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abstract

Zeros of a Family of Complex-Valued Harmonic Rational Functions

Alexander Lee
Department of Mathematics, BYU

Master of Science

The Fundamental Theorem of Algebra is a useful tool in determining the number of
zeros of complex-valued polynomials and rational functions. It does not, however, apply to
complex-valued harmonic polynomials and rational functions generally. In this thesis, we
determine behaviors of the family of complex-valued harmonic functions fc(z) = zn + c

zk
− 1

that defy intuition for analytic polynomials. We first determine the sum of the orders of zeros
by using the harmonic analogue of Rouché’s Theorem. We then determine useful geometry of
the critical curve and its image in order to count winding numbers by applying the harmonic
analogue of the Argument Principle. Combining these results, we fully determine the number
of zeros of fc for c > 0.

Keywords: complex analysis, complex-valued harmonic function, epicycloid
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Chapter 1. Introduction

Consider the complex rational function

r(z) = zn +
c

zk
− 1,

where c ∈ C \ {0} and n, k ∈ N. To determine the total number of zeros of r is a straight-

forward matter. Writing r as a single fraction,

r(z) = zn +
c

zk
− 1 =

zn+k + c− zk

zk
,

we see that r is zero if and only if zn+k + c − zk = 0 and zk 6= 0. Because c 6= 0, we know

that z = 0 is not a zero of zn+k + c− zk, so we see that r has the same number of zeros as

zn+k + c − zk. The Fundamental Theorem of Algebra tells us that zn+k + c − zk, and thus

r, has n+ k zeros.

We can determine the number of zeros of r in this way, but suppose we now want to

determine the number of zeros of the complex-valued harmonic function

fc(z) = zn +
c

zk
− 1

(see Chapter 2 for details). Because fc is not holomorphic, we cannot rely on the Fundamental

Theorem of Algebra; instead, we can use computational methods to illustrate the number of

zeros in specific cases. As an example, consider

f0.5(z) = z13 +
0.5

z7
− 1.

The zeros are shown in Figure 1.
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Figure 1.1: The zeros of f0.5
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This function has 14 zeros, which bears no immediately clear relation to the degree of the

numerator or denominator of f0.5.

It is illuminating to further consider the similar function

f1(z) = z13 +
1

z7
− 1,

where only the value of c differs from the previous example. The zeros for this function are

shown in Figure 2.

Figure 1.2: The zeros of f1
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Despite having the same degrees as before, this function now has only 6 zeros. These
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examples provide evidence to demonstrate that the behavior of complex-valued harmonic

functions is considerably more complicated than that of holomorphic functions–not only does

the number of zeros bear no clear relation to the degrees of the numerator and denominator,

but the number of zeros is also dependent on the coefficient c.

In order to gain a more full intuition for this problem, we examine fc for various values

of c and see if we can observe any notable behavior of the zeros. One may notice from the

Figure 1 that there are two pairs of zeros, one pair in the second quadrant, the other in the

third quadrant, which consist of zeros very close to each other. If we increase c to be 0.52,

then the zeros get closer:

Figure 1.3: The zeros of f0.52
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If we again increase c to be 0.55, then both pairs of zeros vanish entirely:
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Figure 1.4: The zeros of f0.55
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These examples demonstrate more characteristics of these complex-valued harmonic func-

tions: certain pairs of zeros appear to converge to a single point and then vanish as c increases.

It seems fair to suggest that this type of behavior occurs again when we notice that we have

ten zeros for c = 0.55 and only six zeros for c = 1. We can investigate this behavior by

considering the case where c = 0.97, which gives rise to the following set of zeros.

Figure 1.5: The zeros of f0.97
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We again have two pairs of zeros converging to a single point (they are seen as the farthest

left objects in the figure); by the time c = 1, they have disappeared, giving us six zeros total.
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We call the c-values at which the number of zeros changes critical values.

Reasonable questions to ask based on this new information are things such as the follow-

ing:

• Is the number of zeros a decreasing function in c?

• Are there infinitely many critical values?

• When zeros disappear, do they always disappear in two pairs of two?

Similar questions have been asked by Brilleslyper et al. [2] about the family of complex-valued

harmonic functions

pc(z) = zn + czk − 1,

where, using the harmonic generalizations of the Argument Principle and Rouché’s Theorem,

they determined exactly how many zeros this function has for various values of c:

Theorem 1.1 (Brilleslyper et al. Main Theorem). Let pc(z) be as above and let N =

dk/2e+ 1. There exist N critical values cj, with 0 < c1 < c2 < · · · < cN , such that

(a) if 0 ≤ c < c1, then pc(z) has n distinct zeros,

(b) if cj < c < cj−1 for some 1 ≤ j ≤ N − 1, then pc(z) has n+ 4j − 2 distinct zeros, and

(c) if c > cN , then pc(z) has n+ 2k distinct zeros.

In their paper, they utilized the concept of the critical curve, which separates the complex

plane into sense-preserving and sense-reversing regions. Dividing the plane in this way allows

us to make sense of the orders of zeros; in the sense-preserving region, we count zeros with

positive order, while in the sense-reversing region, we count zeros with negative order (see

Chapter 2 for details).

Example 1.2. Consider again the function

f0.55(z) = z13 +
0.55

z7
− 1.
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In Figure 1.6, we again depict the zeros of f , now with the function’s critical curve, which

is the circle shown. For this specific family, the region within the critical curve is sense-

reversing, and the region outside the critical curve is sense-preserving. Then we count the

two zeros within the critical curve with negative order, and we count the eight zeros outside

the critical curve with positive order.

Figure 1.6: The zeros and critical curve of f0.55
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Using similar concepts to those used by Brilleslyper et al., we show in Chapter 3 that

Theorem 1.3. Let n, k ∈ N and c > 0. For

fc(z) = zn +
c

zk
− 1,

the sum of the orders of the zeros is always n− k.

With this result in hand, we compute the winding number associated with the critical

curve, allowing us to count certain zeros. Together with the above result, we ultimately

prove our main theorem:

Theorem 1.4. Consider the family of functions

fc(z) = zn +
c

zk
− 1,

where n, k ∈ N with gcd(n, k) = 1 and n > k, and c > 0. There exist N = dk+1
2
e critical

values 0 < c1 < c2 < · · · < cN . Then
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(a) if 0 < c < c1, fc has n+ k zeros.

(b) if cj−1 < c < cj, where 2 ≤ j ≤ N , fc has n+ k + 6− 4j zeros.

(c) if c > cN , fc has n− k zeros.

We proceed as follows:

In Chapter 2, we introduce the necessary definitions and preliminary results for our

arguments. Two notable results included are harmonic analogues to the Argument Principle

and Rouché’s Theorem.

In Chapter 3, we first prove Theorem 1.3; the proof is found in Section 3.1. Throughout

Section 3.2, we prove geometric facts about the image of the critical curve to help us apply

the Harmonic Argument Principle. We prove Theorem 1.4 at the end of Section 3.2.

We briefly discuss possible generalizations of our problem in Chapter 4.

