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abstract

A Method of Reconstructing Historical Destructive Landslides Using Bayesian Inference

Raelynn Wonnacott
Department of Mathematics, BYU

Master of Science

Along with being one of the most populated regions of the world, Indonesia has one of the
highest natural disaster rates worldwide. One such natural disaster that Indonesia is par-
ticularly prone to are tsunamis. Tsunamis are primarily caused by earthquakes, volcanoes,
landslides and debris flows. To e↵ectively allocate resources and create emergency plans we
need an understanding of the risk factors of the region. Understanding the source events of
destructive tsunamis of the past are critical to understanding the these risk factors.

We expand upon previous work focusing on earthquake-generated tsunamis to consider
landslide-generated tsunamis. Using Bayesian inference and modern scientific computing we
construct a posterior distribution of potential landslide sources based on anecdotal data of
historically observed tsunamis. After collecting 30,000 samples we find a landslide source
event provides a reasonable match to our anecdotal accounts. However, viable landslides
may be on the edge of what is physically possible. Future work creating a coupled landslide-
earthquake model may account for the weaknesses with having a solely landslide or earth-
quake source event.

Keywords: Bayesian statistics, Markov chain Monte Carlo, inverse problems, earthquakes,
tsunamis, seismic hazard analysis, submarine landslides
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Chapter 1. Introduction

On Friday, Sept. 28, 2018 a 7.5 magnitude earthquake was recorded in Central Sulawesi

resulting in a tsunami. The tsunami was expected to be around 9.8 ft, 3 meters, high upon

reaching Palu, the capital of Central Sulawesi. However, the narrow geography of the bay

caused a nearly 20 ft, 6 meter, wave to hit the city of Palu. Local warnings were not issued

and many were still on the beach as the tsunami struck. This tsunami ended up killing 1.5

million people. Indonesia is particularly prone to tsunamis and there is a strong need to

understand the potential natural hazards of the region so that tsunami wave heights can be

estimated and the proper warning systems put in place.

The majority of tsunamis in Indonesia are believed to be caused by earthquakes. One

of the world’s largest subduction zones is located along the Band Arc region of Indonesia.

Subduction zones generate the world’s largest earthquakes and the majority of large, destruc-

tive tsunamis [1, 2]. Despite the prominence of earthquake-generated tsunamis worldwide,

accurate data for the years before the advent of the Cold War is not available due to a

lack of instrumentation. Hence, the causes of some of the largest historical tsunamis are

largely unknown, although they are most frequently hypothesized to stem from uplift from

a significant earthquake. We focus on submarine landslides which are the second leading

cause for tsunamis [3]. An analysis of landslide generated historical tsunamis is especially

relevant as submarine landslides were not fully recognized as a means of tsunami generation

prior to 1998. The 1998 Papua New Guinea event provided clear evidence of a landslide gen-

erated tsunami [4]. After the acceptance of submarine landslide tsunami generation, many

tsunamis were reclassified as landslide generated. Among these were the 1929 Grand Banks

tsunami [5], the 1979 Nice tsunami [6], and the 8150 BP Storegga landslide tsunami [7].

However, older historical records were written at a time when submarine landslides were not

recognized as possible triggers and are potentially biased [8, 9].

Submarine landslides come in many shapes and forms. Slides can start on steep slopes
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down to slopes of 1 degree. Average slide velocities range from 10 to 150 m/s (36 to

540km/hr) [10]. These slides can move large volumes of mass hundreds of kilometers. An

extreme landslide event, the Storegga landslide, o↵ the coast of Norway had a size of 5,600

km3. This generated a tsunami in the North Atlantic Ocean with waves reacing 29km inland

on several islands [7].

Additionally, an analysis of submarine landslide generated tsunamis in Eastern Indonesia

is necessary as the Banda Arc region is home to the Weber Deep. Excluding trenches, this

is the deepest point of the ocean in the world with a maximum depth near 7.2 km. This is

thought to be created by a detachment fault. This fault created a gap of over over 60,000 sq

km in the ocean floor [11]. This fault is called the Banda Detachment and is located between

the volcanic and seismically active arcs. Slump scars have been measured along the Banda

Detachment leading into the Weber Deep suggesting a frequent occurrence of landslides [11].

We focus on a tsunami occurring in 1852 along the Banda arc in Indonesia. This tsunami

occurred before modern instrumental records so there is no seismometer reading to verify the

magnitude and location of the potentially causal earthquake. However, an understanding

of historical events, such as this one, is crucial to natural hazard assessment where the

relevant temporal scales are hundreds to thousands of years [12]. We follow a novel approach

presented by Ringer, et al.’s [12] group. This applied Bayesian inference to reconstruct the

source earthquake parameters based on anecdotal accounts for this tsunami. We expand

upon this approach to examine the hypothesis of a landslide generated tsunami for the same

event.

Chapter 2. Background

2.1 Inverse Problems

The reconstruction of historical tsunamis is an inverse problem. Inverse problems arise in

a large number of areas including medical imaging, remote sensing, signal processing, and
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geosciences. In general, an inverse problem is any problem which seeks to determine pa-

rameters or initial conditions of a system based on observed measurements and the e↵ect

those observed values have on the system. These measurements most often are influenced by

noise that can dilute the signal and/or provide extraneous information that is inconsistent.

‘Solving’ an inverse problem requires carefully inverting the parameter to signal map which

is most frequently not a straightforward process. On the other hand, the forward problem

will take a known set of parameters and initial conditions and evolve them forward to obtain

observable outputs. While certainly not trivial, forward problems are typically much more

approachable than inverse problems. In particular most models can have several combina-

tions of parameters and initial conditions that can generate an identical set of observational

outputs, implying that the inverse problem is ill-posed, i.e. one set of observations can

be produced by multiple di↵erent sets of input parameters so that solutions of the inverse

problem are rarely unique.

Regularization techniques provide one way to deal with the ill posedness of inverse prob-

lems. To introduce this we examine the equation

Ax ⇡ y (2.1)

where H1 and H2 are seperable Hilbert spaces and A : H1 ! H2 is a compact operator. We

know,

1) If a solution exists, it is unique if and only if y 2 R(A)

2) The solution is unique if and only if Ker(A) = 0

Also, small errors (stochastic noise) in y may cause large errors in x. If either of these

conditions, 1 or 2, is not met then the inverse problem (finding x from observing y) is ill-

posed, whereas the forward problem (computing Ax for any given x) is always well defined.

