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Abstract

Image matting is the process of extracting a soft segmen-
tation of an object in an image as defined by the matting
equation. Most current techniques focus largely on com-
puting the alpha values of unknown pixels and treat com-
putation of the foreground and background colors as an af-
terthought, if at all. However, for many applications, such
as compositing an object into a new scene or deleting an ob-
ject from the scene, the foreground and background colors
are vital for an acceptable answer. We propose a method of
solving for the foreground, background, and alpha of an un-
known region in an image simultaneously. This allows for
novel constraints to be placed directly on the foreground
and background as well as on alpha. We show through both
visual results and quantitative measurements on standard
datasets that this approach produces more accurate fore-
ground and background values at each pixel while main-
taining competitive results on the alpha matte.

1. Introduction
The goal of image matting is to produce a soft segmen-

tation of an image I by computing the relative contribution
of foreground F and background B at each pixel according
to the equation

I = αF + (1− α)B (1)

where α is the opacity of the foreground. If I is a three-
channel color image, the matting formula yields seven un-
knowns with only three equations, making the solution
greatly underconstrained. Most techniques constrain the
system with a user-defined trimap (which identifies known
foreground and background regions and unknown regions)
as well as additional terms to produce an energy function to
optimize or a system of equations to solve.

Matting is important for image and video editing when
one wishes to select an object exactly for editing. While
some applications may only require an alpha value for the

selected object, such as perhaps applying a filter that tails
off as alpha drops to zero, many others require both the al-
pha value and the extracted foreground and/or background
color. A prime example of this is composition, where a se-
lected object may have a noticeable “halo” around the ob-
ject when placed on a different-colored background if the
background colors are still maintained in the foreground.
Another such task is object deletion, where the background
colors are needed to restore the image.

Interestingly, most existing matting algorithms do not
attempt to solve for the foreground and background col-
ors, focusing on solving for alpha exclusively [4, 7, 9,
10, 14, 15, 17, 19]. Such solutions still result in an un-
derconstrained problem, with three equations and six un-
knowns, which some methods attempt to solve as a post-
process [1, 6, 12, 16]. Of course, given a trimap, no infor-
mation is initially known about alpha, but only about fore-
ground and background. Some methods will constrain the
foreground and background colors [6, 7, 9, 12, 14, 17] or
begin with an initial estimate of them [9, 10, 15, 17], but
few attempt to solve for them alongside alpha.

In this paper, we introduce a method for solving the fore-
ground, background, and alpha simultaneously and make
the following three contributions. First, by optimizing over
the foreground and background as opposed to only address-
ing them as a postprocess or not at all, we produce more ac-
curate foreground and background values. Second, we pro-
duce alpha matte results that are competitive with the state-
of-the-art. Third, we contribute several new ideas regard-
ing the additional terms used to solve the matting equation.
These include a novel color term that affects the foreground
and background directly, as well as an important observa-
tion and new terms involving the gradient of the matting
equation and smoothness assumptions.

2. Related Work

Despite the matting problem consisting of seven un-
knowns per pixel, the majority of matting algorithms fo-
cus only on computing one unknown, the alpha channel.
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Bayesian Matting [3], an exception to this, computes fore-
ground, background, and alpha to provide a complete solu-
tion to the matting equation. The colors of the known fore-
ground and background are represented using Gaussians,
and the unknown values are computed by an optimization
over this information and the matting equation using max-
imum a posteriori estimation. While this approach com-
putes the foreground and background, the imprecise repre-
sentation of the known color values does not lead to robust
results in the general case.

Easy Matting [5] also computes the foreground and
background at each unknown pixel but limits the possible
color to one of twenty samples, severely limiting the range
of possible values. The alpha value is then computed using
the matting equation and a smoothness prior on alpha. Sim-
ilarly, Wang and Cohen [18] presuppose that the foreground
and background belong to a small, unspecified sample set,
and then compute an alpha using the matting equation and
an alpha smoothness prior. Unfortunately, these methods
often oversmooth the matte due to the alpha smoothness
prior, and the limited freedom in foreground and back-
ground values limits their results.