7



Chapter 2. Background

A function f is complex differentiable at all points z ∈ C for which the complex-theoretic

limit

lim
h→0

f(z + h)− f(z)

h

exists. We say f is analytic on a domain D ⊆ C if this limit exists for every point in D. If

every point of f in D is either analytic or a pole, we say that f is meromorphic [5].

Recall that a function φ : R2 → R is harmonic if it is twice continuously differentiable

and satisfies Laplace’s equation φxx + φyy = 0. A complex-valued function f = u + iv :

C→ C is harmonic if both u and v are. Because an analytic function satisfies the Cauchy-

Riemann equations, all analytic functions are harmonic [5]. It is well-known that, on a

simply connected domain D ⊆ C, any complex-valued harmonic function f can be written

in the form f = h+ g, where both h and g are analytic functions [4]. We call h the analytic

part of f and g the co-analytic part of f.

Example 2.1. Consider the complex-valued function

f1(z) = z +
1

z
− 1

We show that f1 is harmonic. Letting z = x+ iy, we have

f1(x, y) = z +
z

|z|2
− 1 =

(
x+

x

x2 + y2
− 1
)

+ i
(
y +

y

x2 + y2

)
.

Then we need to show that each of

u(x, y) = x+
x

x2 + y2
− 1 and v(x, y) = y +

y

x2 + y2

are harmonic. We compute

uxx =
2x3 − 6xy2

(x2 + y2)3
,

uyy =
−2x3 + 6xy2

(x2 + y2)3
,

so uxx + uyy = 0. Similarly, vxx + vyy = 0; then f1 is harmonic.

It is notable that we can clearly represent f1 as f = h + g, where h is analytic and g is

8



meromorphic.

An analytic function is sense-preserving everywhere, in the following sense: if we take

a curve with positive (resp. negative) orientation on a simply connected domain in the

complex plane and pass it through an analytic function, its image will also have positive

(resp. negative) orientation. This behavior does not hold generally for harmonic functions:

in certain cases, harmonic functions are sense-reversing, i.e., if one passes a curve with

positive (resp. negative) orientation on a simply connected domain through a harmonic

function, it is possible that the image of the curve has negative (resp. positive) orientation.

In order to determine when a complex-valued harmonic function f = u + iv is sense-

preserving or sense-reversing, consider its Jacobian

Jf (z) =

∣∣∣∣∣∣∣
ux vx

uy vy

∣∣∣∣∣∣∣ .
Harmonic mappings are sense-preserving when Jf (z) > 0 and sense-reversing when Jf (z) < 0

[4]. However, computing with the Jacobian is generally not as easy as one might wish; to

make computations more manageable, we define the complex dilatation of f = h + g to be

the function

ϕ(z) =
g′(z)

h′(z)
.

By considering f under the differential operators

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
,

one can computationally show the following [6]:

Proposition 2.2. When |ϕ(z)| < 1, the function is sense-preserving; when |ϕ(z)| > 1, the

function is sense-reversing.

When determining where a function f is sense-preserving or sense-reversing, it will be

useful to consider the subset of C on which f is neither:

9



Definition 2.3 (Critical Curve). The set of Z ∈ C for which |ϕ(z)| = 1 will be called the

critical curve.

The order of a zero is defined differently depending on what region it is in. In the analytic

case, there are several equivalent ways of defining the order of a zero; the one we will focus on

is the following. Let f be an analytic function with a zero z0. Around z0, we can determine

the Taylor series of f :

f(z) =
∞∑
j=0

f (j)(z0)

j!
(z − z0)j.

We define the order of the zero z0 to be the smallest value j for which f (j)(z0) 6= 0.

Example 2.4. Consider the complex-valued function

f(z) = z3 − z2 + z − 1,

which has a zero at z = 1. The Taylor series expansion of f about z = 1 is

f(z) = 2(z − 1) + 2(z − 1)2 + (z − 1)3.

From this expansion, we see that f ′(1) = 2 is the first f (j)(1) 6= 0, and so f has a zero of

order 1 at z = 1.

This definition implicitly depends on the zero being in a sense-preserving region. Because

a harmonic function is not always sense-preserving, we extend our definition to all cases [4]:

Definition 2.5 (Order of a Zero). Let f = h + g be a complex-valued harmonic function.

Because h and g are analytic at z0, they have Taylor expansions about z0 and we may write

f(z) =
∞∑
j=0

h(j)(z0)

j!
(z − z0)j +

∞∑
j=0

g(j)(z0)

j!
(z − z0)j.

If z0 is in a sense-preserving region, we define the order of z0 to be the smallest value j ≥ 1

for which h(j)(z0) 6= 0. If z0 is in a sense-reversing region, we define the order of z0 to be −j

for the smallest value j ≥ 1 for which g(j)(z0) 6= 0. If z0 is not in a sense-preserving region

or a sense-reversing region, then the order of z0 is undefined, and we call z0 a singular zero.

The following definition of a pole and its order in the harmonic case comes from Suffridge

and Thompson [8]:

10



Definition 2.6 (Order of a Pole). Assume f is harmonic in {z | 0 < |z − z0| < r} for some

r > 0. Define z0 to be a pole of f provided limz→z0 |f(z)| =∞. If z0 is a pole of the harmonic

function f on {z | |z − z0| < r}, then the order of the pole is

− 1

2π
∆γarg(f(z)),

where γ is the circle |z − z0| = δ for δ sufficiently small.

Computing the order of a pole in this way can be somewhat cumbersome. Suffridge

and Thompson [8] have provided the following result to ease computation, which also helps

determine whether the region around a pole is sense-preserving or sense-reversing:

Lemma 2.7. Let f be a harmonic mapping on a domain D ⊆ C. Suppose that the local

representation of f around a pole z0 is

f(z) =
∞∑

j=−`

aj(z − z0)j +
∞∑

j=−m

bj(z − z0)j + 2A log |z − z0|,

for some constant A and where ` and m are finite.

• If a−` 6= 0 for some ` > 0 and ` > m, or ` = m with |a−`| > |b−`|, then f is sense-

preserving near z0 and f has a pole at z0 of order `.

• If b−m 6= 0 for some m > 0 and ` < m, or ` = m with |a−m| < |b−m|, then f is

sense-reversing near z0 and f has a pole at z0 of order −m.

Example 2.8. Consider the complex-valued harmonic function

f1(z) = z3 +
1

z2
− 1.

Considering limz→0 |f1(z)| = ∞, we see that f1 has a pole at z = 0. To compute the order

of this pole, note that we have a representation as in Lemma 2.7 with A = 0 and

h(z) = z3 − 1 and g(z) =
1

z

2

.

Then, using the notation given in the lemma, we have b−2 = 1 6= 0 and a−2 = 0. Hence, f1

is sense-reversing near the origin and has a pole at the origin of order -2.

11



Two very useful tools for determining the number of zeros of a meromorphic function are

the Argument Principle and Rouché’s Theorem. The statement of the Argument Principle

comes from Saff and Snider [5].

