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abstract

Network Representation Theory in Materials Science and Global Value Chain Analysis

Mats C. Haneberg
Department of Mathematics, BYU

Master of Science

This thesis is divided into two distinct chapters. In the first chapter, we apply network
representation learning to the field of materials science in order to predict aluminum grain
boundaries’ properties and locate the most influential atoms and subgraphs within each
grain boundary. We create fixed-length representations of the aluminum grain boundaries
that successfully capture grain boundary structure and allow us to accurately predict grain
boundary energy. We do this through two distinct methods. The first method we use is
a graph convolutional neural network, a semi-supervised deep learning algorithm, and the
second method is graph2vec, an unsupervised representation learning algorithm.

The second chapter presents our dynamic global value chain network, the combination of
the dynamic global supply chain network and the dynamic global strategic alliance network.
Our global value chain network provides a level of scope and accessibility not found in any
other global value chain network, commercial or academic. Through applications of network
theory, we discover business applications that would increase the robustness and resilience
of the global value chain. We accomplish this through an analysis of the static, dynamic,
and community structure of our global value chain network.

Keywords: network representation learning, network theory, graph convolutional neural net-
work, network community structure, supply chain, strategic alliance



Acknowledgements

I would like to thank my wife, Ashley, for her constant support and cheerful attitude

throughout my whole education. I also want to thank her for motivating me to get my

master’s degree and fulfill the thesis requirement and for believing in me that I could do it.

I could not have done this without her.

I want to thank my advisor Dr. Boyd, for teaching me the most influential part of my

education at Brigham Young University, how to research and how to run projects. I would

like to thank him for his support and advice that I pursue the thesis requirement for the

master’s degree. Most of all I want to thank him for his time and help throughout this

process.

I also want to thank Dr. Webb and Dr. Kempton for their support and guidance as I

worked towards my thesis, their help was greatly appreciated.

Last, I want to thank my sister, Marren, for taking the time to proofread my thesis. Her

help greatly improved my writing.



Contents

Contents iv

List of Tables v

List of Figures vi

1 Aluminum Grain Boundary Energy Prediction and Atom Level Structure

Insights Through Network Representation Learning 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Global Supply Chain and Strategic Alliance Networks 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 66

iv



List of Tables

2.1 Global network values for both networks. . . . . . . . . . . . . . . . . . . . . 38

2.2 Largest connected component sizes for each network. . . . . . . . . . . . . . 43

2.3 Top 10 companies by various centrality measures for the supply chain network. 44

2.4 Top 10 companies by various centrality measures for the strategic alliance

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Definitions and value counts for each company relationship type in supply

chain network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Average daily change in supply chain and strategic alliance networks over the

first month of data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Change in supply chain and strategic alliance networks after the first month

of data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Significant global communities by industry sector classification. . . . . . . . . 55

2.9 Health care industry sector breakdown by industry within global community 7. 57

2.10 Health care industry sector communities by industry. . . . . . . . . . . . . . 58

v



List of Figures

1.1 GB example from the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Histogram of grain boundary energy values . . . . . . . . . . . . . . . . . . . 7

1.3 GCN performance under node removal . . . . . . . . . . . . . . . . . . . . . 11

1.4 GCN predicted GB energy values vs true GB energy values . . . . . . . . . . 13

1.5 GCN atomic saliency map for select GBs . . . . . . . . . . . . . . . . . . . . 14

1.6 GCN atomic saliency map for select GBs . . . . . . . . . . . . . . . . . . . . 15

1.7 Graph2vec R2 performance under node removal . . . . . . . . . . . . . . . . 19

1.8 Graph2vec predicted GB energy values vs true GB energy values . . . . . . . 20

1.9 Graph2vec top 10 closest subgraph embeddings to graph embedding. . . . . 22

1.10 GCN performance by epsilon in epsilon nearest neighbors graph creation . . 26

1.11 Graph2vec performance by epsilon in epsilon nearest neighbors graph creation 28

1.12 GCN MAE and MSE performance under node removal . . . . . . . . . . . . 29

1.13 Graph2vec MAE and MSE performance under node removal . . . . . . . . . 30

2.1 Supply chain network triadic census analysis. . . . . . . . . . . . . . . . . . . 40

2.2 Triad definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Histograms containing degree distributions for both networks. . . . . . . . . 42

2.4 Reciprocity rates by relationship type. . . . . . . . . . . . . . . . . . . . . . 46

2.5 Community partition quality for supply chain network. . . . . . . . . . . . . 53

2.6 Community partition quality for strategic alliance network. . . . . . . . . . . 54

vi



Chapter 1. Aluminum Grain Boundary

Energy Prediction and Atom Level

Structure Insights Through

Network Representation

Learning

1.1 Introduction

Grain boundaries (GBs) between metallic crystallites have a large impact on the properties of

the metal they create. These include strength, corrosion resistance, and cracking. Being able

to control these properties is essential for using metal for many applications. For example,

bridges, planes, buildings, or anything that affects our safety cannot be built with metal that

does not meet a series of strength and flexibility requirements. If we can understand how

atom placement in GBs impacts each property, we can better design and create these metals

with new uses and improved safety. This desire has created the field of GB engineering, the

study of how to use thermomechanical processing to enhance desired metal properties such

as strength [35]. See Section 1.2.2 for an in depth explanation of GBs.

The goals of this chapter are to apply network theory and machine learning to demon-

strate how these fields can help us better understand GB properties from the atoms them-

selves as well as help predict GB properties from a fixed-length encoding.

In order to do this, we have created graphs from 7304 aluminum grain boundaries, dis-

cussed further in Section 1.3. We then applied two machine learning methods, a graph

convolutional neural network (GCN), and graph2vec to embed each GB in finite dimensions

and measure which atoms inside the crystallites are most influential at predicting GB energy,

a key GB feature. Graph2vec is an unsupervised representation learning algorithm, while

the GCN is a semi-supervised deep learning algorithm. Each of these methods have different

strengths and weaknesses, and allow for atom-level insights of GBs. This knowledge provides

1



explainability to our methods, a key result of this chapter.

Our contributions are the following:

• Create fixed-length representations capturing GB structure through graph2vec.

• Apply a GCN and graph2vec to effectively predict GB energy values while maintaining

necessary GB properties such as invariance to permutation, rotation, and perturbation.

• Draw insights into which atoms in each GB influence GB energy the most through our

GCN model.

• Apply a graph2vec model to find potentially impactful substructures inside the GB.

1.2 Background

In order to accurately capture GB properties, embedding techniques must be rotation and

permutation invariant. Several GB embedding methods that meet these requirements have

been proposed in recent years. Here we discuss some of the more influential methods.

1.2.1 Current Industry Methods for Fixed-Length Grain Boundary Represen-

tation. One method for creating a fixed-length representation of a GB is Smooth Overlap

of Atomic Positions (SOAP). SOAP is a local atomic descriptor, which means it creates a

separate embedding for each atom in the GB embedding. It does this through “a local ex-

pansion of gaussian smeared atomic density with orthonormal functions based on spherical

harmonics and radial basis functions” [11]. In the paper introducing the dataset we employ

our methods on, the authors used SOAP to created fixed-length representations of every

atom contained inside a GB and then averaged these representations to create an overall

GB fixed-length representation. This method performed well in their tests on predicting GB

energy values, returning a R2 score of roughly .95 and an RMSE close to 13. The graph2vec

and GCN methods we applied to the data did not perform as well, but the SOAP methods
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suffers from a lack of explainability. One of our main goals was to provide a measure of

explainability, and that is an area where we outperformed SOAP.

Another method for atomic embeddings is ALIGNN-d, standing for Atomistic Line Graph

Neural Network, where the d signifies we include dihedral angles on top of the bond angles in-

cluded in standard ALIGNN. ALIGNN-d creates a line graph to represent the bonds between

atoms and to encode the dihedral angles between them. In a line graph, the nodes represent

the edges of the original graph and edges between nodes represent two edges having shared

a node in the original graph. Hence this method allows us to embed edge data using node

features in the line graph. The method works by using edge-gated graph convolution on the

line graph to update features which are then passed to the edge-gated graph convolution of

the original graph. In their paper introducing the ALIGNN-d method, the authors note that

while the original ALIGNN method is presented as being effective for both periodic and non-

periodic atomic structures, they believe this method might not encode periodic structures as

well as it does non-periodic structures. Thus in their testing of ALIGNN-d they only applied

their method to non-periodic atomic structures [9, 20]. GBs are periodic structures, hence

our application of ALIGNN-d was a new experiment for this method and in a comparison

of our results of our application of ALIGNN-d to the above described aluminum GB dataset

the method did not perform as well as a 2-layer GCN. Due to this method being signifi-

cantly more complex than our 2-layer GCN and underperforming the GCN, we decided to

not dive into the results of ALIGNN-d; however, it does add strength to our results that we

were able to outperform a state-of-the art method in the context of aluminum grain bound-

aries. Another method to be aware of in this field is Equivariant Graph Neural Networks

for Data-Efficient and Accurate Interatomic Potentials (NequIP). This method learns inter-

atomic potentials from ab-initio calculations through E(3)-equivariant convolutions, hence

is a great method for GB embeddings [4].

1.2.2 Grain Boundary Basics. Atoms, when permitted, align themselves in well-

ordered repeating crystalline structures. The repeated crystalline structure depends on the
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atom type. For aluminum, this repeated crystalline structure is called face-centered cubic

(FCC) structure. FCC structure involves a cube, created by one atom in each corner, and

one atom on every face of the cube [32]. Together, these repeating FCC structures form a

grain. When two grains collide, they are not able to reorient themselves in order to create

one grain. Thus they create a different structure between themselves that does not follow the

typical crystalline structure. This different structure is a GB, the structure of which varies

widely and depends largely on the angles at which the two crystalline structures collided.

The structure of the GB affects the created metal’s strength, corrosion resistance, ductility,

and many other features [19]. An example GB from the dataset we used in this chapter is

seen in Figure 1.1.

Since GBs are two crystalline structures that are not aligned as one grain, the GB itself

is less dense than the FCC crystalline structures. This excess space between the crystalline

structures creates free energy per unit area, known as the GB energy value. This GB energy

value is the GB property we strive to predict in this chapter. Generally, the more misaligned

two crystalline structures are, or the more space that is left between them in the GB, the

higher the GB energy value will be [19, 37].

GBs consist of what are called coincidence site lattices (CSLs). CSLs have what is

called a
∑

-value. The
∑

-value is calculated by viewing a GB in two dimensions, removing

the dimension that is parallel to the GB. Viewed in this dimension, the two crystalline

structures in the GB have some atoms that align, while others do not. We use a group of

four neighboring aligning atoms to create a box, and then how many atoms that are within

the box, all of which do not align, gives the
∑

-value. A perfect FCC structure has a
∑

-value

of 1 as when a FCC structure is viewed in two dimensions, all atoms align. Generally, higher∑
-values are associated with higher GB energy values [19].

4



Figure 1.1: GB example from the dataset. The GB is located near the center of the image
and travels vertically. Their collision at an angle is visible in the two crystalline structures
by viewing the angles of the lattices of atoms on each side, right and left. At the GB’s
location in the center of the image, we can view how the order of each crystalline structure
on either side of the GB breaks down to form the periodic structure of the GB.
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1.3 Dataset

We use 7, 304 aluminum grain boundaries in the 5D crystallographic space introduced by

Homer et al. in [19]. Since the dataset contained only aluminum atoms, in our graph creation

every node in the graph had the same atomic features, rendering these features ineffective for

machine learning algorithms, and unimpactful in our research. All grain boundaries in this

dataset were drawn from 150 CSLs with
∑

-values below 1, 000. The authors performed a

thorough comparison to ensure each CSL was sufficiently different from the others contained

in the dataset to ensure a comprehensive draw of CSLs. They then retrieved minimum-

energy grain boundaries from each CSL that helped describe several fundamental zones of

the CSL. This process created diverse and descriptive grain boundaries of this space of CSLs

with
∑

-values below 1, 000, making the dataset useful for testing machine learning and

embedding methods.

