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ABSTRACT 

Developing a Quantitative Understanding of U-Substitution in First-Semester Calculus 

Leilani Camille Heaton Fonbuena  
Department of Mathematics Education, BYU 

Master of Science  

In much of calculus teaching there is an overemphasis on procedures and manipulation of 
symbols and insufficient emphasis on conceptual understanding of calculus topics. As 
such students to struggle to understand and use calculus ideas in applied settings. Research 
shows that learning calculus topics from a quantitative reasoning-perspective results in more 
powerful and flexible conceptions of calculus topics like integration. However, topics beyond 
introducing integrals and the Fundamental Theorem of Calculus, like u-substitution, have yet to 
be explored from a quantity-based perspective. 

In this study, I conducted a set of two clinical interviews where we discussed quantitative 
meanings of integrals, derivatives, and differentials and used those meanings to quantitatively 
develop u-substitution. This study suggests that given the scaffolding of the quantity-based tasks 
students can develop the u-substitution structure (substitution of the bounds, the function, and the 
differential) by applying quantitative reasoning. It also suggests that two-quantity quantitative 
relationships are critical to students' productive thinking about substitution. Finally, this study 
offers a theoretical and quantitatively grounded framework for understanding u-substitution. 

Keywords: calculus, integration, adding up pieces, u-substitution, quantities 



iii 

ACKNOWLEDGEMENTS 

First, I wish to thank my family, particularly my incredible parents, for their love, 

support, and encouragement throughout the process of working through this program and writing 

this thesis. I thank my committee members Dr. Steve Williams and Dr. Doug Corey for their 

time and feedback to help me strengthen and improve my study. Finally, I would especially like 

to thank my advisor Dr. Steven Jones for his patience and support. His expertise, guidance, and 

encouragement were vital in the creation and completion of this thesis. 



iv 

TABLE OF CONTENTS  

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

TABLE OF CONTENTS ............................................................................................................... iv 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

CHAPTER ONE: INTRODUCTION ............................................................................................. 1 

CHAPTER TWO: BACKGROUND .............................................................................................. 4 

Productive Conception of the Definite Integral .......................................................................... 4 

Derivative .................................................................................................................................... 6 

Differential .................................................................................................................................. 7 

CHAPTER THREE: THEORETICAL PERSPECTIVE .............................................................. 10 

Images ....................................................................................................................................... 10 

Quantities and Quantitative Reasoning ..................................................................................... 10 

Covariation ............................................................................................................................ 11 

Conceptual Analysis ................................................................................................................. 13 

Research Questions ................................................................................................................... 16 

CHAPTER FOUR: METHODS ................................................................................................... 18 

Teaching Interviews .................................................................................................................. 18 

Participants and Data Collection ............................................................................................... 18 

Teaching Interview Lesson Plans ............................................................................................. 20 



 

v 
 

Lesson One................................................................................................................................ 20 

Scaling Covariation ............................................................................................................... 20 

AUP Integrals........................................................................................................................ 23 

Parabolic shape ..................................................................................................................... 24 

Derivative as a Ratio of Differentials ................................................................................... 25 

Lesson Two ............................................................................................................................... 26 

Solar Panel task ..................................................................................................................... 26 

Sphere task ............................................................................................................................ 29 

Pure Math Substitution Task ................................................................................................. 32 

Data Analysis ............................................................................................................................ 33 

Lesson One............................................................................................................................ 33 

Lesson Two ........................................................................................................................... 35 

CHAPTER FIVE: RESULTS ....................................................................................................... 38 

Use of Quantity ......................................................................................................................... 38 

Symbol as Quantity ............................................................................................................... 38 

Two Quantity Relationship ................................................................................................... 39 

Usage of 3-Quantity Operations and Relationships .............................................................. 44 

A 3-Quantity Structure Different from Thompson’s “Triangle” .......................................... 48 

Interview 1: Images of Differential, Derivative, and Integral .................................................. 49 

Derivative .............................................................................................................................. 49 



 

vi 
 

Differential ............................................................................................................................ 51 

Integral .................................................................................................................................. 53 

Interview 2: Images of U-Substitution ...................................................................................... 57 

Overall Flow of Student Work .............................................................................................. 57 

Bounds Substitution .............................................................................................................. 58 

Function Substitution ............................................................................................................ 60 

Differential Substitution........................................................................................................ 62 

General Ideas About Substitution ......................................................................................... 70 

CHAPTER SIX: DISCUSSION ................................................................................................... 72 

Answering the Research Questions .......................................................................................... 72 

Answering Research Question #1 ......................................................................................... 72 

Answering Research Question #2 ......................................................................................... 73 

Contributions of the Study ........................................................................................................ 75 

Expanding the Notion of Quantitative Relationships ........................................................... 75 

The Central Role of Differentials in Substituting ................................................................. 78 

Strengthening the Case for Scaling-Continuous Covariation ............................................... 79 

Providing a Theoretical Framework for Quantities-Based U-Substitution........................... 79 

Implications for Teaching ..................................................................................................... 84 

Limitations of the Study and Future Research Directions ........................................................ 86 

Conclusion ................................................................................................................................ 86 



 

vii 
 

REFERENCES ............................................................................................................................. 88 

APPENDIX A: INTERVIEW PROTOCOL ................................................................................ 96 

APPENDIX B: EXAMPLES OF ANALYSIS ........................................................................... 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

LIST OF TABLES 

Table 1: Student Participant Information .................................................................................... 19 

Table 2: Solar Panel Task Component of Substitution Flow ....................................................... 58 

Table 3: Sphere Task Component of Substituion Flow  ............................................................... 58 

Table 4: Theoretical Quantity-based Unpacking of U-substitution ............................................. 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

LIST OF FIGURES  

Figure 1: Solar Panel Context ..................................................................................................... 13 

Figure 2: Solar Differnetial Relationship Context ....................................................................... 21 

Figure 3: Volume of a Cylinder Context  ..................................................................................... 23 

Figure 4: Volume of a Solid Context  ........................................................................................... 24 

Figure 5: Solar Panel Context ..................................................................................................... 26 

Figure 6: Volume of a Sphere Context ......................................................................................... 29 

Figure 7: Pure Math Substitution Task ........................................................................................ 32 

Figure 8: Comparison of’ 3-Quantity Structures (a) Thompson’s Triangular Structure and (b) 

Jones’s Nested Multivariation Structure ...................................................................................... 48 

Figure 9: Jackson’s Symbolic Work for escribing the Derivative ............................................... 51 

Figure 10: Ellie’s Board Work of Formulating the Differential Relationship ............................. 66 

Figure 11: Ellie and Alex’s Work for Substitution the Differnetial in the Sphere Task ............... 69 

Figure 12: (a) Thompson’s Original Triangular Quantitative Relationship and (b) Jones’ Nested 

Mulivariation ................................................................................................................................ 82 

Figure 13: (a) Quantitative Structure of U-substitution and (b) Quantitative Structureof U-

substition with Time, Power, and Energy ..................................................................................... 82 

 

 

 



 

1 
 

CHAPTER ONE: INTRODUCTION 

Much of calculus teaching at both the secondary and college level is done with an 

overemphasis on procedures rather than a focus on conceptual development (Tall, 1992). 

Emphasis on procedure can be problematic and result in students lacking conceptual 

understanding of calculus topics (Bezuidenhout & Olivier, 2000; Jones, 2015a). In addition to 

the emphasis on procedures, most approaches (Stewart, 2016; Herman & Strang, 2017) use 

purely algebraic or geometric ideas as the foundations of integration and differentiation; 

however, research has shown the importance of developing calculus concepts quantitatively 

(Dorko & Speer, 2015; Moore et al., 2009, Jones, 2013a, 2013b, 2015a, 2019). 

 Integration is one of the foundational concepts in calculus; its applications extend 

beyond pure mathematics into physics, engineering, and science (Jones, 2015a). In fact, 

Bressoud et al. (2013) found that around 78% of students in calculus classes planned on having 

careers in engineering, biology, physical and life sciences, computer science, and business. In 

addition to a procedural understanding of integration being unproductive, Bezuidenhout and 

Olivier (2000) found that when students’ conceptions of the integral were tied primarily to the 

idea of area they were unable to successfully reason about other integral contexts (see also Jones, 

2015a; Sealey, 2006). Students often struggle to reason about integration in real-world problems 

and make the necessary connections between the mathematics and problem contexts (Hu & 

Rebello, 2013, Serhan, 2015). Hu and Rebello (2013) found that physics students struggled to 

productively set up integrals in applied contexts due to overemphasis on computation and 

symbol manipulation.  

Recent literature has shown that reasoning with quantities to develop student 

understanding of the integral produces a much more powerful and flexible integral conception 
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(Von Korf & Rebello, 2012; Jones, 2013a;2015; Sealey, 2014; Ely, 2017, Simmons & 

Othehterman). Jones (2013a; 2015a; Stevens & Jones, in progress) found that while reasoning 

about the integral as an area under a curve or an antiderivative is more frequently used, 

conceptualizing the integral as “adding up pieces” (AUP) is more helpful for students in making 

sense of the integral in applied contexts. The AUP structure represents adding up infinitesimally 

small bits of a “target quantity,” often created from the product of a function and the differential, 

which correspond to small increments of a partitioned interval of the domain. The structure of 

AUP provides a more intuitive way to conceptualize the definite integral in context (Jones & Ely, 

in press).  

Because of the importance of quantitative meanings for integrals, researchers have 

offered learning trajectories for integration. For example, Stevens (2021) utilized Jones’ AUP in 

her integration learning trajectory. She found that introducing the definite integral from the AUP 

perspective and progressing through integration concepts using various representations resulted 

in students developing rich understandings of the various layers of integration. However, this 

learning trajectory began with the introduction to integration and stopped at the Fundamental 

Theorem of Calculus. There are typically additional ideas in the first-semester chapter on 

integration, with u-substitution generally being the conclusion of the chapter (e.g., Stewart, 

2021). U-substitution is a widely used procedure but is often nothing more than a memorized 

process for finding an antiderivative. Learning u-substitution in this way presents the same 

“procedure” problems as mentioned above. Going from a quantitative introduction of integrals to 

a procedural understanding of u-substitution may cause students to abandon their previously 

constructed quantitative meaning of the integral for the computational meaning. (Jones et al., 

2017).  
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Typically, the integration unit in first-semester undergraduate calculus includes the 

following five topics: Riemann sums, the definite integral, the fundamental theorem of calculus, 

the indefinite integral, and u-substitution. A quantitative reasoning perspective for the first four 

of these topics has been studied; however, research has not yet examined developing u-

substitution quantitatively. In my study, I build on the quantitative work already done in 

integration and extend the quantitative reasoning approach to encompass u-substitution as the 

cap to the quantitative treatment of first-semester integral calculus. The purpose of my study is to 

see what understandings of u-substitution students develop using quantitative reasoning. To 

achieve this purpose I conducted a set of clinical teaching interviews and analyzed the student 

thinking that appeared in the interviews.  
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CHAPTER TWO: BACKGROUND 

 In this chapter, I present the existing literature on integrals, derivatives, and differentials. I start 

with reviewing conceptions of the definite integral, and how they support students in making 

sense of integrals in applied contexts. I then briefly discuss the literature on derivatives and 

differentials. 

Productive Conception of the Definite Integral  

Jones (2013b) identified three conceptualizations of the definite integral: “perimeter and 

area” based on area under a curve, “function matching” based on the antiderivative, and “adding 

up pieces” (AUP) based on Riemann sums. 

In the perimeter and area conception, the integral is thought of as the area under a curve 

or the area between the function and the horizontal axis. This conceptualization differs from 

AUP because rather than viewing the area as a collection of rectangles to be added, here the 

integral is thought of as one undivided area. While this is a correct graphical meaning, it is not 

always useful for describing values of the integral in context. Students using this conception with 

applied integral problems were easily able to draw a picture but struggled to use the picture to 

make sense of what the area value meant in the problem and felt unsure of their explanations 

(Jones, 2015a). A similar categorization for three-dimensional shapes was presented by Jones 

and Dorko (2015) as the boundary of an entire non-segmented shape. Similar to the area 

conceptions it takes the whole shape as a whole rather than thinking about segments or slices of 

the shape to find the volume.  

The “function matching” conception views the definite integral as an antiderivative. In 

this conception, for an integral ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  the integrand 𝑓𝑓(𝑥𝑥) is identified as being the derivative 

of some “original function.” Solving the integral is thought of as trying to match the integrand 
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back to the original function. This also means that the derivative of the solution needs to match 

the integrand (Jones, 2013b). Antidifferentiation is a very important application of the 

Fundamental Theorem of Calculus and is useful for calculational ease; however, it is not often 

helpful in making sense of the quantities in contextualized integrals or interpreting their answers. 

Jones (2015a) found that students who relied on reasoning with antiderivatives displayed a lack 

of confidence in their answers and in making sense of the problems. They attempted to refer to 

the antiderivative relationship of velocity and position to reason about their current contexts and 

units but were not able to identify the multiplicative relationship and struggled to find the applied 

meaning in the symbol manipulation.  

In the AUP conception, similar to the Riemann sum, the integral is viewed as a sum of 

infinitesimally small quantities. More specifically, in the AUP conception, an interval of the 

domain quantity is broken up or “partitioned” into infinitesimally small pieces, 𝑑𝑑[ ]. Each piece 

corresponds to a small bit of a desired or “target quantity,” often but not always created by a 

multiplication of the integrand and differential, and each of the target quantity pieces is added up 

(Ely, 2017; Jones & Ely, in press). In his study, Jones (2015a) asked students to interpret the 

meaning of the integral ∫ 𝑅𝑅𝑑𝑑𝑅𝑅600
0  where 𝑅𝑅 is the revolutions per minute of a motor. The AUP 

perspective proved to be the most productive for students' interpretation of the problem. Using a 

rectangle to represent a piece of what they were adding, they viewed the differential 𝑑𝑑𝑅𝑅 as 

holding some small quantity, thus having a unit of measure, and were able to make sense of the 

multiplication of the integrand R and the differential 𝑑𝑑𝑅𝑅 to interpret the target quantity of the 

integral as revolutions.  

Related to AUP, Simmons and Oehrtman (2019) further elaborated on the construction of 

the target quantity describing a “basic” and “local model” for the target quantity. The “basic 
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model” applies to situations with constant quantity values. For example, if an object has uniform 

density then finding the mass of that object or a part of that object is a simple multiplication. 

However, if the density is not uniform then we use the “local model” for finding the total mass. 

After partitioning the object, the density of a partitioned piece is used to find the mass that 

corresponds with that part of the object. The local model is used for every partitioned piece and 

the integral sums them to find the total mass.  

While all three of the above-listed conceptualizations are useful in understanding 

decontextualized integrals, the “adding up pieces” symbolic form is shown to be the most 

productive for students making sense of integral applications and interpreting real-world 

problems. (Jones, 2013a; 2015a; Sealey, & Oehrtman, 2005).  

Although the AUP conception is the most productive for applied definite integrals, 

students are much more likely to think about integrals as the area under a curve or an 

antiderivative (Jones, 2015b). This could be because integrals are often introduced in textbooks 

and classrooms as an area under a curve. (Jones, 2015b; Stewart, 2021). It is true that the AUP 

concept is closely related to the Reimann sum conception, but being familiar with Reimann sums 

does not necessarily indicate the students will use AUP. Jones et al. (2017) found that in some 

cases teachers make instructional moves that actually undermine their previous instruction of 

Reimann sums. It is possible that rather than students viewing Riemann sums as a way to 

conceptually understand the integral they view it merely as a computational procedure that is 

often forgotten after learning the Fundamental Theorem of Calculus.  

Derivative  

Stewart’s (2021) textbook presents the derivative first as the slope of the tangent line 

using multiple graphical representations. Once that definition is established this book introduces 
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the derivative as a rate of change connecting it to the average rate of change concept. Bingolbal 

et al. (2007) investigated the derivative conceptualization of first-year engineering students and 

first-year mathematics students. They found that the mathematics students preferred to think of 

the derivative as a tangent line while the engineering students favored thinking about the 

derivative as a rate of change. This difference could be related to the amount of time the teachers 

of their respective classes spent on each conceptualization; however, the engineering students 

expressed that their preference was because the rate conception supported the application of the 

mathematics in their field (Bingolbali et al., 2007).  

Reasoning about rates can be cognitively complex. Milner and Rodríguez (2019) state 

that the central idea of the derivative is not slope, but quotients of small quantities. Ely (2020) 

similarly talks about the differentials-based approach like 𝑓𝑓(𝑥𝑥) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where the rate is a ratio of 

the changes of two quantities. The structure of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is useful in understanding rate and makes the 

quantities involved more clear than 𝑓𝑓′(𝑥𝑥) notation of the derivative. Jeppson (2019) used the 

interpretation of the derivative 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 as a ratio in her hypothetical learning trajectory of quantitative 

understanding of the chain rule and implicit differentiation. She found that by thinking about the 

rates, and how the two quantities changed together, students were able to develop an intuition for 

the multiplicative nature of the chain rule and implicit differentiation. 

Differential 

 The differential, symbolized by 𝑑𝑑[ ], is rarely given significant attention in calculus 

classrooms. In integration the differential is frequently regarded only as an indicator of the 

variable of integration or touched on only as a part of the substitution process (Dray & Manogue, 

2010, Jones, 2015a). This inattention to the differential may be due to it being difficult to define. 

Even mathematicians struggle to define the differential or verbally express their own intuition of 
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it (McCarty & Sealey, 2019). When presented with differentials in different contexts and asked 

to interpret the meaning, they gave a wide variety of interpretations, in some cases even 

contradicting their own statements from previous contexts. A common interpretation of the 

differential as reported by McCarty & Sealey (2019), is that it is small but has no specific size, 

and when presented with the expression 𝑑𝑑𝑑𝑑 = 2𝑥𝑥𝑑𝑑𝑥𝑥, several mathematicians expressed 

uneasiness about the differential. 

Similar to Leibniz, Ely (2017; 2020) approaches the differential as an infinitesimally 

small piece of a quantity and treats differential equations like 𝑑𝑑𝑑𝑑 = 2𝑥𝑥𝑑𝑑𝑥𝑥 as a relationship 

between two infinitesimal quantities. This conceptualization of the differential gives it more 

quantitative meaning that supports making sense of definite integrals. It is also a key part of 

understanding the integral as accumulating or adding up bits of quantity. In Jones’ (2015a) 

findings, students who had productive conceptualizations of various contextualized integrals 

attended to the quantity of the differential. For example, students with a productive conception of 

the integral ∫ 𝑃𝑃𝑑𝑑𝑃𝑃𝑆𝑆 , where S is some surface, and P is pressure on a point, recognized 𝑑𝑑𝑃𝑃 as a 

small piece of area that could also be expressed as 𝑑𝑑𝑥𝑥 ∗ 𝑑𝑑𝑑𝑑. They were able to use these ideas to 

understand that pressure on a point multiplied by the differential quantity area resulted in a small 

piece of force, and adding up these pieces would result in finding the total force on the surface.  

