Lambers et al., 2013), and provide highly palatable and 
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nutritious forage for wildlife such as deer and sage grouse (Bates et al., 2017; Hartsell et al., 

2020; Pruszenski & Hernández, 2020). Graminoids can be good long-term competitors (Nilar et 

al., 2019) reducing the spread of invasive species (Egelkraut et al., 2018; Hartsell et al., 2020) 

while other grasses are the invaders that create novel fire regimes (Archer et al., 2017; Floyd et 

al., 2008; St. Clair & Bishop, 2019). Graminoids are the preferred forage for grazers such as 

cattle and bison (A. K. Knapp et al., 1999; Olsen & Hansen, 1977; Reikowski et al., 2022; 

Sankey et al., 2006). Native plant species can provide biotic resistance to invasions (Floyd et al., 

2006; St. Clair et al., 2016) and preferential habitat for wildlife (Berthon et al., 2021). High 

diversity of native plant species often is correlated with high diversity of non-native plant species 

(Nielson et al., 2019; Schlierenzauer et al., 2021; Stohlgren et al., 1997). However, non-native 

plant species can be damaging to an ecosystem by altering nutrient cycling and disturbance 

patterns (Reilly et al., 2020; Schlierenzauer et al., 2021), and by decreasing forage quality and 

abundance (Preston, 2015). There are few studies on how megafires alter understory plant 

functional type and native status across multiple forest types. 

Utah’s 2018 Pole Creek megafire is an ideal system for studying post-megafire 

community assembly across multiple forest types. The 610 km2 megafire burned across an 

elevational gradient, capturing 3 forest types with different pre-fire vegetation communities. As 

such, our findings will be more generalizable to different ecosystems. Our objective is to classify 

how megafire burn characteristics influence plant community assembly and biodiversity 

(richness and abundance) across a gradient of forest types. We tested the following questions: 

1. Does fire differentially impact understory plant richness, cover, and diversity across 

multiple forest types burned during a megafire? 
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2. Do different plant functional groups (woody, forb, and graminoid) demonstrate 

varying sensitivity to fire across forest types? 

3. Does fire differentially impact native and non-native understory plant species richness 

and cover across forest types?  

 

MATERIALS AND METHODS 

Study Area 

 The study area is inside the burn scar of the Pole Creek Megafire within the Uinta-

Wasatch-Cache and Manti-La Sal National forests of northern Utah (40.0838° N, 111.5960° W). 

The Pole Creek megafire started as three separate lightning-ignited fires, the Coal Hollow fire, 

Bald Mountain fire, and Pole Creek fire, on August 4, 24, and September 6, 2018, respectively. 

The fires converged and burned until October 6, 2018, at which point it was 610 km2 in size and 

termed the Pole Creek megafire. Elevation of the study sites ranged from 1622 to 2693 meters. 

Three forest types dominate the study area with ecotonal boundaries along an elevational 

gradient: aspen/fir forests (Populus tremuloides and Abies lasiocarpa, Abies concolor) at high 

elevations, oak/maple forests (Quercus gambelii and Acer glabrum, Acer grandidentatum) at 

mid-elevations, and pinyon/juniper forests (Pinus edulis, Pinus monophylla, and Juniperus 

osteosperma) at low elevations. The regenerative strategies of these key species include clonal 

(aspen), vegetative (oak, maple), and seed dispersal (maple, fir, pinyon, juniper). Measurements 

were taken in May 2022 which allowed time for the snowpack to melt and ephemeral understory 

species to grow. 

 Dominant understory vegetation varies widely across ecotonal boundaries and elevation. 

At the highest elevations, the prominent species include snowberry (Symphoricarpos 
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oreophilus), Oregon grape (Mahonia aquifolium), woods’ rose (Rosa woodsii), and lupine 

(Lupinus sp.) (Mueggler, 1985). At mid-elevation sites, the prominent species include sweet 

cicely (Osmorhiza berteroi), elkweed (Frasera speciosa), and musk thistle (Carduus nutans) 

(Forest Service, 1994; Harper et al., 1985). Low-elevation sites primarily include species such as 

rabbitbrush (Ericameria spp.), sagebrush (Artemesia tridentata), and cheatgrass (Bromus 

tectorum). Wildlife within the study area includes the following major ungulates: native elk 

(Cervus canadensis) and deer (Odocoileus spp.), with cattle (Bos taurus) and sheep (Ovis aries) 

often present in grazing rotations.  

 

Study Design 

Study plots were installed across the megafire burn scar within matched pairs of adjacent 

burns and control areas (Springer et al., 2018). Each of the pairings was within one of three 

forest types: aspen/fir, oak/maple, or pinyon/juniper. Each pair was replicated five to six times 

per forest type for a total of 17 pairs and 34 total plots across the megafire burn scar. Site burn 

condition was determined using maps created from satellite data in ArcGIS Pro and validated on 

the ground.  

 

Transects and Field Measurements 

Understory field measurements were taken within each study plot along 50-meter belt 

transects (Springer et al., 2018). The richness and cover of understory species were measured 

using Daubenmire frames every 2 meters along the belt transect by identifying each plant to the 

species level and using ocular estimation and reference charts to determine percent cover (St. 

Clair et al. 2016). Any unfamiliar plant species discovered during measurements were 

photographed and keyed out to the species level, if possible. These methods were chosen to 
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classify plant species across a large area quickly and accurately. Transects were chosen as the 

base method of measurement to maintain site consistency and longevity, as they were installed 

with the intent to last several years. 

