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ABSTRACT 

Improving XRD Analysis with Machine Learning 

Rachel E. Drapeau 
Department of Geological Sciences, BYU 

Master of Science 
 

X-ray diffraction analysis (XRD) is an inexpensive method to quantify the relative 

proportions of mineral phases in a rock or soil sample. However, the analytical software 

available for XRD requires extensive user input to choose phases to include in the analysis. 

Consequently, analysis accuracy depends greatly on the experience of the analyst, especially as 

the number of phases in a sample increases (Raven & Self, 2017; Omotoso, 2006). The purpose 

of this project is to test whether incorporating machine learning methods into XRD software can 

improve the accuracy of analyses by assisting in the phase-picking process. In order to provide a 

large enough sample of X-ray diffraction (XRD) patterns and their known compositions to train 

the machine learning models, I created a dataset of 1.5 million calculated XRD patterns of 

realistic mineral mixtures. These synthetic XRD patterns were calculated using crystal structure 

files from the American Mineralogist Crystal Structure Database (AMCSD) with mineral 

occurrence data from the Mineral Evolution Database (MED) to mimic geologic knowledge used 

by expert analysts. Using this dataset, I trained and refined a variety of machine learning models 

to determine which model is most accurate in identifying the correct mineral phases. 

 

Keywords: X-ray diffraction analysis, XRD, machine learning, Rietveld method, crystal 

structure, classification, decision trees, bagged decision trees, data generation, mineral, mixture 
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1. INTRODUCTION 

Geological studies generally require analysis of the minerals present in rock, soil, and 

sediment samples to provide insight about conditions of formation. There are several available 

analytical techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), inductively 

coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), and 

electron microprobe, but they vary widely in the amount of information they provide to help 

infer the minerals’ identities, the spatial range of analysis, and the cost.  Quantitative X-ray 

diffraction analysis is an inexpensive method that can quantify the relative amounts of phases 

present in an entire sample. As such, it has become a popular method to determine the minerals 

present and their abundances.  

A powder XRD instrument detects the angles at which X-rays diffract when interacting 

with a powdered, crystalline sample by utilizing Bragg’s law (see Section 2.2.2). Those angles 

are determined by the length of unit cell repeat spacings in the crystal structures of the phases 

Figure 1.  XRD Pattern for quartz using a copper anode X-ray tube. 
The two highest intensity peaks at 20.88° and 26.66° 2θ are highly diagnostic of quartz, even in 
some mixtures. These peaks correspond to crystal structure repeat spacings of 4.255 and 3.343 
respectively.  
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present. The relative intensities of the peaks depend both on the crystal structures and the 

identities of the atoms present in different sites in the structures (Pecharsky & Zavalij, 2009, p. 

151, 161). Figure 1 shows an example powder XRD pattern of the mineral quartz (SiO2).  This 

pattern of peaks is highly diagnostic for single-phase samples, as it is easy to match the peak 

pattern to the patterns produced by single-phase standards, or even calculated from known 

crystal structures. However, if a sample contains multiple phases, the pattern must be modeled 

through XRD as a linear combination of single-phase patterns, which is then used to determine 

the amount of each phase present in the sample. This makes identification of the different phases 

in the sample difficult, because multiple phases can have major peaks at the same angles. If a 

sample contains an unknown number of phases, there can be many combinations that could 

possibly explain the positions and relative sizes of the peaks present. 

The problem of identifying multiple phases correctly in XRD analysis has inspired 

research on the best practices for obtaining accurate results. One such project is the Reynolds 

Cup hosted by the Clay Minerals Society. Analysts in the competition perform their preferred 

method of quantitative phase analysis on a synthetic mixture, and then submit their results along 

with descriptions of their analytical procedures. Researchers then compare the methods to the 

accuracy of the results from each analyst. In past research, Raven & Self (2017) and Omotoso 

(2006) discovered that the most important factor in accurate quantitative phase analysis is the 

experience of the analyst rather than the method used. This is because the analyst must tell the 

analysis software which mineral phases to include for XRD fitting from a much larger set of 

possibilities.   

The only guidance usually given by the software for picking candidate phases is a simple 

peak-matching routine, in which a list of the phases whose major peaks match major peaks in the 
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sample pattern is given. In order to produce an accurate analysis, the analyst must use their 

geologic knowledge of the sample to review and narrow down the list of candidate phases for the 

software to optimize. This is usually done iteratively, until the analyst is satisfied with the match 

between the sample pattern and the pattern calculated from the selected phases. Novice analysts 

tend to treat the analytical software as a black box, accepting rare minerals or phases that are 

geologically or geochemically incompatible with the sample into their analysis (Raven & Self, 

2017). On the other hand, expert analysts tend to incorporate other geologic knowledge, such as 

mineral prevalence and co-occurrence, when deciding which phases to include, thus resulting in 

more accurate analyses. 

To alleviate this problem, I attempt to narrow the gap between novice and expert XRD 

analysts by training machine learning algorithms to accurately determine what phases are present 

in XRD analysis. Machine learning is a type of artificial intelligence that is used to address 

problems that cannot be solved using a straightforward algorithm. In other words, the problem 

cannot be solved easily by a step-by-step set of instructions for the computer without additional 

user input. Machine learning uses various statistical methods and algorithm types to mimic 

choices that human users might make to produce the best results. Unsupervised machine learning 

techniques identify patterns in data that are difficult for humans to recognize due to the data’s 

complexity. Supervised machine learning techniques are used to create models to predict some 

feature of interest, or target, in the data. In this project, the target is the classification of the 

mineral phases in XRD patterns. Given enough high-quality training data, supervised machine 

learning is often able to create effective predictive models.  

Using these predictive models and training data to mimic expert knowledge, machine 

learning has the potential to automate accurate analyses by assisting in the phase-picking 
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process. However, these models are only as good as the data from which the machine learning is 

given to train. In order to produce accurate and generalizable predictive models, machine 

learning algorithms need large amounts of training data, on the order of thousands of samples. 

Such a database of experimentally derived XRD patterns with known compositions does not 

currently exist and would be extremely time-consuming and expensive to create. Therefore, I 

developed a synthetic database of realistic mineral mixtures derived from the American 

Mineralogist Crystal Structure Database (Downs, 2003), the Mineral Evolution Database (MED), 

MATLAB code, and the Rietveld equation.  

Using this generated data set, I trained various machine learning models to be able to 

identify whether a target phase was included in a sample. Using the most consistently accurate of 

these models, I trained models of the same type for 72 different phases and tested their results on 

the XRD patterns of real mixtures. Using feature ranking algorithms, I also gained insight into 

helpful features of an XRD pattern that are most important to correctly identifying certain 

phases. These models and insights can aid novice analysts to produce more accurate XRD 

analyses.  

2. BACKGROUND  

To understand the methods discussed, more detailed explanations of XRD analysis and 

machine learning are provided in this section. Although there are many methods for quantitative 

phase analysis, the most popular are full-pattern fitting and the Rietveld method (Zhou et al., 

2018).  

2.1. XRD by Full-Pattern Fitting 

Full-pattern fitting starts with rigorous sample preparation to obtain reproducible peaks. 

The sample must be repeatably micronized to produce reproducible particle size distributions, 



5 
 

and spray-dried or shaken with certain solvents to prevent preferred orientation of the grains. In 

addition, the sample must also be spiked with a known amount of an internal standard, usually 

corundum or zinc oxide (Eberl, 2003). The sample is then ready for XRD analysis. 

To start the analysis, the analyst chooses starting candidate phases based on their 

geologic knowledge of the sample and common minerals. These phases are selected from the 

software’s library of experimentally-derived XRD patterns which were subjected to the same 

sample preparation described earlier. After the analyst chooses the starting phases, the software 

takes the selected standards and models them as a linear mixture. The software then optimizes 

the linear combination to find a multiplier for each standard that is related to the weight 

percentage of the phase in the sample.  

Once the optimization chooses the best values for the multipliers, these values need to be 

converted to weight percentages. This is accomplished using the reference intensity ratio (RIR) 

method and the known amount of corundum the sample was spiked with. Each mineral phase has 

an RIRcor value that is found by integrating the intensities of the phase’s peaks across the range 

of angles used for analysis. This is done by summing all the intensities of the peaks and dividing 

that sum by the step size of the angle. The RIRcor value for the corundum standard can be used to 

calculate the weight fraction of the mineral phase in the sample using the equation: 

𝑋𝑋𝑖𝑖 = �
𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐
� �

𝑅𝑅𝑖𝑖

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐
� 

 

where X is the weight fraction of the mineral phase (i) and spiked corundum (cor), and I 

is the integrated intensity of the pattern for the mineral phase (i) and corundum (cor) (Zhou et al., 

2018; Srodon, 2001).  
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Generally, when full-pattern fitting is referred to in this paper, it assumes the 

methodology found in the RockJock 11 manual (Eberl, 2003). This includes using a Cu-Kα X-

ray tube, a corundum internal standard, and an analysis range of angles from 5-65° 2θ. 

2.2. XRD by the Rietveld Method 

2.2.1. Rietveld Analysis to Determine Phases 

The Rietveld Method is another popular XRD approach. To start a Rietveld analysis, a 

database of reference phases and their crystallographic information is needed. Some software 

packages include reference phase databases, or an analyst can create their own through 

repositories such as the American Mineralogist Crystal Structure Database (AMCSD). Once a 

reference database is selected, the software identifies peaks in the sample and creates a list of 

possible phases from the reference database that have peaks in the same locations. The analyst 

then chooses which phases from the software’s initial list to include and runs the quantitative 

phase analysis.  

Rietveld analysis takes the selected phases and simulates the reflections in the sample 

pattern with calibrated crystallographic parameters. This is done by calculating the intensity of 

the peaks for each mineral phase i using the equation:  

𝑦𝑦𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑆𝑆 �(𝑝𝑝𝑘𝑘𝐿𝐿𝑘𝑘|𝐹𝐹𝑘𝑘|𝐺𝐺(𝛥𝛥𝜃𝜃𝑖𝑖𝑘𝑘)𝑃𝑃𝑘𝑘) + 𝑦𝑦𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏)
𝑘𝑘

 

• S = scaling factor 

• k = kth Bragg reflection 

• p k = multiplicity factor 

• Lk = Lorentz and polarization factor 

• Fk = structure factor for individual reflection of phase 

• G = reflection profile function 
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• 𝛥𝛥𝜃𝜃𝑖𝑖𝑘𝑘= Bragg angle for kth reflection 

• Pk = preferred orientation function 

• yi(bkg) = refined background 

The parameters that influence the peak shapes – namely G(Δθik), S, Pk, and yi(bkg) – are all 

adjusted through an optimization procedure. Other parameters are intrinsic to the mineral phase 

and are therefore not adjusted. With the optimized value of S, the weight percentage of a phase in 

the sample can be calculated (Zhou et al., 2018). The optimized values of the other parameters 

can also be used to determine structural information about the mineral phases, making Rietveld a 

very informative method for quantitative phase analysis.  

The Rietveld method is beneficial in that it is very flexible and can provide the analyst 

with detailed crystallographic information about the phases included in the sample (Zhou et al., 

2018; Bish & Howard, 1988; Pecharsky & Zavalij, 2009). However, Rietveld analysis suffers 

from the same problem as full pattern fitting. The user must have experience knowing which 

minerals to include.  

Preferred orientation (Pk parameter) is especially troublesome for Rietveld analysis 

because it can change peak intensities differently for each mineral phase, making some peaks 

shrink while others grow. If the analyst does not know how to account for preferred orientation, 

it can change peak intensities enough to alter which phases are suggested, and therefore included, 

in the analysis (Bish & Howard, 1988). Without the rigorous sample preparation described above 

in full-pattern fitting, it is complicated and computationally expensive to account for preferred 

orientation and particle size effects in Rietveld analysis. Another weakness with Rietveld 

analysis is applying it to non-crystalline phases (e.g., volcanic glass) or disordered phases (e.g., 

clay minerals) can be difficult, and in some cases impossible (Zhou et al., 2018).  



8 
 

2.2.2. Calculating a Pattern from Crystal Structure 

Mineral structure information can be encoded in a uniform file format called a .cif file. 

With the crystallographic information included in a crystal structure .cif file, I can obtain the 

necessary information needed to calculate an XRD pattern (See Pecharsky & Zavalij, p. 163-

176). Using the unit cell dimensions and angles, one can calculate the d-spacings for the phase 

(for more information on d-spacings and Miller indices, see Pecharsky & Zavalij, p. 8). The 

locations of the Bragg angles for each peak are directly related to the d-spacings in the crystal 

structure by Bragg’s law: 

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃ℎ𝑘𝑘𝑘𝑘 =  
𝜆𝜆

2𝑑𝑑ℎ𝑘𝑘𝑘𝑘
 

• 𝜃𝜃ℎ𝑘𝑘𝑘𝑘= Bragg angle for Miller indices hkl 

• λ = wavelength of X-rays used 

• dhkl = d-spacing for Miller indices hkl 

 

Once the angles for each peak are found, I can then calculate the intensity of the pattern at each 

angle i and apply a peak shape to each peak k (1 ≤ k ≤ m):  

𝑌𝑌(𝑠𝑠) = 𝑏𝑏(𝑠𝑠) +  � 𝑅𝑅𝑘𝑘[𝑦𝑦𝑘𝑘(𝑥𝑥𝑘𝑘)]
𝑚𝑚

𝑘𝑘=1

 

• Y(i) = calculated intensity at angle i 

• 𝑏𝑏𝑖𝑖= background intensity at angle i.  

• Ik = intensity of the kth peak 

• yk = peak shape function 

• xk = 2𝜃𝜃𝑖𝑖 − 2𝜃𝜃𝑘𝑘  
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There are a few common peak shape functions used to accomplish this as detailed in Pecharsky 

& Zavalij (2009, p. 170-171). I utilize the Pseudo-Vogit function, which is a weighted sum of the 

Gaussian and Lorentzian functions: 

𝑦𝑦(𝑥𝑥) =  𝜂𝜂
𝐶𝐶𝐺𝐺

1/2

√𝜋𝜋𝜋𝜋
exp(−𝐶𝐶𝐺𝐺𝑥𝑥2) + (1 − 𝜂𝜂)

𝐶𝐶𝐿𝐿

1
2

√𝜋𝜋𝜋𝜋
(1 + 𝐶𝐶𝐿𝐿𝑥𝑥2)−1 

• η= fractional contribution of the Gauss function 

• CG = 4*ln2 

• H = full width at half maximum (FWHM) 

• CL = 4 

• The fraction components are normalization factors for Gauss and 

Lorentz functions respectively such that the integrals are 1.  

2.3. Machine Learning Algorithms 

Supervised machine learning algorithms are especially helpful when the data contains 

many weakly-predictive features (Kelleher and Tierney, 2018), such as the XRD intensity values 

at each angle in an XRD pattern. Therefore, the overall problem of correctly identifying the 

phases in an XRD pattern is a classic example of one that can be solved with supervised machine 

learning algorithms. I will train various machine learning algorithms with my data to determine 

if they are able to mimic expert analyst decisions in XRD analysis.  

