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UAV Video Coverage Quality Maps and Prioritized Indexing for
Wilderness Search and Rescue

Bryan S. Morse, Cameron H. Engh, and Michael A. Goodrich

Department of Computer Science
Brigham Young University
Provo, Utah, United States

Email: morse@byu.edu

Abstract—Video-equipped mini unmanned aerial vehicles
(mini-UAVs) are becoming increasingly popular for surveil-
lance, remote sensing, law enforcement, and search and rescue
operations, all of which rely on thorough coverage of a target
observation area. However, coverage is not simply a matter
of seeing the area (visibility) but of seeing it well enough to
allow detection of targets of interest, a quality we here call
“see-ability”. Video flashlights, mosaics, or other geospatial
compositions of the video may help place the video in context
and convey that an area was observed, but not necessarily
how well or how often. This paper presents a method for
using UAV-acquired video georegistered to terrain and aerial
reference imagery to create geospatial video coverage quality
maps and indices that indicate relative video quality based
on detection factors such as image resolution, number of
observations, and variety of viewing angles. When used for
offline post-analysis of the video, or for online review, these
maps also enable geospatial quality-filtered or prioritized non-
sequential access to the video. We present examples of static
and dynamic see-ability coverage maps in wilderness search-
and-rescue scenarios, along with examples of prioritized non-
sequential video access. We also present the results of a
user study demonstrating the correlation between see-ability
computation and human detection performance.

Keywords-unmanned aerial vehicles, wilderness search and
rescue, coverage quality maps, video indexing

I. INTRODUCTION

Small lightweight mini-UAVs with 5–8 foot wingspans

have seen increased use recently for aerial sensing due to

their lower cost and ease of deployment. When equipped

with a video camera and transmitter, these mini-UAVs can be

used for surveillance, remote sensing, law enforcement, and

search and rescue operations, all of which require rapid and

thorough coverage of a target area. However, because of their

lightweight nature, these aerial sensing platforms are highly

unstable and easily buffeted by wind, and the operator’s

intentions may not always correspond to the actual flight

path. This makes it difficult for operators or video analysts to

correctly determine what spatial areas were observed during

a flight or sequence of multiple flights.

In addition to covering the target area, it is also essential

to maintain sufficient resolution to allow human operators to

accomplish their task. Since the altitude and orientation of

the plane are highly variable due to wind or other factors,

so too is the resolution of the resulting video. As the plane

banks to one side or the other, even an otherwise downward-

pointing camera may end up seeing areas far away and at an

oblique angle. This is compounded in varying terrain since

the UAV’s height above ground may change rapidly even

while maintaining constant altitude. One can try to maintain

a consistent height above ground either manually or through

automated means, but this is still subject to the limitations

of the plane’s ability to climb or safely descend. Some flight

paths, especially in difficult terrain, may make a low-altitude

pass over the target area then maneuver to make another

pass, providing only periodically usable video.

Our work in this area has focused on using mini-UAVs

to assist in Wilderness Search and Rescue (WiSAR) oper-

ations [1]. Field trials [2] tell us that it is often difficult to

tell what areas have been searched well. This assessment

is an essential component of search-and-rescue applications

because it is basically a prioritized search, focusing on the

regions most likely to include the missing person. Also

important to this task is the ability to efficiently review

previously acquired video, perhaps in response to a search

observation or during post hoc offline review. This can be

made more efficient by providing users with the ability to

intelligently access search video not only by georeferenced

indexing but by coverage quality as well, allowing users to

directly access usable observations of a specified target area.

Assessing the usability and coverage of aerial video is a

matter not only of whether the plane’s camera could see a

point but how well it saw it. Once the video is georegistered

to the underlying terrain, determining whether the camera

saw specific points is a simple matter of viewing geometry,

what we typically think of as “visibility”. But visibility-

based coverage alone isn’t enough to determine how useful

the video is—one must consider the viewing resolution as

well as the number of times seen, the variation of viewing

angle (which can often play a role in detection), etc. We call

this latter quality “see-ability”.