Theorem 2.9 (Meromorphic Argument Principle). If f is analytic on a neighborhood of and

nonzero at each point of a simple closed positively oriented contour C and is meromorphic

inside C, then

1

2πi

∫
C

f ′(z)

f(z)
dz = N0(f)−Np(f),

where N0(f) and Np(f) are, respectively, the number of zeros and poles of f inside C (mul-

tiplicity included).

The statement of the analytic Rouché’s Theorem comes from Stein and Shakarchi [7]:

Theorem 2.10 (Analytic Rouché’s Theorem). Suppose that f and g are analytic in an open

set containing a simple closed contour C and its interior. If

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros inside C.

As stated, these statements apply to analytic (or meromorphic) functions, but they do

not apply to complex-valued harmonic functions generally. Fortunately, there is a harmonic

analogue to the Argument Principle, proven in Suffridge and Thompson [8]:

Theorem 2.11 (Harmonic Argument Principle). Let f be harmonic, except for a finite

number of poles, in a simply connected domain D ⊆ C. Let C be a simple closed curve

contained in D not passing through a pole or a zero, and let Ω be the open bounded region

created by C. Suppose that f has no singular zeros in D and let Zf,C be the sum of the orders

of the zeros of f in Ω (counting multiplicity). Let Pf,C be the sum of the orders of the poles

of f in Ω (counting multiplicity). Then ∆Cargf(z) = 2π(Zf,C − Pf,C).

Throughout the rest of our arguments, we use the notation Zf,C and Pf,C as given in

Theorem 2.11. Using this theorem, we can count winding numbers and sums of zeros.

12



Example 2.12. Consider again the complex-valued harmonic function

f1(z) = z3 +
1

z2
− 1,

and suppose that we wish to count the number of zeros within the circle C with radius
(

3
2

) 1
5

(to understand why we might pick this circle, see Chapter 3). The image of this circle is

given in Figure 2.1.

Figure 2.1: The Image of the Circle C

-2

-1

1

2

By Lemma 3.9, ∆Cargf1(z) = 2π; then, by the Harmonic Argument Principle, Zf1,C −

Pf1,C = 1. From Example 2.8, we know that Pf1,C = −2; then it must be that Zf1,C = −1.

This fact is corroborated by Figure 2.2; we show in Lemmas 3.1 and 3.2 that the zero within

C does indeed have order -1.
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Figure 2.2: Zeros within the Circle C
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In this instance, the image of the critical curve is a special curve known as an epicycloid.

We show in Chapter 3 that this behavior is not coincidental.

Using the Harmonic Argument Principle, we can also prove a harmonic analogue of

Rouché’s Theorem. The following proof is adapted from a proof found in Brown and Churchill

[3].

Theorem 2.13 (Harmonic Rouché’s Theorem). Suppose that f and g both satisfy the hy-

potheses for the Harmonic Argument Principle. If f and g are both harmonic functions in

and on the closed contour C, if |f(z)| > |g(z)| at each point on C, and if f and g have no

poles on C and no singular zeros in C, then Zf,C − Pf,C = Zf+g,C − Pf+g,C.

Proof. Without loss of generality, assume that the orientation of C is positive. Neither f

nor f + g has a zero on C, since

|f(z)| > |g(z)| ≥ 0 and |f(z) + g(z)| ≥ ||f(z)| − |g(z)|| > 0

when z is on C.

From the Harmonic Argument Principle, we know that

1

2π
∆Carg(f(z)) = Zf,C − Pf,C and

1

2π
∆Carg(f(z) + g(z)) = Zf+g,C − Pf+g,C .

14



Rewrite

∆Carg(f(z) + g(z)) = ∆Carg
[
f(z)

(
1 +

g(z)

f(z)

)]
= ∆Carg(f(z)) + ∆Carg

(
1 +

g(z)

f(z)

)
.

Then

Zf+g,C − Pf+g,C = Zf,C − Pf,C +
1

2π
∆Carg(F (z)),

where

F (z) = 1 +
g(z)

f(z)
.

We know, however, that

|F (z)− 1| = |g(z)|
|f(z)|

< 1,

meaning that under the transformation w = F (z), the image of C lies in the open disk

|w − 1| < 1. Then the image of C does not enclose the origin. Hence, ∆C(F (z)) = 0,

implying that Zf+g,C − Pf+g,C = Zf,C − Pf,C , as desired.

These are the tools that we use to prove Theorem 1.4.

15



Chapter 3. Results

In order to apply the Harmonic Argument Principle and Rouché’s Theorem, we need to

determine the orders of the zeros and of the pole at the origin. To determine the orders, we

first determine the sense-preserving and sense-reversing regions of our function:

Lemma 3.1. The critical curve of

fc(z) = zn +
c

zk
− 1

is the circle |z| =
(
kc
n

) 1
n+k

, which we denote by Γc. The region inside this circle is sense-

reversing, and the region outside this circle is sense-preserving.

Proof. Here, the analytic part of fc is h(z) = zn− 1, and the co-analytic part is g(z) = c
zk

=

cz−k. Then

ω(z) = −kcz
−k−1

nzn−1
= − kc

nzn+k
.

Hence,

|ω(z)| = kc

n|z|n+k
= 1 if and only if |z| =

(kc
n

) 1
n+k

,

which exactly describes the critical curve. We also see that, if |z| <
(
kc
n

) 1
n+k

, |ω(z)| > 1,

and when |z| >
(
kc
n

) 1
n+k

, |ω(z)| < 1, determining the sense-reversing and sense-preserving

regions, respectively.

Throughout the rest of our arguments, we denote the radius of Γc by Rc :=
(
kc
n

) 1
n+k

.

3.1 The Sum of the Orders of the Zeros

Lemma 3.1 shows that the zeros and the pole within the critical curve have negative order,

while zeros outside the critical curve have positive order. We now determine the exact values:

Lemma 3.2. All non-singular zeros of

fc(z) = zn +
c

zk
− 1

16



are simple. The pole at the origin has order −k.

Proof. Observe that z = 0 cannot be a zero of fc, so suppose that z0 6= 0 is a zero of fc.

Noting that both h′(z0) = nzn−10 and g′(z0) = −kcz−k−10 are nonzero, we see that any zero

of fc must have order 1 or -1; that is, any zero of fc with defined order is simple.

For the second claim, first observe that limz→0 |fc(z)| =∞, so fc has a pole at the origin.

We know that

g(z) =
c

zk

is its own series expansion about the origin, with the lowest term corresponding to j = −k.

Hence, by Lemma 2.7 the order of the pole at the origin is −k.

We use these facts to apply the generalized form of Rouché’s Theorem to our family:

Theorem 3.3. For the family

fc(z) = zn +
c

zk
− 1,

with c > 0, the sum of the orders of the zeros (excluding instances in which there are singular

zeros) is n− k.

Proof. Let R > n
√
c+ 1, and let h(z) = zn and g(z) = c

zk
− 1. Because c > 0, R > 1. Then

on the circle |z| = R, we have ∣∣∣ c
zk
− 1
∣∣∣ ≤ c

|z|k
+ 1

=
c

Rk
+ 1

≤ c+ 1

< Rn = |z|n.