We look at one regularization technique, Tikhonov regularization, which provides a solu-

tion to alleviate the two potential issues (existence and uniqueness of x given a specific y).

As defined in [13]:

Definition 2.1. Let � > 0 be a given constant (typically small). The Tikhonov regularized
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solution x� 2 H1 is the minimizer of the functional

F�(x) = ||Ax� y||2 + �||x||2,

provided that a minimizer exists. The parameter � > 0 is called the regularization parameter.

A common example of Tikhonov regularization is regularized least squares. Let A be

an m ⇥ n matrix and let b be a vector in Rn. The least squares problem can be described

as argminx ||Ax� b||2. When this system is underdetermined the least squares problem has

infinitely many solutions and is ill posed. Adding a regularization term gives the problem

argminx ||Ax � b||2 + �||x||2 which does have a unique solution and approaches the original

problem as � ! 0.

Classical regularization techniques such as Tikhonov regularization provide a solution in

the form of a single estimate. A further description of regularization techniques can be found

in [13].

2.2 Stochastic or Bayesian Methods

In an attempt to consider the uncertainty involved in inverse problems, stochastic or Bayesian

methods attempt to represent uncertainties using random variables. Bayes’ rule is at the

heart of most of these methods

p(✓|d) = p(d|✓)p(✓)
p(d)

. (2.2)

We seek a posterior distribution, p(✓|d), which in our case summarizes what we know about

the parameters ✓ of a source event given observational data, d (in our specific application

these observations are the wave heights of a historical tsunami at various locations). We are

unable to compute p(d) =
R
p(d|✓̂)p(✓̂)d✓̂ as we cannot evaluate the probability of the ob-

served tsunami across all potential source events. Instead we seek to find p(✓|d) / p(d|✓)p(✓).

To evaluate our likelihood, p(d|✓), we create a forward model which takes our source event

parameters (a model of the submarine landslide) and simulates a resultant tsunami. We

then look at how closely our simulated tsunami matches the data from the historical ac-
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count, assigning a likelihood probability to each such simulation. The prior distribution p(✓)

incorporates expert knowledge about the source event (set of parameters that describe the

submarine landslide). This primarily incorporates information about what is geographically

feasible. In Section 5 and 6 we go over the likelihood and prior in more depth for land-

slide generated tsunamis. For a further discussion of the prior and likelihood for earthquake

generated tsunamis see [12].

2.2.1 Variational Inference. Variational Bayesian methods provide a stochastic ap-

proach and are often used on otherwise intractable posterior distributions. These methods

assume the posterior distribution comes from a specific family of distributions (typically pa-

rameterized by some finite set of parameters). This assumption allows the inference problem

to be re-cast as an optimization problem where the optimal parameters are sought which

allow the posterior to most closely approximate the observed data. Variational inference

methods most commonly use Kullback-Leibler divergence to measure the di↵erence between

distributions. We call a realization of the family of distributions q�(✓). In general the goal

is to choose a variational family that is simple enough for e�cient optimization but can cap-

ture a density close to the true posterior p(d|✓). Minimizing the KL divergence between the

variational family and the posterior is equivalent to maximizing the Evidence Lower Bound

(ELBO) with respect to q�(✓)

ELBO = Eq�(✓)[log p(d|✓)� log q�(✓)]. (2.3)

Details on the derivation of the Evidence Lower Bound can be found in [14].

2.2.2 Sampling Methods. We choose to compute the posterior distribution using sam-

pling methods to avoid the bias that can be introduced by hypothesizing a certain family of

distributions will model the desired posterior. Markov chain Monte Carlo (MCMC) meth-

ods provide a way to sample from the posterior distribution, p(✓|d). Using this method we

construct a Markov chain whose stationary distribution will converge to p(✓|d) in the limit
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of large samples. Large but finite sampling from the Markov chain will yield a reasonable

approximation of p(✓|d).

We construct the Markov chain using the Metropolis-Hastings algorithm [15, 16]. This

is an iterative algorithm. It creates a Markov chain with transition probability, outlined in

steps ii and iii below, which ensures p(✓|d) satisfies the detailed balance equations and is the

stationary distribution of the chain. Conveniently, this method only requires the evaluation

of the probability density function up to a constant of proportionality (no need to compute

the denominator in Bayes’ Theorem). This is necessary in our case as we are unable to

compute the normalization constant p(d).

A brief overview of the Metropolis-Hasting algorithm is provided here:

(i) To begin, we choose an initial sample, ✓0.

(ii) Using a proposal distribution, q(·|✓t), we propose a potential sample ✓t+1, given our

current sample ✓t.

(iii) New samples are accepted or rejected according to the acceptance probability ↵, defined

in Algorithm 1, which ensures we achieve the desired stationary distribution [13].

(iv) Steps (ii) and (iii) are repeated until the desired number of samples is drawn from the

distribution.

Algorithm 1 Metropolis-Hastings

for t in 1, 2, ... do
Draw x ⇠ q(.|✓t)
Set ↵ = min(1, p(x|d)p(x)

p(✓t|d)p(✓t) ⇤
q(✓t|x)
q(x|✓t))

Draw u ⇠ unif(0, 1)
if u  ↵ then

✓t+1 = x
else

✓t+1 = ✓t
end if

end for
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In our case, we choose q(·|✓t) to be Gaussian. This is a form of random walk MCMC as

our proposal distribution is symmetric. Since q(✓t|x) = q(x|✓t) we have ↵ = min(1, p(x|d)p(x)
p(✓t|dp(✓t)).

2.3 Mixture Models

Mixture models are probabilistic models that consist of a combination of distributions. Mix-

ture models are examples of latent variable models. A latent variable model occurs when

P(Z), for a random variable Z, is really a marginal distribution, P(Z,X), where X is a latent

or unobserved random variable. Here, X ⇠ Cat(⇡) where ⇡ = (⇡1...⇡j),
PJ

j=1 ⇡j = 1 and

Cat(⇡) represents a categorical distribution, where each category is associated with prob-

ability ⇡i. Each category corresponds to a distribution in the mixture model. In order to

sample from a mixture model one first draws a sample from Cat(⇡) and then samples from

the corresponding distribution X.

