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ABSTRACT

High performance computing has enabled the creation of high-resolution, continental-scale models such as the 
NOAA’s National Water Model (NWM) which predicts hourly streamflow at 2.7 million locations in the con-
terminous US using the National Hydrographic Dataset Plus (NHDPlus) as the reference geofabric. This high 
resolution model provides a novel opportunity to bridge the gap between the scale of process research (at 
hillslope to headwater catchment scale) and the operational scale of river basins where predictions are needed 
for water resources management and hazard. We present a study design that uses the NWM in a hypothesis-test-
ing (i.e., rejectionist) framework to assess process representations included in both “physically based” mod-
els, such as ParFlow-CLM, and conceptual models, such as the USGS Precipitation Runoff Modeling System. 
An information theoretic framework is proposed to assess the ability of either of these approaches to extract 
information from available data to make reliable predictions of water transport in the subsurface and surface.
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1.0 Introduction

Vast increases in computing power has made high-res-
olution continental-scale modeling possible. In the 
words of Bierkins et al. (2015), we are on the cusp of 
creating “locally relevant hydrological models every-
where.” One such model is NOAA’s National Water 
Model (NWM) which uses the NHDPlus hydrog-
raphy of the conterminous US, to define 2.7 million 
river reaches with an average reach catchment area of 
3 km2 (NOAA, 2016). This geofabric—the NHDPlus 
reach catchment framework—not only has the res-
olution of typical experimental watersheds, also it is 
using a landscape discretization of catchments rather 
than a computational grid. This choice of catch-
ment rather than grid as a landscape unit (although 

grids underlie the computation in NWM) make an 
important conceptual bridge to field scientists typi-
cally working at the scale of a few square kilometers.

Long-term experimental watersheds, such as the NSF 
Critical Zone Observatories (CZOs), ARS watersheds, 
or USFS experimental watersheds, offer a unique poten-
tial to advance understanding of hydrologic processes 
through the accumulation of data characterizing the 
landscape thoroughly enough to permit more sophis-
ticated hypotheses to be tested. Data from long-term 
observatories have challenged conventional hydro-
logic wisdom on various fronts including the finding 
of the dominance of old water in storm hydrographs 
(e.g., Hooper and Shoemaker, 1986 at Hubbard Brook; 
Genereux and Hooper, 1998 in a review paper of mul-
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tiple sites), the general disconnection between riparian 
and hillslope groundwater below a threshold of rainfall 
amount (e.g., Tromp-van Meervald and McDonnell, 
2006 at Panola Mountain), and the two-water worlds 
observation that trees transpire water that is isotopically 
distinct from the water that runs off in streams (Brooks 
et al., 2010 at HJ Andrews and Evaristo et al., 2015 at 
multiple sites). All these findings challenge assump-
tions of homogeneity that underlie many hydrologic 
models but have not yet been incorporated in them.

Paradoxically, as computing power and sensing 
capabilities have increased, the division between 
field hydrologists and modelers has only deepened, 
as modelers take on heroic computing challenges at 
larger spatial scales and field hydrologists deploy sen-
sors to study hillslopes and small catchments in ever 
greater detail.  A fundamental need in hydrology is to 
develop techniques and computational infrastructure 
to improve dialog and feedback between field scien-
tists and modelers in ways that can (1) directly initiate 
new cycles of research, and (2) help to directly improve 
forecasting models used for policy and planning. 

Modeling groundwater transport, including flow-
paths and residence times needed for linking chemical 
models with hydrology models, remains a major chal-
lenge - largely because of difficulties related to observ-
ing structure and characteristics of porous media 
across a range of scales. Fully physical models like 
ParFlow-CLM (Kollet and Maxwell, 2008) that numer-
ically solve flow PDEs require extensive input param-
eters that must be interpolated and/or extrapolated 
from sparse hydraulic measurements of porous media. 
Alternatively, conceptual models apply simpler sets of 
semi-empirical equations intended to capture the most 
critical aspects of flow behavior, but often have empir-
ical parameters that must be calibrated and may not 
have direct physical meaning. The latter – conceptual 
models – can more directly capture scientists’ concep-
tual understanding of the system (hence the name), 
and are likely better for testing hypotheses that arise 
from field observatories like the CZOs, however they 
are less directly tied to the underlying physics of flow. 