To determine which machine learning algorithm would be best to predict mineral 

presence in an XRD pattern, various machine learning algorithms were trained on an initial 

dataset. These were decision trees and random forests, boosted decision trees, k-nearest 

neighbors, support vector machines, neural networks, and logistic regression. Brief descriptions 

of each listed algorithm’s methodology are described below. 
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2.3.1. Decision Trees and Random Forests 

A decision tree is a classification model that creates a series of questions, the answers to 

which split the data into the categories of the target feature (Raschka and Mirjalili, 2017; 

Kelleher and Tierney, 2018). Figure 2 shows an example decision tree (Kumar, 2019). Decision 

trees are split into branches and nodes. Nodes (shown with boxes in the figure) represent 

subgroups of the dataset being classified. Branches (shown by arrows) split the data into 

different nodes based on values of certain features of the data. There are two main types of nodes 

– decision nodes and leaf nodes. Decision nodes mark the location of feature tests that split the 

data into different branches and subtrees. The root node is the starting decision node and contains 

the whole data set. Leaf nodes are ending nodes that represent homogenous subgroups of the 

data.  

A random forest is a group of many decision trees that averages the results of each tree to 

determine the overall result (Raschka and Mirjalili, 2017). This method is an extension of bagged 

trees (Kumar, 2019). Bagging involves using bootstrapping to modify the training set for each 

tree and aggregates the results of each tree together to determine the final classification. This 

model type is less vulnerable to overfitting, more generalizable, and reduces the effect of large 

variance between the results of individual trees. Random forests start similarly to other bagged 
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tree models by taking a random sample of the data with replacement to use as a training set for 

an individual tree. Random forests differ by taking a random selection of the features without 

replacement at each node of the tree, usually equal to the square root of the total number of 

features, instead of using all features at each node. Then, the node is split according to the feature 

that provides the best split for the objective. This process is repeated until the desired number of 

trees is reached. Generally, the more trees there are in the random forest the better the model 

performs, with the cost of increased computation time.  

2.3.2. Boosted Decision Trees 

Boosting ensembles train multiple decision trees iteratively, with each iteration focusing 

on previously misclassified data points. Boosting is useful when decision trees and random 

forests contain weak learners of the objective function, in other words, they perform only slightly 

better than chance at correctly classifying the data (Raschka and Mirjalili, 2017). There are a few 

variants of boosting used to classify weak learners. Similar to random forests, one variant takes a 

B

Figure 2. Decision tree terminology and basic layout.  
Modified from Machine Learning Quick Reference (Kumar, 2019). A decision node is a location where a split 
is made in the data based on the values of a certain feature in the data. The root node is the starting decision 
node. The arrows going out of the decision nodes are branches; branches divide the tree into sub-trees and are 
based on a specific value of the feature being tested at the parent decision node. A leaf node is an ending node 
that determines a homogenous subgroup of the data.  
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random subset of the data without replacement to train each tree. Except for the first tree, each 

tree’s training data is supplemented with additional data that was misclassified from the previous 

tree. The class chosen by the majority of the trees is used as the final prediction.  

Another variation called AdaBoost trains each tree with the entire training set and adds 

weights to previously misclassified data (Raschka and Mirjalili, 2017). The weights are adjusted 

each iteration of training based on the results of the previous tree, decreasing weight for correct 

classifications and increasing weight for incorrect classifications. The trees are also combined 

with a majority vote to obtain the final classifications.  

Another boosting ensemble method used in MATLAB is random undersampling (RUS) 

boosting. This algorithm’s purpose is to classify imbalanced data, where one class contains many 

more samples than the other. To train the trees in the ensemble, the algorithm takes the number 

of samples N in the class with the fewest observations and samples N observations from every 

other class. Each tree in the ensemble takes a new sample of the data to use. The results of the 

trees are combined in a similar fashion to the other ensemble methods (MATLAB, Ensemble, 

2023).  

2.3.3. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors is a simple algorithm that classifies the data by defining a distance 

metric and a number of neighbors, k (Raschka and Mirjalili, 2017). The algorithm classifies each 

data point by looking at the classifications of the k nearest neighbors to the point based on the 

distance metric. The classification of the center point is determined by the majority classification 

of the neighbors. If there is a tie, the algorithm chooses the classification of the neighbors that 

are closest to the center. KNN’s main advantage is its ability to immediately adapt to new 



13 
 

training data. However, it can consume a large amount of memory and computation time with a 

large data set since the algorithm requires all the training data to classify new data.  

2.3.4. Support Vector Machines (SVM) 

Support Vector Machines are useful to classify new data into two different groups (in this 

project, these groups can be a mineral of interest compared to all other minerals). The algorithm 

uses the mathematical concept of a kernel trick to transform the data into a higher-dimensional 

space, which allows for a linear classifier in a lesser dimension to classify the data (Kumar, 

2019; Knox, 2018). The goal of SVM is to find the linear classifier that separates the two groups 

of data with the largest gap possible to avoid classification error.  

2.3.5. Neural Networks 

Neural networks are inspired by biological nervous systems of connected neurons 

(Kumar, 2019) as shown in Figure 3. Each artificial neuron is called a node, and each connection 

between the nodes is an edge. Starting at the input layer, each node processes the data it receives, 

and then sends a signal to the next layer of nodes it is connected to with an edge. Weights at each 

node determine the strength of that signal, and they are adjusted during the training process. 
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Each layer typically performs a different transformation on the data until the signal reaches an 

output node and determines the classification of the sample (Kumar, 2019; Raschka & Mirjalili, 

2017).  

2.3.6. Logistic Regression 

Logistic regression determines the probability of a class by modeling the predictor 

variables as a linear combination. The model optimizes the parameters for each predictor using 

maximum likelihood estimation iteratively until the model converges, meaning no additional 

improvements to the likelihood estimation are made. The optimized linear combination equals 

the natural log of the odds (logit function) of the event in question – in this case, the presence of 

the mineral phase. The use of the logit function together with the generalized linear regression 

model of the predictors gives it its name of logistic regression (Fenner, 2020). 

3. METHODS 

I tested the hypothesis that machine learning can improve the accuracy of phase-picking 

processes in XRD analysis. To do this, I compared the accuracy of different machine learning 

Figure 3. Neural network example.  
This is an example of the structure of a neural network. Each circle represents a node, and each arrow is an 
edge showing the path a signal would travel through the network.  
Source: “What Is a Neural Network?” https://www.mathworks.com/discovery/neural-network.html  

https://www.mathworks.com/discovery/neural-network.html
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algorithms with baseline automation algorithms already incorporated into XRD software 

programs as a control. A very large data set – on the order of millions of samples – was needed 

to prevent overfitting in the machine learning models. Models that overfit to the training data are 

not able to generalize when new data is introduced and produce inaccurate results. A large 

dataset was also necessary to capture enough samples of rare minerals since the data generation 

process incorporates a mineral’s abundance. Creating such a large dataset experimentally with 

natural or handmade mixtures would be very expensive and time consuming to produce and 

obtain the XRD patterns for. Therefore, I carefully created a dataset of synthetic XRD patterns 

and their corresponding expert knowledge analogues using data from crystal structure and 

mineral occurrence repositories. I trained the machine learning models with this data and 

evaluated their phase-picking performance with a withheld portion of the generated data as well 

as real mixtures, such as Reynold’s Cup mixture patterns.  

3.1.  Synthetic Data Set 

To successfully improve XRD software, I need to automate the process of narrowing 

down candidate phases for optimization through machine learning. To do this, a large data set of 

mineral mixtures with their corresponding weight percentages, XRD patterns, and elemental 

composition data needed to be obtained to enable the comparison of the different optimization 

methods without bias. I created this synthetic data set using custom MATLAB classes, crystal 

structure (.cif) files from the AMCSD, mineral location data from the MED, and the Rietveld 

equation to simulate mineral mixtures found in nature as well as information that expert XRD 

analysts use in their analyses. 

3.1.1.  Expert Knowledge Analogues 
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An expert analyst produces accurate XRD results by incorporating their mineralogical 

knowledge into their decisions of which phases to include in the optimization process. For the 

machine learning algorithm to create a model to mimic expert knowledge, I need data that can 

represent this knowledge for the model to learn from. This knowledge includes common 

minerals (mineral abundance), which minerals occur together (mineral co-occurrence), how 

XRD patterns can vary because of variations in crystal composition and structure (Jenkins, 

1996), as well as results from other analysis methods, e.g., elemental composition from XRF 

analysis.  

Mineral Abundance and Co-occurrence. To represent mineral abundance and co-

occurrence, I used data from the MED. This crowd-sourced database contains nearly 300,000 

reported locations of over 1.2 million mineral occurrences. The proportion of locations where a 

single mineral is present can represent mineral abundance. This is used during data creation as a 

weight when selecting from possible minerals so more abundant minerals are more likely to be 

chosen in a sample mixture. Mineral co-occurrence is represented in data creation by using 

location data from the MED to choose phases for a mixture as described in detail below in 

“Process for Generating Synthetic Data Samples”. By using these data representations of mineral 

abundance and co-occurrence when creating the synthetic mixtures, I mimicked patterns that 

natural rock XRD patterns exhibit due to the combinations of minerals they contain. Machine 

learning algorithms can detect such patterns during training and use them to make more accurate 

predictions.  

Crystal Structure Variations. Variations in crystal structure and composition are 

accounted for in the data set by finding a range of probable peak shape parameters for each 

mineral phase, as these parameters modify the peak shapes in an XRD pattern similar to how 
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variations in a mineral influence peak shape (Pecharsky & Zavalij, 2009; Jenkins & Snyder, 

1996). This is done by finding crystal structures in AMCSD that are the same phase as the 

standards in RockJock’s library (Eberl, 2003). From these crystal structures, I calculate their 

XRD patterns and optimize them with the Rietveld method to match the standards’ patterns. The 

result of the optimization is a set of realistic peak shape parameters for the crystal structure.  

I optimized the peak shape parameters U, V, W, P, X, Y.  These are related to the 

calculation of the width of the peak at one-half its maximum intensity, called the full width at 

half maximum (FWHM), which is an important measure of the peak shape. The relationship is 

between FWHM and the peak shape parameters (Pecharsky & Zavalij, 2009, p. 175-176) is:  

𝜋𝜋 = (� 𝑐𝑐𝑖𝑖𝜋𝜋𝐺𝐺
5−𝑖𝑖𝜋𝜋𝐿𝐿

𝑖𝑖
5

𝑖𝑖=0

)1/5 

𝜋𝜋𝐺𝐺 = 2𝜎𝜎√2 ln 2 

𝜎𝜎 =  �𝑈𝑈 (tan 𝜃𝜃)2 + 𝑉𝑉 tan 𝜃𝜃 + 𝑊𝑊 + 𝑃𝑃/(sin 𝜃𝜃)2 

𝜋𝜋𝐿𝐿 =
𝑋𝑋

cos 𝜃𝜃
+  

𝑌𝑌
tan 𝜃𝜃

 

• a i = tabulated coefficient that equals (1, 2.69269, 2.42843, 4.47163, 0.07842, 

1) for i=0 through 5 respectively 

• HG = Gaussian FWHM 

• HL = Lorentzian FWHM 

• U, V, W = peak broadening parameters 

• P = additional broadening parameter 

• X = specimen broadening parameter related to crystallite size 

• Y = specimen broadening parameter related to microstrain  
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These parameters are adequate analogues for crystal structure variations as they change the peak 

shapes in similar fashion to how variations such as crystallite size and microstrain affect an XRD 

pattern by broadening the peaks (Pecharsky & Zavalij, 2009; Jenkins & Snyder, 1996). 

Initially, I hypothesized that different distributions of the peak shape parameters would 

be required for every mineral or mineral group (such as feldspars). However, there were not 

enough crystal structure files for each mineral to obtain legitimate parameter distributions. 

Therefore, all sets of peak shape parameters were combined into one dataset per parameter. 

MATLAB’s Distribution Fitter App was then used to fit a distribution to each parameter. These 

distributions were saved as MATLAB distribution objects. While investigating the parameters, it 

was also discovered that the peak shape parameters in a single set are correlated with each other 

in some way. To preserve the relationship between parameters, I picked the parameters that had 

the best fitting distributions and created regression models to predict the other parameters based 

on a random parameter from the saved distributions. Table 1 shows the process for picking a 

random set of parameters. 

   

Table 1. Random Peak Shape Parameter Generation Equations 

Parameter How Choose Parameter? Equation/Distribution Parameters 
U Log Logistic Distribution μ = -1.7947, σ = 0.6768 
V Linear model from U V = -0.4839 U + 0.0493 
W Linear model from U W = 0.0484 U - 0.0049 
P  Linear model from U P = (8.659e-4) U - (5.330e-6) 
X Logistic Distribution μ = 0.1626, σ = 0.0627 
Y Linear Model from U and X Y = 0.2133 U - 2.1149 X + 0.3867 

 

This process gave a realistic set of peak shape parameters for a phase in the mixture 

samples. Since the peak shape parameters help mimic the slight variations in XRD peaks that are 

caused by variations in the crystal structure and so many samples were generated, a reasonable 
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range of variations of a phase should have been accounted for in the data set. The machine 

learning algorithms should then be able to learn these variations for each phase and be able to 

correctly identify the phase despite slight variations in the XRD pattern.  

Elemental Composition. Expert analysts will also use results from other analysis methods 

to inform their decisions on which minerals to include in their XRD analysis. XRF analysis gives 

insight into the elemental composition of a mixture, which can be replicated in the data. From a 

phase’s crystal structure file, I can calculate the weight fraction of each element and represent it 

as a vector with one entry for each element. To determine the elemental composition of the 

mixture, I simply multiply each phase’s elemental composition vector by the phase’s 

corresponding weight fraction and add all scaled composition vectors together. I compared the 

results of machine learning model predictions with and without this chemical data included in the 

model to determine if it improved the accuracy of phase identification in the machine learning 

models.  

3.1.2. Process for Generating Synthetic Data Samples 

With the analogues for expert knowledge described earlier, the synthetic data samples 

were created. First, a location site from the MED was randomly selected. From that site, between 

2-15 minerals were randomly chosen that are also included in the RockJock standards library 

using each mineral’s abundance proportion as a weight for selection. For each mineral selected, a 

crystal structure for that mineral was randomly selected from the closest-matching structures in 

AMCSD. A corundum crystal structure was also included to represent the 20% corundum 

internal standard in each sample. A set of peak shape parameters was randomly chosen for each 

phase using the parameter distributions and regression models. Then, a realistic XRD pattern was 

calculated using the crystal structure information, the generated peak shape parameters, and 
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random weight fractions for each phase by creating a SimPatternXRD object. This pattern was 

then distorted with normally distributed noise with a mean of -0.0118 and standard deviation of 

0.1016 and normalized to the intensity of the pattern at the location of the corundum internal 

standard’s maximum peak (43.40° 2Θ). Background intensities were not included in the 

simulated patterns for simplicity. This was not unreasonable as removing the background is a 

standard procedure before XRD analysis. Using this process, I generated 1,500,000 mixture 

samples to train the machine learning models.  

3.2. Feature Engineering 

Training machine learning algorithms with only the raw data samples can produce 

models that are either computationally expensive to create and use, inaccurate, or both. The 

solution is feature engineering – the process of extracting features (numeric representations) 

from aspects of the raw data and transforming them to more suitable formats for the machine 

learning models (Zheng & Casari, 2018). Formatting the data into meaningful features helps the 

machine learning algorithms create models with greater ease and produce higher quality results. 