Field measurements were later used to classify each species by plant functional type and 

non-native status. The top ten most abundant species for each forest type and burn level were 

determined using percent cover estimates. Additionally, the collected percent cover and richness 

data was used to calculate the Shannon diversity index (Equation 1) and Simpson’s diversity 

index (Equation 2) (Chevaux et al., 2022; Morris et al., 2014; St. Clair et al., 2016). In the 

following equations, S equals the total number of species, and pi equals the individuals of one 

species (n) divided by the total number of individuals (N). 

 

Shannon’s Diversity Index:  H′ = −∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑆
𝑖=1      (1) 

Simpson’s Dominance Index:  𝐷 =
1

∑ 𝑝𝑖
2𝑆

𝑖=1

      (2) 

 

Statistical Analysis 

 The data was analyzed using mixed effect standard least squares models in JMP to look 

for trends and account for site variability (SAS Institute Inc., 2021). Each model was run with 

either richness or percent cover as the response variable. Explanatory fixed variables were burn 

severity, forest type, and their interaction, and the random effect of transect. Subsequent pairwise 

comparisons were run using student’s t-tests for any main effects with p-values less than 0.1. The 

statistics governed where to calculate percent changes, which were then used to compare the 

plant community across sites to determine fire’s effect on regeneration by forest type. 
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RESULTS 

Effects of Fire and Forest Type on All Species Richness, Cover, and Diversity 

Forest understory plant community richness was not significantly affected by the main 

effects of forest type or burn level. However, the interaction between forest type and burn level 

was significant (P = 0.01) (Figure 1 and Table 1), which was likely the result of species richness 

being reduced by 50% in burned aspen/fir forests (P = 0.002) while oak/maple and 

pinyon/juniper understories showed no negative effects of fire (Figure 1). Similarly, understory 

plant community cover was not significantly affected by the main effects of burn level or forest 

type, but the forest type by burn level interaction term was significant (P = 0.05) (Figure 1 and 

Table 1). This was likely because the percent cover in burned pinyon/juniper forests was 78% 

greater than in unburned pinyon/juniper forests (P = 0.007) but the cover of aspen/fir and 

oak/maple understory species showed no significant response to fire (Figure 1). 

The Shannon and Simpson diversity indices were not significantly affected by the main 

effects of forest type, burn level, or the interaction between forest type and burn level (Figure 2 

and Table 1). However, the Shannon diversity index in unburned aspen/fir forests was 33% 

greater than in burned aspen/fir forests (P = 0.02) (Figure 2). 

 

Effects of Fire and Forest Type on Forb Species Richness and Cover 

Forb species richness was not significantly affected by the main effects of forest type or 

burn level. However, forb richness showed a significant forest type by burn level interaction (P = 

0.01) (Figure 3 and Table 1) partially due to the richness of forb species in unburned aspen/fir 

forests being 49% greater than in burned aspen/fir forests (P = 0.005) (Figure 3), and because the 

richness of forb species in burned pinyon/juniper forests was 46% greater than in unburned 
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pinyon/juniper forests (P = 0.04) while forb richness in oak/maple forests showed no response to 

fire (Figure 3). Forb species cover was not significantly affected by forest type or burn level, but 

it was significantly affected by the interaction of forest type and burn level (P = 0.09) (Figure 3 

and Table 1). The interaction was likely due to forb species percent cover in burned 

pinyon/juniper forests being 103% greater than in unburned pinyon/juniper forests (P = 0.006) 

while forb cover in aspen/fir and oak/maple forests experienced no fire effect (Figure 3). 

 

Native versus Non-Native Species Richness and Cover 

 Native understory plant species richness was significantly affected by the main effects of 

forest type (P = 0.03) and burn level (P = 0.06), and the interaction between forest type and burn 

level (P = 0.03) (Figure 4 and Table 1). Native species richness was 40% greater in aspen/fir 

forests than in pinyon/juniper forests (P = 0.005) (Figure 4). Native species richness was 24% 

greater in unburned forests than in burned forests (P = 0.03) (Figure 4). The interaction effect can 

likely be attributed to native species richness in unburned aspen/fir forests being 55% greater 

than in burned aspen/fir forests (P = 0.002) while native richness in oak/maple and 

pinyon/juniper forests showed no response to fire (Figure 4). 

 Non-native understory plant species richness was significantly affected by the main 

effects of forest type (P = 0.001) and burn level (P = 0.04) and by the interaction between forest 

type and burn level (P = 0.03) (Figure 4 and Table 1). Non-native species richness in 

pinyon/juniper forests was 73% greater than in aspen/fir forests (P = 0.0002) (Figure 4). Non-

native species richness in oak/maple forests was 57% greater than in aspen/fir forests (P = 0.006) 

(Figure 4). Non-native species richness in burned forests was 31% greater than in unburned 

forests (P = 0.02) (Figure 4). The interaction term was significant due to non-native species 
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richness in burned pinyon/juniper forests being 59% greater than in unburned pinyon/juniper 

forests (P = 0.002) while fire did not affect non-native species richness in aspen/fir or oak/maple 

forest understories (Figure 4). 

 Native understory plant species cover was not significantly affected by the main effect of 

burn level or by the interaction between forest type and burn level (Figure 5 and Table 1). 

However, forest type did significantly affect native species cover (P = 0.03) (Figure 5 and Table 

1). Native understory plant species percent cover was 73% greater in aspen/fir forests than in 

pinyon/juniper forests (P = 0.005) (Figure 5). 