This paper presents a method for creating coverage quality

maps based on see-ability that convey not only the video

coverage of each part of a target area but also how useful

that video information is for the person viewing it (Figure 1).

Such coverage maps are useful for post hoc evaluation of

the search, for planning either during or between flights, and

for coordination with other team members.
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Figure 1. Coverage quality map overlaid in red on terrain and reference
imagery. The UAV was launched from the uphill side of the terrain (orange
marker on the left) and followed the flight path indicated in green.

By linking coverage maps to source video, these maps

may also be used to filter or prioritize offline analysis or

online review of the video. Observers can use the coverage

map to specify spatial areas to show and/or exclude. They

can also choose to automatically skip or fast-forward through

portions of the video that are of insufficient quality, filtering

the presentation and making time-critical processes more

efficient. One can also compute coverage maps for only

those portions of the video already seen by a user or set

of users, i.e. not what or how well the plane saw certain

areas but how well the user has already seen them. This can

further assist a user or automated presentation system in

prioritizing the presentation of the video in a non-sequential

fashion by avoiding excessive repetition of areas the user

has already observed well.

The system we present combines video and (approximate)

telemetry from the mini-UAV with terrain models and previ-

ously acquired reference imagery of the area to georegister

the video. It then uses this information to compute our

see-ability quality metric for every point in the target area

based on the quality of each viewing and the cumulative

effect of multiple viewings. We then demonstrate how the

video playback can be augmented by providing coverage-

map linking, filtering, and prioritization. We also present the

results of a user study demonstrating the correlation between

our computed see-ability metric and user detection in the

context of this task.

II. RELATED WORK

When conducting remote operations with camera-

equipped robots, both ground or aerial (UAVs), it has been

observed that remote operators often have difficulty knowing

where the robot/camera is or where it is looking due to the

limited sensory information coming back from the camera

alone. This has been likened to looking at the world through

a “soda straw” [3] and is an example the keyhole effect

in which humans have only a limited view of a system or

problem [4], [5]. This keyhole effect has been shown to

cause gaps in the space explored by such robots [6]. The

user’s situational awareness can be improved by augmenting

the display of the camera’s information with other available

external information in the form of ecological interfaces [7],

[8] though even this often still leaves the operator or video

searcher uncertain of the area coverage once competed.

Building a representation of the covered area is related

to the mapping problem in robotics [9], though there the

aim is to create a spatial model of an explored physical

environment, not to represent the quality of coverage through

an already (partially) known search environment. Other

researchers have noted the role that sensor resolution plays

in the effective coverage area for robots [10].

A key requirement for computing geospatial see-ability-

based coverage maps is to create correspondence between

pixels in the UAV-acquired video and points on the terrain, a

process known as georegistration. High-precision telemetry

data makes this process much simpler but still may not

provide sufficient accuracy due to the error-amplifying effect

of reverse projection. Mini-UAVs usually have sensors with

extremely limited precision due to weight, power, or cost

limitations. A common approach is to use telemetry data

(if available) to provide an initial estimate of the camera’s

pose, then refine this estimate using either semi-automated or

automatic visual alignment to reference imagery [11]–[18].

Once the pose estimate is refined, the video may be projected

back onto the terrain, replacing or being overlaid onto the

reference imagery there. While this “video flashlight” [19]

is highly effective for displaying video content in spatial

context, it does not necessarily give the video analyst a

cumulative sense of the quality of the spatial coverage.

These projected frames may be composited onto the terrain

in the fashion of a mosaic, but this alone likewise does

not easily convey video-quality information. One could

manually survey the video to visually inspect the quality,

but this can take time and effort that automatic computation

of see-ability seeks to avoid.

