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abstract

Skew Relative Hadamard Difference Set Groups

Andrew Haviland
Department of Mathematics, BYU

Master of Science

We study finite groups G having a nontrivial subgroup H and D ⊂ G \H such that (i)
the multiset {xy−1 : x, y ∈ D} has every element that is not in H occur the same number of
times (such a D is called a relative difference set); (ii) G = D∪D(−1)∪H; (iii) D∩D(−1) = ∅.

We show that |H| = 2, that H has to be normal, and that G is a group with a single
involution. We also show that G cannot be abelian.

We give examples of such groups, including certain dicyclic groups, by using results of
Schmidt and Ito.

We describe an infinite family of dicyclic groups with these relative difference sets, and
classify which groups of order up to 72 contain them.

We also define a relative difference set in dicyclic groups having additional symmetries,
and completely classify when these exist in generalized quaternion groups.

We make connections to Schur rings and prove additional results.

Keywords: difference set, subgroup, Hadamard difference set, Schur ring, dicyclic group.
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Chapter 1. Introduction

A difference set D in a finite group G is a nonempty subset of G such that any non-identity

element of G can be written in exactly λ ways as d1d
−1
2 where d1, d2 ∈ D. We say D ⊂ G

is a (v,k,λ)-difference set if |G| = v, |D| = k, and each non-identity element of G can be

represented λ ways as a ‘difference’ of elements of D.

The study of difference sets is related to the study of designs. We describe the connection

here.

An incidence structure is an ordered triple (P,B, I) consisting of a set of points P, a set

of blocks B, and an incidence relation I ⊂ P × B, where we say the point p ∈ P and block

b ∈ B are incident if (p, b) ∈ I.

Given a difference set D ⊂ G, the development of D is the incidence structure whose

points are the elements of G and whose blocks are the left translates of the difference set

{aD ; a ∈ G}.

A symmetric (v, k, λ) design is an incidence structure (P,B, I) in which 0 < k < v and the

following hold:

(i) |P | = |B| = v.

(ii) Each point is incident with k blocks.

(iii) Each block is incident with k points.

(iv) Each pair of points is incident with λ blocks.

(v) Each pair of blocks is incident with λ points.

Theorem 1.0.1. [19, Theorem 4.7, p. 54] Let D ⊂ G be a (v, k, λ)-difference set. Then the

development of D is a symmetric (v, k, λ) design.

This connection between difference sets and designs allows many algebraic and geometric

tools to be applied to difference set theory. A common example of a difference set is the
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(7, 3, 1)-difference set D = {1, 2, 4} of G = Z7. The corresponding design

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}},

is known as the Fano plane.

We shall make use of the following technique commonly applied to difference sets: Let G

be a group with a normal subgroup N. Let {g1, . . . , gr} be a complete set of coset represen-

tatives for N in G. If D is a difference set in G, then the numbers ni = |D ∩ giN | are the

intersection numbers for D with respect to N.

For a finite group G, we will identify X ⊆ G with the element
∑

x∈X x ∈ ZG of the group

algebra, and let X(−1) = {x−1 : x ∈ X}. We write Cn for the cyclic group of order n.

Let H ≤ G and h = |H| > 1.

Then a (v, k, λ)-relative difference set (relative to H) is a subset D ⊂ G \H, |D| = k, v =

2



|G|, such that

DD(−1) = λ(G−H) + k,

so that every element g ∈ G \H occurs λ times in the multiset {xy−1 : x, y ∈ D}.

We now further assume

(1) D ∩D(−1) = ∅;

(2) G = D ∪D(−1) ∪H (disjoint union).

A group having a difference set of the above type will be called a (v, k, λ)-skew relative

Hadamard difference set group (with difference set D and subgroup H); or a (v, k, λ)-SRHDS

group. Categorizing which groups are SRHDS groups is the main motivation of this research.

Recall the following related concept: a group G is a skew Hadamard difference set if it

has a difference set D where

G = D ∪D(−1) ∪ {1},

D ∩D(−1) = ∅.

Such groups have been studied in [5, 6, 7, 10, 11, 12, 13, 20].

In this paper we find infinitely many examples of such SRHDS groups. We also find

groups that cannot be SRHDS groups, but which satisfy certain properties of a SRHDS

group, as given in:

Theorem 1.0.2. For a (v, k, λ) SRHDS group G with difference set D and subgroup H we

have:

(i) |H| = 2;

(ii) H ◁ G;

(iii) G is a group having a single involution;

(iv) v ≡ 0 mod 8;

(v) G is not abelian;

(vi) A Sylow 2-subgroup is a generalized quaternion group.
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Parts (i), (ii), and (iii) will follow from Proposition 3.1.1. Parts (iv), (v) will follow from

Corollaries 4.1.3 and 4.1.4. For part (vi), suppose that G is a finite group with a unique

involution z. Let Z = ⟨z⟩ and let Q = G/Z. Since G has a unique involution, the same is

true of any subgroup of G of even order, in particular, for any Sylow 2-subgroup of G. Now

the 2-groups with unique involution were determined by Burnside (see [24, Theorems 6.11,

6.12] and [1, 4]); they must be cyclic or generalized quaternion groups. Corollary 4.1.5 will

show that they cannot be cyclic.

Groups with a single involution are studied in [21, 22, 14]. Dicyclic groups Dicv are

examples of such groups. However, we note that Dic72 has no SRHDS (Proposition 5.2.1).

We now establish a connection with Hadamard groups. Recall that a Hadamard group is

a group G containing H ≤ Z(G) of order 2 such that there is an H-transversal D, |D| = v/2,

that is a relative difference set relative to H, so that DD(−1) = λ(G−H) + |D|.

We show that if D ⊂ G is a SRHDS, then G is also a Hadamard group (where E = D+1

is the relative difference set); see Proposition 3.1.5. Thus it is natural to try to obtain

results for SRHDS groups that are similar to the results of Schmidt and Ito [29, 15] from the

Hadamard group situation. For example Schmidt and Ito show that if 4p−1 is a prime power

or 2p − 1 is a prime power, then the groups Dic8p and Dic4p (respectively) are Hadamard

groups.

For dicyclic SRHDS groups we show:

Theorem 1.0.3. If p ∈ N and 4p− 1 is a prime power, then Dic8p is a SRHDS group.

There is no analogous result when 2p− 1 is prime.

Now Ito [15] determines a ‘doubling process’ that takes a Hadamard difference set for

Dicv and produces a Hadamard difference set for Dic2v . We note that this doubling process

does not work in general in the context of a SRHDS, however we will show that it does

work under an additional ‘symmetry’ hypothesis (see Corollary 4.3.3) that is satisfied in the

situation of Theorem 1.0.3. This allows us to prove:

Theorem 1.0.4. If p ∈ N and 4p− 1 is a prime power, then Dic16p is a SRHDS group.
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Theorems 1.0.3 and 1.0.4 will be a consequence of Theorems 4.2.1 and 4.3.3.

Theorem 1.0.5. Let G = Cp×Dic8n with p > 2 prime and n odd. Then G is not a SRHDS

group.

This will be a consequence of Proposition 5.2.2.

We will also define doubly symmetric SRHDS groups that have even more ‘symmetry’

(see Definition 6.1.3). This will allow us to prove:

Theorem 1.0.6. Let G = Dic8·2u be a generalized quaternion group for some u ∈ Z≥0. Then

G contains a doubly symmetric SRHDS if and only if 2u+1 − 1 is either prime or 1.

This will be shown in Theorem 6.2.3.

We will also provide a detailed proof of a result known to Travis [31]:

Theorem 1.0.7. Given a subgroup H of a finite group G, we have that (G,H) is a strong

Gelfand pair if and only if C[G]H , the ring of H-classes in G, forms a commutative Schur

ring.

The definition of a strong Gelfand pair and the proof of this theorem can be found in

Corollary 7.2.5.
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Chapter 2. Definitions and Results from

Representation Theory

One main tool for this research is representation theory, so we will list some well-established

definitions and results from representation theory.

Let G be a finite group. A representation ρ of G is a group homomorphism

ρ : G→ GL(V )

where V is a finite-dimensional vector space (which we will assume is over the complex

numbers) and GL(V ) is the general linear group of invertible linear transformations from

V to itself. Given a basis for V , we can identify GL(V ) with GL(n,C), where n is the

dimension of V, and think of a representation as mapping into a matrix group.

A representation of G in V is irreducible if its only G-invariant subspaces are V and {0}.

Theorem 2.0.1. [19, Maschke’s Theorem, p. 188] Every representation of a finite group G

in a finite-dimensional vector space V over C can be written as a direct sum of irreducible

representations.

Given a finite group G and a commutative ring R, the group algebra RG is the set of

formal linear combinations {∑
gi∈G

aigi|ai ∈ R

}
,

under the operations ∑
gi∈G

aigi +
∑
gi∈G

bigi =
∑
gi∈G

(ai + bi)gi,

(∑
gi∈G

aigi

)(∑
gi∈G

bigi

)
=
∑
h∈G

 ∑
gigj=h

aibj

h.

The group algebra allows us to take advantage of the ring structure on matrices. We can

extend a representation

ρ : G→ GL(V ),
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to

ρ : CG→ End(V ),

by extending linearly over C. Here End(V ) is the set of endomorphisms on V : that is, the set

of linear transformations from V to itself. Thus V becomes a CG-module under the action

u · v = ρ(u)(v),

for all u ∈ CG, and v ∈ V . A CG-module V is irreducible if its only CG-invariant subspaces

are itself and {0}. A CG-module homomorphism is a linear map between CG-modules that

commutes with the CG action: that is, a linear map T : V1 → V2 such that

T (u · v) = u · T (v),

for all u ∈ CG, v ∈ V1.

Theorem 2.0.2. [16, Schur’s Lemma, p. 78] Let V and W be irreducible CG-modules.

If T : V → W is a CG-module homomorphism, then T is either an isomorphism or the

zero map. Additionally, if T is an isomorphism, then T is a scalar multiple of the identity

endomorphism on V .

A ring R is semisimple if any short exact sequence of left R-modules splits. The following

is a portion of Wedderburn’s Theorem that we will use later.

Theorem 2.0.3. [9, Wedderburn’s Theorem, p. 854] Every semisimple ring R considered

as a left R-module is a direct sum

R = L1 ⊕ L2 ⊕ · · · ⊕ Ln,

where each Li is a simple module, and Li = Rei, where the ei ∈ R are primitive orthogonal

idempotents.

The following two theorems are consequences of applying Wedderburn’s Theorem to the

group algebra CG, which is semisimple [9, Corollary 5, p. 856].
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Theorem 2.0.4. [9, Theorem 10, p. 861] Let G be a finite group.

(1) There are n1, n2, . . . , nr such that CG ≡Mn1(C)×Mn2(C)× · · · ×Mnr(C);

(2) CG has exactly r distinct isomorphism types of irreducible modules and these have

complex dimensions n1, n2, . . . , nr (and so G has exactly r inequivalent irreducible

complex representations of the corresponding degrees).

(3)
r∑
i=1

n2
i = |G|.

(4) r equals the number of conjugacy classes in G.

Theorem 2.0.5. [9, Corollary 11, p. 861] A finite group G is abelian if and only if every

irreducible complex representation of G is 1-dimensional.

Given a representation ρ : G → GL(V ), the character χρ is the map χρ : G → C given

by

χρ(g) = Tr(ρ(g)).

Here Tr is the trace function. A character is irreducible if the associated representation is.

The standard inner product on characters (or any class functions on G) is given by

(χ, σ) =
1

|G|
∑
g∈G

χ(g)σ(g).