Feature engineering can be as simple as representing categorical or nominal data numerically; 

transformations and interactions are also common types of feature engineering. For each sample, 

the raw features were: 

• 1x3001 vector of intensities for every 0.02° 2θ of the XRD pattern (Pattern). 

o Each individual angle from 5-65° 2θ at 0.02° steps was denoted in numerical 

order from 1-3001. E.g., Pattern_51 would refer to the 51st angle, which is 6.00° 

2θ.  

• Maximum intensity of the pattern (Max_Int). 
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• 1x106 vector of the elemental composition weight fractions in atomic number order 

(Elem_Composition). 

• 1x89 vector indicating which phases were present in the mixture (Minerals_Included). 

This was the target variable.  

o Zero indicated absence of the phase in a sample, while a one indicated the phase 

was present. 

The engineered features for each sample were: 

• 1x3000 vector for the first derivative of the XRD pattern (Pattern_1D). 

o The same naming convention used for the raw XRD pattern angles was also 

used for the first and second derivatives.  

•  1x2999 vector for the second derivative of the XRD pattern (Pattern_2D) 

• 1x9 vector of the elemental compositions for the major mineral-forming elements in 

atomic number order (Major_Comp). 

o Elements included were Na, Mg, Al, Si, K, Ca, Ti, Mn, and Fe. 

The first and second derivatives of the pattern were chosen to give additional insight into how 

the pattern changes around a peak. Major elements were included in their own feature as a major 

element analysis is easier to obtain than a full elemental analysis.  

Some groups of minerals, such as alkali and plagioclase feldspars, were expected to be 

difficult to identify individual phases in the machine learning models. Models for the individual 

phases of these mineral groups were trained, but I also created an additional response variable to 

represent the group. Specifically, Minerals_Included_87 corresponds to alkali feldspars, 

Minerals_Included_88 represents plagioclase feldspars, and Minerals_Included_89 represented 

all feldspars.  
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3.3. Feature Ranking and Selection 

Feature ranking algorithms determine the most important features for distinguishing the 

classes so one can perform feature selection. Feature selection is a process to remove redundant 

and unimportant features from the model (Zheng & Casari, 2018; Ciaburro, 2017). By keeping 

the features that best help with prediction, feature selection helps to improve the speed of the 

machine learning, prevent overfitting of the models, and improve the accuracy and 

interpretability of the models. 

3.3.1. Feature Ranking Functions 

There are several functions available in MATLAB for feature ranking. These functions 

group the samples depending on the value of the target variable. They then perform statistical 

tests to determine if the values of each feature differ for each value of the target. Features that 

have more extreme differences in values for each target output are more important for prediction 

because they make it easier to distinguish which value of the target the sample should have. The 

functions return the list of features sorted by their importance scores for prediction (MATLAB, 

Feature, 2023). Based on these scores, I tested different selections of the top features to train the 

machine learning models. 

I compared the results of three feature ranking functions on a small dataset of 1000 

samples using the Classification Learner App in MATLAB using bassanite, calcite, and halite as 

example phases. Both XRD pattern features and elemental composition features were evaluated 

with the feature selection algorithms. These algorithms are Minimum Redundancy Maximum 

Relevance (MRMR), Analysis of Variance (ANOVA), and Kruskal Wallis.  

Minimum Redundancy Maximum Relevance (MRMR). The MRMR algorithm is designed 

to find the features that are the most relevant to predicting the target without having mutual 
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information with the other predictors. Mutual information between two predictors is defined as 

the amount one predictor’s variance can be decreased by knowing the value of the other 

predictor. This function assigns each feature an importance score based on how well it helps to 

predict the target feature while giving different information than other predictors. The features 

are then ordered from most important for prediction to least (MATLAB, MRMR, 2023).   

Analysis of Variance (ANOVA). The ANOVA function is performed on each prediction 

feature. It first groups the values of the feature by the response class. It then tests the null 

hypothesis that the two groups of values are from populations with the same mean, versus the 

alternate hypothesis that the two groups come from different populations. After the test is 

performed for each feature, the features are ordered based on their p-values from most significant 

to least (MATLAB, One-way, 2023).  

Kruskal Wallis. The Kruskal Wallis test is very similar to the ANOVA test, except it tests 

whether the groups for each feature come from populations with the same median. To compute 

the test statistic, it uses the rank of the data instead of their actual numeric values by ordering the 

data from smallest to largest across all groups and assigning an index to each instance. It is a 

more flexible, nonparametric variant of ANOVA that is not dependent on the data having normal 

distributions. Instead, it assumes the samples come from the same type of distribution 

(MATLAB, Kruskal, 2023).  

3.4. Data Formatting 

Once the features are created and selected, the data can be formatted into the different 

sets for the machine learning algorithms. To test the accuracy of the different models, the data 

needs to be split into a training set, validation set, and test set. The training set is used to initially 

train the various machine learning models to correctly identify the mineral phases in the samples. 
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These models are then tested against the validation set to see which model is the most accurate. I 

randomly partitioned the data into 60% training and 40% validation sets using the cvpartition 

function in MATLAB, which makes the two groups of data have roughly the same proportions of 

each class. The test data set consisted of 30 XRD patterns from handmade mixtures of pure 

minerals from past Reynold’s Cup competitions, the RockJock 11 program (Eberl, 2003), and 

others. 

A challenge with the dataset was its vast size. It was not possible to load the entire dataset 

into memory at once to pass it into a machine learning function. Even 10,000 samples on a 

personal computer would cause the code to run extremely slow or MATLAB to crash. To 

remedy this, I formatted the table of features to pass into the machine learning algorithms as a 

MATLAB tall array. This data class allows for an unlimited number of rows in the table. To 

make calculations on a tall array, all operations are deferred until an output is specifically 

requested by using the gather function. The tall array is then pulled into memory in smaller 

portions one at a time to perform the calculation. Gather optimizes the number of passes through 

the data that are needed for the calculations to obtain the requested output (MATLAB, Tall, 

2023).  

3.5. Apply Machine Learning Algorithms 

The goal was to test if machine learning algorithms could identify phases in a mixture 

sample with high accuracy. Since I was only looking to identify if the minerals were included in 

the sample or not, a classification algorithm was the best choice. There are three main types of 

classification algorithms based on the classes of the target variable. The first is binary 

classification where there are only two mutually exclusive class labels. The second is multiclass 

classification. This type of model has more than two classes available, but each sample can only 
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receive one class label. The third type is multi-label classification where each sample can have 

multiple class labels assigned to it.  

Originally, I attempted to train a multi-label classification model that would be able to 

identify all the phases present in a sample. However, the Classification Learner App and the 

underlying classification algorithms did not support multi-label data. Even outside of the 

Classification Learner App, these types of models are also slow to train and complex in their 

methodology and interpretability. Instead, I decided to create 75 binary models – one for each 

target phase – which would be simpler and faster.  

3.5.1. Algorithm Choice.  

As described in the above in section 2.3, MATLAB has a variety of machine learning 

algorithms to choose from. To decide which algorithm would be the most accurate, I trained all 

available algorithms in MATLAB’s Classification Learner App with 1000 samples for four 

minerals. This app allows one to train all available algorithms at once, with some variation in 

their hyperparameters, and visually compare their accuracy with respect to the validation set. By 

default, the app uses cross-validation with five folds to create the validation set. The app will 

split the data into five folds or sets. For each validation fold, a model is trained with the samples 

not in the validation fold and assessed using its performance on the validation-fold data. The 

average validation error is then calculated over all folds. Trained models, as well as example 

code to train similar models, can also be exported out of the app into MATLAB’s typical 

workspace. The exported models are trained on the full data set which includes both the training 

and validation sets (MATLAB, “Select”, 2023).  

Table 2 shows the results of the models trained on calcite and their hyperparameter 

differentiations. In general, singular decision trees, random forests, boosted trees, neural 
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networks, and some SVMs performed well with accuracies higher than 90% on the validation set 

(Table 2). RUS (random under-sampling) boosted trees and random forests especially did well 

with 98.1% and 97.3% accuracies respectively for the calcite model. RUS boosted trees looked 

especially promising with rare minerals like bassanite. However, the algorithm to train RUS 

boosted trees did not support tall arrays. In the end I chose to use the TreeBagger function to 

train random forests for each phase due to their high accuracy, tall array support, quick training 

times, and ease of interpretability.  

Table 2. Calcite Initial Model Testing (1000 samples, All Predictors) 

Model 
Number Model Type 

Accuracy % 
(Validation) 

Training Time 
(sec) 

2.25 Ensemble - RUS Boosted Trees 98.1 1887.69 
2.3 Tree - Coarse 97.8 101.58 

2.22 Ensemble - Bagged Trees 97.3 1652.42 
2.1 Tree - Fine 96.1 121.29 
2.2 Tree - Medium 96.1 105.56 

2.26 Neural Network - Narrow 93.1 1799.19 
2.28 Neural Network - Wide 92.5 2024.11 
2.27 Neural Network - Medium 92.3 1937.65 
2.30 Neural Network - Trilayered 91.9 2042.89 
2.11 SVM - Cubic 91.7 413.98 
2.10 SVM - Quadratic 91.6 271.13 
2.29 Neural Network  - Bilayered 90.6 2007.88 
2.9 SVM - Linear 89.1 263.14 

2.13 SVM - Gaussian 87.6 560.88 
2.16 KNN - Medium 85.2 724.46 
2.17 KNN - Coarse 84.9 752.98 
2.20 KNN - Weighted 84.4 978.05 
2.23 Ensemble - Subspace Discriminant 84.4 1571.71 
2.19 KNN - Cubic 82.1 1413.19 
2.14 SVM - Gaussian 79.1 559.24 
2.18 KNN - Cosine 78.9 831.74 
2.24 Ensemble - Subspace KNN 77.4 1880.90 
2.15 KNN - Fine 75.9 624.72 
2.12 SVM - Gaussian 72.8 419.98 
2.21 Ensemble - AdaBoost 72.8 945.79 
2.6 Logistic Regression 55 452.01 
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3.5.2. Balanced Datasets.  

Even with the best performing algorithm, models for rare mineral phases did not perform 

with high sensitivity rates, in other words, they were not able to consistently identify the true 

positives for the phase. The models still had high accuracy simply due to the vast number of 

negative samples included in the data set compared to the number of positive samples. To 

simulate the effect that RUS boosted trees have in accounting for unbalanced classes in the data, 

I created smaller datasets for each phase that were balanced – they contained the same number of 

samples containing the phase as samples without the phase. Using these balanced datasets for 

each phase’s model improved their sensitivity rates, dramatically decreased the training time, and 

simplified the workflow.  

Balancing the datasets also gave an additional benefit of being able to fit the dataset into 

memory, eliminating the need to format the data in tall arrays once the data was balanced. This 

dramatically decreased the time needed to train one model from over 18 hours to about 15 

minutes by obviating the need to scan through the dataset multiple times using the gather 

function. By keeping a specific phase’s dataset in memory, I was also able to modify the number 

of samples used in hyperparameter tuning and train multiple models back-to-back in a much 

simpler format than was necessary with tall arrays.  

It is possible that balancing the datasets took away the property of mineral abundance from 

the dataset. Since the data was balanced, the model may expect to see the mineral present in the 

sample about half the time. This could cause the models to give more false positive predictions 

in the test data. Low precision measures on the real data set would indicate that this may be an 

issue, as it measures the proportion of true positives to all predicted positives.   

3.6. Algorithm Refinement and Assessment 
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Once all the initial models were trained with the training data sets, I refined the models 

by adjusting the hyperparameters. Each machine learning algorithm contains a set of 

hyperparameters outside of the training data for the model it creates. Examples of a 

hyperparameter are the number of levels created in a decision tree or the number of trees trained 

in a random forest. The validation set is used to determine which combination of these 

hyperparameters produces the best model.  

The validation data was also used to determine if the models have problems with 

overfitting. Models that overfit to the training data perform poorly with the validation data. If 

overfitting is a problem with all models, it can be addressed in a few ways. One can reduce the 

model’s complexity by either adjusting the hyperparameters – such as the number of trees in the 

random forest or the depth of the trees. Another solution is to simplify the data (Raschka & 

Mirjalili, 2017), for instance, by reducing the sample size. It is also possible to collect more 

training data to fix overfitting, although since I was already planning to use a vast amount of data 

to prevent overfitting in the first place, this was not likely to help the problem any further. Once 

a remedy is selected and applied, the model can be retrained and retested against the validation 

set until the model is no longer overfitting.  

The final assessment to determine the best model for phase selection was done using the 

test data set of Reynold’s Cup-type reference mixtures. The data were inputted to each model to 

determine phase classifications. Each model was assessed via 5 measures – accuracy, 

misclassification, sensitivity, specificity, and precision. Accuracy is the fraction of all samples 

that were correctly classified. Misclassification is the fraction of all samples that were 

misclassified. Sensitivity is the fraction of the samples containing the target phase that were 

correctly identified. Specificity is the fraction of the samples not containing the target phase that 
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were classified correctly. Precision measures the fraction of the samples that were classified by 

the model as containing the target phase that were correct. The model that performed the best – 

along with the list of features used in the model – will then be made available to implement into 

XRD analytical software. The list of features used will help scientists prepare their data 

adequately for the machine learning model – in other words, if the model requires XRF chemical 

data to obtain the most accurate results, others can acquire that data in preparation for XRD 

analysis. 

4. RESULTS 

4.1. Feature Ranking and Selection 

I tested feature ranking for three different minerals –bassanite, calcite, and halite – to gain 

insight into what features a machine learning model might deem important for classification, as 

well as the feasibility of performing feature ranking and selection for all mineral phase models.  

4.1.1. Bassanite  

ANOVA and Kruskal Wallis tests gave similar results in their ranking of the features. 

Both had the intensities around a major bassanite peak at 14.7°2θ as some of the most important 

features for identifying bassanite (Table 4, Table 5). However, Kruskal Wallis determined the 

top two most important features to be elements chromium and manganese, with chromium 

having a much more significant p-value of 3.8x10(-31). The MRMR algorithm ranked elemental 

composition features as the most important in predicting the presence of bassanite in the 

samples, with titanium, chromium, and indium as the top 3 (Table 3). As bassanite does not 

naturally contain any of these elements, they must be associated with other minerals that occur 

with bassanite.  