As discussed in the introduction and described further

in Section V, coverage maps can be used to filter and

prioritize nonsequential presentation and analysis of the

acquired video. Mosaics have been similarly used to provide

both spatial summarization and indexing of video [20]. By

linking spatial position in the mosaic to video frames, one

can use the resulting large-scale mosaic to allow indexing

of the video and presentation by geospatial content rather

than time. But while mosaics can summarize a sequence

and assist a user in spatially identifying points of interest,

they don’t directly represent the quality of the information.

The proposed coverage quality maps can be used not only to

provide interactive geospatial access but to help determine

which portions of the video are 1) of sufficient quality to

view and 2) have not already been seen well.
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III. VIDEO GEOREGISTRATION

Prior to a flight or sequence of flights, we obtain terrain

models and aerial imagery of the target area. Should such

data not be available before the aerial search, it is gathered

prior to offline (post-hoc) analysis. For terrain data, we use

the National Elevation Data (NED) from the Seamless Data

Distribution System (SDDS) [21]. For imagery, we use data

from Google Maps, itself a composite of multiple sources

and resolutions provided by third parties. These web-based

APIs for terrain and image data allow on-demand online

access to the desired data. The choice of terrain model and

reference imagery are subject to preference or availability

and is not specific to the see-ability methods proposed here.

To render the terrain, we triangulate the NED points and

project the reference imagery onto the model. Although

many techniques have been developed for interactive ren-

dering of terrain models [22], [23] we have found that

even simple structures and rendering are sufficient given the

relatively modest search areas coverable by mini-UAVs.

Using methods similar to those in [18], we use terrain

models and reference imagery to refine the pose estimate

of the UAV’s camera as illustrated in Figure 2. We use

telemetry from the plane as an initial estimate of the pose

and render the reference-image-textured terrain model as

seen from that pose. Comparison of these images allows us

to refine our estimate of the pose, after which the process

is repeated. This process is made more difficult, though,

because of the differences between the reference imagery

and the UAV-acquired video due to sensor differences,

lighting, changes of season, etc., which we handle in a

manner similar to that described in [18].

Once each frame of the UAV-acquired video is geo-

registered, it can be projected back onto the terrain in a

fashion similar to [19]. For this, we project the frames back

onto the terrain using projective texturing [24] and shadow

mapping [25]. Shadow mapping comes with computational

overhead, even when hardware assisted, so we use it only

in cases where the camera views the terrain at a highly

oblique angle such as when the plane is banking. In our

experience, shadow mapping is not necessary very often

since the plane is most commonly looking directly down or

at slightly oblique angles (typically slightly forward-looking)

from a height well above the variations in the local terrain.

IV. COMPUTING PERCEPTUAL COVERAGE MAPS

The basic rendering framework used to project video

frames onto the terrain also provides the geometry necessary

for assessing the usability of the acquired video—how

see-able the content is. Simple visibility calculations can

be made using the camera’s pose and the terrain model

(Figure 2), but to determine the quality (see-ability) of the

content in the video we also consider the viewing distance,

angle of viewing incidence on the terrain, number of frames

that see that target point, and multiplicity and uniqueness of

Terrain 
Model

Reference
Imagery

Telemetry Video

Rendered
Terrain

Pose

Seeability
Coverage

Map

Filtered/
Prioritized

Video

Compare
and update

Prior Data UAV Data

Figure 2. See-ability coverage map computation and filtered/prioritized
video presentation. Previously acquired terrain and reference imagery are
combined with (approximate) telemetry from the UAV to estimate the pose
of the camera and to georegister the video. The pose and terrain model
are used to compute the immediate see-ability for each frame, which is
composited into a cumulative coverage quality map. This map can then be
used to index, filter, and/or prioritize offline analysis of the video.

viewing directions. Examples of maps based on each of these

criteria individually may be seen in Figure 3. Of particular

interest is 3c, which shows that consideration of only the

number of times each point was seen mistakenly suggests

that the area was thoroughly covered, though obviously this

only tells part of the story (3a,b,d).