While few algorithms explicitly optimize over the fore-
ground and background, many do constrain those values to
some extent. An early example of this is seen in the work
of Ruzon and Tomasi [12]. The foreground and background
are modeled as Gaussians, and the assumption is made that
the color at the unknown pixels comes from a distribution
between these Gaussians. An alpha matte is then computed
by maximizing the probability of the image color on possi-
ble intermediary distributions.

The closed-form solution of Levin et al. [6] constrains
the foreground and background colors in a local neighbor-
hood to each be a linear combination of two colors respec-
tively using the matting Laplacian. This allows them to
eliminate the foreground and background colors from the
matting equation and solve directly for alpha. While this
works well in many cases, it fails when the color model
may not be well represented by their linear model.

The elegant solution in [6] has inspired several improve-
ments. Spectral matting [7] extends the framework to seg-
ment multiple layers without the use of a trimap or user
interaction. The variant in [14] also extends this framework
to computing mattes of multiple layers. Singaraju et al. [13]
introduced an improvement to the matting Laplacian that
handles cases where the colors in a neighborhood may be
represented by a point rather than a line.

Another example of a paper that applies constraints to
the foreground and background without solving for them is
the work of Zheng and Kambhamettu [19]. They approach
the matting problem in a semi-supervised machine learning
paradigm. This allows them to model the matting equation
using both linear and non-linear equations, and is used in

conjunction with a smoothness prior on alpha to compute
an alpha matte.

Several other approaches include an initial estimate of
the foreground and background in their computation but do
not seek to improve those values. In Robust Matting [17] an
estimate of the foreground and background is computed by
sampling along the nearest edge in the known foreground
or background regions. This information is used to form
a sparsity bias that encourages most of the unknown pix-
els to take the value of 0 or 1. The sparsity bias is used in
conjunction with the foreground and background smooth-
ness constraint of [6] to produce an alpha matte. While this
method works well in many cases, it can fail when its initial
estimation of foreground and background is not accurate.

Rhemann et al. [9] formulate matte computation simi-
lar to [17] but with several improvements. The initial fore-
ground and background estimation is improved by taking
samples from known regions that are close to the pixel in
question using a geodesic distance measure. A hard seg-
mentation is also used to help formulate the sparsity prior.
Robust Matting is also improved to handle high resolution
images through interactive trimap generation in [10].

Poisson Matting [15] computes an estimate of the differ-
ence of the foreground and background colors in grayscale.
This estimate is updated iteratively following a computa-
tion of the matting equation using Poisson equations un-
der the assumption that the foreground and background are
smooth. The simplified method of updating the foreground-
background difference in grayscale and the smoothness as-
sumption on the foreground colors prohibit good results
without excessive user interaction.

Another approach to creating an alpha matte is to forgo
the matting equation and compute alpha using other means.
Grady et al. [4] equates alpha to the probability that a ran-
dom walker will reach a given pixel from the known fore-
ground and background regions. Bai and Sapiro [1] com-
pute alpha as a ratio of geodesic distances from a pixel to
the known foreground and background regions. While these
approaches do well in some cases, it is difficult to achieve
good results over a wide range of problems without a more
explicit representation of the matting equation.

Several methods compute the foreground and back-
ground as a postprocess after computing alpha. Ruzon
and Tomasi [12] solve for the foreground and background
by interpolating the means of their respective Gaussians.
Levin et al. [6] minimizes an equation combining the mat-
ting equation and a smoothness prior on the foreground and
background. Soft Scissors [16], an interactive extension of
[17], computes the foreground using a random walk. Bai
and Sapiro [1] solve for the foreground and background by
randomly sampling the known areas looking for values that
minimize the matting equation.
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3. Methods
We approach the matting problem as an energy mini-

mization problem over the seven values for each pixel in
the unknown region of the trimap. By optimizing not just
over alpha, but also over the foreground and background,
we may introduce additional regularizations to the prob-
lem that are otherwise difficult or impossible. This leads
to improved estimates of foreground and background colors
compared to existing algorithms.