P (X = x) =
JX

j=1

P (X = x|Z = j)P (Z = j) =
JX

j=1

pj(X = x)⇡j. (2.4)

These pj can be any probability density function. A further reference on latent vari-

able/mixture models can be found in [17].

We refer back to this in the construction of the prior. For the construction of the prior

each ‘category’ corresponds to a previously recorded landslide event. We use a Gaussian

mixture model to place higher probability on samples that are close to landslide events that

have been previously recorded. Details can be found in Chapter 6.

Chapter 3. Dual Hypotheses Bayesian In-

version

One of the shortcomings of deriving the posterior according to (2.2) is that we obtain relative

probabilities, i.e. we do not actually compute the denominator present in Bayes’ Theorem.

However, we still desire a quantifiable way to compare two or more hypotheses with separate
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posterior distributions. For example, we eventually want to compare the relative probability

of a historically observed tsunami being sourced directly from an earthquake relative to a

submarine landslide (or perhaps even a combination of these two potential sources). To

accomplish this we use an approach based on binary classification. To demonstrate this

method, as well as motivate work on landslide generated tsunamis, we return to previous

results for earthquake generated tsunamis. This discussion relies on the work of Paskett et

al. [18].

3.1 1820 South Sulawesi event

In 1820 there was an earthquake near southwest Sulawesi in central Indonesia which lead to

a destructive tsunami that spread from Bulukumba on South Sulawesi Island to Sumenep on

East Java, a distance of over 700 km. This event is unique as there were two potential sources

for the tsunami, the Flores back-arc thrust and the Walanae Fault (parallel to Selayar Island)

shown in Figure 3.1. Each of these faults represent a very distinct hypothesis and produce two

posterior distributions defined on di↵erent parameters so that a direct comparison between

the two is impossible, see [18] for details. We summarize the method and results found in

[18] with the dual posterior distributions as seen in Figure 3.2.
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Figure 3.1: A depiction of the latitude longitude placement of the Walanae/Selayar Fault
(blue) and Flores Thrust (red). The tsunami observations are shown in red. of the Flores
thrust).

(a) Wave Height/Arrival Time Posterior (b) Longitude Latitude Posterior

Figure 3.2: (a): Posterior for wave heights and arrival times corresponding to the Walanae
(blue) and Flores (green) faults. The selected observational probabilities that were deter-
mined to best match the historical account are shown in red. (b): Locational posterior for
both the Flores (primarily East/West) and Walanae (primarily North/South) faults.

Looking at the posterior distributions we see that seismically speaking Walanae is a better

fit. Earthquakes along the Flores fault matching the data require a magnitude of about 8.8

Mw which is on the upper limit of what the fault is able to support. The posterior for

Walanae, while still leaning toward a higher magnitude, is more physically feasible. Samples
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from the Walanae fault also more closely match Bulukumba arrival times and are closer to

the arrival time at Sumenep (although neither fault seems to match this perfectly).

3.2 Classifier

In order to make a quantifiable (as opposed to the heuristic description provided above)

comparison between the two faults we use a binary classifier. Input to the classifier consists

of the 6 observational quantities depicted in 3.2 (a): 4 wave heights and 2 arrival times. This

input data is divided into two classes defined by the originating fault (Walanae or Flores).

Specifically we use data from the 104,970 tsunami simulations originating from the Walanae

fault and the 127,690 simulations originating from the Flores thrust, i.e. the observed values

are the data and the originating fault is the label for the classifier.

Before training the classifier, we remove samples that do not have a finite log posterior

and use a 30-70 test train split. This leaves us with a training set consisting of 89,554 Flores

samples and 73,308 Walanae samples. Our test set contains 38,136 Flores samples and 31,662

Walanae samples.

We trained a binary logistic XGBoost and random forest classifier. With default settings

the classifiers obtained accuracies of 99.993% and 99.996% respectively on the test set. Next,

we use these classifiers on samples drawn independently from our observational probabilities

(the red curves depicted in Figure 3.2 (a)). Out of 1 million samples the random forest

classifier selected Walanae as the source 94.4% of the time and the logistic regression classifier

selected Walanae 98.4% of the time.

Interpreting this result, we would claim that under the hypothesis that the 1820 tsunami

was caused by either an earthquake along Flores or Walanae faults, we would be 94.4% to

98.4% confident that the source was the Walanae fault. We emphasize at this point that the

binary classification approach taken here to distinguish between two di↵erent hypothesized

sources is a unique contribution to inverse problems and the Bayesian approach in general.

Although we believe the Walanae fault to be more likely than the Flores thrust as the
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source, it does not fit as well as expected with our observations. In particular the observed

wave heights at Bulukumba are significantly larger than any of the simulations we performed

for either type of earthquake source. A local landslide near Bulukumba in addition to

the earthquake may account for the discrepancy between our simulated wave heights and

observations as landslide generated tsunamis are typically more localized (explaining the

disparity between the wave heights at Bulukumba and all other locations). In order to

simulate an event like this we must first create a method similar to that employed in [12]

that is capable of examining submarine landslides as opposed (or in addition) to earthquakes.

The first step in this process is to create a forward model which simulates a tsunami from

landslide parameters.

Chapter 4. Forward Model

For the forward model we use a very simplified landslide model. Although more robust

models exist we cannot justify inferring the parameters of a complicated system/model with

anecdotal data. Here we seek to balance simplicity with a reasonable degree of physical

principles. We choose a model with the parameters listed in Table 4.1. This means the height

of the tsunami wave depends only on the dimensions of the landslide body, the bathymetry,

and the initial velocity.
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Trainable Parameters Description

d Thickness

V Volume

v0 Initial Velocity

ar Aspect Ratio

Fixed/Bathymetry Based Values Description

ps density of dirt

pw density of water

g gravity

✓ angle of slope

CF surface skin friction

f Coulomb friction

Table 4.1: Model Parameters

We discuss the forward model in two parts: First, we model the sea floor deformation

resulting from the slide. This is then passed to the a software package, GeoClaw, [19, 20, 21,

22] which propagates tsunami waves via solving the fully nonlinear two-dimensional shallow

water equations via a Finite Volume discretization with an adaptive temporal and spatial

grid.

4.1 Sea Floor Deformation

As illustrated in Figure 4.1 we model the seafloor deformation by modeling the landslide as

a solitary block of material. The motion of this block is derived in terms of its center of

mass and then the block is moved in accord with the movement of the center of mass.

