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abstract

Reconstructing Historical Earthquake-Induced Tsunamis: Case Study of 1852 Event Using
the Adjoint Method Combined with HMC

Chelsey Noorda
Department of Mathematics, BYU

Master of Science

Seismic hazard analysis aims to estimate human risk due to natural disasters such as
earthquakes. To improve seismic hazard analysis, our group is focused on earthquake induced
tsunamis and the use of statistical models to reconstruct historical earthquakes. Based on the
estimated wave heights given in anecdotal historical descriptions, we created observational
probability distributions to model the historically recorded observations and constructed a
prior distribution on the relevant earthquake parameters based on known seismicity of a
given region. Then we used the software package GeoClaw, and a Metropolis-Hastings sam-
pler to obtain a posterior distribution of earthquake parameters that most closely matches
the historically recorded tsunami.

Our method was tested on two main events that occurred in 1820 and 1852 in central and
eastern Indonesia respectively. The random walk Metropolis-Hastings sampler we employed
appeared to recover the causal earthquake quite well, but the computational costs were pro-
hibitive even though both scenarios we considered were relatively simple. To improve the
sampling procedure, we have focused on advanced sampling techniques such as Hamiltonian
Monte Carlo (HMC) where the gradient of the forward model (Geoclaw) is required. This
is problematic however as this gradient is not available computationally. To mitigate this
problem, we make use of a linearized adjoint solver for the shallow water equations, and
exact gradient calculations for the Okada earthquake rupture model, yielding a surrogate
gradient that leads to improved sampling.

Keywords: HMC, adjoint method, applied math
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Chapter 1. Introduction

In 2022, the highest risk index for natural disasters in Indonesia was tsunamis [3]. This trend

has continued for many years and still is one of the leading causes of deaths due to natural

disasters in the world’s 4th most populous country. The economic and social damage that

this type of natural disaster inflicts upon residents makes it nearly impossible for locals to

rebuild afterward. The end goal of this research project is to provide enough information to

more accurately predict potential tsunami hazards to educate residents so they are prepared

for evacuation in the incidence of a tsunami warning. Increased understanding of this natural

hazard is essential to predicting the potential hazard to life and property.

To reach the end goal described above, our research group focuses on seismic hazard

analysis which aims to estimate human risk due to natural disasters such as earthquakes. In

order to improve seismic hazard analysis, we have focused on earthquake induced tsunamis

and the use of statistical models to reconstruct historical earthquakes. The idea behind

this approach is to use anecdotal records from previous earthquake induced tsunamis to

build a model that can accurately post-dict the past in hopes of understanding the current

and/or future hazards. In a general sense, seismologists and geologists are unable to make

accurate predictions of future seismic hazards without an in-depth understanding of the

seismic history of the region [4, 5, 6, 7], and hence we must have as much comprehension of

the seismic history as possible to develop an adequate hazard assessment.

Previous efforts from our group have developed a statistical inverse method that has

been applied to two earthquake induced tsunamis that occurred in Indonesia in 1820 (South

Sulawesi) and 1852 (Banda Arc) [2]. These will be referred to as the 1820 event and the 1852

event for the remainder of this thesis. These investigations used a random walk Metropolis-

Hastings sampler which appeared to recover the causal earthquake quite well, but at a

very high computational cost even though both events we considered were relatively small

geographically (each tsunami simulation was relatively inexpensive). This is prohibitive to
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our end goal since we want to be able to apply our model to larger geographical events

such as the Lisbon earthquake induced tsunami of 1755 [8] which spread all the way across

the Atlantic. Our current approach would take roughly 2 hours to collect a single sample

(even running on 24 cores on the supercomputing resources at Brigham Young University)

and with a random walk sampler we need to collect roughly 200,000 samples to analyze the

success of the trajectory predictions. That is approximately 400,000 hours to collect our

desired samples which equates to 16,667 days or a little over 45 years.

Due to the long data collection time frame, we are considering alternate approaches

to improve the sampling procedure. We focus on an advanced sampling technique called

Hamiltonian Monte Carlo (HMC, see [9] for example) which requires the gradient of the

forward model, which in our case is the tsunami simulation package Geoclaw [10]. The

gradient in our case is not available computationally, so we will instead approximate the

gradient using a linearized adjoint solver of the shallow water equations implemented in

Geoclaw. This surrogate gradient combined with the exact gradient calculations for the

Okada earthquake rupture model yield a surrogate gradient that should lead to more accurate

sampling, i.e. the desired posterior distribution can be approximated with far fewer samples

than when using a random walk proposal. Both mathematical innovations, the adjoint

method and using HMC, will be discussed in more detail in the next section.

Chapter 2. Background

In this section the two main mathematical innovations over the method of [2] which are used

to sample potential earthquake sources for the tsunami trajectories will be explained in more

detail. These two methods are: Hamiltonian Monte Carlo, which is abbreviated as HMC,

and the adjoint method.
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2.1 Hamiltonian Monte Carlo

The method outlined and utilized in [2, 11] performs Markov Chain Monte Carlo (MCMC)

sampling with Metropolis-Hastings [12] adjustment where the proposed states are selected

via a random walk in parameter space. The parameter space we wish to sample over is the

space of all possible earthquakes in a given geographic region. For MCMC, an initial starting

point is identified in parameter space and then the selected forward model (Geoclaw in our

case) uses that initial set of earthquake parameters to simulate the resultant tsunami and

produce wave heights at each of the historically observed locations. A relative probability of

how well this simulation matches the historical data and how well it matches geological prior

information is assigned to these parameters. The random walk proposal then proposes a

new earthquake by randomly moving in parameter space and obtaining a similar probability

for this new event. A Metropolis-Hastings update, as outlined in Algorithm 1, [13, 14] is

then calculated to either accept or reject the proposal based on the plausibility of the pre-

dicted wave heights (and wave arrival times). This method has worked well for the smaller

geographical area relevant to the 1852 event [2] where the observed tsunami reached all of

the relevant observation locations in under one hour, and even worked decently for the 1820

event [11] where the longest observation time was between 3 and 4 hours real time. We want

to make our model applicable to situations where the arrival time is several hours such as

the Lisbon 1755 tsunami. The primary issue is that random walk MCMC rejects close to

3/4 of the proposed samples, wasting nearly 75% of computational expense. To combat this

disadvantage and approximate the desired distribution in a reasonable time, we need to use

an algorithm that converges faster than a random walk based algorithm. This is exactly why

we have decided to use Hamiltonian Monte Carlo (HMC). The following picture illustrates

the convergence difference between MCMC and HMC. As seen in Figure 2.1, random walk