3.1. Problem formulation

We formulate our solution to the matting equation as an
energy minimization problem of the form

E(X) =
∑
p∈Ω

|U |−1∑
i=0

λiUi(p) +
∑

(p,q)∈N

|V |−1∑
i=0

γiVi(p, q) (2)

where X is the set of 7-tuples (Fr, Fg, Fb, Br, Bg, Bb, α)
corresponding to the foreground, background, and alpha
values at each pixel p in the unknown region Ω, U is the
set of all unary terms being minimized, V is the set of
all pairwise terms being minimized, N is the set of all
pairs of tuples whose corresponding pixels are adjacent (4-
connected), and λi and γi are weighting factors.

Since our formulation minimizes over foreground, back-
ground, and alpha, we may include terms that affect any of
these values. The remainder of this section details the terms
we use in Equation 2 and the resulting optimization.

3.2. Matting Equation

Adherence to the matting equation (Equation 1) is main-
tained by

U0(p) = ||I(p)− [α(p)F (p) + (1− α(p))B(p)]||22 (3)

where I(p) is the color of image I at pixel p (and similarly
for F , B, and α).

3.3. Matting Derivatives

We can constrain the solution not only with respect to the
matting equation, but also with respect to the derivatives of
the matting equation:

∇I = α∇F + (1− α)∇B + (F −B)∇α (4)

We define the derivative between adjacent pixels p and q (in
the x and y direction) as ∆pqIj = Ij(p) − Ij(q), where
Ij is an image consisting of only the jth channel of I (and
similarly for F and B). We then derive the following term:

V0(p, q) =
∑

j∈(r,g,b)

[∆pqIj−α(p)∆pqFj − (1− α(p))∆pqBj

−(Fj(p)−Bj(p))∆pqα]2 (5)

3.4. Smooth Matting Gradients

While Equation 1 is known to be true, it has an infinite
number of solutions, corresponding to any line segment in
the color cube that passes through the color at the pixel.
The matting derivative of Equation 4 is derived from Equa-
tion 1 and is insufficient to completely constrain the prob-
lem. Because of this, additional terms are needed. One
common practice in current methods is to add a smooth-
ness assumption on the foreground, background, or alpha.
In other words, one or more of the terms∇F ,∇B, and∇α
are assumed to be zero. The effect of this is to assume that
the gradient of the image is not affected by gradients in the
term that was set to zero.

Differing algorithms make different decisions about
which gradient to set to zero. For example, several algo-
rithms make the assumption that the foreground and back-
ground values are locally smooth. Poisson Matting [15]
does so by directly modifying Equation 4 by setting ∇F
and∇B to zero, leaving

∇I = (F −B)∇α (6)

Smoothness assumptions on foreground and background
are also made in Levin et al. [6] and other works incorporat-
ing its matting Laplacian [7, 9, 10, 13, 14, 17], although the
smoothness assumption in [6] is admittedly more complex
and elegant than that of Equation 6.

On the other hand, other papers, such as Easy Mat-
ting [5], Wang and Cohen [18], and Digital Matting [19]
make the opposite assumption, that the alpha is smooth (set-
ting∇α to 0), thereby minimizing

∇I = α∇F + (1− α)∇B (7)

It is interesting that different methods simplify Equa-
tion 4 to make opposite assumptions. Of course, in places
where the change in alpha values is primarily driving the
image gradient, ∇F = ∇B = 0 is a better assumption to
make. In areas where α is 0 or 1, or where there is smooth
transparency, ∇α = 0 is the better assumption. In order to
apply each of these assumptions where they are effective,
we could instead make the smoothness assumption