 Non-native understory plant species cover was significantly affected by the main effects 

of forest type (P = 0.002) and burn level (P = 0.004), and the interaction between forest type and 

burn level (P = 0.06) (Figure 5 and Table 1). Non-native species percent cover was 165% greater 

in pinyon/juniper forests than in aspen/fir forests (P = 0.0003) (Figure 5). Non-native species 

percent cover was 152% greater in oak/maple forests than in aspen/fir forests (P = 0.009) (Figure 

5). Burned forests had a 101% greater percent cover of non-native species than unburned forests 

(P = 0.002) (Figure 5). The interaction term was significant because non-native species percent 

cover in burned oak/maple forests was 126% greater than in unburned oak/maple forests (P = 

0.001) and non-native species percent cover in burned pinyon/juniper forests was 101% greater 

than in unburned pinyon/juniper forests (P = 0.003) while cover of non-native species in 

aspen/fir understories saw no fire effect (Figure 5). 

 

Most Abundant Species by Forest Type and Burn Level 

 The most abundant species in the forest understory plant community for unburned 

aspen/fir forests were Symphoricarpos albus (SYAL), Hydrophyllum occidentale (HYOC), 



 
 

107 

Maianthemum stellatum (MAST), Osmorhiza berteroi (OSBE), and Symphoricarpos oreophilus 

(SYOR) (Figure 6). The most abundant species in the burned aspen/fir forests were Iliamna 

rivularis (ILRI), Collinsia parviflora (COPA), Arnica cordifolia (ARCO), Nemophila breviflora 

(NEBR), and Lathyrus eucosmus (LAEU) (Figure 6). All ten of the most abundant species in 

aspen/fir forests were native plants (Figure 6). Burn level only significantly affected SYAL, 

where the average percent cover of SYAL in control aspen/fir forests was 119% greater than in 

burned aspen/fir forests (P = 0.1) (Figure 6).  

The most abundant species in the unburned oak/maple understory plant community were 

HYOC, Acer grandidentatum (ACGR), Vicia americana (VIAM), Phlox longifolia (PHLO), 

Dactylis glomerata (DAGL), and Valeriana occidentalis (VAOC) (Figure 6). In the burned 

oak/maple forests, the most abundant understory plants were Carduus nutans (CANU), Lactuca 

serriola (LASE), Quercus gambelii (QUGA), VIAM, Poa pratensis (POPR), and HYOC (Figure 

6). Four of the most abundant species in oak/maple forests were non-native plant species (Figure 

6). The ten most abundant understory plant species in oak/maple forests were not significantly 

affected by burn level (Figure 6).  

The five most abundant species in unburned pinyon/juniper forests were Bromus 

tectorum (BRTE), Alyssum alyssoides (ALAL), Poa secunda (POSE), Ceratocephala testiculata 

(CETE), and Bromus inermis (BRIN) (Figure 6). The most abundant understory plant species in 

the burned pinyon/juniper forests were BRTE, CANU, Melilotus officinalis (MEOF), Medicago 

sativa (MESA), Descurainia pinnata (DEPI), and LASE (Figure 6). Eight of the most abundant 

species in pinyon/juniper forests were non-native plants (Figure 6). Only DEPI was significantly 

affected by burn level in pinyon/juniper forests, with burned forests having 133% greater DEPI 

abundance than unburned controls (P = 0.03) (Figure 6).  
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DISCUSSION 

This study shows that fire differentially affected the richness and cover of understory 

forest communities with responses varying depending on forest type, plant functional type, and 

native vs non-native status. In response to our first question, the data showed that fire decreased 

understory plant richness in aspen/fir forests and increased cover in pinyon/juniper forests, while 

the understory richness and cover of oak/maple forests were not significantly impacted by fire 

(Figure 1, Table 1). Understory plant diversity was not significantly impacted by fire or forest 

type (Figure 2, Table 1). Our inquiry about plant functional type responses showed that forb 

species were most responsive to fire and forest type, with particularly positive effects of forbs in 

pinyon/juniper forests (Figure 3, Table 1). The data provided insights into our third question by 

revealing that most of the post-fire pinyon/juniper understory plant richness and cover increases 

were from non-native species, while post-fire aspen/fir forests saw a decrease in native species 

richness (Figures 4-5, Table 1). 

 

Differential Forest Understory Responses to Fire 

 Fire tended to have negative impacts on the understory plant community of aspen/fir 

forests while positively impacting pinyon/juniper forests. Fire decreased the richness of the 

aspen/fir forest understory plant community (Figure 1) which may be related to the vigorous 

post-fire sprouting of aspen suckers to the exclusion of other species (Floyd et al., 2006; E. E. 

Knapp & Ritchie, 2016). Post-fire increases in light availability can decrease plant richness 

through a loss of shade-tolerant species (Laughlin & Fulé, 2008). Fire increased the cover of the 

pinyon/juniper forest understory plant community (Figure 1). P. monophylla is known to prevent 

understory plant growth through allelopathy, so it is possible that fire partially mitigated 
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allelopathic effects although more research would be needed to test this hypothesis (Kato-

Noguchi, 2021; Nektarios et al., 2005). Post-fire reduction in overstory competition for resources 

can also contribute to increased understory plant cover (Hartsell et al., 2020; Urza et al., 2019). 

Lastly, extreme precipitation from the 2018 Hurricane Rosa remnants may have augmented post-

fire plant regeneration in the typically dry, low-elevation pinyon/juniper stands (Crandall et al., 

2021; Urza et al., 2019). 