Theorem 2.0.6. [9, The First Orthogonality Relation for Group Characters, p. 872] Let G

be a finite group and let χ1, χ2, . . . , χr be the irreducible characters of G over C. Then with

respect to the inner product ( , ) we have

(χi, χj) = δij,

and the irreducible characters are an orthonormal basis for the space of class functions on

G.

Theorem 2.0.7. [9, The Second Orthogonality Relation for Group Characters, p. 872] Let

G be a finite group and let χ1, χ2, . . . , χr be the irreducible characters of G over C. Then for
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any x, y ∈ G,

r∑
i=1

χi(x)χi(y) =


|CG(x)| if x and y are conjugate in G;

0 otherwise.
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Chapter 3. Difference sets and necessary

conditions

3.1 |H| = 2 and normality of H

Recall that for p ≥ 1 the dicyclic group is

Dic8p = ⟨x, y|x2p = y2, x4p = y4 = 1, xy = x−1⟩,

so that |Dic8p| = 8p. A generalized quaternion group, denoted Q2a , is just a dicyclic group

Dic2a , a ≥ 3.

Proposition 3.1.1. Let G be a SRHDS group with subgroup H. Then G has a single

involution t, and H = ⟨t⟩. In particular h := |H| = 2, H ≤ Z(G), and H ◁ G.

Proof. Let D be a SRHDS for G. Since D ∩D(−1) = ∅ we see that D does not contain an

involution. Since G− (D +D(−1)) = H we see that all involutions are contained in H.

If we have d1, d2 ∈ D, with

h1d1 = h2d2 ∈ Hd1 ∩Hd2, hi ∈ H,

then

h−1
2 h1 = d2d

−1
1 ∈ H,

which implies that

h−1
2 h1 = d2d

−1
1 = 1,

(since DD(−1) = λ(G −H) + k implies that the only element of H of the form d2d
−1
1 is 1).

Thus d1 = d2 and h1 = h2.

Thus the cosets Hd, d ∈ D, are disjoint, and so

| ∪d∈D Hd| = |H| · |D| = hk.

Since Hd ⊂ G−H for d ∈ D, we see that

hk = | ∪d∈D Hd| ≤ |G−H| = |D +D(−1)| = 2k.
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Thus h ≤ 2 and so h = 2 as h > 1. This implies thatH consists of the identity and the unique

involution t ∈ G. Since t is an involution, (gtg−1)2 = 1 for all g ∈ G, so gtg−1 is in ⟨t⟩. It

cannot be 1 since t ̸= 1. Thus gtg−1 = t, so t ∈ Z(G). This implies that H = {1, t} ≤ Z(G),

and thus we have that H is normal in G.

This proves (i), (ii) and (iii) of Theorem 1.0.2.

In what follows we will let H = ⟨t⟩, where t ∈ Z(G) has order 2. Then:

G = D +D(−1) +H, D ·D(−1) = λ(G−H) + k · 1. (3.1)

These equations give

v = 2k + 2, k2 = k + λ(v − 2),

and solving gives (i) of

Lemma 3.1.2. (i) v = 2k + 2, λ = (k − 1)/2 = (v − 4)/4 and 4|v.

(ii) DH = HD = D(−1)H = HD(−1) = G−H.

(iii) G,D,D(−1), H all commute.

Proof. From D ⊂ G−H we have DH∩H = ∅, and DH ⊂ G−H; but |G−H| = 2k = |DH|,

so that

DH = HD = G−H = (G−H)(−1) = D(−1)H = HD(−1),

giving (ii).

Since D(−1) = G − D − H and H ≤ Z(G) it now follows that D and D(−1) commute.

This shows that G,D,D(−1), H all commute.

Lemma 3.1.3. Let G be a SRHDS group with difference set D and subgroup H = ⟨t⟩. Then

D(−1) = tD.

11



Proof. We have

D +Dt = (1 + t)D

= HD

= G−H

= D +D(−1).

We now define Schur rings [26, 30, 32, 33]. A subring S of ZG is a Schur ring (or S-ring)

if there is a partition K = {Ci}ri=1 of G such that:

1. {1G} ∈ K;

2. for each C ∈ K, C(−1) ∈ K;

3. Ci · Cj =
∑

k λi,j,kCk for all i, j ≤ r where λi,j,k ∈ Z≥0.

The Ci are called the principal sets of S. Then we have:

Lemma 3.1.4. {1}, {t}, D,D(−1) are the principal sets of a commutative Schur ring.

Proof. The sets {1}, {t}, D,D(−1) partition G and we have each of the following:

D(−1) = tD,

tD(−1) = D,

t2 = 1,

D(−1)D = DD(−1) = λ(G−H) + k = λ(D +D(−1)) + k,

D2 = tDD(−1) = t(λ(D +D(−1)) + k).

This concludes the proof.

Proposition 3.1.5. If D ⊂ G is a SRHDS, then G is a Hadamard group.

12



Proof. We have DD(−1) = λ(G−H) + k. Let E = D + 1, so that

EE(−1) = DD(−1) +D +D(−1) + 1

= λ(G−H) + k + (G−H) + 1

= (λ+ 1)(G−H) + k + 1,

as required.

3.2 Intersection numbers

Let N ◁ G and let g1, g2, . . . , gr be coset representatives for G/N . If G is a SRHDS group

with difference set D, then the numbers ni = |D ∩Ngi| are called the intersection numbers.

Standard techniques give (see Section 7.1 of [19]):

Lemma 3.2.1. Let D ⊂ G be a SRHDS with subgroup H = ⟨t⟩, t2 = 1. Let N ◁ G have

order s and index r in G. Let g1 = 1, g2, . . . , gr be coset representatives for G/N and let

ni = |D ∩Ngi|, 1 ≤ i ≤ r. Then
r∑
i=1

ni = k,
r∑
i=1

n2
i = λ|N \H|+ k.

Proof. We have

G =
r∑
i=1

Ngi,

and thus

k = |D|

= |D ∩G|

=
r∑
i=1

|D ∩Ngi|

=
r∑
i=1

ni.

13



Since DD(−1) = λ(G−H) + k, if we denote Di = |D ∩Ngi|, we get
r∑
i=1

n2
i =

r∑
i=1

|Di|2

=
r∑
i=1

|DiD
(−1)
i |

= |N ∩DD(−1)|

= |N ∩ (λ(G \H) + k)|

= λ|N \H|+ k.

Lemma 3.2.2. Let G be a dicyclic group and let N ◁ G. Let D ⊂ G be a SRHDS with

subgroup H. Let Ng3, · · · , Ngr be the cosets that don’t meet H, and let ni = |D ∩ Ngi|.

Suppose that we have distinct i, i′ > 2 where gigi′ ∈ N . Then ni + ni′ = |N |.

Proof. Since ni = |D ∩ Ngi|, we have ni = |D(−1) ∩ Ng−1
i | = |D(−1) ∩ Ngi′ |. But if i ≥ 3,

then we have Ngi′ ⊂ G \H = D +D(−1), so that

|N | = |(D +D(−1)) ∩Ngi′|

= |D ∩Ngi′ |+ |D(−1) ∩Ngi′ |

= ni′ + ni.

The next result concerns intersection numbers for subgroups that are not necessarily

normal.

Proposition 3.2.3. Let G be a SRHDS group with difference set D and subgroup H. Let

K ≤ G be any subgroup where t ∈ K. Let b = |G : K| and let g0 = 1, g1, · · · , gb−1 be coset

representatives for K ≤ G. Let ki = |D ∩Kgi|, 0 ≤ i < b. Then

k0 = |K|/2− 1 and ki = |K|/2, 0 < i < b.

Let Di = D ∩Kgi, i = 0, · · · , b− 1. Then

b−1∑
i=0

DiD
(−1)
i = λ(K −H) + k.

Proof. We have D(−1) = tD. Let Di = D ∩Kgi; then

tDi = t(D ∩Kgi) = (tD) ∩ tKgi = D(−1) ∩Kgi,

14



so that D ∩ tD = ∅ and i > 0 gives

Di + tDi = (D ∩Kgi) + (D(−1) ∩Kgi)

= (D +D(−1)) ∩Kgi

= (G−H) ∩Kgi

= G ∩Kgi = Kgi.

Taking cardinalities, again using D ∩ tD = ∅, gives 2ki = |K| for i > 0.

Then
∑b−1

i=0 ki = k now gives

k0 + (b− 1)|K|/2 = k = v/2− 1;

but v = b · |K|, from which we obtain k0 = |K|/2− 1.

Now from DD(−1) = λ(G−H) + k and D =
∑b−1

i=0 Digi we get

b−1∑
i=0

DiD
(−1)
i + · · · = λ(G−H) + k,

so that
b−1∑
i=0

DiD
(−1)
i ⊆ λ(K −H) + k.

The last part will follow if we can show that both sides of the set containment have the same

size.

From b = v/|K| and the first part, the number of elements of the left hand side is

b−1∑
i=0

|Di|2 = (|K|/2− 1)2 + (b− 1)|K|2/4 = 2p|K| − |K|+ 1,

and (since H ⊂ K) the number of elements of the right hand side is

λ(|K| − 2) + k = 2p|K| − |K|+ 1,

and we are done.
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Chapter 4. The Schmidt process and the

doubling process

4.1 Direct Products and G is not abelian

Let ζn = exp 2πi/n, n ∈ N. We first show

Theorem 4.1.1. Suppose that N ⊴ G, G/N ∼= C2a , a ≥ 2, and t /∈ N . Assume that

k = |G|/2− 1 is not a perfect square. Then G is not a SRHDS group.

Proof. Assume that G is a SRHDS group. Suppose that N ⊴G with

G/N = ⟨rN⟩ ∼= C2a

where r ∈ G. Then there is a linear character

χ′ : G/N → C×, χ′(rN) = ζ2a

that induces

χ : G→ C×, χ(r) = χ′(rN).

We note that N = kerχ. Further, any g ∈ G can be written as

g = rib, 0 ≤ i < 2a, b ∈ N.

Then we can write

D =
2a−1∑
j=0

rjNj, where Nj ⊆ N.

Since t /∈ N we have χ(t) = −1 and so χ(H) = 0. We certainly have χ(G) = 0.

From G = D +D(−1) +H we get

χ(D) + χ(D(−1)) = 0,

and from DD(−1) = λ(G−H) + k we get χ(D)χ(D(−1)) = k.

These then give

χ(D)2 = −k, and so χ(D) = ±
√
−k.

16



But

±i
√
k = χ(D) = χ

(
2a−1∑
j=0

rjNj

)
=

2a−1∑
j=0

(ζ2a)
j|Nj|, (4.1)

which gives
√
k ∈ Q(i, ζ2a) = Q(ζ2a), since a ≥ 2. But the Galois group of Q(ζ2a)/Q

is C2 × C2a−2 . These groups have at most three subgroups of index 2. Thus the Galois

correspondence [9, Theorem 14, p. 574] tells us that Q(ζ2a) contains at most three quadratic

extensions, the only possibilities for which are Q(i)/Q,Q(
√
2)/Q and Q(

√
−2)/Q. But the

hypothesis says that k is not a perfect integer square, so that
√
k /∈ Z. But k > 1 is also

odd, and so
√
k /∈ Q(i),Q(

√
2),Q(

√
−2).

This contradiction gives Theorem 4.1.1.

Corollary 4.1.2. Suppose that N ⊴ G, G/N ∼= C2a , a ≥ 3, and t /∈ N . Then G is not a

SRHDS group.

Proof. Since 2a ≥ 8 we see that k = (|G| − 2)/2 satisfies k ≡ 3 mod 4, and so the result

follows from Theorem 4.1.1.

Corollary 4.1.3. If G is an abelian group with |G| ≡ 0 mod 8, then G is not a SRHDS

group.