∇I =

 α∇F if ∇F 7→ ∇I
(1− α)∇B if ∇B 7→ ∇I
(F −B)∇α if ∇α 7→ ∇I

(8)

where ∇F 7→ ∇I indicates that the gradient at I is due
primarily to the gradient in F . This leads to a term that
encourages smoothness in foreground, background, and al-
pha where there should be smoothness, and encourages the
gradient to be proportional to the image where it should be
proportional:

V1(p, q) =


∑
j∈(r,g,b) g

F
j (p, q) if ∇F 7→ ∇I∑

j∈(r,g,b) g
B
j (p, q) if ∇B 7→ ∇I∑

j∈(r,g,b) g
α
j (p, q) if ∇α 7→ ∇I

(9)
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where (using the notation from Equation 5)

gFj (p, q) = (∆pqIj − α(p)∆pqFj)
2 + (∆pqBj)

2 + (∆pqα)2 (10)

gBj (p, q) = (∆pqIj − (1− α(p))∆pqBj)
2 + (∆pqFj)

2 + (∆pqα)2

(11)
gαj (p, q) = (∆pqIj−(Fj(p)−Bj(p))∆pqα)2+(∆pqFj)

2+(∆pqBj)
2

(12)
Equations 10, 11, and 12 are just discretizations of Equa-
tion 4 encouraging ∇B = ∇α = 0, ∇F = ∇α = 0, and
∇F = ∇B = 0, respectively.

To decide which of the gradients is causing the image
gradient, we use the alpha values at pixels p and q. For some
threshold T , if α > T for both p and q, then we assume
∇F 7→ ∇I . If α < (1 − T ) for both p and q, then we
assume∇B 7→ ∇I . Otherwise, we assume∇α 7→ ∇I .

3.5. Color

The color term encourages the foreground and back-
ground colors to be similar to the colors in the known fore-
ground and background areas of the image respectively.
This is achieved by imposing a cost on the foreground
(background) color based on the squared distance in color
space to the nearest pixel in the foreground (background) in
a combined color and position space,

U1(p) = ||F (p)−IFnear(p)||2 + ||B(p)−IBnear(p)||2 (13)

where IFnear(p) is the color of the nearest pixel to p in the
known foreground region of I and IBnear(p) the nearest pixel
in the known background. To compute the nearest pixel,
we calculate a distance for the foreground and background
pixels respectively to all other possible x,y,r,g,b locations
using the Maurer distance transform [8].

3.6. Sparsity in α

In most images, the number of mixed pixels is far less
than the number of pixels that belong completely to fore-
ground or background (pixels whose α = 0 or 1). Because
of this, it is reasonable to bias pixels toward having alpha
values of 0 or 1. Our term to bias alpha toward 0 or 1 is
given by

U2(p) =

 (1− α)h(I, p, B, F ) if h(I, p, F,B) ≤ Th
αh(I, p, F,B) if h(I, p, B, F ) ≤ Th
0 otherwise

(14)
where

h(I, p, F,B) =
dist(I, p, F )

dist(I, p, F ) + dist(I, p, B)
(15)

dist(I, p, F ) = ||I(p) − IFnear(p)||2 and Th is a threshold.
Here we use a value of Th = 0.01. This term introduces the
assumption that if the color models indicate that the color
at a pixel is distinctly foreground or background only (if it

has a low squared distance to foreground and high to back-
ground, or vice versa), then that pixel likely has an alpha
value near 1 or 0 respectively.

3.7. Optimization Method

Many previous matting algorithms have cost functions
that are specifically designed to be easy to minimize. In our
formulation, we are more concerned with including the best
terms possible to allow for the simultaneous computation of
the foreground, background, and alpha. Unfortunately, this
approach results in a difficult function to optimize.