Large-scale models like the NWM require ground-
water representations that will run reliably every-
where at a continental scale. We expect that, at arbi-
trary locations, full physically-based groundwater 
models like ParFlow will generally have larger param-
eter uncertainties, while conceptual groundwater 
models will generally have larger model structural 
uncertainties. We suggest novel benchmarking, pro-

cess-diagnostics, and uncertainty quantification tech-
niques to quantify these uncertainty-related tradeoffs 

2.0 Background

2.1 The National Water Model

The work is motivated by the opportunities and 
challenges presented by the National Water Model 
(NWM) being developed by the Office of Hydrologic 
Prediction of the National Weather Service (NOAA, 
2016). The NWM is based on WRF-Hydro (Gochis 
et al., 2013). Version 1 of WRF-Hydro uses a Dupuit-
Forcheimer formulation for subsurface routing in 
the upper 2 m of soil and a linear reservoir for pro-
ducing baseflow (Gochis et al., 2013). Citable doc-
umentation for the NWM is not currently available 
and some modifications have been made to the code, 
but it remains a simplified groundwater model that 
(arguably) serves the current purpose of flood pre-
diction but limits the use of the NWM for more com-
prehensive “water intelligence” that NOAA seeks 
to provide where a more accurate representation of 
groundwater flowpaths and residence time are needed. 

2.2 ParFlow-CLM

ParFlow-CLM is an integrated hydrologic model that 
represents water and energy fluxes from the bedrock 
through the top of the canopy using physically-based 
equations (Kollet and Maxwell, 2006; 2008; Maxwell 
and Miller, 2005). ParFlow simulates three-dimensional 
variably saturated subsurface flow using Richard’s 
equation, and has fully integrated overland flow that is 
simulated with the shallow water equations. It is cou-
pled to the Community Land Model and the combined 
ParFlow-CLM model solves the full water energy bal-
ance at the land surface. The integrated approach used 
by ParFlow allows for dynamic interactions between 
groundwater levels, soil moisture and land energy 
fluxes that can evolve throughout simulations. These 
interactions are not possible in surface water models 
that ignore or rely on a parameterized approach to 
groundwater-surface water exchanges.  ParFlow has 
been used in a number of studies ranging from the 
watershed to the continental scale to demonstrate the 
importance of groundwater surface water interactions 
and the potential for feedbacks between groundwater 
depth and water availability at the land surface (e.g., 
Condon et al., 2015; Ferguson and Maxwell, 2010; 
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Maxwell and Kollet, 2008b; Maxwell and Condon, 2016; 
Maxwell et al., 2007; Mikkelson et al., 2013). ParFlow 
has also been used to estimate the residence time of 
groundwater at continental scale (Maxwell et al., 2016).

The physics-based approach used by ParFlow, and 
other distributed integrated models of its kind, is 
very computationally and data intensive.  Distributed 
physical models minimize the number of empirical 
parameters which must be calibrated within the model 
in order to create a system which can more realis-
tically respond to nonstationary conditions where 
parameters calibrated for one period may no longer 
hold. However, the tradeoffs are (1) a large number 
of required hydrologic properties (e.g. conductivity, 
porosity for every grid cell), and (2) increased com-
putational expense, which, among other things, makes 
uncertainty assessment difficult. While ParFlow is an 
established tool that has been well validated in many 
previous studies, there are still open questions regard-
ing the scaling behavior of physically based mod-
els. For example, are larger scale emergent behaviors 
observed at field sites, such as threshold response for 
connecting hillslopes with riparian zones (Tromp-
van Meervald, 2006) observed in model predictions? 
Applying ParFlow to these intensively studied sites can 
provide additional insights into model performance. 