 

Differential Sensitivities of Forb Species to Fire 

 Forb species that are abundant in forest understories and perform important ecosystem 

functions demonstrated the greatest sensitivity to fire across forest types (Figure 3). Fire 

decreased forb richness in aspen/fir forests (Figure 3). This can be the result of direct mortality 

or reduced seed viability and dispersal (Abella & Springer, 2015; Allen et al., 2008; Turner et al., 

1997). Fire increased forb richness and cover in pinyon/juniper forests (Figure 3). Many of the 

most abundant forbs were annuals (Figure 6), which can respond positively to fire related to 

reductions in duff thickness (Bates et al., 1998; E. E. Knapp & Ritchie, 2016). 

 

Native versus Non-Native Understory Response to Fire 

 The establishment and survival of native versus non-native plant species is often 

governed by abiotic conditions and biotic conditions (St. Clair et al., 2016). Fire decreased native 

species richness in aspen/fir forests (Figure 4). Native understory species beneath aspen stands 

are often facilitated by high soil moisture conditions created by the aspen overstory (Buck & St. 

Clair, 2012; Stohlgren et al., 1997) that is reduced in post-fire conditions (Kuhn et al., 2011; 

Stohlgren et al., 1997). Fire increased non-native plant cover in oak/maple forests (Figure 5) and 

non-native plant cover and richness in pinyon/juniper forests (Figures 4 and 5). Mature 
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pinyon/juniper stands typically have few understory species capable of post-fire sprouting and 

are thus at risk of non-native plant invasion (Floyd et al., 2006). Furthermore, non-native plants 

can increase their post-fire growth from the seed bank (Allen et al., 2008) and respond positively 

to nutrient ash inputs and competition release from native vegetation in post-fire environments 

(Nektarios et al., 2005; St. Clair et al., 2016). 

 

Broader Ecological Implications 

 This study investigated understory plant community changes across multiple forest types 

that may become increasingly common with the emergence of novel fire regimes due to human 

activity and climate change. We found that five years after a megafire event aspen/fir forests 

generally experience decreases in plant richness while lower elevation oak/maple and 

pinyon/juniper forests see increased cover and richness, especially of non-native plant species 

(Figures 1-6). Knowledge of how the understory plant communities of various forest types 

respond to megafires is valuable to preserving biodiversity that enhances ecosystem functions, 

wildlife habitat, and cultural value (Hartsell et al., 2020; Isbell et al., 2011). Management efforts 

should focus on the variable impacts megafires can have across forest types that may alter the 

structure, diversity, and invasibility of plant communities.   
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FIGURES 

 

Figure 3-1. Richness and cover for all plant species by forest type and burn level. Letters on bars 

are compared by case, where bars not connected by the same letter signify P ≤ 0.1. 
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Figure 3-2. Shannon (H’) and Simpson (D) diversity indices for all plant species by forest type 

and burn level. Letters on bars are compared by case, where different letters signify P ≤ 0.1. 
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Figure 3-3. Richness and cover of forb species by forest type and burn level. Letters on bars are 

compared by case, where different letters signify P ≤ 0.1. 
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Figure 3-4. Richness of native and non-native plant species by forest type and burn level. Letters 

on bars are compared by case, where different letters signify P ≤ 0.1. Note that the y-axis values 

are not the same and were represented as such to improve legibility. 
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Figure 3-5. Percent cover of native and non-native plant species by forest type and burn level. 

Letters on bars are compared by case, where different letters signify P ≤ 0.1. 
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Figure 3-6. Average percent cover of the most abundant species for burned and unburned sites by 

forest type and burn level. Shaded plant codes indicate that the species is non-native, and a white 

background indicates the plant is native. Red underline indicates that a species is perennial. 

Asterisks represent p-value significance at the following levels: *P ≤ 0.1, **P ≤ 0.05. 
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TABLES 

Table 3-1. Statistics of main and interactive effects by forest type (FT), burn level (BL), and the 

interaction between forest type and burn level (FT x BL). Asterisks represent p-value 

significance at the following levels: *P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.001. 
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ABSTRACT 

Large mammal herbivores (ungulates) are increasing in number and spreading into novel 

habitats throughout the world. Their impact on forest understory plant communities is strong and 

varies by herbivore, plant growth form, and season. The objective of this study was to determine 

the individual and collective herbivory impacts of native versus domestic ungulates on the 

understory plant community composition of post-fire aspen forests. Four-way fencing treatments 

were installed in 2012 to separate ungulate species, and Daubenmire frames were used to collect 

percent cover estimates for each understory plant species. Vegetation data were later used to 

calculate richness and diversity indices. Total understory plant cover, richness, and diversity 

were not significantly impacted by the herbivory fencing treatment. However, woody plant 

species’ percent cover was 90% greater in full ungulate exclusion plots than in the fenceless 

controls. Herbivores likely targeted woody plant species due to their high nutrient levels that last 

longer into the winter than those of forb or graminoid species. Herbivory treatment did not affect 

non-native species. Our results indicate that herbivore fencing can protect forest understory plant 

communities, particularly the woody species. Successful regeneration of woody species can 

benefit the diversity of the entire understory plant community and preserve forest structure. 
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INTRODUCTION 

Ungulate abundance is increasing globally with significant impacts on ecosystems as 

their populations surpass carrying capacities (Côté et al., 2004; Egelkraut et al., 2018; Manier & 

Hobbs, 2007; Meier et al., 2017). Deer and elk populations specifically are increasing because of 

reduced predation and improved forage due to modern land management objectives (Côté et al., 

2004; Meier et al., 2017). Domestic ungulates have also been added to the landscape and 

migration rates have decreased in areas, meaning time spent in one area has increased alongside 

population counts (Vavra et al., 2007). Ungulate overabundance may cause negative alterations 

of ecosystems by creating novel herbivory regimes (Côté et al., 2004) that can lead to plant 

invasions, altered vegetation structure, and forest regeneration failure (Endress et al., 2012; 

Olsen & Hansen, 1977; Spear & Chown, 2009). However, the potentially negative impacts of 

ungulates and changing herbivory regimes on plant community structure are not yet fully 

understood (Spear & Chown, 2009). 