By Rouché’s Theorem, then,

Zh,C − Ph,C = Zh+g,C − Ph+g,C ,
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where the contour C we take is the circle |z| = R. We know that Zh,C = n and Ph,C = 0, so

Zh+g,C −Ph+g,C = n. By Lemma 3.2, we know that Ph+g,C = −k. Hence, Zh+g,C = n− k, as

desired.

In the analytic case, where all zeros have positive order, these results would provide a

complete solution. In the harmonic case, however, we have zeros with negative order, which

means that the sum of the orders of the zeros does not directly give the total number of

zeros. The next section focuses on determining the number of zeros in the sense-reversing

region, or within the circle Γc, to resolve this issue.

3.2 The Geometry of the Image of the Critical Curve

To fully determine the number of zeros in the sense-reversing region, we compute the winding

number of the image of the critical curve. Parametrize Γc by

z(θ) = Rce
iθ, where θ ∈ [0, 2π].

Then

fc(z(θ)) =
((kc

n

) 1
n+k

eiθ
)n

+ c
((kc

n

) 1
n+k

e−iθ
)−k
− 1

=
(kc
n

) n
n+k

einθ + c
(kc
n

)− k
n+k

eikθ − 1

=
(kc
n

)− k
n+k
(kc
n
einθ + ceikθ

)
− 1.

Then we parameterize the image of the critical curve by

z(θ) = R−kc

(kc
n
einθ + ceikθ

)
− 1. (3.1)

The simplest instance of this parametrization occurs when n = k; in this instance, we have

fc(z(θ)) = 2
√
ceinθ − 1. (3.2)

We investigate this case fully; the general case n > k will follow similar logic.

3.2.1 The Case n = k. In our arguments throughout this section, we will write n and

k as such, rather than utilizing the fact that n = k, until we reach the end of the argument.
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Writing it in this way will help in showing the connection to the more general case.

Equation 3.2 describes a circle with radius r = 2
√
c and center z = −1, which is traversed

n times as θ ranges from 0 to 2π. We compute the winding number in all cases.

If c < 1
4
, the radius r is less than 1. Then the circle does not contain the origin, and so

the winding number of the critical curve is zero. By the Argument Principle, then,

Zfc,C − Pfc,C = 0,

where the contour C taken in applying the Argument Principle is Γc. We know that Pfc,C =

−k, which implies that Zfc,C = −k. Since the order of the zeros is simple and all zeros inside

the critical curve are in the sense-reversing region, it follows that fc has k total zeros inside

the critical curve. Now, from our corollary to Rouché’s Theorem, the sum of the orders of

the zeros must be n − k; since there are −k zeros in the sense-reversing region, there must

then be n zeros in the sense-preserving region, giving us a total of n+ k zeros. Since n = k,

we have 2n zeros.

When c = 1
4
, the image of the critical curve contains the origin. In this case, there is a

zero on the critical curve, i.e., there is a singular zero. Singular zeros have undefined order,

and so there is no statement to make.

Finally, consider c > 1
4
. In this case, r > 1, indicating that the image of the critical curve

does contain the origin. Since this image is traversed n times, the winding number of the

critical curve is n. Hence,

Zfc,C = n+ Pfc,C = n− k.

This exactly equals the sum of the orders of the zeros, so there are n− k zeros in the sense-

reversing region and no zeros in the sense-preserving region. This gives us n− k zeros total.

Because n = k, we see that fc has no zeros in this case.

Putting these cases together, we arrive at the following result:

Lemma 3.4. The function

fc(z) = zn +
c

zn
− 1
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• has 2n zeros when c < 1
4
.

• has no zeros when c > 1
4
.

Example 3.5. Consider the family of functions

fc(z) = z5 +
c

z5
− 1.

When c < 1
4
, Lemma 3.4 tells us that fc 10 zeros. This is demonstrated for the case c = 1

8

in Figure 3.1. On the other hand, for any value c > 1
4
, fc has no zeros.

Figure 3.1: The zeros of f 1
8
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0.5
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Notice that the statement of Lemma 3.4 fits the statement of Theorem 1.4 when n = k

(albeit, we clearly do not have the condition that n and k are relatively prime).

3.2.2 The Case n > k. From here, we assume that n > k and that gcd(n, k) = 1.

Before moving on to the geometric arguments, we show that we are justified in making this

assumption. Let d = gcd(n, k). If d > 1, then n = dn′ and k = dk′ where n′ and k′ are
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relatively prime. Then

fc(z) = zn +
c

zk
− 1

= (zd)n
′
+

c

(zd)
k′
− 1

= wn
′
+

c

wk
′ − 1 = gc(w),

where w = zd. The zeros of fc then directly correspond to the zeros of gc. For fixed w 6= 0,

the function zd − w has d distinct solutions; using this, if we find the number of zeros of

gc(w), and multiply by d, we have then found the number of zeros of fc.

So, assume that gcd(n, k) = 1, and recall that a parameterization of the image of Γc is

given by (kc
n

)− k
n+k
(kc
n
einθ + ceikθ

)
− 1.

In Example 2.12, we saw the curve parameterized by this equation when n = 3, k = 2, and

c = 1, displayed in Figure 2.1. This curve is known as an epicycloid :

Definition 3.6. An epicycloid is the plane curve produced by tracing the path of a fixed

point on a circle which rolls smoothly around a fixed circle. It is parametrized by the complex

equation

z(θ) = rei(s+1)φ − r(s+ 1)eiφ, (3.3)

where θ ranges between 0 and 2π, the fixed circle has radius sr, and the moving circle has

radius r. We refer to the radius of the fixed circle as the inner radius and to the radius of

the moving circle as the outer radius.

If we can write the ratio of the inner radius to the outer radius as a reduced fraction p
q
,

then the epicycloid has p cusps.

Motivated by this, we claim the following:

Theorem 3.7. The curve parameterized as in Equation 3.1 is an epicycloid.

Proof. Observe that multiplying by
(
kc
n

)− k
n+k

simply scales the curve parametrized by θ 7→
kc
n
einθ + ceikθ, and subtracting by 1 shifts the curve left by 1. Keeping these in mind, we
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mainly focus on the expression

kc

n
einθ + ceikθ.

There are some immediate similarities to the parameterization of an epicycloid and the

parameterization of our curve. We have two exponential terms, and a common factor in

each term is c.

We show that our curve is an epicycloid rotated by − nπ
n−k radians. So, multiply our

parameterization by ei(
nπ
n−k ):

ei(
nπ
n−k )

(kc
n
einθ + ceikθ

)
=
kc

n
ei(nθ+

nπ
n−k ) + cei(kθ+

nπ
n−k ).

Let ϕ = nθ + nπ
n−k ; solving for θ, we see that

θ =
ϕ

n
− π

n− k
.

Hence,

kc

n
ei(nθ+

nπ
n−k ) + cei(kθ+

nπ
n−k ) =

kc

n
eiϕ + cei(

kϕ
n
− kπ
n−k+

nπ
n−k )

=
kc

n
eiϕ + cei(

kϕ
n
)+iπ

=
kc

n
eiϕ + ceiπei(

kϕ
n
)

=
kc

n
eiϕ − cei(

kϕ
n
).