MCMC has a higher rejection rate meaning that it will reject a lot of proposals (typically

75%) before it accepts one. On the other hand, Hamiltonian dynamics has a fairly high

acceptance rate and thus converges to the desired target distribution faster than MCMC.
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Figure 2.1: A cartoon illustration of the difference between random walk MCMC and HMC.
The target distribution is depicted via contours of the probability density function. The
random walk (left) is allowed to step in a random direction within an exponentially decaying
radius (the step size is normally distributed), but most proposed parameters are immediately
rejected, and even those accepted proposals are close to the original sample. HMC on the
other hand is able to move along the target distribution and propose values that are far away
from the original sample and yet still yield reasonable probable values. [1]

In order to understand how HMC and Hamiltonian dynamics work together, we are going

to consider by analogy the canonical distributions, the distributions of the possible states

that are in thermal equilibrium, and how their energy changes for a given conserved physical

system. We will represent the probability density function of a tsunami induced earthquake

as P (x) with a corresponding energy function E(x) of the physical state x (parameters of the

earthquake in our case). This canonical distribution with temperature T and normalizing

constant Z has the following probability density function (pdf):

P (x) =
1

Z
exp (−E(x)/T ). (2.1)

To simplify, we will assume the total temperature of our system is 1, i.e. T = 1 and we

will define the energy function to be the Hamiltonian of a conserved system with position

q (below we will substitute x = q) and the artificially produced momentum p. This makes

E(q, p) = H(q, p) = U(q) +K(p) where U(q) is the potential energy and K(p) is the kinetic
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energy. The joint distribution of q and p then satisfies

P (q, p) =
1

Z
exp (−H(q, p))

=
1

Z
exp−(U(q) +K(p))

=
1

Z
exp (−U(q)) exp (−K(p)).

(2.2)

We will assume that both q and p are independent and let q represent our earthquake

parameters and p represent an artificially introduced momentum. Hamiltonian systems such

as this will conserve the energy of the system, that is H(q, p) will remain fixed for all time.

As the momentum p is artificially introduced to move the sample parameters q across the

target distribution, we do not focus on the definition of the kinetic energy K(p) = 1
2
pTM−1p

where M is a mass matrix (assumed to be diagonal in all of our calculations). For Monte

Carlo sampling, the potential energy function for q is as follows:

U(q) = − log[π(q)L(q|D)] (2.3)

where π(q) is the prior distribution and L(q|D) is the likelihood function given the data.

Hence the potential energy of the system is a constant value away from the logarithm of the

posterior distribution (the target distribution for Bayesian inverse problems, see below for a

more thorough discussion on Bayes’ Rule). The rest of the HMC calculations, including the

acceptance update step, are depicted in Algorithm 2.

Algorithm 1 Metropolis-Hastings

for t in 1, 2, ... do
Draw x ∼ q(.|θt)
Set α = min(1, p(x|d)p(x)

p(θt|d)p(θt) ∗
q(θt|x)
q(x|θt))

Draw u ∼ unif(0, 1)
if u ≤ α then

θt+1 = x
else

θt+1 = θt
end if

end for
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The basic idea is that the parameters q (position) is updated according to Hamilton’s

equations:

q′ =
∂H

∂p
, p′ = −∂H

∂q
, (2.4)

where the artificial momentum p is evolved to ensure that the system is conserved, i.e. H

remains constant. The system (2.1) is evolved forward for a limited amount of time via a

Leapfrog time-stepping mechanism with the final value of q being the new proposal in the

sampler. The acceptance rate is dictated by how far off the numerical discretization gets

from conserving the Hamiltonian H(q, p).

Algorithm 2 HMC
q = current q
p = norm(len(q),0,1) ▷ independent standard normal variates
current p = p
p = p - epsilon * grad U(q) / 2 ▷ Make a half step for momentum at the beginning

# Alternate full steps for position and momentum
for i in 1, 2, ..., L do

q = q + epsilon * p ▷ Make a full step for the position
if (i != L) then ▷ Make a full step for the momentum, except at end of trajectory

p = p - epsilon * grad U(q)
end if

end for

p = p - epsilon * grad U(q) / 2 ▷ Make a half step for momentum at the end
p = -p ▷ Negate momentum at end of trajectory to make the proposal symmetric

# Evaluate potential and kinetic energies at start and end of trajectory
current U = U(current q)
current K = sum(current p ** 2) / 2
proposed U = U(q)
proposed K = sum(p ** 2) / 2

# Accept or reject the state at end of trajectory
if (runif(1) < exp(current U-proposed U+current K-proposed K)) then

return q ▷ Return the position at the end of trajectory (accept)
else

return current q ▷ Return initial position (reject)
end if
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Since we are using Hamiltonian dynamics, this method requires the calculation of

∂U

∂yi
(2.5)

This may seem like a setback because computing derivatives is computationally expensive,

but this is why we are going to use the adjoint method to make this calculation less computa-

tionally expensive. A thorough description of the adjoint and its usefulness in approximating

the gradient is given below.

2.2 The Adjoint Method and Surrogate Gradients

The main contribution to this project is the use of the linearized adjoint to approximate the

gradient of Geoclaw with respect to its initial parameters. Before getting into the specifics

of the adjoint method for this application, we will present an explanation of adjoint methods

using linear algebra and investigate a one dimensional case.

We begin by defining two finite dimensional inner product spaces W and V . We will

define A : V =⇒ W to be a linear transformation. The inner product in W and V will be

the same as the standard inner product in Rn, i.e. if B is a matrix representing the linear

transformation A (below we will often not distinguish between the linear transformation A

and its matrix representation) then ⟨Bx, y⟩ = xTBTy.

Definition 2.1. The adjoint of a linear operator A, denoted as A∗ is defined such that the

following equation is satisfied for all x ∈ V and y ∈ W :

⟨Ax, y⟩ = ⟨y, A∗x⟩. (2.6)

Example 2.2. When V = Rn and W = Rm this would be the same as finding a matrix A∗

such that

xTAy = yA∗x

is satisfied, which occurs exactly when A∗ = AT , the transpose of the matrix representation

of the linear transformation.
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A finite dimensional example. For an illustration of how the adjoint is used, consider

the linear ordinary differential equation (ODE) in Rn:

x′ = Ax, x(0) = x̃, (2.7)

where x ∈ Rn and A is an n × n real valued matrix. The solution of (2.7) is x(t) = eAtx̃

where the matrix exponential is defined via a standard Taylor series similar to the scalar

exponential.