The benefit of understanding the differential as carrying quantity is further illustrated by 

Hu and Rebello (2013) who also found that students who were able to reason about the quantity 

and units of the differential were more successful in interpreting and setting up integral 

expressions to solve real-world applications of the integral in physics problems (see also Amos 

& Heckler, 2015; Schermerhorn & Thompson, 2019a; 2019b). Not only does interpreting the 

differential as having quantity support productive understanding of the integral, but a lack of it 
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can also hinder students’ ability to understand applied integrals. Work done by Ngyuen and 

Rebello (2011) suggested that students’ inability to interpret differentials and products using 

differentials created a significant obstacle to successfully constructing integrals in physics.   
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CHAPTER THREE: THEORETICAL PERSPECTIVE 

Images 

 Tall and Vinner (1981) define a concept image as being all the cognitive structures 

associated with a concept. This could include mental pictures, associated processes or other 

structures. Thompson (1994) talks about images as a more strictly cognitive experience or mental 

operation. In line with both of these ideas I use image to mean the overall understandings, 

metaphors, experiences and mental operations that students have of a concept or concepts.  

Quantities and Quantitative Reasoning 

 The framework for my study utilizes Thompson’s (1990, 2011) definitions surrounding 

quantity and quantitative reasoning. It also includes my own quantitative conceptual analysis of 

u-substitution (Thompson, 2008). The conceptual analysis breaks down the u-substitution of a 

definite integral from an “Adding Up Pieces” (AUP) perspective, the meaning of the integral and 

the meaning of quantities of each component part (Jones, 2013).  

In this section I first discuss the meanings of quantity, quantitative reasoning, quantitative 

operation, quantitative relationship, value, and covariational scaling. These ideas of quantitative 

reasoning formed the basis of my study and served as codes for my data analysis. I selected them 

because I found these particular aspects of quantitative reasoning to be inherent in the meanings 

of the components of my conceptual analysis of u-substitution and the types of reasoning I 

anticipated appearing in student output gathered in teaching interviews. 

Thompson (1990) defines a quantity as the “quality of something that one has conceived 

as admitting some measurement process.” He later adds that quantities are “mental 

constructions,” or exist as a result of our conceptualization of a given object or situation 

(Thompson, 2011). For example, radius is a quantity because it describes the measurement from 
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the center of a circle or sphere to any edge or surface. Thompson (1990) defines the “result” of 

the measurement process as a value that can be a specific numerical value or some imagined 

magnitude (Moore et al., 2009). 

The definitions of quantitative relationship and quantitative operation are closely related 

to one another. A quantitative operation is the mental action taken on one quantity with itself or 

with two or more different quantities to produce a new quantity. For example, multiplicative 

comparison between energy generated 𝑑𝑑𝑑𝑑 and time elapsed 𝑑𝑑𝑅𝑅 produces power. A quantitative 

relationship describes the connections between quantities that exist because of the operation. 

Using the previous example, time, power, and energy are all related to each other and an 

operation with any two of the quantities could be used to create the third.  

With all the previous definitions in place, we can define quantitative reasoning. 

Quantitative reasoning includes the mental action of conceiving something and its measurable 

attributes, or quantities, how multiple quantities are related to each other, and the operations used 

to form those relationships. A network of these relationships creates a structure for constructing 

quantitative mathematical understanding of a concept (Thompson 2011, Moore, 2013).  

Covariation 

 Closely related to quantitative reasoning is covariation. Two types of covariation have 

been used in reasoning conceptually about the integral, one involving dynamically changing 

quantities called dynamic covariation (Carlson et al., 2002; Thompson & Carlson, 2017) and the 

other as a “zoomable” static continuum called scaling-continuous covariation (Ellis et al., 2020). 

If we consider the covariation between time and distance from a dynamic perspective, dynamic 

covariation might involve imagining distance being accumulated as the time passes, both 

quantities changing in tandem. Conversely, scaling covariational reasoning imagines taking a 
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static picture of a relationship between the quantities of time and distance. Scaling or zooming in 

on a value of one quantity to any arbitrary size always corresponds to its related value 

simultaneously being scaled or zoomed into (Ellis et al., 2020). Returning to the example of time 

and distance, this is like zooming into an increasingly small static interval of time and 

simultaneously zooming in on the distance associated with that particular amount of time. 

Covariational reasoning is a critical aspect of u-substitution for each of the three pieces of 

substitution: bounds, function, and differential. When considering the change of bounds there is a 

covariational idea in thinking about how a range of values in one quantity corresponds to a range 

of values in a new quantity. In the function substitution, given a relationship between two 

quantities it is important to be able to coordinate values of one quantity to their corresponding 

value in the second to reason that substituted functions are equivalent. Because my study focuses 

on infinitesimal pieces of quantities, like adding up infinitesimal bits of the target quantity and 

the differential being an infinitesimal amount, I utilized the scaling-continuous covariation or 

zooming covariation conception. This view has been used and promoted as a potentially valuable 

underlying image of derivatives and integrals based on infinitesimals (Ellis et al., 2020; Ely & 

Ellis, 2018; Ely & Samuels, 2019). In scaling covariation, one imagines a fixed infinitesimal of 

one quantity as corresponding to a fixed infinitesimal (of likely a different infinitesimal size) of 

another quantity. Again, given a relationship between two quantities, a change of one quantity 

results in a change of the related quantity. From a scaling perspective it is fairly straightforward 

to think of zooming into smaller and smaller changes to the infinitesimal level maintaining that 

same relationship between changes. 
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Conceptual Analysis 

To demonstrate the conceptual understandings I want students to develop using 

quantitative reasoning I discuss the various components of the definite integral and how I 

quantitatively conceptualized the substitution of each. I use the below solar panel problem to 

support this discussion. In this problem the quantities are time (hours), energy (watt hours) and 

power (watts). Watts are often described in the joules of energy (J) per second (s) that is 

generated, J/s, however, for simplicity I just discuss power in the simple unit of watts. I also note 

that if power is constant the basic model of a simple product with time will give energy. 

Figure 1 

Solar Panel Context  

A solar panel collects power in watts, and the amount of power the panel generates is 
dependent on where the sun is in relation to the panel. It will reach its maximum output when 
the sun is directly above it (at noon). The generated wattage of the solar panel can be thought 
of as a function of time as the sun moves across the sky. It can be modeled well by a sine 
function (Solar Panels, 2021), and for simplicity we’ll use the basic function 
𝑃𝑃(𝑅𝑅) = 250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋

12
𝑅𝑅�with t time in hours since sunrise. On the day we’re measuring, the sun 

rises at 6 am and sets at 6 pm. 
How much energy in watt hours has the panel generated in the first 6 hours of the day (from 
6am to 12pm? 
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In this problem I utilize the “adding up pieces'' (AUP) conception to discuss the total 

energy generated by the solar panel (Jones, 2015). As mentioned previously “AUP is a structure 

comprised of three elements: a partition, a target quantity and a sum.” (Jones & Ely, in press). I 

will now discuss each of the elements of the AUP structure in relation to this solar panel task.  

In our problem context we are making a partition of our time interval of the first six 

hours of the day into infinitesimally small but substantive quantities of time represented by 𝑑𝑑𝑅𝑅. 

The target quantity is constructed by a multiplicative relationship between power generated in 

watts 𝑃𝑃(𝑅𝑅) = 250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋
12
𝑅𝑅� over small amount of time 𝑑𝑑𝑅𝑅. The product of these two components 

gives us a tiny amount of energy in watt hours, our target quantity. Finally, we sum up each of 

these infinitesimal target quantities for each of our partitioned 𝑑𝑑𝑅𝑅 pieces in our interval ∫60 . 

The summation of all of the small pieces of energy gives us the total energy in watt hours 

generated by our solar panel in the first six hours of the day, ∫ 250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋
12
𝑅𝑅� 𝑑𝑑𝑅𝑅.6

0  

Using this same AUP conception I treat the substitution of each individual component. 

As we consider the context, the passage of time is an abstract way to measure the position of the 

sun in relation to the solar panel. A more direct way to describe the situation is to measure the 

angle of the sun. Reasoning with the quantities of the problem context we know that the sun rises 

on the horizon at an angle of 0 radians and since the sun sets at 6pm after six hours at noon the 

sun will be directly above the panel at an angle of 𝜋𝜋
2
 radians. The range of the angles the sun 

traces out in six hours is [0,𝜋𝜋
2
], making the substituted bounds of integration 𝑅𝑅 = 0→𝜃𝜃 = 0 and 

𝑅𝑅 = 6 → 𝜃𝜃 = 𝜋𝜋
2
. The integral with this first substitution is ∫ 250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋

12
𝑅𝑅� 𝑑𝑑𝑅𝑅𝜽𝜽 = 𝝅𝝅𝟐𝟐

𝜃𝜃 = 𝟎𝟎 . The integral in 

this form has tiny bits of energy that are a result of the multiplicative relationship to form the 

target quantity; however, in the form we have our target quantity formed in relation to power for 
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every tiny bit of time being added up over a span of angles. This combination of units is difficult 

to make sense of.  

To clarify reasoning about the integral expression we next consider a substitution in 

target quantity. In the original quantitative relationship of the target quantity, we get a bit of 

energy from the multiplicative relationship of a little bit of power 𝑃𝑃(𝑅𝑅) and a little bit of time 𝑑𝑑𝑅𝑅. 

We want to take this quantitative relationship and describe it in terms of angle rather than time, 

multiplying a little bit of power by a little bit of angle to get the desired quantity of energy. We 

will now look at each piece of the quantitative relationship separately.  

Starting with the power function, we want to represent 𝑃𝑃(𝑅𝑅) = 250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋
12
𝑅𝑅� in terms of 

angle in radians. Reasoning again with the problem context and bounds of integration,𝑅𝑅 = 0 →

𝜃𝜃 = 0 and 𝑅𝑅 = 6 → 𝜃𝜃 = 𝜋𝜋
2
, we can derive the covariational relationship between the time in hours 

and the angle of the sun as 𝜃𝜃 = 𝜋𝜋
12
𝑅𝑅. This substitution makes the new substituted power function 

𝑃𝑃(𝜃𝜃) = 250𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) and the integral ∫ 250𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 𝜋𝜋
12
𝑑𝑑𝑅𝑅

𝜋𝜋
2
0 . In the original partition we have small 

amounts of time scaled down to the infinitesimal quantity 𝑑𝑑𝑅𝑅. In this new integral we are 

partitioning the range of angles into infinitesimal amounts of angle 𝑑𝑑𝜃𝜃. Using the relationship 

𝜃𝜃 = 𝜋𝜋
12
𝑅𝑅 from above, we can use that relationship and think about scaling it down to be 

infinitesimally small amounts of 𝜃𝜃 and 𝑅𝑅. The result is the differential covariation 𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅, 

which we can also be conceptualized as for each little bit of time, the related amount of angle is 

𝜋𝜋
12

 times that amount of time. Another way to conceptualize the differential relationship is with 

the derivative. If we think about the derivative as a ratio of small amounts of covarying 

quantities, taking the derivative of the relationship 𝜃𝜃 = 𝜋𝜋
12
𝑅𝑅 gives 𝑑𝑑𝜃𝜃

𝑑𝑑𝑑𝑑
= 𝜋𝜋

12
 and we can similarly 
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arrive at the differential relationship 𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅. We now have a substitution for both pieces in 

the quantitative relationship of our substituted target quantity expressed in terms of angle 𝜃𝜃: 

250𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) ∗ 𝑑𝑑𝜃𝜃. As with our original problem each infinitesimal pieces of target quantity will be 

summed over the interval of angles [0, 𝜋𝜋
2

]  and our final substituted integral is 

∫ 250𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 12
𝜋𝜋
𝑑𝑑𝜃𝜃

𝜋𝜋
2
0 .  

In the process of this analysis, I found that successfully reasoning quantitatively about u-

substitution requires background understanding of the integral as adding up infinitesimally small 

pieces of some quantity constructed by a multiplicative quantitative relationship between a rate 

function and a differential. Additionally, a knowledge of covariational scaling and the derivative 

as a ratio of differentials is important to support a quantitative conception of u-substitution. I 

have taken this background knowledge into consideration and designed the first teaching 

interview to develop this understanding to prepare participants for a quantitative introduction to 

u-substitution.  

Research Questions  

As discussed previously, there is nothing in the literature that describes how students 

reason about u-substitution specifically from a quantitative approach. In order to build on the 

research previously done about quantitative reasoning in first-semester calculus topics in this 

study I purposefully scaffold a teaching process to direct students to use quantities in their 

reasoning to help them develop the idea of substitution. Within the structure of this context I 

propose the following research questions:  

1) What quantities and quantitative reasoning did students exhibit given they were expected 

and directed to engage with quantities?  
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2) How did the quantities and quantitative reasoning connect specifically to the three parts 

of u-substitution (bounds, function, and differential), given they were expected to learn 

these three parts? 

In answering these questions I hope to gain insight into the understandings of u-substitution that 

students can develop using quantitative reasoning.   
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CHAPTER FOUR: METHODS 

Teaching Interviews 

  Principles of quantitative reasoning adhere to the idea that students are constantly in the 

process of constructing their mathematical ideas and the teaching experiment aligns with this 

perspective (Engelhardt et al., 2004; Moore, 2013). Steffe and Thompson (2000) describe the 

purpose of using a teaching experiment, saying it is, “for researchers to experience, firsthand, 

students' mathematical learning and reasoning." They go on to explain that being immersed in 

the teaching experience provides a basis for understanding students' construction of 

mathematical operations and concepts (Steffe & Thompson, 2000). The aims of the researcher in 

a teaching experiment are to build a feasible model of student understanding, explore ways of 

influencing students’ mathematical knowledge and understanding, and record where and how 

shifts in understanding occur (Moore, 2013; Steffe & Thompson 2000). Due to the limited time 

of the master’s program, I was not able to engage with a full teaching experiment; however, I 

based my clinical task-based interviews on the idea of a teaching experiment because my 

research questions align with the purposes and aims of the teaching experiment. In this study I 

investigate what understandings of u-substitution students develop and explore how using 

quantities and quantitative reasoning impacts the knowledge about u-substitution students 

emerge with. 

Participants and Data Collection 

The participants for my study were students recruited from first-semester undergraduate 

calculus classes. The students were recruited from classes whose instructors had attended to 

quantity in their teaching throughout the semester. I planned to use students who had not taken a 

calculus class prior to the one they were currently enrolled in to get a better idea of how students 
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developed the mathematical ideas of u-substitution without influence from previous exposure to 

the procedure; however, due to the student population that volunteered to participate and 

students’ availability three of my participants had previously taken a calculus class and three had 

not. Students were interviewed in pairs, in one pair both students had taken calculus before 

(Jackson and Bently), in another pair one student had and one had not taken calculus (Nate and 

Liam), and in the third pair, both were first-time calculus students (Andres and Ellie). A 

summary of the student participants is given in Table 1. Students were in pairs with the intent 

that they would help each other bring out the key concepts of the lessons and allow for more 

student thinking to be visible as they worked together and communicated ideas with one another 

as well as with me. The students were interviewed after they had an introduction to Riemann 

sums, integration, and the Fundamental Theorem of Calculus, but before they had been 

introduced to u-substitution as a technique of integration.  

Table 1 

Student Participant Information 

Pseudonym Gender Group Taken calculus before? 

Bently M 1 Yes 

Jackson M 1 Yes 

Nate M 2 No 

Liam M 2 Yes 

Ellie F 3 No 

Andres M 3 No 

I conducted a set of two teaching interviews, each around 60 minutes, over 2-3 days. The 

first teaching interview introduced covariational change between two quantities from a scaling 

perspective, the quantitative AUP conception of the integral, and the derivative as a ratio of 
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differentials. In this interview, students were given problem contexts that support reasoning 

about the integral as a summation of small pieces of the target quantity rather than as an 

antiderivative or area under a curve. The problems given were also designed to promote 

reasoning about the differential as having some quantity rather than strictly as an infinitesimal. I 

chose these topics based on what I found in my conceptual analysis to be the foundational prior 

understandings needed to build a quantitative understanding of u-substitution. 

The second interview began by having the students recap/review what they learned from 

the first interview. We then developed the concept of u-substitution using meaningful contexts 

and quantitative reasoning. The contexts and questions drew on the quantitative understanding of 

the integral, derivative, and differential developed in the first interview to support the students’ 

learning. These ideas of substitution were further explored in a second contextual situation with a 

pure mathematics problem to explore time permitting. Both interviews were videotaped to 

capture students’ work and gestures. The video footage, audio transcription, and students’ 

written work were used in the analysis. 

Teaching Interview Lesson Plans 

This section details the lesson plans and tasks given to the students in both of the teaching 

interviews. The tasks and questions are based on the above conceptual analysis, and definitions 

relating to quantitative reasoning.  

Lesson One  

Scaling Covariation 

 I began with having a brief conversation about the relationship between height and 

volume of a box. I presented students with a table labeled with a 𝛥𝛥𝑓𝑓𝑅𝑅 column and a 𝛥𝛥𝛥𝛥 column 

and asked the students to list out a few values value pairs (ie. 1 𝑓𝑓𝑅𝑅, 4 𝑓𝑓𝑅𝑅3). 
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Key Questions:  

● If I have a height that changes by a half a foot what is the equivalent change in 

volume? What about a change of ¼ of a foot? 1/100th of a foot? 

● If we have an infinitesimally small change in length in feet what is the equivalent change 

in inches? 

● Can you describe what the change in inches will be in relation to any change of length in 

feet?  

● What symbols would you use to represent that relationship?  

I begin with this simplistic example and questions to help students develop the idea of 

covariational scaling and focus on the quantities involved. Scaffolding the relationship in this 

way is meant to help students avoid the common misconception of expressing the relationship as 

𝑎𝑎 𝑓𝑓𝑅𝑅 = 12𝑏𝑏 𝑠𝑠𝑠𝑠 rather than 12𝑎𝑎 𝑓𝑓𝑅𝑅 = 𝑏𝑏 𝑠𝑠𝑠𝑠. I do not anticipate students having difficulty with this 

problem; however, it will help them to have dealt with the quantities in this familiar context as 

we move to the next more complex situation below.  

Figure 2 

Solar Differential Relationship Context  

On the equator the sun rises around 6 am, is directly overhead 
at noon, and sets on the horizon at 6 pm. If you are standing on 
the equator how much has the angle of the sun in relation to 
you changed from 6 am to 6 pm? From 6 am to noon?  

 

𝛥𝛥𝑅𝑅 hours 𝛥𝛥𝜃𝜃 angle 

12  

6  

1
2
  

1
100  

dt  
 

6am 6pm 
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Key Questions: 

● If you are standing on the equator how much has the angle of the sun in relation to you 

changed from 6 am to 6 pm? From 6 am to noon?  

● How big of an angle change corresponds to one hour of time elapsed?  

● What if we only let a half hour elapse? One-tenth of an hour? A thousandth of an hour?  

● If I continued to scale this down to the change of a fraction of a second, what would the 

change in angle be?  

● Can you describe what the angle change will be in relation to any elapsed amount of 

time?  

○ What symbols can we use to represent that relationship?  

○ Does this make sense for this relationship to hold for change in time at any part of 

the day?  

● Is this relationship still valid as the change in time gets infinitesimally small?  

● What do 𝑑𝑑𝑅𝑅 and 𝑑𝑑𝜃𝜃 represent?  

