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Fig. 4. Examples of mutations
in EA-DIR and EA-Path algo-
rithms. (Upper row: method 1.
Lower row: method 2)

Fig. 5. Examples of muta-
tions in EA-Path_E algorithm.
(Upper row: method 2. Lower
row: method 3)
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large sizes) to determine which neighbor is more promising,
and LHC-GW-PF uses Potential Fields (PF) with various
discounting factors to determine where to go next.

3) Evolutionary Algorithms: We developed two Evolu-
tionary Algorithms: EA-Dir and EA-Path. Both use the
probability accumulated for each path as the fitness function
and employ the proportional selection method [14]. The
difference between the two algorithms lies in the path
representation during crossover.

With the EA-Dir algorithm, a path is encoded as a string
of directions consisting of North, East, South, and West in
the crossover phase (e.g. “NNWEE...”). Because the paths
generated using single-point crossover [14] have a very high
probability of being invalid (flying out of the map), we only
use double-point crossover [14] and restrict the mid-section
to a fixed 5-direction string.

With the EA-Path algorithm, a path is encoded as a
sequence of node positions. If the two parent paths share
only one common node, then single-point crossover is used;
if they share two common nodes in the same order, then
double-point crossover is used; otherwise, the two parent
paths are discarded and the process starts over. For the single-
point crossover method the two parent paths are crossed at
the common node; see Fig. 2. For double-point crossover
method, the first common node and the second common node
in the parent paths mark the middle sections to be swapped;
see Fig. 3. Both techniques could result in one longer path
and one shorter path. The longer path is truncated back to
the original path length and the shorter path is extended by
performing crossover again and then truncating.

Two types of mutation methods [14] are used for flight
path evolution; see Fig. 4. They follow a greedy approach
with the hope that small positive changes to the path will
lead to larger positive changes to the path. First we randomly
select a node in the flight path and see if the next two nodes
along the path would form an L shape with this node or a
straight line (these are the only two possibilities). In the first
case, method 1 (“flip”) is used and the algorithm replaces
the middle node with the node that mirrors the middle node
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if we connect the first node and the third node with a line.
This is like flipping a section of the path. In the second case,
method 2 (“pull”) is used and the algorithm inserts two nodes
into the path on one side of the line next to the first and the
second nodes. This effectively extends the path by two nodes,
so we simply truncate the last two nodes from the path. This
is like pulling a string from the middle when the beginning
end of the string is fixed. Which side to select for insertion
depends on whether the new path is a valid path. If both
sides allow valid paths, then the algorithm prefers inserting
nodes that are not already in the path. Random selection is
the last tie-breaker. If all four nodes on either side of the line
are already included in the path, then a new mutation point
is randomly selected and the same procedure repeats.

We use an initial population of 100 paths including various
paths generated using other algorithms and 95 randomly
generated paths. LHC-GW-PF is not used because it is too
slow. Other parameters include replacement rate at 30% and
mutation rate at 50%. The best three paths are always kept in
each iteration. The algorithm runs for at least 500 iterations
and stops if either the best path does not improve after 200
iterations or if the algorithm has completed 1000 iterations.

B. Algorithms with a Set Destination

In WiSAR, an operator might prefer the path to end
at a specific destination node to support UAV retrieval,
persistent visualization of a specific region at a specific time,
or planning multiple path segments that make up a longer
path. The following algorithms are modified versions from
the previous section to handle the additional requirement. We
simply add “_E” to the algorithm names to distinguish them.

1) Complete-coverage Algorithm (CC_E): This algorithm
is identical to the CC algorithm up to the time when the
remaining flight time is just enough to fly the UAV to the
end node, then it flies toward the end node using the LHC-
GW-CONV _E algorithm (discussed shortly).

2) Local Hill Climbing Algorithms: The LHC-GW-
CONV _E and LHC-GW-PF_E algorithms have an additional
constraint where nodes that prevent the path from reaching
the end node within the remaining time will not be selected.