We use gradient descent in order to minimize Equation 2.
Because our objective function is not convex, we can easily
fall into local minima while optimizing the energy function.
To address this, we add a momentum term to help overcome
shallow local minima. We also borrow an idea from grad-
uated non-convexity [2]. These methods attempt to min-
imize over a non-convex objective function by smoothing
the function such that it is (more) convex, finding a mini-
mum, and then iteratively using that minimum to initialize
a less smooth form of the function. We achieve a similar
end by changing the matting equation weight λ0 in order to
allow for a smoother function initially before converging on
the weighted terms we desire. Although the matting equa-
tion term (Equation 3) is extremely important to finding the
correct solution, it may be minimized to 0 at infinitely many
values of F , B, and α, and so produces many local min-
ima. By reducing λ0 near the beginning of the gradient de-
scent, we can more easily avoid local minima created by
this term. Specifically, we use λ0 = 0.25 initially and in-
crement it in steps until λ0 = 4. We fix the other parameters
at λ1 = 1, λ2 = 0.4, γ0 = 0.2, γ1 = 0.8. We also increase
the threshold T used for computing the primary gradient
in Equation 9. We use a T = 0.6 initially, and increment
it at until T = 0.99. The lower initial value helps better
compute F and B, and the later higher value enforces more
smoothness in α once the foreground and background are
better estimated. Note that we constrain F , B, and α to the
range [0, 1] at each iteration.

To initialize the gradient descent, we compute an ini-
tial estimate of the foreground, background, and alpha val-
ues. We initialize F and B by sampling the known re-
gions similar to [17]. We initialize α by computing the
ratio of the distance to the nearest foreground and back-
ground color for a given pixel as computed by Equation 15
(α = 1 − h(I, p, F,B)). This distance metric is similar in
spirit to those in [1, 4].

4. Results

We evaluate our matting technique using the two datasets
introduced in [11]. The first dataset, which we will refer
to as the public dataset, consists of 27 input images and

2160



Algorithm MAD MSE Gradient
Our Method 0.017 0.0066 0.016
Closed-Form Matting [6] 0.019 0.0081 0.035
Robust Matting [17] 0.037 0.0177 0.032

Table 1. Average error in α on public set from [11] for our method,
Closed-Form Matting [6], and Robust Matting[17].

trimaps, and has the ground truth alpha mattes and ground
truth foreground images publicly available. The second
dataset, the private dataset, consist of 8 images which are
overall more difficult than the public dataset, and their ac-
companying trimaps only. The foreground, background,
and alpha ground truth images of the private dataset are not
available, although one may submit their alpha mattes to
www.alphamatting.com to obtain an error score over four
different metrics.

4.1. Alpha Accuracy

Table 1 shows the error in α on the public dataset
from [11] for our algorithm, Closed-Form Matting [6] us-
ing their publicly-available code, and Robust Matting [17]
using our own implementation. The mean absolute differ-
ence (MAD), mean squared error (MSE), and gradient er-
ror (which detects errors in the gradient and is correlated
to what humans visually perceive as correct as explained
in [11]) averaged over all images in the dataset are shown.
Our algorithm outperformed Closed-Form Matting and Ro-
bust Matting on all three measures. We also achieved a
lower gradient error than both Closed-Form Matting and
Robust Matting on all examples individually.

Tables 2 and 3 show our results on the private dataset
for the sum of absolute difference and the mean squared er-
ror respectively as computed by submitting our results to
www.alphamatting.com. For size reasons, only a subset of
the tables are shown. On this more difficult dataset, we per-
form comparable to the current best algorithms in generat-
ing an alpha matte, while only one of these algorithms, [6],
computes foreground and background colors (and does so
as a postprocess). Note the magnitudes of the values in Ta-
bles 2 and 3 differ from those in Table 1 because they are
scaled at www.alphamatting.com for presentation purposes.