2.3 Conceptual Models

Unlike physically based models where the structure 
and governing equations are fixed, conceptual models 
seek to define these model elements based upon pat-
terns observed in field data. Generally, the simplest 
possible model is proposed that is elaborated only when 
data indicates a lack of fit. Kirchner (2009) provides an 
excellent example of developing a conceptual model. 
He poses a simple hypothesis—discharge is a mono-
tonic function of water storage in the catchment—and 
then determines the model parameters through a clever 
analysis of field data. Thus, although these are empir-
ical parameters they are determined from field mea-
surements—not simply tuned—that are determend at 
the same scale as the model. Nonetheless, a conceptual 
model may require unmeasurable parameters. It is well 
recognized that the information content in input-out-
put signals can determine only a small number of tun-
able parameters (e.g., Hooper et al., 1986; Jakeman and 
Hornberger, 1993) so the number of such parameters 
must be minimized. The challenge is using all the data 
available—including data collected inside the catch-

ment—to inform the model structure and parameters. 
Hooper and Christophersen (1992) provide an exam-
ple of using conservative tracers to determine rout-
ing parameters for a conceptual model that could not 
be determined from the rainfall and runoff signals.

Contrast this approach to parameterization with 
physically based models where direct measurement 
of parameters is difficult due to the scale mismatch 
between the model grid size and the spatial support 
of the measurement, the number of parameters to 
be determined, and the underlying assumption that 
the hydraulic properties within a grid cell are homo-
geneous. Given the limitations of both physically 
based models and conceptual models, we believe 
it is worthwhile to conduct a systematic and rigor-
ous comparison of the two modeling approaches. 

2.4 Field Sites

Critical Zone Observatories provide a range of inten-
sively sampled sites for executing this project design. 
Three are of particular interest because of previous 
work that has been done: Clear Creek, IA ((CC) and 
the Upper Sangamon River, IL (USR) in the Intensively 
Managed Landscapes CZO and Shavers Creek, PA in the 
Shale Hills/Susquehanna CZO. These sites are described 
extensively at their respective web sites ( http://crit-
icalzone.org/iml; http://criticalzone.org/shale-hills).   

These basins range in area—SC, 90 km2; CC, 270 
km2; USR, 3,690 km2—and each provide different 
modeling challenges. SC is a largely undisturbed for-
ested catchment while both CC and USR have exten-
sive agriculture and tile drains. These sites are well 
instrumented and have had various geophysical sur-
veys to develop hydrostratigraphic models. Other 
groundwater and integrated groundwater/surface 
water models have been developed at them, includ-
ing a MODFLOW model of the USR (Herzog et 
al., 2003), a MIKE-SHE model of the USR (Stumpf, 
Illinois Geological Survey, pers. comm.) and RT-Flux-
PIHM at SC (Bao et al., 2017). This provides a rich 
background of contrasting predictions in which to 
place the current work. Scientists at these sites will be 
engaged both at the development stage of the concep-
tual model and in evaluating the model predictions. 

Of particular interest to this project is the relation 
between the NHDplus geofabric and these field sites. 
Figure 1 shows two of the sites (CC and SC) with the 
NHDplus stream network and the associated catch-
ments (shaded areas) along with the current stream 
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gaging network operated by the CZOs and their 
partners. CC has a particularly extensive gaging net

work throughout the basin. The NWM makes pre-
dictions of streamflow for each of these shaded basins.  

3.0 Techniques for Model Diagnostics

Even when predictions conform to observations, we 
must have a way to determine whether a particular model 
configuration “gets the right answers for the right rea-
sons” (Kirchner, 2006). While parameter identifiability 
is a problem for physically-based models like ParFlow, 
the primary danger with using a conceptual model 
is kludging (Clark, 1987). Kludging is when a model 
is tuned to match some set of available observations, 
without accounting for the possibility of compensating 
error structures in the internal dynamics of the model. 
A key aspect of model evaluation is an assessment of 
the structural adequacy of the model. We must measure 
two things: first, how much information and how much 
disinformation is provided by a particular modeling 
hypotheses, and second, how a given process-specific 
hypotheses changes information flow within the model. 