3) Evolutionary Algorithm: The direction representation
of a path does not work with a set destination, so the EA-
Path_E algorithm also uses a sequence of node positions to
encode the path. Here we increased mutation rate to 90%
to force more exploration of the state space. The initial



population of 100 paths includes various paths generated
using other algorithms as seeds (both from start node to end
node and reversed) and 90 randomly generated paths.

The EA-Path E algorithm uses both single-point and
double-point crossover. The difference is that when the
child path is too long, the algorithm truncates the path
to the original path length, then backtracks the path until
the distance between the end of the child path and the
desired end node matches the remaining time. The LHC-
GW-CONV _E algorithm is then used to complete the path
with the desired end node. If the child path is too short, the
LHC-GW-CONV _E algorithm is used to complete the path.

The EA-Path_E algorithm uses three types of mutation
methods. First, we randomly select a node in the path and
see if the next two nodes along the path would form an
L shape with this node or a straight line. In the first case,
method 1 (“flip”) is used (identical to the one used in the
EA-Path algorithm); see Fig. 4. If the nodes form a straight
line, then method 2 (“pull”) or 3 (“shake”) is selected with
equal probabilities; see Fig. 5.

Mutation method 2 (“pull”) is a modified version from
the EA-Path algorithm. This method does not truncate two
nodes at the end of the path; instead, it deletes two nodes in
the middle of the path. This is like pulling a string from the
middle when both ends of the string are fixed.

Mutation method 3 (“shake”) works by first marking a
small mid-section in the path (to keep it short, we set it to
6 nodes). We first randomly select a node in the path, then
traverse the path and find the fifth node down the path. If
the path between these two nodes is not a straight line, the
method replaces the mid-section with random flying while
maintaining the same length for the mid-section. This is
similar to shaking a chain where the beginning and ending
points remain fixed but the middle section shifts.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Performance Metrics

We use Efficiency, Efficiencyrp and Running Time as
metrics to measure the performance of the algorithms, where
Efficiency is calculated if we know what’s the best possible
and Efficiencyrp is used as an estimation when we have
no way of calculating the best possible. Sorting all the
probability nodes by their values in descending order would
generate a list { N1, N2, N3, ..., N3gq0 }. For the best possible
path p*, the probability accumulated PC,,- is constrained by
a theoretical upper bound B:

Z N, = B, (6)

where d is the distance from the start node to the closest non-
zero valued node. Then for any path py, we define Efficiency
and Efficiencyrp as the following:

Efficiency = ig? @)
P
Efficiencyrp = % ®)

Fig. 6. Top row: 2D representations of unimodal, bimodal, and bimodal
with overlap probability distribution maps. Middle row: Simplified versions
of the three types of maps. Bottom row: Best paths found for each map.
PC)p, can be calculated using (4). Efficiency can be cal-
culated when PC)p- is known and Efficiencyr,p can be
calculated anytime. Clearly, Efficiencyrp < Efficiency.

For example, a path with 95% Efficiency means the
amount of probability accumulated following this path
is 95% of the maximum possible. A path with 85%
Efficiencyr,p means the probability accumulated is 85% of
the maximum amount possible if the UAV can teleport from
node to node, and the true Efficiency could be much higher.

All experiments are run on a Dual-core AMD 3800+ PC
with 1GB of memory. For each algorithm, running time is
recorded so we can compare algorithm speed.

B. Typical WiSAR Scenarios

In our experiments, we focus on probability distribution
maps of three abstract but representative WiSAR scenarios:
unimodal, bimodal, and bimodal with overlap. The top row
of Fig. 6 shows the 2D representations where each pixel
is a probability node; the lighter the pixel, the higher the
probability value. The middle row shows three simplified
versions of the distributions, which can be used to manually
identify the best path possible for each map and compute
PC)-. Then we can measure the true Efficiency of paths
generated. The blue arrows on the maps mark the starting
node (possible location for a WiSAR command center) and
the red dots mark the ending node (intentionally selected at
a different region from the starting nodes). The bottom row
shows the best paths generated for the real maps at 7T'=900.