4.1.1 2d-Model. Motion of the center of mass is based on the following governing equa-

tion of landslide motion [23, 9].
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psV
@u

@t
= (ps � pw)gV [sin(✓)� f cos(✓)]� pw

CF ld

2
u2. (4.1)

(a) Forces Upslope (b) Forces Downslope

Figure 4.1: (a): Depiction of the forces on a block landslide moving upslope. (b): Depiction
of the forces on a block landslide moving downslope.

This equation models landslide motion down slope on an inclined plane. Equation 4.1 is

of the form F = ma following Newton’s 2nd Law. Here the forces involved are the rolling

down force Fs = (ps � pw)gV sin(✓), the sliding friction force (the resistance to motion of

the seafloor against the landslide block) Ff = (ps � pw)gV f cos(✓), and the drag coe�cient

Fd = pw
CF ld
2 u2 (the drag of the water being pushed by the landslide block). We have mass

psV and acceleration @u
@t . For our model we also need to simulate how the mass of the

landslide slows as it moves uphill. To do this we only need change the sign of our rolling

down force as shown in Figure 4.1. Hence, equation (4.1) becomes

psV
@u

@t
= (ps � pw)gV [� sin(✓)� f cos(✓)]� pw

CF ld

2
u2. (4.2)

For simplicity we rewrite (4.1) as

a
@u

@t
= b� cu2, (4.3)

where

a = (ps + pwVw), b = (ps � pw)gV [sin(✓)� f cos(✓)], c = pw
CF lw

2
.

13



Similarly, we write (4.2) as

a
@u

@t
= b� cu2, (4.4)

where this time

a = (ps + pwVw), b = (ps � pw)gV [� sin(✓)� f cos(✓)], c = pw
CF lw

2
.

In order to use (4.1) and (4.2) to determine the motion of our landslide we must solve

for the velocity and position of the landslide block. The solution to (4.3) and (4.4) breaks

into the following cases.

u(t, ✓, v0) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�
p
�b tan(

p
�bct
a �arctan(

p
cv0p
�b

))
p
c , b < 0

p
b tanh(

p
bct
a +arctanh(

p
cv0p
b

))
p
c , b � 0, v0 <

q
b
c

p
b coth(

p
bct
a +arccoth(

p
cv0p
b

))
p
c , b � 0, v0 >

q
b
c

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

,

where the solution u(t, ✓, v0) gives us the velocity moving down a slope with angle ✓ after t

seconds. In order to get the distance moved over an interval of time we numerically integrate

u using Simpson’s rule [24].

4.1.2 3d-Model. Up to this point we have dealt with down/up slope movement in 2-d.

We now expand this model to work in a 3-d setting by moving along lattitude and longitude

lines, i.e. the horizontal motion has two dimensions. First we need an initial velocity in

both directions. The initial velocity is split up between latitude and longitude based on

the gradient of the slope in each respective direction. Initial velocity begins movement in

the downhill direction and the lat/lon slope is calculated at the starting point. Then the

distance moved after t seconds in each of the latitude and longitude directions is calculated

based on our 2-d model. After t seconds the slope at the new position is calculated. Initial

velocity in the lat/lon position is the respective ending velocity from the previous time step.

This process is repeated iteratively either a preset finite number of times or after velocity
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drops below a threshold (when the norm of the velocity vector drops below 10 m/s).

(a) Distance Moved in a Single Step (b) Distance Moved After Multiple Steps

Figure 4.2: (a): Depiction of the total meters moved in a single step. This is based o↵ of
the calculated meters moved in both longitude and lattitude directions. (b): Depiction of
the meters moved after multiple steps. The initial latitude/longitude velocity for each step
is based o↵ of respective final latitude/longitude velocity of the previous step. Additionally,
the angle of the slope in the latitude and longitude direction is calculated at each step.

The following pseudo-code provides a summary of the center of mass movement of the

landslide in 3-d.
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Algorithm 2 Center of Mass Movement Pseudocode

Define 4 based on grid spacing

Choose start coordinates

while velocity < threshold do

# get elevation at current coordinates

elev = bathymetry[coord[0],coord[1]]

#get lat/lon elevation o↵sets

elev1 = bathymetry(coord[0] + 4, coord[1])

elev2 = bathymetry(coord[0] - 4, coord[1])

elev3 = bathymetry(coord[0], coord[1] + 4)

elev4 = bathymetry(coord[0], coord[1] - 4)

# find lat/lon angle of slope

theta lon = arctan(|elev1� elev2|/(24))

theta lat = arctan(|elev3� elev4|/(24))

# determine if we are moving up or downslope (this determines

if u will be based on equation 4.1 or 4.2)

# find distance moved in lon/lat direction using simpson’s rule

dist lon = simpson(u(t,theta lon,v0 lon))

dist lat = simpson(u(t,theta lat,v0 lat))

# update initial velocity

v0 lon = u(seconds, theta lon, v0 lon)

v0 lat = u(seconds, theta lat, v0 lat)

# project distance on the slope to the grid and update coordinates

coord[0] = coord[0] + proj(dist lon)

coord[1] = coord[1] + proj(dist lat)

end while

There are two stopping criterion for this model:
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(i) When the velocity is under a threshold. Note, when moving uphill at a slow

velocity the mass of the landslide may begin to move backwards, in the opposite di-

rection of our initial velocity. In this case we set our velocity to zero. This prevents

mass from sloshing back and forth as the slide comes to a stop. This is reasonable as

we are not considering changes to the block of mass as the landslide evolves, i.e. in

reality the landslide would lose mass and form as it evolves.

(ii) After 10 minutes. This is mainly for computational reasons, but is justified as

tsunami wave heights are primarily determined by the initial movements of the slide,

i.e. the primary and dominant wave is created from the initial movement and later

motion has a much less significant e↵ect.

After we have determined the center of mass movement as outlined above, we take a

discrete number of centers and place a ‘box of mass’ in the appropriate dimensions around

that center of mass. The length of the box is perpendicular to the direction of motion, and

the width is parallel to the motion.

Model output for a slide with length width and thickness set respectively to 40km, 15km,

and 50m is shown in Figure 4.3. The slide depicted here has an initial velocity of 25 m/s

and starts at longitude, latitude values of (131.7,�5).