 The goal of my questions is to guide students to think about the differential as 

representing a small piece of a quantity that can be expressed in terms of the numerical value of 

another differential quantity. As with the first context, I anticipated that students would answer 

the questions without too much difficulty. 
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AUP Integrals 

Figure 3 

Volume of a Cylinder Context 

The volume of a cylinder is 𝛥𝛥 =  𝜋𝜋𝑟𝑟2𝑙𝑙 where 𝑟𝑟 is the radius and 𝑙𝑙 is the length of the cylinder.  

 

 

Key Questions: 

● Let’s use a symbol to represent the volume of the pictured slice of the sphere. What 

symbol should we use? (if no “d”, ask: “how could we suggest it’s a very thin slice?) 

● What does the 𝑑𝑑𝛥𝛥 mean? (or the equivalent symbol they use to represent the volume)  

● How do you interpret the integral ∫ 𝑑𝑑𝛥𝛥𝑏𝑏
𝑎𝑎 ? 

●  What are the quantities that make up this slice of volume? What symbols can we use to 

represent these quantities?  

○ Is this integral  ∫ 𝑑𝑑𝛥𝛥𝑏𝑏
𝑎𝑎  the same as this one ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙𝑏𝑏

𝑎𝑎 ? 

● Given the integral ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙 𝑏𝑏
𝑎𝑎 what does each piece mean? What does the integral mean all 

together? 

The goal of this problem is to introduce the AUP structure of the integral. The first three 

questions are meant to guide students to think about the target quantity being summed up. 
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The purpose of the last two questions is to introduce the multiplicative structure of the target 

quantity.  

Parabolic shape  

Figure 4 

Volume of a Solid Context 

 

 

Key Questions: 

● We can take volume slices of this shape similar to the previous cylinder shape, how 

would you describe the slices of volume (𝑑𝑑𝛥𝛥) for this new shape?  

● Like the last shape, let’s think of the axis being made up of lots of little 𝑑𝑑𝑙𝑙’s does each 

𝑑𝑑𝑙𝑙 have an associated 𝑑𝑑𝛥𝛥?  

● Are all the 𝑑𝑑𝛥𝛥s the same?  

● Can we use an integral like we did with the cylinder to find the total volume of the shape? 

Write the integral expression.  

○ How are you thinking about this integral?  

● What do 𝑑𝑑𝑙𝑙 and 𝑑𝑑𝛥𝛥 mean? How are they related?  

● Using the ideas that we talked about from these two problems, can you describe how 

you’re thinking about the integral in general? 
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The main focus of these questions is for the students to identify the quantitative structure 

as they add up small pieces of volume. Asking the students to write the integral helps to solidify 

their understanding of the components and to make connections to their symbolic understanding. 

Derivative as a Ratio of Differentials  

 For the last portion of this interview, I use some of the pieces previously developed to 

have a conversation about the derivative as a ratio of differentials of two quantities. In the first 

question, we establish the differential relationship between time elapsed and the angle of the sun, 

𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅. I use this relationship to ask the following questions. 

● If we take the 𝑑𝑑𝑅𝑅 and divide it over to the other side to make the ratio 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

, what does this 

ratio mean?  

● What does it mean that that ratio is 𝜋𝜋
12

? 

I then present the students with the following context: A spherical balloon with a small 

heater inside has been filled with gas. As the gas is heated it expands, increasing the volume of 

the balloon. At any given radius 𝑟𝑟  the relationship between the radius of the sphere and the 

temperature 𝑇𝑇 of the gas in degrees Kelvin is given by 𝑟𝑟 = √𝑇𝑇 + 5)  

Key Questions:  

● Compute the derivative of this equation with respect to temperature.  

● What does this derivative mean in this context? 

● What do 𝑑𝑑𝑟𝑟 and 𝑑𝑑𝑇𝑇 mean individually? 

● What does it mean that the derivative is a function rather than a number?  

● For different temperatures what does that tell you about how fast the sphere is growing? 

● If we multiply the 𝑑𝑑𝑇𝑇 over to the other side we get 𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇. Is this valid?  
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● What does this new expression mean?  

This is meant to help the students understand when they take a derivative like 𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

 and 

multiply the differential in the denominator over to the other side of the equation(𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇) 

that quantitatively the equation will still have meaning. I anticipate that students may describe 

things non-quantitatively, using just numerical values or symbols without reference to quantities. 

In these cases, I directed them to think about the quantities involved and what they mean. I do 

not mean to indicate that non-quantitative reasoning is bad or unproductive; however, because I 

am interested in how quantities relate to the understandings they develop I follow non-

quantitative descriptions with questions guiding the students to the quantities. 

Lesson Two 

I began this lesson by asking students to interpret the meaning of the following integral to 

review the ideas developed in the first interview ∫ 𝑣𝑣(𝑅𝑅)𝑑𝑑𝑅𝑅𝑏𝑏
𝑎𝑎 .  

Solar Panel task 

Figure 5 

Solar Panel Context  

A solar panel collects power in watts, and the amount of power the panel generates is 
dependent on where the sun is in relation to the panel. It will reach its maximum output when 
the sun is directly above it (at noon). The generated wattage of the solar panel can be thought 
of as a function of time as the sun moves across the sky. It can be modeled well by a sine 
function (Solar Panels, 2021), and for simplicity, we’ll use the basic function 𝑃𝑃(𝑅𝑅) =
250𝑠𝑠𝑠𝑠𝑠𝑠 � 𝜋𝜋

12
𝑅𝑅�with t time in hours since sunrise. On the day we’re measuring, the sun rises at 6 

am and sets at 6 pm. 
How much energy in watt hours has the panel generated in the first 6 hours of the day (from 
6am to 12pm? 
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Key Questions:  

● What are the quantities present in this problem? 

● Can you create an integral that would give us the amount of energy accumulated during 

the first six hours of the day?  

● Using the AUP idea from our first interview, describe what this integrals means  

○ What is the partition? 

○ What does the integrand mean? What is the quantity of the little pieces that we’re 

adding up?  

These questions are meant to help the students refresh the AUP meaning of the integral 

developed in the first interview. Additionally, unpacking this integral and its pieces may help the 

students more easily recognize the various pieces that will be substituted.  

To motivate the substitution we consider picturing the context, where time is difficult to 

visualize while viewing the angle of the sun in relation to the solar panel is more simple to 

conceptualize. To begin the discussion about the substitution I ask the students the following 

question 
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● Could we change the integral to be in terms of the angle of the sun in relation to the solar 

panel rather than the time of day? 

 As needed I prompt the students to think about the bounds substitution with the following 

questions  

● What is the angle range that corresponds to our time interval? 

○ What are the units that we have in the integrand?  

● What is the quantity that we are now breaking into small pieces?  

Next, we move on to substituting the target quantity beginning with the integrand, and I ask the 

following questions to help the students with the substitution of the target quantity. 

● What might the power function look like in terms of angles  

● What is the relationship between 𝑅𝑅 and 𝜃𝜃 in the function? 

We now focus on the substitution of the differential. Now that we have a function in terms of 𝜃𝜃 

we need the differential to be in terms of 𝜃𝜃 for the quantities/units to make sense. 

● How does a little bit of time relate to a little bit of angle?  

● What if we use our previous partition and scale it down to infinitesimals, what is a tiny 

bit of 𝑑𝑑𝑅𝑅 equal to in angles?  

The next questions are meant to check for the students' understanding of what this new 

integral represents. They will help me know how the students are thinking about the quantities 

involved and if they are making the connection that we still end up with the desired quantities 

after the substitution. Asking the students to review the work they have done will also start to 

build the foundation for them to abstract and generalize the ideas of substitution.  

● What is the quantity that we are adding up here?  
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● Let’s compare the original integral in terms of time and the new integral in terms of 

angle. How are things being added up here now that we’ve done these substitutions?  

○ Are these two integrals adding up the same quantity?  

○ Describe how this new expression is adding up energy like we initially intended it 

to, 

● Let’s review the work that we’ve just done. Can you list the different substitutions that 

we made?  

Sphere task 

Following the solar panel context, I introduce the equation for the volume of a sphere, 

𝛥𝛥 = 4
3
𝜋𝜋𝑟𝑟3 and use Geogebra to help students visualize how the volume of a sphere increases 

with an increase in the radius. Specifically, to demonstrate that for a small increase in radius 𝑟𝑟 

another spherical shell or layer of volume is added and as 𝑟𝑟 is scaled to be infinitesimally small, 

the precise volume 𝑑𝑑𝛥𝛥 added is given by surface area 𝑆𝑆 multiplied by the change in radius 𝑑𝑑𝑟𝑟, 

𝑑𝑑𝛥𝛥 = 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟.  

Figure 6 

Volume of a Sphere Context 
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 After this introduction I remind the students that from our first problem we had an 

integral that was a bit more complex and we found a way to make it more simple. I tell them up 

front that in this problem we will work out the simple volume of a sphere integral and a more 

complex integral in parallel. The purpose of doing this is to help them see the connections 

between each form with the goal that given a complex integral to begin with, as they will in the 

last questions, they will be able to change it into a simpler version.  

Key Questions:  

● We established that 𝑑𝑑𝛥𝛥 =  𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟, what does 𝑑𝑑𝛥𝛥 mean? What does 𝑑𝑑𝑟𝑟 mean? 

● Given ∫ 𝑑𝑑𝛥𝛥𝑑𝑑=15
𝑑𝑑=10 = ∫ 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟𝑑𝑑=15

𝑑𝑑=10 , what does each integral represent?  

● Can you solve the integral? What does the answer mean within the context? 

The purpose of the first two questions is to prompt the students to think about the actual 

quantities involved in this integral and what they mean. It will also assess how much they are 

still thinking of the integral as AUP. I ask the third question to emphasize that we want to solve 

this integral in its simple form. Working through the simple integral first will give students a 

reference to help them construct the more complicated integral later. 

Next, I present the students with the balloon context used in the first lesson: A spherical 

balloon with a small heater inside has been filled with gas. As the gas is heated it expands, 

increasing the volume of the balloon. At any given radius the relationship between the radius of 

the sphere and the temperature of the gas in degrees Celsius is given by 𝑟𝑟 = √𝑇𝑇 + 5  (As the gas 

heats the up the radius is a function of the temperature and expands) 

Key Questions:  

● Could we rewrite this integral where everything is in terms of what’s happening with the 

temperature rather than what’s happening with the radius? 
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● What temperature value corresponds to the start radius (r=10)? The end radius (r=15) 

● What is the surface area 𝑆𝑆 in terms of temperature 𝑇𝑇? 

● 𝑑𝑑𝑟𝑟 represents a small change in 𝑟𝑟 in our original integral, what is the equivalent quantity 

needed in the integral with respect to temperature?  

■ What is 𝑑𝑑𝑟𝑟 equal to in this context?  

■ What is 𝑑𝑑𝑇𝑇 equal to in this context?  

● How are you thinking about what each piece of the complicated integral 

∫ 4𝜋𝜋(√𝑇𝑇 + 5)2 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇 𝑇𝑇 = 100
𝑇𝑇= 25 means? 

 These questions are meant to guide students to use the relationship 𝑟𝑟 = √𝑇𝑇 + 5 in all 

their substitutions. The purpose of the last question is to see if the students are still thinking 

about the quantities involved in the substitution.  

Key Questions:  

● Compare these two integrals to each other ∫ 4𝜋𝜋(√𝑇𝑇 + 5)2 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇𝑇𝑇 = 100
𝑇𝑇= 25  and ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑑𝑑=15

𝑑𝑑=10  

What do you notice about them? What similarities do you see? 

● Can you explain to me why these two integrals are equal to each other? How are they the 

same thing?  ∫ 4𝜋𝜋(√𝑇𝑇 + 5)2 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇𝑇𝑇 = 100
𝑇𝑇= 25  = ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑑𝑑=15

𝑑𝑑=10  

● Can you list the substitutions that we made? 

● What were the key pieces of information you needed to make those substitutions?  

● What similarities do you see between the substitutions in the solar panel problem and this 

sphere problem? 

● In general, how are you thinking about the process of going from a complex to a simple 

integral? 
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 This part of the problem is meant to help the students start to generalize the key 

components of the substitution. As part of the conversation, I emphasize to the students that the 

key substitution relationship was nested inside another function for both problems.  

In the event of additional time remaining in the interview after the first two tasks I 

prepared a third pure math substitution task for students to explore. 

Pure Math Substitution Task 

Figure 7 

Pure Math Substitution Context 

Do a substitution to write the below integral in a simpler form.  

� 5𝑥𝑥2�1 + 𝑥𝑥3𝑑𝑑𝑥𝑥
4

2
 

 

Key Questions:  

● In our previous problems, we identified an “inside” piece that described the relationship 

between two different quantities. What is an inside piece here that we can use to do a 

substitution? 

● What are the key components that need to be switched from one variable to another? 

○ What is the differential in terms of u  

○ What are the bounds in terms of u  

● What does this substituted integral mean? 

● Having done this problem is there anything you would like to add to your previous 

summary/comparison between the sphere and solar questions?  
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 I ask the students to describe the meaning of the substituted integral to see if they are still 

attending to quantities even without a context. These questions are meant to solidify the 

conception of u-substitution developed in the first two problems and support generalizing that 

the substitution structure 

Data Analysis  

The data analyzed for this study are the videotapes of students' gestures and work, as well 

as transcriptions of the audio recordings, and artifacts of student work. In this section, I describe 

how I coded and analyzed data—video, audio transcription, and student work—from the first 

interview to form an idea of students’ understanding of quantity and the discrete components of 

the integral. I then describe the analysis and codes that I used on data from the second interview 

to answer my research questions. The initial unit of analysis for both interviews was student 

speaking turns, which were further broken down according to content as described in the next 

subsection. 

Lesson One 

 For the analysis of the first interview, I began by identifying and coding all instances of 

student speaking turns that had some connection to an image of differentials, derivatives, or 

integrals. The codes in this case were simply to label the speaking turn as “differential,” 

“derivative,” and/or “integral.” Along with the code, I made a note of the contents of the image 

that the specific speaking turn showed evidence of. If students were working with multiple 

intertwined concepts in one speaking turn (e.g. discussing the target quantity of the integral with 

scaling covariation), those units of data were coded for both ideas (See Appendix B). Next, I 

coded instances of student speaking turns that contained some aspect of quantities, covariation of 

quantities, quantitative relationships, quantitative operations, and units. For example, if a student 
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described the derivative as “a ratio between a small amount of two different quantities producing 

a third rate quantity,” I coded it as a quantitative relationship. As another example, if a student 

explained that as one quantity changed (e.g., time) another quantity also changed (e.g., power), I 

coded that as a covariation of quantities. 

In the process of coding for quantitative relationships, I found multiple speaking turns 

that had the feel of quantitative relationships, but were between two quantities rather than 

Thompson’s (1990; 2011) three-quantity quantitative relationships. Because of that, I added a 

new code for two-quantity quantitative relationships. In the process of creating this new code I 

found that there were a few distinct types of two-quantity relationships, a basic relationship, an 

equivalence, and function or input/output relationship. As with the image codes, I made note of 

the contents of the two quantity relationship the speaking turn showed evidence of along with the 

code.  

Following the initial coding, I went back to identify which portion of the speaking turn 

was specifically relevant to each code. For instance, the following speaking turn was initially 

coded under two-quantity relationships, image of differential, and image of derivative.  

Bently: So, because your function is your radius equaling the square of your temperature 

plus five, right? When you take the derivative, which is showing the rate between the 

two, right, 𝑟𝑟 becomes 𝑑𝑑𝑟𝑟 and then 𝑑𝑑𝑇𝑇 doing derivative rules that you know. But it's 

multiplied by the change, the infinitesimal smallness of t. And the way you write the rate 

if you show that 𝑑𝑑 the change of 𝑟𝑟 over the change of 𝑅𝑅. So that's technically what 

happens and you just move it over. 

To refine this code for the image of the derivative I identified this portion of the speaking turn 

which was categorized as a rate image of the derivative: “When you take the derivative, which is 
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showing the rate between the two, right, 𝑟𝑟 becomes 𝑑𝑑𝑟𝑟 and then 𝑑𝑑𝑇𝑇 doing derivative rules that 

you know.”  

These codes were used to formulate an idea of how students were thinking about the 

three foundational calculus concepts and what quantitative reasoning they engaged with. 

Following the second pass of coding, I looked across the codes for each concept to determine 

which conceptualizations were the most prominent among the students.  

Lesson Two 

 I now describe the codes and analysis I used for the second interview data to answer each 

of my research questions.  

To answer my first research question, there were two acts of analysis I completed. First, 

since the research question dealt with how the students used quantitative reasoning I coded 

instances of student speaking turns that contained some aspect of quantities, covariation of 

quantities, quantitative relationships, quantitative operations, and units in the same way as the 

first interview described above. For example, if a student talks about 𝑆𝑆 ∗  𝑑𝑑𝑟𝑟 as taking a surface 

area times a small bit of radius to create a small bit of volume I coded it as a quantitative 

operation. As part of classifying these turns as either quantitative or non-quantitative, I looked 

for both indications and contraindications of each (Moore, 2019). For instance, an indication of 

quantitative reasoning would be if a student is discussing the derivative 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

= 𝜋𝜋
12

 and describes 

this as a ratio of how big the angle is to time and that the ratio will always be 𝜋𝜋
12

. Conversely, a 

contraindication of quantitative reasoning would be if the students describe going from 𝑑𝑑𝜃𝜃 =

𝜋𝜋
12
𝑑𝑑𝑅𝑅  to 𝑑𝑑𝜃𝜃

𝑑𝑑𝑑𝑑
= 𝜋𝜋

12
 as merely division or symbolic manipulation of the equation without reference 

to the quantities.  
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The second analysis activity for the first research question involved identifying the 

connections students made between the quantities and the symbolic integral expression. I made 

note of all instances of students working with or discussing symbolic representations of the 

integral simultaneously denoting each instance as students either being attentive or not attentive 

to quantities using the same analysis methods mentioned earlier. 

Lastly, to answer my second research question and identify the understandings of u-

substitution that the students develop, I conducted an open coding of the second interview data. 

Based on my conceptual analysis and the process of creating the questions in the lesson plans, I 

anticipated that the codes would fall roughly into the following categories: the relationship 

between variables in the substitution (𝜃𝜃 = 𝜋𝜋
12
𝑅𝑅 ), the relationship applied to differential 

substitution (𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅), the relationships in the bounds substitution (𝑅𝑅 = 6 → 𝜃𝜃 = 𝜋𝜋

2
), and 

overarching ideas about what u-substitution is (any statements about the process of changing 

integral from one quantity to another). Because students made some general comments about 

substitution I added a fourth “general substitution” code to capture those ideas. For example, 

students recapping the process saying, “I have like my normal integral, over here, where we have 

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 and taking all the points where our input was, r in this case, those are each of the points 

that have to change.”   

 After the interview was coded, I went back and identified the specific portion of the 

“turn” that was relevant to each code. To further refine the substitution codes, I conducted a 

secondary analysis for each of the three parts substitution and looked for similar types of 

thinking or student moves then grouped common ideas together to see what ideas emerged and 

were most common (See Appendix B). Due to the greater variety and complexity of ideas within 

the differential substitution codes I also compared the students’ thinking within each pair from 
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one task to the next for the differential substitution. This comparison allowed me to see the ideas 

each pair of students developed at each stage of the interview, and what reasoning students 

maintained or did not maintain from the first task to the second. Analyzing the coded data this 

way provided a larger picture of how the participants’ quantitative understanding of u-

substitution developed.  
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CHAPTER FIVE: RESULTS 

In this chapter I summarize the reasoning displayed by the students in the interviews. I 

start with describing the general results across both interviews in terms of students’ usage of 

quantities and quantitative reasoning. Following these general results, I then focus on interview 

#1 to describe the students' concept images for the derivative, differential and integral. I then 

move to focus on interview #2 by describing the images that students developed of u-

substitution--specifically substitution of bounds, substitution of the integrand, and substitution of 

the differential.  