A comparison of our technique to several others is shown
in Figure 1 on the “Plant” example from the private dataset.
Our algorithm is able to cleanly matte the leaves while
maintaining the “holes” through which the background
shows. Additional examples of alpha mattes generated by
our algorithm are shown in Figure 3.

4.2. Foreground/Background Accuracy

A particular focus of our algorithm is achieving high ac-
curacy for the foreground and background at each unknown
pixel. To determine accuracy of our foreground estimation,

Algorithm MAD MSE
Our Method 0.063 0.005
Closed-Form Matting [6] 0.082 0.016
Bayesian Matting [3] 0.11 0.02
Robust Matting [17] 0.16 0.031

Table 4. Foreground alpha product (αF ) error over public dataset
from [11]. The mean absolute difference (MAD) and mean
squared error (MSE) are shown.

we compare our method to several others using the true
foreground colors of the public dataset in [11]. Because the
foreground colors were only provided in a raw 16-bit format
without gamma correction and white balance, we manually
set the gamma and white balance of the foreground images
and their corresponding raw 16-bit input images to produce
input images similar in color appearance to the standard in-
put images of the public dataset.

We compare our foreground colors to those generated
simultaneously with alpha by Bayesian Matting [3], those
generated as a postprocess by Closed-Form Matting [6], and
those generated as an initialization to Robust Matting [17].
The error is computed by taking the difference of the fore-
ground color multiplied by the ground truth α, since pixels
with a high α are more important visually when composit-
ing.

The results are shown in Table 4. The MAD and MSE
averaged over all 27 images are shown for each algorithm.
Our algorithm outperformed all other methods on 18 of the
27 images using the MAD as a metric, and 20 of the 27
using MSE.

Several examples of foregrounds and backgrounds gen-
erated by our algorithm are shown in Figure 2 in compari-
son to those generated by Closed-Form Matting [6]. The re-
gions being shown in each close-up are indicated by red and
blue boxes corresponding to foreground and background re-
spectively. In each example, the foreground is multiplied by
α and the background by (1− α) using the α computed by
the respective algorithm. The foreground and background
colors produced by our method appear more plausible, con-
firming the quantitative results in Table 4. For example, this
is easily seen in the top example of a plant, where the leaves
of the plant appear blue and the spaces in between the leaves
appears green in the Closed-Form Matting results, but ap-
pear more correct in our results. Additional examples are
shown in Figure 3.

Unfortunately, only the true foreground colors from the
public dataset of [11] are available, so a quantitative evalua-
tion of this dataset cannot be performed for the background
colors. Based on the visual appearance, we predict that the
accuracy of the background would be similar to that of the
foreground for each of these algorithms. For example, note
how in Figure 2 our method appears to better reconstruct
the occluded backgrounds.
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Algorithm Rank Troll Doll Donkey Elephant Plant Pineapple Bag Net
(of 11) small large small large small large small large small large small large small large small large

Our Method 3.8 16.9 27.1 10.4 14.2 6.5 8.0 3.4 8.3 6.4 8.9 6.8 11.0 25.9 28.3 40.7 51.2
Rhemann [9] 1.9 14.9 24.5 6.7 9.5 4.6 6.1 2.6 5.4 7.5 9.9 6 10.1 26.1 26.7 23.8 25.6
Closed-Form [6] 2.8 12.7 21.9 5.9 8.5 4.6 6.1 2.2 4.6 9.3 12.1 8.3 14.9 34.2 32.4 26.5 25.7
Robust [17] 3.8 17.3 28.4 10.1 16.9 4.8 6.5 2.8 7.3 7.3 14 6.8 14.6 22.7 26.1 34.4 37
High-Res [10] 4.5 18.6 25.8 8.6 14.1 5.0 6.2 2.5 8.3 7.8 14 8.5 18.1 35.3 38.1 38.7 54.6
Random Walk [4] 6.5 17.9 20.3 11.3 15.6 5.8 7 3.4 6.7 13.1 22.1 12.3 18 44.1 43.5 75.1 81.8
Geodesic [1] 7.3 26.9 38.5 14.2 16.5 11.7 14 7.6 15.1 12.8 16.7 7.3 12.1 37.3 37.4 48.6 50

Table 2. Sum of absolute difference on private dataset from [11]. The table includes the top seven of eleven algorithms and data from two
of the three trimaps. Iterative BP [18], Easy Matting [5], Bayesian Matting [3], and Poisson Matting [15] finish out the rankings.