C. Experimental Results and Analysis

For each distribution type (real and simplified maps) we
ran each algorithm (with or without set destination) using
T=120, 300, and 900 (4, 10, and 30 minutes). Because
of random factors, we ran each experiment 10 times and
calculated mean and standard deviation of the results. Due
to space limitation, only a subset of the experimental results
are presented (e.g. Table I, II and Figure 7-9).

For all the experiments we performed, algorithm running
time exhibited the same trend: from the fastest to the
slowest we have LHC-GW-CONV(_E), EA(_E) and LHC-
GW-PF(_E). For example, with the simplified unimodal
map, the LHC-GW-PF algorithm ran for 9.419, 41.952
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(%) Simplified (Efficiency) Real (Efficiencyrp)
T 120 300 900 120 300 900
LHC-GW-CONV | 88.89 | 96.80 | 98.35 | 81.64 | 93.97 | 97.75
LHC-GW-PF 96.63 | 96.70 | 96.07 | 90.28 | 92.43 | 96.67
EA-Dir 98.59 | 97.31 | 98.80 | 90.62 | 94.96 | 97.96
EA-Path 98.66 | 98.09 | 99.07 | 91.18 | 95.71 | 98.02
TABLE I
ALGORITHM EFFICIENCY COMPARISON FOR BIMODAL DISTRIBUTION
(seconds) Simplified Real
T 120 300 900 120 300 900
LHC-GW-CONV | 0.90 2.26 7.35 0.52 1.16 5.66
LHC-GW-PF 944 | 29.11 | 131.35 | 2.61 8.64 | 92.38
EA-Dir 9.36 15.56 | 41.71 10.97 | 16.69 | 35.11
EA-Path 10.63 | 22.89 | 66.31 12.61 | 21.20 | 53.73
TABLE I

ALGORITHM SPEED COMPARISON FOR BIMODAL DISTRIBUTION

and 164.383 seconds for T'=120, 300 and 900 respectively.
Because the EA(_E) algorithms use the path generated from
other algorithms as seeds in the initial population, they are
generally slower. However, most of the running time is spent
generating the initial population and the evolutionary part of
these algorithms only takes a fraction of a second. LHC-
GW-PF(_E) algorithms are always the slowest, and that is
why we do not include them as seeds in the EA algorithms.
For the group of algorithms with set destination, we perform
path planning both from the starting node to the ending
node and also from the ending node to the starting node
(then reverse the path), and then select the better one; we
include both runs when we record the algorithm running
time. Therefore, the “_E” algorithms always take more time
to complete compared to the version before modification.

For the simplified unimodal map, the LHC-GW-
CONV(_E) algorithms are the clear winners in each respec-
tive group if we consider both the Efficiency and the running
time. For the group of algorithms without set destination, all
algorithms gave above 99.5% Efficiency. The LHC-GW-
CONV algorithm is always the fastest (e.g. 6.483 seconds
for T=900) and achieved 100% Efficiency in all cases.
The EA-Dir and EA-Path algorithms also achieved 100%
Efficiency, but at a much slower speed (e.g. 62.236 seconds
for T=900 with EA-Path). For the group of algorithms with
set destination, the LHC-GW-CONV_E algorithm is also
the fastest (e.g. 14.173 seconds for 7'=900) and achieved
99.955% or higher Efficiency in all cases. Although the EA-
Path_E algorithm achieved slightly better Efficiency (less
than 0.1% improvements), it did so at the cost of more
running time (e.g. 78.334 seconds for 7'=900).

For the simplified bimodal map, the LHC-GW-CONV(_E)
algorithms did not always perform well because it doesn’t
handle the space between the two modes very well, especially
for very short flight time. Fig. 7 shows the Efficiency
comparison of the group of algorithms without set desti-
nation. The LHC-GW-PF(_E) algorithms still achieved 96%
and above Efficiencies, but they are also the slowest. The
EA(_E) algorithms are more attractive in this case because
they achieved the best Efficiencies (98.095%+ for EA and
97.857%+ for EA_E) very quickly.