The first two of these criteria may be used on a per-

frame basis to determine the quality of the view at each

pixel—what we call “immediate see-ability”. The latter two

criteria are cumulative over multiple frames (or the entire

video sequence), which we call “cumulative see-ability”.

To build a see-ability coverage map, we subsample the

terrain model at twice the sampling of the original NED

points, then compute and store see-ability data for each of

these points. The resulting see-ability map may be overlaid

on the original terrain (with or without the reference or video

imagery) to provide a coverage map. These may be viewed

in either a nadir 2D view (Figure 3) or in 3D (Figure 1).

A. Immediate Seeabilty

To compute the immediate (per frame) see-ability for each

grid point in the coverage map, we first use view-frustum

culling to select only those points potentially viewable from

the camera’s pose for that frame. We then project each point

back to the camera and use ray casting to test whether that

point is visible to the camera or is occluded by other terrain.

If it is visible, we proceed to compute the see-ability; if not,

we mark the point as occluded.

Our measure for immediate see-ability is based on the

effective (on-the-ground) resolution at which the video is

able to image the target area. In addition to a number of con-

stant factors such as the camera’s sampling array, the point

spread function caused by the optics and the sensors, etc., the
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(a) Distance only (b) Angle of incidence only

(c) Multiplicity of views (d) View uniqueness

Figure 3. Factors contributing to see-ability computation (again overlaid
in red on reference imagery). Considering only viewing distance (a) shows
the high-altitude search to the right and the lower single pass towards the
upper left. Considering only the angle of incidence (b) shows that the areas
searched on the left were seen from good (downward) angles while those
to the far left were seen only at high angles of incidence such as when the
plane was banking in other areas. Comparing these first two maps (a,b) to
the map showing the multiplicity of views (c) shows that all areas were
seen multiple times but with unequal quality. The map of view uniqueness
(d) shows that while areas on the right were seen from multiple compass
angles, the areas on the far left were seen from few directions (mainly from
the right).

effective resolution depends on the viewing distance d, the

(potentially variable) focal length f of the camera, and the

cosine of the angle between the viewing direction v (from

the point to the camera) and the terrain surface normal n.

Ignoring the constant factors and including only the dynamic

ones, the effective resolution is proportional to

n · v
d/f

(1)

We calculate the immediate see-ability Sij for point i from

camera frame j with focal length fj as follows:

Sij =
{ ni·vij

dij/fj
if point i is visible in frame j

0 otherwise
(2)

Because the distance d may be large relative to the focal

length, Sij is often quite small. This scaling presents no

problems qualitatively for creating see-ability coverage maps

(which may be re-scaled for display), but for practical pur-

poses we scale the distance component of the computation at

this time. For cameras with fixed focal length lenses such as

those we use, the focal length may also be omitted, since it

likewise simply introduces a constant scaling factor. Folding

all of the proportionality constants into a single scaling factor

α and modifying the computation slightly to put Sij in the

range [0, 1] we use

Sij =
{ ni·vij

1+dij/α
if point i is visible in frame j

0 otherwise
(3)

Figure 4. Cumulative see-ability map for a test flight over a park and
surrounding residential area.

For our computations, we measure the distance in meters

and scale it by tens of meters, though again this scaling

does not qualitatively affect the results.

B. Cumulative Seeability

We combine observations of a single spatial position

from multiple frames by treating each Sij as a subjective

probability of detecting or correctly recognizing the target

or other information-carrying items. Obviously, many other

factors can and do affect this task such as the contrast of the

target against the background, the lighting conditions, etc.

However, we limit ourselves here to factors affected by the

UAV’s video acquisition and not other external factors.

If we treat each observation of each point as independent,

we can compute the cumulative see-ability Si of point i from

all frames {j} as follows:

Si = 1−
∏
j

(1− Sij) (4)

Note that although we do not factor in explicitly the number

of times a point is observed in different frames, Eq. 4

includes this implicitly, monotonically increasing the cumu-

lative see-ability with each unobstructed observation.