 Novel herbivory regimes due to altered ungulate communities affect changes in plant 

community composition and diversity (Côté et al., 2004; D. S. Smith et al., 2016). Novel 

herbivory regimes can decrease plant biodiversity, increase erosion, and cause forest 

regeneration failure (Côté et al., 2004; Spear & Chown, 2009). Successional shifts in vegetation 

due to overgrazing are difficult to reverse and can result in vegetation state changes (Augustine 

& McNaughton, 1998; Côté et al., 2004; Hobbs, 1996). Ungulate herbivory can affect plant 

community composition by altering nutrient cycling through selective herbivory and fecal 

nitrogen addition, which can cause negative changes in plant heterogeneity leading to a trophic 

cascade (Binkley et al., 2003; Hobbs, 1996; Olsen & Hansen, 1977). The effect of nitrogen 

changes on plant community diversification is largely governed by plants’ ability to recover from 
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herbivory (Augustine & McNaughton, 1998). Plants resilient to herbivory have been found in 

many ecosystems, and exclosure studies have found that plants will adapt to better resist grazing 

(Augustine & McNaughton, 1998; Maxwell, Rhodes, et al., 2019). However, large ungulate 

populations have been found to overwhelm even resilient ecosystems due to the increase in 

frequency and amount of plant tissue loss, to the point of reaching a state change (Augustine & 

McNaughton, 1998; Egelkraut et al., 2018). More research is needed to better understand the 

relationship between increased ungulate populations, plant tolerance to herbivory, and 

subsequent plant community composition. 

 Selective ungulate herbivory affects plant community regeneration (Olsen & Hansen, 

1977; Rhodes, Larsen, & St. Clair, 2018). Ungulates exhibit different seasonal preferences in 

browsing selection when foraging due to their anatomy, with two major classes of herbivores 

being termed as browsers (“concentrate feeders” with smaller mouths) and grazers (“grass and 

roughage eaters” with larger body sizes) (Olsen & Hansen, 1977; Rhodes, Larsen, & St. Clair, 

2018). Plant understory community is likely to be more impacted by grazers such as cattle due to 

their preference for grasses and other lower-quality forage, while browsers such as deer are more 

likely to impact the woody species that are higher quality such as aspen trees (Kay & Bartos, 

2000; Rhodes, Larsen, & St. Clair, 2018). One study of a mixed aspen-conifer forest found deer 

foraging behavior to remain constant during the year, while elk browsed aspen mostly during 

July and August and cattle browsed during the late summer months according to predetermined 

allotments (Rhodes, Larsen, Maxwell, et al., 2018). Certain ungulates further prefer particular 

plants. Cattle, for example, will specifically forage for sedges and grasses more than elk would, 

as cattle want plants with easily digestible tissue due to their slower gut passage rates (Olsen & 

Hansen, 1977). While all herbivores benefit most from plant tissues high in protein and low in 
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non-digestible fiber, ungulate species that use less energy can forage longer than others to find 

optimal food sources (Heroy et al., 2017; Olsen & Hansen, 1977). Many ungulate habitats are 

affected by increased novel fire regimes (Arroyo-Vargas et al., 2019; Hobbs, 1996; H. Y. Wan, 

Rhodes, et al., 2014), and the ungulates that can thermoregulate better are often able to spend 

more time foraging due to less energy loss (Long et al., 2014). No previous studies have been 

conducted to determine the individual and collective impact of elk, deer, and cattle on long-term 

post-fire plant communities. 

Ungulate impact may increase non-native plant richness and abundance by increasing 

seed dispersal and creating niche opportunities (Fleischner, 1994; Gill et al., 2022). Native and 

introduced ungulates often co-exist in forest ecosystems, all contributing to long-distance seed 

dispersal of both native and exotic plants (Baltzinger et al., 2019). Domesticated ungulates such 

as livestock that are rotated through several grazing allotments may reduce native plant diversity 

and increase exotic plants by transporting non-native propagules to susceptible landscapes, 

increasing available niche space, and decreasing plant-plant competition by consuming native 

vegetation (Fleischner, 1994; Gill et al., 2022; Travers et al., 2018). The permeability and 

connectivity of the landscape influence colonization rates and can increase invasion by non-

native species (Shackelford et al., 2013). Native species richness tends to decrease with increased 

grazing pressure (Boavista et al., 2019; Dorrough et al., 2007; Nilar et al., 2019). Selective 

browsing that targets non-native species can prevent invasion (Katona et al., 2013), though non-

native plants often experience herbivory release due to unfamiliarity (Parker et al., 2006; Shen et 

al., 2016). Non-native plants may also become invasive due to enemy release and high propagule 

pressure (Ni et al., 2021; St. Clair & Bishop, 2019). Furthermore, non-native-dominated plant 

communities are more susceptible to post-fire alterations of landscape structure and composition 
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(Stephens et al., 2014) and losses of native tree species due to decreased water availability 

(Reilly et al., 2020). Thus, the collective and individual impacts of ungulates on non-native plant 

species are likely important but more poorly understood than for native species (Schlierenzauer 

et al., 2021). 