Table 3. Bassanite Feature Selection - MRMR 

Feature Score 



30 
 

Composition_22 1.06E-04 
Composition_24 8.73E-05 
Composition_49 2.07E-05 
Composition_33 2.07E-05 
Composition_9 2.00E-05 
Composition_29 1.83E-05 
Composition_25 1.79E-05 
Composition_19 1.60E-05 
Composition_48 1.10E-05 
Composition_6 9.25E-06 
Composition_30 9.05E-06 
Composition_1 5.61E-06 
Composition_12 5.35E-06 
Composition_11 5.05E-06 
Composition_16 4.73E-06 
Composition_26 4.05E-06 
Composition_13 3.37E-06 
Composition_14 2.26E-06 
Composition_20 2.05E-06 
Composition_90 1.18E-06 

 

Table 4. Bassanite Feature Selection - ANOVA 

Feature score = -log(p) p-value 
Pattern_487 218.651 2.23E-219 
Pattern_486 216.302 4.99E-217 
Pattern_488 210.915 1.22E-211 
Pattern_485 203.503 3.14E-204 
Pattern_484 197.204 6.25E-198 
Pattern_483 189.674 2.12E-190 
Pattern_482 187.241 5.74E-188 
Pattern_481 184.232 5.87E-185 
Pattern_489 180.502 3.15E-181 
Pattern_479 178.357 4.40E-179 
Pattern_480 166.203 6.26E-167 
Pattern_478 161.307 4.93E-162 
Pattern_476 157.858 1.39E-158 
Pattern_477 157.632 2.33E-158 
Pattern_490 132.753 1.77E-133 
Pattern_475 132.323 4.75E-133 
Pattern_474 121.934 1.16E-122 
Pattern_473 110.632 2.33E-111 
Pattern_491 95.625 2.37E-96 
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Pattern_472 92.587 2.59E-93 
 

Table 5. Bassanite Feature Selection - Kruskal Wallis 

Features score = -log(p) p-value 
Composition_24 30.572 2.68E-31 
Composition_25 5.932 1.17E-06 
Pattern_488 5.869 1.35E-06 
Pattern_487 5.869 1.35E-06 
Pattern_486 5.869 1.35E-06 
Pattern_489 5.862 1.37E-06 
Pattern_485 5.862 1.37E-06 
Pattern_484 5.856 1.39E-06 
Pattern_481 5.856 1.39E-06 
Pattern_476 5.856 1.39E-06 
Pattern_1D_490 5.849 1.42E-06 
Pattern_1D_485 5.849 1.42E-06 
Pattern_490 5.849 1.42E-06 
Pattern_483 5.849 1.42E-06 
Pattern_482 5.849 1.42E-06 
Pattern_480 5.849 1.42E-06 
Pattern_479 5.849 1.42E-06 
Pattern_478 5.849 1.42E-06 
Pattern_477 5.849 1.42E-06 
Pattern_475 5.849 1.42E-06 

 

4.1.2. Calcite 

For all three algorithms, the common important features were the intensities of the pattern 

around calcite’s major peak at 29.40°2θ (Pattern_1221). ANOVA and Kruskal Wallis had the top 

important features coming only from the base XRD pattern (Table 7, Table 8), whereas the 

MRMR algorithm included features from the first and second derivative of the pattern around the 

major peak as some of the most important features for prediction (Table 6).  

Table 6. Calcite Feature Selection - MRMR 

Feature Score 
Pattern_1222 4.76E-01 
Pattern_2D_1223 1.20E-01 
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Pattern_1D_1242 9.25E-02 
Pattern_1D_2162 4.33E-02 
Pattern_1756 4.06E-02 
Pattern_2910 2.60E-02 
Pattern_1D_913 2.47E-02 
Pattern_2D_1229 2.44E-02 
Pattern_2D_1212 2.18E-02 
Pattern_1D_2194 2.13E-02 
Pattern_2D_2178 1.79E-02 
Pattern_2D_903 1.55E-02 
Pattern_2D_2126 1.36E-02 
Pattern_1D_1705 1.35E-02 
Pattern_1D_2985 1.33E-02 
Pattern_2D_1233 1.11E-02 
Pattern_1D_2992 9.80E-03 
Pattern_1D_919 7.40E-03 
Pattern_1D_2791 7.00E-03 
Pattern_1D_1704 6.80E-03 

 

Table 7. Calcite Feature Selection - ANOVA 

Feature score = -log(p) p-value 
Pattern_1229 348.398 0.00E+00 
Pattern_1230 345.803 0.00E+00 
Pattern_1228 343.128 0.00E+00 
Pattern_1227 331.444 0.00E+00 
Pattern_1231 331.131 0.00E+00 
Pattern_1216 325.162 0.00E+00 
Pattern_1215 324.989 0.00E+00 
Pattern_1217 319.278 0.00E+00 
Pattern_1214 314.869 0.00E+00 
Pattern_1226 314.735 0.00E+00 
Pattern_1218 309.673 0.00E+00 
Pattern_1232 304.478 3.33E-305 
Pattern_1225 295.488 3.25E-296 
Pattern_1219 295.018 9.59E-296 
Pattern_1213 293.957 1.10E-294 
Pattern_1220 277.711 1.94E-278 
Pattern_1224 273.917 1.21E-274 
Pattern_1233 265.617 2.42E-266 
Pattern_1212 260.298 5.04E-261 
Pattern_1221 258.564 2.73E-259 
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Table 8. Calcite Feature Selection - Kruskal Wallis 

Features score = -log(p) p-value 
Pattern_1222 290.064 8.64E-291 
Pattern_1223 289.155 6.99E-290 
Pattern_1221 289.002 9.95E-290 
Pattern_1224 288.519 3.02E-289 
Pattern_1220 286.745 1.80E-287 
Pattern_1225 286.358 4.39E-287 
Pattern_1219 283.848 1.42E-284 
Pattern_1226 283.363 4.33E-284 
Pattern_1218 279.550 2.82E-280 
Pattern_1227 278.774 1.68E-279 
Pattern_1217 273.667 2.15E-274 
Pattern_1228 272.985 1.03E-273 
Pattern_1216 266.556 2.78E-267 
Pattern_1229 264.636 2.31E-265 
Pattern_1D_1217 262.101 7.93E-263 
Pattern_1D_1218 257.873 1.34E-258 
Pattern_1215 257.311 4.88E-258 
Pattern_1230 255.558 2.76E-256 
Composition_6 253.800 1.59E-254 
Pattern_1D_1219 253.497 3.18E-254 

 

4.1.3. Halite 

All three algorithms identified the presence of chlorine to be the most important feature 

to identify halite. After chlorine, MRMR scored the features corresponding to the first derivative 

of the pattern around halite’s major peaks at 31.7°2θ and 45.5°2θ as most important (Table 9). 

ANOVA found the raw intensities of the pattern around the major peaks instead of the first 

derivative as the next important features after chlorine (Table 10). The top features after chlorine 

for Kruskal Wallis were the amount of sodium first, next the first derivative around both major 

peaks, and then the raw intensities around the major peaks (Table 11).  

Table 9. Halite Feature Selection - MRMR 

Feature Score 
Composition_17 0.0605 
Pattern_1D_1349 0.0599 
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Pattern_1D_2023 0.0533 
Pattern_1D_1334 0.0528 
Pattern_1D_2037 0.052 
Pattern_1D_1335 0.0471 
Pattern_1D_2038 0.0453 
Pattern_1D_1350 0.0449 
Pattern_1D_2014 0.0394 
Pattern_1D_2044 0.0332 
Pattern_1D_1327 0.0321 
Pattern_2026 0.0293 
Pattern_1D_2565 0.0251 
Pattern_1D_1361 0.0186 
Pattern_1D_2045 0.0175 
Pattern_1D_2022 0.0172 
Pattern_1D_415 0.0134 
Pattern_2D_2078 0.0134 
Pattern_1D_1927 0.0134 
Pattern_1D_1953 0.0134 

 

Table 10. Halite Feature Selection - ANOVA 

Feature score = -log(p) p-value 
Composition_17 521.948 0.00E+00 
Pattern_1341 335.275 0.00E+00 
Pattern_1340 334.991 0.00E+00 
Pattern_1339 327.497 0.00E+00 
Pattern_1342 325.983 0.00E+00 
Pattern_2029 315.869 0.00E+00 
Pattern_2030 314.816 0.00E+00 
Pattern_1338 311.830 0.00E+00 
Pattern_2028 310.828 0.00E+00 
Pattern_1336 309.140 0.00E+00 
Pattern_1343 306.787 1.63E-307 
Pattern_2031 306.122 7.55E-307 
Pattern_2027 302.591 2.56E-303 
Pattern_2026 300.080 8.31E-301 
Pattern_1335 296.478 3.33E-297 
Pattern_1337 294.981 1.05E-295 
Composition_11 291.223 5.99E-292 
Pattern_2024 290.274 5.33E-291 
Pattern_2032 289.163 6.87E-290 
Pattern_2023 281.828 1.49E-282 
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Table 11. Halite Feature Selection - Kruskal Wallis 

Features score = -log(p) p-value 
Composition_17 371.287 0.00E+00 
Composition_11 22.269 5.38E-23 
Pattern_1D_2024 18.004 9.91E-19 
Pattern_1D_1336 18.004 9.91E-19 
Pattern_2025 17.627 2.36E-18 
Pattern_1338 17.380 4.17E-18 
Pattern_2026 17.362 4.35E-18 
Pattern_1337 17.362 4.35E-18 
Pattern_1346 17.302 4.99E-18 
Pattern_1343 17.296 5.06E-18 
Pattern_1339 17.284 5.20E-18 
Pattern_1340 17.254 5.57E-18 
Pattern_2024 17.236 5.81E-18 
Pattern_1342 17.206 6.22E-18 
Pattern_1344 17.200 6.31E-18 
Pattern_2028 17.194 6.40E-18 
Pattern_1341 17.194 6.40E-18 
Pattern_1345 17.146 7.14E-18 
Pattern_1347 17.105 7.86E-18 
Pattern_1348 17.039 9.14E-18 

 

4.1.4. Feature Selection Test Models 

Using three different sets of features, I tested the effect of feature selection on calcite 

models in the Classification Learner App with 1000 samples (Table 12). Models with a model 

number starting with 2 had no feature ranking algorithm applied to the predictor variables, and as 

such used all 9107 predictors in the model. Models starting with a 3 were trained with the top 10 

predictors using the Kruskal Wallis algorithm, and models starting with a 5 were trained with the 

top 80 features using MRMR.  

Table 12. Calcite Feature Selection Model Tests 

Model 
Number Model Type 

Accuracy % 
(Validation) 

Training 
Time (sec) 

Selected 
Features 

Feature Ranking 
Algorithm 

2.25 Ensemble - RUS Boosted Trees 98.1 1887.69 9107/9107 None 
2.3 Tree - Coarse 97.8 101.58 9107/9107 None 



36 
 

3.6 Logistic Regression 97.5 536.81 10 / 9107 KruskalWallis 
3.30 Neural Network - Trilayered 97.4 2254.39 10 / 9107 KruskalWallis 
3.20 KNN - Weighted 97.4 1382.64 10 / 9107 KruskalWallis 
2.22 Ensemble - Bagged Trees 97.3 1652.42 9107/9107 None 
3.22 Ensemble - Bagged Trees 97.2 1644.46 10 / 9107 KruskalWallis 
3.11 SVM - Cubic 97.2 833.24 10 / 9107 KruskalWallis 
3.19 KNN- Cubic 96.8 1373.51 10 / 9107 KruskalWallis 
3.16 KNN - Medium 96.8 1080.10 10 / 9107 KruskalWallis 
3.27 Neural Network - Medium 96.7 1969.83 10 / 9107 KruskalWallis 
3.21 Ensemble - AdaBoost Trees 96.7 1633.31 10 / 9107 KruskalWallis 

3.5 Discriminant - Quadratic 96.6 526.00 10 / 9107 KruskalWallis 
3.25 Ensemble - RUS Boosted Trees 96.5 1925.25 10 / 9107 KruskalWallis 
3.24 Ensemble - Subspace KNN 96.4 1670.95 10 / 9107 KruskalWallis 
3.29 Neural Network - Bilayered 96.3 2233.59 10 / 9107 KruskalWallis 

3.3 Tree - Coarse 96.2 251.94 10 / 9107 KruskalWallis 
3.28 Neural Network - Wide 96.1 1975.06 10 / 9107 KruskalWallis 
3.15 KNN - Fine 96.1 1067.21 10 / 9107 KruskalWallis 

2.2 Tree - Medium 96.1 105.56 9107/9107 None 
2.1 Tree - Fine 96.1 121.29 9107/9107 None 

3.31 Kernel - SVM 96 2247.41 10 / 9107 KruskalWallis 
3.26 Neural Network - Narrow 96 1952.25 10 / 9107 KruskalWallis 
3.10 SVM - Quadratic 96 821.56 10 / 9107 KruskalWallis 

3.9 SVM - Linear 96 815.49 10 / 9107 KruskalWallis 
5.22 Ensemble - Bagged Trees 95.9 23582.73 80/9107 MRMR 
3.32 Kernel - Logistic Regression 95.8 2250.71 10 / 9107 KruskalWallis 

5.3 Tree - Coarse 95.8 4094.52 80/9107 MRMR 
3.2 Tree - Medium 95.7 261.66 10 / 9107 KruskalWallis 

5.25 Ensemble - RUS Boosted Trees 95.5 27459.98 80/9107 MRMR 
3.1 Tree - Fine 95.4 251.23 10 / 9107 KruskalWallis 

3.17 KNN - Coarse 95.2 1342.32 10 / 9107 KruskalWallis 
3.18 KNN - Cosine 94.8 1351.71 10 / 9107 KruskalWallis 

5.1 Tree - Fine 94.6 3378.21 80/9107 MRMR 
5.2 Tree - Medium 94.6 3729.35 80/9107 MRMR 

5.21 Ensemble - AdaBoost Trees 93.9 23290.97 80/9107 MRMR 
2.26 Neural Network - Narrow 93.1 1799.19 9107/9107 None 
2.28 Neural Network - Wide 92.5 2024.11 9107/9107 None 

5.5 Discriminant - Quadratic 92.4 7357.22 80/9107 MRMR 
2.27 Neural Network - Medium 92.3 1937.65 9107/9107 None 
2.30 Neural Network - Trilayered 91.9 2042.89 9107/9107 None 
2.11 SVM - Cubic 91.7 413.98 9107/9107 None 
2.10 SVM - Quadratic 91.6 271.13 9107/9107 None 
3.12 SVM - Fine Gaussian 91.5 849.42 10 / 9107 KruskalWallis 

5.6 Logistic Regression 91.4 7830.32 80/9107 MRMR 
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2.29 Neural Network - Bilayered 90.6 2007.88 9107/9107 None 
5.27 Neural Network - Medium 90.3 28675.50 80/9107 MRMR 
5.10 SVM - Quadratic 90.2 11880.11 80/9107 MRMR 
5.28 Neural Network - Wide 90.2 28749.97 80/9107 MRMR 

5.9 SVM - Linear 89.5 11441.22 80/9107 MRMR 
5.11 SVM - Cubic 89.4 12218.76 80/9107 MRMR 

2.9 SVM - Linear 89.1 263.14 9107/9107 None 
5.26 Neural Network - Narrow 88.7 27731.53 80/9107 MRMR 
5.29 Neural Network - Bilayered 87.7 31500.96 80/9107 MRMR 
2.13 SVM - Medium Gaussian 87.6 560.88 9107/9107 None 

3.4 Discriminant - Linear 87.5 264.42 10 / 9107 KruskalWallis 
3.23 Ensemble - Subspace Discriminant 87.4 1662.78 10 / 9107 KruskalWallis 
5.12 SVM - Fine Gaussian 87.1 12347.01 80/9107 MRMR 
5.30 Neural Network - Trilayered 86.3 31753.35 80/9107 MRMR 
2.16 KNN - Medium 85.2 724.46 9107/9107 None 

5.4 Discriminant - Linear 85 4152.43 80/9107 MRMR 
2.17 KNN - Coarse 84.9 752.98 9107/9107 None 
5.23 Ensemble - Subspace Discriminant 84.9 24520.68 80/9107 MRMR 
2.23 Ensemble - Subspace Discriminant 84.4 1571.71 9107/9107 None 
2.20 KNN - Weighted 84.4 978.05 9107/9107 None 
5.18 KNN - Cosine 83.9 19410.37 80/9107 MRMR 
2.19 KNN - Cubic 82.1 1413.19 9107/9107 None 
5.20 KNN - Weighted 82.1 20474.27 80/9107 MRMR 
5.31 Kernel - SVM  81.9 32360.24 80/9107 MRMR 
5.16 KNN - Medium 81.1 16676.69 80/9107 MRMR 
5.32 Kernel - Logistic Regression 81 32227.42 80/9107 MRMR 
5.19 KNN - Cubic 80.1 20317.14 80/9107 MRMR 
3.13 SVM - Medium Gaussian 79.7 1048.61 10 / 9107 KruskalWallis 
5.13 SVM - Medium Gaussian 79.7 15532.30 80/9107 MRMR 
2.14 SVM - Coarse Gaussian 79.1 559.24 9107/9107 None 
2.18 KNN - Cosine 78.9 831.74 9107/9107 None 
5.17 KNN - Coarse 78.3 19202.24 80/9107 MRMR 
2.24 Ensemble - Subspace KNN 77.4 1880.90 9107/9107 None 
2.15 KNN - Fine 75.9 624.72 9107/9107 None 
5.24 Ensemble - Subspace KNN 75.3 24601.52 80/9107 MRMR 
5.15 KNN - Fine 73.9 16430.25 80/9107 MRMR 
3.14 SVM - Coarse Gaussian 72.8 1053.97 10 / 9107 KruskalWallis 
2.21 Ensemble - AdaBoost Trees 72.8 945.79 9107/9107 None 
2.12 SVM - Fine Gaussian 72.8 419.98 9107/9107 None 
5.14 SVM - Coarse Gaussian 72.8 15837.32 80/9107 MRMR 
2.60 Logistic Regression 55 452.01 9107/9107 None 
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Using all features still performed the best in terms of accuracy, especially when ensemble 

methods such as RUS boosting and bagging/random forests were used. Using fewer features 

interestingly improved the accuracy of other types of models that routinely had poor accuracy 

with all features such as logistic regression and KNN. In practice though, there was no real 

benefit from using fewer features in terms of accuracy.  