Now suppose that we wish to determine the effect that the initial conditions x̃ have on

the solution at some future time t = tf . We will focus on a single entry of the solution, that

is we want to determine the influence of the initial conditions on the kth entry of x(t) which

we denote as

xk(t) = ⟨x(t), ek⟩, (2.8)

where ek is the vector of all zeros with a one in the kth position. We want to calculate the

gradient of xk(t) with respect to x̃. For this particular example that isn’t all that difficult,

but using the adjoint operator we can illustrate how we can do this even for the infinite

dimensional setting in which (2.7) becomes a partial differential equation rather than an

ODE.

First, we note that the adjoint of the exponential of a matrix is simply the exponential

of the adjoint of the matrix, that is (
eA

)∗
= eA

∗
. (2.9)

Hence we can write

xk(tf ) = ⟨x(tf ), ek⟩ (2.10)

= ⟨eAtf x̃, ek⟩ (2.11)

= ⟨x̃, eA∗tf ek⟩. (2.12)

It follows that if we want to compute the derivative of xk(tf ) with respect to the jth entry

8



of x̃ (which we denote as x̃j) then we need to compute

∂xk(tf )

∂x̃j

= ⟨ej, eA
∗tf ek⟩, (2.13)

and all the other entries of the desired gradient can be found by varying j.

As pointed out above, the use of the adjoint for this simple, finite-dimensional example,

was rather unnecessary. The true value of using the adjoint to calculate the gradient is

only evident in the infinite-dimensional case where the explicit gradient is otherwise entirely

unavailable. This example does illustrate some very key points however, the first of which

is that we can note that the final calculation in (2.13) is really given by

∂xk(tf )

∂x̃j

= ⟨ej, y(tf )⟩, (2.14)

where y(t) solves the adjoint equation ‘backward’ in time from the desired endpoint ek, that

is y(t) solves

y′ = A∗y, y(0) = ek. (2.15)

Hence, to calculate the gradient via the adjoint method we need to solve the adjoint equation

backward from the endpoint we are interested in (ek) at time t = 0 to the final time t = tf ,

and then the inner product of this solution with the desired location will yield the derivative.

An analogous calculation will work even for the infinite dimensional (PDE) setting so long

as the underlying system is linear.

Adjoint method for the shallow water equations. To implement HMC for the

historical earthquake-tsunami inversion problem described in more detail below, we need to

be able to compute the gradient of the modeled tsunami wave height at a specific location

and time with respect to the initial wave disturbance, i.e. we seek to compute

∂η(xk, tk)

∂h0(x)
, (2.16)

where η(x, t) is the sea surface perturbation from a quiescent mean value, h0(x) is the initial

disturbance of η, xk is the physical location of interest and tf is the time at which the

observation takes place. The forward evolution of the sea surface height η is simulated

using the Geoclaw [10] package which uses a dynamically adaptive mesh in a finite volume

9



framework to solve the nonlinear shallow water equations. Ideally we would implement

automatic differentiation into Geoclaw to calculate ∂η
∂h0

, but the complexity of the source

code precludes this solution in a reasonable time frame. As the tsunami propagation follows

the nonlinear shallow water equations, a full adjoint approach is not feasible (adjoint methods

on nonlinear systems require frequent linearization about the current state), and so we will

instead rely on a linearized adjoint first introduced in [15] for adaptive mesh refinement, that

provides a surrogate gradient.

In two spatial dimensions the shallow water equations are given by

∂h

∂t
= L1(u, v, h), (2.17)

∂(hu)

∂t
= L2(u, v, h), (2.18)

∂(hv)

∂t
= L3(u, v, h), (2.19)

where h(x, y, t) is the water height, and u(x, y, t) and v(x, y, t) are the horizontal velocities

(hu and hv are the corresponding components of the momentum). Each of the Lj are spatial

differential operators. Specifically

L1 = −∂x(hu)− ∂y(hv), (2.20)

L2 = −∂x

(
hu2 +

g

2
h2
)
+ ∂y(huv)− ghBx, (2.21)

L3 = −∂x(huv)− ∂y

(
hv2 +

g

2
h2
)
− ghBy, (2.22)

where g is the gravitational constant, and B(x, y) is the bathymetric seafloor. We are

interested in the evolution of the sea surface height η(x, y, t) = h(x, y, t) + B(x, y), and in

particular approximating the gradient of this function with respect to the initial perturbed

state. Ideally we would linearize (2.20)-(2.22) repeatedly about the current solution, but for

tsunami propagation we actually have a more appealing procedure.

In the deep open ocean the tsunami wave is a very small perturbation relative to the

depth of the ocean, and so the linearized shallow water equations are valid. It is only near

the shoreline, or immediately following the uplift due to the earthquake that the linearized

equations fail to adequately capture the dynamics. Hence, we will investigate the adjoint
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of the linearized shallow water equations, not linearized about individual (time-varying)

solutions, but linearized about the deep ocean approximation.

Following [15] we let µ = hu and γ = hv, and linearize the shallow water equations about

a flat surface with zero velocities u = v = 0 with h = η − B(x, y) (we suppose that the full

velocity is u = u + u where ũ is small for example). This leads to the linearized shallow

water equations:

∂η̃

∂t
= L1, (2.23)

∂µ̃

∂t
= L2, (2.24)

∂γ̃

∂t
= L3, (2.25)

where as before

L1 = −µ̃x − γ̃x, (2.26)

L2 = −ghη̃x, (2.27)

L3 = −ghη̃y. (2.28)

To re-establish this in a notation familiar to the previous simple example of a finite-dimensional

system (and dropping the ·̃ going forward), let

q(x, y, t) =


η

µ

γ

 , (2.29)

so that q satisfies

qt(x, y, t) + F (x, y)qx(x, y, t) +G(x, y)qy(x, y, t) = 0, (2.30)

where

F (x, y) =


0 1 0

gh 0 0

0 0 0

 , G(x, y) =


0 0 1

0 0 0

gh 0 0

 . (2.31)
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It follows that the adjoint equation for q is given by:

q̂t +
(
F T (x, y)q̂

)
x
+
(
GT (x, y)q̂

)
y
= 0, (2.32)

where the adjoint is derived using inner product induced by the integral L2 norm.