The dataset is stored in Python ASE files, one GB per file [27]. Each file contains the

coordinates of the aluminum atoms of the GB as well as a centro-symmetry parameter, in-

dicating how symmetric the positions of neighboring atoms to the central atom are, and a

common neighborhood analysis categorical variable, which classifies the type of neighbor-

hood the atom belongs to. These last two variables, the centro-symmetry and common

neighborhood analysis variables, are useful in determining whether or not an atom is part

of a FCC formation, a standard format for atoms not along or near the intersection of the

two crystallites of the GB, which we will refer to as the center of the GB throughout this

chapter. Graph2vec only used the positional data to create an embedding, whereas the GCN

used all five features to predict GB energy. To create our networks from this dataset, we

used the atoms as nodes and then applied epsilon nearest neighbors to connect the nodes,

similar to how the authors of ALIGNN-d and NequIP created atomic networks within their

code repositories [20, 4]. Grain boundaries are periodic, so we ensured our epsilon nearest

neighbors technique took this into account, wrapping the dataset around in the proper di-

mensions. We tested several different values of epsilon for the epsilon nearest neighbors, and
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settled on using 3.5 Ångstrom for graph stability and performance in comparing the GCN

and graph2vec algorithms’ performance. The process of choosing epsilon is discussed further

in Section 1.4.1.2 and Section 1.4.2.2.

Figure 1.2: Histogram of GB energy values. The vertical lines depict the first, second, and
third quartiles of the energy values, at 472, 508, and 535 respectively. The distribution is
left-skewed, the lowest 25% of energy values generally fall in a range of 200 to 472, a range
much larger than the 473 to 608 range containing the upper 75% of data. It is important to
verify our models perform well at predicting GB energy values that fall in the lowest 25% to
ensure our models are capable of learning the whole spectrum of GB energy values.

The GB energy values we used for prediction had a left-skewed distribution. The energy

values had the following ranges for each quartile, starting at the lowest: 75 to 472, 472 to

508, 508 to 535, and 535 to 608. This distribution is seen in Figure 1.2. The bulk of the

bottom distribution was contained between energy values 200 and 472, a range over twice as

long as the other three quartiles combined. This discrepancy in the quartile ranges presented
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a challenge for our models, as the data was sparse in the bottom quartile’s range for learning

purposes.

While graph2vec only takes a complete network as input and only trains on one node

feature, which we explain in Section 1.4.2, the GCN used all five node features. We tested

the GCN in the Cartesian plane, however, this method did not provide the rotation and

permutation invariance required. To overcome this we converted all atomic coordinate fea-

tures to spherical coordinates before training. This produced immediate improvements in

performance and was used for all statistics we computed for the GCN. We used a constant

random seed to create all train, test, and validation sets, thus results comparing different

epsilon values in Ångstrom are being applied to the same data. We used 2, 000 training and

validation samples and 1, 000 test samples. Since graph2vec is unsupervised, we did not use

the validation data in the model training process. All grain boundaries graphs were created

in Python through NetworkX [18].

1.4 Results

We now discuss the findings and perform comparable tests for our GCN and Graph2vec

models. Our tests focus on predictive performance and on drawing insights from the atoms

in the GB.

1.4.1 Graph Convolutional Neural Network. We next created and applied a GCN

to the dataset in order to predict GB energy levels and interpret which atoms were most

influential in the energy prediction. We created our GCN through the PyTorch Geometric

library in Python [26, 34, 13].

1.4.1.1 How Our GCN Works. We created a 2-layer GCN following the general

layer format explained by Kipf and Welling in [26]. GCNs function by reducing the dimension

of the input data and by applying features of the neighboring nodes to the base node during

convolution. This is similar to how convolutional neural networks (CNNs) when applied to
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an image reduce dimension and apply neighboring pixel attributes to a base pixel. Thus by

using two convolutional layers, each node’s output was affected by its neighbors within a

path length of two.

Our first hidden layer had the following format:

H(1) = ReLu(D̂− 1
2 ÂD̂− 1

2H(0)W (0)). (1.1)

Where Â = A + I with A the GB adjacency matrix or edge weight matrix if edge weights

were used, and D̂ii =
∑

j Âij is the diagonal degree matrix of Â. In our testing of various

edge weights we found no significant improvement in model performance, and thus left them

out of the model for model simplicity. Some weights we tried were Euclidean distance and

e−Euclidean distance2/radius, which weighted edges closer to the radius near 0. Thus in the case

edge weights were not used, D̂− 1
2 ÂD̂− 1

2 is the normalized adjacency matrix of the GB. In

our case, H(0) ∈ RN×5 is our input feature matrix where N is the number of atoms in the

GB and 5 represents the number of atom features we have; three describing the spherical

coordinates of the node, one describing the symmetry of surrounding nodes, and another

describing the structure of the neighborhood of the atom. W (0) ∈ R5×45 is our weight matrix

and from our testing we found 45 hidden features that produced the best results. Finally,

we used a ReLu activation function for the layer.

The second layer of our GCN was formatted the following way:

H(2) = D̂− 1
2 ÂD̂− 1

2H(1)W (1). (1.2)

Where H(1) ∈ RN×45 is as described in 1.1 and W (1) ∈ R45×1 is our weight matrix, for every

atom we output one number to represent our prediction for the GB energy.

The last step we applied in our GCN was a global mean pooling layer (GMP) to the

outputs of all atoms inside the GB and used this as our GB energy prediction. We trained

our model on optimizing the mean squared error and used backpropagation to update the

weight matrices W (0) and W (1).
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Taken together, our entire GCN framework is given by:

Energy Prediction = GMP(D̂− 1
2 ÂD̂− 1

2 (ReLu(D̂− 1
2 ÂD̂− 1

2H(0)W (0)))W (1)). (1.3)

1.4.1.2 GCN GB Energy Prediction Graph Structure Findings. We then ap-

plied this GCN model to our dataset for energy prediction. Our goal with predicting GB

energy was twofold, we wanted to tune our model for optimal predictions while also being

able to take away lessons about the underlying graph structure of the GB.

GCN Performance Under Node Removal. We next tested our GCN model for

prediction effects from removing atoms from the GB graph structure. We used the centro-

symmetry parameter to do this. Atoms with lower centro-symmetry values are more likely

to be part of a FCC structure and thus be farther away from the center of the GB. This

greater distance may indicate those atoms are less impactful in the GB energy value. We

removed atoms from the graphs by removing a percentage of the atoms with the lowest centro-

symmetry parameters in the graph, thus if we chose a cutoff of 50% of the atoms, we removed

the lowest half atoms from every graph according to the centro-symmetry parameter. This

made the centro-symmetry cutoff different for every graph but ensured we worked with a

consistent percentage of atoms for each graph. We did this for cutoff values from 1 to 98,

and plotted the results in Figure 1.3.

From Figure 1.3, we see that there is an optimal percentage of the GB to include in the

prediction for our GCN model. Removing nearly 80% of the nodes in each GB resulted in

an improvement in our R2 of more than .15, an MAE improvement of over 15%, and an

improvement in MSE of over 30%. Thus in the case of our GCN model, less data may be

better for predicting GB energy values. It is important to note that these cutoff percentages

are relevant for this dataset only, other datasets may include differing amounts of atoms as

a ratio to the length of the GB. However, the takeaway that the GCN has a performance

drop if we include too many atoms is general. Plots for MSE and MAE are given in Figure

1.12.

We also tested node removal following this process of removing nodes according to their

10



Figure 1.3: GCN performance under node removal. The centro-symmetry cutoff percentile
represents the percentage of the atoms we removed from the GB graph according to the lowest
centro-symmetry values. We did this for percentiles 1 to 98. This resulted in roughly linear
performance increase up until we removed around 80% of nodes, at which point performance
volatility increased. However, even when only using 2% of the data, the model outperformed
predicting the mean GB energy value of the dataset. Similar plots for MAE and MSE are in
Figure 1.13. These plots were derived from graphs created from an epsilon of 3.5 Ångstrom.
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centro-symmetry parameter on various epsilon values in the graph creation process. These

results are seen in Figure 1.10. We tested removing none, 25%, 50%, and 75% of the data

with epsilon values ranging from 2.9 Ångstrom to 4.0 Ångstrom, and performance remained

consistent for each cutoff percentage. Also, every cutoff percentage increase provided a

marked increase in model performance. Thus our findings in Figure 1.3 are likely applicable

to a range of epsilon values in the graph creation, and not just an epsilon of 3.5 Ångstrom

as was used to create the figure.

GCN Predicted Energy Values vs True Values. Here we provide a plot of the

GCN model’s predicted GB energy values vs the true GB energy values, Figure 1.4.

In Figure 1.4 we see visually the sparsity of the lower quartile of GB energy values

discussed in Section 1.3, and the density of the values around the mean. In the GCN Optimal

Epsilon in Ångstrom for Graph Creation Section, we identified that our model outperformed

predicting the mean, a potential pitfall for a dataset like this. Figure 1.4 allows for a visual

understanding of this concept, with the model predicting lower GB energy values well with

a slight error for generally predicting higher energy values on the low end. Also, the GCN

was able to distinguish true GB energy values near the mean, demonstrating the model’s

performance across all types of GBs included in the dataset.

1.4.1.3 GCN Node Saliency Map. After we verified the performance of our model,

we moved onto the task of using our model to distinguish individual atom importance within

the GBs. We did this by creating saliency maps of the GBs. Saliency maps work by tracing

the gradients of the GCN model by applying backpropagation to the test dataset, and assign

a value to each node representing its effect on the output. Higher values indicate a larger

effect. This method calculates saliency scores for all atoms in our test dataset, hence we

have been able to create importance rankings for GB energy at the level of the atoms. We

include saliency maps for multiple GBs in Figure 1.5 and Figure 1.6.

From Figure 1.5 and Figure 1.6, we can visually infer the important areas of each GB

displayed. Noteworthy is the variety of areas in the GBs lightened up by the saliency

12



Figure 1.4: GCN predicted GB energy values vs true GB energy values. Our GCN model
was capable of learning GB graph qualities affecting GB energy, as seen in Figure 1.3. Here
we see this performance was fairly consistent across all GB energy values in the dataset. This
GCN model was trained with 75% of the atoms removed according to their centro-symmetry
parameter as explained in the GCN Performance Under Node Removal Section.
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Figure 1.5: GCN saliency maps for select GBs. Lighter colored nodes represent higher
saliency. Gray nodes were removed from the learning process according to centro-symmetry
parameter values as explained in the GCN Performance Under Node Removal Section with
a 50% cutoff rate. Further discussion of the saliency maps can be found in the caption of
Figure 1.6.
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Figure 1.6: GCN saliency maps for select GBs. Lighter colored nodes represent higher
saliency. Gray nodes were removed from the learning process according to centro-symmetry
parameter values as explained in the GCN Performance Under Node Removal Section with
a 50% cutoff rate. We chose to display these saliency maps due to them being representative
of common saliency maps inside the test dataset. GBs such as examples 1, 3, 5, 6, 7, and
8 have at least one crystallite that displays high atomic importance for atoms near but not
directly along the center of the GB. Another observation is while some crystallites had high
centro-symmetry parameters near the GB as expected, others have a more even spread of
centro-symmetry parameters throughout the crystallite such as the left crystallite in Grain
Boundary Example 7.
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maps; some crystallites cluster importance near the center of the GB but not directly along

the boundary, while others have a more even spread across all atoms used in the model.

While this visual representation is useful, further research into the atoms that produced high

saliency outputs would add more to the discussion of which atoms are likely to influence GB

energy and why that is the case.

1.4.2 Graph2vec. The graph2vec algorithm was first introduced in 2017 by Narayanan

et al. This algorithm builds on the doc2vec algorithm, which in turn builds off of the word2vec

algorithm [31, 28]. Graph2vec has considerable strengths, foremost of these is that the

embeddings are unsupervised, meaning the embeddings we created with the algorithm may

apply well to other classification or regression tasks without the need to retrain the model.

The graph2vec algorithm is based solely off of local node geometries, implying all learning we

find in our embeddings is based solely off of the graph structure itself. Since graph2vec does

not use atomic coordinates as a feature, this method is rotation and permutation invariant,

satisfying the necessary requirements for a GB embedding.