Figure 4.3: (Left): Depiction of the center of mass movement of the landslide during a ten
minute period. (Center): Location of the slide every 120 seconds creating five discrete steps.
(Right): Volume of the landslide added around the center of mass at 5 discrete steps.
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Figure 4.4: (Left): Velocity of the slide shown over the initial ten minute period. Longi-
tude/Latitude velocity is shown in blue/green. (Center): Angle of descent over initial ten
minute period of the slide. (Right): Depiction of whether the slide is moving up or down
hill. Downhill movement occurs when value is one and uphill movement occurs when value
is negative one. We see the latitude velocity begin to slow at four hundred seconds as the
slide begins to move uphill.

4.2 Tsunami Propagation

The output of the model from the previous section is then fed into the Geoclaw software

package which propagates tsunami waves. Waves corresponding to the landslide shown in

Figure 4.3 are shown in Figure 4.5.
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Figure 4.5: Tsunami wave propagation of the submarine landslide shown in Figure 4.3.

Chapter 5. Likelihood

5.1 Observations

Our likelihood is based on observations from the 1852 Banda Arc tsunami. Observations

come from anecdotal accounts found in the Wichmann catalog [25, 26]. Thirteen observations

are detailed enough to provide quantifiable information on our tsunami. These accounts span

nine locations, shown in Figure 5.1.
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Figure 5.1: Observation locations for the Nine observation locations found in the Wichmann
catalog.

Observations taken from the catalog provide information on:

• Arrival time. The arrival time of the first non trivial wave from the start of the

landslide.

• Wave height. The maximum wave height. Wave heights were recorded at all nine

locations.

• Inundation length. The distance inland that the wave traveled onshore.

We recognize that a lack of modern measurements adds additional uncertainty in our

problem. We develop a distribution for each observation which gives the probability of an
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observation corresponding to specific values. Distributions for each observation are shown

in Figure 5.2. To illustrate the process for creating observational distributions, we present

one example location in detail.

5.1.1 Sample Observational Account: Banda Neira. We do not go through obser-

vational accounts for each wave height but demonstrate the process for a single observation.

Page 242 in the Wichmann catalog provides an observation of the tsunami at Banda

Neira: “Barely had the ground been calm for a quarter of an hour when the flood wave

crashed in...The water rose to the roofs of the storehouses and homes...[the wave] reached

the base of the hill on which Fort Belgica is built on Banda Neira”. From this account we

find:

• An arrival time. “A quarter of an hour”. Based on observations from this and other

locations we are assuming that the submarine landslide was caused by an earthquake

(although not necessarily a subduction zone megathrust event as considered in [12]).

Observations record arrival times after shaking subsides. The historical record indicates

that the shaking lasted about 5 minutes and the landslide could have occurred at any

point in this interval. We construct our likelihood with a skew toward longer arrival

times with a mean of 15 minutes. Our final distribution is a skew-normal distribution

with a mean of 15 minutes, standard deviation of 5 minutes, and skew parameter of 2.

• A wave height. “The roofs of the storehouses and homes”. Based on the standard

construction of the time, most buildings were on stilts with high vaulted roofs. In

addition this observation occurred on a morning of exceptionally low tide. Hence

we estimate a height of about 6.5 meters. For our likelihood we create a normal

distribution with a mean of 6.5 meters with standard deviation of 1.5 meters. Thus

waves from 3 to 9 meters have a reasonable probability.

• An Inundation length. “The water reached the base of the hill on which Fort Belgica

is built”. To quantify this account, 20 points along the beach were randomly selected
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and the distance between each point and the base of the hill was calculated using

ARCGIS. We choose our likelihood to be a normal distribution with a mean of 185

meters and a standard deviation of 65 meters corresponding to the mean and standard

deviation of our measurements.

5.2 Observational Probabilities

In a similar manner we quantify accounts from the other 8 locations. The resultant distri-

butions are treated independently as the actual dependence of each observation is unknown

and indeed very di�cult to ascertain. Hence, we compute the total likelihood as the product

of each observable likelihood.

P (D|✓) =
13Y

i=1

Li(G(✓)), (5.1)

where G(✓) represents the output of our forward model for sample ✓ and Li represents our

ith observational distribution. For a further discussion of the likelihood see [12].

Figure 5.2: All 13 observational distributions.
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Chapter 6. Prior Probabilities

We construct prior distributions based on data from past submarine landslides. As opposed

to both earthquakes and arial (above sea) landslides, submarine landslides are not easily

accessible (or often even noticeable) to modern measurement equipment. What we do know

about submarine landslides often comes from costly oceanographic surveys [27]. As a result

there exists surprisingly limited data on submarine landslides, particularly those capable of

producing a tsunami of the magnitude in this investigation.

We rely on available literature and physical knowledge to construct the prior distributions.

The prior distributions are built from 33 events from 14 sources [4, 8, 9, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38] which mainly supply information on landslide volume and thickness. Data

includes landslide records from all over the world and is supplemented by sources from highly

detailed numerical simulations. We construct the prior on volume and thickness using this

data. Additionally, we create priors for initial velocity, and latitude/longitude. We need to

convert volume as seen in the prior to width and length for the forward model and so create

and search over a prior for aspect ratio as well. For priors that are not data based (initial

velocity, latitude/longitude and aspect ratio) we rely on bounds discussed with geophysicist

Steven N. Ward.

We treat the model parameters as if they are independent and so the prior distribution

for a sample ✓ is defined to be the product of the prior probability for each parameter,

P (✓) =
5X

j=1

pj(✓j). (6.1)

6.0.1 Volume. The volume of the submarine landslide is correlated to the slope of the

descent. We use data collected on the volume and slope of submarine landslides shown in

Table 6.1 to construct the prior distribution on volume. The prior distribution for volume

is a defined as a Gaussian mixture model

P (✓i) =
21X

j=1

N(✓i, µ = dj, � = 4)⇡j. (6.2)
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Slope (�) 1.21 1.45 1.92 1.03 0.62 0.72 0.91
0.75 1.08 0.72 2.03 1.33 0.28 0.28
1.49 1.53 3.98 4.96 1.19 2.16 7.09

Volume (km3) 1.5 1.5 0.216 1.261 7.064 4.26 34.386
7.134 27.932 55.571 .037 .011 33.009 16.951
4.400 .718 20.563 3.142 .005 20.000 .005

Table 6.1: Data for Volume Prior.