Let Ω refer to the rectangular region in (x, y) space wherein the tsunami propagates,

that is Ω is the set of all latitude-longitude coordinates that are simulated via Geoclaw for

each simulation. Following [15] we enforce the boundary conditions q̂T (x, y)F (x, y) = 0 and

q̂T (x, y)G(x, y) = 0 for (x, y) ∈ ∂Ω. As mentioned above, we are interested in the wave height

at specific locations (xk, yk) and times tk when the wave reaches those locations. Rather than

focusing on the sea surface perturbation η(x, y, t) (which can easily be computed from the

bathymetry) we consider h, i.e.

h(xk, yk, tk) =

∫
Ω

q(x, y, tk)
T q̂(x, y, 0;xk, yk)dxdy = ⟨q(x, y, tk), q̂(x, y, 0;xk, yk)⟩L2 , (2.33)

where we will specify that

q̂(x, y, 0;xk, yk) =


δ(x− xk, y − yk)

0

0

 , (2.34)

i.e. q̂(x, y, t = 0;xk, yk) is the Dirac delta function centered at the desired location (xk, yk).

Following the same derivation as above for the finite dimensional linear system, we will

approximate the gradient of h via

∂h(xk, yk, tk)

∂h0(x̃, ỹ)
≈ ⟨q0(x, y; x̃, ỹ), q̂(x, y, tk;xk, yk)⟩L2 , (2.35)

where q̂(x, y, t;xk, yk) satisfies the adjoint equation with initial condition given above in

(2.34) and

q0(x, y; x̃, ỹ) =


δ(x− x̃, y − ỹ)

0

0

 . (2.36)

The calculation of (2.35) leads to the gradient of the wave height at specific locations (and

times) with respect to certain points in the initial sea surface perturbation, and only requires
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the calculation of the linearized adjoint solution at the specific time tk with the specified

initial condition (2.34).

Specifying the Dirac delta function as the initial condition is computationally impossible,

so following [15] we instead specify q̂(t = 0) as a narrow Gaussian centered at (xk, yk). In

fact, this is done for all of the observation locations of interest, i.e. k = 1, 2, . . . , 9 (see

[2] for more detail) at the same time, as each observation location is sufficiently spatially

separated from each other to not invoke any overlap in the initial condition. The solution

of the linearized adjoint problem for these initial conditions has already been computed in

[2] to use in defining the adaptivity of the underlying spatial mesh. The solution field q̂

is saved at a series of discrete times tn. To utilize this computation, we identify the value

of n so that tk ≈ tn as close as possible, and read in the corresponding data saved in an

appropriate adjoint file. Geoclaw by default saves the ĥ, ĥû, ĥv̂ and η̂ = ĥ + B fields. As

the bathymetry B(x, y) is unchanged throughout the simulation (in both the forward model

and the linearized adjoint model) then

∂h

∂h0

=
∂η

∂h0

, (2.37)

so we need only read in the η̂ field from the adjoint solution for the selected value of tn.

It is worth noting at this point that (2.35) yields a single value as the derivative of the

wave height at a specific location (and time) with respect to the initial wave perturbation

at a single location. This means that the desired gradient

∂h(xk, yk, tk)

∂h0(x, y)
(2.38)

is actually a function of x and y. In practice this is an array with values specified at each

latitude-longitude value of (x, y). Even so, we emphasize the form of the derivative shown

in (2.35) as this illustrates how to utilize this gradient in applications of the chain rule as

discussed below.

Using the adjoint in the chain rule. The previous subsection focused on calculating

the derivative of modeled tsunami wave heights with respect to initial perturbations of the

sea surface, but this isn’t the entire story. The initial sea surface perturbation is not the
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function we are interested in, but instead we are interested in determining a parameterization

of the earthquake that generated that sea surface perturbation. To map from earthquake

parameters to sea surface perturbation, Geoclaw takes advantage of the Okada model [16, 17]

which parameterizes an earthquake with the following parameters:

• latitude-longitude of the earthquake centroid (center of the earthquake rupture), de-

noted as lat and long here.

• depth of the earthquake centroid below the surface of the earth in kilometers, denoted

as depth or d below.

• length and width (in kilometers) of the rectangular rupture zone of the specified earth-

quake, denoted l and w respectively.

• slip (in meters) is the distance that the rectangular rupture zone instantaneously jumps

in this model, denoted as s.

• strike is the orientation angle of the fault with respect to due north (in degrees, not

radians unfortunately).

• dip is the angle which the fault makes with the vertical direction (also in degrees).

• rake is the angle relative to the strike angle that the actual slip occurs along (in

degrees).

If we refer to each of these earthquake parameters as the Okada parameters and denote them

as the vector valued variable z, then what we really want to compute is

∂h(xk, yk, tk)

∂zi
, (2.39)

where each value of the vector z is denoted as zi.

To identify how this gradient is performed, let O denote the Okada model, that is we

allow O(z) = h0(x, y) be the function (array in practice) that represents the initial sea

surface perturbation induced by the Okada parameters z. It follows that ∂O
∂zi

is a function
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of (x, y) for every value of i. We want to combine this via the chain rule with ∂h(xk,yk,tk)
∂h0(x,y)

which was discussed above, however we note that although both of these terms are functions

of (x, y) (or arrays across the discrete grid in the numerical implementation), ∂h(xk,yk,tk)
∂zi

is a

scalar, i.e. a single value. This is precisely why we need to utilize the notation used in (2.35)

when computing the gradient.

Note that (2.35) specifies the gradient of h(xk, yk, tk) with respect to the initial data at

a specific point (x̃, ỹ). The partial derivative of the initial condition at that specific point

with respect to any of the Okada parameters would then be ∂h0(x̃,ỹ)
∂zi

. We however need to

compute the derivative of the entire initial condition with respect to each Okada parameter

which implies that we need to compute (via the chain rule):

∂h(xk, yk, tk)

∂zi
=

∑
(x̃,ỹ)

∂h(xk, yk, tk)

∂h0(x̃, ỹ)

∂h0(x̃, ỹ)

∂zi
, (2.40)

if there was a finite number of points (x̃, ỹ) in the domain. Instead, we want to consider this

summation over a continuous set of points (x̃, ỹ) ∈ Ω so that the derivative instead becomes:

∂h(xk, yk, tk)

∂zi
=

∫
Ω

∂h(xk, yk, tk)

∂h0(x̃, ỹ)

∂h0(x̃, ỹ)

∂zi
dx̃dỹ =

〈
η̂(x, y, tk;xk, yk),

∂O
∂zi

(x, y)

〉
L2

, (2.41)

where we have used the earlier definitions of the Okada model and the derivation of the

adjoint-based gradient calculation. Note that we would have arrived at the same formula if

we had considered the formula in (2.35) as an operator which acted via the chain rule on

∂O
∂zi

, the derivative of the Okada model with respect to the earthquake parameter zi.