1.4.2.1 How Our Graph2vec Algorithm Works. The graph2vec algorithm begins

by representing each GB graph as a document. This is done by creating a Weisfeiler-Lehman

(WL) hash for a rooted subgraph based at each node [40]. Hence these subgraphs, one based

at each node, create the vocabulary for our graph, or document. The WL hash method takes

into account a node feature, in our case node degree, and a neighborhood distance to use from

the base node to create the hashing. From our testing found a maximum distance of two from

the base node was optimal, which involves performing two iterations of the algorithm per

node. The WL hashing algorithm then starts at the base node and subsequently aggregates

the base node’s hash with all other nodes inside the permitted neighborhood. This creates a

hash for every rooted subgraph with our base node as the root. The WL hashing algorithm

guarantees isomorphic subgraphs will have the same hash and nearly guarantees that non-

isomorphic graphs will not. Research has shown that the rate that the WL hashing algorithm

gives the same hash to non-isomorphic graphs is low enough to not affect the majority of
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datasets, especially when at least two iterations are performed [49]. Therefore our document

representing our graph contains a vocabulary uniquely identifying every subgraph structure

within the GB. Thus for each GB we have created a document that captures the underlying

graph structure.

The next step in the algorithm is to train the neural network and update the embeddings.

Every graph is randomly initialized in our embedding space, in our case 128 dimensions. The

training then follows the skip-gram model and negative sampling. We will now describe this

process and give the general steps we follow for every training epoch. Each epoch begins

by shuffling all GB graphs. After that, the algorithm passes through each graph, which we

will call the current graph, and updates its embedding. The neural network is then updated

through the Skip-gram method.

The Skip-gram method begins by selecting a random subset of words, or subgraph hashes,

from the current graph’s document, and then training the neural network on predicting the

probability of each word based on the current graph’s embedding. We are trying to predict

the context of the graph, or the graph’s subgraphs, from its embedding. The neural network

consists of one hidden layer with a set of weights leading into a softmax function. The

graph2vec then uses stochastic gradient descent to update the weights of the neural network

for each of these subgraph current graph pairs. Once this training process is complete,

graph2vec uses negative sampling to update other graphs’ embeddings. This process is

done by selecting several subgraph hashes that are not contained within the current graph’s

document. For each of these negative samples, a graph’s embedding in which they reside is

passed into the neural network with the subgraph hash to get a probability of the subgraph

hash being in the graph’s document. The embedding of the graph is then updated through

stochastic gradient descent in order to maximize the probability of the embedding successfully

predicting the subgraph hash. This is done for every negative sample, then the next graph

in the list is made the current graph, and the process repeats itself. The goal of graph2vec

embeddings is to have similar graphs close together and different graphs far apart. It follows
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that the dimensions in our embedding represent GB characteristics.

1.4.2.2 Graph2vec GB Energy Prediction Graph Structure Findings. We now

discuss our results and insights gained from applying graph2vec to our GB dataset. We used

the graph2vec implementation found in the Karate Club package for all tests [39]. Since

graph2vec produces fixed length embeddings of the GBs, we used ridge regression on the

embeddings themselves to compute all statistics in this section.

Graph2vec Performance Under Node Removal. We next tested our graph2vec

algorithm performance under node removal. We followed the same process to remove nodes

here as we did in the GCN Performance Under Node Removal Section. We used the centro-

symmetry parameter, an indicator of whether a node is FCC, or likely to be away from the

center of the GB, to remove nodes. We tested graph cutoffs for 1 to 98 percent of the data,

the percentage indicating the percent of atoms that were removed from each graph due to

having lowest centro-symmetry values. The results are in Figure 1.8.

From Figure 1.7 we see how weak our graph2vec algorithm is to node removal. Perfor-

mance in every indicator fell, even at low removal rates. Once we had removed 20% of the

data, the graph2vec model was not learning anything regarding GB energy values. This

likely has to do with graph2vec’s negative sampling method for learning graph embeddings.

Since graph2vec only updates graphs’ embeddings according to a negative sample from a

base graph, using all the atoms in GBs should have many FCC structures. FCC structures

generally appear away from the GB, hence have low impact on the GB energy value and may

be best left out of the training process. Once we began removing atoms, we likely began

removing atoms from these FCC structures within the GBs and began creating subgraph

that either appeared unique or like subgraphs that appeared along the GB. This would have

made it difficult for the model to identify subgraphs that were influencing the GB the most.

This negative sampling technique may be a strength of the graph2vec algorithm when pre-

sented with the complete data; it is probable the algorithm avoids using FCC subgraphs in

the embedding process. Plots of MAE and MSE performance are given in Figure 1.13.
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Figure 1.7: Graph2vec R2 performance under node removal. Atoms were removed from
the graphs according to their centro-symmetry parameter, with the atoms with the lowest
values being removed. Centro-symmetry may be an indicator of being near the center of the
GB. Performance began to drop almost immediately, with noticeable drops in performance
happening within 5% of the atoms being removed. Once 20% of the data was removed,
performance indicates the model was not able to learn. Similar plots for MAE and MSE
are in Figure 1.13. These plots were calculated on graphs created from an epsilon of 3.5
Ångstrom.
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Graph2vec Predicted Energy Values vs True Values. We now discuss graph2vec

GB energy value predictions created from applying ridge regression to the graph embeddings

vs the true GB energy values. This is shown in Figure 1.8.

Figure 1.8: Ridge regression applied to graph2vec GB embeddings in order to predict true
GB energy values. Ridge regression was able to properly identify differences encoded in the
embedding indicating GB energy value, seen by the algorithm correctly separating several
of the low energy grain boundaries from the main mass of energy values near the mean GB
energy. Applying ridge regression to the graph2vec embeddings also performed well in the
main mass of values near the mean, separating several GBs well that had similar energy
values.

Figure 1.8 visualizes our results from Figure 1.11, which gave strong evidence to our

graph2vec encoding GB energy value information in the graph embedding. Here we see

how successful ridge regression applied to our graph2vec embeddings was at separating low

energy GBs from higher energy GBs, those with energy values less than 472 and all GBs with
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energy values above 472 respectively. We also see how successful the ridge regression was at

spreading out GBs that had true energy values near the mean. Since graph2vec only learns

from negative sampling applied to graph subgraphs pairs based on graph structure alone, this

result gives evidence that graph2vec was able to identify certain subgraph structures that

were more common in the low energy GBs from the small sample size in this category. The

even spread through higher energy GBs also indicates graph2vec was able to identify slight

differences in subgraph structure that led to these slight changes in energy values within the

more densely clustered energy values. Thus graph2vec not only captured GB energy values

within its unsupervised embeddings, graph2vec also located the important subgraphs within

these graphs regarding GB energy values.

1.4.2.3 Graph2vec Subgraph Importance Ranking. Now that we established

that graph2vec successfully captures GB knowledge in the embeddings and uses important

subgraphs regarding GB energy in the training process, we focus on our goal of identifying

these important subgraphs. To do this, we added a method from the Doc2vec base class to

our graph2vec algorithm that allows subgraphs to be embedded in the same embedding space

as the overall graphs. This method does not embed all subgraphs, only the ones that are

used in the negative sampling training process. Since the goal of graph2vec embeddings is to

have similar graphs embedded near each other, subgraphs whose embeddings appear close

to graph embeddings in which they reside could be indicative of the overall graph structure

and could have been the most influential in the embedding process. We measured similarity

between subgraph embeddings and graph embeddings through cosine similarity. We display

some similar subgraph GB pairs in Figure 1.9.

While many GB embeddings did not end up close to any of their subgraph embeddings,

in the case of the grain boundaries in Figure 1.9 each GB embedding had a cosine similarity

score of at least .6 with the top 10 subgraphs ranked by cosine similarity. For both examples,

we see that the subgraphs whose embeddings had the highest cosine similarity to the overall

graph embedding tend to cluster near the edges and form chains throughout the graph. In
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Figure 1.9: The top 10 closest subgraph embeddings for two select grain boundaries from
the test set. In each row the image on the right is rotated 90 degrees down from the image
on the left. For GB Example 1, the subgraph embeddings had a cosine similarity score of
.63-.65 compared to the graph embedding. In GB Example 2 the embeddings had a cosine
similarity score of .6-.75. Notice how the subgraphs formed a chain in Example 1 and how
the subgraphs were clustered at the edges in each example.
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each case the majority of the subgraphs had nodes from each metallic crystallite in the GB.

Since graph2vec only chooses negative samples during the embedding training process, the

subgraphs seen in the figure may be less common in other grain boundaries, and may be

capturing the areas of the GB that are uncommon across the dataset.

A reason that many graphs did not have any subgraph embeddings with a high cosine

similarity score may be due to each subgraph capturing a different aspect of the GB structure.

Taken as a group, these subgraph embeddings might have captured the most important

aspects of the GB in which they reside and explain the overall structure well, with each

subgraph being near to the GB in the embedding space for a few dimensions. Further

research into this area would be necessary in order to establish whether or not this is the

case and how these subgraph embeddings relate to the graph embeddings.

1.5 Conclusion

Our GCN and graph2vec models were effective at reaching our goals of predicting GB energy

values and learning information about the atom level structure. Each model presented unique

strengths in applications of reaching these research goals, providing diverse insights on the

GB structure at the level of the atoms.

Our GCN model was not only adept at handling atom removal from the GB, its per-

formance improved when we removed up to 80% of the atoms with low centro-symmetry

parameters. In contrast, the graph2vec model performed as poorly as predicting the GB

energy mean after only 20% of the atoms with low centro-symmetry values were removed

from each graph. The GCN model had better scores than graph2vec when comparing R2,

MAE, and MSE for GB energy value predictions, but large improvements over graph2vec

were only seen with atom removal. If we included all atoms in the GB graph, the GCN

model was only slightly better than graph2vec, according to these performance statistics.

GCN was particularly useful for understanding the GBs from their atoms. We created

saliency maps through backpropagation that allowed us to rank nodes based on their in-
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fluence in predicting the GB energy value. The saliency values for each atom were key to

gaining a better understanding of the GBs at this atom level, one of our main research

goals, and open up a range of future research opportunities regarding their properties and

placement in the GB.

Graph2vec was a unique take on GB embedding methods, as graph2vec turned a GB into a

document before embedding. A strength of graph2vec is that the model was unsupervised as

opposed to semi-supervised for our GCN. Since graph2vec was unsupervised, the embeddings

the model created could contain further graph knowledge than just GB energy information

and could be useful for a variety of applications. Another possible strength for graph2vec in

comparison to our GCN model was graph2vec solely learned based on graph structure, where

the GCN model took in five parameter values for each atom to perform the convolutions;

however, three of these five parameters were required to create the graphs to learn on.

Since graph2vec learned from graph structure alone and has the ability to embed sub-

graphs in the same space as the GB graphs themselves, the model might have been able

to identify key subgraphs from each GB in its learning process. This ability allows for a

deeper understanding of which subgraphs are influential in the GB. From our further testing

we know this influence at least extends to the GB energy value. A deeper look into these

subgraphs would allow us to gain a better understanding which areas of the GB influence

energy values or other properties from the atoms themselves, thus helping us achieve our

goal of understanding GBs from the level of their atoms. This understanding is in addition

to what we learn from the GCN saliency scores, since saliency scores rank individual atoms

by importance and graph2vec identifies likely important subgraphs within the GB.
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1.6 Appendix

1.6.1 Finding Optimal Epsilon for Graph Creation. Here we provide in-depth on

our decision to use epsilon equal to 3.5 Ångstrom for our graph creation. In our tests of

several epsilon values, we did not test values less than 2.9 due to problems with some GB

graphs being completely disconnected. We also did not test values greater than 4.0 due to

computational time required to create the graphs.

1.6.1.1 GCN Optimal Epsilon in Ångstrom for Graph Creation. We began by

testing for the optimal epsilon in Ångstrom for our graph creation. We did a search through

several epsilon values for our epsilon nearest neighbors graph creation applied to the same

train, test, and validation GBs. Hence the only difference in our epsilon search was due to

the change in epsilon. These results are in Figure 1.10.