 The mixed aspen-conifer forests in central Utah provide an optimal study area to 

determine the long-term impact of ungulate communities on post-fire plant community 

composition (Rhodes, Larsen, & St. Clair, 2018). Aspen forests provide preferential habitat for 

elk and deer, along with cattle during grazing allotments, which allows for the comparison of 

plant community regeneration across differential ungulate impacts (Rhodes, Larsen, & St. Clair, 

2018). A long-term exclosure network was built following fires in 2012 within the Fishlake and 

Dixie National Forests of Utah, which has allowed for comparison of ungulate impacts on 

regeneration immediately following disturbance (Rhodes, Larsen, & St. Clair, 2018). Our 

objective is to classify the individual and collective impacts of elk, deer, and cattle herbivory on 

post-fire vegetation community assembly. The following questions were investigated: 

1. Do elk, cattle, and deer herbivory impact the richness, cover, and diversity of understory 

plant communities following fire? 

2. Do plant functional groups (woody, forb, and graminoids) respond differently to ungulate 

herbivory pressure? 

3. Do ungulate communities differentially affect non-native plant species richness, cover, 

and diversity? 
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MATERIALS AND METHODS 

Study Area 

 This study is a follow-up to (Rhodes, Larsen, & St. Clair, 2018) and takes place within 

2012 burn scars located in the Fishlake and Dixie National Forests. The Box Creek and Harris 

Flat fires were 900 and 3,400 ha, respectively. The fires burned between June and July 2012 in 

mixed aspen-conifer forests. The elevation of exclosure sites placed across these burns ranged 

from 2430 to 2950 m. Sites had thirty-year averages of precipitation between 25-64 cm (PRISM 

data, Parameter-elevation Relationships on Independent Slopes Model) (Rhodes, Larsen, & St. 

Clair, 2018). The dominant vegetation of the Box Creek fire includes aspen (Populus 

tremuloides), subalpine fir (Abies lasiocarpa), white fir (Abies concolor), big sagebrush 

(Artemesia tridentata), mountain snowberry (Symphoricarpos oreophilus), Wood’s rose (Rosa 

woodsii), and Ross’ sedge (Carex rossii). The Harris Flat fire differed only slightly, where the 

dominant conifer was ponderosa pine (Pinus ponderosa), and the understory had higher densities 

of slender wheatgrass (Elymus trachycaulus), western wheatgrass (Pascopyrum smithii), and 

creeping barberry (Mahonia repens). Primary ungulates in the study area are cattle (Bos taurus), 

mule deer (Odocoileus hemionus), and elk (Cervus canadensis). 

 

Sampling Design 

 Study sites were chosen within the two fires based on an assessment of high-severity burn 

(100% mortality of overstory) and pre-fire aspen dominance (more than 50% aspen) (Rhodes, 

Larsen, & St. Clair, 2018). At each site, a four-way ungulate exclosure was randomly assigned 

for installment in three sites at Box Creek and two at Harris Flat to distinguish ungulates’ effect 

on the post-fire plant community. Each 30 x 30 m plot within the full factorial exclosure design 
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was one of the following: (1) unfenced (cattle, elk, and mule deer access, “control”), (2) native 

ungulate access (mule deer and elk, “no cattle”), (3) mule deer only access (“no cattle or elk”), 

and (4) full exclusion (“no ungulates”). The ungulate fencing treatment slowly removed 

herbivory on a spectrum from grazing to browsing, by first removing grazers (cattle), then mixed 

feeders (elk), and finally browsers (deer). Fences for each treatment were set up as outlined in 

(Rhodes, Larsen, & St. Clair, 2018). The fences were viewed as ungulate reduction treatments 

since ungulates occasionally broke into even the best fences (Reikowski et al., 2022). 

 

Transects and Field Measurements 

 The plant community was classified along 2 parallel, 24-meter transects within each 

exclosure level, allowing for a 3-meter buffer to avoid edge effects (Rhodes, Larsen, & St. Clair, 

2018). The placement of each transect line was randomly assigned with at least 2 meters in 

between each transect. The spacing allows for independent measurements along each transect 

line as well as more systematic plot coverage of vegetation measurements. Along each transect, 

we recorded the identity and density of each understory species. 

 Understory plant density was measured with ocular estimates of percent cover using 

Daubenmire frames (50 x 25 cm quadrats) every 2 meters along the transect lines (St. Clair, 

O’Connor, Gill, & McMillan, 2016). Plants were identified by their scientific name at the species 

level. The data was later used to estimate species richness, abundance, Shannon diversity index 

(Equation 1), and Simpson’s dominance index (Equation 2) (Morris et al., 2014).  

 

Shannon’s Diversity Index:  H′ = −∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑆
𝑖=1      (1) 

Simpson’s Dominance Index:  𝐷 =
1

∑ 𝑝𝑖
2𝑆

𝑖=1

      (2) 
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In the equations above, pi is equal to the individuals of one species (n) divided by the total 

number of individuals (N), and S is equal to the total number of species. Plant cover was also 

assessed by growth form (woody, forb, and graminoid) to estimate the structural complexity of 

the plant community. 