Proof. Let G be an abelian SRHDS group, and write G = A × N where A is a Sylow

2-subgroup, and N is a subgroup of odd order. Since G has a single involution, we see that

A is cyclic, say of order 2a. The results now follow from Corollary 4.1.2 .

Corollary 4.1.4. If G is a SRHDS group, then v = |G| ≡ 0 mod 8.

Proof. Assume that G is a SRHDS group with subgroup H = ⟨t⟩ and difference set D. Then

we know that 4|v by Lemma 3.1.2, so suppose that |G| = 4n where n is odd. Then a Sylow

2-subgroup of G must be C4 = ⟨r⟩ and t = r2. Burnside’s theorem ([24, Theorem 5.13])
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shows that ⟨r⟩ has a complement N ◁ G, |N | = n,G = N ⋊ ⟨r⟩. So we can write

D = D0 +D1r +D2r
2 +D3r

3, Di ⊂ N.

Now

D +D(−1) = G−H = N +Nr +Nr2 +Nr3 −H

then gives

D0 +D
(−1)
0 = N − 1, D1 + (D

(−1)
3 )r

3

= N, D2 + (D
(−1)
2 )r

2

= N − 1

D3 + (D
(−1)
1 )r = N.

Next, D(−1) = tD gives

D
(−1)
0 = tD0, (D

(−1)
1 )r = tD3, (D

(−1)
2 )r

2

= tD2, (D
(−1)
3 )r

3

= tD1.

Using D1+(D
(−1)
3 )r

3
= N and (D

(−1)
3 )r

3
= tD1 we get D1(1+ t) = N . However D1(1+ t) has

an even number of elements (counting multiplicities), while |N | is odd. This contradiction

gives the result.

Corollaries 4.1.3 and 4.1.4 now prove Theorem 1.0.2 (iv) and (v).

Corollary 4.1.5. If G is a SRHDS group, then a Sylow 2-subgroup of G is not cyclic.

Proof. Assume G is a SRHDS group with cyclic Sylow 2-subgroup ⟨r⟩. By Corollary 4.1.4,

|⟨r⟩| ≥ 8. Again, Burnside’s theorem ([24, Theorem 5.13]) shows that ⟨r⟩ has a complement

N ◁ G,G = N ⋊ ⟨r⟩. This now contradicts Corollary 4.1.2.

This concludes the proof of Theorem 1.0.2.

4.2 Construction of some SRHDS groups

Theorem 4.2.1. Suppose that 4p− 1 is a prime power. Then Dic8p contains a SRHDS.

Proof. We follow [29, Theorem 3.3] where Schmidt proves a result of Ito about relative

difference sets in Dicyclic groups. Let q = 4p− 1 and let Fqn be the finite field of order qn.
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Let

tr : Fq2 → Fq

denote the trace function [9, Exercise 18, p. 583]. Let α ∈ Fq2 satisfy tr(α) = 0. Let z ∈ Fq2

be a generator of the multiplicative group F∗
q2 . Let Q denote the set of non-zero squares in

Fq. Note that −1 /∈ Q since q ≡ 3 mod 4.

Since Gal(Fq2 ,Fq) is generated by the Frobenius map we see that

tr(α) = α + αq,

so that αq = −α. Now choose D ∈ Fq \ (Q ∪ {0}). Then any β ∈ Fq2 has the form

β = a+ b
√
D, for some a, b ∈ Fq. Now the conjugate of α = a+ b

√
D is a− b

√
D and so

tr(α) = 0

if and only if a = 0. Thus we can choose α =
√
D. We note that the elements α′ with

tr(α′) = 0 are just those in Fqα.

Let U ≤ F∗
q2 be the subgroup of order (q − 1)/2, and let

π : F∗
q2 → W := F∗

q2/U

be the natural map. Let g := π(z) be a generator for W and note that |W | = 2(q+1) = 8p.

Let

R = {π(x) : x ∈ F∗
q2 , tr(αx) ∈ Q}.

Then by [27, Thm 2.2.12], R is a relative (q + 1, 2, q, (q − 1)/2) difference set in W relative

to the subgroup H := ⟨g4p⟩ of order 2. Define R1, R2 ⊂ W2 := ⟨g2⟩ by

R = R1 +R2g.

Since R is a relative (q + 1, 2, q, (q − 1)/2) difference set,

RR(−1) =
q − 1

2
(W −H) + q

from which we get

R1R
(−1)
1 +R2R

(−1)
2 = q +

q − 1

2
(W2 −H) .
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If d ∈ F∗
q2 has order dividing q + 1, then dq = d−1 and so

tr(αd) = αd+ αqdq = αd− αd−1 = −tr(αd−1).

Thus if tr(αd) ∈ Q, then tr(αd−1) ∈ −Q. But q ≡ 3 mod 4 tells us that g4p = −1 /∈ Q, so

that

tr(αg4pd−1) ∈ Q.

Thus g4pd−1 ∈ R1. Now the order of g4pd−1 is a divisor of 2(q + 1) = |W |. This gives a

bijection,

Ud↔ Ug4pd−1,

between the elements of R1 ⊂ W2, which then gives R
(−1)
1 = g4pR1. Now let

G = Dic8p = ⟨a, b|a2p = b2 , b4 = 1 , ab = a−1 ⟩

and identify ⟨a⟩ with W2, so that a ↔ g2. To construct the SRHDS in the dicyclic group,

we first need to show the following:

Lemma 4.2.2. (i) R1 + 1 is a transversal for W2/H.

(ii) R2 is a transversal for W2/H.

Proof. From R
(−1)
1 = g4pR1 we see that if γ ∈ R1∩R(−1)

1 , then g4p ∈ R1R
(−1)
1 , a contradiction

to R being a relative difference set relative to H. It follows that R1 ∩ R
(−1)
1 = ∅. Now

1,−1 = g4p /∈ R1 as tr(α1) = 0 /∈ Q, and so

R1 +R
(−1)
1 = W2 −H. (4.2)

Then (4.2) and R
(−1)
1 = g4pR1 gives

W2 −H = R1(1 + g4p) = R1H,

This proves part (i).

For part (ii), We first show that R+1 is a transversal for W/H.

If u ∈ W , then tr(αu) ∈ Q, and it follows that

tr(αg4pu) = −tr(αu) /∈ Q.

20



This sets up a bijection u ↔ g4pu of W − H where the orbits of this bijection are the

non-trivial H-cosets and a transversal corresponds to the elements of Q.

Since R+1 is a transversal for W/H and R1 +1 is a transversal for W2/H it follows that

R2 is a transversal for W2/H. This concludes the proof.

Now if α =
√
D, β = a+ b

√
D, then tr(αβ) = 2bD ∈ Q if and only if 2b ∈ F∗

q \Q.

Define

S := a2pR1 +R2b.

First we show that SS(−1) = λ (G−H) + k where k = (v − 2)/2, λ = (k − 1)/2:

SS(−1) = (a2pR1 +R2b)(a
2pR

(−1)
1 + b−1R

(−1)
2 )

= R1R
(−1)
1 +R2R

(−1)
2 +R1R2(1 + a2p)b

= R1R
(−1)
1 +R2R

(−1)
2 +R1R2Hb

= R1R
(−1)
1 +R2R

(−1)
2 +R1W2b

= q +
q − 1

2
(W2 −H) + |R1|W2b

= k + λ (W2 −H) + λW2b

= k + λ (W2 +W2b−H) (4.3)

= λ (G−H) + k, (4.4)

as desired. Next we need

Lemma 4.2.3. For S as above we have S ∩ S(−1) = ∅.

Proof. Assume that

r ∈ S ∩ S(−1), S = a2pR1 +R2b.

Then there are two cases.

(a) First assume that r ∈ ⟨a⟩. Then there are xi, xj ∈ R1 where r = a2pai = a2pa−j so we

have i = −j. Since a corresponds to g2 the elements g2i, g−2j satisfy

tr(αg2i), tr(αg−2j) ∈ Q.
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Let gi = c+ b
√
D. Then tr(αg2i), tr(αg−2j) ∈ Q (respectively) gives 4bcD ∈ Q,

− 4bcD
(c2−b2D)2

∈ Q (respectively), which in turn gives −1 ∈ Q, a contradiction.

(b) Next assume that r ∈ ⟨a⟩b. Then there are i, j such that

r = aib = (ajb)−1 = aj+2pb,

where ai, aj ∈ R2. Thus i = j + 2p. As in the first case this gives

tr(αg2i+1), tr(αg2j+1) = tr(αg2i−4p+1) ∈ Q.

Since tr(αg2i−4p+1) = −tr(αg2i+1), this gives −1 ∈ Q, a contradiction.

From S ∩ S(−1) = ∅ = S ∩H we get

G = S + S(−1) +H

and so Eq. (4.4) shows that S is a SRHDS, giving Theorem 4.2.1.

We next wish to show that we can double this example (see the next section for the

definition of this doubling process), and so we need the following ‘symmetry’ results:

Symmetry proof for R1.

Now S = a2pR1 +R2b and if ai ∈ a2pR1, then i = 2p+ j where tr(αz2j) ∈ Q.

We note that z, the generator of F∗
q2 , has order q2 − 1, and so (zq)q = z, showing that

the non-trivial Galois automorphism is determined by z 7→ zq.

So from tr(αz2j) ∈ Q we get tr(αqz2jq) ∈ Q. But αq = −α = αz(q
2−1)/2. Thus

tr(αqz2jq) = tr(αz2jq+(q2−1)/2)

= tr(αz2(jq+(q2−1)/4)) ∈ Q.

This if j′ = (jq + (q2 − 1)/4), then a2p+j
′ ∈ a2pR1, and so j 7→ j′ determines a function
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R1 → R1 that we show is an involution. If j 7→ j′ 7→ j′′, then

j′′ = j′q + (q2 − 1)/4

= (jq + (q2 − 1)/4)q + (q2 − 1)/4

= jq2 + (q3 − q)/4 + (q2 − 1)/4

= j + (q2 − 1)(j + (q + 1)/4)

= j + (q2 − 1)(j + p).

Thus zj
′′
= zj since zq

2−1 = 1.

One can then check that j = p + r is sent to j′ = p− r (recalling that j is defined mod

4p). This gives a ‘reflective’ symmetry for R1. We note this result for later.

aj = ap+r ∈ R1 =⇒ aj
′
= ap−r ∈ R1. (4.5)

Symmetry proof for R2. We now do a similar thing for R2. Let aib ∈ R2b, so that

tr(αz2i+1) ∈ Q. Then acting by the Galois automorphism we get

tr(αqz(2i+1)q) = tr(αz(2i+1)q+(q2−1)/2)

= tr(αz2(iq+(q2−1)/4+(2p−1))+1) ∈ Q.

This similarly gives the involutive map

i 7→ iq + (q2 − 1)/4 + (2p− 1) ≡ −i− 1 mod 4p.

So we have

ai ∈ R2 =⇒ a−i−1 ∈ R2. (4.6)

Using the results of the next section, these symmetry results will show that we can apply

the doubling process to the Schmidt construction given in Theorem 4.2.1.

4.3 The Doubling Process

Let G = Dicv = ⟨x , y⟩, v = 4n, so that k = 2n− 1, λ = n− 1.
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We denote K = ⟨x⟩ and put

D = D1 +D2y,Di ⊂ K, ki = |Di|.

Then k1 = n − 1, k2 = n and D1 ∪ {1} and D2 are transversal for K/H (this comes from

looking at G−H = D +D(−1) = D1 +D2y + (D
(−1)
1 + (D2y)

(−1))).

We also have (from DD(−1) = λ(G−H) + k)

(i) λD1H + k = D1D
(−1)
1 +D2D

(−1)
2 ,

(ii) λKy = D2D1y +D1D2y
−1.