To compile the results for Figure 1.10, we included a node removal for the centro-

symmetry parameter. This was added after our initial tests for the optimal epsilon due

to our findings in the GCN Performance Under Node Removal Section and will be discussed

there. Here we focus on the results where no data was cut from our graphs during the epsilon

search process, which is the line labeled no data cut in the figure. We tested epsilon values

from 2.9 to 4.0 Ångstrom, which resulted in a mean degree increase from 9.3 to 11.4 across

the dataset. Our tests resulted in consistent performance across all epsilon values, remaining

around .52 for our R2 score, 31 for the mean absolute error (MAE), and 1, 600 for the mean

squared error (MSE). This is far off from the results the authors of the dataset received from

applying SOAP to the dataset, but our results are sufficient to prove our GCN model has

been able to learn features about GBs. If our model were to predict the mean GB energy

values, it would have an MAE over 41 and a MSE of more than 3, 000, twice our model’s

MSE.

Thus we see that our GCN model is robust at GB energy predictions for a large range

of epsilon values in our graph creation. This robustness gives us reason to believe the GCN

model is resilient to small perturbations in the data as well. If an atom were to move slightly
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Figure 1.10: Here we tested several values for epsilon in our creation of GB graphs through
epsilon nearest neighbors. The GCN is resilient to changes in the underlying graph structure,
with the R2, mean absolute error (MAE), and mean squared error (MSE) remaining relatively
consistent across the board from an epsilon of 2.9 to 4.0 Ångstrom. We also show how
removing atoms by their centro-symmetry parameter helps our model learn the important
areas of the graph structure for all epsilon values, a finding discussed in the GCN Performance
Under Node Removal Section. For each line, the cutoff number refers to what lower percentile
of atoms were cut out of the graph according to their centro-symmetry parameter. Generally
atoms in an FCC position have lower centro-symmetry values. Remarkably, cutting out 75%
of the atoms according to this method increased R2 by roughly .15, as well as MAE by 16%
and MSE by 30%.
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out of place and fall out of position for several edges, or move into position to add several

edges, such differences likely would not affect our model’s performance.

1.6.1.2 Graph2vec Optimal Epsilon in Ångstrom for Graph Creation. To

begin testing our graph2vec model, we first did an epsilon search to find the optimal epsilon

for our graph2vec model to use for our epsilon nearest neighbors graph creation. We measured

performance with R2, MAE, and MSE to find the optimal epsilon value. We tested epsilon

values from 2.9 to 4.0 Ångstrom. All tests were done of the same datasets, the only difference

being the epsilon value. The results are in Figure 1.11.

In Figure 1.11 we see how impactful the training process is for the graph2vec and highlight

several weaknessness of the algorithm. If a subgraph has not been visited in the model

training, it cannot be used in the embedding of a test graph. This is due to graph2vec

viewing subgraphs as words; if it has never seen a word before it has no understanding of

the meaning. However, if the model is applied to several very similar grain boundaries, this

may turn into a strength. During the training process graphs are trained through negative

sampling, so this model may perform well at picking up on subtle GB differences. In this

case we used the same training and testing data that we used for the GCN model tests, but

other test, train, validation divisions in the data often struggled to perform with an epsilon

above 3.9 Ångstrom. That said, model variability for graph2vec likely has more to do with

the training process and the data used for training and testing than it does with the epsilon

value chosen for epsilon nearest neighbors graph creation.

Since epsilon equal to 3.5 Ångstrom resulted in stable performance for both models we

chose to use it for our model comparisons.

1.6.2 MAE and MSE During Node Removal.
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Figure 1.11: Graph2vec performance by epsilon in epsilon nearest neighbors graph creation
for epsilon 2.9 to 4.0 Ångstrom. All values reflected high variance in the results around their
means. This highlights a weakness of the graph2vec algorithm. The training process does
not view all subgraphs included in the training data, and since the subgraphs are viewed as
words, if a subgraph in the test data does not appear in the training data, graph2vec cannot
use that subgraph in the classification process.
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Figure 1.12: GCN MAE and MSE performance under node removal. The centro-symmetry
cutoff percentile represents the percentage of the atoms we removed from the GB graph
according to the lowest centro-symmetry values. We did this for percentiles 1 to 98. This
resulted in roughly linear performance increase up until we removed around 80% of nodes,
at which point performance volatility increased. However, even when only using 2% of the
data, the model outperformed predicting the mean GB energy value of the dataset, which
would result in a MAE of 41 and a MSE of more than 3, 000. These plots were derived from
graphs created from an epsilon of 3.5 Ångstrom.
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Figure 1.13: Graph2vec MAE and MSE performance under node removal. Atoms were
removed from the graphs according to centro-symmetry parameter, with the atoms with
the lowest values being removed. Centro-symmetry may be an indicator of being near the
center of the GB. Performance began to drop almost immediately, with noticeable drops in
performance happening within 5% of the atoms being removed. Once 20% of the data was
removed performance was at or below expected performance from predicting the mean, which
would result in a MAE of 41 and a MSE of more than 3, 000. These plots were calculated
on graphs created from an epsilon of 3.5 Ångstrom.
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Chapter 2. Global Supply Chain and

Strategic Alliance Networks

2.1 Introduction

Businesses around the world provide people with services and products they need in order

to go about their daily lives. There is hardly a service or product offered that is not built by

a network of several businesses working together, such as suppliers, creditors, and landlords.

Even just one company failing to produce their product or service can have outsized effects

on the overall economy, even affecting those who do not use their product or service [12].

Expanding this network of companies creating products and services together to all compa-

nies in the world constitutes the world’s supply chain network. As part of the global supply

chain, many companies produce products and services jointly, each performing an essential

part of the project while remaining independent companies. These relationships are known

as strategic alliances, and the combined global supply chain network and global strategic

alliance network is called the global value chain network.

Disruptions to the global value chain network are inevitable, and businesses and gov-

ernments alike need to proactively prepare for these inevitable value chain disruptions. By

thoroughly understanding the global value chain dynamics and structure, businesses can

curb losses and governments defend against economic weaknesses and threats [24]. In this

chapter, we conduct a rigorous mathematical examination of the structure and attributes

of the dynamical global value chain to address this need for better understanding and to

identify the dynamic value chain’s behavior. However, the necessary structural and dynamic

analysis cannot be performed without proper data, and global value chain data is thoroughly

lacking, especially on the academic stage.

We present the following dataset to fill this void. To monitor the current global situation,

watch for potential disruptions, and identify trends that can upend the economy, we compiled

a dynamic global supply chain dataset with detailed business information and relationship
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data, along with a global strategic alliance dataset containing detailed business information.

These two datasets construct the global value chain with over 225, 000 companies. This

global value chain dataset is updated almost daily. The frequent updates enable analysts to

rapidly identify trends, such as supply chain reshoring, which is when businesses move their

supply chain to their home country from a foreign country, shocks propagating through the

network, and other valuable insights into the global economy previously hidden from view

[38].

We contribute the following in this chapter:

• A dynamic global value chain network unique collectively in scope and accessibility.

• Up-to-date applicable business findings made possible only through our dynamic global

value chain dataset.

• Global value chain community structure results and insights from our global value

chain dataset.

2.2 Background

While supply chains are highly researched, in our literature review we did not come across

anything similar to our dataset regarding its scope and dynamic nature. Due to significant

differences between academic and commercial datasets we cover these areas separately.

2.2.1 Commercial Supply Chain Datasets. There are three significant commercial

dynamic supply chain datasets. They are provided by Panjiva, Bloomberg, and FactSet.

Panjiva’s dataset, which is one of the largest available, pulls from company shipping records

and is available for a fee. The dataset contains approximately 13, 000, 000 company-to-

company relationships with trade volumes from customs paperwork [15]. Our dataset has

fewer listed relationships than Panjiva’s and involves fewer companies. However, ours brings

significant strengths in areas where Panjiva’s lacks. We include relationships that do not
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involve shipping transactions, such as landlords, creditors, and domestic relationships. Ad-

ditionally, the Panjiva supply chain dataset is limited to shipment records from 17 countries

while our dataset is global in scope. Our dataset also contains global strategic alliance data,

which Panjiva does not have at all. Thus our dataset is more comprehensive than Panjiva’s

dataset and allows for more comprehensive research of the global supply chain situation.

Bloomberg provides a global supply chain dataset for a fee, upon inquiry, we were quoted

at $100, 000 annually. Bloomberg has historical supply chain data on 123, 000 companies go-

ing back to 2006 with 450, 000 relationships. This dataset has more historical data than ours,

but contains fewer companies and does not contain any strategic alliance data. Bloomberg

provides relationship value estimates for 1, 300 companies, while we have relationship labels

for all company relationships. Another key difference is Bloomberg’s dataset is geared to-

wards helping companies analyze changes to their own supply chain; from our research we

found no way for a client to download the entire dataset as a dynamic network. It appears

that Bloomberg gives clients access to the specific data they are interested in, not the entire

dataset. Our dataset is readable in Python and is already contained in a dynamic format.

There is no need to request specific parts of the data through customer service as there is

with Bloomberg, providing faster and simpler accessibility [6].

The third and final commercial dataset that tracks the global supply chain is the FactSet

supply chain dataset, also provided for a fee. This dataset stretches back to 2003 for North

America and subsequently includes other areas of the world until including all by 2016.

However, the dataset is still heavily focused on North America, and is not as globally rounded

as our dataset. The FactSet dataset includes roughly 31, 000 companies, which makes it

roughly one-sixth the size of our dataset. Factset tracks company relationships by listing

other companies as either a customer, supplier, partner, or competitor. Their relationship

data differs by directly labeling how companies interact with each other through the supply

chain even indirectly, while our dataset labels the direct business relationships between firms,

and indirect relationships can only be inferred through analysis [21].
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The Panjiva, Bloomberg, and FactSet datasets are the most complete we have found,

and all have a cost barrier in order to study them. We created our dataset through S&P

CapitalIQ, which we have access to through a fee. Capital IQ is the research branch of

S&P Global, which provides ratings, benchmarks, and analytics of the global capital and

commodity markets [16]. Capital IQ retrieves their data from public companies financials,

private company data, estimates, transactions such as funding rounds and public offerings,

credit ratings research, and macroeconomic data [17].

2.2.2 Academic Supply Chain Datasets. Due to the difficulty of accessing and an-

alyzing these datasets, researchers often use other methods to acquire supply chain data.

One method is to use value added taxes (VAT) transaction data. Diem et al., 2022, used

this method to analyze the Hungarian supply chain network, which contained over 90, 000

companies. A downside to this method is not all countries have VAT taxes, including the

United States, thus a large part of the world’s economy is excluded with this method [12].

Tokyo Shoko Research provides supply chain data for nearly 1, 000, 000 companies in

Japan and 3, 544, 343 relationships between them and while the dataset is produced com-

mercially, it has been widely used in academic research, such as in [22, 23, 41]. This dataset

provides an in-depth view of Japan’s supply chain network, but it is limited to Japan as it

does not include foreign companies in the supply chain.

Other researchers commonly use either synthetic data or small supply chains, such as

Yang et al., 2021, which used both to model robustness of the supply chain in Europe. Their

real-world model of a European supply chain contained 38 companies [48].

Overall, within academia the majority of research has either been applied to country-level

supply chains, synthetic supply chains, or small supply chains. Our global dataset provides

researchers the opportunity to expand their research beyond these constraints.

2.2.3 Supply Chain Research and Studies. Current research regarding supply chain

has focused significantly on supply chain robustness, such as how susceptible supply chains
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are to shock propagation [48, 24], and resilience, which is how supply chains adapt to adverse

events [45].

In the study of supply chain robustness, researchers have focused on economic stability.

One study performed on a synthetic European supply chain network measured the impor-

tance of maintaining surplus inventory and backup suppliers to avoid the effects of demand

shocks [48]. The study involving the Hungarian supply chain network discussed in Section

2.2.2 computed the economic systemic risk of each company in the network and found that

company failure impact on the overall supply chain correlated strongly with the company’s

position within the supply chain. The economic systemic risk can be reduced through supply

chain redundancies and changes in network topology [12].