Use of Quantity 

I start my results section by speaking generally across both interviews in terms of how 

the students used and attended to quantity in the tasks from both interviews. I first talk about the 

students' use of symbols as representing quantities, then about the quantitative relationships that 

emerged between two quantities and finally students’ quantitative relationships and quantitative 

operations as defined by Thompson.  

Symbol as Quantity 

Redish (2005) talks about loading meaning onto mathematical symbols and how those 

meanings can help students reason about mathematics problems (see also Dray & Manogue, 

2005). Throughout the interviews students repeatedly referred to symbolic expressions as a 

quantity demonstrating the ways they were loading meaning onto the symbols.  

Ellie: This right here, the π/12, it's giving us the like, it gives us the radians at that time. 

“that equation [ 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇] is essentially equal to bit of radius” 

Bently: So this is your function [points to 𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)], this is showing how much jewels 

you're getting per second right. And this [points to 𝑑𝑑𝑅𝑅] is showing small time in seconds. 
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So it's [gestures to the whole integral expression] just getting like all of the power that 

you're getting, all of the jewels that you're getting. 

Viewing symbolic expressions as quantities helped the students make sense of and keep 

track of the quantities as they completed the substitutions.  

Jackson: Basically, cuz this is the angle right here, right? Like that's a sin of, or the sin of 

theta is our power output and this [circles 𝜋𝜋
12
𝑅𝑅 in the sin function] would be what theta 

would be equal to 

Two Quantity Relationship 

As mentioned earlier, in Thompson’s (1990) definitions surrounding quantity he 

describes a quantitative relationship as existing between three quantities, any two of which could 

be used to find the third under quantitative operation. This can be thought of as having a 

triangular structure with each vertex being a quantity connected by quantitative operations. 

Carlson et. al. (2002) describe mental actions of covariational reasoning, the first mental action 

being “coordinating the value of one variable with changes in the other.” In my interviews I 

found that students frequently reasoned with and about relationships between two quantities in 

ways that did not quite fit in either Thompson’s definition of quantitative relationships or 

Carlson et. al.’s covariational ideas. The student reasoning had the feel of Thompson’s 

quantitative relationship but between two quantities rather than three, while having some 

covariational aspects. That is, while they certainly used some amount of covariational reasoning 

mental actions, because they were describing a relationship between two variables the reasoning 

was more about the quantitative relationship rather than the covarying relationship. Because of 

that I created a code for their two-quantity relationships and categorized each instance in one of 

three ways: basic relating of two quantities, equivalence, and a function or input/output 
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relationship. I will unpack each of these in turn. I note for all six of the students evidence of 

these three types of two-quantity relationship appeared in their thinking.  

Basic Relationship 

 In the instances where students talked about relationships between quantities in fairly 

non-specific ways, I coded as a basic relationship. Within this category students exhibited 

different levels of specificity about the relationship as shown by the following student excerpts.  

Andres: Well, it's just a much more direct relationship between radius and volume 

whereas the relationship between temperature and volume isn't as direct, and so that's 

why it's a much more complex relationship. 

Here Andres is acknowledging there exists some relationship between each pair 

quantities but is not describing any type of covariation or specifics of the nature of that 

relationship. As mentioned earlier and as seen in the following quotes, sometimes the students 

would incorporate some covariational reasoning while discussing how the two quantities change 

in relation to each other. 

Bently: your 𝑑𝑑𝑟𝑟 is how much it's growing which means if your 𝑑𝑑𝑟𝑟… if your radius 

changes, your volume's gonna change. But this is showing that as your radius changes 

very slightly, shows how your volume changes very slightly. 

Liam: We also want, you know, the relationship between 𝑑𝑑𝑅𝑅 and 𝑑𝑑𝜃𝜃 

 Again students would talk about the changes in one quantity affecting the other, but not 

initially describe any specifics of what those changes were. Bently later went on to say that the 

change in volume was “dependent on your radius times the surface area” engaging in a different 

type of two quantity relationship that I will describe later. 
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Equivalence 

 The two quantity equivalence codes were used when students directly stated either two 

symbolic expressions, quantities or some combination of the two were the same. I note that these 

instances appeared most frequently when students were describing the change of quantity 

relationship, or when comparing the target quantities of the original and substituted integral.  

I will first talk about some different ways students equated the quantities themselves. All 

three pairs at some point equated values of quantities and said things like “one hour is equal to π 

over 12.” Some students simply equated the quantities themselves without reference to the 

specific relationship values. For example, in the below excerpt Andres equated the quantities 

without attention to the symbology or measure of the equivalence. 

Andres: Yeah, it's just, I mean, it's the same because they're both measuring, well [pause] 

they don't measure the same thing, but I would say they both measure the same thing 

without measuring the same thing. I think they're both, they both represent the same 

thing, which is the position of the sun. 

Similarly, equating quantities also appeared when comparing an integrand to its 

substituted version as seen during this sphere task substitution. 

Bently: ‘Cause this function is the same thing as the other one. Like we're both changing 

at the same time, it's just you’re calling this one in terms of temperature instead of radius 

even though they both happen at the same time. 

In both of these instances the students are referring to the quantities of the position of the 

sun and the size of the balloon as being represented by two different measures. In these instances 

we can see the students are also attending to some type of covariation, recognizing that if the 

quantities are equivalent they also must change together. I also note in these instances students 
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seem to be thinking about the covariation as being dynamic: changing time and angle as the sun 

sweeps across the sky, and radius and temperature changing at the same time.  

Interestingly, while talking about changing the quantity from time to radians, Ellie did 

not initially see the relevance of changing the variable because she had already mentally equated 

the symbols 𝜋𝜋
12
𝑅𝑅 with being the quantity of radians not considering the . 

Ellie: I feel like that would make it a lot more difficult. I don't know why we would 

switch it into radians. Um, because this right here, the π/12 is giving us the like, it gives 

us the radians at that time. 

It was not till after she and her partner had completed the full u-substitution that she was 

able to see the utility of changing the variable. This highlights that understanding how students 

load meaning onto the symbols is a non-trivial aspect to consider when using quantity-based 

tasks (Dray & Manogue, 2005; Redish, 2005).  

The other instances of equivalence I coded were when students used some symbolic 

expression as part of their equivalence statement. Similar to Ellie’s thinking the students were 

interpreting the symbols as representing the quantities, although unlike Ellie still seemed to keep 

them distinct. 

Bently: Your temperature is being changed with respect to, all of this stuff [ 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇], 

which like, as he said, it's kind of the same thing as radius. 

Liam: I was just thinking just like the same things as before with the difference in volume 

is equal to 𝜋𝜋𝑟𝑟2 and then the difference in length [indicating 𝑑𝑑𝛥𝛥 = 𝜋𝜋𝑟𝑟2 ∗ 𝑑𝑑𝑙𝑙]. 

Function 

For the student thinking that I coded as a functional relationship, the students were 

describing some type of input/output or operational thinking when talking about how two 
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quantities were related to each other. I will illustrate this type of relationship in the following 

student excerpts. First, consider Nate who explained that the original integral and substituted 

integral for the sphere problem were the same by noting that putting in temperature will result in 

the desired radius for the integrals to be equivalent.  

Nate: We found the relationship between r and T, so uh, we know that like for whatever 

T we put in there, it's gonna come up to like the right r to get the same result as this one 

[points to the original integral] 

In a second example, Liam is describing the quantities being used in the solar panel task 

and says, “When we plug in time, it gives us the angle.” In this excerpt Liam seems to also be 

indicating that there is some underlying structure or some operation being done, but the 

operation is done on a single quantity once it has been “plugged in” rather than an operation 

between two quantities. In this example there also is some covariational reasoning in Liam 

recognizing that there is an angle corresponding to a given time. 

Bently: I think you could lowkey just write 𝑑𝑑𝜃𝜃 or changes in 𝜃𝜃 as a function of 𝑅𝑅. Right? 

You already know that your theta is gonna be π whenever 𝑅𝑅 is 12. Right? So you can 

write that as what, at one hour you have π over 12, so 𝑓𝑓(𝑅𝑅) =  𝜋𝜋
12
∗ 𝑅𝑅 

Jackson: Instead of our tiny, tiny changes in, um, radius we're substituting that with, you 

know, what our tiny change in temperature times-ing one over the square root of that 

temperature. 

I note that the function two-quantity relationship is related to quantitative operation and 

can have some overlap with covariational reasoning. However, it is somewhat in between the 

two in that some operation is typically done on a single quantity to produce the second, and the 
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students seem to be thinking of it more as the result of “plugging in” a quantity than of the two 

quantities varying together.  

Usage of 3-Quantity Operations and Relationships 

 Thompson (2011) defines quantitative operation and relationships as typically involving 

three quantities. As mentioned earlier quantitative operation is the mental action taken on two or 

more quantities to produce a third quantity and quantitative relationship describes the 

connections between quantities that exist because of the operation. Although much of the 

students' quantitative reasoning happened with the two quantity relationships, they did still 

reason about and use quantitative operations and relationships in the way Thompson defined 

them. I also note that students frequently utilized the units to make sense of the integrals and will 

point out those instances in conjunction with their reasoning about the quantitative operation and 

relationships.  

Operation 

 Students' use of quantitative operation was primarily in reasoning about the target 

quantity in conjunction with units to check that the basic model was correct. At one point in the 

interviews all three pairs used the idea of units canceling to think about or justify their reasoning 

for the target quantity of the integral as in the following two excerpts.  

Bently: So the way I see is like the velocity in terms of time, right, that's giving you a 

rate, how much something is changing in terms of time. 𝑑𝑑𝑅𝑅 shows a very small portion of 

time… so if you multiply those together you're just going to get a distance, ‘cause the 

times will cancel out. 

Andres: ‘Cause 𝑣𝑣(𝑅𝑅)  is meters per second and it’d be times 𝑅𝑅 … so it would just be 𝑅𝑅 in 

seconds… over seconds. So just, you are just getting meters. 
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It also seems that the quantitative operations and units may have supported students' use 

of scaling covariational reasoning to move from a basic to a local model. Because the units 

worked out for the basic model that same line of reasoning was extended to the local model.  

Nate: Well it’s [meaning a small slice of volume of a cylinder] the area times like the 

length. So it's like the area of a circle at 'a' (meaning point a) multiplied by a really small 

length to give you a really small volume. 

Jackson: This dark circle is your sphere, and your 𝑑𝑑𝑟𝑟 is how much it's growing, which 

means if your 𝑑𝑑𝑟𝑟…if your radius changes, your volume's gonna change. But this is 

showing that as your radius changes very slightly shows how your volume changes very 

slightly, which is dependent on your radius times the surface area  

Jackson has a solid grasp on the basic model of getting volume with radius and surface area𝑟𝑟 ∗

𝑆𝑆 = 𝛥𝛥. In talking about the local model zoomed in to small changes in radius and volume he 

referred back to the operation and local model that radius and surface area produce volume.  

Relationship 

Reasoning about the quantitative relationships and operations along with the units that 

form the target quantity helped students to reason about why the original and the substituted 

integral both add up to the desired quantity. 

Liam: I think you get at the same thing, but this would be different units. As you do this 

[pointing to ∫ 𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)𝑑𝑑𝑅𝑅6

0 ] because this will give joules, and then this 𝑑𝑑𝑅𝑅 kind of helps 

with like the joules per second. This [pointing to 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑑𝑑𝜃𝜃] would be like joules per 

degree, and then degrees. So you'd get joules out of both of them and you get the same 

thing, but this P [meaning the power function P] significantly would be in different units. 
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Here he unpacks the two different quantitative relationships and the units for the target 

quantities of the two equivalent integrals. For the first, he is thinking about the function quantity 

as a rate in units of joules per second multiplied by the time 𝑑𝑑𝑅𝑅 to get the desired energy in joules 

and for the second that the rate function is in joules per degree multiplied by degree 𝑑𝑑𝜃𝜃. I note 

that although he uses the word degree here he previously had correctly referred to the unit of the 

angle as radians.  

Units of Energy  

There is a peculiarity within the solar panel context with regard to the unit of the target 

quantity which is watt hours. In practice watt hours is a fairly common unit; however, the unit of 

watts is joules per second meaning the unit of watt hours is also 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
𝑠𝑠𝐽𝐽𝑠𝑠𝐽𝐽𝑠𝑠𝑑𝑑

ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑠𝑠, thus we have two 

distinct time measures happening simultaneously in the single target quantity. For some of the 

students this was not an issue and as seen in Liam’s reasoning in the previous section where he 

took 𝑑𝑑𝑅𝑅 to be in units of seconds. For the pair who had not taken calculus previously it mattered 

that the time measures present were different. However, they did not have a good way to grapple 

with the discrepancy they found. In the process of making sense of the basic model Ellie hit on 

this complexity.  

Ellie: Um, I guess it's still just not making a whole lot of sense to me. Because this 

function that we have here… which we know is watts, which we know is joules per 

second, so we know that this in here [indicating the function 250𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)]is going to be 

joules per second. And then we're multiplying it by dt, which we're saying is hours. 

She was wrestling to think about how the function could input hours and output joules 

per second as well as how the units of joules per second multiplied by a small amount of hours 
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could result in energy. The following excerpts demonstrate how her partner Andres responded to 

these ideas. 

Andres: I think because somewhere else in this function, it compensates for that probably 

with this constant in the front. That with that constant front, it'll compensate for the fact 

that it's [the input] in hours and then with that, it'll give us joules per second. 

Andres initially reasoned that the constant in the function would have some units that 

would convert the input unit of hours to the desired power units of joules per second. This is 

similar to what Redish (2005) says about constants in physics rarely being just numbers, but that 

they indicate a connection with something physical. Andres was reasoning that the constant’s 

connection to the physical would take care of any unit discrepancy. Another way Andres tried to 

grapple with this was by reasoning with a combination of quantities and units.  

Andres: So how you can see it too, is it's just joules per a certain amount of time, times 

time.  

We see he is combining units (joules) and quantities (time) and canceling the quantity of 

time to perform a “unit check” to make sense of the multiplication resulting in the target quantity 

of energy in joules. 

 This exchange draws attention to an important aspect of using quantitative based tasks in 

mathematics teaching. As seen from the students’ work, while this may seem like a simple unit 

difference, the context imported a complexity that was nontrivial for students to make sense of. 

As part of creating and using quantity-based tasks it can be easy to inadvertently import some 

scientific conventions that are non-trivial and not realize it until after the fact. It is important to 

be aware of the potential complexities of the context and notice when those complexities 

interfere with the mathematics. I did not anticipate this complexity in creating the task and 
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although there is nothing incorrect about having the two distinct time measures, I would define 

the power function to be in joules per hour for simplicity in future usage of the task. 

A 3-Quantity Structure Different from Thompson’s “Triangle” 

 I end this section by noting that sometimes the three-quantity relationship did not have 

the same structure as defined by Thompson. As noted earlier Thompson’s three quantity 

relationship has a triangular structure whereas students in the interview talked about the 

relationships between three quantities more as a linear structure, or nested function composition 

structure, like Jones’ nested multivariation (Jones, 2022) (Figure 8).  

Figure 8 

Comparison of 3-Quantity Structures (a) Thompson’s Triangular Structure and (b) Jones’ 

Nested Multivariation Structure)  

 

Andres: So you go from relationship with temperature to volume, to temperature, to 

radius. And so it's just substituting to find a relationship of one thing in relation to 

another. Just finding the relationships between two different, um, things or rates of 

change and relating them to another relationship of two rates of change. 

Interviewer: What are the little pieces that I'm adding up? 

Nate: The energy at that time at that angle. 

 

Quantity 2 Quantity 3 

Quantity 1 

Operation 

Quantity 1 Quantity 2 Quantity 3 

(a) (b) 
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Nate went on to elaborate that he was thinking the sun at a certain time gives an angle and the 

little pieces are some amount of energy for that given angle value. In both these instances 

students are recognizing a string of relationships 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑅𝑅𝑜𝑜𝑟𝑟𝑡𝑡→𝑟𝑟𝑎𝑎𝑑𝑑𝑠𝑠𝑜𝑜𝑠𝑠→𝑣𝑣𝑜𝑜𝑙𝑙𝑜𝑜𝑡𝑡𝑡𝑡 and 

𝑅𝑅𝑠𝑠𝑡𝑡𝑡𝑡→𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑡𝑡→𝑡𝑡𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑑𝑑. This quantitative nested mulivariational structure similarly appears in 

the chain rule. It makes sense that this structure would appear here since u-substitution “undoes” 

the chain rule. I will speak about this more in the discussion section.  

Interview 1: Images of Differential, Derivative, and Integral  

 In this section I now move to describe the images for the differential, derivative, and 

integral that students had or developed in the first interview and which of these did or did not 

carry on to the second interview.  

Derivative  

The image for derivative that was the most prominent was the derivative as a rate of 

change with all six students calling on this image multiple times. When asked what various 

derivative expressions meant (i.e., 𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

= 4, 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

 = 𝜋𝜋
12

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

= 1
2√𝑇𝑇

) students responded primarily with 

reasoning based on rate. 

Ellie: Um, it’s going to mean…Four is the rate at which the volume is changing in 

relationship to the height  

Liam: The instantaneous rate of change of the angle relative to the change in time 

Nate: The way I interpret it is like the change of the radius with respect to the 

temperature is this derived function where the temperature can be anything. And you get 

the rate from that temperature. 

Since we were building these ideas from differentials, and as is shown in the following 

section on differentials students’ image of differentials was very much small change or small 
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amount, they did begin to use this differentials-based idea of derivatives as a ratio of small 

amounts or changes as we went. 

Interviewer: So then this 𝑑𝑑𝑟𝑟/𝑑𝑑𝑇𝑇 what does that mean? 

Andres: Um, the rate at which radius gets, uh -- the way which radius gets infinitely 

smaller as the temperature also does. 

Andres was seeing the derivative as consisting of two infinitely small quantities that form 

a rate. One student specifically used the differential relationship to describe what derivative 

meant. 

Bently: When you take the derivative, which is showing the rate between the two 

[meaning between the two quantities radius and temperature] r becomes dr, and then dT, 

doing derivative rules that you know becomes that [points to 1
2√𝑇𝑇

], but it's multiplied by 

the change-- the infinitesimal smallness of t [𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇]. And the way you write the 

rate is you show that d the change r over change of T. So that’s technically what happens 

and you just move it over …I typically write this [𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

] first cause I know that’s what it’s 

going to be, but this is to me technically that is what it is.  

This comment prompted further conversation where Bently’s partner Jackson about the 

notation for the derivative with respect to the differentials.  