Also D
(−1)
1 = tD1 and Dy

i = D
(−1)
i .

Now (ii) is equivalent to D1D2(1 + t) = λK or D1K = λK. But D1K = λK follows

directly from Di ⊂ K, and |D1| = λ.

Thus (i) and (ii) are equivalent to

λD1H + k = D1D
(−1)
1 +D2D

(−1)
2 .

So we have

Lemma 4.3.1. The requirement that D = D1 +D2y is a SRHDS is equivalent to

(a) D1H = K −H,

(b) D
(−1)
1 = tD1,

(c) D2H = K,

(d) λ(K −H) + k = D1D
(−1)
1 +D2D

(−1)
2 .

Now

Dic16p = ⟨x , y | x 8p = y4 = 1 , x y = x−1 ⟩, t = y2 .

We let

Dic8p = ⟨x 2 , y⟩ ≤ Dic16p.

Let D be a (v1, k1, λ1)-SRHDS in Dic8p, so v1 = 8p, k1 = 4p− 1, and λ1 = 2p− 1. We note

that the t in Dic16p is the same as the t in Dic8p. Write D = D0 +D1y. We construct the
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set E ⊆ Dic16p as

E := E0 + E1y

with

E0 := D0 +D1x and E1 := D
(−1)
1 x−1t+D

(−1)
0 + 1.

We show that if D1 satisfies the symmetry: x2i ∈ D1 implies x4p−2i−2 ∈ D1, then E is a

(v2, k2, λ2)-SRHDS with

v2 = 16p, k2 = 8p− 1, λ2 = 4p− 1.

Theorem 4.3.2. The set E as defined above is an SRHDS if D = D0 +D1y is an SRHDS

in Dic8p and x2i ∈ D1 implies x4p−2i−2 ∈ D1.

Proof. We note that D(−1) = tD implies that E(−1) = tE. We also observe that the map

x2i → x4p−2i−2 is an involution. Using Lemma 4.3.1, to show E is a SRHDS it suffices to

show that E satisfies

(1) E ∪ E(−1) = Dic16p − ⟨t⟩;

(2) E ∩ E(−1) = ∅;

(3) E0E
(−1)
0 + E1E

(−1)
1 = λ2(⟨x⟩ − ⟨t⟩) + k2.

They are sufficient because conditions (1) and (2) along with E(−1) = tE imply conditions

(a) and (c) of Lemma 4.3.1.

First we note that E does not contain t or the identity, as this would imply D0 contains

these. We now show (2), which will imply (1). We split condition (2) by considering the

intersection of E with each of the cosets of ⟨x2⟩, all of which cosets are their own inverses.

There are four such cosets: ⟨x2⟩, ⟨x2⟩x, ⟨x2⟩y, and ⟨x2⟩xy.

⟨x2⟩ : For E ∩ ⟨x2⟩ = D0, we know that x2i ∈ D0 implies x−2i ̸∈ D0 since D0 ∩D(−1)
0 = ∅.
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⟨x2⟩x : We have E ∩ ⟨x2⟩x = D1x. We show D1x ∩ (D1x)
(−1) = ∅.

x2i+1 ∈ D1x ⇐⇒ x2i ∈ D1

⇐⇒ x4p−2i−2 ∈ D1

⇐⇒ x4p−2i−2y ∈ D1y

⇐⇒ tx4p−2i−2y ̸∈ D1y (4.7)

⇐⇒ x−2i−2 ̸∈ D1 (4.8)

⇐⇒ x−2i−1 ̸∈ D1x. (4.9)

Here we used the symmetry and the fact that (D1y)∩(D1y)
(−1) = ∅ where (D1y)

(−1) = tD1y.

⟨x2⟩y : Here we have E ∩ ⟨x2⟩y = D
(−1)
0 y + y. First we check that D

(−1)
0 y doesn’t con-

tain any of its inverses:

x−2iy ∈ D
(−1)
0 y ⇐⇒ (x−2iy)−1 = tx−2iy ̸∈ D

(−1)
0 y.

We also check the additional y doesn’t have an inverse in D
(−1)
0 y:

t ̸∈ D
(−1)
0 ⇐⇒ y−1 = ty ̸∈ D

(−1)
0 y.

⟨x2⟩xy : Here we have E ∩ ⟨x2⟩xy = D
(−1)
1 x−1ty, and

x−2i−1ty ∈ D
(−1)
1 x−1ty ⇐⇒ x2i ∈ D1

⇐⇒ tx2i ̸∈ D1

⇐⇒ tx−2i ̸∈ D
(−1)
1

⇐⇒ x−2i−1y = tx−2ix−1ty ̸∈ D
(−1)
1 x−1ty.

Thus E ∩ E(−1) = ∅. This concludes (2) and implies (1), since both E and E(−1) don’t

intersect ⟨t⟩ and |E| = k2 = 8p− 1.
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Now we prove (3): we have

E0E
(−1)
0 + E1E

(−1)
1 = (D0 +D1x)

(
D

(−1)
0 +D

(−1)
1 x−1

)
+
(
D

(−1)
1 x−1t+D

(−1)
0 + 1

)
(D1xt+D0 + 1)

= 2D0D
(−1)
0 + 2D1D

(−1)
1

+ (1 + t)D0D
(−1)
1 x−1 + (1 + t)D1D

(−1)
0 x

+D1xt+D0 +D
(−1)
1 x−1t+D

(−1)
0 + 1. (4.10)

For E to be a SRHDS we need (4.10) to be equal to λ2(⟨x⟩ − ⟨t⟩) + k2. Looking at just the

even powers of x, we need

2D0D
(−1)
0 + 2D1D

(−1)
1 +D0 +D

(−1)
0 + 1

to be equal to λ2(⟨x2⟩ − ⟨t⟩) + k2. We note that

D0 +D
(−1)
0 = ⟨x2⟩ − ⟨t⟩,

and

D0D
(−1)
0 +D1D

(−1)
1 = λ1(⟨x2⟩ − ⟨t⟩) + k1

since D is a SRHDS for ⟨x2, y⟩. Since k2−1
2

= λ2, we have

2(D0D
(−1)
0 +D1D

(−1)
1 ) + (D0 +D

(−1)
0 ) + 1

= 2(λ1(⟨x2⟩ − ⟨t⟩) + k1) + (⟨x2⟩ − ⟨t⟩) + 1

= (2λ1 + 1)(⟨x2⟩ − ⟨t⟩) + (2k1 + 1)

= λ2(⟨x2⟩ − ⟨t⟩) + k2,

as desired. We now look at the odd powers of x in (4.10), which must equal λ2⟨x2⟩x. We

see that

(1 + t)D0D
(−1)
1 x−1 + (1 + t)D1D

(−1)
0 x+D1xt+D

(−1)
1 x−1t

= (1 + t) (D0 + 1)D
(−1)
1 x−1 + (1 + t) (D0 + 1)(−1)D1x (4.11)

− (D1x)
(−1) +D1x.
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Looking at the first two terms of (4.11), D0 + 1 is a transversal of ⟨t⟩ in ⟨x2⟩, so

(1 + t) (D0 + 1) = ⟨x2⟩

and

(1 + t) (D0 + 1)(−1) = ⟨x2⟩.

So we can reduce (4.11) to

⟨x2⟩D(−1)
1 x−1 + ⟨x2⟩D1x− (D1x)

(−1) +D1x.

To evaluate the last two terms of (4.11), we note that (4.7) gives us: if x2i ∈ D1, then

x−2i−2 ̸∈ D1. Thus D1 and (D1x
2)

(−1)
are disjoint, so their sum is ⟨x2⟩ since |D1| = 4p. Thus

(D1x)
(−1) +D1x =

((
D1x

−2
)(−1)

+D1

)
x = ⟨x2⟩x.

So the sum of the odd powered terms is

⟨x2⟩ (D1)
(−1) x−1 + ⟨x2⟩D1x− ⟨x2⟩x = D

(−1)
1 ⟨x2⟩x−1 + (D1 − 1)⟨x2⟩x

= |D1|⟨x2⟩x+ (|D1| − 1)⟨x2⟩x

= λ2⟨x2⟩x

as desired. Therefore we have shown (3), and E is a SRHDS.

Corollary 4.3.3. The set E = E0 + E1y as defined above is an SRHDS in Dic16p if D =

D0 +D1y is an SRHDS in Dic8p and x2i ∈ D1 implies x−2i−2 ∈ D1.

Proof. This follows by applying the automorphism φ(x) = x, φ(y) = x2py to Dic16p in the

preceding theorem. We have that D is a SRHDS for Dic8p if and only if φ(D) is, and

similarly E is a SRHDS for Dic16p if and only if φ(E) is. The condition x2i ∈ φ(D1) implies

x−2i−2 ∈ φ(D1) is equivalent to the condition x2i ∈ D1 implies x4p−2i−2 ∈ D1.

Many other equivalent symmetries can be obtained by using a different automorphism

that fixes ⟨x⟩. The one we have used is that obtained at the end of Theorem 4.2.1). In

the SRHDS S = a2pR1 + R2b of Dic8p from Theorem 4.2.1, we showed that ai ∈ R2 implies

a−i−1 ∈ R2 (See (4.6)). As a subgroup of Dic16p, this is the necessary symmetry condition
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for Corollary 4.3.3 to apply. Thus Dic16p is a SRHDS group when 4p− 1 is a prime power.

This proves Theorem 1.0.4.
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Chapter 5. Identifying SRHDS and

non-SRHDS groups

5.1 D and cosets of Q8

Let G be a SRHDS group with subgroup H and difference set D. Suppose that Q ≤ G has

even order and that g0 = 1, · · · , gp−1 is a transversal for Q ≤ G. Then we can write

D = F0g0 + F1g1 + · · ·+ Fp−1gp−1, Fi ⊂ Q. (5.1)

Lemma 5.1.1. Let Q ≤ G be as above. For all subsets F ⊆ Q of size greater than |Q|/2,

the multiplicity of t in FF (−1) is greater than zero.

Proof. We have t ∈ Q, so H ≤ Q and if |F | > |Q|/2, then some coset of H ≤ Q meets F in

two elements and so t ∈ FF (−1).

Now DD(−1) = λ(G − H) + k and a part of the left hand side is
∑p−1

i=0 FiF
(−1)
i . Thus

|Fi| ≤ |Q|/2 when D is written as in Eq. (5.1).

Now let fi = |Fi|, 0 ≤ i < p− 1, so that

p−1∑
i=0

fi = |D| = k =
(|G| − 2)

2

=
(|Q|p− 2)

2
=

|Q|
2
p− 1.

Since fi ≤ |Q|/2 we must have fi = |Q|/2 for all 0 ≤ i ≤ p − 1 except one. To see that

f0 = |Q|/2 − 1 we just note that Q − H has |Q| − 2 elements that come in inverse pairs.

Thus f0 = |Q|/2− 1.

Next note that DD(−1) = λ(G−H) + k and FiF
(−1)
i ⊆ Q. We want to show

p−1∑
i=0

FiF
(−1)
i = λ(Q−H) + k. (5.2)

Now, v = 8p, k = |Q|
2
p− 1, λ = |Q|

4
p− 1 and so λ(Q−H) + k has(

|Q|
4
p− 1

)
(|Q| − 2) +

(
|Q|
2
p− 1

)
=

|Q|2

4
p− |Q|+ 1
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elements, while
∑p−1

i=0 FiF
(−1)
i has(

|Q|
2

− 1

)2

+ (p− 1)

(
|Q|
2

)2

=
|Q|2

4
p− |Q|+ 1

elements, so we must have Eq. (5.2).