The supply chain network for Japan in Section 2.2.2 has been used to test for both

resilience and robustness. One study of this supply chain measured the impact of the 2011

earthquake on the supply chain and used the results to model the effects of other natural

disasters. This study found that the largest impact of natural disasters on the supply chain

would be from shock propagation, not from the direct effects of the disaster itself [22].

Another study on this same supply chain dataset for Japan measured the impact on the

economy if Tokyo were under lockdown. The study found that the effects would propagate

quickly through the country and impact the whole country’s economy [23]. Other researcher

has examined how resilient Japan’s supply chain was during a natural disaster, under a

lockdown, and at how companies can increase their own supply chain’s resilience. They

found that geographic diversity and diversity from involvement with other communities in

the supply chain significantly increased a company’s resilience.

An influential study found that microeconomic shocks, such as shocks to a sector, create

sizable aggregate fluctuations across the whole economy only if there are asymmetries in the

downstream supply chain of the sector. This research supports our claim that identifying

asymmetries within the supply chain network through applications of network theory will

identify weak areas of the supply chain network [1].
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Our dataset is well-positioned for studying all these areas such as supply chain robustness,

resilience, and shock propagation on a global scale due to its scope and frequent updates.

In Section 2.4.2, we outline how quickly the global value chain is changing. These changes

relate to real-world examples of supply chain resilience and robustness.

2.2.4 Global Strategic Alliance Datasets and Research. We found no evidence

of a current or historic global strategic alliance dataset. A majority of strategic alliance

research has focused on the benefits of collaboration through strategic alliances [2], dynamic

capabilities of strategic alliances [30], and how to choose and manage strategic alliance

partners [7, 46]. We can use this knowledge of strategic alliances to analyze the benefits and

impacts of the more than 90, 000 strategic alliances contained in our dataset.

2.3 Dataset

This dataset consists of two distinct time series business networks, a supply chain network

and a strategic alliance network. We begin with a brief overview of the supply chain network.

This is a directed supply chain where edges point from the supplier to the company being

supplied. Every supplier relationship has one of eight classifications stored as edge labels:

vendor, transfer agent, supplier, creditor, lessor, landlord, franchisor, or licensor. These

relationships are not mutually exclusive, for example, a company can be both a vendor and

a supplier for another company. This is represented by two separate directed labeled edges.

The supply chain network consists of more than 175, 000 firms as nodes and more than

415, 000 relationships.

We now provide a brief overview of the strategic alliance network. A strategic alliance

between two companies is a relationship where they “undertake a mutually beneficial project

while each retains its independence” [25]. Thus the resulting network consists of deep com-

pany relationships where each company in a relationship has inherent motivation for the

other company’s success in fulfilling their end of the deal. This network is undirected and
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consists of more than 65, 000 companies and more than 90, 000 alliances.

We pull data for these networks almost daily from Capital IQ in order to create our

dynamic global value chain [17]. This data is difficult to retrieve from Capital IQ, which

makes our dataset exceptional in its scope and completeness. Every quarter we pull more

than 50 data points for each company, ranging from company location, to company industry

sector such as health care, industrials, and energy, to market data such as market cap, and

to financial data including revenue, income, inventory. Chapter 2.6.1 provides more detail on

this process. The infrastructure we built is capable of pulling any of the other hundreds of

data points Capital IQ gives access to historically, opening up the supply chain and strategic

alliance networks to all Capital IQ’s company data. This capability opens up a wide range

of research opportunities for exploration.

2.4 Results

2.4.1 Static Structure. One area of particular interest regarding the global supply

chain network is whether or not it lives up to its name of being a chain-like structure.

We tested this concept by computing several static network statistics and analyzed their

significance. We also computed several static statistics for the strategic alliance graph as

well to better understand its structure.

2.4.1.1 Global Statistics. We began by analyzing the supply chain and strategic

alliance networks on a global scale. This allowed us to look for large trends that may be

affecting the supply chain overall as well as better understand the structure of the networks.

These statistics can be found in Table 2.1.

Both networks have large diameters, adding weight to the idea of these networks having

chainlike structure. Small world networks, such as the worldwide social network, in which

six degrees of separation is believed to be the average distance between any two people, have

the small average shortest path lengths between nodes [44]. The supply chain network has

a 5.91 average shortest path length, while the strategic alliance network has a 6.48 average
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Global Network Statistics
Global Statistic Supply Chain Strategic Alliance
Diameter 18 22
Average shortest path 5.91 6.48
Clustering coefficient .005 .017
Reciprocity .09 n/a
Power law coefficient 2.76 3.12
Average degree 4.70 2.62
Median degree 2.0 1.0
Median indegree 1.0 n/a
Median outdegree 1.0 n/a

Table 2.1: A look into several global network values. The power law coefficient, which
represents the power law degree fit of the degree distribution, is used to classify networks as
scale-free. Generally, a power law coefficient between two and three qualifies a network as
scale-free, hence the supply chain network meets this requirement while the strategic alliance
network does not. However, this is not a firm requirement and 3.12 is close to three [8]. Thus
each network may be viewed as scale-free. The supply chain network had a notably high
reciprocity rate of 9%, a statistic we examine later in Figure 2.4. Values that require a
connected graph were calculated on the largest weakly connected component for the supply
chain network and on the largest connected component for the strategic alliance network.
See Table 2.2 for largest component sizes.

shortest path length. A typical cutoff to qualify as a small world network is an average

shortest path length proportional to the natural logarithm of the number of nodes in the

network. The natural logarithm of the number of nodes in our networks is 5.25 for the supply

chain network and 4.84 for the strategic alliance network. Hence neither network strictly

meets this average shortest path length qualification, which is not a firm qualification and

is open to interpretation, but the networks are not far off from it either. However, each

network does have a small clustering coefficient, leading us to conclude these networks are

not classifiable as small world networks.

Supply Chain Reciprocity. The reciprocity of the supply chain network is a key

finding from our global statistical analysis. The reciprocity rate defines the rate at with a

supplier customer relationship goes both ways, as in the customer also supplies the supplier.

At .09, an entire 9% of company supplier relationships are mutual in this way. Compared to

a configuration model graph based on the degree distribution of the supply chain graph, any

rate over .03% would be considered an outlier. This reciprocity rate gives evidence that the
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flow of goods in the worldwide supply chain is a complex process and that commonly used

terms such us up stream and down stream supply chain may not fit as well as previously

thought.

Further detail into this phenomenon is seen in the triad census of this network, which

we see in Figure 2.1. Relationships involving reciprocity are much more likely in the supply

chain network than in configuration model graphs produced by the degree distribution of the

network. Specifically noting the elevated levels of triad 102, we see how far from expected

reciprocation is in this network. Triads that may be expected to have an outsized role in

the network’s composition do not. One of these is 012, the triad containing one directed

edge, and another is 012C, the triad containing two directed edges that flow from node 1 to

node 3, which most closely models typical chain format. Thus the whole idea of viewing the

supply chain as a chain for flow of goods is not so simple, and ignores important complexities

and features found in the real network.

Degree Distributions. Another area of interest has been the degree distributions.

These are given in Figure 2.3. The strategic alliance network has a large share of companies

that only have one strategic alliance. This may explain in part the large diameter of the

graph, and helps create a visual of its high alpha value as a distribution. Five times the

number of companies have only one strategic alliance compared to those that have two

alliances, the next most common amount. In comparison to the supply chain network,

companies are only twice as likely to have only one connection when compared to two

connections, which is also the second most common number of connections.

The indegree and outdegree histograms of the supply chain network give detail not gained

from the overall degree distribution histogram. It is common for companies to not have

any listed suppliers, or any listed customers. Capital IQ retrieves edge information from

reports such as public companies financials and private company data. Companies that

only have customers or suppliers are likely private companies, which are not required to

release customer and supplier reports as public companies are. Thus these companies with
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Figure 2.1: Triadic census of the supply chain network. Values for one hundred configura-
tion model graphs produced by the degree distribution of the supply chain network degree
distribution are given in box and whisker plots, and the values for the supply chain network
are given by the bar chart. Triad 102 denotes reciprocation, which is much more common
than what is seen in the configuration models. Triads 111D, 111U, 201, 120D, 120U, and
120C involve one edge reciprocated with the other edges not, and triads 201, 210, and 300
involve two of the three edges reciprocated. See Figure 2.2 for definitions of each triad type.

only suppliers or customers may have been listed on other companies’ required or voluntary

reports. All of these companies with either only customers or suppliers, roughly 130, 000 in

all, or 73% of the network, can only be the beginning or end of supply chain subnetworks

found in the data. Another point of interest here is that companies are more likely to have one

supplier than they are to have none, and there are more companies in indegree than outdegree

for degree counts three through 21. Thus the outdegree is dominated by few companies that

supply many other companies, and the indegree has a more evenly distributed spread of how

many suppliers each company has.

40



Figure 2.2: Triad definitions, taken from [3].

Connected Component Statistics and Applications. Much of the statistics and

tests we run on these networks require using a connected component. For these we use

either the largest weakly connected component for the supply chain network, or the largest

connected component for the strategic alliance network. The sizes of these components are

given in Table 2.2. These giant components consist of the vast majority of companies in

each network, hence statistics computed on these components are nearly global. This also

demonstrates that at the global level, there are not multiple distinct supply chains competing

with each other for dominance, there is only one.

The supply chain network’s largest strongly connected component takes up over 10%

of the network, creating a strong center to our network with increased flow of goods and

services. The largest weakly connected component increases this view of connectedness of

the network, with over 90% of companies connected when viewed as an undirected graph.

2.4.1.2 Centrality Measures. A major strength of network analysis is centrality

measures, which help us define various measures of importance. Traditional views of company

importance may rely solely on financial data such as revenue or market data like stock prices.
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Figure 2.3: Histograms containing the degree distributions of both networks plotted on loglog
scale to demonstrate how each networks’ distributions follow a power law. This gives us a
visual of the higher power law coefficient for the strategic alliance network given in Table
2.1 compared to the supply chain power law coefficient. The maximum degree in the supply
chain network is more than 1, 500 and in the strategic alliance network the maximum degree
is more than 700. Also note how it is more likely for a company to not have any listed
suppliers than it is for the company to have no listed customers.

Centrality measures calculate importance various ways, measuring features from shortest

average path to other companies in the graph for closeness centrality to being labeled as

important by being connected to important companies with eigenvector centrality. These

measurements provide greater insight into which companies are positioned most strongly

within the supply chain and strategic alliance networks, which can be a good indicator of

influence. The top ten companies for various centrality measures for each network are given

in Table 2.3 and Table 2.4.
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Connected Component Sizes for Both Networks
Component Supply Chain Strategic Alliance
Largest connected component (Per-
centage of network)

n/a 50745 (73.2%)

Second largest connected component
(Percentage of network)

n/a 39 (.06%)

Largest weakly connected component
(Percentage of network)

164939 (92.7%) n/a

Second largest weakly connected com-
ponent (Percentage of network)

82 (.05%) n/a

Largest strongly connected component
(Percentage of network)

20327 (11.4%) n/a

Second largest strongly connected com-
ponent (Percentage of network)

33 (.02%) n/a

Table 2.2: Largest and second-largest connected component sizes for each network. The vast
majority of each network can be found in their giant component using the weakly connected
component for the supply chain network. In particular, the supply chain network is ex-
tremely well-connected with over 90% of companies residing in the largest weakly connected
component.

Across both networks, technology companies such as Microsoft had high centrality val-

ues. This gives evidence of these companies having strong supply chain networks and being

connected to other important companies on various projects through strategic alliances. A

difference between these networks is that banks hold a strong position in the supply chain

network, while they do not in the strategic alliance network. Difference might be attributed

to their tendency not to branch outside of the financial sphere, leading them to keep all their

work under their own company while avoiding strategic alliances. Most companies work with

a financial institution or bank for auditing and consulting, which is the main driver behind

banks being well-connected across the supply chain network.