Jackson: For me, I sometimes when I do this, um, like I'll add this in here to show that, 

um, you know, I'm still, it's looking like that on top, but I'm still taking all my variables in 

respect to 𝑑𝑑𝑇𝑇 even, or as well as my 𝑑𝑑𝑇𝑇 over 𝑑𝑑𝑇𝑇. So, this just goes to one. 
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Figure 9 

Jackson’s Symbolic Work for Describing the Derivative  

 

In the student population I recruited from, I wanted students with some quantitative 

experience from their class background, which meant that I did not see a lot of slope of tangent 

images and in the two places where the slope of tangent line conception appeared it was never in 

isolation, but was connected to a rate description. I also wish to note here that the lack of slope 

images could be due to the nature of the tasks. 

Ellie: Um, it's finding, well on like a graph it's finding the slope or the rate of change of a 

function. 

Bently: the rate at which it's changing is your slope right here. And dT is just kind of the 

x of your tan line. It's just x is moving so small, which means y also is moving so small, 

but it is increasing at that rate [pointing to 1
2√𝑇𝑇

]. 

Although his explanation does not use the quantities of the problem specifically, Bently 

seems to be using reasoning similar to Weber et al.’s (2012) calculus triangle where he is 

visualizing the slope as being created by horizontal changes in the quantity of temperature and its 

corresponding change in radius.  

Differential  

 The following concept images that appeared in students' work and reasoning relating to 

differentials: changes, small amounts, almost zero, collapsed to nothing, and incorrectly stated as 

derivative. I wish to note that I use the differential here and in the interviews as an informal 
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infinitesimal. This is frequently done in practice and researchers have argued that the informal 

approach is preferable and more conceptually useful for first-semester calculus students (Milner 

and Rodriguez, 2020).  

 For most of the students, they were unfamiliar with the term “differential,” although they 

were quite familiar with the notation 𝑑𝑑[ ] and the differential being small. Students most 

frequently talked about the differential as a small change or a “difference.” This is likely 

impacted by their background with thinking about the derivative as a rate of change.  

Liam: I'm thinking because you're saying it's like a very, very small slice so that's like an 

infinitely small thing which is like 𝑑𝑑𝑙𝑙 which is an infinitely small change and that leads to 

the difference in volume. 

Bently: so 𝑑𝑑𝑟𝑟 is the infinitesimal smallness change of the radius 

  One student repeatedly referred to the differential in both interviews as a derivative, but 

still maintained the concept of it being a small change.  

 I note that throughout the interviews the concept image that I as the interviewer drew on 

was that of differential as a tiny amount; however, in the process of analyzing my data I found 

that the language that I used throughout the interviews to talk about the differential was 

“change.” It appears that the students' images for the differential may have followed the language 

I used, and the “change” concept image of the differential appeared the most frequently 

throughout the interviews.   

In conjunction with talking about the differential as a change, students also frequently 

referred to the differential as being close to zero. 

Andres: I think it becomes small. It would mean it's just approaching zero to be 

practically zero and just, yeah as close as possible to a change of zero. 
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Jackson: It might be a limit idea, right? Uh, for taking it approaching a very, very, very 

small amount getting close to zero. 

Bently: It approaches zero, but it's always four times as much as the change of height.  

In the first interview none of the students talked about the differential collapsing to 

nothing, rather just becoming small. Interestingly, for the most part this did not hold true in the 

second interview when students were doing the differential substitution. This indicates that 

although thinking about the differential as an amount is part of their mental image, it may not be 

the most prominent and the tasks could have directed them away from a collapse metaphor.  

Integral  

 The images for the integral that the students had were grouped according to Jones’ 

(2015a) concept images: area under a curve, antiderivative, and adding up pieces (AUP). I 

included any instance of students talking about partition, target quantity or sum with AUP.  

In the first interview students were asked to talk about what the basic integral form 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑏𝑏
𝑎𝑎 meant. From this initial question there were three students who used the idea of area 

under a curve to describe what was happening in the integral. However, their explanations were 

not purely as area under a curve as is shown in the following student excerpts.  

Liam: you're basically finding the total change... Kind of like an area, but it's not always 

the area, but like an area underneath the curve. 

Nate: You're taking a function and finding like a spot and b spot and you're adding up all 

the really small rectangles underneath it to get like, that area… this is the base of the 

rectangle, and the function is the output, which would give you --- in cartesian at least -- 

would give you a height. And so, you're saying your base is like infinitely small, and then 

your height is whatever the function outputs. 
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Liam acknowledged that while area under a curve was one representation of the meaning 

of the integral that not every integral had to have that meaning. Within his area ideas Nate was 

more focused on the Riemann sum of the little areas. He also seemed to be thinking about the are 

rectangles as having finite withe then zooming in to an infinitesimally small base for each. After 

this initial question both the tasks and the questions I asked were designed to lead students 

towards using the AUP conception. This was unproblematic and students were able to easily talk 

about the integrals as adding up little pieces of quantity.  

Andres: It's adding up each infinitesimally small little slice, the volume, small little slice 

of volume in that whole shape 

Nate: So it's like the area of circle at 'a' multiplied by a really small length to give you 

really small volume, and you get all the small points between ‘a’ and ‘b’. 

 Within the adding up pieces thinking, the partition and the sum seemed straightforward 

for the student and the larger part of their reasoning was with the target quantity, spending a lot 

of time looking at local models to conceptualize the target quantity.  

Andres: Yeah, I think it would be 𝜋𝜋𝑟𝑟2 times that distance l. [pause] It would be the 

volume within this range. [pause] I think it would just 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙…If the volume is 

infinitesimally getting smaller and that means something about the volume also has to be 

getting infinitesimally smaller and π can't get smaller, it's a constant and so the only other 

thing I could get smaller is the length. 

 Andres started out with the local model to conceptualize volume of the cylinder and then 

was able to think about the length becoming smaller and smaller to the infinitesimal 𝑑𝑑𝑙𝑙 size. Ellie 

similarly thought about zooming in to smaller and smaller lengths giving smaller volumes  
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Ellie: Then the 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙 would be equal to the change in volume, because as the length of 

the missing piece of cylinder (talking about the slice of volume) decreases, the volume 

will as well. 

Moving from the basic cylinder to the second shape, the students were also able to 

effectively reason about how infinitesimal changes of radius as well as length would impact the 

integral as they thought about each target quantity slice.  

Ellie: So 𝑟𝑟(𝑙𝑙) is going to be the radius... When I know what point of 𝑙𝑙 I'm looking for 

then that's going to tell me the point that my radius is at…And so if I plug in my different 

lengths, then it's going to give me out what the radius is and it's therefore going to give 

me, um, the volume. 

Liam: But if we know those two points, 𝑑𝑑𝑙𝑙 would be relative to like 𝑑𝑑𝑟𝑟. Because as you 

increase at any point (indicating moving along the length of the shape), the 𝑑𝑑𝑟𝑟 is like, 

kind of relative to that. 

The students’ conceptual reasoning about the integral at the end of the first interview was 

largely where I wanted it to be with AUP as the most prominent conception. Because there are 

many ways that students can conceptualize the integral it was a possibility that students would 

revert to an anti-derivative of area under a curve conception in the second interview; however, I 

found that students maintained AUP as their primary conception in the second interview as they 

reasoned about the integrals both before and after the substitution. 

Andres: Basically, what the integral is summing up is all of the instantaneous amount of 

power it collects throughout those six hours… So the 𝑑𝑑𝑅𝑅 is just infinitely small amounts 

of time to give you, um, all of the wattage at every moment in time in those six hours to 

add 'em all together.  
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Jackson: The output of that multiplication would be your volume at that temperature. So 

we're adding up different volumes all the way up from, or from our beginning 

temperature to our ending temperature 

The antiderivative conception only appeared a couple of times in one student’s reasoning 

in the second interview, which could be due to the fact that the focus of the tasks was on the set 

up of the integrals rather than their evaluation. Notably, even in the instances where the student 

did mention antiderivatives, they still maintained the connection between the quantities and the 

antiderivative. 

Andres: It (the power function) gives you energy per second so the amount of energy in 

that total time frame would be the antiderivative of that [points to the integral]. So when 

you solve for this you get the amount of energy in that specific range you accumulated.  

Two of the students had difficulty with the interpreting integral ∫ 𝑑𝑑𝛥𝛥𝑏𝑏
𝑎𝑎 , wanting there to 

be some type of multiplication visible in the integral.  

Andres: Integral is a multiplication of… its two things being multiplied and it's the 

summation of something and there's no multiplication there. So I'm just trying to figure 

out what's being multiplied, what's being added. 

Liam: I'm just a little confused ‘cause you just wrote 𝑑𝑑𝛥𝛥 and there's no nothing else, like 

a 𝑑𝑑𝑙𝑙 or something like that, that would, that would represent the multiplying. 

Notice that these students are focused on the multiplication which is in line with the 

multiplicatively based summation (MBS) thinking described by Jones (2015a), whereas in Jones 

and Ely (in press) we see that AUP is more general and does not always have to have a product. 

It is true that many integrals do have a multiplicative element and because it is a common 

structure there can be a tendency for students to overgeneralize and assume that is the only 



 

57 
 

integral structure. However, not all integrals have that structure so it may be important for 

students to be able to recognize that though there often is some multiplication there does not 

always have to be.  

Interview 2: Images of U-Substitution  

I now move to describe the results pertinent to the second interview, focused on u-substitution. 

To orient the reader for the results of each of the three pieces of substitution (bounds, function, 

and differential), I first provide an overview of how the students progressed through each 

substitution in the two tasks.  

Overall Flow of Student Work 

In both the solar panel task and the sphere task, the students were asked if they could 

change the integral to be in terms of a new quantity and the order that the students completed the 

substitutions of bounds, function, and differential varied from pair to pair and in some cases from 

one task to the next. After completing each of the tasks, students were asked to recap again what 

substitutions they made and I additionally made note of the order they described these 

substitutions. The below tables (Tables 2 and 3) outline the progression of each pair of students 

through the two substitution tasks.  

I note that in the solar panel task two of the pairs started with the function substitution, 

and in the sphere task all three pairs began there. In the case of the solar panel task the two 

groups who began with the function substitution had a written-out change of quantity expression 

𝜃𝜃 =  𝜋𝜋
12
𝑅𝑅 while the group who started with bounds substitution did not. Similarly, the 

relationship 𝑟𝑟 = √𝑇𝑇  + 5 was given to all the students and written out on the board. It seems that 

having the change of variable relationship made the function substitution easiest and most 

familiar, so students began there. For the Nate and Liam who did not start with the function 
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substitution on the first task I believe they started with the bounds because they were using the 

bounds as part of their reasoning about the relationship between 𝑅𝑅 and 𝜃𝜃. 

Table 2 

Solar Panel Task Component of Substitution Flow  

Pair Solar Panel Task Flow Order of recap 

J & B Function → differential → bounds function → bounds → differential 

N & L bounds → function → differential function → differential → bounds 

E 
 
A 

function → bounds → differential 
 
Function → differential → bounds 

bounds→ function → differential 

 

Table 3 

Sphere Task Component of Substitution Flow 

Pair Sphere Task Flow Order of recap 

J & B B Function → J differential → bounds function → bounds → differential 

N & L Function → bounds → differential bounds → function → differential 

E & A A function → E Differential → both 
bounds bounds→ function → differential 

 

Bounds Substitution 

 None of the students had trouble identifying the need to change the bounds and five of 

the six students were able to successfully draw on the change of quantity relationship in both 

tasks to perform that substitution. For the solar panel task, some students used the visual of the 
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sun moving across the sky to reason about the bounds changing as shown in the following 

excerpts.  

Jackson: I mean, we're taking angle measurements here. We're starting at zero, uh ending 

up with a straight vertical line, which is π halves. So that’s how I'd explain this, uh, 

bounds right there from zero to π halves 

Liam: Well ... You would need different bounds ‘cause these bounds are in terms of t. 

You have this value t. So you'd have to say when the sun is at -- or like at like zero 

degrees relative or to 90 degrees so you'd have to change that. 

Conversely some students reasoned more with the symbolic relationship between time 

and angle. They recognized that plugging in a time to the function gave an angle, and so to check 

what the angles related to 𝑅𝑅 = 0 and 𝑅𝑅 = 6.  

Bently: So what's happening here is you're lowkey, trying to find your theta, which is 

going to be your time starting at zero, right? Which gives you sin of zero. And you put in 

six, it's going to be sin of 𝜋𝜋
2
, which is what you want your theta to be 𝜋𝜋

2
. Right. You'll 

calculate all of the angles from that time period. 

In the sphere task five of the six of the students again had no trouble thinking about the 

bounds substitution and tracking the quantities through their computations. 

Liam: We would need the equivalent temperatures as the bounds because we can't do 

relative to 𝑟𝑟 ‘cause we're not going to have 𝑟𝑟 in this equation. So we'd have to do it from 

when 𝑟𝑟 = 10. So you'd have to solve, so 10 = √𝑇𝑇 + 5 which would be 5 = √𝑇𝑇  would 

be 25 = 𝑇𝑇. So you go from T = 25. And then you're just gonna get 10 = √𝑇𝑇 if you go 

through that again with 15 [meaning r = 15] you're just gonna subtract the five over. So 

then you're gonna get T = 100. So this is gonna be 𝑇𝑇 = 100 
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Bently: And then all you gotta do for the bound is, you know that 𝑟𝑟 equals that [points to 

√𝑇𝑇 + 5]. So then you can plug in what your bounds are. So 10 equals all that stuff 

[ solves for 𝑇𝑇] So that means 𝑟𝑟 = 10 means 𝑇𝑇 = 25  and when 𝑟𝑟 = 15, 𝑇𝑇 = 100. And 

that would be your bounds instead, 25 to 100. 

One of the students however, did initially have a difficulty with reasoning through what 

the change of bounds would be for the sphere task. While he recognized that they needed to be 

changed, stated that he didn’t know what to do with the bounds. His partner was able to help him 

reason through how to find what the change of bounds should be. 

Ellie: So what are our bounds? They need to now be in terms of temperature so we 

already have this equation [pointing 𝑟𝑟 = √𝑇𝑇 + 5. And so, I mean, I think that we can just 

like, plug in the numbers. 

Following her suggestion Andres figured out the new temperature bounds, and was able to 

explain that the new bounds were the temperature equivalent of the radius bounds.  

Function Substitution  

 For all of the students, the substitution of the function seemed to be a fairly easy and 

almost intuitive substitution. There was less cognitive work that students did surrounding the 

function substitution and having the change of variable relationship (i.e.. 𝜃𝜃 = 𝜋𝜋
12
𝑅𝑅) was an 

important precursor for them to make the function substitution. 

Jackson: Basically, ‘cause this is the angle right here [points to 𝜋𝜋
12
𝑅𝑅], right? Like that's the 

sin of theta is our power output and this [again gestures towards 𝜋𝜋
12
𝑅𝑅] would be what theta 

would be equal to. 

Nate: We found the relationship between r and T, so we know that like for whatever T we 

put in there, it's gonna come up to like the right r to get the same result as this one [4𝜋𝜋𝑟𝑟2] 
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It is interesting to note that of all six students only one talked about the function 

substitution as specifically as substituting what was “inside the function” which is one of the 

ways u-substitution is typically introduced.  

As mentioned earlier in the flow of the three pieces of u-substitution, the pairs who 

started with the function substitution in the solar panel task had the relationship 𝜃𝜃 =  𝜋𝜋
12
𝑅𝑅 

explicitly written out on the white board where the group that began with the bounds did not. 

While it may seem like the students had merely completed a successful symbolic substitution 

when asked about why they made that substitution the students were able to provide quantitative 

justification for the substitution or how the two functions were equivalent.   

Bently: It means that your sin of theta is going to follow the same pattern as shown here 

[Gestures to the function 𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)] As it moves along, it's moving along the same way as 

the time is.  

Liam: So it's basically just skipping the step where you multiply this by this [ 𝜋𝜋
12
∗ 𝑅𝑅] and 

just directly plugging in the angles. 

The students reasoned about the inputs being equivalent to justify the function 

equivalence, again highlighting the importance of students having a quantitative understanding 

of the change of quantity relationship.  

After completing the full substitution for the solar panel task, one pair talked about the 

different units of the substituted function. 

Liam: I think, I think you get at the same thing, but this would be different units. As you 

do this [pointing to ∫ 𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)𝑑𝑑𝑅𝑅6

0 ] because this will give joules, and then this 𝑑𝑑𝑅𝑅 kind of 

helps with like the joules per second. This [pointing to∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑑𝑑𝜃𝜃𝜋𝜋/2
0 ] would be like 
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joules per degree, and then degree. So you'd get joules out of both of them and you get 

the same thing, but this P [meaning the function P] significantly would be in different 

units. 

Differential Substitution 

During the solar panel task, when asked if they could write the integral 

∫ 250𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋
12
𝑅𝑅)𝑑𝑑𝑅𝑅 6

0 in terms of the angle rather than time five of the six students (Jackson, Bently, 

Nate, Liam, and Andres) directly substituted 𝑑𝑑𝜃𝜃 for 𝑑𝑑𝑅𝑅. To help the students reason through the 

differential substitution by comparing their integrals and the pieces they had substituted I pointed 

out to the students that based on what they had written that 𝑑𝑑𝜃𝜃 =  𝑑𝑑𝑅𝑅. Their responses to this 

observation were varied and yielded some interesting results. I will discuss the process of each 

pair reasoning about and resolving this issue. 

Jackson and Bently  

As soon as I had pointed out that as their integrals stood it meant that 𝑑𝑑𝜃𝜃 =  𝑑𝑑𝑅𝑅, Jackson 

and Bently immediately recognized this was incorrect. J wrote the correct differential 

relationship on the board and gave the following reasoning.  

Jackson: So, I mean, we just take the derivative of both sides, right. Um, so I mean, this is 

the derivative of theta is 𝑑𝑑𝜃𝜃, the little change of theta, and then we apply, um, we take the 

derivative of the right-hand side, which is just a constant times a multiple. So we can do 

the constant out here times the little change in time out here.  

Bently: And then you can solve for 𝑑𝑑𝑅𝑅 yeah. Plug that in too 

Both of these students had taken calculus before and seemed to be drawing on previous 

calculus experience. Saying “take the derivative of both sides” then incorrectly stating 𝑑𝑑𝜃𝜃 as the 
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derivative of 𝜃𝜃 is indicative of a previously learned procedure. However, when prompted the 

students were able to use quantities to describe why their calculations made sense.  

Bently: For every one portion of time, I'm gonna say, like one hour is going to be 𝜋𝜋/12 

radians. Which means, like, your small change in theta shows that's your small change in 

time, except it's going to be multiplied by 𝜋𝜋/12. So every like small thing of theta moved 

your time is moving by that amount multiplied by pi/12  

Here I note that although the language he used was 𝑑𝑑𝜃𝜃 ∗ 𝜋𝜋
12

= 𝑑𝑑𝑅𝑅  rather than the other 

way around, this was not his meaning based on his work and gestures as he was speaking. 

However, this highlights again how difficult articulating that multiplicative relationship is and 

shows the prevalence of the well known x times as many students as teachers problem (Clement, 

1982). In a different setting I might have addressed this issue, however it would have required 

more focused intervention to straighten out the language and it was clear he had the correct 

meaning of the relationship if not the correct language.  

Jackson made sense of the differential relationship in terms of larger changes rather than 

infinitesimal ones but demonstrated that he believed this relationship still held on the 

infinitesimal level and is evidence of scaling covariational reasoning.  