The Okada derivative. The Okada model detailed in [16, 17] is based on the Green’s

function solution of a linear, elastic PDE on a semi-infinite half-space (the boundary being

the surface of the earth). Ignoring the curvature of the earth, there is an explicit formula for

the resultant Green’s function which is then integrated over the specified rupture rectangle

specified by the length and width, providing an explicit, analytic formula for the seafloor

displacement (which in turn yields an exact formula for h0(x, y)). Although there is an exact

formula for the seafloor displacement, it is quite messy and requires a rather involved several

lines of code to implement so that calculating ∂O
∂zi

is not a straightforward nor simple process.
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To address this issue, R. Molen (an ugrad student at BYU) converted the Okada model

implemented in Geoclaw to the Jax library. Automatic differentiation in jax then allowed

for a straightforward calculation of the desired gradient. Unfortunately even with the opti-

mized methods introduced in jax, the computational cost of computing these derivatives is

extremely prohibitive (the derivative is calculated at every single grid point on the domain),

particularly on a CPU (forward propagation of the Geoclaw model is really only feasible on

a CPU cluster, not on GPU’s yet). As we desire to calculate these derivatives several times

for each proposed sample, we implemented the required derivatives for subsets of the full

domain Ω, i.e. ∂O
∂zi

can be computed on ωl ⊂ Ω for any rectangularly defined sub-region ωl.

Eventually this will allow for parallelization across the subsets ωl, but for now we only use

this to eliminate parts of the full domain Ω where the adjoint is near zero.

Sample parameters. As discussed in more detail in [2] and more particularly in [18], the

Okada parameters zi are NOT the parameters we search over in MCMC. These earthquake

parameters are not independent and some are more correlated/dependent than others. For

instance the specific example described below of an earthquake in the Banda Sea has the

most likely source of the known subduction zone along the outer Banda Arc meaning that

each latitude-longitude value will map to a likely earthquake depth, dip, strike, and rake as

dictated by the geometry of the fault itself and provided by existing data [19]. The length,

width, and slip are also interdependent for recorded earthquakes so that searching over each

of these parameters independently is not logical. For this reason, we actually search over a

set of sample parameters :

• clat and clon the centroid latitude and longitude coordinates.

• m, the magnitude of the earthquake (defined as a logarithmic scaling of the product

of the length, width and slip).

• ∆w and ∆l, the logarithmic deviation of the length and width from a data fitted

regression with magnitude.
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• d0 the depth offset from a mapped depth value.

Hence the Okada parameters z are really a function of these sample parameters (which we

denote as ζ) with a function we refer to as the map to Okada so that z = M2O(ζ). Hence

the actual gradient approximation that we use is

∂h(xk, yk, tk)

∂ζj
=

〈
η̂(x, y, tk;xk, yk),

∑
i

∂O
∂zi

(x, y)
∂zi
∂ζj

〉
L2

, (2.42)

where the derivative zi is the ith entry of the map M2O(ζ) and is detailed more closely in

[18].

2.3 Gradient of the Prior

Calculation of the gradient described above is only part of the problem when addressing im-

plementation of HMC. The potential energy in the formulation of HMC requires a derivative

of the full posterior distribution which will also necessitate calculating a derivative of the

prior distribution (all of the previous discussion applies only to the likelihood). The gradient

of the prior is much more straightforward however, as precise formulae are available for all

of the different components of the prior distribution, or at least a finite difference approach

is quite viable for the depth-map that arises from the data provided in SLAB2 [19]. Details

for this calculation are contained in [18].

Chapter 3. Tsunami inversion

As stated earlier, the initial goal of this thesis was to develop an improved sampling strat-

egy for the inverse problem of identifying historical earthquakes from sparse and anecdotal

evidence of tsunami observations. This section first describes the previous efforts using a

random walk Monte Carlo method for a specific historical event, explaining previous results

and clarifying the need to consider better sampling strategies. We then describe the actual

implementation of HMC using a surrogate linearized adjoint gradient to the same problem
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and summarize the advances and difficulties posed by using the adjoint based surrogate

gradient.

3.1 Previous Work

To employ Bayesian inference to the tsunami inversion problem, we needed to identify the

observations and describe them probabilistically. We started this process by collecting anec-

dotal records from historical accounts including the recently translated Wichmann catalog

[20, 21, 6]. These records included newspaper clippings, journal articles, and any other writ-

ten form that described the wave heights and arrival times of the tsunami. Below is the

English translation of an account from the Dutch colonial soldiers stationed on the island of

Banda Neira:

1852, November 26, 7:40.

At Banda Neira, barely had the ground been calm for a quarter of an hour when

the flood wave crashed in...The water rose to the roofs of the store-houses...and

reached the base of the hill on which Fort Belgica is built on.

From this description, we constructed an observational probability distribution that assigned

maximum probability to the wave height that we most closely associate with this observa-

tional record. For instance, standard construction at the time were homes and store houses

that were approximately 2.5m, and most often built on stilts (to avoid storm surge and

flooding). In addition, on the morning of November 26, 1852 the Banda Sea was under an

extremely (seasonally and daily) low tide so that for a tsunami to reach the ‘roofs of the

store-houses’ then we estimate that the wave must have been approximately 6.5m. Due

partially to the level of uncertainty in this historical record, and to the lack of a definitive

measurement we identify the wave height observational distribution at Banda Neira as a

normal distribution centered at 6.5m with a variance of 2m. The observational distribution

on the arrival time is similarly constructed as a normal distribution centered on 15 minutes,
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but with a reasonably wide variance to allow for likely arrival times between 10−20 minutes.

Similar historical accounts to that described above are identified for nine different physical

locations for the 1852 earthquake and tsunami, two of which include an observation of arrival

time of the wave. All of the constructed observational probability distributions are depicted

in Fig. 3.1 for the 1852 event. The distributions for the observation at Banda Neira are

depicted in green.
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Figure 3.1: All likelihood densities for the observations at each observation location for the

1852 event. Each density represents an interpretation of an account from the Wichmann

catalog.