Here, ⇡ is chosen to place equal emphasis on each distribution and dj represents the jth data

point from the collected data in Table 6.1. Volumes that have been recorded, or are close to

volumes of recorded events have greater prior probability.

Figure 6.1: Prior for the volume of a submarine landslide. Red points represent previously
recorded volumes for submarine landslide events. These points are found in Table 6.1. A
Gaussian distribution is placed around each point in the construction of the prior.

6.0.2 Aspect Ratio. We determine length and width from volume and thickness using

an aspect ratio parameter. The prior distribution for the aspect ratio is uniform from .3 to

1. This ensures the length of our slide is always perpendicular to the direction of movement

and the width is not so small as to be unrealistic.

24



6.0.3 Thickness. We use the data in Table 6.2 to create a prior on the thickness of

submarine landslides. This prior is constructed similarly to the prior on volume using a

Gaussian mixture model

P (✓i) =
10X

j=1

N(✓i, µ = dj, � = 10)⇡j. (6.3)

Again, ⇡ is chosen to place equal emphasis on each distribution and dj represents the jth

data point from Table 6.2.

Thickness (m) 25 35 30 30 75 90 10 100 130 350

Table 6.2: Data for Thickness Prior.

Figure 6.2: Prior distribution for the thickness of a submarine landslide. Black points
represent values for recorded submarine landslide events. These points are found in Table
6.2. A Gaussian distribution is placed around each point in the construction of the prior.

6.0.4 Initial Velocity. Submarine landslides are most often triggered by earthquakes

(which is the hypothesized source in this situation), however there are many forces that can

cause unstable slopes to fail. We do not model events preceding a submarine landslide but

instead incorporate this information into the slides initial velocity. An earthquake generated

landslide may have a higher initial velocity than a slide caused by sediment which increasingly
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becomes more unstable over time, or even a slide that occurs moments after an earthquake

destabilizes the sediment. The prior distribution for initial velocity is uniformly distributed

between 10 and 100 m/s or 36 to 360 km/hr.

6.0.5 Latitude/Longitude. Our prior distribution for Latitude and Longitude is based

on depth. Landslides occuring at a shallower depth are more likely to cause a tsunami.

Landslides that begin in the deep ocean may not create a disturbance at the waters surface,

or the resultant disturbance will be so small that no noticeable wave will be produced.

We generate the following prior distribution for depth which is in turn used as the prior

distribution for latitude and longitude as the depth of the initial position of the slide depends

on its geographic location.

Figure 6.3: (Left): Prior distribution for the depth of a submarine landslide. Landslides
starting at a shallow depth are more likely to disturb the water’s surface and have a higher
prior probability. (Right): Latitude/longitude points below a certain depth and hence prior
probability are shown in navy.

Chapter 7. Results
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In order to sample from the posterior distribution we initiated 10 di↵erent MCMC chains.

These ran simultaneously on BYU’s supercomputer in the O�ce of Research Computing.

The majority of computational expense came from the propagation of the tsunami waves

to the gauge locations. This was done by the software package GeoClaw. GeoClaw runs in

parallel on 24 cores. In total, a single simulation using the forward model takes between

5.5 and 9 minutes. This is dependent on the cluster the job is assigned. Samples for the

landslide model take longer than the earthquake model where a single sample took less than

two minutes. The earthquake results in instantaneous deformation of the sea floor on one

occasion. The landslide model updates the deformation of the sea floor on five occasions

over a ten minute period. However, the landslide model is much faster than the earthquake

model for the 1820 event, which had slower computational time arising from the di�culty of

a dual fault rupture. For this event a single sample took approximately 12 minutes.

These chains were started at 6 di↵erent longitude-latitude locations as seen in Figure

7.1. All of the other initial parameter values for each chain can be found in Table 7.1. The

majority of chains start with a volume of 30, 000, 000, 000m3 (30km3) and an aspect ratio of

.375. This is because numerical simulations by [11] found the landslide that best matched

observational data was 40 km long by 15 km wide with 50m thickness. Chains 9, and 10 have

a reduced volume and initial velocity when compared with the other chains because these

initial points had such a high proximity to Banda Neira. The original volume of 30 km3

created a wave large enough, approximately 40 ft upon arrival at Banda Neira, to caused

numerical instability, by violating CFL conditions, in the tsunami propagation model. To

simulate these large waves we would need to significantly decrease our timestep increasing

the computational cost. However, the waves that were large enough to cause instability are

also too large to match the data so we can simply adjust the initial parameters accordingly.
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Lattitude Longitude Initial Velocity Volume Thickness Aspect Ratio

Chain 1 -6.2 130 25 30000000000 50 .375

Chain 2 -6.2 130 75 30000000000 50 .375

Chain 3 .-5 131.7 25 30000000000 50 .375

Chain 4 .-5 131.7 75 30000000000 50 .375

Chain 5 .-6.3 131.7 25 30000000000 50 .375

Chain 6 .-6.3 131.7 75 30000000000 50 .375

Chain 7 -7.2 130.3 25 30000000000 50 .375

Chain 8 -7.2 130.3 75 30000000000 50 .375

Chain 9 -4 130.5 15 10000000000 50 .375

Chain 10 -5 130.4 15 15000000000 50 .375

Table 7.1: Starting parameters for all 10 chains.

Initial slides are shown in Figures 7.1, 7.2 and 7.3. The initial velocities of the initial

landslides are dependent on the friction coe�cients f , and CD in the equation governing

landslide motion.

Figure 7.1: (Left): Starting points for chains. Chains starting at [130.5,-4] and [130.5,-
5.2] start with reduced volume due to proximity to Banda Neira. (Right): Center of mass
landslide movement at initial parameters. Black points represent slides with initial velocities
of 25 and white points represent slides with initial velocity of 75.
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We choose friction coe�cients based on what is physically reasonable. Here, f = .005

and CD is of the order of .002 [23]. We use rough bathymetry data to estimate the angle

of descent of the slide. This may make the slide move artificially fast and so we choose

CD = .009.