I decided not to perform feature selection on all 86 phase models for multiple reasons. 

Training times of the same type of model did not improve from using fewer features. This, 

together with no noticeable improvement in accuracy, took away the main motivations for using 

feature selection. Additionally, every mineral phase would require a different set of features 

depending on their own XRD pattern and elemental composition, so one set of features for all 

models would not work unless all features were used. Finding a unique set of features to use for 

every phase would be costly in time and computing power. Therefore, all features were used in 

the models.  

4.2. Machine Learning Models 

This section summarizes the results of training the machine learning models and their 

predictions on withheld data for all types of models and on real mixture patterns for XRD only 

models as composition data was not available for the real data. Below are a few notes on 

interpreting the results in general. 

When training the models, some minerals were excluded from the training for a few 

reasons: 1. Due to the rarity of the phase, there was not enough training data containing the 

phase, even in 1,500,000 samples, or it would take too long to find enough samples, and 2. None 

of the real data samples contained the mineral. Corundum was also excluded because there was 
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no differentiation between corundum in the sample and the corundum added as the 20% internal 

standard. Table 13 shows the list of phases that had models trained and their model ID numbers.  

Table 13. Mineral Phases with Trained Models 

Phase Name Model 
ID  

RockJock 
ID     

Phase Name  Model 
ID 

RockJock 
ID 

Alunite 1 1   Anorthoclase 46 91 
Actinolite 2 2   Intermediate_Microcline 47 92 
Tremolite 5 5   Ordered_Microcline 48 93 
Analcime 6 6   Sanidine 49 95 
Anatase 7 7   Magnesite 50 98 

Andalusite 8 8   Magnetite 51 99 
Anglesite 9 9   Marcasite 52 100 
Anhydrite 10 10   Muscovite_2M1 54 103 
Ankerite 11 11   Natrolite 56 106 

Aragonite 12 12   Phlogopite_2M1 57 116 
Arsenopyrite 13 13   Albite 58 117 

Barite 14 14   Andesine 59 118 
Bassanite 15 15   Anorthite 60 119 

Biotite_1m 16 17   Bytownite 61 120 
Calcite 17 22   Labradorite 62 121 

Celestine 18 24   Oligoclase_NC 63 122 
Cinnabar 21 38   Oligoclase_Norway 64 123 
Cordierite 23 40   Prehnite 65 124 
Diaspore 26 45   Pyrite 66 126 
Dickite 27 47   Augite 67 128 

Dolomite 28 48   Diopside 68 129 
Dolomite_Fe_rich 29 49   Hedenbergite 69 131 

Epidote 30 50   Hypersthene 70 132 
Fluorapatite 31 53   Pyrrhotite 71 133 

Fluorite 32 54   Quartz 72 134 
Forsterite 33 55   Rutile 74 138 

Galena 34 57   Sillimanite 75 142 
Almandine 35 58   Silver 76 143 
Grossular 36 59   Sphalerite 77 151 
Gypsum 38 67   Spinel 78 152 

Halite 39 68   Strontianite 79 154 
Hematite 40 70   Sulfur 80 155 

Illite_1M_RM30 41 75   Titanite 83 161 
Illite_2M1_SG4 42 77   Tourmaline 84 163 

Ilmenite 43 82   Zircon 86 168 
Jarosite_Mex 44 85   Alkali Feldspars 87 - 
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Kaolinite_Dry_Branch 45 87   Plagioclases 88 - 
        All Feldspars 89 - 

 

The accuracy measures as defined in Section 3.6 generally range between zero and one 

and represent fractions of samples. Measures that have a value of -1 indicate that there were no 

samples of either category involved in the calculation. For example, a sensitivity of -1 indicates 

that the model had no predictions that were true positives or false negatives, in other words, there 

were no samples that had the phase included in its mixture. Instead of having a calculation of 

0/0, a placeholder of -1 was used instead. In general, this indicates an absence of samples for the 

category. Measures equal to zero indicate that only the numerator had a zero in that measure and 

indicate complete misclassification in that category. All confusion matrices have the same 

layout, with the top left being true negatives (TN), top right is false positives (FP), bottom left is 

false negatives (FN), and bottom right is true positives (TP) 

4.2.1. Initial Model Results 

I first tested a quartz model (Table 14) from a dataset of 11,410 samples and an alunite 

model (Table 15) from 51253 samples as examples of a common and rare mineral, respectively. 

These models were trained with 40% of the data held out for a validation set. The initial 

performance of the models was evaluated based on prediction accuracy measures for the 

validation set.  

Table 14. Quartz Initial Model Results 

   Predicted    
  Quartz 0 1 Totals    

Actual 
0 2177 158 2335   
1 20 2210 2230   

        
  Accuracy Sensitivity Specificity Precision   
  0.961 0.9252 0.991 0.9909   
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Table 15. Alunite Initial Model Results 

   Predicted    
  Alunite 0 1 Totals   

Actual 
0 20352 22 20374   
1 28 87 115   

        
  Accuracy Sensitivity Specificity Precision   
  0.9976 0.7565 0.9989 0.7982   

 

At first glance, the alunite model seemed to perform better with an accuracy of .998 

versus .961 for quartz. However, the .757 sensitivity calculation revealed that the alunite model 

did not perform as well for correctly identifying the samples that did contain alunite. In addition, 

when tested on the real data test set, the quartz model was not able to identify quartz in any 

sample. To attempt to improve this deficiency, I tested prediction results from other alunite 

models with different hyperparameters as well as bassanite and tourmaline models. The results of 

these model predictions on their holdout validation sets were then used to evaluate three 

hypotheses:  

1. A balanced data set improves the accuracy of the model.  

2. A model that has a sufficient number of samples of each class will give more accurate 

results. 

3. If a pattern is more complex – i.e., contains multiple peaks that are about the same 

intensity – then the accuracy of the model will suffer.  

In addition to these three tests, I also trained a few models of calcite with a different 

number of trees in the random forest to validate the choice of the default number of trees from 

the Classification Learner App models. 

Balanced Data.  Table 16 shows the confusion matrix and accuracy calculations for an 

alunite model trained on a balanced data set. The data contained 1300 samples with alunite and 
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1300 without, and 40% of the data was held out for validation. The sensitivity of the model 

increased to .968.  

Table 16. Alunite Balanced Model 

   Predicted    
  Alunite  0 1 Totals    

Actual 
0 518 13 531   
1 15 457 472   

        
  Accuracy Sensitivity Specificity Precision   
  0.972 0.9682 0.9755 0.9723   

 

The bassanite model (Table 17) was trained in the same way as the alunite model – a 

balanced data set with 1300 samples containing the phase and 40% holdout. This model 

performed extremely well by all measures, and correctly identified all samples containing 

bassanite. These results support the use of balanced data sets for improved prediction 

performance. 

Table 17. Bassanite Balanced Model 

   Predicted    
  Bassanite 0 1 Totals    

Actual 
0 521 1 522   
1 0 462 462   

        
  Accuracy Sensitivity Specificity Precision   
  0.999 1 0.998 0.998   

 

Sample Number. As too few and too many samples can cause overfitting to the models, I 

tested eleven quartz models trained on varying amounts of data to determine the optimal number 

of samples to use to obtain high accuracy. Since all models performed with high accuracy on the 

validation set, the best model was determined through the performance on a 14-sample subset of 

the real mixture test data (Table 18). I only used 14 of the 30 real samples because that was what 
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I had available at the time. The best performing model with only one misclassification was from 

an 1800 sample dataset (900 samples with quartz and 900 without). Therefore, all data sets were 

balanced to contain 1800 samples.  

Table 18. Quartz Sample Size Test Model Results 

Min #Samples Accuracy Misclass. Sensitivity Specificity Precision 
72 300 0.7857 0.2143 0.75 1 1 
72 400 0.8571 0.1429 0.8333 1 1 
72 600 0.7143 0.2857 0.6667 1 1 
72 800 0.7143 0.2857 0.6667 1 1 
72 1000 0.6427 0.3571 0.5833 1 1 
72 1200 0.7143 0.2857 0.6667 1 1 
72 1400 0.7857 0.2143 0.75 1 1 
72 1600 0.7857 0.2143 0.75 1 1 
72 1800 0.9286 0.0714 0.9167 1 1 
72 2000 0.7857 0.2143 0.75 1 1 
72 2600 0.7857 0.2143 0.75 1 1 

 

Pattern Complexity. To observe how the complexity of the XRD pattern might affect 

prediction accuracy, a tourmaline model with a balanced 2600-sample data set was tested against 

its 40% holdout validation data. This model had slightly lower accuracy and sensitivity measures 

than the other test models at 0.956 and 0.9345 respectively (Table 19). This suggests that more 

complex patterns might have slightly lower accuracies, but the inclusion of composition 

predictors might also improve that accuracy. This is further investigated in sections 4.3.3 and 

4.3.4.  

Table 19. Tourmaline Balanced Model 

   Predicted    
  Tourmaline 0 1 Totals    

Actual 
0 495 11 506   
1 34 485 519   

        
  Accuracy Sensitivity Specificity Precision   
  0.9561 0.9345 0.9783 0.9778   
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Number of trees.  I trained three different calcite models with the same balanced data set 

of 1800 samples. Each model had a different number of trees in the random forest, namely 10, 

30, and 100 trees (Tables 20, 21). Although the accuracy measures of the models would suggest 

that 10 or 100 trees would be better than 30 at first glance, the scores (the fraction of the trees in 

the forest that voted for each classification) for each sample are similar. The samples that were 

misclassified were from data that had some mistakes in the sample preparation, so the XRD 

pattern of the data set was not as accurate as it could have been. The scores from the other 

samples were very similar, mostly within 0.1 of the 30-tree sample scores. To save time on 

training while still achieving good accuracy measures, I decided to use 30 trees. 

Table 20. Calcite Number of Trees Test Models Results 

Min #Samples 
Combined Test Set 

 
Accuracy Misclass. Sensitivity Specificity Precision  

17 2600 0.8571 0.1429 0.75 0.9 0.75  

30 trees  

17 1800 0.8571 0.1429 0.75 0.9 0.75  

30 trees  

17 1800 0.9286 0.0714 0.75 1 1  

10 trees  

17 1800 1 0 1 1 1  

100 trees  
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Table 21. Calcite Number of Trees Test Models Scores 

Min #Samples 
Calcite Correct Classifications 

Class 1 1 0 1 1 0 0 0 0 0 0 0 0 0 
Scores 

17 2600 0.53 0.33 0.47 0.10 0.00 0.93 0.77 0.93 0.80 0.57 0.77 0.90 0.83 0.63 0 
30 trees 0.47 0.67 0.53 0.90 1.00 0.07 0.23 0.07 0.20 0.43 0.23 0.10 0.17 0.37 1 

17 1800 0.40 0.73 0.50 0.30 0.07 0.93 0.80 0.83 0.83 0.90 0.77 0.80 0.77 0.77 0 
30 trees 0.60 0.27 0.50 0.70 0.93 0.07 0.20 0.17 0.17 0.10 0.23 0.20 0.23 0.23 1 

17 1800 0.30 0.70 0.60 0.20 0.00 0.80 0.60 0.90 0.80 0.70 0.80 0.80 0.70 0.80 0 
10 trees 0.70 0.30 0.40 0.80 1.00 0.20 0.40 0.10 0.20 0.30 0.20 0.20 0.30 0.20 1 

17 1800 0.45 0.46 0.56 0.24 0.00 0.89 0.77 0.79 0.83 0.69 0.78 0.79 0.81 0.78 0 
100 trees 0.55 0.54 0.44 0.76 1.00 0.11 0.23 0.21 0.17 0.31 0.22 0.21 0.19 0.22 1 
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4.2.2. All Models – XRD Only 

Withheld Data Results Table 22 and Figures 4-7 show the models’ results for predicting 

the withheld generated data. All models predicted the withheld data with accuracies above 90%, 

sensitivities above 86%, specificities above 88%, and precisions above 88%. Most of the models 

performed above 92% on all measures.
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Figure 4. Accuracy of XRD-only models on withheld generated data. 
All models performed with greater than 91% accuracy on the validation set of the balanced generated data. All datasets had about 720 samples, or 
40%, in the validation set out of the 1800 total; the other 1080 samples were in the training set. The lowest performance minerals were epidote (30), 
hematite (40), albite (58), anorthite (60), bytownite (61), and hypersthene (70). 
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Figure 5. Sensitivity of XRD-only models on withheld generated data. 
Sensitivity measures the fraction of samples containing the target phase that were correctly classified. The sensitivity for all models was above 86% on 
the withheld validation data. The models that did not correctly identify the phase when it was present as often were arsenopyrite (13), epidote (30), 
hematite (40), pyrite (66), and hypersthene (70). 
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Figure 6. Specificity of XRD-only models on withheld generated data. 
Specificity measures the fraction of samples not containing the target phase that were correctly classified. The specificity for all models was above 
88%. The models that did not correctly identify the absence of a phase as well were anorthite (60), and bytownite (61). 
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Figure 7. Precision of XRD-only models on withheld generated data. 
Precision measures the fraction of samples that were predicted to contain the phase that were correct. The precision for all models was above 88%, 
with only anorthite (60) and bytownite (61) performing much lower than the other models. 
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Table 22. XRD-Only Models - Results on Validation Data 