2.4.1.3 Edge Label Statistics, Definitions, and Significance. Edge labels giving

the type of business relationship between two companies are a unique qualifier in our dataset

for analysis. In total our dataset contains eight edge labels, as shown in Table 2.5. These

edge labels each presents measures of collaboration between two businesses, and can measure

the business impacts of broken relationships. These edges also provide a look at supply chain

subsets, such as the worldwide creditor network and worldwide landlord network. Giving
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Centrality Measures for Supply Chain Network
Centrality Measure Supply Chain Top 10
Degree centrality
(company degree)

1. Bank of America (2545) 2. Wells Fargo Bank (2412) 3. JP-
Morgan Chase Bank (2191) 4. PNC Bank (1727) 5. U.S. Bank
(1388) 6. Citibank (1322) 7. Amazon.com (1271) 8. Truist Bank
(1144) 9. Link Intime India Pvt. Ltd. (1096) 10. Continental
Stock Transfer and Trust Company (1026)

Indegree centrality
(company inde-
gree)

1. Amazon.com (1087) 2. Walmart Inc. (469) 3. Apple Inc.,
(469) 4. Renfe Operadora S.C. (387) 5. Adore Beauty Pty Ltd
(384) 6. Auto Partner SA (376) 7. PT Metrodata Electronics
Tbk (354) 8. Dufry AG (341) 9. Samsung Electronics Co., Ltd.
(262) 10. Alphabet Inc. (262)

Outdegree central-
ity (company out-
degree)

1. Bank of America (2527) 2. Wells Fargo Bank (2395) 3. JP-
Morgan Chase Bank (2172) 4. PNC Bank (1719) 5. U.S. Bank
(1383) 6. Citibank (1303) 7. Truist Bank (1139) 8. Link Intime
India Pvt. Ltd. (1095) 9. Continental Stock Transfer and Trust
Company (1026) 10. Goldman Sachs Bank USA (953)

Betweenness cen-
trality

1. Amazon.com 2. Microsoft Corporation 3. Apple Inc. 4. ICICI
Bank Limited 5. Repsol, S.A. 6. Walmart Inc. 7. Amazon Web
Services, Inc. 8. Google LLC 9. CT Real Estate Investment
Trust 10. Alphabet Inc.

Closeness central-
ity

1. Amazon.com 2. Citibank 3. JPMorgan Chase Bank 4. Bank
of America 5. BNP Paribas SA 6. Wells Fargo Bank 7. MUFG
Bank 8. IBM Corporation 9. Mastercard Incorporated 10. Mi-
crosoft Corporation

Eigenvector cen-
trality

1. Amazon.com 2. Apple Inc. 3. Walmart Inc. 4. Microsoft
Corporation 5. TD Synnex Corporation 6. Synnex (Thailand)
Public Company Limited 7. Dicker Data Limited 8. Softlogic
Holdings PLC 9. CDW Corporation 10. Dustin Group AB

Table 2.3: Top 10 companies for various centrality measures for the supply chain network.
Generally technology companies and banks tended to have higher centralities. In particu-
lar, banks have high outdegree centrality due to having a large number of customers, while
technology companies have higher indegree centralities due to having more suppliers. Be-
tweenness centrality, a measure of being on the shortest path through the network, closeness
centrality, a measure of distance to other companies in the network, and eigenvector cen-
trality, a measure of being connected to important companies, tended to favor technology
companies. Technology companies may tend to have stronger supply chains than companies
do in other industry sectors.
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Centrality Measures for Strategic Alliance Network
Centrality Measure Strategic Alliance Top 10
Degree centrality
(company degree)

1. Microsoft Corporation (753) 2. IBM Corporation (368) 3. Or-
acle Corporation (278) 4. Cisco Systems, Inc. (274) 5. Amazon
Web Services, Inc. (259) 6. Alphabet Inc. (221) 7. Amazon.com
(215) 8. Samsung Electronics Co., Ltd. 9. Google LLC (205)
10. HP Inc.

Betweenness cen-
trality

1. Mahindra Lifespace Developers Limited 2. Cisco Systems,
Inc. 3. Pintrest, Inc. 4. Crinetics Pharmaceuticals, Inc. 5.
Hansfort Investment Pte Ltd 6. GABO STAHL GmbH 7. SAP
Asia Pte. Ltd. 8. Anywhere Real Estate Inc. 9. IKEA B.V. 10.
TAG Colonia-Immobilien AG

Closeness central-
ity

1. Mahindra Lifespace Developers Limited 2. Cisco Systems,
Inc. 3. TAG Colonia-Immobilien AG 4. Kauflandervice GmbH
and Co. KG 5. Crinetics Pharmaceuticals, Inc. 6. GABO
STAHL GmbH 7. Hansfort Investment Pte Ltd 8. Pinterest,
Inc. 9. Shop Rite, Inc. 10. Singapore Telecommunications
Limited

Eigenvector cen-
trality

1. Microsoft Corporation 2. IBM Corporation 3. Oracle Corpo-
ration 4. Cisco Systems, Inc. 5. VMware, Inc. 6. Amazon Web
Services, Inc. 7. SAP SE 8. HP Inc. 9. Intel Corporation 10.
Alphabet Inc.

Table 2.4: Top 10 companies for various centrality measures for the strategic alliance net-
work. U.S. Technology companies generally have the highest number of strategic alliances,
seen under degree centrality as well as the highest eigenvector centrality, a measure of be-
ing connected to important companies. Betweenness centrality, a measure of being on the
shortest path between other companies in the network, and closeness centrality, a measure
of having the shortest paths to other companies, were more global in scope. These measures
have several companies from Asia and Europe while retaining a small proportion from the
United States.

45



unparalleled detail into the strengths of these networks, each of these eight networks could

be also analyzed using this chapter’s methods, such as centrality measures and community

detection methods.

Figure 2.4: The edge labels allow us to better understand global trends within the supply
chain network such as the high reciprocity rate given in Table 2.1. Here we see this rate is
nearly all driven by supplier relationships, indicating companies often pass products back
and forth to each other for different stages of the production process.

Demonstrating these further insights, Figure 2.4 presents a deeper investigation into the

high reciprocity rate seen in Table 2.1 through the edge labels lens.

In this case, the edge labels show when a business relationship has a high chance of

reciprocity. The data shows that supplier relationships are the predominant type with high

odds of reciprocity. This data also matches well with intuition that a majority of low-

reciprocity relationships need uncommon circumstances to occur, such as a creditor being

the creditor to their creditor.

2.4.1.4 Static Value Chain Business Results. The static view of the global value

chain provides a variety of business applications. One of these business applications is
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Types of Supplier-Customer Relationships
Relationship Definition Number of Relationships

(Percentage of Network)
Vendor Company providing incidental services that

does not form part of the main services to
the subject company. For example: A com-
pany providing transport services to an IT
services company is a vendor.

51291 (12.2%)

Transfer Agent Records changes of ownership, maintain the
issuer’s security holder records, cancel and
issue certificates, and distribute dividends.

76882 (18.3%)

Supplier An entity which supplies goods, services and
products to the subject company for a con-
sideration.

141002 (33.6%)

Creditor An entity (public or private group, or a fi-
nancial institution) that makes funds avail-
able to another with the expectation that
the funds will be repaid. Repayment will in-
clude the payment of any interest or fees.

110037 (26.2%)

Lessor An entity that provides the right to use an
asset for an agreed period of time in return
for a payment or series of payments to the
lessee.

8945 (2.1%)

Landlord An entity that provides the right to use an
asset for an agreed period of time in return
for a payment or series of payments to the
lessee.

20089 (4.8%)

Franchisor A franchise is an investment in which you
pay another business for the right to use its
business model and products. A franchisor
is the party granting the franchise right to
the subject company.

1079 (.3%)

Licensor An entity which grants a license to a com-
pany.

10212 (2.4%)

Table 2.5: Definition of each relationship type in the supply chain network and its percentage
of total relationships in the network as of 2/20/23. These relationship types add value to
our graph by defining what kind of business interaction two companies have and allowing
us to view subnetworks of the data by restricting to certain relationship labels. Definitions
are from Capital IQ [14]. Four of eight relationship types, vendor, transfer agent, supplier,
or creditor relationships make up over 90% of the data.
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understanding the importance of the centrality measures. Further research into the direct

impact of each centrality measure would be necessary to make conclusive connections between

each measure and business results, but in Section 2.2.3 we outlined previous research that

found that diversifying a company’s suppliers within the supply chain affects a company’s

overall robustness. Thus businesses that use centrality measures when choosing new suppliers

may be able to directly impact the robustness of their supply chain. They could accomplish

this by choosing important companies to work with, which would diversify their supply chain

within the overall supply chain network.

Another business application from our results stems from the near small world average

shortest path length size inside the supply chain network. This small average shortest path

length adds understanding to why shock propagation can spread quickly through a supply

chain network as discussed in Section 2.2.3. Businesses that are aware that they may be

closely related to any company within the global supply chain network can analyze what

areas of their supply chain will be adversely affected from shock propagation when another

company in the global supply chain is dissolved. These businesses can then act on this data

to increase supply chain redundancies before the effects from shock propagation reach them,

bettering their business situation.

2.4.2 Dynamic Structure. The dynamic view of the supply chain and strategic alliance

networks is a key for identifying global value chain trends and risks. We began consistent

clean data pulls on January 20th, 2023, and have since continued near daily pulls. Due to

Capital IQ’s policies, a relationship is listed if it has been reported anytime in the last three

years. Thus any relationships that has dropped out of either network has been inactive for

up to three years. To begin our analysis, we tracked the daily change rate. Table 2.6 shows

the first month’s average daily change.

While the daily change rate is minimal, daily data collection is crucial to a dynamic

network analysis; and these small fluctuations could be useful in early discovery of future

long-term trends.
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Network Average Daily Change Over One Month
Network Supply Chain Strategic Alliance
Average number of companies in the previous
day’s data but not the current day (percent-
age of overall network)

74 (.04%) 5 (.001%)

Average number of companies in the current
day’s data but not the previous day (percent-
age of overall network)

116 (.07%) 40 (.06%)

Average number of companies in either the
current or the previous day’s data but not
both (percentage of overall network)

190 (.10%) 45 (.07%)

Average number of relationships in the previ-
ous day’s data but not the current day (per-
centage of overall network)

285 (.07%) 12 (.01%)

Average number of relationships in the cur-
rent day’s data but not the previous day (per-
centage of overall network)

497 (.12%) 64 (.07%)

Average number of relationships in either the
current or the previous day’s data but not
both (percentage of overall network)

782 (.19%) 76 (.09%)

Table 2.6: Average daily change in supply chain and strategic alliance networks over the
first month of data collection. Each network has experienced consistent daily growth, gain-
ing new companies and density. The supply chain dataset has been particularly dynamic,
changing at twice the rate of the strategic alliance network. The strategic alliance network
has significantly lower company and relationship dropout rates than the supply chain dataset,
indicating a strategic alliance relationship could have higher longevity than relationships in
the supply chain network. Company dropout is reported with a three-year lag.

In Table 2.7 we tracked how the networks changed over the first month of data collection.

We observed strong trends of network growth and minimal company dropout. The supply

chain network is much more volatile than the strategic alliance network, with more than five

percent of relationships either formed or dissolved during the first month. Similarly, over

three percent of companies either joined or left the supply chain over the first month.

The final aspect of the dynamic supply chain is the company statistics included in the

dataset. We will pull this data quarterly to align with company quarterly financial reports.