For Q = Q8, considering those Fi of size |Q|/2 = 4 a Magma [21] calculation gives the

following result by finding all those subsets F ⊂ Q8 such that FF (−1) does not contain t:

Lemma 5.1.2. Suppose that Q = Q8 ≤ G. Then each Fi of size 4 is one of the following 16

sets:

{1, x, y, xy}; {1, x, y, x3y}; {x, x2, x2y, x3y}; {1, x, x2y, x3y};

{1, x3, x2y, x3y}; {1, x3, y, xy}; {x, x2, y, x3y}; {x2, x3, y, x3y};

{x, x2, xy, x2y}; {x2, x3, xy, x2y}; {x2, x3, y, xy}; {1, x, xy, x2y};

{x, x2, y, x2y}; {x2, x3, x2y, x3y}; {1, x, xy, x2y}; {1, x3, y, x3y}.

Each of these is a relative difference set for Q8. Thus each Fi, i > 0, is a relative difference

set for Q8. It follows then from Eq. (5.2) that F0 is a SRHDS for Q8. Thus F0 is determined

by

Lemma 5.1.3. The following sets are equal:

(i) The set of all SRHDS for Q8 = ⟨i, j, k⟩.

(ii) The set of all conjugate (by elements of Q8)-translates (by elements of H) of {i, j, k}.

(iii) The set of all {a, b, c} ⊂ Q8 \ H where |{a, b, c}| = 3 and t /∈ {uv−1 : u, v ∈ {a, b, c}}.

Call this common set S and note that |S| = 8.

Now any F0 must satisfy (iii), so F0 ∈ S. Further, we can choose F0 to be any element

of S by applying the operations in (ii) to D, which still result in a SRHDS.

Assume that G = Dic8p so that a transversal of Q8 ≤ G is 1, x, · · · , xp−1. Now we can

write

D = F0 + F1x+ F2x
2 + · · ·+ Fp−1x

p−1
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where Fi ⊂ Q8 and F0 ∈ S.

Here each Fi, i > 0, is one of the 16 subsets of Q8 in Lemma 5.1.2 and

Fi = (1 + xp)(a+ by) = a+ by + xpa+ xpby, where a, b ∈ ⟨xp⟩.

Now D(−1)t = D and so if Fix
i ⊂ D, then t(Fix

i)(−1) = tx−iF
(−1)
i ⊂ D. Here

F
(−1)
i = a−1 + bty + x−pa−1 + xpbty,

and so

t(Fix
i)(−1) = tx−1F

(−1)
i

= tx−i(a−1 + bty + x−pa−1 + xpbty)

= ta−1x−i + tx−pa−1x−i + byxi + xpbyxi.

Thus Fi and t(Fix
i)(−1) have byxi + xpbyxi in common and so

Fix
i ∪ t(Fixi)(−1) = axi + byxi + xpaxi + xpbyxi + ta−1x−i + tx−pa−1x−i.

We denote this by Ji(a, b), so that D is a union of D0 and some of the Ji(a, b).

Now Ji(a, b) has four elements in Q8x
i and has two elements in Q8x

−i. Since we know

that each non-trivial coset of Q8 has to contain four elements of D we know that D has to

contain some J−i(c, d) so that

(a+ xpa)xi + (a−1 + x−pa−1)tx−i = (c+ xpc)x−i + (b−1 + x−pb−1)txi.

This is true if and only if we have

a+ xpa = b−1t+ x−pb−1t and (a−1 + x−pa−1)t = b+ xpb.

However these equations are equivalent and we note that for any choice of a ∈ ⟨xp⟩ there

is a b ∈ ⟨xp⟩ that solves the first equation.

Thus we now obtain eight element sets by taking the union of these two J ′s. We denote

these by Li(a, b, c):

(a+ xpa)xi + (a−1 + x−pa−1)tx−i + (by + xpby)xi + (cy + xpcy)x−i

= (1 + xp)(a+ by)xi + (1 + xp)(xpa−1 + cy)x−i.

32



We note that Li(a, b, c) = Lj(a
′, b′, c′) if and only if i = j, a = a′, b = b′, c = c′. For

1 ≤ i ≤ p− 1 let

Li = {Li(a, b, c) : a, b, c ∈ ⟨xp⟩}.

Then |Li| = 64.

5.2 Groups that are not SRHDS groups

Proposition 5.2.1. The dicyclic group Dic72 is not a SRHDS group.

Proof. Suppose it is and that D is the SRHDS. Let

G = Dic72 = ⟨x , y |x 36 = y4 = 1 , y2 = x 18 , x y = x−1 ⟩.

Then by the above section there are Di ∈ Li, 1 ≤ i ≤ 4, such that

D = D0 +
4∑
i=1

Di.

There are 64 = |Li| choices for each Di, 1 ≤ i ≤ 4. Using the standard irreducible represen-

tation ρ : Dic72 → GL(2,C) given by

ρ(x) =

ζ36 0

0 ζ−1
36

 , ρ(y) =
0 −1

1 0

 , ζ36 = e2πi/36,

we have ρ(G) = ρ(H) = 0. From D + D(−1) = G − H we then have ρ(D) + ρ(D(−1)) = 0.

By DD(−1) = λ(G−H) + k we have ρ(D)ρ(D(−1)) = kI2 = 35I2. Therefore,

35I2 = ρ(D)ρ(D(−1)) = −ρ(D)2.

A Magma calculation determines that of the 644 possibilites for D, only 648 have ρ(D)2 =

−35I2. Another Magma [2] calculation verifies that none of these 648 give a SRHDS, com-

pleting the proof.

Proposition 5.2.2. Let G be a group where Q8 ≤ G. Suppose that there is an epimorphism

π : G → Cp × Q8 for p prime where π(Q8) = {1} × Q8 and | kerπ| is odd. Then G is not a

SRHDS group.
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Proof. Suppose that G is a SRHDS group with difference set D and subgroup H = ⟨t⟩. Let

Q8 = ⟨x, y|x4, x2 = y2, xy = x−1⟩ ≤ G,

so that

t = x2, π(x) = x, π(y) = y.

First note that p must be odd since G has a unique involution. Let N = kerπ. Put

Cp = ⟨π(r)⟩, r ∈ G, so that we can write

D =

p−1∑
i=0

3∑
j=0

rixjD0,i,j +

p−1∑
i=0

3∑
j=0

rixjyD1,i,j, Dk,i,j ⊂ N.

We note that |Di,j,k| ≤ |N |.

Let p2 = (p− 1)/2. We can also write D =
∑p−1

i=0 r
iDi, Di ⊂ ⟨x, y,N⟩ so that

Di =
3∑
j=0

xjD0,i,j +
3∑
j=0

xjyD1,i,j.

From D(−1) = tD we get

D
(−1)
i r−i = trp−iDp−i, 0 ≤ i < p,

so that Dp−i = tr−p(D
(−1)
i )r

−i
. Thus

D = D0 +

p2∑
i=1

riDi + r−it(D
(−1)
i )r

−i
.

Now let ρ : Q8 → GL(2,Q(i)), i =
√
−1, be an irreducible faithful unitary representation

of Q8 where

ρ(x) =

i 0

0 −i

 , ρ(y) =
0 −1

1 0

 .
Then the Q-span of the image of ρ has basis

B1 = I2, B2 = ρ(x) =

i 0

0 −i

 , B3 = ρ(y) =

0 −1

1 0

 , B4 = ρ(xy) =

 0 −i

−i 0


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since ρ(x2) = −B1. We note from Lemma 5.1.3 that we may assume D0 = {x, y, xy}, so

ρ(D0) =

 i −i− 1

1− i −i

 = B2 +B3 +B4.

Let ω = exp 2πi/p. Then π, ρ and r 7→ ωI2 determine an irreducible unitary representa-

tion of G that we also call ρ. Then

ρ(riDi) = ωi
4∑
j=1

aijBj,

where aij ∈ Z, so that

ρ(r−it(D
(−1)
i )r

−i
) = −ω−iρ(D

(−1)
i )r

−i
)

= −ω−iρ(D
(−1)
i )

= −ω−i
4∑
j=1

aijB
∗
j .

Here

B∗
1 = B1, B

∗
2 = −B2, B

∗
3 = −B3, B

∗
4 = −B4.

This gives

ρ(D) =

 i −i− 1

1− i −i

+

p2∑
i=1

ρ(Dir
i + r−it(D

(−1)
i )r

−i
)

=

 i −i− 1

1− i −i

+

p2∑
i=1

4∑
j=1

(aijBjω
i − aijB

∗
jω

−i). (5.3)

We can write this matrix as

ρ(D) =

 i −i− 1

1− i −i

+
4∑

u=1

auBu, where au ∈ Z[ω]. (5.4)

From DD(−1) = λ(G − H) + k and D(−1) = tD we get D2 = λ(G − H) + kt. Now if

ρ(D)2 = (eij), then from

(eij) = ρ(D2) = ρ(λ(G−H) + tk) = −kI2
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and Eq. (5.4) we get

0 = e11 − e22 = 4ia1(1 + a2), 0 = e12 = 2a1(i+ 1 + a3 + ia4),

0 = e21 = 2a1(−1 + i− a3 + ia4).

Solving, we must have either

(i) a1 = 0; or

(ii) a2 = −1, a3 = −1, a4 = −1.

Now we find a1, · · · , a4 in terms of the aij. From (5.3) and (5.4) we have

4∑
u=1

auBu =

p2∑
i=1

4∑
j=1

aijBjω
i − aijB

∗
jω

−i

=

p2∑
i=1

ai1B1ω
i − ai1B1ω

−i + ai2B2ω
i + ai2B2ω

−i

+ ai3B3ω
i + ai3B3ω

−i + ai4B4ω
i + ai4B4ω

−i.

From this we get

a1 =

p2∑
i=1

ai1(ω
i − ω−i); a2 =

p2∑
i=1

ai2(ω
i + ω−i);

a3 =

p2∑
i=1

ai3(ω
i + ω−i); a4 =

p2∑
i=1

ai4(ω
i + ω−i).

Now if we have (i) a1 = 0, then the fact that p > 2 is a prime means that the ωi−ω−i, i =

1, 2, · · · , p2 are linearly independent over Q, so that we must than have ai1 = 0 for all i.

Observe from previous definitions that ai1 = |D0,i,0| − |D0,i,2|. From D(−1) = tD and

D ∪D(−1) = G− ⟨t⟩ we have

|D0,i,0|+ |D0,i,2| = |N |.

So

|D0,i,0| = |D0,i,2| = |N |/2.

Thus |N | is even, which contradicts our assumption on ker π.
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So now assume (ii), so that

ρ(D) =

 i −i− 1

1− i −i

+
4∑
i=1

aiBi

=

 i −i− 1

1− 1 −i

+ a1B1 −B2 −B3 −B4

= a1I2.

But

−ρ(D2) = ρ(DD(−1)) = kI2

then gives a21 = −k. Here a1 ∈ Q[ω]. Recall that ω = e
2πi
p , so the Galois group of [Q(ω) : Q]

is cyclic of even order p − 1. By the Galois correspondence, Q(ω) has a unique quadratic

subfield. In particular, we can verify that the subfield is exactly Q(
√
p) if p ≡ 1 (mod 4),

and Q(
√
−p) if p ≡ 3 (mod 4). This follows from the Gauss sum:(

p−1∑
n=0

(
n

p

)
ωn

)2

= (−1)
p−1
2 p

Note that k ≡ 3 (mod 4) so k is not an integer square. Therefore a21 = −k implies k = px2

for some x ∈ Z. However, k = 4p|N | − 1 so we have a contradiction, as k must be congruent

to both 0 and −1 (mod p).