In some cases it may not be enough to simply observe

a point repeatedly (and well) but to view it from different

directions. Consider a wilderness search and rescue situation

in which the missing person or a clue to their presence is

positioned next to a tree, rock, minor terrain variation, or

other obstruction that is not reflected in the terrain model.

This may cause the person or clue to be visible from certain

viewing directions but occluded from others. To include this

possiblity, we introduce an additional directional coverage

factor for each observation based on the uniqueness Uij of

the compass viewing direction from camera j to point i
compared to other observations of the same point. If we

let θij denote the compass direction from which frame j
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Figure 5. Occluded points may be detected and displayed (red arrows),
suggesting need for further or alternative observation.

views point i, we write Uij as proportional to the angular

difference from the most similar view:

Uij =
mink �=j(θij − θik)

π
(5)

where the difference between compass angles is calculated

as the minimum difference modulo 2π, then scaled to be

in the range [0, 1]. Instead of using of Sij as a subjective

probability of detection or recognition in a single frame, we

can instead now think of the product Sij Uij as the subjective

probability of this observation adding information to the

detection process. We can thus calculate the cumulative see-

ability Si in revised form as follows:

Si = 1−
∏
j

(1− Sij Uij) (6)

The cumulative see-ability calculated from the factors shown

in Figure 3 can be seen in Figure 1, with an example from

a flight over a different target area in Figure 4.

C. Occlusion Display

Since the computation of immediate see-ability requires

visibility determination, we can incorporate this information

into the visualization of the see-ability coverage maps.

Rather than simply showing these occluded areas as zero

see-ability (or low cumulative see-ability), we can also

highlight these areas explicitly. Figure 5 shows an example

indicating the occluded points seen in a single frame of the

video. These can also be computed over a video sequence,

giving the search team an indicator of which points may

require additional search by field teams.

D. Temporal Updating and Display

Static see-ability coverage maps show what areas were

seen well but not when they were seen. In situations where

a target may be moving, this may be important to know—

seeing an area well at some previous time may not mean

Figure 6. Coverage map updating as new video is acquired.

that the person or other target is not there now. Similarly,

they do not reflect new video acquisition.

As new frames are received, coverage maps can be

updated to reflect the new information gained in these frames

(Figure 6). If we do not include the unique-angle factor in

the computation of the cumulative see-ability (Eq. 4), the

cumulative see-ability at each point in the current frame may

be updated using a simple recurrence relation. If we denote

the cumulative see-ability at terrain grid point i as seen in the

video from the beginning through frame k as Si[k], we can

compute it from the previous cumulative see-ability Si[k−1]
and the immediate see-ability Sik as

Si[k] = 1− (1− Si[k − 1])(1− Sik) (7)

By using a limited temporal window with duration n
frames, one can see both new content as it arrives but also

the loss of “expired” content as time passes:

Si[k] = 1− (1− Si[k − 1])
(1− Sik)

(1− Si(k−n))
(8)

This may also be accomplished using temporal locality

weighting to cause older content to fade out gradually,

though this makes the updating of the cumulative maps more

expensive computationally.

V. FILTERING AND PRIORITIZATION OF OFFLINE VIDEO

Although video from the UAV is usually monitored in

the field during acquisition, it is often useful to be able

to access the video offline some time after it is acquired.

Forms of after-the-fact searching may also be used in live

acquisition situations where video searchers see something

of potential interest and wish to access previously acquired

video observations of that point. Georegistered video enables

a number of features that rely on accurate video-terrain

linking such as video indexing. Examples of these may

be found both in prior literature [12]–[14], [20] and in

commercial or military-use products [26], [27].
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High

Medium Low

Figure 7. See-ability as an indexing cue. The visual indicator bar indicates
which video segments include the target point (green marker) and the useful
resolution of those segments. Shading indicates quality, from bright yellow
(high quality) to black (not seen). Clicking on on this indicator moves
directly to those frames.