Algorithm Rank Troll Doll Donkey Elephant Plant Pineapple Bag Net
(of 11) small large small large small large small large small large small large small large small large

Our Method 4.1 0.9 2.6 0.8 1.2 0.5 0.7 0.2 0.7 0.5 0.7 0.6 1.0 1.9 2.1 3.3 4.5
Rhemann[9] 1.9 0.8 2.4 0.3 0.5 0.3 0.4 0.1 0.3 0.7 0.7 0.4 0.7 2.0 1.9 1.3 1.5
Closed-Form[6] 3.1 0.5 1.8 0.3 0.4 0.3 0.4 0.1 0.3 1.2 1.4 0.8 1.6 3.0 2.7 1.3 1.2
Robust[17] 3.5 1.1 2.8 0.7 1.5 0.3 0.4 0.1 0.5 0.5 1.2 0.5 1.5 1.5 1.8 2.4 2.3
High-Res[10] 4.2 1.2 2.2 0.5 1.1 0.3 0.4 0.1 0.7 0.6 1.2 0.8 2.0 3.2 3.4 2.6 4.3
Iterative BP [18] 6.4 1.7 2.6 1.5 2.6 0.5 0.7 0.2 0.8 1.1 2 1 2 2.8 3.3 3 3.8
Random Walk [4] 6.7 1 1.1 1 1.7 0.5 0.6 0.2 0.4 2 3.4 1.6 2.3 4.6 4.4 8.3 9.4

Table 3. Mean squared error on private dataset from [11]. The table includes the top seven of eleven algorithms and data from two of the
three trimaps. Geodesic Matting [1], Bayesian Matting [3], Easy Matting [5], and Poisson Matting [15] finish out the rankings.

Original Close up Our Method Rhemann [9] Closed-Form [6]

Trimap Robust [17] High-res [10] Bayesian [3] Easy [5]

Our Method Geodesic [1] IterativeBP [18] Poisson [15] RandomWalk [4]
Figure 1. The left column shows our results on the “Plant” example from [11]. The remaining columns show a comparison of our technique
to several others on a region of this image.

5. Conclusion

We have introduced a new method for computing a so-
lution to the full matting equation for a given image by si-

multaneously estimating the foreground, background, and
alpha at each unknown pixel. We do so by including addi-
tional terms to affect the foreground, background, and alpha
values, formulating the terms into a single energy equation,
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Image Our Fg Closed-Form [6] Fg Our Bg Closed-Form [6] Bg
Figure 2. Comparison of the foreground and background generated by our method and Closed-Form Matting [6]. The foreground is
multiplied by α and the background by (1 − α) using the α computed by the respective method. The red and blue boxes in the original
images indicate the close-up areas for the foreground and background respectively.

and minimizing that equation using gradient descent with
momentum and a partial form of graduated non-convexity.
This focus on estimating not just alpha but also the fore-
ground and background allows us to optimize over explicit
constraints on the foreground and background, which most
current algorithms that optimize only over alpha cannot do.
Our results are comparable to the best current algorithms for
computing the alpha matte and show superior performance
in computing the foreground colors in all tests performed.

While this work improves foreground and background
estimation for mattes and provides competitive results in
computing alpha, our energy function is complex and dif-
ficult to optimize. Future work could improve this by incor-

porating more advanced optimization techniques or by sim-
plifying the terms to allow for easier minimization. Addi-
tional or improved terms could also be added to potentially
improve results.
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