The data includes more than 50 features, ranging from categorical data such as industry and

country to quantitative data such as inventory, revenue, and tax rates. Since the dataset is

new, there has only been one financial pull up to this point.
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Network Change Over One Month
Network Supply Chain Strategic Alliance
Total companies in network as of 1/20/23 176721 68280
Total companies in network as of 2/20/23 177999 69325
Companies in network on 1/20/23 but not on
2/20/23 (percentage of overall network)

2207 (1.3%) 146 (.2%)

Companies in network on 2/20/23 but not on
1/20/23 (percentage of overall network)

3485 (2.0%) 1191 (1.7%)

Companies in either 1/20/23 or 2/20/23 but
not both (percentage of overall network)

5692 (3.2%) 1337 (1.9%)

Total relationships in network as of 1/20/23 413207 89272
Total relationships in network as of 2/20/23 419537 90854
Relationships in network on 1/20/23 but not
on 2/20/23 (percentage of overall network)

8568 (2.1%) 346 (.4%)

Relationships in network on 2/20/23 but not
on 1/20/23 (percentage of overall network)

14898 (3.6%) 1928 (2.1%)

Relationships in either 1/20/23 or 2/20/23
but not both (percentage of overall network)

23466 (5.6%) 2274 (2.5%)

Table 2.7: Change in supply chain and strategic alliance networks after the first month of data
collection. The change has been significant, especially in the supply chain network. While
the strategic alliance network hardly deals with companies dropping out of the network, the
supply chain network receives and loses a significant number of companies. This indicates
the importance of analyzing the worldwide supply chain in the dynamic sense, as a static
view can quickly become dated. Company dropout is reported with a three-year lag.

2.4.2.1 Dynamic Value Chain Business Results. A significant finding from our

dynamic global value chain analysis is how quickly the value chain is changing, particularly

the global supply chain section of the value chain. The supply chain is incredibly dynamic,

with only a month’s observation seeing over 5% of relationships either being created or being

dropped, with a three-year lag for dropped relationships. This high rate of change is similar

to what we would expect from resilient supply chains, which are supply chains that adapt and

create new relationships to avoid disruptions as discussed in Section 2.2.3. This knowledge

of the shifting business environment is also useful for business leaders; realignment through

new companies and relationship formation for other companies presents new opportunities for

companies, such as different suppliers or backup suppliers to ensure supply chain redundancy.

Switching to different suppliers might increase quality or reduce costs for a business, and

from Section 2.2.3 we find that supply chain redundancy is crucial to resist shock propagation
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from disasters or demand shocks.

2.4.3 Community Structure. For future research, network community structure pro-

vides an area of interest. Investigating community structures could provide insight into how

rival companies create their supply chains, which industry sectors have the highest collabora-

tion rates, and larger trends such as supply chain reshoring [38]. The communities we explore

in this section are not unique; they are dependent on the community detection algorithms

and parameters we chose to implement and re-running the algorithms returns slightly differ-

ent communities. Major community structures and findings presented in this section were

similar when re-running the algorithms, while the exact percentages of community attribute

makeups presented in various tables throughout this section varied slightly.

2.4.3.1 Global Community Detection. Our first step in community detection and

analysis was verifying that community structure significantly differed from a similar but ran-

dom graph. We created one hundred configuration model random graphs based on the supply

chain network degree distribution. We then compared these graphs’ community sizes and

partition modularity to those of the original supply chain and strategic alliance graphs. We

used two community detection methods, the Reichardt and Bornholdt’s Potts Model (RB)

and the Constant Potts Model (CPM). Figure 2.5 compares these two community detection

methods applied to the supply chain against the configuration model. Each method finds

significantly higher partition modularity for the supply chain network, signaling community

structure beyond what can be found inside a random graph of this size and structure. The

RB method resulted in a partition with over .5 higher modularity for the majority of resolu-

tion parameters for partitions of the supply chain network in comparison to partitions of the

configuration model network. The RB method is trained on optimizing modularity and the

CPM method is optimized on maximizing internal edges in communities while maintaining

a small community size. Thus it is not surprising the RB method outperformed CPM ac-

cording to modularity scores. Figure 2.6 shows the same comparison applied to the strategic

alliance network. The RB method again found higher modularity partitions for the strategic
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alliance network compared to the configuration model’s partitions. The CPM method found

marginally higher modularity for the strategic alliance graph when compared to the configu-

ration models, and only when using low resolution parameter values. Thus each community

model on the supply chain and strategic alliance networks gives evidence that the networks

contain significant community structure. Due to the RB method maximizing modularity,

creating a measurable distinction between the communities found in each network and the

communities of their configuration models, we will use this method to analyze community

structure throughout this section. These methods of community detection are discussed in

more detail in Section 2.6.2.

Global Community Breakdown by Industry Sector. We now take a further look

into the communities discovered by the RB method. We analyzed the largest 12 supply

chain network communities created by this method at a resolution parameter of .7. We

used company industry sector labels to break down the partitions. This is just one of the

more than 50 statistics we have for each company in this network. There are 12 distinct

industry sectors and in all, over 70% of companies have their industry sector listed. From

these top communities, we sorted which ones are significant in terms of their company’s

industry sector. We measured significance by comparing the industry sectors’ representation

percentages in the overall network to their representation percentages within each community

and by measuring what percentage of the companies in each industry sector ended up in a

community together. Table 2.8 shows these results.

Eight of the twelve largest communities proved significant by these measures. Interest-

ing groupings included a community formed mostly through information technology and

communication companies, another through consumer discretionary and consumer staples

companies, and another with a majority makeup in health care companies. This community

detection gives us more understanding of which industry sectors are most likely to work

together, and of which industries are least likely to work together. By tracking communities

over time, we can watch for community realignment, such as when certain industry sectors
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Figure 2.5: Partition quality comparison between the supply chain network and configura-
tion model based on the degree distribution of the supply chain network. The community
detection methods used here are the Reichardt and Bornholdt’s Potts Model (RB) and the
Constant Potts Model (CPM). Here both methods display significant community difference
between the configuration model and the supply chain. The RB method finds partitions of
much higher modularity and keeps the number of communities found fairly consistent across
all resolution parameters. The CPM method creates higher modularity partitions for the
supply chain with low resolution parameters but quickly descends to match the configura-
tion model graph. For all resolution parameters this methods finds many more communities
than the configuration model. Both these methods together indicate significant community
structure exists within the supply chain network.
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Figure 2.6: Partition quality comparison between the strategic alliance network and con-
figuration model based on the degree distribution of the strategic alliance network. The
community detection methods used here are the Reichardt and Bornholdt’s Potts Model
(RB) and the Constant Potts Model (CPM). Here the CPM method only briefly differed
from what we found with the configuration model. The RB method discovered high mod-
ularity partitions in this network, while maintaining a consistent number of communities
across resolution parameters.

54



Significant Global Communities by Industry Sector
Community
ID

Top Industry Sectors as Percentage of Community (Percentage of
Community, Percentage of Overrepresentation Compared to Overall
Network)

2 1. Financials (19.5%, 71.0%) 2. Energy (8.0%, 207.3%) 3. Utilities
(4.6%, 85.9%)

3 1. Information Technology (27.6%, 297.0%) 2. Communication Ser-
vices (19.8%, 475.8%)

6 1. Consumer Discretionary (28.1%, 156.9%) 2. Industrials (25.7%,
69.8%)

7 1. Health Care (54.5%, 832.3%)
8 1. Consumer Discretionary (39.8%, 264.1%) 2. Consumer Staples

(14.9%, 256.9%)
9 1. Information Technology (22.6%, 232.9%)
10 1. Materials (19.1%, 215.0%)
11 1. Industrials (25.1%, 65.9%) 2. Energy (12.5%, 379.2%)

Table 2.8: Selection of significant communities by the 12 industry sector classifications.
Community number relates to the size of the community, with 1 being the largest community
found in the network. Here communities were detected through the RB method with a
resolution parameter of .7. This returned more than 400 communities, of which we analyzed
the largest 12. Health care proved to have the strongest community structure of any of the
classifications, with almost half of the companies in the same community. Our cutoff for
listing an industry sector in the table was at least 10% of the community being from that
industry sector. If an industry sector met either of these requirements it was listed in both
columns.
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grow closer or further apart.

2.4.3.2 Health Care Industry Sector Community Analysis by Industry. While

understanding communities at a global level is key for understanding the structure of the

worldwide supply chain, there is also a lot to be gained through analyzing these commu-

nities individually, or by finding communities by industry sector. Due to the strong global

community found in health care, we break down the companies in this industry sector to

see if we can learn more about how the companies within this industry sector operate and

compete.

For each company, we have four levels of industry information. From broadest to most

specific these are: industry sector, industry group, industry, and primary industry. The

health care industry sector has 9, 733 companies, divided into two different industry groups,

six different industries, and 10 different primary industries. Due to the small sizes of some

of these groups, we used the six different industry classifications to gain more insight into

health care companies. These are life sciences tools and services, biotechnology, health care

providers and services, pharmaceuticals, health care equipment and supplies, and health care

technology.

Health Care Community Detection Methods. First, we looked into Global Com-

munity 7 found in Table 2.8. For each industry we computed its share of health care within

Community 7 as well as its representation compared to the industry’s overall representation

within health care. Table 2.9 shows this data.

Our analysis shows that Community 7, the large global health care community, is built on

strong representation of biotechnology and pharmaceutical industries. Thus these industries

likely have some of the closest ties for any two industries within the global supply chain.

After this analysis, we delved deeper into the global health care industry sector of the

supply chain network. Consisting of 9, 733 companies, this subnetwork had one weakly con-

nected component of 5, 293 companies, with the remaining companies disconnected. This

disconnectedness was due to us only using companies in the health care industry sector, many
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Global Community 7 Health Care Companies by Industry
Industry Industry percentage of Health

Care within Community 7
Industry Over/Under Represen-
tation Compared to Represen-
tation within Health Care

Biotechnology 33.2% 68.2%
Pharmaceuticals 29.1% 12.1%
Health Care Providers
and Services

16.4% -44.9%

Health Care Equip-
ment and Supplies

10.4% -26.1%

Life Sciences Tools
and Services

8.7% 42.5%

Health Care Technol-
ogy

2.2% -49.6%

Table 2.9: Health care industry sector break down by industry within global Community 7.
Biotechnology makes up the largest industry in this community as a percentage of health
care companies. Biotechnology also has the highest overrepresentation rate of the six health
care industries. Health care providers and services as well as health care technology are the
most underrepresented industries in health care within Community 7.

of which only had supplier and customer connections outside of the industry sector. While

this weakly connected component contained 54.4% of all health care firms, it contained 84.2%

of the health care firms contained in Global Community 7. Thus we used this component as

our subnetwork to analyze the global health care community. We divided this subnetwork

into 50 to 65 communities using various resolution parameters and the RB method. These

partitions generally had a modularity score of .77, where partitions generated on a configu-

ration model of the graph had a modularity score of .53, indicating the community structure

in the health care industry sector is better than expected from a random graph.

Health Care Community Detection Results. This led to interesting results re-

garding competition within the health care industry. Table 2.10 summarizes some of the

largest communities and their respective major industries. A strong trend throughout the

communities was that a large number of them contained a large proportion of pharmaceu-

tical and biotechnology firms working together. This is consistent from what we found in

the global health care community. A difference however, is that while the global community

analysis gave insight on how separate health care companies tend to be from the rest of
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Health Care Communities by Top Industries
Community
ID

Top Industries as Percentage of Community (Percentage of Community,
Percentage of Over/Under Representation Compared to Representation
within Health Care)

1 1. Pharmaceuticals (35.6%, 12.7%) 2. Biotechnology (29.9%, 10.6%) 3.
Health Care Providers and Services (19.6%, -2.9%)

2 1. Biotechnology (44.3%, 64.1%) 2. Pharmaceuticals (38.5%, 21.6 %) 3.
Life Sciences Tools and Services (8.1%, .5%)

3 1. Biotechnology (58.3%, 115.8%) 2. Pharmaceuticals (20.3%, -35.8%) 3.
Life Sciences Tools and Services (12.5%, 54.2%)

4 1. Pharmaceuticals (70.5%, 122.8%) 2. Health Care Providers and Ser-
vices (19.9%, -1.6%)

5 1. Biotechnology (52.0%, 92.3%) 2. Health Care Providers and Services
(20.0%, -1.1%) 3. Life Sciences Tools and Services (8.6%, 5.6%)

6 1. Pharmaceuticals (73.4%, 132.1%) 2. Health Care Providers and Ser-
vices (11.0%, -45.7%) 3. Biotechnology (10.4%, -61.5%)

7 1. Biotechnology (28.7%, 6.0%) 2. Life Sciences Tools and Services
(25.0%, 208.4%) 3. Health Care Equipment and Supplies (18.9%, 82.9%)
4. Health Care Providers and Services (17.1%, -15.5%)

8 1. Biotechnology (37.6%, 39.3%) 2. Pharmaceuticals (37.7%, 19.1%) 3.
Health Care Providers and Services (10.5%, -15.5%)

9 1. Pharmaceuticals (54.1%, 70.9%) 2. Biotechnology (20.3%, -25.0%) 3.
Health Care Providers and Services (16.2%, -19.8%)

10 1. Biotechnology (42.6%, 57.4%) 2. Pharmaceuticals (21.3%, -32.7%)
3. Health Care Providers and Services (14.9%, -26.3%) 4. Health Care
Technology (7.8%, 190.8%)

Table 2.10: Top 10 health care industry sector communities by industry, ranked according to
size. These were found through the RB method with a resolution parameter of 1. Notable is
a pattern of biotechnology and pharmaceutical firms forming strong communities together,
mirroring what we saw in the global health care community. However, each of those industries
also formed one community largely consisting of themselves with some health care providers
and services companies. We used 7.5% community participation rate as the cutoff to list.
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the supply chain, with the vast majority of the largest weakly connected component of the

health care industry sector residing in this community, our analysis of the community struc-

ture in the health care sector gave insight on the competition within this sector. Far from

being united, we learned that pharmaceutical and biotechnology firms have created several

competing community structures amongst themselves, with six of the 10 largest communities

being dominated by these two industries. While these industries were the second and third

largest industries within health care, in each of these six communities where they consti-

tuted the top two industries by representation, at least one of these industries was vastly

overrepresented.