Name Model 
ID 

Accuracy Measures Confusion 
Matrix Accuracy Misclass. Sensitivity Specificity Precision 

Alunite 1 0.979 0.021 0.978 0.981 0.981 353 7 
            8 352 

Actinolite 2 0.974 0.026 0.977 0.970 0.969 358 11 
            8 343 

Tremolite 5 0.972 0.028 0.981 0.964 0.965 346 13 
            7 354 

Analcime 6 0.975 0.025 0.977 0.973 0.972 355 10 
            8 347 

Anatase 7 0.958 0.042 0.925 0.994 0.994 346 2 
            28 344 

Andalusite 8 0.989 0.011 0.981 0.997 0.997 349 1 
            7 363 

Anglesite 9 0.990 0.010 0.982 0.997 0.997 379 1 
            6 334 

Anhydrite 10 0.956 0.044 0.941 0.971 0.972 338 10 
            22 350 

Ankerite 11 0.951 0.049 0.959 0.943 0.947 331 20 
            15 354 

Aragonite 12 0.954 0.046 0.930 0.978 0.977 353 8 
            25 334 

Arsenopyrite 13 0.938 0.063 0.885 0.987 0.984 368 5 
            40 307 

Barite 14 0.954 0.046 0.913 0.995 0.994 363 2 
            31 324 

Bassanite 15 0.994 0.006 0.992 0.995 0.975 597 3 
            1 119 

Biotite_1m 16 0.979 0.021 0.986 0.973 0.972 362 10 
            5 343 

Calcite 17 0.979 0.021 0.986 0.973 0.972 363 4 
            29 327 

Celestine 18 0.969 0.031 0.950 0.989 0.988 358 4 
            18 340 

Cinnabar 21 0.983 0.017 0.968 1.000 1.000 349 0 
            12 359 

Cordierite 23 0.960 0.040 0.958 0.962 0.960 351 14 
            15 340 

Diaspore 26 0.979 0.021 0.964 0.994 0.994 360 2 
            13 345 

Dickite 27 0.971 0.029 0.975 0.967 0.966 355 12 
            9 344 



52 
 

Table 22. XRD-Only Models - Results on Validation Data 

Name Model 
ID 

Accuracy Measures Confusion 
Matrix Accuracy Misclass. Sensitivity Specificity Precision 

                  
Dolomite 28 0.963 0.038 0.959 0.966 0.967 344 12 

            15 349 
Dolomite_ 

Fe_rich 
29 0.944 0.056 0.955 0.934 0.934 340 24 
            16 340 

Epidote 30 0.913 0.088 0.881 0.946 0.945 332 19 
            44 325 

Fluorapatite 31 0.986 0.014 0.978 0.994 0.994 353 2 
            8 357 

Fluorite 32 0.943 0.057 0.903 0.983 0.982 355 6 
            35 324 

Forsterite 33 0.946 0.054 0.921 0.972 0.971 345 10 
            29 336 

Galena 34 0.982 0.018 0.966 1.000 1.000 335 0 
            13 372 

Almandine 35 0.963 0.038 0.937 0.986 0.985 364 5 
            22 329 

Grossular 36 0.969 0.031 0.952 0.989 0.989 344 4 
            18 354 

Gypsum 38 0.990 0.010 0.989 0.991 0.992 346 3 
            4 367 

Halite 39 0.974 0.026 0.962 0.984 0.982 376 6 
            13 325 

Hematite 40 0.931 0.069 0.880 0.983 0.982 348 6 
            44 322 

Illite_1M_ RM30 41 0.949 0.051 0.930 0.969 0.969 339 11 
            26 344 

Illite_2M1_SG4 42 0.968 0.032 0.977 0.960 0.958 359 15 
            8 338 

Ilmenite 43 0.976 0.024 0.956 0.995 0.994 374 2 
            15 329 

Jarosite_Mex 44 0.988 0.013 0.975 1.000 1.000 359 0 
            9 352 

Kaolinite_ 
Dry_Branch 

45 0.988 0.013 0.975 1.000 1.000 353 1 
            10 347 

Anorthoclase 46 0.953 0.047 0.964 0.942 0.943 338 21 
            13 348 

Intermediate_ 
Microcline 

47 0.965 0.035 0.976 0.955 0.957 336 16 
            9 359 
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Table 22. XRD-Only Models - Results on Validation Data 

Name Model 
ID 

Accuracy Measures Confusion 
Matrix Accuracy Misclass. Sensitivity Specificity Precision 

Ordered_ 
Microcline 

48 0.968 0.032 0.971 0.965 0.963 362 13 
            10 335 

Sanidine 49 0.961 0.039 0.970 0.952 0.954 337 17 
            11 355 

Magnesite 50 0.947 0.053 0.944 0.950 0.950 343 18 
            20 339 

Magnetite 51 0.953 0.047 0.922 0.983 0.982 357 6 
            28 329 

Marcasite 52 0.951 0.049 0.910 0.987 0.984 381 5 
            30 304 

Muscovite_ 2M1 54 0.964 0.036 0.973 0.956 0.950 369 17 
            9 325 

Natrolite 56 0.968 0.032 0.960 0.976 0.974 359 9 
            14 338 

Phlogopite_ 
2M1 

57 0.975 0.025 0.981 0.968 0.971 332 11 
            7 370 

Albite 58 0.933 0.067 0.932 0.935 0.937 330 23 
            25 342 

Andesine 59 0.956 0.044 0.967 0.943 0.947 331 20 
            12 357 

Anorthite 60 0.915 0.085 0.945 0.887 0.887 330 42 
            19 329 

Bytownite 61 0.926 0.074 0.945 0.906 0.918 307 32 
            21 360 

Labradorite 62 0.957 0.043 0.967 0.947 0.949 337 19 
            12 352 

Oligoclase_NC 63 0.954 0.046 0.961 0.947 0.948 340 19 
            14 347 

Oligoclase-
Norway 

64 0.957 0.043 0.975 0.939 0.941 340 22 
            9 349 

Prehnite 65 0.946 0.054 0.927 0.964 0.962 350 13 
            26 331 

Pyrite 66 0.940 0.060 0.888 0.994 0.994 353 2 
            41 324 

Augite 67 0.944 0.056 0.939 0.951 0.954 329 17 
            23 351 

Diopside 68 0.963 0.038 0.953 0.972 0.972 346 10 
            17 347 
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Table 22. XRD-Only Models - Results on Validation Data 

Name Model 
ID 

Accuracy Measures Confusion 
Matrix Accuracy Misclass. Sensitivity Specificity Precision 

Hedenbergite 69 0.961 0.039 0.967 0.955 0.956 343 16 
            12 349 

Hypersthene 70 0.918 0.082 0.863 0.970 0.965 359 11 
            48 302 

Pyrrhotite 71 0.978 0.022 0.962 0.994 0.994 352 2 
            14 352 

Quartz 72 0.978 0.022 0.962 0.994 0.994 358 2 
            33 328 

Rutile 74 0.968 0.032 0.955 0.981 0.980 360 7 
            16 337 

Sillimanite 75 0.947 0.053 0.926 0.968 0.964 358 12 
            26 324 

Silver 76 1.000 0.000 1.000 1.000 1.000 347 0 
            0 373 

Sphalerite 77 0.947 0.053 0.936 0.957 0.953 358 16 
            22 324 

 Spinel  78 0.971 0.029 0.951 0.992 0.991 352 3 
            18 347 

Strontianite 79 0.978 0.022 0.967 0.989 0.989 351 4 
            12 353 

Sulfur 80 0.964 0.036 0.933 0.997 0.997 347 1 
            25 347 

Titanite 83 0.958 0.042 0.945 0.972 0.972 347 10 
            20 343 

Tourmaline 84 0.960 0.040 0.956 0.963 0.964 341 13 
            16 350 

Zircon 86 0.965 0.035 0.941 0.989 0.988 361 4 
            21 334 

K-feldspars 87 0.963 0.038 0.972 0.953 0.953 346 17 
            10 347 

Plagioclases 88 0.990 0.010 0.992 0.989 0.989 359 4 
            3 354 

All Feldspars 89 0.988 0.012 0.989 0.988 0.989 503 6 
            6 525 
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Real Data Results Table 23 and Figures 8-11 show the accuracy measures for each 

model’s predictions on the real data. Most models performed with greater than 90% accuracy on 

the 30 real samples (Figure 8). Phases that were frequently misidentified in the real data samples 

with less than 60% accuracy included dickite; dolomite; intermediate microcline, ordered 

microcline, and sanidine; albite; bytownite; labradorite; oligoclase; and diopside. From the table 

of results in Table 23 I can see that these models classified too many samples as having the 

mineral present. This could be due to the balanced data sets, which removed any dependence on 

mineral abundance from the training sets. This is a limitation that could be resolved in the future 

by generating more data so enough samples containing the mineral could be present while still 

preserving the abundance ratio.  

Feldspars was predicted with very low accuracies on the real data, even after combining 

each feldspar group into one model. The only models that had higher than 60% accuracy were 

specific phases that were not included in the majority of the real samples. The phases that were 

included in the real samples had models that were not able to identify the phase correctly in 

almost all the samples.
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Figure 8. Accuracy of XRD-only models on real data. 
Accuracy varied dramatically when tested on physical mixtures’ XRD patterns. 80% of the models performed above 80% accuracy. Out of the 20 
models that performed below 80%, 8 of them were above 60%. The models that performed worse than chance were dickite (27), dolomite (28),  
intermediate microcline (47), ordered microcline (48), sanidine (49), bytownite (61), labradorite (62), diopside (68), alkali feldspars (87), and 
plagioclases (88). 
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Figure 9. Sensitivity of XRD-only models on real data. 
Many models had a sensitivity of 0 on the real mixtures, meaning the model incorrectly classified all the samples containing the target phase. The 
models with samples of -1 correspond to phases that were not present in any of the real mixtures. This can correspond to high accuracy if there were 
low numbers of false positives as well.  
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Figure 10. Specificity of XRD-only models on real data. 
Most models performed well on identifying samples where the target phase was absent. The only model with a specificity of -1 was the all-feldspars 
model because all samples had at least one type of feldspar included. Models that usually classified samples as containing the phase when they did not 
were calcite (17), dickite (27), kaolinite (45), and quartz (72). Many models, however, were able to perfectly identify the samples where the target 
phase was absent. 
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Figure 11. Precision of XRD-only models on real data. 
Many models had values of -1 for precision, meaning there were no samples that the model classified as containing the target phase. This implies a few 
things: 1. All the negative samples were correctly classified and correspond to a specificity=1 and 2. If there were any samples containing the target, 
they were all misclassified and sensitivity would equal 0. If there were no samples containing the target, accuracy=1. Many models also had zero 
precision, meaning all the samples that were classified as containing the phase were false positives. 
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Table 23. XRD-Only Models – Results on Real Test Data 

Name Model 
ID 

Accuracy Measures 

Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 
Alunite 1 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Actinolite 2 0.9000 0.1000 0.0000 1.0000 -1.0000 27 0 

            3 0 
Tremolite 5 0.9000 0.1000 0.0000 1.0000 -1.0000 27 0 

            3 0 
Analcime 6 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Anatase 7 0.9000 0.1000 0.0000 1.0000 -1.0000 27 0 

            3 0 
Andalusite 8 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Anglesite 9 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Anhydrite 10 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Ankerite 11 0.9000 0.1000 0.0000 1.0000 -1.0000 27 0 

            3 0 
Aragonite 12 0.9333 0.0667 1.0000 0.9310 0.3333 27 2 

            0 1 
Arsenopyrite 13 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Barite 14 0.9667 0.0333 0.0000 1.0000 -1.0000 29 0 

            1 0 
Bassanite 15 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Biotite_1m 16 0.9333 0.0667 0.0000 0.9655 0.0000 28 1 

            1 0 
Calcite 17 0.7000 0.3000 0.9000 0.3000 0.7200 3 7 

            2 18 
Celestine 18 0.9000 0.1000 0.0000 0.9310 0.0000 27 2 

            1 0 
Cinnabar 21 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Cordierite 23 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Diaspore 26 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
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Table 23. XRD-Only Models – Results on Real Test Data 

Name Model 
ID 

Accuracy Measures 

Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 
Dickite 27 0.2000 0.8000 1.0000 0.1724 0.0400 5 24 

            0 1 
Dolomite 28 0.4000 0.6000 0.0526 1.0000 1.0000 11 0 

            18 1 
Dolomite_Fe_rich 29 0.9000 0.1000 0.0000 1.0000 -1.0000 27 0 

            3 0 
Epidote 30 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Fluorapatite 31 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Fluorite 32 0.9667 0.0333 -1.0000 0.9667 0.0000 29 1 

            0 0 
Forsterite 33 0.9667 0.0333 0.0000 1.0000 -1.0000 29 0 

            1 0 
Galena 34 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Almandine 35 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Grossular 36 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Gypsum 38 0.7333 0.2667 1.0000 0.7241 0.1111 21 8 

            0 1 
Halite 39 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Hematite 40 0.9000 0.1000 0.5000 0.9286 0.3333 26 2 

            1 1 
Illite_1M_RM30 41 0.8667 0.1333 0.6364 1.0000 1.0000 19 0 

            4 7 
Illite_2M1_SG4 42 0.7667 0.2333 0.5000 0.8077 0.2857 21 5 

            2 2 
Ilmenite 43 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Jarosite_Mex 44 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Kaolinite_ 

Dry_Branch 
45 0.9000 0.1000 0.9600 0.6000 0.9231 3 2 
            1 24 

Anorthoclase 46 0.6667 0.3333 0.0909 1.0000 1.0000 19 0 
            10 1 
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Table 23. XRD-Only Models – Results on Real Test Data 

Name Model 
ID 

Accuracy Measures 

Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 
Intermediate_ 

Microcline 
47 0.1000 0.9000 0.0000 1.0000 -1.0000 3 0 
            27 0 

Ordered_ 
Microcline 

48 0.1333 0.8667 0.0370 1.0000 1.0000 3 0 
            26 1 

Sanidine 49 0.1333 0.8667 0.0370 1.0000 1.0000 3 0 
            26 1 

Magnesite 50 0.9333 0.0667 0.0000 1.0000 -1.0000 28 0 
            2 0 

Magnetite 51 0.9667 0.0333 0.0000 1.0000 -1.0000 29 0 
            1 0 

Marcasite 52 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 
            0 0 

Muscovite_2M1 54 0.7333 0.2667 0.5000 0.7692 0.2500 20 6 
            2 2 

Natrolite 56 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 
            0 0 

Phlogopite_2M1 57 0.9000 0.1000 0.0000 0.9310 0.0000 27 2 
            1 0 

Albite 58 0.5667 0.4333 0.0000 1.0000 -1.0000 17 0 
            13 0 

Andesine 59 0.6667 0.3333 0.1667 1.0000 1.0000 18 0 
            10 2 

Anorthite 60 0.6667 0.3333 0.1667 1.0000 1.0000 18 0 
            10 2 

Bytownite 61 0.1333 0.8667 0.0714 1.0000 1.0000 2 0 
            26 2 

Labradorite 62 0.1333 0.8667 0.0714 1.0000 1.0000 2 0 
            26 2 

Oligoclase_NC 63 0.5667 0.4333 0.0833 0.8889 0.3333 16 2 
            11 1 

Oligoclase_Norway 64 0.6667 0.3333 0.1667 1.0000 1.0000 18 0 
            10 2 

Prehnite 65 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 
            0 0 