Jackson: As the sun rotates it's gonna be rotating every hour at a constant rate of, 𝜋𝜋/12. 

So yeah, just describing that changing rotation with respect to time. 

In the next task this pair again used similar language and reasoning to complete the 

differential substitution but seemed to keep the ideas from the first integral substitution and did 

not have the same problem with directly equating the differentials.  

Jackson: If we take the derivative of both sides, we know that we can solve for 𝑑𝑑𝑟𝑟. So our 

𝑑𝑑𝑟𝑟. would be one over two root the temperature ( 1
2√𝑇𝑇

). 
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Nate and Liam 

Both Nate and Liam recognized that the differential needed to be substituted for the 

integral to be in terms of angle rather than time. 

Liam: “because…we don’t have 𝑅𝑅 anymore because we’ve replaced 𝑅𝑅, so we can’t use 

𝑑𝑑𝑅𝑅 which is like a very small change in t so the way you would have to measure it is 

you’d have to multiply that by a very small change in the angle.”  

Although they both agreed on why 𝑑𝑑𝑅𝑅 needed to be substituted Nate and Liam had two 

different responses to the question about 𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑅𝑅’s equivalence.  

Liam: Equal as in they're going to be infinitesimally small. They're gonna be, like 𝑑𝑑𝜃𝜃 

goes from zero to π over two. So that's a shorter range, but because it's broken up, 

infinitesimally you can't compare infinitesimally small pieces… I think they, they would 

both be the same as you're like evaluating integral but they would change differently.  

There seem to be two reasons for Liam’s incorrect equating of 𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑅𝑅. The first is he 

appears to be doing something similar to what Ohertman (2009) describes as the collapse 

metaphor when thinking about the differential (see also Hu & Rebello, 2013). He sees 𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑅𝑅 

as being incomparable since they are both infinitesimally small. The other reason is that he is 

numerically equating the intervals of integration of the two integrals rather than thinking about 

the quantities and how they were related saying that 6 is bigger than π/2 so that is how they were 

potentially different. Nate, however, did not agree with Liam’s argument for 𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑅𝑅 being 

equal.  

Nate: Yeah. I mean, I think they'd be proportional, but I don't know if they'd be exactly 

the same… Like one hour is equal to π over 12, but like, they don't, in my mind, they 
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don't like mean the same thing. ‘Cause π over 12 is just like a ratio and one hour is like a 

unit.  

He went on to explain that he viewed 𝜋𝜋
12

 as 𝜋𝜋 𝑑𝑑𝑎𝑎𝑑𝑑
12 ℎ𝐽𝐽𝐽𝐽𝑑𝑑𝑠𝑠

 and in multiplying by 𝑑𝑑𝑅𝑅 the units of hours 

cancel so the value of radians would be left. Later, in the sphere problem Liam maintained the 

concept that differentials are not all equivalently infinitesimally small and used Nate’s idea of 

proportionality in his reasoning. 

Liam: You get the really small things the way I was thinking about it before about it kind 

of like derivatives, you wouldn't be as simple as just making them really small pieces 

‘cause they're proportional, but they're not directly linear, like in a linear fashion 

proportional.  

He seemed to be using scaling covariation maintaining the relationship between the quantities 

while thinking about the pieces of the quantities becoming smaller and smaller. 

Andres and Ellie 

Andres and Ellie also initially thought of 𝑑𝑑𝑅𝑅 and 𝑑𝑑𝜃𝜃 as being the same. Ellies’s response 

was similar to Liam that it was okay to directly substitute 𝑑𝑑𝜃𝜃 in for 𝑑𝑑𝑅𝑅 as long as everything else 

in the integral had switched to be in terms of theta. Andres was less sure about the equivalence of 

the two differentials and was using quantities to try to make sense of the relationship.  

Andres: Yeah, it's just, I mean, it's the same because they're both measuring, well... [brief 

pause] they don't measure the same thing, but I would say they both measure the same 

thing without measuring the same thing. I think they both represent the same thing, which 

is the position of the sun. 

He correctly reasoned that the different quantities had different measures but seemed to 

justify the equivalence by reasoning that the quantities both measured the position of the sun. 
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This highlights an important distinction between comparing quantities and the values of the 

quantities.  

To push them further I asked if 1
100

𝑅𝑅ℎ of an hour was equal to 1
100

𝑅𝑅ℎ of a radian. This 

launched a discussion about the relationship between small amounts of each quantity. I note that 

this conversation lasted for about 12 minutes. It is not reasonable to go through all of the details 

of that conversation here so for brevity I highlight here the parts of their reasoning that lead them 

to the correct substitution of the differential.  

Ellie interpreted my question to mean is one one hundredth of the interval of 6 hours 

equal to one one hundredth of the interval of 𝜋𝜋
2
 radians, and she was able to accurately compute 

and interpret the value of 1
100

𝑅𝑅ℎ of the interval of each quantity.  

Ellie: When 𝑑𝑑𝑅𝑅 is equal to 6
100

, 𝑑𝑑𝜃𝜃 is equal to 𝜋𝜋
200

  

Figure 10 

Ellie’s Board Work for Formulating the Differential Relationship  

  

However, when she tried to generalize she became confused with the symbols and equated dt 

with 1
100

 rather than her original reasoning with one one hundredth of the interval of each 

quantity. Andres was able to build off her original reasoning and ratios to set up an equivalence 

with differentials 𝑑𝑑𝑑𝑑
6

= 𝑑𝑑𝜃𝜃
𝜋𝜋/2

 and describe its quantitative meaning.  
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Andres: 𝑑𝑑𝑅𝑅 is infinitesimally getting smaller over a period of six hours, whereas that's 

where 𝑑𝑑𝜃𝜃 is getting infinitely smaller over the range of π/2 So that's how they're equal to 

each other.  

From there the students were able to use that expression to find the differential relationship 𝑑𝑑𝜃𝜃 =

𝜋𝜋
12
𝑑𝑑𝑅𝑅 and make the substitution. In line with Andres’s earlier statement about both time and angle 

measuring the position of the sun they were most successful when their reasoning was based on 

an equivalence of quantities rather than reasoning based on the relationship of the values of the 

quantities.  

An interesting note about the solar panel task, students reasoned with the units of 𝑑𝑑𝑅𝑅 for 

the solar panel task and treated the differential 𝑑𝑑𝑅𝑅 in a couple of different ways. As mentioned 

previously one of the pairs wrestled with the units of dt being hours and the power function units 

being joules per second. However, two of the pairs thought about the 𝑑𝑑𝑅𝑅 as being a small amount 

of time in seconds even after having talked about the relationship between time and angle in 

terms of hours.  

Bently: So this is your function, this is showing how much joules you're getting per 

second right. And this [pointing to the differential] is showing small time in seconds. So 

it's just getting like… all of the joules that you're getting  

This is likely because the units of the power function are watts which can also be 

expressed as joules per second and students recognize joules as a unit of their target quantity of 

energy. Since they talked about dt being a small amount of time they had no problem with 

calling it seconds to make the units work for their desired target quantity.  
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Sphere Task Differential Substitution 

In the second task all three pairs eventually used the idea of taking the derivative of the 

change of quantity relationship in their process of making the differential substitution. Because 

of the nature of the second task, many of these same problems did not arise; however, there are a 

couple areas of note. First the problem of equating differentials 𝑑𝑑𝜃𝜃 = 𝑑𝑑𝑅𝑅 that appeared in the first 

task did not appear in this second. This likely happened for a couple of reasons. Firstly, some of 

the students referred back to their thinking from the first problem saying that even though both 

were infinitesimally small there would still be some explicit relationship between them, 

maintaining the differential as an infinitesimal quantity. And secondly, in the set up of the task 

the students were asked to take the derivative of the change of variable relationship, where doing 

so in the first interview could have influenced the students’ approach to this part of the 

substitution. Jackson, Bently, and Liam, the students who had all taken calculus before, again 

said “take the derivative of both sides” as they were doing their computations and similarly 

wrote 𝑑𝑑𝑟𝑟 =  1
2√𝑇𝑇

𝑑𝑑𝑇𝑇 not actually taking the derivative of both sides indicating that they were 

drawing on their previous calculus experience. Although the three students who had not taken 

calculus before drew on differential substitution ideas from the first task, this was still the most 

difficult part of the substitution to conceptualize.  

For example, Ellie tried to follow some of the ideas from the solar task and the idea of 

taking the derivative to find the differential equation. However, in trying to replicate the process 

she ended up with 𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

 and made the substitution with that relationship. 
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Figure 11 

Ellie and Alex’s Work for Substituting the Differential in the Sphere Task  

 

�4𝜋𝜋(√𝑇𝑇 + 5)2(
√𝑇𝑇
2𝑇𝑇

) 

Note: Typed below for clarity 

When prompted to consider if they were still getting the desired target quantity of volume 

Andres noticed that her work was not quite right.  

Andres: ‘Cause this isn't, this is just for one amount of temperature. It's not as we’re 

getting smaller, it's just for this just temperature. 

While somewhat mistaken in what √𝑇𝑇
2𝑇𝑇

 means in the context he was able to recognize that 

something was missing. He seems to have been thinking about the process of going from a basic 

to local model, and that when zooming in to a local model there needed to be an infinitesimal 

amount of temperature 𝑇𝑇, demonstrating that scaling covariation was a productive part of his 

reasoning about differential substitution. The students needed some prompting to resolve this but 

in the end were able to correct the differential term.  

Nate also had difficulty thinking about the differential substitution in the sphere task. 

Liam was able to help Nate think about it with the following explanation.  

Liam: My, my main explanation would be something along the lines of like, let's say 

we're just like, pretending, like it's a graph and we're using like, I don't know, [draws an 

arbitrary curve] I’m not an artist, there's a reason I like math, but let's say we're using 

like five rectangles. If it's five rectangles, the change dr would just be like, would just be 
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one. But because we solved for the change in like temperature, if we did it into five 

rectangles, that would be like 75 divided by five. And this is kind of, this will be 

equivalent to like this piece, but then this piece [pointing to the 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇written on the 

board] would be much bigger than that one. 

Zooming out from the infinitesimal level of the relationship to compare finite values of 

the quantities and their individual partitions helped Nate to make sense of the differential 

relationship for this problem. 

General Ideas About Substitution 

I, as the interviewer, played the role of instructor presenting the tasks and asking 

questions to direct the students’ attention; I wish to emphasize that all six students by the end of 

the second interview had developed an understanding of the u-substitution structure (bounds, 

function, and differential). They were each able to successfully develop this by applying 

quantitative reasoning in the context of the systematic way the tasks were designed. Early on in 

the interviews, students were able to identify the three components that needed to be substituted. 

This was accomplished by prompting the students to think about how they would reframe the 

integral in terms of a new quantity (angle rather than time and temperature rather than radius). 

As shown in the above sections as they worked through each substitution students used the 

quantities to successfully reason about the substitutions for each of the three parts and to resolve 

difficulties they encountered.   

At the end of each task the students were asked to summarize the substitutions they had 

done throughout the task. All three pairs mentioned the need for the two integrals (the original 

and the substituted integral) to be equivalent, saying things similar to the following statement 

from Jackson.  
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Jackson: if we're going to go from one relationship to the other like radius to temperature 

or from, you know, time to, um, degrees or I guess radians, we had to change our 

function bounds and our differential. We had to make sure that they were still equivalent, 

um, statements. 

Notice that Jackson specifically developed a personal “function-bounds-differential” schema for 

u-substitution. Jackson, Bently, and Nate all specifically mentioned that the change of quantity 

relationship led to figuring out the values for each of the substitutions.  

Jackson: We need a Relationship of how radius relates to temperature, 

Bently: We Needed this [Points to 𝑟𝑟 = √𝑇𝑇 + 5]. And Everything else came from That. 

Nate: Um, so we take the initial thing, we find the variable that changes it. (𝑟𝑟 = √𝑇𝑇 + 5) 

We find, like the link between the two, change the bounds, and then find the link between 

the small stuff. And then you get this [points to the substituted integral]. 

As shown by the above statements the students remained focused on the quantities and 

quantitative relationships in their descriptions of the meaning of substitution.  
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CHAPTER SIX: DISCUSSION 

 In this chapter, I first summarize my findings in answer to my research questions. I then 

discuss how this study connects to and builds on the existing literature in this area, and finally 

will examine the limitations of my study and ideas for future research.  

Answering the Research Questions  

As a reminder to the reader my two research questions are (1) How do students use 

quantities and quantitative reasoning in building an understanding of the three parts of u-

substitution? and (2) What resulting understanding of u-substitution do students develop and are 

those understandings connected to quantitative reasoning?  

Answering Research Question #1  

In answer to my first research questions, the data showed that students engaged in 

quantitative reasoning throughout their work on the tasks about the integrals, derivatives, and 

differentials in the first interview. This quantitative reasoning carried through to their sense-

making of each piece of the substitution in the second interview which I will discuss in more 

detail in the following section. 

 A few different types of quantitative relationships helped students as they reasoned 

through the tasks. First, students exhibited a two-quantity relationship that was different from 

Thompson’s triangle (1990, 2011) and Thompson and Carlson’s covariation (2017). The 

relationship was key for students reasoning about each component of the integral and their 

substitution and manifested as a "basic" relationship, as an "equivalence", and as a "function" 

function relationship, which I will discuss in more detail later in the contributions section.  

I also saw three-quantity relationships displayed (Thompson, 1990, 2011). This appeared 

most often relating to the target quantity in conjunction with quantitative operation and reasoning 
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with units to note that the multiplication of a function quantity with a small amount of the 

differential quantity produced the desired target quantity. Yet, the three-quantity relationship was 

often nested multivariation, like students describing power being for a given angle at a given 

time, rather than Thompson’s triangle relationship structure (Thompson, 1990, 2011; Jones 

2022).  

Quantitative reasoning was used to think of derivatives as rates and ratios of small 

changes, rather than the slope of a tangent line (Ely, 2020). But it did not show up in u-

substitution as strongly as anticipated, it only appeared in terms of calculating d[]/d[] for the 

differential substitution and did not appear to play much of a role in the cognitive load. Rather, 

having a quantitative conception of the differential was more important (Jones, 2015; Ely, 2017; 

Simmons & Oehrtman, 2019). The idea of the differential as an infinitesimal amount of quantity 

proved key to successful differential substitution and the data showed other conceptions being 

problematic as will be described in the next section (Ely, 2017, 2020). 

It was crucial for students to have the quantitative meaning of AUP for integrals to 

engage with these tasks (Jones, 2015b; Jones & Ely, in press). An area-only (or antiderivative-

only) meaning would not have provided the resources for understanding the conversions between 

all three integral components: bounds, function, and differential. Thus, such activities need to be 

based on AUP understandings. 

Answering Research Question #2  

In answer to my second research question, I discuss the meanings for each of the three 

parts of substitution that students developed. For the majority of the students, the substitution of 

both the bounds and the function was fairly straightforward. In substituting the bounds students 

had no difficulty keeping track of the quantities involved particularly for the solar panel task. 
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Some of the students reasoned about the quantities of the solar panel directly to make the bounds 

substitution and some relied more on the change of quantity relationship, and all three were able 

to use the change of quantity relationship in the sphere task to algebraically find the change of 

bounds relationship.  

The function substitution did seem to be primarily driven by symbolic manipulation; 

however, students were able to track the quantities when asked without too much problem. When 

asked how he thought about the function substitution after it was Nate said, “We found the 

relationship between r and T, so we know that like for whatever T we put in there, it's gonna 

come up to like the right r to get the same result as this one [4𝜋𝜋𝑟𝑟2].” In other words, quantitative 

reasoning was more backgrounded here, and the students used other types of reasoning 

(symbolic and algebraic) as their primary means of doing the substitution. Yet, it seemed 

important for the students to be asked to track the quantities for the entire shift from the initial 

integral to the substituted integral to be wholly sensible within a quantitative paradigm. 

Otherwise, the quantitative relationships between the two integrals might have been less obvious. 

 During discussions about the differential substitution, it became clear that this was where 

the majority of the cognitive load of substitution resides. This is in contrast to the way that 

differentials are often portrayed in common curricula – as nothing more than a notational device 

(Thomas et al., 2020; Stewart, 2021). Additionally, it was evident that being able to use the 

differential as an amount conception (Hu & Rebello, 2013) was critical in finding the differential 

substitution relationship and by extension making sense of that substitution. Research indicates 

that thinking about the differential as collapsing to nothing or having no size can lead to 

problems (McCarty & Sealey, 2019; Oehrtman, 2009). My data shows that this is also true for 

making sense of the differential in substitution. Liam stated that the differentials were the same 
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because they are so small, they can’t be measured, and based on work from other students it's 

likely they had similar thinking. Reasoning this way led students to leave out important 

components in the substitution to make the integrals equivalent. Students need some direction to 

steer them away from this misconception. By asking about equating some small value of each 

quantity students were able to use the quantities and quantitative reasoning to fix this mistake in 

the substitution.  

 Because the students had justified all of the substitutions along the way when comparing 

the original and newly-substituted integral they were confident that the two were the same. For 

example, Ellie reasoned about it saying, “I think that is true as long as you're switching all of the 

parts of the equation so that they all are consistent.” By the end of the second task when 

recapping the substitutions they made the students easily identified the need for some 

relationship between the new and old quantities as well as the three pieces that needed to be 

substituted. The two students who had taken calculus before and who did the pure math problem 

generalized that each substitution was related to the change of variable relationship.  

Contributions of the Study  

Expanding the Notion of Quantitative Relationships 

The first contribution of this thesis to the literature is the inclusion of different types of 

quantitative relationships that are related to but distinct from Thompson’s (1990; 2011) 

quantitative relationships and Carlson et al.’s (2002) levels of covariation, namely two quantity 

quantitative relationships and nested function composition relationships (Jones, 2022).  

There are three types of two-quantity relationships that I identified from student work. 

The first type of two-quantity relationship exhibited was a basic relating of two quantities 

without specific definition of the relationship or detailed reference to how they covary. Students 
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would talk about changes in one quantity meaning changes in another, like acknowledging that 

there is, “a much more direct relationship between radius and volume whereas the relationship 

between temperature and volume isn't as direct.”  

The second type was equating two quantities. This thinking was sometimes exhibited as 

students indicating that some expression was “kind of the same thing” as the quantity being 

substituted. At other times the equivalence was described only with quantities like Andres saying 

“they both measure the same thing without measuring the same thing…they both represent the 

same thing, which is the position of the sun.”  

The last type of two-quantity relationship that appeared in my results was the function 

relationship. In this relationship, the students described some type of input/output or operation on 

one quantity to produce the second. When talking about the differential relationship Bently said, 

“you could lowkey just write 𝑑𝑑𝜃𝜃 or changes in 𝜃𝜃 as a function of 𝑅𝑅,” and went on to create a 

function to describe the relationship saying, “f of t is π 12ths times t”.  

These two quantity relationships were very common in student reasoning across the 

different tasks in both interviews. They were particularly important in their substitution 

reasoning since students had to either formulate or unpack a relationship between two quantities 

for each part of the substitution to ensure the substituted integral remained the same as the 

original. In the bounds substitution, students equated the quantities of the time and angle to 

identify the new bound in terms of angle in the solar panel task and used the functional 

relationship 𝑟𝑟 = √𝑇𝑇 + 5 to compute the substituted bounds in the sphere task. Students used the 

equivalence of the change of quantity or change of variable relationship to reason that 

substituting one side of the change of variable expression (√𝑇𝑇 + 5) in for the other (𝑟𝑟) would not 

change the integral function. The differential substitution was sometimes talked about as 
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specifically as one differential being a function of another and at other times spoken of more 

generally as a small change in one differential quantity corresponding to a small change in the 

other differential quantity.  