Another interesting find in the community structure was that the fourth largest commu-

nity was dominated by pharmaceutical firms with very low biotechnology firm representation

and that the fifth largest community was dominated by biotechnology firms with very low

pharmaceutical firm representation. Thus, while these two industries tend to work together,

each industry has a distinct segment that works with the other industries within health care

while nearly avoiding the other industry. While these two industries were dominant in size,

the other industries having consistent presence throughout the communities also has impli-

cations. These industries do not tend to join their supply chains together, indicating that

they could consist of more support level firms needed in every supply chain community for

functionality.

2.4.3.3 Community Structure Business Results. Even though the communities

we found are not unique, they do reflect groupings of companies that have a high number

of relationships within each community when compared to the number leaving the commu-

nity. Companies interested in strengthening their supply chain robustness could look for

suppliers outside of communities they reside in. In our research of the health care industry

sector, we found that the majority of communities have large numbers of pharmaceutical

or biotechnology firms as seen in Table 2.10. Businesses looking for new partners in either

of these industries could increase their supply chain robustness and resilience by partnering
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with companies belonging to different communities. This agrees with research we covered

in Section 2.2.3, which found that companies that diversified their supply chains were more

robust against shock propagation and other supply chain interrupting events. Though in

this section we focused on global communities and health care communities, the same code

we wrote for these findings can be applied to any industry.

2.5 Discussion

Foremost among our results is the utility of this dataset. We have shown how vital it

is to view supply chains dynamically. Over the course of the month that we tracked the

supply chain, we saw that over 5% of relationships in the chain had changed and over 3% of

companies had changed. Thus static views of the global supply chain can quickly becomes

an inaccurate description of the current environment. Furthermore, we demonstrated this

dataset’s depth and breadth, as it contains both the global supply chain network and the

global strategic alliance network. In our literature review we were unable to find anything

resembling a global strategic alliance network or a global supply chain network of a similar

size and accessibility to ours.

Our company-to-company relationship data added significant depth to our supply chain

dataset. We have eight supply chain network relationship labels that allow us to find deep

insights into business relationships and global trends and statistics, as we did with the

reciprocity in Figure 2.4. These labels aid study into the variability of business relationships,

of which our study found may. Initially, we gathered supply chain network reciprocity levels,

but found through our edge labels that suppliers are much more likely to have reciprocal

relationships than any other relationship type.

We also demonstrated how company labels and statistics can be applied to analyze the

global value chain network, which we did to measure company importance through centrality

measures in Table 2.3 and Table 2.4 and through community detection in Section 2.4.3.

Our centrality measure analysis was significant in identifying central companies to both the
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supply chain network and the strategic alliance network. We found that in both networks

technology companies have a strong position regarding several centrality measures and that

banks are key to the supply chain network, but not the strategic alliance network. A major

difference between the companies in the centrality rankings of the two networks was that the

supply chain network had a higher proportion of companies from the United States. This

may be due to the United States central role to the world’s economy or companies in other

areas of the world being more likely to form partnerships through strategic alliances.

As part of our community detection research we found significant communities globally.

We found that health care is the most clustered industry sector globally. This has impli-

cations that the health care supply chain may be relatively isolated and operating more

independently from other industry sectors. Our deeper analysis into the health care sector

revealed strong competition among many clusters formed largely of biotechnology and phar-

maceutical companies. Thus our research demonstrated how our dataset is useful in not only

learning about general global trends, but also learning trends about specific communities.

While our dataset has significant improvements and advantages compared to other datasets,

it does have several shortcomings. First, CapitalIQ has over 12, 300, 000 firms in their

database, and only supply chain relationship data for 175, 000 firms. Also, CapitalIQ re-

ports relationships if they have been announced in a statement by either company any time

in the last three years. This makes our dataset three years behind on dissolved relation-

ships, but up-to-date for any new relationships. Another shortcoming is private company

data, which makes up the majority of the dataset. Private firms are not required to release

quarterly financial results, hence there are gaps in our company-level data.

Through each of our tests of the global value chain, we discovered significant methods

businesses could use to increase the robustness and resilience of their individual supply

chains, which increases the overall global supply chain robustness and resilience. We ranked

companies by several centrality measures in Section 2.4.1.2, and in our literature review in

Section 2.2.3 we established that company position within the overall supply chain affects
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company supply chain robustness. We found that the global supply chain is highly adaptive,

indicating high resilience in the supply chain. This finding of high adaptiveness can improve

businesses’ understanding of the shifting environment in which they operate. Through our

analysis of community structure, we developed methods of finding significant communities

globally, as well as within specific industry sectors. Our literature review also established

that a company’s supply chain diversification is tied to its supply chain robustness, hence

companies working with partners from a variety of community structures improve their own

own supply chain robustness, which can mitigate the effects of disruptive supply chain events.

2.6 Methods

2.6.1 Data Collection. All data included in both networks comes from S&P Capital

IQ [17]. Capital IQ provides an Excel interface which allows us to query their database for

information. To create the supply chain and strategic alliance networks, we used Capital

IQ Excel functions not publically available to retrieve the following data for each company:

suppliers, customers, supplier relationships, customer relationships, and strategic alliances.

The first step in this process was retrieving all companies stored on Capital IQ’s database

in order to be able to find all supplier and strategic alliance relationships. We retrieved this

data from the Capital IQ website by downloading groups of firms at a time, which was the

only manual process required to obtain data. This resulted in more than 12, 300, 000 initial

firms. Since the Capital IQ Excel Plug-in cannot handle much more than 15, 000 function

calls one at a time, we decided to automate the data collection process through Python.

In Python we had to follow several steps. First, we partitioned the data into groups

manageable for the Capital IQ Excel Plug-in and created an Excel file formatted properly

for the database query. To query the database, we used a DataFrame in the Pandas package

[33]. We then opened Excel through Python, loaded the data, ensured that the data saved,

and closed the file. At this point, we read the file through Pandas; and verified the data was

retrieved correctly, as the Excel Plug-in presented a number of potential errors. If we found

62



an error, we had Python refresh and open the file again to download the data. We followed

this process until the data was formatted as expected. Once this was the case, we formatted

the dataset for clarity. If the Excel function was to call suppliers, customers, or strategic

alliances, we checked if any companies had come up that were not part of our queue. If we

found any they were added to our queue. After this, as an additional error check, we verified

suppliers and supplier relationships matched up properly in size, and the same for customers

and customer relationships. Any firms that had an unequal number of firms compared to

labels were removed from the DataFrame and appended to the queue. This was infrequent

but happened occasionally due to Capital IQ updating company data in the time between

when we called for the firms in Excel and when we called for the firm labels. Our process

ensured we were constantly finding any new firms added to the supply chain or strategic

alliance network. After our initial data pull on all firms, we pulled the data for subsequent

days starting with the queue from the previous day.

After we retrieved all the data, we then combined the files into MultiDiGraph objects in

the NetworkX package [18]. For the supply chain network, we combined the data retrieved

for both the supply chain and the customer chain by reversing the direction customer chain,

mapping the customer relationships to the corresponding supply chain relationships, and then

merging the two networks. This allowed us to use any information found through companies

listing a customer that did not list them back as a supplier. The strategic alliance network is

undirected and hence was stored as a Graph object in NetworkX. We used NetworkX version

2.7.1 for all file storage.

We used an automated process to obtain data and create graph objects, which allowed us

to follow this process daily to get the latest view of the networks for our time series dataset.

The other part of the data collection process was adding company data to the network.

This followed a similar process to that of gathering the network. This step can be done

with any of the hundreds of Excel functions Capital IQ has created to query their database

[17]. For our purposes, we have followed this process with more than 50 of them. We also
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automated this process, which only requires an initial input of Capital IQ Excel functions.

After this initial input, the Python script partitions the data properly for function calls to

Capital IQ in Excel, gathers the data, checks for errors, and stores the data. After the data

has been collected, the script then updates all networks found inside a given directory with

the new data, using the data as node features.

2.6.2 Computing Statistics and Communities. We then began our data analysis.

The global statistics such as those found in Table 2.1, Table 2.2, Figure 2.1, and Figure 2.3

were calculated through the igraph and NetworkX libraries [18, 10]. These packages were

also used to calculate the centrality measures seen in Table 2.4 and Table 2.3 as well as the

label reciprocities found in Figure 2.4. These methods are fairly straightforward and can be

found in the documentation of both packages.

The community detection was done with the leidenalg package, which is built on the

igraph package in Python [43, 5]. The leidenalg package uses the Leiden algorithm for

community detection based on a given optimization function, which is where the RB method

and CPM method differ. The Leiden algortihm for community detection is based off the

Louvain algorithm, with improvements to avoid creating weakly connected or disconnected

communities and speed improvements.

The Leiden algorithm moves nodes between communities and then tests if the new par-

tition is an improvement over the previous one based on the given optimization function.

The RB (Reichardt and Bornholdt’s Potts Model) and the CPM (Constant Potts Model)

methods are the two optimization method we used in this thesis. For the RB method this

optimization function is given by:

Q =
∑
ij

(Aij − γ
kout
i kin

j

m
)δ(σi, σj). (2.1)

Where A is the graph adjacency matrix, γ the resolution parameter, kout
i is the outdegree

of node i, kin
j is the indegree of node j. The δ(σi, σj) function is an indicator function if

nodes i and j are part of the same community, resulting in 1 if they are and 0 otherwise.
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The RB method is equal to the standard modularity partition method when γ = 1. Thus,

this method is a comparison between our graph and the graph of a configuration null model,

and when γ ≤ 1 we put less weight on the null model in the comparison. Hence we are

able to create larger and fewer communities than what can be obtained from the standard

modularity partition as the resolution parameter decreases, ending with one large community

for a connected network if γ = 0 [36, 29, 47]. Thus for our global community detection 2.4.3.1

by using a resolution parameter of .7 we reduced the amount of weight on the null model

to increase community sizes. For the health care community detection 2.4.3.2 we left the

resolution parameter at 1, which created more communities with fewer nodes.

The optimization function for CPM is given by:

Q =
∑
ij

(Aij − γ)δ(σi, σj). (2.2)

Where the δ(σi, σj) function is defined the same way as in the optimization function for the

RB method. The goal of this method is to maximize internal edges while keeping small

communities. The resolution parameter γ controls this by working as an inner and outer

edge density limit. We split a community into two communities 1 and 2 if

e1↔2

2n1n2

≤ γ. (2.3)

Where e1↔2 is the number of edges between communities 1 and 2 and n1 and n2 are the

number of nodes in each respective community. Thus edge density between communities is

less than γ while edge density within communities is greater than γ [42].
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