After careful construction of a prior distribution on all of the sample parameters, [2] used

the random walk Metropolis Hastings algorithm to search over parameter space to identify

the most probable parameters and approximate the relevant posterior distribution. [2] ran

168,000 total tsunami simulations, eventually identifying a posterior distribution that was

seismically realistic and matched the observational data and prior distribution adequately.

The sampled posterior distribution from [2] on the earthquake centroid location is depicted

in Fig. 3.2.
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Figure 3.2: The sampled posterior distribution (right) for latitude-longitude coordinates of

the earthquake centroid location for the 1852 event compared to the log-prior distribution

of the centroid location (left).

The collection of the samples necessary to create Fig. 3.2 representing the posterior for

the 1852 event took approximately two weeks of real time computational resources, running

14 separate chains with each chain running on 24 cores at a time. Using the standard com-

putational resources available through BYU’s supercomputing center, each forward tsunami

simulation required approximately 1.5-2 minutes of compute time (parallelized across 24

cores). This computational time corresponds to a 1 hour simulation time evolution of the

tsunami (the wave typically reached the farthest observation point in approximately 45 min-

utes). In [22], a different event from south Sulawesi in 1820 is investigated that had simulation

times of 5-6 hours leading to a computational time of 10-12 minutes for each forward run of

the tsunami model. As a result this 1820 event took over two months of computational time

to generate the desired posterior distribution.

The 1852 Banda Sea and 1820 south Sulawesi events are just the first of several events

we intend to investigate, but the computational time required for these additional events is
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even higher than it was for the 1820 event. As an example, in 1755 there was an earthquake

in the eastern Atlantic Ocean near Lisbon, Portugal [8]. This earthquake and the resultant

tsunami devastated the city and the entire Portugese empire. The tsunami generated by this

earthquake impacted not only the Portugese coastline, but was also observed in northern

Africa, the British Isles, and all the way across the Atlantic in Martinique and Barbados.

Recreating this event will necessarily require simulating a tsunami that crosses the entire

Atlantic Ocean which would take approximately 2 hours of compute time on our current

resources for a single simulation. Even running multiple chains simultaneously this represents

a prohibitively costly investigation that would take several years of real time to generate

the necessary 150,000+ simulations to adequately resolve the posterior distribution using a

random walk proposal.

This leads to the proposed work in this thesis. As described earlier, we seek an im-

proved sampling strategy that will resolve the posterior with a significantly reduced number

of necessary simulations, and hence the current consideration of surrogate gradient HMC

methods. We employ this approach for the 1852 Banda Sea event here, as the posterior is

already sufficiently resolved from [2] so that we can make comparisons between the results

obtained from the surrogate HMC approach outlined above. In the following, we use the

same prior distribution and observational probability distributions used in [2]. In addition,

all settings for the forward model Geoclaw are identical and we use the same bathymetry

files etc..

3.2 Current HMC results

3.2.1 Preliminaries. Before running the surrogate HMC chains, we needed to run the

adjoint problem with initial sea surface perturbation specified at each observation location

as described above. The benefit of the current approach is that we need to only solve the

linearized adjoint problem one time, and upon saving the relevant output files, can use that

solution for every forward sample run of Geoclaw. Hence the computational temporal cost
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of using the adjoint is negligible, except that the spatial complexity (storage space for the

output files) and the input/output operations for reading those files in can be prohibitive.

We determined the number of adjoint files we would save by first examining the longest

arrival time recorded in our anecdotal records. The longest arrival time recorded was around

45 minutes so we decided to double that time to account for outliers, though we do not

expect any sample to produce an arrival time that long. This means that our final time

would be 5400 seconds. We saved the linearized adjoint output every 60 seconds, resulting

in 90 output files. The specific output file needed to calculate the surrogate gradient was

then identified as the arrival time of the wave rounded to the nearest minute.

Once the adjoint files were collected, we ran into the issue of spatial complexity because

the files were so large. As stated previously, the adjoint file consists of the value of the

adjoint at a series of specific sub-grids of the entire grid with these sub-grids ranging in

width from 36 to 38 grid points and in length from 44 to 46. The variance in the sub-grid

size is due to the use of ghost cells for sub-regions near the boundary of the overall region

which had to be removed to simplify the output. There is a stored set of values on each

sub-grid calculated for the following fields: ĥ, ĥû, ĥv̂ and η̂ = ĥ+ B. Since we only needed

the data for the displacement of water, the sub-grids for η̂ were all that would be needed.

After much finagling with Geoclaw’s bounds and the output file settings, smaller files which

only contained the desired η̂ sub-grids were created and used throughout the remainder of

the code, and the ghost cells were removed so that each sub-grid was a standard size. This

cut down computational times significantly as the grid sizes were smaller and already in the

correct format for their desired use.

For the initial set of collected samples, we relied on the linearized adjoint for a surrogate

gradient. However the current and proposed parameters in HMC were orders of magnitude

different representing a drastic change in the momentum, but almost no movement in the

position (sample values). This caused the acceptance probability to almost universally yield

a NaN value so that every sample was rejected. This caused us to re-evaluate our method and
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determine if there was something we were missing. While the linearized adjoint gives very

good approximations of the gradient of the maximal wave height at specific locations, it yields

no information on the gradient of the arrival time for the wave (either the maximal wave or

the ‘first’ wave). Essentially we had ignored the effects that the arrival times would have

on the gradient which led to highly un-physical proposals that were automatically rejected.

Luckily for the 1852 event there were only two observations of arrival time at Banda Neira

and Saparua, so we only needed to adjust these two observations in the surrogate gradient

to capture this information.

To approximate the arrival time of the wave, we relied on the fact that velocity is equal

to distance divided by time traveled. For the linearized shallow water equations over a

deep ocean of average depth H, the phase speed of the wave is u =
√
gH where g is the

gravitational constant, and so the approximate arrival time of the wave is T = d√
gH

where d

is the distance traveled. To calculate d we used the Haversine function hav which computes

the greatest circle distance between two points on the spherical approximation to the earth.