A. Spatially Constrained Playback

Using terrain-video indexing, playback can be constrained

to only the sequences that correspond to a particular point

or area of interest in a manner similar to [20]. This is

particularly useful when one sees something of interest

and wants to directly access all other video sequences that

provide alternative views of that point. Users can click on a

point of interest in one frame, reference the corresponding

position in the terrain, and access all other video sequences

that cover that point. In order to provide sequences rather

than individual frames, we look for sequences that include

the point of interest without gaps longer than a specified

duration. To provide additional context, we also include the

immediately preceding and following frames.

B. See-ability Video Filtering

See-ability coverage maps add an additional component to

spatial indexing of georegistered video by allowing playback

or interactive random access not only by spatial position but

by usability. In order to facilitate selective playback, it is

necessary not only to store which terrain points are seen

from which frames but to include their respective see-ability

as well. Since the full set of immediate see-ability {Sij}

is extremely sparse, we we store for each grid point a list

of relevant frames and corresponding see-ability. During the

computation of immediate see-ability for each frame we add

to the list for each visible grid point a link to the current

frame and the see-ability of that point from that frame.

To link from the video to the corresponding point on the

terrain, we store for each frame its camera pose. Selecting

the corresponding terrain point from a pixel is then just a

single ray cast.

When a user clicks on a point in the coverage map, we

indicate not only which portions of the video include that

point but the respective quality of each viewing (Figure 7).

The user can choose to move to these frames manually using

a shaded video “scrubber”, or the presentation system can

automatically filter or prioritize the video playback.

During filtered playback, we display only the sequences

that saw the point of interest with at least a minimum

desired see-ability. Rather than requiring the user to specify

this minimum level, we find it useful to allow the user to

click in one frame to indicate a geospatial point of interest

and corresponding minimum see-ability. This interaction

and resulting presentation is not just “show me more” but

“show me better”, potentially greatly reducing the time to

investigate and confirm or reject items of potential interest.

This notion can also be extended to the entire video,

causing the video presentation system to include only those

portions that are of a desired see-ability. This filtering

removes sequences when the plane is seeing distant terrain

while banking or when it is flying at a higher altitude as is

often done while moving to or from the launch point to the

target area or from one area to another.

C. See-ability Video Prioritization

Since offline analysis of video may be motivated by the

need to find a missing person or other target as quickly

as possible, we have also found it useful to prioritize the

presentation of the video. Rather than simply filtering out

low-quality content, we can also sort the presented video

sequences by their usefulness. A user may thus indicate a

portion of the terrain and jump directly to the highest-quality

sequence that included that spatial position, or they could be

shown multiple sequences of decreasing usefulness.

D. User’s See-ability Filtering

See-ability coverage maps can also be computed using

only the video already seen by a user in offline viewing.

This allows us to map not what the camera has seen but

what the user or a set of users has analyzed. Combining

coverage maps for both the camera’s acquired video and

what the user has already viewed (Figure 8) allows us to

further filter or prioritize the presentation of the video. The

user(s) can then choose to be shown only sequences that

are of sufficient see-ability to be useful and include areas

that they have not already seen well. Alternatively, they may
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Figure 8. Coverage maps showing what the user has analyzed so far (blue)
and the remaining video (red).

choose to view all of the acquired video but prioritized by

both usability and lack of redundancy—i.e., by the amount

of new and usable information each sequence brings.

VI. PARTIAL VALIDATION OF IMMEDIATE SEE-ABILITY

Our see-ability metric relates directly to the effective

resolution with which the UAV’s camera sees the terrain,

Although this is a well-known (and obvious) factor in de-

tection and recognition, it it still worth validating the metric

in the context of specific tasks. To do so for immediate see-

ability in a search-and-rescue context, we conducted a user

study in which subjects were asked to detect a simulated

missing person in actual footage from a search flight.