5.3 Groups of order less than or equal to 72

Here is the list of non-dicyclic groups (using the magma notation) of order less than or equal

to 72 that meet the following requirements:

(i) they are not abelian;

(ii) the Sylow 2-subgroups are generalized quaternion groups;

(iii) they have a single involution.
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G24,3, G24,11, G40,11, G48,18, G48,27, G48,28, G72,3,

G72,11, G72,24, G72,25, G72,26, G72,31, G72,38.

We note that all of the dicyclic groups of order less than 72 and divisible by 8 are SRHDS

groups by Theorems 1.0.3 and 1.0.4, while Dic72 is not by Proposition 5.2.1.

We will determine whether the remaining groups have a SRHDS. If they have a SRHDS

then we give a SRHDS explicitly. If not, then we give a proof that the group is not a SRHDS

group.

Remark 5.3.1. In the cases of G72,3, G72,11, G72,24, G72,25, and G72,31, we use the following

process to show they are not SRHDS groups: Given one of the five groups G, we take a right

transversal g0 = 1, . . . , g8 for Q8 ≤ G. Assuming there is an SRHDS D, we write D as

in (5.1). We can assume F0 = {x, y, xy} by Lemma 5.1.3. By Lemma 5.1.2, there are 16

possibilities for each Fi, and a Magma [2] calculation verifies that none of these combinations

give a SRHDS.

(1) G24,3 = SL(2, 3) = ⟨a, b, c, d|a3 = 1, b2 = d, c2 = d, d2, ba = c, ca = bc, cb = cd⟩. Here

D = {a2cd, abcd, acd, cd, a2bd, a2d, a2bc, a, bc, ab, b}.

(2) G24,11 = C3 ×Q8. This is not a SRHDS group by Proposition 5.2.2.

(3) G40,11 = C5 ×Q8. This is not a SRHDS group by Proposition 5.2.2.

(4) G48,18 = C3⋊Dic16 = ⟨a, b, c, d, e|d2 = e3 = 1, a2 = b2 = c2 = d, ba = bc, ca = cb = cd, da =

db = dc = d, ea = e2, eb = ec = ed = e⟩ and let D be

{ade2,de2, ae, e, abce2, abc, bce2, abde2, bde2, bce, acd, acde2, abd,

cde2, cd, acde, cde, bde, bcd, a, abcde, b, abe}.

(5) G48,27 = C3 × Dic16. We show G48,27 is not a SRHDS group. Let C3 = ⟨r⟩. Then

D = D0 + D1r + D2r
2, Di ⊂ Dic16. Now D(−1) = tD gives D

(−1)
0 = tD0 and D2 = tD

(−1)
1 .

Also Lemma 3.2.1 shows that the sizes of D0, D1, D2 are 7, 8, 8 (in some order). By replacing
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D by riD if necessary we may assume that |D0| = 7 and that D0+1, D1, D2 are transversals

for G/H. Using D
(−1)
0 = tD0 one sees that there are 64 possible D0s and 256 possible D1s.

Further, D2 is determined by D2 = tD
(−1)
1 . There are thus 64 · 256 possibilities for D and

one checks that none of these give a SRHDS.

(6) Let G48,28 = ⟨a, b, c, d, e|b3 = e2 = 1, a2 = c2 = d2 = e, ba = b2, ca = d, cb = de, da =

c, db = cd, dc = de, ea = eb = ec = ed = e⟩. Here one D is

{ab2de, ab2cde, b2cde, ce, abc, b2c, bc, d, ade, ab2ce, ac, ab2, acd, cd,

b2d, b2e, abde, bde, bcd, a, ab, abcde, b}.

(7) G72,3 = Q8 ⋊ C9 = ⟨i, j, b|i4 = j4 = b9 = 1, ij = i−1, i2 = j2, ib = j, jb = ij⟩. Remark 5.3.1

shows this is not an SRHDS group.

(8) G72,11 = C9 ×Q8. Remark 5.3.1 shows this is not an SRHDS group.

(9) G72,24 = C2
3 ⋊Q8 = ⟨a, b, i, j|a3 = b3 = i4 = j4 = 1, ab = ba, ij = i−1, i2 = j2, ai = a, bi =

b2, aj = a2, bj = b⟩. Remark 5.3.1 shows this is not an SRHDS group.

(10) G72,25 = C3 × SL(2, 3). Remark 5.3.1 shows this is not an SRHDS group.

(11) G72,26 = C3 ×Dic24. This is not an SRHDS group by Proposition 5.2.2.

(12) G72,31 = C2
3 ⋊ Q8 = ⟨a, b, i, j|a3 = b3 = i4 = j4 = 1, ab = ba, ij = i−1, i2 = j2, ai =

a2, bi = b2, aj = a, bj = b⟩. Remark 5.3.1 shows this is not an SRHDS group.

(13) G72,38 = C2
3 ×Q8. This is not an SRHDS group by Proposition 5.2.2.
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Chapter 6. Symmetry in doubled SRHDS di-

cyclic groups

6.1 Defining doubly symmetric SRDRS groups

Recall that a SRHDS is a relative difference set with additional conditions imposed. The

results of this paper up to this point have looked at categorizing when these exist in a par-

ticular finite group. We will now add an additional symmetry condition present in a SRHDS

constructed by the doubling process, which will allow us to completely determine which gen-

eralized quaternion groups have this type of SRHDS. Recall that Dic8p = ⟨x, y | x4p = y4 =

1, x2p = y2, xy = x−1⟩, where we denote t = x2p = y2.

Proposition 6.1.1. Let D be a SRHDS in Dic8p. Write D = D0+D1y with D0, D1 ⊂ ⟨x⟩ ⊂

Dic8p. Then x
i ∈ D0 if and only if tx−i ∈ D0.

Proof. Applying Lemma 3.1.3, and knowing D ∩D(−1) = ∅, we have

xi ∈ D0 ⇐⇒ x−i ∈ D
(−1)
0

⇐⇒ tx−i ∈ tD
(−1)
0

⇐⇒ tx−i ∈ t2D0 = D0.

This symmetry is present in all dicyclic group SRHDS. Additionally, for SRHDS con-

structed by the doubling process (Corollary 4.3.2), there is nearly the same symmetry in

D1.

Proposition 6.1.2. Let E be a SRHDS in Dic16p that was constructed by the doubling process

(Corollary 4.3.2). Write E = E0 + E1y with E0, E1 ⊂ ⟨x⟩ ≤ Dic16p. Then xi ∈ E1 − {1}

implies tx−i ∈ E1 − {1}.

Proof. Let D = D0 +D1y ⊂ ⟨x2, y⟩ be the SRHDS that was doubled to obtain E. Then by

the hypothesis of the doubling process, we assume that x2j ∈ D1 implies x4p−2j−2 ∈ D1, and

E1 − {1} = D
(−1)
1 x−1t+D

(−1)
0 .
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Let xi ∈ E1 − {1}. Then there are two cases, depending on whether i is even or odd:

i = 2j =⇒ x2j ∈ D
(−1)
0

=⇒ x−2j ∈ D0

=⇒ tx−2j ∈ tD0 = D
(−1)
0

=⇒ tx−i ∈ D
(−1)
0 ,

and

i = 2j − 1 =⇒ x2j−1 ∈ D
(−1)
1 x−1t

=⇒ tx2j ∈ D
(−1)
1

=⇒ x4p+2j ∈ D
(−1)
1

=⇒ x−4p−2j = x2(−j−2p) ∈ D1

=⇒ x4p−2(−j−2p)−2 ∈ D1

=⇒ x8p+2j−2 = x2j−2 ∈ D1

=⇒ x−2j+2 ∈ D
(−1)
1

=⇒ tx−2j+1 = tx−i ∈ D
(−1)
1 x−1t.

This concludes the proof.

Definition 6.1.3. We say a SRHDS D = D0 + D1y in Dic8p is doubly symmetric if xi ∈

D1 − ⟨t⟩ implies tx−i ∈ D1 − ⟨t⟩.

Note that D1 will contain exactly one of {1, t}.

Corollary 6.1.4. Let 4p − 1 be a prime power. Then Dic16p contains a doubly symmetric

SRHDS.

Proof. We constructed an SHRDS for Dic16p using the doubling process. See Corollary 4.3.3

and the paragraph following it. By Proposition 6.1.2, this SHRDS is doubly symmetric.
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Let ρ : Dic8p → M2(C) be the representation determined by

ρ(x) =

ζ4p 0

0 ζ−1
4p

 , ρ(y) =

0 −1

1 0

 .
where ζ4p = e2πi/4p. We observe that

ρ(xi) =

ζ i4p 0

0 ζ−i4p

 , ρ(xiy) =

 0 −ζ i4p

ζ−i4p 0

 , ρ(t) =

−1 0

0 −1

 .
Since ζ−1 = ζ̄ for any root of unity ζ, any sum of matrices in this representation will be

of the form d+ ai −c− bi

c− bi d− ai

 ,
for some a, b, c, d ∈ R.

Let D = D0 +D1y be a SRHDS in Dic8p. Then

ρ(D) =

d+ ai −c− bi

c− bi d− ai

 ,
where d+ ai =

∑
{ζ i4p | xi ∈ D0} and c+ bi =

∑
{ζ i4p | xi ∈ D1}.

Lemma 6.1.5. With a, b, c, d as defined above, we have d = 0, and a2 + b2 + c2 = 4p − 1.

Additionally, if D is doubly symmetric, then c2 = 1, so a2 + b2 = 4p− 2.

Proof. By Proposition 6.1.1, we have xi ∈ D0 implies tx−i = x2p−i ∈ D0, so the sum

d+ ai =
∑

{ζ i4p | xi ∈ D0} can be written as a sum of elements of the form

ζ i4p + ζ2p−i4p = ζ i4p − ζ−i4p

= ζ i4p − ζ i4p.

which are pure imaginary, so we must have d = 0. If D is doubly symmetric, we can apply

the same argument on D1. We would have that xi ∈ D1 − ⟨t⟩ implies x2p−i ∈ D1 − ⟨t⟩. Thus∑
{ζ i4p | xi ∈ D1 − ⟨t⟩} is the sum of pure imaginary numbers, so c+ bi =

∑
{ζ i4p | xi ∈ D1}

is pure imaginary except for the contribution of either 1 or t, so either c = 1 or c = −1, and
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we have c2 = 1. Since D is a SRHDS for Dic8p, we have

DD(−1) = (2p− 1)(G− ⟨t⟩) + 4p− 1

=⇒ ρ(DD(−1)) = ρ((2p− 1)(G− ⟨t⟩) + 4p− 1)

=⇒ ρ(tD2) = (2p− 1)(ρ(G− ⟨t⟩)) + (4p− 1)ρ(1)

=⇒ − ρ(D)2 = (2p− 1)(0) + (4p− 1)I2

=⇒ −

 ai −c− bi

c− bi −ai


2

= (4p− 1)I2

=⇒

a2 + b2 + c2 0

0 a2 + b2 + c2

 = (4p− 1)I2

where I2 is the identity matrix. Thus we have a2 + b2 + c2 = 4p− 1, and if c2 = 1, this gives

a2 + b2 = 4p− 2.

In order to determine when the relation a2 + b2 = 4p− 2 can be achieved, we shall make

use of a bounding theorem of Schmidt [28].

Definition 6.1.6. [28, Definition 2.2.5, p. 33] Let m,n be positive integers, and let m =∏t
i=1 p

ci
i be the prime power decomposition of m. For each prime divisor q of n let

mq :=


∏

pi ̸=q pi, if m is odd or q = 2,

4
∏

pi ̸=2,q pi, otherwise.