Hence the arrival time of a wave observed at the point (lat, long) that originated from (x0, y0)

is approximated as

T (lat, long, x0, y0) =
hav(lat, long, x0, y0)√

gH
, (3.1)

where hav(lat, long, x0, y0) calculates the greatest circle distance from the origin (x0, y0) to

(lat, long). In the end, we don’t really want to calculate T (lat, long, x0, y0) but we want

to calculate the derivative of this with respect to x0 and y0 which required calculating the

derivative of the Haversine formula which we coded up using a previously coded version of

hav from [2].

Lastly, we needed to multiply ∂T
∂x0

or ∂T
∂y0

by the derivative of observational probability

for the arrival time. The observational distribution for arrival time at Saparua was a normal

distribution centered at 45 minutes with a standard deviation of 5 minutes and for Banda

Neira the arrival time was modeled as a skew normal distribution centered at 15 minutes

with a standard deviation of 5 minutes and a skew normal constant of 2. Since it is extremely
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difficult to calculate the derivative of a skew-normal distribution, we instead estimated the

arrival time to be a normal distribution with the same mean and standard deviation and

used the derivative of the normal distribution instead (the skew parameter plays a very minor

role, particularly in evaluating the derivative of the distribution). Since the observational

distribution was not skewed by that much, we feel this is a fair generalization to make. After

combining both of these gradient calculations, the new calculation of the surrogate derivative

of the likelihood with respect to latitude and longitude is as follows

∂L

∂y0
=

∂hav
∂y0√
gH

∗ ∂obs

∂T
(3.2)

∂L

∂x0

=
∂hav
x0√
gH

∗ ∂obs

∂T
(3.3)

where L is the likelihood and obs represents the observational distributions which are stan-

dard normal distributions for both locations. From the latitude-longitude coordinates of the

earthquake centroid (x0, y0) and observation location (lat, long) we compute an estimated

arrival time, but more importantly approximate the derivative of that arrival time with re-

spect to the latitude-longitude location of the earthquake centroid. Potential concerns with

this surrogate gradient of the wave arrival time includes:

(i) We have assumed a constant velocity of the tsunami wave which is clearly invalid over

the region of propagation. The water depth is certainly not constant throughout the

region of interest.

(ii) The phase speed u =
√
gH is an excellent approximation for tsunami wave propagation

of a single wave that acts linearly, an assumption that is also not born out in practice

as earthquake induced tsunamis have multiple waves that nonlinearly interact with

each other.

(iii) The approach outlined above ignores the effect of varying coastlines. For instance, the

observation location at Banda Neira is on the west side of the island while we anticipate

that the earthquake originated on the east of the island. The method discussed here for
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approximating arrival times ignores this and acts as if the tsunami will travel straight

across the island.

(iv) We have treated the tsunami as propagating from a point source at the earthquake

centroid. In reality earthquakes create seafloor deformation that spreads across a

significantly large area which spans several hundreds of kilometers, i.e. the initial wave

disturbance is a region on the sea surface and not a single point. To correct this in

our approximate calculation above, we would need to identify the point on the initial

seafloor deformation closest to the observation point, and estimate the arrival time

from that position.

3.2.2 Actual results. The sampling efficiency of HMC depends largely on the hyper

parameters ϵ (the time step), and the total number of time steps taken for each proposal.

If ϵ is too large, the leapfrog scheme is numerically unstable and the Hamiltonian structure

is violated which leads to a low acceptance rate because there will be a higher integration

error. On the other hand, if ϵ is too small with the same number of time steps, this leads

to computational problems as it will take a long time to generate a single proposal. In

addition if ϵ is too small we risk not moving the parameters at all i.e. the proposal will

be severely restricted to be close to the current sample. If there are a small number of

time steps, then the samples appear to show a high auto-correlation between iterations, i.e.

they barely move in parameter space. If the number of time steps is large, then parameters

might start to return to their original state because they have a large trajectory length [23],

however more time steps also allows for more numerical error to accumulate which can lead

to frequent rejections. To investigate the utility of HMC, we selected two different values of

ϵ: 0.0001 and 0.00001, and three numbers of time steps: 2, 4, and 6, and then we evaluated

the acceptance ratio of HMC after collecting 200 samples for each. The results of our hyper

parameter search with different values of ϵ and the number of time steps with the same initial

conditions can be seen in Fig. 3.3.
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Figure 3.3: The acceptance rate versus the total integration time (we found that the total

integration time rather than distinct values of ϵ or total number of time steps were the

determining factor dictating the acceptance rate).

Figure 3.3 demonstrates the real problem we had with the surrogate gradient for arrival

time. The highest acceptance ratio we achieved of 34% was only achieved using a very

small integration time and corresponding value of ϵ. Pushing the integration time longer

(whether with increased ϵ or number of time steps) led to a very low acceptance rate, due

to the disparity between the true gradient and the surrogate described above. The problem

with the lowest integration time depicted in Fig. 3.3 is that although the acceptance rate

is significantly improved from the expected 23.4% for random walk Monte Carlo, such a

short integration time restricts the proposal to limited exploration of the parameter space,

i.e. the proposal is not that dissimilar from the current sample meaning that exploration

of the parameter space is still restricted. In addition (not shown in Fig. 3.3) several other
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chains that we initialized with different initial sample values and various other values of

ϵ and the number of time steps, led to rejection of all of the proposed samples, i.e. the

HMC integration was so poor that numerical differences between the true gradient and the

surrogate overwhelmed the Metropolis-Hastings adjustment.

As described earlier, the approach outlined above for the surrogate gradient relies on a

rather costly integration of the linearized adjoint data against the jax calculated gradient

of the Okada model. Although there are likely parallelization methods we can use to speed

up this calculation, in its current form, generation of each proposed sample requires several

minutes of computational time on the supercomputer (as opposed to 1-2 minutes in [2]).

This means that we were unable to collect a large number of samples, particularly with such

a poor acceptance rate in HMC. Reconstructed histograms of the observations are shown

in Fig. 3.4 for those chains we ran that successfully obtained a nonzero acceptance rate.

We note that due to the severe limitation on the number of total samples we collected, the

histograms are not very filled out, particularly when compared with Fig. 3.5 which is the

identical figure created using all 168,000 samples generated via random walk.

Although the data represented in Fig. 3.4 is much more sparse than that in Fig. 3.5,

it is clear that the linearized adjoint surrogate HMC method generates data in the ‘correct’

region of sample space, i.e. the simulated observations are a subset of those identified in [2].

Unfortunately the prohibitive cost of using the adjoint calculation in the surrogate, and the

poor approximation provided by our model of arrival time appears to make this surrogate

HMC impractical.