In his research where he defines and uses the three-quantity relationship, Thompson was 

focused on creating a quantitative reasoning-based algebra class (1990, 2011). Thus the three-

quantity structure makes sense as a fairly algebra-oriented structure where equations often have 

two (or more) quantities producing a third. However, it may be that for a quantitative-based 

study of calculus these other types of relationship structures, two quantity and nested function 

composition relationships are more common and important in student reasoning than the three 

quantity “triangle” structure.  

If we consider that u-substitution is in fact an “undoing” of the chain rule it should not be 

surprising that nested multivariational relationships would appear. In fact, it is important that the 

students think about the relationship between quantities in this way. Returning to the solar panel 

example, the chain rule would take power as a function of angle as a function of time 𝑃𝑃(𝜃𝜃(𝑅𝑅)). 

Thus, taking the derivative of power with respect to time involves imagining how fast the power 

changes as the angle changes, but also how fast the angle changes as time changes. This 

reasoning leads to the chain rule 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃
∗ 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

 (Jeppson, 2019). Thus, for u-substitution, it makes 

sense that we would be traversing this relationship in the reverse nested multivariation order 

𝑅𝑅𝑠𝑠𝑡𝑡𝑡𝑡→𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑡𝑡→𝑃𝑃𝑜𝑜𝑃𝑃𝑡𝑡𝑟𝑟. This quantitative relationship between u-substitution and the chain rule 

adds power connecting the quantitative and conceptual understandings with the procedural 

aspects of both. 



 

78 
 

The Central Role of Differentials in Substituting 

 Research has indicated that it is difficult to articulate intuition about and define 

differentials (McCarty & Sealey, 2019). Consistent with what the research suggests, I found that 

differential substitution was the most cognitively demanding aspect of u-substitution in both 

tasks. While students might think of the differential as a marker of the variable of integration or 

as a part of the perimeter of a shape (Dray & Manogue, 2010, Jones 2015a), research has 

suggested that it is much more powerful to conceptualize the differential as a tiny or infinitesimal 

amount of a quantity (Ely 2017; 2020; Hu and Rebello, 2013 Amos & Heckler, 2015; 

Schermerhorn & Thompson, 2019a; 2019b). My data likewise demonstrates the significance of 

conceptualizing the differential as an amount when making sense of the differential substitution. 

The students encountered difficulties when thinking about the differential as being collapsed or 

having no specific size (McCarty & Sealey, 2019) and were unable to find a correct substitution 

relationship using that conception. Once prompted to reason with the differential as being an 

amount students were able to formulate and make sense of the differential equations needed for 

the substitution. In fact, I believe such differential-focused thinking may also be an important 

factor in understanding other types of substitutions, such as in integration by parts, trigonometric 

substitutions, and change of variables with Jacobians. 

 Interestingly, and unexpectedly, the derivative did not play a very prominent role in 

students' substitution reasoning. Students did not appear to think about the integrand function as 

a derivative function or as a rate. This could be due to the set-up of the tasks themselves and the 

focus on the differentials. In the instances where derivatives did appear students used derivative 

rules and the conceptualization of the derivative as a ratio of small changes or differentials (Ely, 

2020) needed for students to be able to form the differential equation or differential relationship.  
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Strengthening the Case for Scaling-Continuous Covariation 

 Two different types of covariational reasoning that can be used in thinking about the 

integral are scaling covariational reasoning, zooming in on a static relationship, and dynamic 

covariational reasoning, where the changes are being traced out simultaneously (Ely & Ellis, 

2018). Evidence of both types of reasoning was present in student thinking in the interviews. 

Students used scaling reasoning in their process of thinking about the target quantity of the 

integral. They seemed to naturally start by thinking about the basic model of the target quantity 

and had no trouble thinking about shrinking a quantity down to be small. For example, for the 

basic integral structure, Liam thought about shrinking down rectangles, “𝑑𝑑𝑥𝑥 is like, you're acting 

as if that's the width, but because it's 𝑑𝑑𝑥𝑥 it's getting infinitely smaller. So you're making smaller 

and smaller rectangles.” 

Students used dynamic reasoning most often in conversations about rates or the change of 

quantity relationship. For example, thinking about time and angle dynamically moving together 

as the sun moves across the sky. This reasoning was useful for students reasoning about those 

relationships but did not appear to be used as much when students were making sense of the 

target quantity and the integral itself. 

Providing a Theoretical Framework for Quantities-Based U-Substitution 

The last, and perhaps most important, contribution of this thesis is a theoretical 

unpacking of u-substitution into its component parts of substitution of bounds, substitution of the 

function, and substitution of the differential. The following table summarizes this quantitative 

theoretical unpacking. For clarity, I wish to add a few notes about the table. The first row 

describes each of the three pieces of initial integral in terms of quantities and provides some 

symbolic interpretation that will be useful to describe the substituted integrals. The second row 
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attempts to capture the cognitive work it takes to think of translating the initial integral into the 

new quantity. The third row aims to summarize the substitution in a more computational and 

formally mathematical way. To help illustrate the quantitative substitutions the final row uses the 

example described in the conceptual analysis to show the quantitative substitution of each piece 

in context.  

Table 4 

Theoretical Quantity-based Unpacking of U-Substitution

 Bounds Function Differential 

Quantitative 
meaning of 
initial integral 

� 𝑄𝑄(𝑎𝑎)𝑑𝑑𝑎𝑎
𝑎𝑎1

𝑎𝑎0
 

(quantity Q is a 
function of 
quantity a) 

Range of values of 
quantity “a” to be 
partitioned; notated by 
the range’s endpoints: 
[𝑎𝑎0 ,𝑎𝑎1] 

One quantity input (the 
independent variable 𝑎𝑎) 
maps to another quantity 
output (the function 
value 𝑄𝑄): 
𝑎𝑎 → 𝑄𝑄 
 

Tiny amounts of or little 
pieces of the partitioned 
quantity: 
𝑑𝑑𝑑𝑑 

Quantitative 
meaning of 
substitution 
𝑄𝑄(𝑎𝑎) → 𝑄𝑄(𝑏𝑏)  

 
(from quantity 
a to quantity b) 
 
 

Find an equivalent 
range of values in a 
new quantity of 
measure using the 
endpoints. 
 
Quantity 1 range: 
[𝑎𝑎0 ,𝑎𝑎1] 
Substitution: 
[𝑎𝑎0 ,𝑎𝑎1] → [𝑏𝑏0 , 𝑏𝑏1] 

These two quantities 
(𝑎𝑎and 𝑄𝑄) exist in a 
relationship with a third 
quantity 𝑏𝑏 such that  
𝑎𝑎 ↔ 𝑏𝑏  
allowing substitutions 
from 𝑎𝑎 → 𝑏𝑏→ 𝑄𝑄 (units 
are helpful in doing this 
substitution) 
 
Function output 
quantity : 𝑄𝑄 
Substitution: 
𝑄𝑄(𝑎𝑎) → 𝑄𝑄(𝑏𝑏(𝑎𝑎) → 𝑄𝑄(𝑏𝑏)  

A differential amount of 
quantity 𝑎𝑎 corresponds 
to another differential 
amount of quantity 𝑏𝑏 
through some 
covariational 
relationship. 
𝑑𝑑𝑎𝑎 ↔ 𝑑𝑑𝑏𝑏 
 
Substitution:  
𝑑𝑑𝑎𝑎 → [factor] ∗ 𝑑𝑑𝑏𝑏 
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Formal 
mathematical 
notation 

Original bounds 𝑥𝑥0 
to𝑥𝑥1 with substitutions  
𝑜𝑜0 = 𝑓𝑓(𝑥𝑥0) 
𝑜𝑜1 = 𝑓𝑓(𝑥𝑥1) 
 

 
𝑥𝑥 →  𝑜𝑜 → 𝑓𝑓 
𝑓𝑓(𝑥𝑥)→ 𝑓𝑓(𝑜𝑜(𝑥𝑥)) → 𝑓𝑓(𝑜𝑜)  

𝑑𝑑𝐽𝐽
𝑑𝑑𝑑𝑑

= 𝑎𝑎′(𝑥𝑥)  
𝑑𝑑𝑜𝑜 = 𝑎𝑎′(𝑥𝑥)𝑑𝑑𝑥𝑥 

Solar Example 

� 250𝑠𝑠𝑠𝑠𝑠𝑠(
𝜋𝜋

12 𝑅𝑅
𝑑𝑑=6

𝑑𝑑=0
)𝑑𝑑𝑅𝑅 

 
𝑃𝑃(𝑅𝑅) = 250𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋

12
𝑅𝑅) 

𝑅𝑅0 = 0 → 𝜃𝜃0 = 0 

𝑅𝑅1 = 6 → 𝜃𝜃1 =
𝜋𝜋

12
 

𝜃𝜃0 =
𝜋𝜋

12
∗ 𝑅𝑅0 

𝜃𝜃1 =
𝜋𝜋

12
∗ 𝑅𝑅1 

𝑅𝑅 ↔ 𝜃𝜃: 𝜋𝜋
12
𝑅𝑅 = 𝜃𝜃 

𝑃𝑃(𝑅𝑅) → 𝑃𝑃(𝜃𝜃(𝑅𝑅)) → 𝑃𝑃(𝜃𝜃)  
250𝑠𝑠𝑠𝑠𝑠𝑠( 𝜋𝜋

12
𝑅𝑅) → 

250𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 

𝑑𝑑𝜃𝜃
𝑑𝑑𝑅𝑅

=
𝜋𝜋

12
 

𝑑𝑑𝜃𝜃 =
𝜋𝜋

12
𝑑𝑑𝑅𝑅 

 

I previously discussed different types of quantitative relationships that appeared 

throughout the interviews. Integrals seem to always consist of Thompson’s (1990; 2011) three-

quantity relationship between the function quantity, the differential quantity, and the resulting 

target quantity (see triangle in Figure 12a). Combining this structure with the nested 

multivariation three-quantity relationship (Jones, 2022; Figure 12b) we observed in the student 

data offers a quantitative structure of u-substitution. If we place the nested relationship along that 

triangle edge, u-substitution can be seen as shifting one vertex of the original integral triangle to 

form a new triangular relationship structure of the substituted integral (Figure 13a). In Figure 

13b, I also use the power example to show how the integrand and target quantity vertices (power 

and energy) remain the same, while the independent variable vertex (time) shifts to a new vertex 

for the new independent variable (angle). This combination of a triangle and the nested 

relationship along one edge helps show why the two integrals are equivalent.  
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Figure 12 

(a) Thompson’s Original Triangular Quantitative Relationship and (b) Jones’ Nested 

Multivariation 

 

Figure 13 

(a) Quantitative Structure of U-substitution and (b) Example of Quantitative Structure with 

Time, Power, and Energy 

 

 

Time Energy 

Power 

Time Angle Power 

(a) (b) 

(a) 

U-Substitution 
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Throughout the u-substitution tasks, students primarily used the AUP conception of the 

integral rather than an antiderivative or area under a curve conception. U-substitution can be 

thought of as an antiderivative technique (Stewart, 2021); however, the main goal of this study 

was to use quantities to develop strong meanings for what actually happens during the u-

substitution process. In fact, Ely (2017) differentiated between two “registers” of working with 

integrals, the setting up or modeling process and the working-it-out or evaluating process. The 

modeling process involves making sense of the integral and its component parts, and AUP is the 

most useful for making sense of the integral (Jones, 2013a; 2015a; Sealey, & Oehrtman, 2005). 

which was my focus. Because of that my tasks and questions were centered on the AUP 

conception of the integral rather than the antiderivative conception that is used in the working-it-

out process.  

Lastly, as stated earlier, previous work on integration within a quantitative reasoning 

perspective has been focused on introducing or developing the integral, but later topics of 

techniques of integration like u-substitution are less developed. By applying quantities and 

quantitative reasoning to the final section of the integral unit, my study completes the first-

semester integration chapter within a quantitative reasoning perspective.  

Hours Hours 

(b) 

U-Substitution 
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Implications for Teaching 

 U-substitution is often thought of and used as nothing more than an antiderivative 

procedure, or technique for making integrals more simple to compute, but students can actually 

develop and make sense of u-substitution. Typically, the focus of the u-substitution instruction is 

on finding the “inside” function followed by performing a series of symbol manipulations, which 

causes confusion for students trying to identify the inside function and handle any constants or 

extra variables that appear in the integral. The approach described here helps frame what is 

actually happening with the change of variable and can help students be more sophisticated in 

their ability to work with substitution. This approach gives them a three-part structure to keep 

track of: bounds, function, and differential. Breaking it down in this way helps students track 

each piece and understand how it transforms to the new variable. Making sense of each of these 

three substitution relationships makes it easier to see the equivalence and comparison between 

the original integral and the substituted integral. Thus, even if u-substitution is viewed as an 

antiderivative procedure, students will have a better idea of how to enact the procedure. 

Approaching the teaching of u-substitution with this framing of the three pieces can also 

help an instructor structure the lesson on how students might learn this process. For example, 

similar to what was done in the actual interviews, an instructor can lead students to identify the 

original quantitative structure and the nested relationship that leads to the substituted quantitative 

structure. Once this relationship is identified, the instructor can help students focus on each piece 

of the substitution by itself, which can make them aware of that specific aspect of the 

relationship between the original and substituted variables. This framing can also help instructors 

assess whether students are fully comprehending the entire u-substitution process. Rather than 

trying to identify if students are simply doing the entire process “correctly or not,” the instructor 
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can look for which of the three pieces of the u-substitution process the students are doing and 

perhaps which they are overlooking. This allows the instructor to do more targeted scaffolding 

and directing, rather than simply seeing that students “did not do it correctly.” For example, 

students may have readily substituted the function and bounds but may be missing the 

differential substitution. In this way, their work can be viewed for the productive elements it 

contains, and the instructor can then focus on the remaining aspect of u-substitution. This 

framing also helps an instructor assess whether students can describe why the two integrals are 

equivalent to each other. 

While this study only addressed definite integrals, this approach can also potentially be 

helpful for understanding indefinite integrals. This approach can develop strong understandings 

for the change of variable relationships for each of the three parts of substitution, and that 

understanding would make switching back into the original variable of integration for indefinite 

integrals make more sense and have meaning.  

Lastly, one crucial implication is that the differential is typically ignored in most 

mathematical texts and by most mathematicians. It is primarily just used as a symbol or the 

“period at the end of the integral” or the marker of the variable of integration. If one wants to 

make sense of integrals and substitution specifically, more emphasis needs to be placed on 

developing the concept of the differential as an infinitesimal amount and subsequently the role of 

the differential in forming the target quantity. It is not simply a “bookend” to the integral 

expression, but represents one of the main quantities in the quantitative relationship. This is 

supported by the fact that a significant aspect of the students’ work was in grappling with the 

differential and the appropriate substitution to the new differential. 
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Limitations of the Study and Future Research Directions 

 There are several limitations of the study to be addressed. First, the sample size of student 

selection was small. The results described represent the thoughts and reasoning of six students all 

of whom came from classes whose instructors had used some quantitative reasoning in 

developing derivative and integral concepts. Thus students coming from classes with different 

instructors or backgrounds of derivatives and integrals may not have been as prepared to reason 

with quantities or as readily used the ideas of derivative as a rate, or the adding up piece 

conception of the integral. Additionally, the small sample size, and the resulting lack of variation 

of characteristics like gender, university major, and background, limits generalizability to a 

larger group of students. However, the work of these students still provides useful insight into 

the reasoning and difficulties involved in learning u-substitution.  

 Another limitation is that my study only focused on developing a conceptual quantitative 

understanding of the change of variable relationship and setting up a substituted integral. This 

leaves other aspects of substitution unexplored at the moment. Future research could examine 

how students would go on to handle pure math substitutions after a quantitative introduction, 

how students identify the change of variable relationship (“inside” piece) for a given function, 

the u-substitution of indefinite integrals, and additional substitution techniques like trig 

substitution.  

Conclusion 

In calculus teaching, there is an overemphasis on procedures and manipulation of 

symbols and not enough emphasis on conceptual understanding of calculus topics (Tall, 1992). 

Because of this students struggle to understand and use ideas like integration ideas in applied 

settings. Research has shown that learning calculus topics from a quantitative reasoning 
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perspective results in more powerful and flexible conceptions of topics like integration. While 

this has been for introducing or developing the integral, there is a lack of using quantitative 

reasoning-based approach for other integration topics like techniques of integration. I specifically 

focused on u-substitution and explored a quantitative-based approach to introducing u-

substitution. Based on the clinical interviews, given quantitative relationships, the substitution of 

the bounds and function was straightforward for students to develop, but developing an intuition 

for and understanding of the differential relationship was a critical and cognitively demanding 

aspect of substitution. Overall through the interviews students gained a conceptual understanding 

for how to reason through substituted integrals being equivalent to the original using quantitative 

relationships for the bounds, function, and differential of the integral.  
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APPENDIX A: INTERVIEW PROTOCOL  

Interview One: 

Scaling covariation 

Given to students:  
 

∆ℎ 𝑓𝑓𝑡𝑡𝑡𝑡𝑅𝑅       

∆𝛥𝛥 𝑐𝑐𝑜𝑜𝑏𝑏𝑠𝑠𝑐𝑐 𝑓𝑓𝑅𝑅  

 

     

 

Interview Questions: 

• If I have a height that changes by a half a foot what is the equivalent change in volume?  

o What about a change of ¼ of a foot? 1/100th of a foot?  

Have students use the table to keep track of these relationships 

• Can you describe how you’re thinking about the change in the amount of volume as we 

think about smaller and smaller changes in height? 

• Can you describe what the change in volume will be in relation to any change of length in 

height?  

• What symbols would you use to represent that relationship?  

• If we zoom this in further to have an infinitesimally small change in height can we find 

the infinitesimally small change in volume of our box?  

Given to students:  

1. On the equator the sun rises around 6 am, is directly 

overhead at 12 pm and sets on the horizon at 6 pm.  

 

∆𝑅𝑅 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑠𝑠       

∆𝜃𝜃 𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑡𝑡       

 

Interview Questions: 

• If you are standing on the equator how much has the angle of the sun in relation to you 

changed from 6 am to 6 pm? From 6 am to noon?  

• How big of an angle change corresponds to one hour elapsing?  
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o What if we only let a half hour elapse? One tenth of an hour? A thousandth of an 

hour?  

• If I continued to scale this down to the change of a fraction of a second, what would the 

change in angle be?  

Have students use the table to keep track of these relationships 

• Can you describe what the angle change will be in relation to any elapsed amount of 

time?  

o What symbols can we use to represent that relationship?  

o Does this make sense for this relationship to hold for change in time at any part of 

the day?  

o Does the time of day effect how the angle changes? (Ex: if I look at the change in 

angle from 9-10 am is that different than the angle from 3-4pm?)  

Diagram out the idea of a time number line and a range of angles 

• Is this relationship still valid as change in time gets infinitesimally small?  

o How would you represent the infinitesimally small relationship? 