Figure 7.2: Velocity of landslides from initial parameters. We see that the slides velocity
increases as the mass of the landslide moves downhill and then slows as the slide reaches the
floor of the basin. Landslide velocities are highly dependent on friction coe�cients.
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Figure 7.3: Initial landslide mass movement. A ‘box’ of landslide mass is moved across 5
discrete points from the slide center of mass movement.

7.1 Choosing a Proposal Kernel

To sample from our chains using the Metropolis-Hasting algorithm we must choose a proposal

kernel q(.|✓t). This proposes a new potential sample ✓t+1 which will then be accepted or

rejected. We use the random walk proposal kernel, i.e. the kernel is given by a Gaussian

distributed random variable with covariance matrix ⌃, i.e. N(0,⌃). Choosing the proposal

kernel as well as the parameter ⌃ is an active area of research. It is generally accepted that

proposal kernels which give acceptance rates of approximately .234 are preferred for random

walk MCMC [39]. We collected 800 samples per chain with three di↵erent proposal kernels

to try and determine the ‘optimal’ values of ⌃.

7.1.1 Kernel 1. Parameters for this proposal distribution are found in Table 7.2.
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Lat. Lon. Initial Velocity Volume Thickness Aspect Ratio

Standard Dev. . 075 .075 .5 10000000 0.3 0.01

Table 7.2: Standard deviation for kernel 1.

Figure 7.4 shows that acceptance rates are between 0.1 and 0.3 for this kernel except for

chain 5 and chain 8 which have acceptance rates close to zero. This implies that these chains

are not able to find anything that matches the data. We also see, looking at the parameter

values for volume and initial velocity, that our chains are not mixing well. In particular, not

only do the longitude-latitude locations not mix, but the volume of each chain appears to be

stuck and unable to transition to di↵erent values. Hence we increase the standard deviation

of the proposal distribution to try and get the chains to mix a bit more.
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Figure 7.4: 800 samples in each chain are illustrated for proposal kernel 1. (Upper Left):
Acceptance rates over time for all 10 chains. (Upper Right): Latitude/longitude movement
for all 10 chains. Note that at least up to the 800 samples taken here, none of these chains
are mixing with each other at least in longitude and latitude. (Bottom): Histogram for
di↵erent parameter values of samples from all 10 chains.

7.1.2 Kernel 2. This proposal kernel increases the step size for the initial velocity, vol-

ume, and the thickness. This leads to greater mixing for the volume and initial velocity, and

now there is only one chain with an acceptance rate close to zero. More importantly the

volume parameter is moving and searching over viable choices of parameters and no longer

fixated on its initial setting.

Lat. Lon. Initial Velocity Volume Thickness Aspect Ratio

Standard Dev. .075 .075 .75 225000000 .375 0.01
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Figure 7.5: (Upper Left): Acceptance rates over time for all 10 chains. (Upper Right):
Latitude/longitude movement for all 10 chains. (Bottom): Histogram for di↵erent parameter
values of samples from all 10 chains.

7.1.3 Kernel 3. For the final proposal kernel we increased the step size for the volume,

initial velocity, and thickness parameters one more time. Here we see improved mixing as well

as higher acceptance rates, between 0.2 and 0.3. This is the kernel used for the remainder of

the results presented. Most relevant, all of the landslide parameters are now truly searching

over the entire allowable region.

Lat. Lon. Initial Velocity Volume Thickness Aspect Ratio

Standard Dev. .075 .075 .95 600000000 .5 0.001
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Figure 7.6: (Upper Left): Acceptance rates over time for all 10 chains. (Upper Right):
Latitude/longitude movement for all 10 chains. (Bottom): Histogram for di↵erent parameter
values of samples from all 10 chains.

7.2 Results

After settling on proposal kernel 3 we collected approximately 30,000 samples over ten dif-

ferent chains initialized as mentioned above. Depending on computational resources each

sample took between 5.5 and 9 minutes to run. The posterior logpdf over latitude/longitude

as well as individual chain movement is shown in Figure 7.7. The posterior shows two areas

of high probability. One on the western side of the Weber Deep between starting coordinates

[130.1,�6.3] and [130.5,�5.2] and the other on the eastern side of the Weber Deep between

starting coordinates [131.7,�5] and [131.7,�6.3]. The two chains starting on the south west

side of the Weber Deep near [130.1,�6.3] had the most di�cult time matching the data.

Both of these chains were started at a volume of 30 km3 and produced waves too large to
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match the data. One of these chains, shown in Figure 7.7 in red, had a very low acceptance

rate and never provided a good match to the data. It is uncertain if with more samples the

volume would decrease to a similar level as the chain starting at [130.5,�5.2] which ends

in a similar place, and does provide a decent fit to the data. The other chain starting at

[130.1,�6.3], shown in figure 7.7 in pink crossed over an area of low prior probability to the

eastern side of the Weber Deep where the simulated tsunami matches the observations far

better.

Figure 7.7: (Left): Posterior distribution on latitiude-longitude constructed using MCMC
samples. Note the two areas of high probability on the western and eastern side of the Weber
Deep. (Right): MCMC samples by chain. Note chain7, shown in pink, makes it’s way from
the western side all the way over to the area of high probability on the eastern side.

These initial results appear to produce wave heights that are reasonable when compared

to the data as depicted in the histograms in Figures 7.8 and 7.9. We note that wave heights

produced during MCMC simulations recorded at the island of Kulur do not quite match

the observational distributions. This does not raise a significant amount of concern for

two reasons. First, observational distributions are constructed based on anecdotal historical

accounts and are subject to error. We see the entire histogram for wave heights at Kulur

is in an area of low but not zero probability. Histograms in an area of zero probability
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are more likely to signify a mismatch with the data. One such example are the histograms

corresponding to the Fores arrival times and Walanae/Flores wave heights at the island of

Bulakumba shown in Figure 3.2a. Second, we do not want the samples to match observational

distributions precisely. In addition to our likelihood, which is dependent on our observational

distributions, our posterior samples should be a↵ected by the prior which dictates what is

physically feasible. Additionally, an exact fit could signify that we may be ‘overfitting’ in the

sense that there are enough free parameters in the model that any tsunami can be simulated.

We also note many of the observable histograms shown in Figures 7.8 and 7.9 indicate two

distinct peaks. This is most apparent for samples describing wave heights, arrival times and

inundation levels at Band Neira as well as arrival times and inundation levels for Saparua.

These dual peaks correspond to samples produced by the two areas of high likelihood on

the eastern as well as the western side of the Weber Deep.