Let D(n) be the set of prime divisors of n. We define F (m,n) =
∏t

i=1 p
bi
i to be the minimum

multiple of
∏t

i=1 pi such that for every pair (i, q), i ∈ {1, . . . , t}, q ∈ D(n), at least one of the

following conditions is satisfied.

(a) q = pi and (pi, bi) ̸= (2, 1),

(b) bi = ci,

(c) q ̸= pi and q
ordmq (q) ̸≡ 1(mod pbi+1

i ),

where ordx(y) denotes the smallest positive integer k such that yk ≡ 1(mod x).
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Theorem 6.1.7. [28, Theorem 2.3.2 (F-bound), p. 36] Let X ∈ Z[ζm] be of the form

X =
m−1∑
i=0

aiζ
i
m,

with 0 ≤ ai ≤ C for some constant C and assume that XX̄ = n ∈ Z. Then

n ≤ C2F (m,n)2

4φ(F (m,n))
,

where φ is the Euler totient function.

We can apply this bound to obtain:

Proposition 6.1.8. Assume that there exists D = D0 +D1y, a doubly symmetric SRHDS

in Dic8p. Then

4p− 2 ≤ F (4p, 4p− 2)2

φ(F (4p, 4p− 2))
.

Proof. Given that a doubly symmetric SRHDS exists, by Lemma 6.1.5 we have that a2+b2 =

4p− 2 where ai =
∑

{ζ i4p | xi ∈ D0} and c + bi =
∑

{ζ i4p | xi ∈ D1}, with c = ±1. Thus we

have that a =
∑

{ζ3p+i4p | xi ∈ D0} is a sum of distinct 4p-th roots of unity. Since xi ∈ D0

implies txi = x2p+i ̸∈ D0, exactly one of 1 = ζ04p or −1 = ζ2p4p is in the sum
∑

{ζ3p+i4p | xi ∈ D0}.

It follows that either

a+ bi = −c+
∑

{ζ3p+i4p | xi ∈ D0}+
∑

{ζ i4p | xi ∈ D1}

or

−a+ bi = −c+
∑

{ζp+i4p | xi ∈ D0}+
∑

{ζ i4p | xi ∈ D1}

can be written in the form
4p−1∑
i=0

aiζ
i
4p

with 0 ≤ ai ≤ 2. In either case, defining X = ±a + bi gives XX̄ = a2 + b2 = 4p − 2. The

F-bound Theorem 6.1.7 then gives that

4p− 2 ≤ 22F (4p, 4p− 2)2

4φ(F (4p, 4p− 2))
=

F (4p, 4p− 2)2

φ(F (4p, 4p− 2))
,

as desired.
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6.2 Application to generalized quaternion groups

Proposition 6.1.8 gives a means to prove that certain dicyclic groups do not contain a doubly

symmetric SRHDS. We will now focus our attention on generalized quaternion groups, where

p = 2u for some u ∈ Z≥0.

Lemma 6.2.1. If the generalized quaternion group Dic2u+3, where u ∈ Z≥0, has a doubly

symmetric SRHDS, then F (2u+2, 2u+2 − 2) = 2l where l ≥ u+ 1.

Proof. We notice from condition (b) in the definition (6.1.6) of F (m,n) that F (m,n) divides

m, so F (2u+2, 2u+2 − 2) = 2l for some l ∈ Z>0. Also note that condition (a) guarantees that

l ≥ 2. By Proposition 6.1.8, we have

2u+2 − 2 ≤ F (2u+2, 2u+2 − 2)2

φ(F (2u+2, 2u+2 − 2))

=
(2l)2

φ(2l)

=
22l

2l−1

= 2l+1.

Since 2 ≤ l, this implies that u+ 2 ≤ l + 1, so l ≥ u+ 1.

This lemma motivates us to calculate F (2u+2, 2u+2−2) = 2l in general. We first find that

F (4, 2) = 4 and then consider when u > 1. Going through Definition 6.1.6, let 2qn1
1 q

n2
2 . . . qnrr

be the prime power decomposition of 2u+2 − 2. Then m2 = 1 and mqi = 4 for each other

prime qi. We have that ord4(qi) = 1 if qi ≡ 1(mod 4) and ord4(qi) = 2 if qi ≡ 3(mod 4).

Condition (a) guarantees that l ≥ 2, and condition (b) guarantees that l ≤ u + 2. Besides

that, only condition (c) is relevant to this calculation. Either l = u+ 2, or we have that

q
ord4(qi)
i ̸≡ 1(mod 2l+1) for all 1 ≤ i ≤ r.

Since 2u+2 − 2 = 2qn1
1 q

n2
2 . . . qnrr , the maximum possible value a prime qi can achieve is if

2u+2 − 2 = 2q1 in which case q1 = 2u+1 − 1. Thus no prime factor is larger than 2u+1, so we

will always have

qi ̸≡ 1(mod 2u+1).
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Thus if we assume that l ≥ u+ 1, there must be some prime qj ≡ 3(mod 4) such that

q
ord4(qj)
j = q2j ≡ 1(mod 2l)

=⇒ q2j ≡ 1(mod 2u+1)

=⇒ q2j − 1 = 2u+1s for some s ∈ N

=⇒ (qj + 1)(qj − 1) = 2u+1s.

Since qj − 1 ≡ 2(mod 4), only one power of 2 in the product 2u+1s can come from qj − 1, so

we have

qj + 1 = 2ut for some t ∈ N.

Since the maximum value qj can be is 2u+1− 1, we have either t = 1 or t = 2. But, the t = 1

case is impossible because that would imply qj = 2u − 1 and since

4(2u − 1) + 2 = 2u+2 − 2,

we would have 2u+2 − 2 ≡ 2(mod qj), contradicting that qj divides 2
u+2 − 2. Thus the only

possibilty is that qj = 2u+1 − 1, so 2u+2 − 2 = 2qj. Therefore we have proved the following:

Lemma 6.2.2. If F (2u+2, 2u+2 − 2) = 2l where l ≥ u + 1, then 2u+2 − 2 = 2q where either

q = 1 or q is an odd prime.

Finally, we can use these lemmas to classify which generalized quaternion groups contain

doubly symmetric SHRDS.

Theorem 6.2.3. Let G = Dic8·2u be a generalized quaternion group for some u ∈ Z≥0. Then

G contains a doubly symmetric SRHDS if and only if 2u+1 − 1 is either prime or 1.

Proof. If G contains a doubly symmetric SRHDS, then Lemma 6.2.1 requires that

F (2u+2, 2u+2 − 2) = 2l

where l ≥ u+1. By Lemma 6.2.2, this implies 2u+2−2 = 2q where either q = 1 or q is an odd

prime, so q = 2u+1−1 is either prime or 1. For the other implication, if q = 1 then G = Dic8.

By Theorem 1.0.3, Dic8 contains an SHRDS, which will be trivially doubly symmetric since
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D1 − ⟨t⟩ is just a single element of order 4 in ⟨x⟩ ∼= C4. Otherwise, if q = 2u+1 − 1 is prime,

setting p = 2u−1 in Corollary 6.1.4 gives that Dic16p = Dic8·2u contains a doubly symmetric

SHRDS.

As a fun consequence of the results in this chapter, we get the following number theoretic

result:

Lemma 6.2.4. If 2u+1 − 1 is a prime power, then 2u+1 − 1 is prime.

Proof. If 2u+1 − 1 is a prime power, Corollary 6.1.4 says that there is a doubly symmetric

SRHDS in Dic8·2u . Then by Theorem 6.2.3, 2u+1 − 1 is a prime.

This corollary is also a consequence of Catalan’s Conjecture, which was proved in 2004

[23].
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Chapter 7. Additional Schur Ring Results

7.1 Preliminaries and lemmas

We begin with preliminary definitions. Let H be a subgroup of a finite group G. Let C[G]

denote the complex group algebra of G. An H-class in G is some {ga : a ∈ H}. Let C[G]H

be the subalgebra of C[G] generated by the H-classes in G.

We denote by Ĝ and Ĥ the set of irreducible characters of G and H, respectively. Given

χ ∈ Ĝ, we let χH be the restriction of χ to H. Then we can write χH as a sum of irreducible

characters in Ĥ with multiplicities cχψ ∈ Z≥0, i.e.

χH =
∑
ψ∈Ĥ

cχψ · ψ.

Given χ ∈ Ĝ, let Rχ be the irreducible representation of G with character χ, and let Vχ

be the CG-module that Rχ acts on. Let fχ be the dimension of Vχ. Define Rψ, Vψ, and fψ

similarly for ψ ∈ Ĥ.

Let End(V ) be the space of endomorphisms of a CG-module V : that is, the space of

all C-linear maps from V to V . For a C[H]-module W, let EndH(W ) be the submodule of

End(W ) consisting of the endomorphisms that commute with the action of H. Specifically,

T ∈ EndH(W ) if

T ◦Rχ(h) = Rχ(h) ◦ T

for all h ∈ H.

Recall from Lemma 3.1.4 that we can construct a commutative Schur ring given an

SRHDS group. The following theorem is useful in relating commutative Schur rings and the

group algebra. We work towards the following result from Travis [31, Corollary 1, p. 72],

with the goal of providing a more accessible proof using modern notation.

Theorem 7.1.1. Given a subgroup H of a finite group G, we have that (G,H) is a strong
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Gelfand pair if and only if C[G]H , the ring of H-classes in G, forms a commutative Schur

ring.

The remainder of this chapter will build up to this the proof of this theorem in Corollary

7.2.5.

Remark 7.1.2. Observe that for h ∈ H and χ ∈ Ĝ,

Tr(Rχ(h)) = χH(h)

=
∑
ψ∈Ĥ

cχψ · ψ(h)

=
∑
ψ∈Ĥ

cχψ · Tr(Rψ(h))

= Tr

∑
ψ∈Ĥ

cχψ · Rψ(h)

 ,

and since representations are uniquely determined by characters, we have

Rχ =
∑
ψ∈Ĥ

cχψ ·Rψ.

Taking the spaces these representations act on, we get

Vχ =
⊕
ψ∈Ĥ

cχψ · Vψ,

where cχψ · Vψ denotes the direct sum of cχψ copies of Vψ. For convenience, we will define

Vχψ = cχψ · Vψ,

and we naturally associate Vχψ with the corresponding subspace of Vχ.

Lemma 7.1.3. [31, Lemma A, p. 70] Let χ ∈ Ĝ, ψ ∈ Ĥ. Let T : Vψ → Vχ be a CH-module

homomorphism. Then the image of T is contained in Vχψ.

Proof. We have

Vχ =
⊕
ψ′∈Ĥ

Vχψ′ .

Applying Schur’s Lemma 2.0.2 to T gives that either Im(T) = 0, in which case

Im(T ) ⊆ Vχψ,
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or T is an isomorphism onto its image. This implies that Im(T ) is C[H]-module isomorphic

to Vψ. Since Vχψ contains all cχψ copies of the irreducible Vψ in Vχ, this implies Im(T ) ⊆

Vχψ.

Lemma 7.1.4. [31, Lemma B, p. 70] Let χ ∈ Ĝ and T ∈ EndH(Vχ). Then T maps Vχψ

into Vχψ for all ψ ∈ Ĥ.

Proof. Let ψ ∈ Ĥ. By Lemma 7.1.3, restricting T to any copy of Vψ in Vχψ results in the

image T (Vψ) being in Vχψ. Since Vχψ = cχψ · Vψ is generated by the copies of Vψ, and T is

linear, we must have

T (Vχψ) ⊆ Vχψ.

Corollary 7.1.5. [31, Corollary 1, p. 70] Let χ ∈ Ĝ. If u ∈ C[G]H , then Rχ(u) maps Vχψ

into Vχψ for all ψ ∈ Ĥ.