Pyrite 66 0.9000 0.1000 0.5000 0.9286 0.3333 26 2 
            1 1 

Augite 67 0.9000 0.1000 0.0000 0.9310 0.0000 27 2 
            1 0 
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Table 23. XRD-Only Models – Results on Real Test Data 

Name Model 
ID 

Accuracy Measures 

Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 
Diopside 68 0.4333 0.5667 0.0000 1.0000 -1.0000 13 0 

            17 0 
Hedenbergite 69 0.9667 0.0333 0.0000 1.0000 -1.0000 29 0 

            1 0 
Hypersthene 70 0.9667 0.0333 0.0000 1.0000 -1.0000 29 0 

            1 0 
Pyrrhotite 71 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Quartz 72 0.9000 0.1000 0.9643 0.0000 0.9310 0 2 

            1 27 
Rutile 74 0.9000 0.1000 0.2500 1.0000 1.0000 26 0 

            3 1 
Sillimanite 75 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Silver 76 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
Sphalerite 77 0.9000 0.1000 -1.0000 0.9000 0.0000 27 3 

            0 0 
 Spinel  78 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Strontianite 79 0.9667 0.0333 -1.0000 0.9667 0.0000 29 1 

            0 0 
Sulfur 80 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Titanite 83 1.0000 0.0000 -1.0000 1.0000 -1.0000 30 0 

            0 0 
Tourmaline 84 0.9333 0.0667 -1.0000 0.9333 0.0000 28 2 

            0 0 
Zircon 86 0.9333 0.0667 1.0000 0.9310 0.3333 27 2 

            0 1 
K-feldspars 87 0.2333 0.7667 0.1481 1.0000 1.0000 3 0 

            23 4 
Plagioclases 88 0.2333 0.7667 0.2069 1.0000 1.0000 1 0 

            23 6 
All Feldspars 89 0.5000 0.5000 0.5000 -1.0000 1.0000 0 0 

            15 15 
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4.2.3. All Models – XRD + Major Elements 

As there were not any composition data available for the real mixtures, the XRD + major 

elements models were only tested on the validation portion of the data sets. All models predicted 

the validation set with greater than 91% accuracy, 86% sensitivity, 91% specificity, and 91% 

precision (Table 24, Figures 12-15). This implies that all models were excellent at identifying 

when a phase was not present in the sample but were not quite as reliable when the phase was 

present. Various feldspars were the only models that had an accuracy of lower than 94%. There 

is no visible improvement of the model results by adding in the major elements compared to just 

the XRD pattern data.  
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Figure 12. Accuracy of XRD + Major Elements models on withheld generated data. 
The majority of the models performed with higher than 95% accuracy in their predictions on the withheld data. The lowest performing models were 
magnesite (50), anorthite (60), bytownite (61), pyrite (66), and hypersthene (70).  
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Figure 13. Sensitivity of XRD + Major Elements models on withheld generated data. 
A majority of the models had a sensitivity of over 96% and were able to correctly identify the samples containing the target phase. Another chunk of 
models performed in the 90-96% range, while four models performed with a specificity below 90%. Those four phases were magnesite (50), pyrite 
(66), hypersthene (70), and sillimanite (75).  
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Figure 14. Specificity of XRD + Major Elements models on withheld generated data. 
In general, all models were able to correctly identify the samples where the target phase was absent, with specificities close to or above 94%. The four 
models with lower specificities were sanidine (49), anorthite (60), bytownite (61), and labradorite (62).  
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Figure 15. Precision of XRD + Major Elements models on withheld generated data. 
All but 4 models had a precision higher than 94%, including many that were above 97%. The four models that performed worse were sanidine (49), 
anorthite (60), bytownite (61), and labradorite (62). Overall, the false positive rate was small for all models.  
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Table 24. XRD + Major Elements Models – Results on Withheld Data 

Name Model 
ID 

Accuracy Measures 
Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 

Alunite 1 0.9806 0.0194 0.9861 0.9750 0.9753 351 9 
            5 355 

Actinolite 2 0.9625 0.0375 0.9607 0.9643 0.9634 351 13 
            14 342 

Tremolite 5 0.9708 0.0292 0.9666 0.9751 0.9747 352 9 
            12 347 

Analcime 6 0.9819 0.0181 0.9803 0.9836 0.9831 359 6 
            7 348 

Anatase 7 0.9722 0.0278 0.9435 0.9974 0.9969 383 1 
            19 317 

Andalusite 8 0.9778 0.0222 0.9623 0.9920 0.9910 372 3 
            13 332 

Anglesite 9 0.9681 0.0319 0.9333 1.0000 1.0000 375 0 
            23 322 

Anhydrite 10 0.9583 0.0417 0.9321 0.9858 0.9856 347 5 
            25 343 

Ankerite 11 0.9556 0.0444 0.9639 0.9472 0.9481 341 19 
            13 347 

Aragonite 12 0.9764 0.0236 0.9689 0.9836 0.9828 360 6 
            11 343 

Arsenopyrite 13 0.9472 0.0528 0.9136 0.9806 0.9791 354 7 
            31 328 

Barite 14 0.9528 0.0472 0.9042 1.0000 1.0000 365 0 
            34 321 

Bassanite 15 1.0000 0.0000 1.0000 1.0000 1.0000 611 0 
            0 109 

Biotite_1m 16 0.9819 0.0181 0.9911 0.9738 0.9710 372 10 
            3 335 

Calcite 17 0.9500 0.0500 0.9104 0.9890 0.9878 359 4 
            32 325 

Celestine 18 0.9667 0.0333 0.9407 0.9918 0.9911 363 3 
            21 333 

Cinnabar 21 0.9625 0.0375 0.9233 1.0000 1.0000 368 0 
            27 325 

Cordierite 23 0.9708 0.0292 0.9858 0.9564 0.9560 351 16 
            5 348 

Diaspore 26 0.9889 0.0111 0.9947 0.9827 0.9841 340 6 
            2 372 
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Dickite 27 0.9750 0.0250 0.9861 0.9638 0.9648 346 13 
            5 356 

Dolomite 28 0.9694 0.0306 0.9608 0.9780 0.9772 355 8 
            14 343 

Dolomite_Fe_rich 29 0.9528 0.0472 0.9544 0.9512 0.9490 351 18 
            16 335 

Epidote 30 0.9375 0.0625 0.9320 0.9428 0.9400 346 21 
            24 329 

Fluorapatite 31 0.9764 0.0236 0.9716 0.9810 0.9799 361 7 
            10 342 

Fluorite 32 0.9569 0.0431 0.9254 0.9888 0.9882 354 4 
            27 335 

Forsterite 33 0.9361 0.0639 0.9076 0.9659 0.9653 340 12 
            34 334 

Galena 34 0.9792 0.0208 0.9569 1.0000 1.0000 372 0 
            15 333 

Almandine 35 0.9611 0.0389 0.9519 0.9711 0.9727 336 10 
            18 356 

Grossular 36 0.9736 0.0264 0.9737 0.9735 0.9708 368 10 
            9 333 

Gypsum 38 0.9806 0.0194 0.9736 0.9883 0.9893 337 4 
            10 369 

Halite 39 0.9806 0.0194 0.9669 0.9944 0.9943 355 2 
            12 351 

Hematite 40 0.9500 0.0500 0.9160 0.9858 0.9854 346 5 
            31 338 

Illite_1M_RM30 41 0.9528 0.0472 0.9536 0.9520 0.9481 357 18 
            16 329 

Illite_2M1_SG4 42 0.9625 0.0375 0.9718 0.9534 0.9530 348 17 
            10 345 

Ilmenite 43 0.9694 0.0306 0.9421 0.9972 0.9971 356 1 
            21 342 

Jarosite_Mex 44 0.9847 0.0153 0.9777 0.9917 0.9915 359 3 
            8 350 

Kaolinite_ 
Dry_Branch 

45 0.9819 0.0181 0.9751 0.9889 0.9888 355 4 
            9 352 

Anorthoclase 46 0.9569 0.0431 0.9749 0.9391 0.9409 339 22 
            9 350 

Intermediate_ 
Microcline 

47 0.9639 0.0361 0.9623 0.9656 0.9675 337 12 
            14 357 

Ordered_ 
Microcline 

48 0.9694 0.0306 0.9808 0.9577 0.9598 340 15 
            7 358 
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Sanidine 49 0.9486 0.0514 0.9807 0.9162 0.9221 328 30 
            7 355 

Magnesite 50 0.9264 0.0736 0.8959 0.9577 0.9561 340 15 
            38 327 

Magnetite 51 0.9528 0.0472 0.9164 0.9889 0.9880 357 4 
            30 329 

Marcasite 52 0.9847 0.0153 0.9739 0.9947 0.9941 373 2 
            9 336 

Muscovite_2M1 54 0.9653 0.0347 0.9728 0.9575 0.9597 338 15 
            10 357 

Natrolite 56 0.9750 0.0250 0.9670 0.9831 0.9832 350 6 
            12 352 

Phlogopite_2M1 57 0.9833 0.0167 0.9866 0.9798 0.9813 340 7 
            5 368 

Albite 58 0.9472 0.0528 0.9493 0.9452 0.9440 345 20 
            18 337 

Andesine 59 0.9542 0.0458 0.9702 0.9373 0.9421 329 22 
            11 358 

Anorthite 60 0.9236 0.0764 0.9380 0.9096 0.9098 332 33 
            22 333 

Bytownite 61 0.9222 0.0778 0.9233 0.9211 0.9233 327 28 
            28 337 

Labradorite 62 0.9472 0.0528 0.9724 0.9218 0.9263 330 28 
            10 352 

Oligoclase_NC 63 0.9625 0.0375 0.9638 0.9610 0.9663 320 13 
            14 373 

Oligoclase_Norway 64 0.9556 0.0444 0.9719 0.9396 0.9402 342 22 
            10 346 

Prehnite 65 0.9486 0.0514 0.9169 0.9805 0.9793 352 7 
            30 331 

Pyrite 66 0.9250 0.0750 0.8703 0.9829 0.9817 344 6 
            48 322 

Augite 67 0.9569 0.0431 0.9456 0.9677 0.9649 359 12 
            19 330 

Diopside 68 0.9667 0.0333 0.9697 0.9636 0.9644 344 13 
            11 352 

Hedenbergite 69 0.9681 0.0319 0.9835 0.9522 0.9547 339 17 
            6 358 

Hypersthene 70 0.9125 0.0875 0.8795 0.9465 0.9441 336 19 
            44 321 

Pyrrhotite 71 0.9653 0.0347 0.9425 0.9887 0.9885 351 4 
            21 344 
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Quartz 72 0.9597 0.0403 0.9190 1.0000 1.0000 362 0 
            29 329 

Rutile 74 0.9611 0.0389 0.9397 0.9831 0.9828 349 6 
            22 343 

Sillimanite 75 0.9389 0.0611 0.8966 0.9807 0.9787 355 7 
            37 321 

Silver 76 0.9931 0.0069 0.9864 1.0000 1.0000 352 0 
            5 363 

Sphalerite 77 0.9347 0.0653 0.9173 0.9536 0.9556 329 16 
            31 344 

 Spinel  78 0.9708 0.0292 0.9582 0.9834 0.9829 355 6 
            15 344 

Strontianite 79 0.9861 0.0139 0.9807 0.9916 0.9916 355 3 
            7 355 

Sulfur 80 0.9750 0.0250 0.9646 0.9858 0.9861 348 5 
            13 354 

Titanite 83 0.9694 0.0306 0.9777 0.9612 0.9616 347 14 
            8 351 

Tourmaline 84 0.9597 0.0403 0.9656 0.9542 0.9520 354 17 
            12 337 

Zircon 86 0.9736 0.0264 0.9588 0.9888 0.9887 352 4 
            15 349 

K-feldspars 87 0.9692 0.0308 0.9788 0.9596 0.9604 499 21 
            11 509 

Plagioclases 88 0.9913 0.0087 0.9883 0.9943 0.9941 525 3 
            6 506 

All Feldspars 89 0.9894 0.0106 0.9861 0.9926 0.9920 533 4 
            7 496 
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4.2.4. All Models – XRD + Composition (All Predictors) 

The accuracy of predictions on generated data slightly increased compared to the other 

two types of models (Table 25, Figures 16-19). Overall accuracy for most composition models 

was above 94%, with only five models below 94% compared to eight models for major element 

models and six models for XRD-only models. Most models had an increase in precision to above 

90%, but some individual plagioclase feldspar models suffered a decrease in their precision when 

composition variables were included.  
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Figure 16. Accuracy of XRD + All Elements models on withheld generated data. 
Overall, all models were very accurate on the withheld data with over 91% accuracy. Only 5 models had lower than 94% accuracy – arsenopyrite (13), 
epidote (30), anorthite plagioclase (60), bytownite plagioclase (61), and hypersthene pyroxene (70). Most models clustered between 94-99% accuracy.  
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Figure 17. Sensitivity of XRD + All Elements models on withheld generated data. 
The sensitivity of the models was the lowest overall accuracy measure for the models with all composition data. While most models still performed 
with higher than 96% sensitivity, there were some that dropped below 90% on the withheld data. Some phases in particular that were misclassified 
more than others were arsenopyrite (13), epidote (30), fluorite (32), hematite (40), magnesite (50), magnetite (51), prehnite (65), pyrite (66), and 
hypersthene pyroxene (70). 