After georegistering the video footage to the relevant

terrain and reference imagery, we selected 27 points on the

terrain and 82 video frames that included one or more of

these points so as to create a range of viewing distances and

angles of incidence. In 52 of these frames, we synthetically

inserted at one of these target points a rendered figure of a

person wearing a red shirt and blue jeans (Figure 9). This

use of synthetic targets allowed us to control their placement

and viewing while otherwise using real footage. The other

30 frames did not include targets and acted as a control set.

Each of 18 volunteer subjects observed each of the 82

frames in randomized order in a controlled setting. The

subjects were asked to indicate for each frame whether

the frame included the target, which they indicated by

pressing a key on the keyboard. (No response was required

if they did not see it, as would be the case when observing

continuous search footage.) Each frame was presented for

two seconds, followed by a one-second masking image [28]

before presentation of the next frame.

For each of the 82 frames, we computed the immediate

see-ability of the point at which the target was placed in that

frame, or for frames with no targets we used the see-ability

of the center of the frame, and compared this prediction

to subject performance. Results showed a 0.56 correlation

(a) Frame without target (b) Frame with target

Figure 9. Examples frames without (left) and with (right) detection targets
as used in the user study.

coefficient with high statistical significance (p < 0.0001),

indicating a moderately strong correlation [29].

As already suggested, there are obviously other factors

that can affect performance in this task besides the effective

resolution of the video. The results of our study show that

even when omitting these other factors, resolution alone is

a strong enough predictor of performance that see-ability-

based coverage maps can be used to qualitatively visualize

the relative coverage and usability of search video.

VII. DISCUSSION AND FUTURE WORK

For this work, we have chosen to focus solely on see-

ability factors related to the position and control of the UAV.

While resolution is a key element of video quality, there are

obviously other factors as well. Subjects in the user study

noted anecdotally that the placement of the missing person

(against brown dirt, green shrub brush, etc.) was often the

dominant factor given even modest resolution. If there is

reason to believe that the missing person or other potential

target of interest is a particular color, it should be possible

to include this in see-ability models.

Similarly, this work has not attempted to define exactly

what constitutes a minimum usable resolution, since this

depends on various other factors of the imaging system

as well as external factors just described. Because of the

many internal and external factors involved in various tasks,

we believe this may have to be done on a system- and

application-specific basis.

The approaches presented here, while driven in part by

problems associated with assessing coverage for relatively

unstable mini-UAVs, could be extended to any form of aerial

search, though specifics of the model may depend on task- or

platform-specific factors. For wide-angle imaging systems,

for example, one might need to handle the non-uniform

resolution induced by the lens or catadioptric system. For

manned aircraft, there might not be a camera but rather

human spotters. It might be interesting to couple telemetry

data from the plane with spotter head-tracking information.

VIII. CONCLUSION

We have presented methods for using see-ability, or

resolution-based usability for human observers, to create
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perceptual coverage quality maps for UAV-acquired search

video, including both single-frame immediate see-ability and

cumulative see-ability over video sequences. Assessing the

spatial coverage quality for search video is essential to

WiSAR, as well as to other spatial-search tasks. Both static

(post hoc) and dynamic (during flight) see-ability coverage

maps can be used for coverage assessment, for guidance and

planning, and for coordination. Although we have presented

this work in the context of UAV-based search operations,

these methods can be extended to other forms of aerial

search or to other applications in which it is important to

know what parts of a target area have been observed well.

We have also presented ways to use these coverage maps

to provide both geospatial and quality-based indexing of

search video. Users can interact dynamically with the video

not just in temporal order or filtered by geospatial position

but filtered and prioritized by how usable that video is.

A complete validation of the relevance of see-ability to

WiSAR experts is beyond the scope of this paper, but the

experiment presented here indicated that even a simple see-

ability metric accounted for a large portion of what is

important for evaluating quality of search coverage.
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