To get our parameterization to fully match the form of Equation 3.3, we need the term

cei(
kϕ
n
) to be positive and the term kc

n
eiϕ to be negative. To facilitate this, make the further

substitution τ = k
n
ϕ to get the parametrization

kc

n
eiϕ − cei(

kϕ
n
) =

kc

n
ei(

nτ
k
) − ceiτ

= −k
n

(nc
k
eiτ − cei(

nτ
k
)
)
,

which gives an epicycloid of inner radius
(
n
k
− 1
)
c =

(
n−k
k

)
c and outer radius c, dilated by

a factor of − k
n
.

Thus, the image of our critical curve is an epicycloid. As in the case with n = k, we

would like to count the winding number of our given epicycloids as their size increases,
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although epicycloids are of course more complicated than the circles given in the other case.

In light of this increased complexity, we prove various facts about these epicycloids that will

be essential in calculating the winding numbers for various values of c. First, note that as

c increases, so does the size of the epicycloid. This is illustrated in Figure 3.2, where we

consider the family of functions

fc(z) = z13 +
c

z7
− 1,

with c = 0.5, c = 1, and c = 2 in the left, middle, and right figures respectively.

Figure 3.2: The size of the epicycloids for f0.3, f1, and f2

4 4 4

Algebraically, this can be seen from the fact that these epicycloids are parameterized as

z(θ) =
(kc
n

)− k
n+k
(kc
n
einθ + ceikθ

)
− 1 = c

n
n+k

(k
n

)− k
n+k
(k
n
einθ + eikθ

)
− 1.

Because c and its exponent n
n+k

are both positive, we see that the size of the epicycloid gets

larger as c increases. Notably, as c gets arbitrarily large, so will the size of the epicycloid.

We prove some geometric facts necessary to our later arguments.

Lemma 3.8. Consider the epicycloid parametrized as in Equation 3.1 with gcd(n, k) = 1.

• This epicycloid has n− k cusps.

• Arcs of the epicycloid connect cusps that are k apart; we call this value k the cuspal

distance.

• This epicycloid is symmetric across the real axis.
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• The value θ = 0 corresponds to the farthest-right intersection of the epicycloid with the

real ray R>−1, and it also corresponds to the point halfway along the arc connecting

two cusps.

Proof. For the first two claims, we consider the undilated, untranslated epicycloid parametrized

by

z(θ) =
kc

n
einθ + ceikθ.

To determine the number of cusps, we consider the ratio of the inner radius to the outer

radius:

c(n−k
k

)

c
=
n− k
k

.

Because gcd(n, k) = 1, this fraction is in reduced terms, so we see that the epicycloid has

n− k cusps.

Now, these cusps are determined by the point on the circle of radius R = c rolling around

the inner circle with radius r =
(
n−k
k

)
c. Because the outer circle does not change size, the

cusps are evenly spaced apart on the inner circle. Comparing the two circumferences, we see

that

2πR

2πr
=

1
n−k
k

=
k

n− k
.

Thus arcs connect cusps that are 2πk
n−k radians apart. We know that there are n − k cusps,

evenly spaced, so consecutive cusps (not necessarily connected by a single arc) are 2π
n−k apart.

Then arcs connect cusps that are k times this distance apart, so cusps connect arcs that are

k apart.

We show that the conjugate of any point on the epicycloid is also on the epicycloid.

Observing that

kc

n
einθ + ceikθ =

kc

n
ein(−θ) + ceik(−θ),

we see that taking the conjugate parametrizes the same epicycloid (in the opposite direction).

Then it is symmetric across the real axis.
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For the final claim, consider the dilated, translated epicycloid(kc
n

)− k
n+k
(kc
n
einθ + ceikθ

)
− 1.

Note that θ = 0 gives the value (kc
n

)− k
n+k
(kc
n

+ c
)
− 1.

which is real-valued and greater than −1. Noticing that∣∣∣∣kcn einθ + ceikθ
∣∣∣∣ ≤ kc

n
+ c,

and noticing that θ = 0 gives this value, we see that θ = 0 corresponds to the farthest-right

intersection between the epicycloid and the ray R>−1.

Finally, we claim that θ = 0 corresponds to the point halfway between two cusps along

an arc. To see this, note that, since it is the maximal distance away from the center of the

epicycloid, it must be distance 2R = 2c away from the intersection between the inner circle

and R>−1. Geometrically, the outer circle has completed half its rotation between two cusps

when the fixed point is a full diameter away from the inner circle; but θ = 0 is such a point,

and so it must land exactly halfway along the arc between two cusps.

In order to count the winding number, we also need the following:

Lemma 3.9. When gcd(n, k) = 1, the epicycloid parameterized as in Equation 3.1 is tra-

versed exactly once as θ ranges between 0 and 2π. It is traversed in the counterclockwise

direction.

Proof. We consider the epicycloid with the dilation factor or the translation; so, consider

the function

f(θ) =
kc

n
einθ + ceikθ.

We claim that f has period 2π; if this is the case, then the epicycloid is traced exactly once

as θ ranges from 0 to 2π.
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Let m be the period of f , and observe that

f(θ + 2π) =
kc

n
ein(θ+2π) + ceik(θ+2π)

=
kc

n
einθ + ceik(θ) = f(θ).

Then m ≤ 2π.

To show that m ≥ 2π, suppose that there is some 0 < m < 2π for which

f(θ +m) = f(θ).

Then

kc

n
einθeinm + ceikθeikm =

kc

n
einθ + ceikθ,

or

k

n
einθ(einm − 1) = eikθ(1− eikm).

Now, either einm = 1 or not. If not, then we can rewrite the equation

ei(n−k)θ =
(k
n

)(1− eikm

einm − 1

)
.

Then the right-hand side is constant, while the left-hand side is not. Indeed, consider θ = 0

and θ = π
n−k , which give the respective values(k

n

)(1− eikm

einm − 1

)
= 1 and

(k
n

)(1− eikm

einm − 1

)
= −1.

This is a contradiction, so it must be that einm = 1. Then

k

n
einθ(einm − 1) = 0 = eikθ(1− eikm),

which means that eikm = 1. Then eim is both an nth root of unity and a kth root of unity.

Now, consider the multiplicative group generated by eim, and let d be the order of this

group. This group is a subgroup of the nth roots of unity and the kth roots of unity, so by

Lagrange’s Theorem, d | n and d | k. Since n and k are relatively prime, it must be that

d = 1, which means that eim = 1. This is possible exactly when m is an integer multiple of

2π; but 0 < m < 2π, so m cannot be an integer multiple of 2π, a contradiction.

Thus, m ≥ 2π, and so m = 2π, as desired.
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To see that these epicycloids are traversed in the counterclockwise direction, consider

0 < θ < π
n
. For these values of θ,

kc

n
sin(nθ) + c sin(kθ) > 0,

so the imaginary part of

kc

n
einθ + ceikθ

is positive. The epicycloid does not reverse direction as it is traced out, and since it starts on

the real axis (with θ = 0) and then has positive imaginary part for small positive values of θ,

this means that the epicycloid is traversed in the counterclockwise, or positive, direction.