For the simplified bimodal with overlap map, the EA(_E)
algorithms achieved the best Efficiencies (98.302%+ for
EA and 98.653%+ for EA_E), but the LHC-GW-CONV(_E)

Algorithm Performance Comparison - Bimodal Map

94.0% BLHC-GW-CONV
OLHC-GW-PF

BEA-DIir

86.0% BEA-Path

T=120 T=300 T=900

Flying Time

Fig. 7. Efficiency comparison for group of algorithms without set
destination for simplified bimodal map

ithm Per [of
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Fig. 8. Efficiency comparison for group of algorithms with set destination
for simplified bimodal with overlap map

algorithms were able to achieve equivalent or slightly lower
Efficiencies (97.391%+ for LHC-GW-CONYV and 98.429%+
for LHC-GW-CONYV _E) with much less time (8.283 seconds
and 16.296 seconds for 7=900 respectively). Fig. 8 shows
the Efficiency comparison of the group of algorithms with
set destination.

For each of the three real distribution maps (unimodal,
bimodal, and bimodal with overlap), since PCp- is unknown,
we can only calculate FEfficiencyr,p. We observed that
the Efficiencyrp for each real map is very close to the
Efficiencyrp for each of the counterpart simplified maps,
and we hypothesize that the Efficiency for each real map
should also be close to the Efficiency for each of the
counterpart simplified maps. Fig. 9 shows an example of the
EA-Path algorithm performance for the real and simplified
bimodal with overlap map. The columns in the front row are
Efficiencyrp values and the columns in the back row are
Efficiency values. Based on this graph, we estimate that the
Efficiency values for the real map here are above 97% for
all T' values.

To further evaluate our algorithms, we tested our algo-
rithms on a more complex multimodal distribution map gen-

Efficiency and Efficiency ;54 comparison - Bimodal_Overlap Map

Simplified

Efficiency |

EfficiencyLB

Fig. 9. EA-Path performance for the real and simplified bimodal with
overlap map
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Fig. 10. More complex multimodal probability distribution map

erated by mixing multiple Gaussian distributions with vari-
ous standard deviations; see Fig. 10. The LHC-GW-CONV
algorithm achieved 97.206% Efficiencyrp in 5.516 seconds
and the EA-Path algorithm achieved 97.609% Efficiencyrp
in 63.984 seconds. Note here that the Efficiency percentiles
can only be better.

In every experiment, the EA(_E) algorithms always
achieved the best Efficiency and Efficiencyrg. Therefore,
if the operator has some time for computation, they seem
to be attractive candidates. If the operator needs a path
generated quickly, the LHC-GW-CONV(_E) algorithms can
be used. Although the LHC-GW-PF(_E) algorithms do not
work as well with these three distribution maps, initial tests
on other distribution types such as sparse map and small-
multimodal map suggest that they could perform better than
other algorithms.

VI. CONCLUSION AND FUTURE WORK

We model the UAV path planning problem in WiSAR
as a discretized combinatorial optimization problem and
design two groups of algorithms for path planning with
or without a set destination using algorithms based on
Local Hill Climbing, and Evolutionary Algorithms using
novel techniques such as “global warming effect” and path
crossover/mutation. We evaluate the performances of these
algorithms on six (3 simplified, 3 “real”) representations
of typical WiSAR probability distribution maps, unimodal,
bimodal, and bimodal with overlap, with various flight times
and use the simplified maps to validate true efficiencies in
real maps. Experimental results show that our algorithms
can generate good paths with high Efficiency or estimated
Efficiency that approximate the optimal solution within
reasonable computation time. Specifically, the LHC-GW-
CONV(_E) algorithms should be used for unimodal maps,
and if a few minutes computation time is available, because
the EA(_E) algorithms always keep the best path found from
seed algorithms, they can always find a path with the highest
Efficiency compared with other algorithms experimented.

Experimenting with more types of distribution maps,
designing a more advanced global warming search model,
allowing 8-connected path planning, and dealing with dy-
namic distribution maps that change over time are all natural
extensions for future work. Specifically, the set of algorithms
with set destinations enables us to further investigate how the
path planning task can be segmented so human operators can
plan more strategically while the algorithms plan tactically,
and what interface can make this an intuitive, smooth, and
effective task for the UAV operator in WiSAR operations.
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