Proof. By Lemma 7.1.4, it suffices to show that Rχ(u) ∈ EndH(Vχ). We already have that

Rχ : G → GL(Vχ) extends to Rχ : CG → End(Vχ) by definition of Rχ as a representation,

so Rχ(u) is linear. Recall that C[G]H is the Schur ring generated by the H-classes in C[G],

so u commutes with all elements of H. Given h ∈ H, v ∈ Vχ we have

Rχ(u) ◦Rχ(h)(v) = Rχ(uh)(v)

= Rχ(hu)(v)

= Rχ(h) ◦Rχ(u)(v).

So Rχ(u) ∈ EndH(Vχ).

Lemma 7.1.6. [31, Lemma C, p. 70] Let χ ∈ Ĝ and ψ ∈ Ĥ. Then the ring EndH(Vχψ) is

isomorphic to Mcχψ(C), the vector space of cχψ × cχψ matrices with complex coefficients.

Proof. Let T ∈ EndH(Vχψ). By Schur’s Lemma 2.0.2, restricting T to any copy of Vψ

gives a scalar multiple of an identity map onto each copy of Vψ in the image. Thus the

isomorphism is given by T → [aij] where T restricted to the ith copy of Vψ is the map
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{ai1 · id, ai2 · id, . . . , aicχψ · id} onto Vχψ = Vψ
⊕

Vψ
⊕

· · ·
⊕

Vψ, where id : Vψ → Vψ is the

identity map.

Lemma 7.1.7. [31, Lemma D, p. 70] Let χ ∈ Ĝ. Then the image of C[G]H under Rχ is

equal to EndH(Vχ).

Proof. In the proof of Corollary 7.1.5, given u ∈ C[G]H , we showed that Rχ(u) ∈ EndH(Vχ).

For the reverse inclusion, let T ∈ EndH(Vχ). Since Rχ is irreducible, the Wedderburn

decomposition gives that C[G] acts as the full matrix ring Mfχ(C) on Vχ. Therefore, the

image of Rχ under C[G] must be all of End(Vχ). Thus there exists some w ∈ C[G] such that

Rχ(w) = T . Define

u =
1

|H|
∑
h∈H

hwh−1.

Let a ∈ H. Then,

aua−1 = a

(
1

|H|
∑
h∈H

hwh−1

)
a−1

=
1

|H|
∑
h∈H

ahwh−1a−1

=
1

|H|
∑
h∈H

(ah)w(ah)−1

=
1

|H|
∑
h∈H

hwh−1

= u.

Since u commutes with all of H, u is generated by the H-classes of C[G], so u ∈ C[G]H . Then
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we have

Rχ(u) = Rχ

(
1

|H|
∑
h∈H

hwh−1

)

=
1

|H|
∑
h∈H

Rχ(hwh
−1)

=
1

|H|
∑
h∈H

Rχ(h)Rχ(w)Rχ(h
−1)

=
1

|H|
∑
h∈H

Rχ(h) ◦ T ◦Rχ(h
−1)

=
1

|H|
∑
h∈H

T ◦Rχ(h) ◦Rχ(h
−1)

=
1

|H|
∑
h∈H

T ◦Rχ(hh
−1)

=
1

|H|
∑
h∈H

T = T.

Thus Rχ maps C[G]H onto EndH(Vχ), so EndH(Vχ) is the complete image of this map.

Lemma 7.1.8. [31, Lemma E, p. 71] Let χ ∈ Ĝ and ψ ∈ Ĥ. Then Rχ restricted to C[G]H

yields a representation of C[G]H on Vχψ whose image is isomorphic to Mcχψ(C).

Proof. By Corollary 7.1.5, Rχ(u) maps Vχψ into Vχψ for all u ∈ C[G]H . Since we also have

that Rχ(u) ∈ EndH(Vχ), we see that Rχ(u) commutes with the action of H. This implies that

the image of Rχ as a representation on Vχψ restricted to C[G]H is contained in EndH(Vχψ).

Now, let T ∈ EndH(Vχψ). Then T extends to an element T̃ of EndH(Vχ) by setting T̃

equal to 0 on all Vχψ′ where ψ ̸= ψ′. To see this, note that for v ∈ Vχψ, and h ∈ H,

T̃ ◦Rχ(h)(v) = T ◦Rχ(h)(v)

= Rχ(h) ◦ T (v)

= Rχ(h) ◦ T̃ (v),

since Rχ(h) ∈ EndH(Vχψ). For v ∈ Vχψ′ with ψ′ ̸= ψ, we have Rχ(h)(v) ∈ Vχψ′ by Corollary
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7.1.5, so

T̃ ◦Rχ(h)(v) = T̃ (0)

= 0

= Rχ(h)(0)

= Rχ(h) ◦ T̃ (v).

By Lemma 7.1.7, we see that T̃ is in the image of C[G]H under Rχ. Thus, by taking the

representation Rχ acting on Vχψ, we have T in the image of Rχ restricted to C[G]H . Thus,

the image of this representation on Vχψ is exactly EndH(Vχψ), which by Lemma 7.1.6 is

isomorphic to Mcχψ(C).

We will denote the representation in Lemma 7.1.8 as Rχψ.

7.2 Main results

Theorem 7.2.1. [31, Theorem 5, p. 71] The representation Rχψ of C[G]H acting on Vχψ

decomposes into fψ copies of an irreducible representation of dimension cχψ.

Proof. Since Vχψ is the direct sum of cχψ copies of Vψ, the dimension of Vχψ over C is

fψ · cχψ. By Lemma 7.1.8, the representation Rχψ acts as the full matrix ring Mcχψ(C), so

the Wedderburn decomposition gives that Rχψ is an irreducible representation of dimension

cχψ. Thus, when Rχψ acts on a space of dimension fψ · cχψ, it must decompose into fψ copies

of the irreducible representation. Note in the case that cχψ = 0, we have Vχψ = 0, so in this

case we have Rχψ = 0, the trivial map.

Lemma 7.2.2. [31, Theorem 6, p. 71] The Rχψ where χ ∈ Ĝ and ψ ∈ Ĥ are distinct,

excluding the cases where cχψ = 0.

Proof. Let eχ be the primitive central orthogonal idempotent corresponding to Rχ in the

Wedderburn decomposition of C[G]. Similarly, let eψ be the primitive central orthogonal
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idempotent corresponding to Rψ in the Wedderburn decomposition of C[H]. Since they are

central, eχ is in the center of C[G] and eψ is in the center of C[H]. So these idempotents

commute with all elements of H, and are thus contained in C[G]H .

By definition, Rχ maps C[G] into End(Vχ). If we choose a basis for the vector space Vχ,

we have that End(Vχ) is isomorphic to Mfχ(C). Since C[G] is semisimple, this matrix ring

occurs in the Wedderburn decomposition and corresponds to eχ. So, up to isomorphism, we

can express

Rχ : C[G] → C[G]

using eχ as follows:

Rχ(u) = eχu

for u ∈ C[G]. In particular, this gives that

Rχ(eχu) = e2χu (7.1)

= eχu

= Rχ(u)

since eχ is idempotent. We can similarly identify

Rψ : C[H] → C[H]

as

Rψ(u) = eψu.

Now, recall that we obtained Rχψ by restricting Rχ to C[G]H acting on Vχψ, namely the

copies of Vψ in Vχ. Rewriting this definition in terms of the idempotents, we get

Rχψ : C[G]H → C[G]

by

Rχψ(u) = eψRχ(u) = eψeχu.
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Now, let χ′ ∈ Ĝ with χ ̸= χ′. Then,

Rχψ(eχ′) = eψRχ(eχ′)

= eψRχ(eχeχ′)

= eψRχ(0)

= 0,

by (7.1) and orthogonality. Since the idempotents must sum to 1, that gives

1 = Rχψ(1)

= Rχψ

∑
χ′∈Ĝ

eχ′


=
∑
χ′∈Ĝ

Rχψ(eχ′)

= Rχψ(eχ).

So we have

Rχψ(eχ′) = δχχ′ .

Similarly, we see that for ψ′ ̸= ψ in Ĥ,

Rχψ(eψ′) = eψeχeψ′

= (eψeψ′)eχ

= 0.

So the same argument gives that

Rχψ(eψ′) = δψψ′ .

Therefore, each choice of χ and ψ gives a distinct irreducible representation Rχψ of C[G]H

(excluding when cχψ = 0).

Lemma 7.2.3. [31, Theorem 6, p. 71] Every irreducible representation of C[G]H is of the

form Rχψ for some χ ∈ Ĝ and ψ ∈ Ĥ.

Proof. The Schur ring C[G]H is generated by the H-classes in C[G]. By the Burnside orbit
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formula [9, Exercise 8, pg 877], the number of H-classes is

1

|H|
∑
h∈H

|CG(h)|,

where CG(h) is the centralizer of h in G. By the Second Orthogonality Relation for group

characters (Theorem 2.0.7), this equals

1

|H|
∑
h∈H

∑
χ∈Ĝ

χ(h)χ(h) =
∑
χ∈Ĝ

(
1

|H|
∑
h∈H

χ(h)χ(h)

)

=
∑
χ∈Ĝ

(χ, χ)H

=
∑
χ∈Ĝ

∑
ψ∈Ĥ

cχψψ,
∑
ψ′∈Ĥ

cχψψ
′


H

=
∑
χ∈Ĝ

 ∑
ψ,ψ′∈Ĥ

cχψcχψ′(ψ, ψ′)H


=
∑
χ∈Ĝ

∑
ψ∈Ĥ

c2χψ,

where (·, ·)H is the standard inner product on H-class functions. Therefore the dimension of

C[G]H is the sum of the c2χψ. Since the dimension of C[G]H is also the sum of the squares of

the dimensions of distinct irreducible representations, by Theorem 7.2.1 and Lemma 7.2.2,

we have that the Rχψ exhaust all irreducible representations of C[G]H .

Corollary 7.2.4. [31, Theorem 7, p. 72] Let χ ∈ Ĝ. Restriction of Rχ to C[H] and C[G]H

give representations that interchange multiplicity and dimension.

Proof. If we restrict Rχ to C[H], we have

Rχ =
∑
ψ∈Ĥ

cχψ ·Rψ,

so this decomposes into irreducible representations of dimension fψ and multiplicity cχψ for

all ψ ∈ Ĥ. See Remark 7.1.2. By Theorem 7.2.1, if we restrict Rχ to C[G]H , then for each

ψ ∈ Ĥ, the action on Vχψ decomposes into irreducible representations of dimension cχψ and

multiplicity fψ. Thus we have dimensions and multiplicities interchanged.
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Corollary 7.2.5. [31, Corollary 1, p. 72] The pair (G,H) is a strong Gelfand pair if and

only if C[G]H is commutative.

Proof. By definition, (G,H) is a strong Gelfand pair if and only if for all χ ∈ Ĝ and ψ ∈ Ĥ,

we have that cχψ = (χH , ψ)H is equal to either 0 or 1. By Corollary 7.2.4, this occurs if and

only if each nonzero Rχψ has dimension 1. By Lemma 7.2.3, the Rχψ contain all irreducible

representations of C[G]H . Finally, all irreducible representations have dimension 1 if and

only if C[G]H is commutative.

Corollary 7.2.6. [31, Corollary 1’, p. 72] H is commutative if and only if C[G]H is multi-

plicity free in C[G].

Proof. The subgroup H is commutative if and only if each irreducible representation Rχ has

dimension 1 for all ψ ∈ Ĥ. That is, if and only if each fψ = 1. By Corollary 7.2.4, this occurs

if and only if the multiplicity of each irreducible representation of C[G]H is at most 1, which

is exactly the condition for C[G]H to be multiplicity free.
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