Figure 7.8: Wave heights generated from tsunami simulation during the MCMC process, in
blue, compared to observational distributions shown in orange.
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Figure 7.9: Arrival times and inundation levels generated from tsunami simulation during
the MCMC process, in blue, compared to observational distributions shown in orange.

7.2.1 Resampling. After computing these initial results we resampled the chains with

replacement according to their final posterior probabilities and restarted the sampling pro-

cedure for each chain. The longitude-latitude locations of the selected chains are shown in

Figure 7.10. In total, we initiated 10 di↵erent MCMC chains. Again, these ran simultane-

ously on BYU’s supercomputer in the O�ce of Research Computing on 24 cores. We have,

and show results for, 30,000 samples collected from our resampled chains, 3,000 samples

per chain. We are still currently collecting samples and our research group will continue to

collect samples over the next few months to ensure convergence of the posterior. Ultimately,

the posterior will be comprised of hundreds of thousands of samples.
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Figure 7.10: Chains chosen for resampling. The starting point is shown in black and the last
sample in each chain is shown in red. The chain shown in blue was resampled from once,
orange twice, green twice, and purple five times.

We see our posterior distribution for longitude and latitude, shown in Figure 7.11 is

concentrated around the two locations of high likelihood as seen in Figure 7.7. It is more

apparent in the resampled posterior that landslides starting on the eastern side of the Weber

Deep provide a better fit to the data.
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Figure 7.11: (Left): Posterior distribution on latitiude-longitude constructed using MCMC
samples. Note the two areas of high probability on the western and eastern side of the
Webber deep. (Right): MCMC samples by chain.

Our posterior for landslide parameters is shown in Figure 7.12. The samples for volume

and aspect ratio seem to collect around 20 km3 and .385 respectively potentially indicating

convergence of those distributions. More interestingly, samples for initial velocity and thick-

ness do not gravitate towards a single value. Both of these distributions have two peaks.

This is partially explained by the chains on the eastern and western side of the Weber Deep.

However, there are more samples in each peak than can be explained by the single chain in

the west. One explanation is that wave heights, arrival times and inundation levels are not

a↵ected greatly by either the initial velocity of the landslide or the thickness, total volume

holds more import. This is also supported by the fact that the resampling procedure chose

chains with varying initial velocities and thicknesses. However, it is hard to draw a firm

conclusion until more samples are collected.
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Figure 7.12: Posterior distribution on landslide parameters constructed using MCMC sam-
ples.

Results for wave heights, arrival times and inundation levels are similar to the results

shown before resampling in Figures 7.8 and 7.9. Again, we see distributions with two peaks.

These include wave heights arrival times and inundation levels at Banda Neira as well as

Saparua arrival times. Here, these peaks are solely due to the two areas of high likelihood in

the locational posterior. The majority of samples come from east of the Weber Deep while

the smaller peaks correspond to samples west of the Weber Deep. We see the smaller peak,

corresponding to the west have earlier arrival times at Banda Neira and Saparua as well as

higher innundation levels at Banda Neira. This is due to the close proximity of samples on

the west of the Weber Deep to the islands of Banda Neira and Saparua.
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Figure 7.13: Wave heights generated from tsunami simulation during the MCMC process,
in blue, compared to observational distributions, in orange.

Figure 7.14: Arrival times and inundation levels generated from tsunami simulation during
the MCMC process, in blue, compared to observational distributions, in orange.

Chapter 8. Conclusion

Over all, the landslide hypothesis appears to provide a reasonable fit to the accounts of the

1852 tsunami. We see that MCMC samples are not far o↵ from observational histograms

after taking into account information from the prior. The one caveat being, due to limited

knowledge of submarine landslides it is di�cult to say if the landslides that best match the

data are physically feasible. The most likely landslides accelerate up to a velocity of around
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100 m/s within a 10 minute period. Friction coe�cients and model parameters can be tuned

to decrease certain model behaviors. For example, friction coe�cients can be tuned ouside of

realistic values to compensate for rough bathymetry data which is also somewhat unrealistic.

This would decrease acceleration. For this work, while some slides may be on the edge of

what is reasonable, we tune parameters, such as friction coe�cients, within values believed

to be physically accurate.

Chapter 9. Future Work

This project lends itself to two main areas of future work. The first of these is to create a

combined earthquake/landslide model. Combined models such as this have been successfully

used to match observational data when a single source landslide model cannot. One such

tsunami occurred northwest of the Indian Ocean. Single source models were not able to

reproduce the observed near-field runup of 10–12 m. However, a coupled earthquake-landslide

model was able to math observational data [40]. Additionally, an earthquake of MW 7.5 was

recorded in northwestern Indonesia, in 2018, along with a tsunami which caused significant

destruction in Palu City. Observations suggest that the earthquake alone did not generate

the tsunami. Multiple submarine landslides are hypothesized to have occurred in Palu Bay

which contributed to the destructive power of the tsunami [41].

This is especially relevant when discussing the 1820 event as described in [18] and sum-

marized in Section 3.1. The data generated from the earthquake based tsunami model did

not match the observational distributions as closely as desired. This was most apparent

when looking at the wave heights and arrival times at the gauge location by the island of

Bulukumba. One way to account for these discrepancies would be to have a local slide by

Bulukumba increasing wave heights locally, but not throughout the entire Flores Sea.

The second, and perhaps most natural area of future work is to decrease the compu-

tational e↵ort required to create a posterior. Our research group is currently looking at

Hamiltonian Monte Carlo methods [42]. This is an MCMC scheme that accepts samples
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at a higher rate than the default 23.4%. Hamiltonian Monte Carlo is based on ideas from

Hamiltonian dynamics. Hamiltonian dynamics describe the motion of a particle over a fric-

tionless surface. Hamiltonian Monte Carlo requires the gradient of the model. This motion

replaces the proposal kernel in random walk Monte Carlo. We are not able to compute exact

gradients of GeoClaw and so rely on surrogate gradients. A neural network was trained

on the samples generated by GeoClaw and analyzed by [12]. After training, the root mean

squared error of the test data was ⇡ 0.331. Details on the construction and training of

this network can be found in [43]. Gradients of this network are currently being used as a

surrogate in preliminary tests for a Hamiltonian Monte Carlo scheme [44].
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