 

Statistical Analysis 

 Once model assumptions of variance were met, understory plant richness, cover, and 

diversity were analyzed by fence treatment and plant growth form using linear mixed-effects 

modeling in R (Rhodes, Larsen, & St. Clair, 2018).  AIC values informed the selection of models 

where treatment was analyzed as a fixed effect and site as a random effect. The indirect effects of 

the regenerating aspen were analyzed using linear regressions and F tests within JMP’s Graph 

Builder (SAS Institute Inc., 2021). 

 

RESULTS 

Fence Treatment Effects on Understory Plant Community Diversity and Cover 

Understory plant community richness was not significantly affected by fence treatments 

or the fence treatment by growth form interaction term (Figure 2). However, understory plant 

species richness varied significantly between growth forms in which forb species richness was 

100% and 32% greater than woody and graminoid plant species richness, and graminoid species 

richness was 74% greater than woody species richness when averaged across treatments (P ˂ 

0.0001) (Figure 2). Pairwise comparisons of growth form mean values revealed that woody plant 

richness was 67% greater in both no ungulates and no cattle or elk treatments compared to 

control plots (P = 0.08 and P = 0.08) (Figure 2).  
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Understory plant community cover was not significantly affected by fence treatments, but 

the main effect of growth form and the fence treatment by growth form interaction term were 

significant (P = 0.03 and P = 0.05) (Figure 2). The woody cover was 83% and 9% greater than 

the forb cover and graminoid cover and the graminoid cover was 76% greater than the forb cover 

when averaged across treatments (P = 0.03) (Figure 2). The fence treatment was stronger for 

woody plant cover (P = 0.08) than for forb cover or graminoid cover (P > 0.1) (Figure 2). 

Pairwise comparisons of growth form mean values indicated that cover of woody understory 

plants was 90%, 127%, and 76% greater in the no ungulates treatment than in the fenceless 

control, no cattle, and no cattle or elk treatments (P = 0.05, P = 0.02, and P = 0.08) (Figure 2). 

The graminoid cover was 84% greater in control plots than in the no ungulates treatment plots (P 

= 0.08) (Figure 2).  

The main effect of fence treatments was not statistically significant for understory plant 

community diversity based on Shannon diversity or Simpson dominance indices (Figure 3). 

However, Simpson’s index was 47% and 42% greater in no cattle treatments than in control and 

no ungulates treatments (P = 0.06 and P = 0.08) based on pairwise comparison of mean values 

(Figure 3). Diversity, richness, and cover of the understory plant community were not 

significantly correlated to the height and density of the regenerating aspen community within 

each treatment. 

 

Fence Treatment Effects on Non-Native Species Diversity and Cover 

Non-native understory richness and cover responses to experimental conditions varied 

depending on fence treatment and plant growth form. The main effect of ungulate fence 

treatment and the treatment by growth form interaction term were not significant for non-native 
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understory plant community richness (Figure 4). However, pairwise comparisons of treatment 

mean values showed that control plots had 55% greater non-native richness than no ungulates 

treatments (P = 0.06) (Figure 4). The main effect of non-native understory plant growth form 

richness was significant, with graminoid richness being 30% greater than forb richness when 

averaged across treatments (P ˂ 0.0001) (Figure 4). Pairwise comparisons of growth form mean 

values showed that non-native forb richness was 67% greater in control plots than in the no 

ungulates treatments (P = 0.07) (Figure 4). Non-native understory plant cover was not 

significantly affected by ungulate fence treatment or the treatment by growth form interaction 

term (Figure 4). However, pairwise comparisons of treatment mean values showed that total non-

native plant community cover was 69% and 78% greater in control plots than in no cattle and no 

ungulates treatments (P = 0.05 and P = 0.03) (Figure 4). The main effect of ungulate fence 

treatment was significant for non-native forb cover (P = 0.04). The main effect of growth form 

was significant for the percent cover of non-native plants, where graminoid cover was 63% 

greater than forb cover when averaged across treatments (P ˂ 0.0001) (Figure 4). Pairwise 

comparisons of growth form mean values indicated that cover of non-native forbs in control plots 

was 72%, 70%, and 107% greater than no cattle, no cattle or elk, and no ungulates treatments (P 

= 0.03, P = 0.03, and P = 0.007) (Figure 4).  

 

DISCUSSION 

 The objective of this study was to characterize the individual and collective impacts of 

elk, cattle, and deer on the composition of understory forest plant communities in post-fire 

environments. In response to our first question, total understory plant community cover and 

richness did not vary significantly between fencing treatments (Figures 2 & 3). However, the 
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results of our second question about plant growth forms did show that woody, graminoid, and 

forb communities had different sensitivities to ungulate browsing as evidenced by significant 

treatment by growth form interactions (Figure 2). Finally, non-native species did not exhibit 

significant differences by fencing treatment as posed in our third question (Figure 4). 

 

Ungulate Herbivory Did Not Affect Total Understory Plant Community Diversity and Cover 

 Ungulate herbivory is a key factor in shaping forest understory plant communities. 

Despite the importance of herbivory on forest understory communities, we found no significant 

correlations between fencing treatment and total plant richness and cover (Figure 2) or diversity 

(Figure 3). Understory composition can be resilient or slow to respond to environmental impacts 

like herbivory (Coop et al., 2014; Reikowski et al., 2022; Turkington et al., 2014). The total 

understory plant community richness and cover may also still be responding to post-fire effects 

that can overshadow more recent ungulate herbivory effects (Reikowski et al., 2022; Springer et 

al., 2022). It is also possible that the total diversity of the understory plant community may have 

had no net change due to the compensatory growth of one species when another was lost (Figure 

3) (Coop et al., 2014).  