Because the epicycloid is traversed exactly once for 0 ≤ θ ≤ 2π, we will not have to

worry about any multiplicity issues when counting the winding number. Since the epicycloid

is traversed in the positive direction, we know that the winding number will be positive.

Using these preliminary results, we determine characteristics of the cusps that will allow

us to compute the winding number of the critical curve. We will need two more results:

Lemma 3.10. Consider the epicycloid parameterized as in Equation 3.1 with gcd(n, k) = 1.

(i) If n and k are both odd, the epicycloid has no cusps on the real axis.

(ii) If n is odd and k is even, there is a cusp on the real axis, and it is to the right of the

center of the epicycloid.

(iii) If n is even and k is odd, there is a cusp on the real axis, and it is to the left of the

center of the epicycloid.

Proof. Because θ = 0 marks the halfway point between two cusps, and two cusps connected

by an arc are 2πk
n−k radians apart, this means that there is a cusp at

1

2

( 2kπ

n− k

)
=

kπ

n− k
.
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Consecutive cusps (according to the labelling, not necessarily connected by a single arc) are

2π
n−k radians apart; it follows, then, that all cusps correspond to

kπ

n− k
+

2mπ

n− k
=
(k + 2m

n− k

)
π, m ∈ Z.

Then there is a cusp on the real axis if and only if k+2m
n−k is an integer; further, a cusp on the

ray R>−1 corresponds to this fraction being an even integer, and a cusp on the ray R<−1

corresponds to this fraction being an odd integer.

So, we break into three cases, depending on the parity of n and k. (Note that n and k

cannot both be even, because they are relatively prime.) First, suppose that n and k are

both odd. Then n − k is even and k + 2m is odd, so k+2m
n−k /∈ Z. In this case, there are no

cusps on the real axis.

Now, suppose that n is odd and k is even. Then n−k is odd and k+ 2m is even. We can

find an m for which (n − k) | (k + 2m) (for instance, take m = n − 3
2
k, which is an integer

since k is even). Then there is a cusp on the real axis; but since n − k is odd, it cannot

divide 2 (which divides k+ 2m), so k+2m
n−k gives an even integer (when it is an integer). Then,

in this case, there is a cusp on the ray R>−1.

Finally, suppose that n is even and k is odd. Then both n− k and k + 2m are odd. We

can find an m for which (n−k) | (k+ 2m) (for instance, take m = n
2
−k, which is an integer

since n is even). In such a case, k+2m
n−k must be give an odd integer, and so there is a cusp on

the ray R<−1.

Figure 3.3 shows instances of the first, second, and third cases. From left to right, we

have the respective functions

f1(z) = z17 +
1

z5
− 1

f1.5(z) = z17 +
1.5

z6
− 1

f2(z) = z16 +
2

z5
− 1.
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Figure 3.3: Instances of Cusps on the Real Axis
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In order to compute the winding number of the image of the critical curve, we determine

the number of distinct intersections of the epicycloid with R>−1. We first determine the

number of non-distinct intersections:

Lemma 3.11. Consider the epicycloid parameterized as in Equation 3.1, with gcd(n, k) = 1.

This epicycloid has a total of k intersections with the ray R>−1.

Proof. By Lemma 3.8, we know that the epicycloid has n − k cusps; further, the cuspal

distance is k, and consecutive cusps are 2π
n−k radians from each other.

Suppose that k is odd; then by Lemma 3.10, there are no cusps of the epicycloid on R>−1.

Label the cusps j in the positive direction, starting with 1 and ending with k, giving a cusp

multiple labels if necessary, and label arcs according to the cusp they end at. We consider

the intersections of the cusps labelled 1 ≤ j ≤ k with R>−1; because the cuspal distance is

k, any arcs which intersect R>−1 must fall in this labelling.

Because θ = 0 marks a halfway point between two cusps and the difference in radians

between two consecutive cusps is 2π
n−k , we know that the first cusp corresponds to π

n−k , the

second cusp corresponds to π
n−k + 2π

n−k = 3π
n−k , and in general, the jth cusp corresponds to

(2j−1)π
n−k . Then the jth arc corresponds to the interval[(2j − 1)π

n− k
− 2πk

n− k
,
(2j − 1)π

n− k

]
=
[(2j − 1− 2k)π

n− k
,
(2j − 1)π

n− k

]
.

We count the number of even multiples of π in each of these intervals, which will count the

number of intersections of the jth arc with R>−1.
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When 1 ≤ j ≤ k, we see that 2j−1−2k
n−k ≤ − 1

n−k < 0 and 2j−1
n−k > 1

n−k > 0, so each arc

1 ≤ j ≤ k intersects R>−1 at least once. If k ≤ n
2
, then

2j − 1

n− k
≤ 2k − 1

n− k
<

2(n− k)

n− k
= 2,

and

2j − 1− 2k

n− k
≥ 1− 2k

n− k
>

2(k − n)

n− k
= −2,

so [(2j − 1− 2k)π

n− k
,
(2j − 1)π

n− k

]
⊆ (−2π, 2π).

This means that, when k ≤ n
2
, each arc 1 ≤ j ≤ k has exactly one intersection with R>−1.

None of the cusps were labelled more than once, since k ≤ n
2

is equivalent to k ≤ n− k, so

there are k intersections of the epicycloid with the ray.

Now suppose that n
2
< k < n. In this case, at least the first cusp 1 ≤ j ≤ k has been

labelled twice, since n − k < k. We claim that the number of intersections of the jth arc

modulo n−k corresponds to the number of labels between 1 and k it has. To see this, observe

that giving an additional label corresponds to adding n − k to j modulo n − k. Doing this

adds 2π to the right endpoint of the interval of the arc:

(2(j + n− k)− 1)π

n− k
=

(2j − 1)π

n− k
+ 2π,

meaning that we can traversed the epicycloid once by relabeling. This gives an extra inter-

section with R>−1. Conversely, if we traverse the epicycloid once, or add 2π to the interval

of the arc, and continue to label arcs as we do so, then we have given each arc a single extra

label. This shows that the total number of labels of arcs j modulo n − k counts the total

number of intersections with the ray; but we have labelled 1 ≤ j ≤ k, giving us k total

intersections.

Now, suppose that k is even and n is odd. By Lemma 3.10, there is a cusp of the

epicycloid on R>−1. Label this cusp 1, and the label the cusps j in the positive direction,

up to k; label each arc according the cusp it ends at.

The first cusp corresponds to θ = 0, and so we know that the second cusp corresponds to
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θ = 2π
n−k , and in general, the jth cusp corresponds to 2(j−1)π

n−k . Then the jth arc corresponds

to the interval[2(j − 1)π

n− k
− 2πk

n− k
,
2(j − 1)π

n− k

]
=
[2(j − 1− k)π

n− k
,
2(j − 1)π

n− k

]
.