Chapter 4. Sensitivity Analysis

As described earlier, the linearized adjoint approach utilized here is not only useful for a

surrogate HMC method, but also provides an estimate of the gradient of the wave heights at

specific locations with respect to any/all of the Okada earthquake parameters. This gives us

a method to estimate the sensitivity of the forward model with respect to the Okada model
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Figure 3.4: Histograms of the observations generated from the successful HMC chains. The
green curves are the observational probability distributions that were created in [2] and used
in the calculation of the likelihood.

Figure 3.5: The same as Fig. 3.4 but with the data collected from [2] with all 168,000
samples.
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Figure 4.1: The value of the relative gradient for each earthquake parameter taken from 900
samples of the posterior distribution from [2]. The horizontal axis is the value of the gradient
while the height of the histogram is the frequency of that gradient value. Note in particular
the different magnitudes of the horizontal axis for each subplot.

inputs. To compute these sensitivities we analyzed the surrogate gradient for a subset of

the posterior distribution from [2]. The estimated relative gradient values (the calculated

gradient divided by the actual value of the parameter) for each of the Okada model inputs

can be seen in Fig. 4.1 where the gradient is calculated on the maximal wave height at

Banda Neira.

There are several key observations that can be made from this sensitivity analysis which

are geologically intuitive:

(i) The relative gradient of slip is clearly much larger than it is for any other earthquake

parameter. This is anticipated because larger slip values will lead to more pronounced

initial waves that propagate to the observational location.

(ii) The latitude and longitude of the earthquake centroid appear to be less significant in

determining the wave height at Banda Neira (magnitudes of the relative gradient of
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latitude are mostly concentrated around 10−8 except for a few outliers that make it

appear to be 10−5). This is because tsunamis dissipate quite slowly so that a wave

traveling a marginally longer distance will be nearly the same height when it reaches

the observational location. On the other hand, we anticipate that the arrival time

of the wave will critically depend on the earthquake location, and expect that this

indicates why the surrogate developed for the arrival time did not work well for HMC.

(iii) The relative gradient for the length of the earthquake is nearly the same level as

machine epsilon. We expect this is unique to this particular observational location,

and earthquake as the rupture of the 1852 earthquake runs primarily north-south, and

Banda Neira lies nearly directly west. According to the Okada model, variations in the

length of the earthquake would extend that rupture further north or south, but would

likely have very little effect on the wave that is observed at Banda Neira.

(iv) The width of the earthquake has a more pronounced effect on the wave height at Banda

Neira (relatively the same effect as the centroid location), which as explained above,

fits because the width of the rupture zone will push the edge of the initial disturbance

either closer to Banda Neira, or farther away.

(v) The effect of the strike was surprisingly significant relative to many of the other Okada

parameters. The strike dictates the angle from due north that the fault line is aligned.

The significance of this parameter is likely because a strike tilted more to the west

will place the earthquake and initial disturbance closer to Banda Neira which would

influence the wave height there significantly.

(vi) The most surprising (in our opinion) observation from Fig. 4.1 is the effect of the dip on

the wave height at Banda Neira. The outlier at 0.10 in this plot do skew our perception

slightly, but nevertheless the dip is clearly the most significant parameter after the slip.

The dip of the earthquake is the angle at which the fault dips horizontally relative to

being completely flat. Significant changes in the dip will certainly modify the amount
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of seafloor deformation (and hence the initial wave) produced by the earthquake, but

we are honestly surprised that the effect appears as significant as it does.

(vii) The depth of the earthquake is the depth of the centroid below the surface of the

earth. This is important because althought the slip predominantly dictates the overall

seafloor deformation, some of that motion can be dissipated over a sufficiently large

depth, i.e. the deeper earthquakes will not result in large surface displacements even

for extremely large slip values. Changes in depth do effect the initial wave, but the

changes are very slight so that the magnitude of the relative gradient depicted here is

not surprising.

(viii) The rake defines the angle relative to the strike along with the earthquake ruptures.

This means that a rake of 90◦ means the slip motion is completely perpendicular to the

fault, leading to the greatest amount of motion transferred from the earthquake to the

seafloor displacement (and hence tsunami wave). For this reason we anticipated that

the rake would have a significant impact on the wave heights of the tsunami, although

not as significant as the slip which is verified quantitatively in Fig. 4.1.

In summary, most of the observations taken from Fig. 4.1 are not surprising, and instead

reconfirm geologic intuition (the slip is the most dominant parameter etc.), however the

predicted influence of the dip parameter is surprising, and we do not yet have a good answer

for why this is the case. What is more, this is the first time (to our knowledge) that

such geologic intuition has been put on a quantitative footing, i.e. these results although

approximate through the use of the linearized adjoint give the first quantitative analysis of

the sensitivity of tsunami wave heights with respect to the generating Okada earthquake

parameters. Further investigation of these effects on other events with different geometries

and different types of earthquakes will lead to more quantitative methods to determine the

sensitivity of Geoclaw (and to actual tsunamis) to the geometry of the causal earthquake.

Unfortunately such investigations are computationally expensive (each sample in Fig. 4.1

31



required several minutes of compute time), although we will consider alternative methods to

speed up that process.

Chapter 5. Conclusions and Future Work

The understanding of Hamiltonian Monte Carlo and the adjoint method combined to give

new insights into the Bayesian estimation of past earthquakes. Our investigation with using

different values of ϵ and different numbers of time steps indicated that the real problem

was not with tuning of hyperparameters, but in the surrogate for arrival times. There are

several avenues to improve the adjoint-surrogate HMC method that will be explored in future

work, but the primary avenue for improvement is in the surrogate model used for the arrival

times. As outlined earlier, there are several steps that will be taken to improve this part of

the surrogate gradient, and there is still some potential improvements that can be made to

speed the computation up. Overall however, it appears that the linearized adjoint approach

toward a surrogate gradient is not very viable for implementing HMC for this problem.

On the other hand, the sensitivity analysis for the wave height at a specific location with

respect to the Okada parameters yielded quantitative information about the effect of the

geometry, location, and magnitude of the causal earthquake on the tsunami wave’s height.

This not only confirmed some geological intuition for the generation of tsunamis, but also led

to some potential interesting questions. We will continue to utilize the linearized adjoint in

this sense to explore the effects of the earthquake on the tsunami wave’s propagation. This

is particularly exciting as no previous efforts (to our knowledge) have arrived at quantitative

estimates for these same parameters.
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