 

Woody Plant Species Showed Greater Sensitivity to Ungulate Herbivory than Forbs and 

Graminoid Species 

 Plant growth form can be an important factor in surviving, or being targeted by, 

herbivores (Kay & Bartos, 2000; Rhodes, Larsen, Maxwell, et al., 2018; Sharp Bowman et al., 

2017; Villalba et al., 2014).  Our results show that woody species are more sensitive to ungulate 

herbivory than forb or graminoid species (Figure 2). Ungulates likely targeted woody species 
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(Figure 2) because they selectively eat plants with the highest protein and foliar nutrient content 

(Heroy et al., 2018; Lloyd et al., 2010), and woody species maintain their nutritional value longer 

than forb and graminoid species do (McWilliams, 2000; Rhodes, Larsen, Maxwell, et al., 2018; 

Villalba et al., 2014). Although woody species may have unpalatable defense chemistry, towards 

the end of the growing season the defenses fade while the forb and graminoid species 

simultaneously begin to senesce and ungulates become more selective for the protein and 

digestible nutrients that woody species have to offer (Holechek et al., 1987; McWilliams, 2000; 

Villalba et al., 2014). Late-season browsing reduces plant carbohydrate supply and regeneration 

time (Villalba et al., 2014) and graminoid species have fast growth rates that may allow them to 

take advantage of herbivory-opened niche space before the browsed woody species can (Figure 

2) (A. K. Knapp et al., 1999; Staver et al., 2021). Furthermore, high silica content in grasses may 

make herbivores avoid graminoid species in favor of more palatable forage (Hartley & 

DeGabriel, 2016; Johnson et al., 2019; Sharp Bowman et al., 2017). 

 

Non-Native Species are Negligibly Influenced by Ungulate Herbivory 

Ungulate herbivory can target native plant species which increases the growth of 

unfamiliar, less palatable non-native species through herbivory release and by increasing 

available niche space (Gonzales & Clements, 2010; Nielson et al., 2019; Schlierenzauer et al., 

2021). However, our results showed no significant effects of ungulate herbivory on the non-

native plant community (Figure 4). Herbivory effects on non-native species can vary greatly at 

both local and landscape scales (Kie & Lehmkuhl, 2001; Lee & Kotanen, 2017) and by 

individual species (L. B. Knapp et al., 2008). Furthermore, generalist herbivores such as deer and 

cattle may still forage on non-native plant species, especially when they closely resemble native 
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plant species (Lee & Kotanen, 2017; Pearse & Hipp, 2014; Sun et al., 2023). Thus, non-native 

species may not display an herbivory treatment effect if they are not avoided in favor of native 

species. 

 

Broader Ecological Implications 

 This study quantified the effect of ungulate herbivory on post-fire forest understory 

regeneration. Our results show that ungulate herbivory differentially affected the post-fire aspen 

understory plant community by growth form, likely due to the high and long-lasting nutrient 

content of woody species. These findings are in line with other studies showing similar patterns 

of ungulate herbivory targeting woody plant species within multiple different forest types 

(Kuebbing et al., 2013; Meier et al., 2017). Selective herbivory of the woody species can alter 

nutrient cycling and overall plant diversity which has potential implications for valuable wildlife 

habitat and plant succession (Augustine & McNaughton, 1998; Chard et al., 2022; Endress et al., 

2012; Garibaldi et al., 2007; Reikowski et al., 2022). Understanding ungulate herbivory’s effect 

on forest understory plant communities is critical as novel herbivory regimes expand across 

forest ecosystems (Bernes et al., 2018; Faison et al., 2016; Olofsson & Post, 2018; Salgado-

Luarte et al., 2018). Fencing that reduces ungulate herbivory can significantly improve woody 

plant growth, which may facilitate and strengthen forest recruitment and biodiversity in light of 

ungulate expansion.  
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FIGURES 

 

Figure 4-1. Diagram of ungulate exclosure fence treatments. Control sites have no fence to allow 

access for all large herbivores, -cattle treatments are referred to as “no cattle,” -cattle -elk 

treatments are referred to as “no cattle or elk,” and -cattle -elk -deer treatments are referred to as 

“no ungulates.” 
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Figure 4-2. Richness and cover for all plant species by fence treatment and plant growth form 

types (woody, forb, graminoid). T*GF signifies the treatment by growth form interaction term. 

Letters on top of bars are for treatment comparisons. Letters inside of bars are to compare within 

plant growth form types, across treatments. Different letters signify P ≤ 0.1. Asterisks represent 

p-value significance at the following levels: *P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.001. 
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Figure 4-3. Shannon diversity index (H’) and Simpson’s index (D) by fence treatment. Letters 

within bars are for treatment comparisons. Different letters signify P ≤ 0.1. 

 



 
 

172 

 

Figure 4-4. Richness and cover for non-native plant species by fence treatment and plant growth 

form types (woody, forb, graminoid).  T*GF signifies the treatment by growth form interaction 

term. Letters on top of bars are for treatment comparisons. Letters inside of bars are to compare 

within plant growth form types, across treatments. Different letters signify P ≤ 0.1. Asterisks 

represent p-value significance at the following levels: *P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.001. 
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