76 
 

 

 

 

Figure 18. Specificity of XRD + All Elements models on withheld generated data. 
All models were able to predict the absence of the target phase well, with specificity over 91%. Most models were above 98% specificity. The lowest 
specificity models were illites (41, 42), sanidine (49), muscovite (54), plagioclase feldspars (58-64), and hypersthene pyroxene (70). 
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Figure 19. Precision of XRD + All Elements models on withheld generated data. 
All models performed with higher than 91% precision, indicating a low number of false positives. Most models were above 95% on their precision. 
Models that had slightly lower precision rates were ankerite (11), illites (41, 42), muscovite (54), plagioclase feldspars (59-63), and hypersthene (70). 
The alkali feldspar group model (88) had lower precision than the other feldspar group models.  
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Table 25. XRD + All Elements Models – Results on Withheld Data 

Name Model 
ID 

Accuracy Measures 
Confusion Matrix Accuracy Misclass. Sensitivity Specificity Precision 

Alunite 1 0.9861 0.0139 0.9972 0.9750 0.9755 351 9 
            1 359 

Actinolite 2 0.9681 0.0319 0.9653 0.9710 0.9731 335 10 
            13 362 

Tremolite 5 0.9778 0.0222 0.9825 0.9735 0.9712 367 10 
            6 337 

Analcime 6 0.9917 0.0083 0.9849 0.9974 0.9970 387 1 
            5 327 

Anatase 7 0.9778 0.0222 0.9655 0.9892 0.9882 371 0 
            19 330 

Andalusite 8 0.9736 0.0264 0.9456 1.0000 1.0000 371 0 
            19 330 

Anglesite 9 0.9708 0.0292 0.9421 1.0000 1.0000 357 0 
            21 342 

Anhydrite 10 0.9611 0.0389 0.9350 0.9886 0.9885 347 4 
            24 345 

Ankerite 11 0.9458 0.0542 0.9521 0.9397 0.9389 343 22 
            17 338 

Aragonite 12 0.9639 0.0361 0.9452 0.9831 0.9829 349 6 
            20 345 

Arsenopyrite 13 0.9375 0.0625 0.8830 0.9917 0.9906 358 3 
            42 317 

Barite 14 0.9583 0.0417 0.9167 0.9973 0.9969 371 1 
            29 319 

Bassanite 15 1.0000 0.0000 1.0000 1.0000 1.0000 594 0 
            0 126 

Biotite_1m 16 0.9875 0.0125 0.9886 0.9864 0.9858 363 5 
            4 348 

Calcite 17 0.9528 0.0472 0.9223 0.9856 0.9857 342 5 
            29 344 

Celestine 18 0.9653 0.0347 0.9377 0.9943 0.9943 349 2 
            23 346 

Cinnabar 21 0.9792 0.0208 0.9620 0.9972 0.9972 351 1 
            14 354 

Cordierite 23 0.9750 0.0250 0.9639 0.9861 0.9858 355 5 
            13 347 

Diaspore 26 0.9833 0.0167 0.9776 0.9890 0.9887 359 4 
            8 349 
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Dickite 27 0.9833 0.0167 0.9916 0.9752 0.9752 354 9 
            3 354 

Dolomite 28 0.9667 0.0333 0.9576 0.9754 0.9741 357 9 
            15 339 

Dolomite_Fe_rich 29 0.9500 0.0500 0.9539 0.9459 0.9488 332 19 
            17 352 

Epidote 30 0.9181 0.0819 0.8846 0.9522 0.9499 339 17 
            42 322 

Fluorapatite 31 0.9889 0.0111 0.9773 1.0000 1.0000 367 0 
            8 345 

Fluorite 32 0.9486 0.0514 0.9048 0.9870 0.9838 379 5 
            32 304 

Forsterite 33 0.9472 0.0528 0.9251 0.9711 0.9719 336 10 
            28 346 

Galena 34 0.9819 0.0181 0.9633 1.0000 1.0000 366 0 
            13 341 

Almandine 35 0.9792 0.0208 0.9717 0.9864 0.9856 362 5 
            10 343 

Grossular 36 0.9861 0.0139 0.9839 0.9885 0.9892 343 4 
            6 367 

Gypsum 38 0.9889 0.0111 0.9892 0.9886 0.9892 346 4 
            4 366 

Halite 39 0.9708 0.0292 0.9478 0.9920 0.9909 372 3 
            18 327 

Hematite 40 0.9403 0.0597 0.8949 0.9885 0.9881 345 4 
            39 332 

Illite_1M_RM30 41 0.9500 0.0500 0.9608 0.9394 0.9397 341 22 
            14 343 

Illite_2M1_SG4 42 0.9417 0.0583 0.9651 0.9164 0.9254 318 29 
            13 360 

Ilmenite 43 0.9861 0.0139 0.9758 0.9971 0.9973 347 1 
            9 363 

Jarosite_Mex 44 0.9819 0.0181 0.9635 1.0000 1.0000 364 0 
            13 343 

Kaolinite_ 
Dry_Branch 

45 0.9819 0.0181 0.9837 0.9801 0.9810 345 7 
            6 362 

Anorthoclase 46 0.9639 0.0361 0.9661 0.9617 0.9607 352 14 
            12 342 

Intermediate_ 
Microcline 

47 0.9722 0.0278 0.9664 0.9780 0.9773 355 8 
            12 345 

Ordered_ 
Microcline 

48 0.9597 0.0403 0.9529 0.9666 0.9663 347 12 
            17 344 
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Sanidine 49 0.9514 0.0486 0.9610 0.9418 0.9426 340 21 
            14 345 

Magnesite 50 0.9444 0.0556 0.9070 0.9787 0.9750 368 8 
            32 312 

Magnetite 51 0.9444 0.0556 0.9045 0.9835 0.9817 358 6 
            34 322 

Marcasite 52 0.9667 0.0333 0.9511 0.9830 0.9831 346 6 
            18 350 

Muscovite_2M1 54 0.9542 0.0458 0.9767 0.9335 0.9307 351 25 
            8 336 

Natrolite 56 0.9736 0.0264 0.9552 0.9917 0.9913 360 3 
            16 341 

Phlogopite_2M1 57 0.9708 0.0292 0.9700 0.9717 0.9727 343 10 
            11 356 

Albite 58 0.9639 0.0361 0.9730 0.9543 0.9574 334 16 
            10 360 

Andesine 59 0.9431 0.0569 0.9536 0.9322 0.9357 330 24 
            17 349 

Anorthite 60 0.9361 0.0639 0.9443 0.9271 0.9344 318 25 
            21 356 

Bytownite 61 0.9264 0.0736 0.9358 0.9171 0.9178 332 30 
            23 335 

Labradorite 62 0.9500 0.0500 0.9555 0.9438 0.9505 319 19 
            17 365 

Oligoclase_NC 63 0.9458 0.0542 0.9534 0.9380 0.9405 333 22 
            17 348 

Oligoclase_Norway 64 0.9694 0.0306 0.9777 0.9613 0.9615 348 14 
            8 350 

Prehnite 65 0.9500 0.0500 0.9122 0.9864 0.9847 362 5 
            31 322 

Pyrite 66 0.9403 0.0597 0.8947 0.9861 0.9848 354 5 
            38 323 

Augite 67 0.9708 0.0292 0.9798 0.9625 0.9605 359 14 
            7 340 

Diopside 68 0.9639 0.0361 0.9610 0.9672 0.9711 324 11 
            15 370 

Hedenbergite 69 0.9819 0.0181 0.9919 0.9713 0.9735 339 10 
            3 368 

Hypersthene 70 0.9250 0.0750 0.9093 0.9401 0.9359 345 22 
            32 321 

Pyrrhotite 71 0.9833 0.0167 0.9697 0.9972 0.9972 356 1 
            11 352 
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Quartz 72 0.9528 0.0472 0.9268 0.9745 0.9682 382 10 
            24 304 

Rutile 74 0.9778 0.0222 0.9583 0.9972 0.9971 359 1 
            15 345 

Sillimanite 75 0.9500 0.0500 0.9185 0.9808 0.9790 357 7 
            29 327 

Silver 76 0.9986 0.0014 1.0000 0.9972 0.9973 352 1 
            0 367 

Sphalerite 77 0.9667 0.0333 0.9451 0.9888 0.9885 352 4 
            20 344 

 Spinel  78 0.9847 0.0153 0.9744 0.9946 0.9942 366 2 
            9 343 

Strontianite 79 0.9833 0.0167 0.9688 0.9973 0.9971 367 1 
            11 341 

Sulfur 80 0.9556 0.0444 0.9199 0.9916 0.9911 355 3 
            29 333 

Titanite 83 0.9722 0.0278 0.9749 0.9695 0.9695 350 11 
            9 350 

Tourmaline 84 0.9722 0.0278 0.9753 0.9690 0.9700 344 11 
            9 356 

Zircon 86 0.9806 0.0194 0.9675 0.9921 0.9909 379 3 
            11 327 

K-feldspars 87 0.9611 0.0389 0.9711 0.9519 0.9492 356 18 
            10 336 

Plagioclases 88 0.9861 0.0139 0.9742 0.9973 0.9971 370 1 
            9 340 

All Feldspars 89 0.9913 0.0087 0.9921 0.9907 0.9901 530 5 
            4 501 
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4.2.5. Feldspar Groups 

As the feldspar minerals were commonly the lowest performing phases, each feldspar 

group was combined into one model to attempt to improve prediction accuracy of the group as a 

whole. Grouping the phases into one model for alkali feldspars and one for plagioclases 

predicted with consistently high accuracy on the withheld data for all model types but showed 

only a slight improvement in accuracy on the real mixture samples for the XRD-only models. As 

feldspar XRD patterns typically have many low intensity peaks as opposed to a few large peaks, 

a stepwise analysis may improve the accuracy of identifying feldspars. If phases that are certain 

to be in the model are removed, the difference pattern between the original pattern and the 

removed phases can be inputted back into the models to be able to identify phases with lower 

intensity peaks.  

5. DISCUSSION 

The feature ranking process and the performance of the machine learning models in 

classifying the phases from both generated and real mixtures give some interesting insights into 

what features of an XRD pattern are the most important for machine learning models to correctly 

identify the phase. These insights can be used to help train novice analysts to know what to look 

for in XRD analysis to better identify mineral phases.  

5.1. XRD Pattern  

The feature ranking process gave key insights into what the algorithms deem important 

for distinguishing a phase from the rest of an XRD pattern. In all phases examined, the locations 

of the major peaks of its pattern are key to identifying its presence in the sample, whether you’re 

a human analyst or a machine. This was especially the case for more simple patterns like calcite 

and quartz. How the pattern changes around the peak, represented by the first and second 
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derivative of the pattern, is also helpful for the machine learning models to identify the phase in a 

pattern. Using the first and second derivative of the pattern is an advantage that the machine 

learning models would have on human analysts as those patterns may not be as easy for a human 

analyst to interpret.  

5.2. Elemental Composition  

Composition predictors can help with predictions for some minerals, as evidenced in the 

feature ranking for halite. With the generated validation set, including just the major elements 

increased the halite model’s accuracy from 97.36% with just the XRD pattern to 98.06%.  

Tourmaline model performance also improved in every accuracy measure with the addition of 

the trace elements – accuracy increased from 95.97% for pattern only models to 97.22% with all 

predictors, sensitivity increased from 95.63% to 97.53%, specificity from 96.33% to 96.90%, 

and precision from 96.42% to 97.00%. This suggests that similar minerals that contain trace 

elements or rarer elements in their compositions would also improve from addition chemical 

information when identifying them in XRD analysis with the machine learning models. Novice 

analysts can also learn from this to incorporate results such as XRF data to improve their results.  

5.3. Scores – How Certain Was the Model? 

When predicting new data with a random forest model in MATLAB, there is an 

additional output called scores that gives the fraction of decision trees that voted for each class 

(absent=0, present=1). This measure can be used to represent the probability of the presence of 

the target phase in the sample, according to the model. The different calcite models I tested had a 

wide range of scores for the first 14 samples of the real mixture test data set as shown in Table 

21. The only samples that consistently had about 50/50 scores were the three Reynold’s Cup 10 

samples (the first three samples listed). This makes sense however, as the source of these XRD 
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patterns informed me they did not have the best quality XRD measurement due to complications 

in the sample preparation process. The scores for the quartz models tested during the sample 

number selection experiment also provided insight, as samples that were misclassified usually 

had scores that were also close to 50/50. This is encouraging, as a score close to a 50/50 score for 

misclassified or poorly prepared samples could help prompt the analyst to investigate further to 

determine the presence of the phase, even if the model in the end classified the phase as absent.  

5.3.1. Weight Percentage Effect 

When investigating the various XRD-only quartz models, the weight percentage of quartz 

in the sample had a large effect on the accuracy of the models and the certainty of their scores as 

seen in Figure 20. Where the weight percentage of quartz was between 2.5-15%, the models 

were less certain of whether the mineral was present or not. For 1% and under, the models 

usually predicted that quartz was absent. This may be because at small weight percentages, the 

intensities of the peaks are smaller and easily overshadowed by other minerals. Without 

additional composition predictors or applying an iterative analysis that subtracts the high 

percentage minerals, it seems the models will misidentify the presence of the phase at lower 

weight percentages. However, the addition of the scores in analysis results can inform an analyst 

as to the quality of the results and if further investigation is necessary.  

Weight percentage might have additional effects on the data that would be worth further 

investigation. Future research could test if weight percentage has effects on other aspects of the 

models such as feature importance, for example if the important features for prediction change 

when there is a lower weight percentage of the target mineral. Datasets with different ranges of 

percentages of the target mineral can be created to test how the feature ranking as well as the 

model’s predictions change with weight percentage.  
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Figure 20. Models’ predictions of quartz with varying training set sizes 
For each model trained on a different size of training set, this shows the fraction of the trees in the ensemble that predicted the mineral was present. For 
models above 17% quartz, most of the trees in each model correctly predicted the presence of quartz. More uncertainty comes between 1-15% quartz 
content.  
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5.4. Clay Minerals 

Since XRD patterns of clay minerals can vary dramatically due to particle swelling and 

rotational disorder, most were not included in sample generation. Phases that were included were 

kaolinite, dickite, illite 1M, and illite 2M. However, most of the real mixture test data did include 

other clays like smectite that were not included in the generated samples. Figure 21 shows the 

variance measured by residuals from the plot of the scores for the various quartz models plotted 

against the weight percentage of clays and amorphous material in the sample. The variance is 

tightest around 0% clays and is greatest around 20% clays. This suggests that the inclusion of 

clays can affect the models I trained by making the results more inconsistent in their predictions.  

 

 

These results show the absence of clays in the training data is one of the biggest 

limitations of the models. In future research, this can be remedied by generating samples that 

Figure 21. Quartz regression residuals vs weight fractions of clays in test samples 
A linear regression model was fit to the plot in Figure 20, and residuals were measured. These residuals 
are plotted versus the weight fractions of clays and amorphous material included in the test samples. The 
variance in the model predictions is greatest around 20% clays and smallest at 0%.  
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have clays included. Other machine learning models can also be developed to learn the effect 

that clays and swelling have on an XRD pattern. A model, such as a neural network, can be 

trained on pairs of synthetic mixtures – one without the clay and one with the clay included. The 

model can then learn the difference between the two patterns and be able to potentially: 1. 

identify the clay phases present, and 2. subtract the clay effect from the pattern so other mineral 

phases can be more easily identified. These types of models would be better equipped to handle 

the identification and effects of clay minerals in XRD patterns.  

6. CONCLUSION 

XRD analysis is a common method to quantify the relative amounts of phases in a 

sample. However, current methods can be difficult for analysts, especially novice analysts, to use 

due to the large amount of user input required by XRD analytical software to identify phases to 

include and make an accurate analysis. To alleviate this problem, I developed machine learning 

models to mimic the choices and geologic knowledge of expert analysts. In order to prevent 

overfitting, train an accurate machine learning model, and obtain enough samples of rare phases, 

I needed a very large data set of XRD patterns, and the weight percentages of the phases 

included. I created a synthetic data set of XRD patterns with analogues of expert geologic 

knowledge through MATLAB code. These samples included 2-15 phases and their elemental 

composition data. Random forests of decision trees proved to be the most consistent and accurate 

model to correctly identify the phases in the samples. Most phases were able to be identified in 

real mixtures with greater than 90% accuracy.  

Although clays and lower weight percentages can influence the certainty of the models’ 

predictions, the inclusion of elemental composition data has the potential to mitigate this effect. 

Future research would need to train machine learning models on the effects of clays in an XRD 
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pattern to increase the accuracy and precision of these models. Models that test how weight 

percentage of the target mineral affects feature ranking and the model’s predictive ability would 

give more insight into the limitations of machine learning and how to improve its accuracy.  
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