Since 1 ≤ j ≤ k, we see that 2(j−1−k)
n−k ≤ − 2

n−k < 0 and 2(j−1)
n−k ≥ 0, so each arc intersects

R>−1 at least once. If k ≤ n
2
, then

2(j − 1)

n− k
≤ 2k − 2

n− k
≤ 2(n− k)

n− k
= 2,

and

2(j − 1− k)

n− k
≥ − 2k

n− k
≥ −2(n− k)

n− k
= −2,

so [2(j − 1− k)π

n− k
,
2(j − 1)π

n− k

]
⊆ (−2π, 2π).

As in the previous case, then, when k ≤ n
2
, each arc 1 ≤ j ≤ k has exactly one intersection

with R>−1, and since there are no cusps labelled more than once, we have k intersections of

the epicycloid with the ray.

Now suppose that n
2
< k < n. As before, we claim that the number of intersections of the

jth arc modulo n − k corresponds to the number of labels between 1 and k it has. Adding

a label to j adds 2π to the right endpoint of the interval of the arc:

2(j + n− k − 1)π

n− k
=

2(j − 1)π

n− k
+ 2π.

Conversely, by adding 2π to the right endpoint of this interval, or traversing the epicycloid

once, and continuing to add labels as we do so, adds an extra label to the given arc. This

shows that the total number of labels of arcs j modulo n − k counts the total number of

intersections with the ray; but we have labelled 1 ≤ j ≤ k, giving us k total intersections.

In all cases, then, the epicycloid has k total intersections with the ray R>−1.

We now come to the culminating result in determining the winding number of the epicy-

cloids for given values of c.

Lemma 3.12. Consider the epicycloid parameterized as in Equation 3.1, with gcd(n, k) = 1.
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(a) If n is odd and k is even, there are k+2
2

distinct intersections of the epicycloid with the

ray R>−1, the farthest right and farthest left (on R>−1) having multiplicity one and all

intermediate intersections having multiplicity two.

(b) If k is odd (and regardless of the parity of n), there are k+1
2

distinct intersections of the

epicycloid with the ray R>−1, the farthest right having multiplicity one and all others

having multiplicity two.

In either case, there are dk+1
2
e distinct intersections of the epicycloid with the ray R>−1.

Proof. By Lemma 3.11, there are k non-distinct intersections of the epicycloid with the ray

R>−1.

(a) Suppose n is odd and k is even. By Lemma 3.10, there is a cusp on R>−1. Label

all n− k cusps in the positive direction, starting by labelling the cusp on R>−1 as 1. Label

each arc according to the cusp it ends at. Throughout the following arguments, we treat the

labels modulo n− k.

Consider now the mapping that describes reflection across the real axis, (x, y)→ (x,−y).

Because the epicycloid is symmetric across the real axis, cusps are sent to cusps. Specifically,

the cusp labelled 1 gets sent to itself, the cusp labelled 2 gets sent to the (n−k)th cusp, and

in general, the jth cusp gets sent to the (n−k− j+ 2)th cusp. However, this mapping sends

the arc ending at the jth cusp to the arc starting at the (n − k − j + 2)th cusp; recalling

that the cuspal distance is k we see that adding k to the arc starting at the (n−k− j+ 2)th

cusp gives us that (n − j + 2)th cusp. The jth arc then gets mapped to the (n − j + 2)th

arc. This process is illustrated in Figure 3.4.

We can then describe this mapping of arcs as the function ϕ : Z/(n− k)Z→ Z/(n− k)Z

defined by ϕ(j) = n − j + 2. First, observe that ϕ(ϕ(j)) = j, so the mapping has order 2

in the group of mappings Z/(n − k)Z → Z/(n − k)Z. This means that, if we perform the

reflection across the real axis twice, we end up at the arc we started on. The intersections

of these arcs with R>−1 are fixed under (x, y) 7→ (x,−y), and so arcs that are paired under
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this reflection must intersect R>−1 at the same point. This implies that all intersections of

the arcs with R>−1 are at most double intersections.

We claim, however, that there are instances with single intersections. To determine these

instances, we consider the fixed points under ϕ. Suppose that ϕ(j) = n−j+2, or j ≡ n−j+2

(mod n− k). Rewriting, this is equivalent to solving the equation

2j ≡ n+ 2 (mod n− k).

By Theorem 5.1 in [1], this has d solutions, where d = gcd(2, n − k). Since n is odd and k

is even, n− k is odd, implying that 2 and n− k are relatively prime. Then there is exactly

one solution (modulo n− k) to 2j ≡ n− j + 2 (mod n− k). We claim that this solution is

j = k+2
2

, which is seen as follows (noting that n ≡ k (mod n− k):

2
(k + 2

2

)
= k + 2 ≡ n+ 2 (mod n− k).

Thus, the arc corresponding to k+2
2

is fixed under ϕ, so its intersection with R>−1 is a single

intersection. (We are justified in claiming that the intersection is with R>−1 rather than

R<−1 because k+2
2
≤ k for all k ≥ 2, and any such arcs under are labelling must intersect

R>−1.) Further, the
(
k+2
2

)
th arc in this case corresponds to the interval[2(j − 1− k)π

n− k
,
2(j − 1)π

n− k

]
=
[
− kπ

n− k
,
kπ

n− k

]
,

the midpoint of which is θ = 0. Then this is the arc mentioned in Lemma 3.8, and so is the

arc with the farthest-right intersection with R>−1.

Altogether, then, the farthest right intersection of the epicycloid with R>−1 is a single

intersection. The farthest left intersection is the cusp, which is unaffected by the mapping

(x, y) 7→ (x,−y), and so is a single intersection. All other intersections correspond to arcs

that are not fixed points of ϕ, and so are double intersections. This gives 2 intersections with

multiplicity one and k−2
2

distinct intersections of multiplicity two; there are then k−2
2

+2 = k+2
2

distinct intersections, with the desired properties.

(b) Now, suppose that k is odd. By Lemma 3.10, there is no cusp on R>−1. Label all

n − k cusps in the positive direction, starting by labeling the cusp corresponding to π
n−k
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radians as 1. Label each arc according to the cusp it ends at.

As before, consider the mapping (x, y) 7→ (x,−y). Under this mapping, cusps are sent to

cusps. Specifically, the cusp labelled 1 gets sent to the (n−k)th cusp, the cusp labelled 2 gets

sent to the (n− k− 1)st cusp, and in general, the jth cusp gets sent to the (n− k− j + 1)st

cusp. Also as in the previous case, we add k to ensure that arcs under this mapping are sent

to arcs with the correct labels.

Then consider the mapping ϕ : Z/(n−k)Z→ Z/(n−k)Z defined by ϕ(j) = n−j+1. We

observe that ϕ(ϕ(j)) = j, so this mapping also has order 2, implying that all intersections

are at most double intersections.

We again determine the arcs fixed under this mapping or the j for which j ≡ n − j +

1 (mod n− k). This is equivalent to solving the equation

2j ≡ n+ 1 (mod n− k).

By Theorem 5.1 in [1], this has d = gcd(2, n − k) mutually incongruent solutions. If n is

even, then n− k is odd, and so 2 and n− k are relatively prime. Then there is only a single

solution, and it must be j = k+1
2

:

2
(k + 1

2

)
= k + 1 ≡ n+ 1 (mod n− k).