Our recent work has developed a unified theoretical 
framework for measuring information and disinforma-
tion from individual process-specific hypotheses, and to 
do this in the presence of large and arbitrary input data 
uncertainties. Nearing & Gupta  (2015) outlined the 
original motivation and examples, Nearing et al. (2016c) 
developed a philosophical basis for the approach, 
Nearing and Gupta (2017) turned that philosophical 
basis into a method of hypothesis testing, Nearing et 
al. (2016a) used the approach to separate uncertainty 
contributions due to missing information in (i) model 

structure, (ii) model parameters, and (iii) forcing data, 
and Nearing et al. (2016b) adapted the methodology 
to assess process-level deficiencies in model structures. 

The challenge is to separate information gained by 
improving model structure from information gained 
or lost due to our (in)ability to effectively parame-
terize the models given available observation data. 
Markov Chain Monte Carlo (MCMC) is an apporach 
that can be used to integrate out parameter uncer-
tainty in order to isolate information added or lost by 
the model structure alone. Dynamic process networks 
can be used to quantify information flow internal 
to the model. ParFlow can serve as an upper bench-
mark to measure information loss due to simulating 
groundwater flow with conceptual hypotheses, and a 
set of data-denial and data-corruption experiments can 
identify at what input data quality a particular concep-
tual model provide more and/or higher quality infor-
mation than does a poorly-parameterized ParFlow.

The basic tool for evaluating internal process-di-
agnostics is the dynamic process networks (DPN) 
proposed by Ruddell & Kumar (2009). A DPN rep-
resents a dynamic system or dynamical systems 
model as a Bayesian network, whereby each node in 
the network represents a simulated variable (typ-
ically either a state or flux) and each edge in the 
network represents influence that one variable 
exerts on another at a certain spatiotemporal scale.

Influence between variables is quantified by mea-
suring information transfers. To calculate the influ-
ence that one variable, , has on another variable, , at a 
particular timescale, , we integrate over the expected 
effect of probabilistically conditioning  at time  on the 
value of   at time  given all of the variables in the model 

Figure 1. Maps showing the NHDplus geofabric for two of the study sites, CC (left) and SC (right).



9Open Water

other than  at time . Note that even in deterministic 
models, each variable is probabilistic conditional on 
only a subset of other variables, and all variables are 
probabilistic in presence of input and parameter uncer-
tainties (as identified by MCMC). Schreiber (2000) 
proposed a feasible Markov approximation of this 
integration that results in the following metric, called 
transfer entropy that quantifies the information trans-
ferred from variable  to  at timescale , and the variables 
in question ( and ) may represent state or flux vari-
ables integrated over any spatiotemporal extent. Thus, 
this metric can quantify couplings between observed 
or modeled variables at any spatiotemporal scale.

Two separate sets of DPNs (at specific spatiotempo-
ral scales) are constructed – one from model-simulated 
data, and one from CZO-observed data. Each directed 
edge in each DPN is quantified at a particular scale 
using a metric like  transfer entropy and differences 
between the edge-metrics in the modeled vs. observed 
DPNs can be evaluated. A positive difference along a 
particular network edge indicates that this pair of vari-
ables is coupled too strongly in the model, whereas a 
negative difference indicates that the model underesti-
mates the role of one variable on determining the other.

4.0 Conclusions

A study design is described that uses the National 
Water Model structure to scale findings from exper-
imental catchments to river basins. This approach 
will contrast the ability of physically based models 
with conceptual models to extract information from 
data available for model calibration with the assump-
tion that more reliable predictions will result from 
models that more effectively extract information. 
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