We note that 1 ≤ k+1
2
≤ k, so this intersection with the real axis will be on the ray R>−1.

On the other hand, if n is odd, then n − k is even, and so gcd(2, n − k) = 2. We then

have 2 solutions; as above, j = k+1
2

is a solution. And, clearly n+1
2

is a solution:

2
(n+ 1

2

)
≡ n+ 1 (mod n− k).

Note that the solutions n+1
2

and k+1
2

are incongruent to each other in this case; otherwise,

n+ 1

2
− k + 1

2
=
n− k

2
≡ 0 (mod n− k),

so n− k divides n−k
2

. This is possible only if n− k = 1, or n = k + 1; but n and k are both

odd, a contradiction. Then we have found our two solutions, or the two fixed points of ϕ.

When n ≥ 2k, we see that

n+ 1

2
≥ 2k + 1

2
>

2k

2
= k,
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so this second fixed arc does not intersect R>−1. On the other hand, if n
2
< k < n,

n+ 1

2
=
n

2
+

1

2
< k +

1

2
,

so n+1
2
≤ k. Notice, however, that the interval corresponding to the arc j = n+1

2
is[(2j − 1− 2k)π

n− k
,
(2j − 1)π

n− k

]
=
[(n− 2k)π

n− k
,
nπ

n− k

]
,

which has midpoint π; then the only place the
(
n+1
2

)
th arc can have a single intersection is

on R<−1. All other intersections of this arc must be double intersections (and the arc will

intersect itself in such cases).

Then the only fixed arc in question is the
(
k+1
2

)
th arc, which has interval[(2j − 1− 2k)π

n− k
,
(2j − 1)π

n− k

]
=
[
− kπ

n− k
,
kπ

n− k

]
,

which has midpoint θ = 0. As in the previous case, this corresponds to the farthest-right

intersection of the epicycloid with R>−1.

Since there is no cusp on R>−1, there is only one single intersection, namely the farthest-

right intersection. All other k−1
2

distinct intersections are double intersections, and so we

have k−1
2

+ 1 = k+1
2

distinct intersections, with the desired properties.

Figure 3.4 illustrates the effect of ϕ on the arc labelled 2 for the epicycloid with n = 13

and k = 6.

Figure 3.4: The First Arc Being Flipped for n = 13 and k = 6

The second arc is shown in red on the left; the image of the second arc, or the sixth arc,

is shown in red on the right. Notice that the second cusp is not sent to the sixth cusp, but
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rather to the seventh cusp, and the image of the second arc starts at the seventh cusp but

ends at the sixth. This motivates our definition of ϕ in the proof of Lemma 3.12.

Finally, with this in hand, we prove the main theorem:

Theorem 3.13. Consider the family of functions

fc(z) = zn +
c

zk
− 1,

where gcd(n, k) = 1 and n > k. Label the critical values 0 < c1 < c2 < · · · < cN , where

N = dk+1
2
e. Then

(a) if 0 < c < c1, fc has n+ k zeros.

(b) if cj−1 < c < cj, where 2 ≤ j ≤ N , fc has n+ k + 6− 4j zeros.

(c) if c > cN , fc has n− k zeros.

Moreover, c1 =
(
k
n

) k
n
(

n
n+k

)n+k
n

, and cN ≤
(
k
n

) k
n
(

n
n−k

)n+k
n

. This upper bound is sharp when

n is odd and k is even.

Proof. By Lemma 3.12, there are N = dk+1
2
e distinct intersections of the epicycloid with the

ray R>−1. Critical values correspond exactly to these intersections.

(a) When 0 < c < c1, the epicycloid does not contain the origin at all. Thus, the winding

number of the critical curve is 0, so

Zf,C = Pf,C = −k,

telling us that we have −k zeros in the sense-reversing region. Counting order without sign,

we have k zeros in the sense-reversing region. Since the sum of the orders of the zeros is

n− k, there must be n zeros in the sense-preserving region, giving us a total of n+ k zeros.

(b) For cj−1 < c < cj, we have increased the winding number by 1 (if j = 2), and then

by an additional 2 for each 2 < k ≤ j. Thus, the winding number is 1 + 2(j − 2) = 2j − 3,

and so

Zf,C = Pf,C + 2j − 3 = −k + 2j − 3.
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This gives −k + 2j − 3 zeros in the sense-reversing region, or k − 2j + 3 zeros, if we count

without sign. Then, to ensure that the sum of the orders of zeros is still n − k, it must be

that there are n− 2j + 3 zeros in the sense-preserving region, giving us a total of

n− 2j + 3 + k − 2j + 3 = n+ k + 6− 4j zeros.

(c) If c > cN , then the winding number is k. Hence,

Zf,C = Pf,C + k = −k + k = 0,

so the sense-reversing region contains no zero. Hence, the sense-preserving region has all

n− k zeros, for a total of n− k zeros.

To see why c1 =
(
k
n

) k
n
(

n
n+k

)n+k
n

, remember that the first critical value corresponds to

the c-value at which the farthest right intersection between the epicycloid and R>−1 crosses

the origin. This in turn corresponds to when(kc
n

)− k
n+k
(kc
n
einθ + ceikθ

)
− 1 = 0,

when θ = 0. Then we want the value c for which(kc
n

)− k
n+k
(kc
n

+ c
)

= 1,

or, equivalently,

c
n
n+k =

(k
n

) k
n+k
( n

n+ k

)
.

Taking appropriate roots of both sides, we see that

c1 =
(k
n

) k
n
( n

n+ k

)n+k
n
.

Finally, notice that the last critical value cannot occur for any c-values past which the inner

circle contains the origin. The inner circle has radius r =
(
kc
n

)− k
n+k
(
n−k
n

)
c; then, if this

value is greater than 1, we have passed the last critical value, or

c
n
n+k

N ≤
(k
n

) k
n+k
( n

n− k

)
.

Taking the appropriate root yields

cN ≤
(k
n

) k
n
( n

n− k

)n+k
n
,
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as desired. There is a cusp on the inner circle exactly when n is odd and k is even, which

gives us the case for which this upper bound is sharp.

38



Chapter 4. Areas of Further Research

In this thesis, we restricted values of c in fc to c > 0. However, one might wish to know

the number of zeros of fc in the more general case c ∈ C \ {0}. Many of the proofs given

remain fundamentally unchanged in the more general case; one can simply replace c with

|c|. However, certain aspects of the geometry of the epicycloids will change: namely, the

epicycloids will be rotated by a factor dependent on the argument of c. The full statement

and proof of the number of zeros of fc in this more general case is ongoing research.

More generally, we were focused on a specific family of complex-valued harmonic ratio-

nals. This family had geometric properties which were essential to applying the Harmonic

Argument Principle. It is fair to wonder if there are other families with nice geometric

properties, both of the critical curve and its image, beyond those that have already been

studied.

Most generally, one might wish to determine the number of zeros of complex-valued

harmonic functions that do not have such nice geometric properties. This, of course, makes

the problem considerably more complicated.
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