• What do 𝑑𝑑𝑅𝑅 and 𝑑𝑑𝜃𝜃 represent?  

Instruction on development of infinitesimals as having an amount 

AUP Integrals 

Given to students:  

1. The volume of a cylinder is 𝛥𝛥 = 𝜋𝜋𝑟𝑟2𝑙𝑙 where 𝑟𝑟 is the radius 

and 𝑙𝑙 is the length of the cylinder.  

Interview Questions: 

• Let’s use a symbol to represent the volume of the pictured slice of the sphere. What 

symbol should we use? (if no “d”, ask: “how could we suggest it’s a very thin slice?) 

• What does the 𝑑𝑑𝛥𝛥 mean? (or the equivalent symbol they use to represent the volume)  

• How do you interpret the integral ∫ 𝑑𝑑𝛥𝛥𝑏𝑏
𝑎𝑎 ? 

•  What are the quantities that make up this slice of volume? What symbols can we use to 

represent these quantities?  

o Is this integral  ∫ 𝑑𝑑𝛥𝛥𝑏𝑏
𝑎𝑎  the same as this one  ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙𝑏𝑏

𝑎𝑎 ? 
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• Given the integral ∫ 𝜋𝜋𝑟𝑟2𝑑𝑑𝑙𝑙𝑏𝑏
𝑎𝑎  what does each part of the integral mean? What does the 

integral mean all together?  

Given to students:  

 

 

 

 

Interview Questions: 

• We can take volume slices of this shape similar to the previous cylinder shape, how 

would you describe the slices of volume (𝑑𝑑𝛥𝛥) for this new shape?  

• Similar to the last shape, let’s think of the axis being made up of lots of little 𝑑𝑑𝑙𝑙’s does 

each 𝑑𝑑𝑙𝑙 have an associated 𝑑𝑑𝛥𝛥?  

• Are all of the 𝑑𝑑𝛥𝛥s the same?  

o How can we differentiate between the different dV’s or represent the dV’s?  

• Can we use an integral like we did with the cylinder to find the total volume of the shape? 

• Write the integral expression.  

o How does this integral represent the total volume of the shape?  

• What do 𝑑𝑑𝑙𝑙 and 𝑑𝑑𝛥𝛥 mean for this shape? How are they related?  

• Using the ideas that we talked about from these two problems, can you describe how 

you’re thinking about the integral in general? 

Instruction on development of adding up pieces  

Recap the adding up pieces structure of partition target quantity and sum. Highlight that an 

infinitesimal amount of the target quantity corresponds to a specific tiny piece of length  

Derivative as a ratio of differentials  

Given to students: 

1. Refer back to the table in the first question and the found relationship 𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅 

Interview Questions:  

• Can we take the 𝑑𝑑𝑅𝑅 and divide it to the other side to make the ratio 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

? Is that valid?  

• What does the ratio 𝜋𝜋
12

 it mean? 
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Given to students:  

2. A spherical balloon with a small heater inside has been filled with a gas. As the gas is 

heated it expands, increasing the volume of the balloon. At any given radius 𝑟𝑟 the 

relationship between the radius of the sphere and the temperature 𝑇𝑇 of the gas in degrees 

Celsius is given by 𝑟𝑟 = √𝑇𝑇 + 5  

Interview Questions:  

• Compute the derivative of this equation with respect to temperature.  

• What does this derivative mean in this context? 

• What do 𝑑𝑑𝑟𝑟 and 𝑑𝑑𝑇𝑇 mean individually? 

• What does it mean that the derivative is a function rather than a number?  

• For different temperatures what does that tell you about how fast the sphere is growing? 

• If we multiply the 𝑑𝑑𝑇𝑇 over to the other side we get 𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇. Is this valid?  

• What does it mean that there is a variable in this relationship (that its not constant like the 

previous problem 𝑑𝑑𝜃𝜃 = 𝜋𝜋
12
𝑑𝑑𝑅𝑅?) 

o What does this new expression mean?  

Instruction on derivative as a ratio of differential. 

Since each differential represents an amount we can multiply or divide the differential. The 

derivative is a ratio of those differentials or small changes. The ratio 𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

 describes how radius 

changes as temperature changes. The relationship 𝑑𝑑𝑟𝑟 = 1
2√𝑇𝑇

𝑑𝑑𝑇𝑇 means that the numerical value 

of a small change in radius is going to be 1
2√𝑇𝑇

 times the size of the numerical change in 

temperature T, but those changes are dependent on the value of the temperature. (This is like we 

said with the second shape, the dV depended on where the slice was, and for this the dr depends 

on what the temperature is for the change we’re looking at. 
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Interview Two 
Follow up on the AUP conception of the integral. Ask students to describe the meaning of the 

components of the velocity integral ∫𝑣𝑣(𝑅𝑅)𝑑𝑑𝑅𝑅 to refresh AUP conceptions of the integral and the 

partition, target quantity, and sum.   

Solar Panel  

Given to students:  

1. A solar panel collects power in watts, which is a unit that describes the joules of energy 

(𝐽𝐽) per second (s) that is generated, 𝐽𝐽/𝑠𝑠. The amount of power the panel generates is 

dependent on where the sun is in relation to the panel. It will reach its maximum output 

when the sun is directly above it (at noon). The generated wattage of the solar panel can 

be thought of as a function of time as the sun moves across the sky. It can be modeled 

well by a sine function (Solar Panels, 2021), and for simplicity we’ll use the basic 

function 𝑃𝑃(𝑅𝑅) = 250 sin � 𝜋𝜋
12
𝑅𝑅� with t time in hours since sunrise. On the day we’re 

measuring, the sun rises at 6 am and sets at 6 pm. 

(Note that the time in the unit of power, 𝐽𝐽/𝑠𝑠, is separate from the hours in the day)  

 

 

 

 

 

 

Interview Questions:  

• What are the quantities involved in this context? 

• Using the AUP idea from our first interview, can you create an integral that would 

answer this question?  

• Again using the AUP ideas describe what this integrals means as a whole   

o What is the quantity that we are dividing up (partitioning)? 

o What does the integrand mean? What is the quantity of the little pieces that we’re 

adding up?  

o How do we get each of those little pieces of quantity?  
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To motivate the substitution note that it’s not very intuitive to visualize time passing, however we 

can see clearly from our picture the angles of the sun in as it moves across the sky. What if we 

were to rethink our problem in terms of the angle of the sun in relation to the solar panel instead 

of in terms of time?   

• What is the angle range that corresponds to our time interval? 

o What are the units that we have in the integrand?  

• What is the quantity that we are now breaking into small pieces? 

• What are the bounds of the integral in terms of the range of angles?  

• Now we have the bounds in terms of the angle in radians, what else do we need to change 

for this to be all in terms of angle rather than time?  

• What might the power function look like in terms of angles  

• What is the relationship between 𝑅𝑅 and 𝜃𝜃 in the function? 

• What does the resulting integral look like after this substitution?  

• How does a little bit of time relate to a little bit of angle?  

• If we use our previous partition and scale it down to infinitesimals, what is a tiny bit of 

𝑑𝑑𝑅𝑅 equal to in angles?  

Prompt students to keep the quantities in mind throughout.  

• What is the integral resulting from this substitution?  

• What is the quantity that we are adding up in the substituted integral?  

• Let’s compare the original integral in terms of time and the new integral in terms of 

angle. How are things being added up here now that we’ve done these substitutions?  

o Are these two integrals adding up the same quantity?  

o Describe how this new expression is adding up energy like we initially intended it 

to?  

• Let’s review the work that we’ve just done. Can you list the different substitutions that 

we made?  
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Given to students:  

1. 𝑑𝑑𝛥𝛥 = 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟, 

 

 

 

 

 

Instruct students about the addition of a bit of volume being a shell of volume and an 

infinitesimal amount volume being equivalent to the surface area* radius  

Interview Questions:  

• We established that 𝑑𝑑𝛥𝛥 = 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟, what does 𝑑𝑑𝛥𝛥 mean? What does 𝑑𝑑𝑟𝑟 mean? 

• How could I represent the total change in volume from one radius value to another?  

• We’re adding up all of our little bits of volume ∫ 𝑑𝑑𝛥𝛥𝑑𝑑=15
𝑑𝑑=10 , and we’ve established that that 

𝑑𝑑𝛥𝛥 is found from the multiplication 𝑑𝑑𝛥𝛥 = 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟 so adding up the volume is   

∫ 𝑆𝑆 ∗ 𝑑𝑑𝑟𝑟𝑑𝑑=15
𝑑𝑑=10 . Could we write everything in terms of the radius instead of having surface 

area? 

o We’ve written this integral in a few different ways now, so to remind ourselves 

what does this integral represent?  

• Can you solve the integral? What does the answer of 9500𝜋𝜋
3

 mean?  

Given to students:  

2. A spherical balloon with a small heater inside has been filled with a gas. As the gas is 

heated it expands, increasing the volume of the balloon. At any given radius 𝑟𝑟  the 

relationship between the radius of the sphere and the temperature 𝑇𝑇 of the gas in degrees 

Celsius is given by 𝑟𝑟 = √𝑇𝑇 + 5 (As its heating the up the radius is a function of the 

temperature an expands 

Interview Questions:  

• Could I rewrite this integral where everything is in terms of what’s happening with the 

temperature rather than what’s happening with the radius  

• What temperature value corresponds to the start radius (r=10)? The end radius (r=15) 
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• Using the structure of the integral ∫ 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑑𝑑=15
𝑑𝑑=10  construct an integral to find how much 

the volume of the balloon increases as the temperature increases from 25ºC to 100ºC.  

As needed prompt students to consider each piece (bounds, function, differential) that needs 

to be substituted 

o What is the temperature when r = 10  

o What is the surface area 𝑆𝑆 in terms of temperature 𝑇𝑇? 

o 𝑑𝑑𝑟𝑟 represents a small change in 𝑟𝑟 in our simple version, what is the equivalent 

quantity needed in the more complex integral with temperature?  

 What is 𝑑𝑑𝑟𝑟 equal to in this context?  

 What is 𝑑𝑑𝑇𝑇 equal to in this context?  

• How are you thinking about what each piece of the complicated integral 

∫ 4𝜋𝜋(√𝑇𝑇 + 5 )2 1
2√𝑇𝑇

 𝑑𝑑𝑇𝑇𝑇𝑇=100
𝑇𝑇=25 means? 

As needed guide students to use the relationship 𝑟𝑟 = √𝑇𝑇 + 5 in all their construction of the 

integral.  

• So now we have these two integrals up here side by side can you compare them?  

• Can you explain why these two integrals are equal to each other? How are they the 

same thing? ∫ 4𝜋𝜋(√𝑇𝑇 + 5 )2 1
2√𝑇𝑇

 𝑑𝑑𝑇𝑇𝑇𝑇=100
𝑇𝑇=25  = ∫ 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑑𝑑=15

𝑑𝑑=10  

o What do you notice about them? What similarities do you see?  

o (As they point out things write down what they’re saying 

• Can you list the substitutions that we made? 

• What were the key pieces of information you needed to make those substitutions?  

• What similarities do you see between the substitutions in the solar panel problem and this 

sphere problem? 

• In general, how are you thinking about the process of going from a complex to a simple 

integral?  

As part of their generalization, emphasize to the students that the key substitution relationship 

was nested inside another function for both problems. In both of these problems we had some 

type of relationship between quantities, and we used that relationship to make a substitution in 

the bounds of the integral in the function and in the differential. (Highlight each of these three 

pieces from their recap of what they did.)  What you’ve constructed what we call a substitution 
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technique in calculus, that tells me in order to go from one variable to the other we need to 

transform the bounds, function, and differential  

Pure math substitution task 

Given to students:  

1. Using some of the ideas we’ve developed today tell me how you would approach doing a 

substitution to write the below integral in a simpler form.  

� 3𝑥𝑥2𝑡𝑡1+𝑑𝑑3𝑑𝑑𝑥𝑥
4

2
 

 

Interview Questions: 

• In our previous problems we identified an “inside” piece that described the relationship 

between two different quantities. What is an inside piece here that we can use to do a 

substitution? 

Inform students of conventional notation of “u” as the substitution variable.  

• What are the key components that need to be switched from one variable to another? 

o What is the differential in terms of 𝑜𝑜  

o What are the bounds in terms of 𝑜𝑜   

• What does this substituted integral mean? 

• Having done this problem is there anything you would like to add to your previous 

summary/comparison between the sphere and solar questions?  
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APPENDIX B: EXAMPLES OF ANALYSIS 

Image Codes  

Each speaking turn was coded by marking the related code column with an x as shown in the 

“Image” columns in the table below. The “Contents” column gives a brief description of the 

evidence of the code. If the code was only related to a specific part of the speaking turn, I 

highlighted the relevant sections in the “Speaking Turn” column.  

 
Speaking Turns  Image 

Deriv (Contents) Image 
Diff (Contents) Image 

Int  (Contents) 

A: Integral is a multiplication of 
Two things being multiplied 
and it's the summation of 
something and there's no 
multiplication there. So I'm 
just trying to figure out what 
the,  what's being multiplied, 
what's being added. 

    x 
  

Integrals 
involving 

multiplication 
(AUP) 

N: Immediately this seems like 
a related rates problem 
which I'm not Good at, but 
somehow we have to do the 
change in volume, as it 
relates to the change in 
length. You have to relate 
that to the change in like 
length as relates to the 
change in 𝑟𝑟 It's like this 
somehow equals this 

x 

Related 
changes in 

two 
quantities 

(Rate) 
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L: Velocity is kind of like a 
measure of how fast you're 
going at a very specific time. 
but if you find kind of the 
area of that, so if you're 
going 25 miles an hour for a 
second, and you're just for 
that distance, if you like, just 
like assume that like just for 
a second, it's like linear can 
find the distance that you 
travel and then you'd go like 
a second over. But this is 
kind of like the thing that 
we're making very, very 
small and we're just trying to 
find the total change and that 
would represent, um, just 
position for change in 
position. 

    x 
 

Integrals 
involving  

(Area) 

J: It's the total change in 
volume between or, between 
radius 15 and 10 --- radius. 
10 

  x (Change)   

A: Yeah. I think, you know, dt 
is just as time gets infinitely 
smaller and infinitesimally 
small amounts of time and 
this is infinite, infinitetes... 
Infinitely small amounts of 
theta in relation to like the 
same amount of time so it's 
not just infinitely small 
amounts of theta, however 
much theta you want, but it's 
infinitely small amounts of 
data within the timeframe of 
12 π radians 

  x 

Small amount 
of time and 

theta 
(Amount) 

  

B: The pieces, what they all 
mean is showing that your 
degree Celsius is gonna start 
25 degree Celsius and going 
to a hundred degree Celsius. 
And it's adding up all of this 
in terms of your temperature 
that is being changed, right? 
Your temperature is being 
changed with respect to, to 
All of this stuff, which like, 
As he said, it's kind of the 

    x 

Bounds give 
starting 

stopping point 
of summation 

(AUP) 
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same thing as radius. ‘Cause 
this function is the same 
thing as the other one like, 
we're both changing at the 
same time. It's just you 
calling this one in terms of 
temperature instead of 
radius, even though they 
both happen at the same 
time. Right. And so you're 
pretty much just adding up 
All of them. Okay. From 25º 
Celsius to 100º Celsius, 

 

Quantity Codes 

Each speaking turn was coded by marking the related code column with an x as shown in the 

“Quant” columns in the table below, again with the “Contents” column describing the evidence 

for that code. If the code was only related to a specific part of the speaking turn, I highlighted the 

relevant sections in the “Speaking Turn” column.  

  Speaking Turns 2 
Quant 

Rel (Content) Quant 
Rel (Content) 

Quant 
Op (Content) Covar (Content) 

E: d of t is equal to 
six over 100, d of 
ø that is π over 
200. 

x  
(Equivalence)        

N
: 

Well, if this gives 
us… well, that 
equation is 
essentially equal 
to bit of radius, 
they're shoved in 
there and that's 
equal to radius 
shoved in there. 
so together you 
get volume, I 
guess. 

x 

Equating 
temp 

equation with 
radius  

(Equivalence) 

x 

Radius with 
the surface 
area give 
volume  

(Thompson) 
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B: So that means, 
Well, this is how 
you can rewrite 
surface area in 
terms of 
temperature, 
instead of in 
terms of radius 

x 

One quantity 
“in terms of” 

another  
(Function) 

       

B: So this [4𝜋𝜋(√𝑇𝑇 +
5)2]is your 
surface area 
multiplied by 
your change in 
temperature[dT] 
plus this. So like 
this is still your 
surface area just 
written in terms 
of temperature. 

     x 

Surface area 
times dT to 
get volume 
(Thompson) 

  

A
: 

Yeah. I think, you 
know, dt is just as 
time gets 
infinitely smaller 
and 
infinitesimally 
small amounts of 
time and this is 
infinitely small 
amounts of theta 
in relation to like 
the same amount 
of time. So it's 
not just infinitely 
small amounts of 
theta, however 
much theta you 
want, but it's 
infinitely small 
amounts of data 
within the 
timeframe of 12 π 
radians. 

        x 

Infinitesimal 
amount of 

time in 
relation to 
amount of 

theta  

I: 
 
 
 
 
 
 
N
:  

So once we’ve 
done this 
multiplication 
here, what are the 
little pieces that 
I’m adding up?  
 
The energy at that 
time at that angle. 

  x 

Energy at 
angle of a 
given time  

(Nested 
Multivariation

) 
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B: It shows you how 
much your 
temperature is 
changing when 
your radius 
would've been 
changing. 

        x 

Change in 
temp 

corresponds 
to change in 

radius 

 

Substitution codes 

Each speaking turn was coded by marking the related code column with an x as shown in each of 

the “Substitution” columns in the table below. As with the previous tables, if the code was only 

related to a specific part of the speaking turn, I highlighted the relevant sections in the “Speaking 

Turn” column.  

 Speaking Turns Bounds  
Substitution 

Function 
Substitution 

Differential 
Substitution 

General 
Substitution 

E: Okay. Um, so our, our 10 to 
15 turned into 25 to 100. 
Okay. And our input went 
from r to √𝑇𝑇 + 5.  

x x   

A: I think both just changed the 
time to temperature, you put 
just T 

x x   

A: ‘Cause we're not…yeah, 
‘cause we just input the 
temperature 

 x   

E: Right, right, to temperature. 
And then our, the derivative 
we changed from the 
derivative of the radius to the 
derivative of temperature. 

  x  

J: Cool. If we're going to 
change anything, if we're 
going to go from one 
relationship, one relationship 
to the other like radius to 
temperature or from, you 
know, time to, um, degrees 
or I guess radians we had to 
change our function bounds 
and our differential. We had 
to make sure that they were 

   x 
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still equivalent, um, 
statements. 

L: We are using time using the 
time where like the sun is 
and given we also need, we 
need, uh, Actually, no, it 
gives us the angle. When we 
plug in time, it gives us the 
angle and then it gives us the 
whole function outputs 
jewels per second. 

 x   

N: Yeah. I mean, I think they'd 
be proportional, but I don't 
know if they'd be exactly the 
same you would get. Yeah. 
That's all I'm gonna say. 

  x  

 

Secondary Analysis of Differentials  

The following table demonstrates how I compiled “differential” related quotes together so I 

could see the different types of thinking related to the differential substitution and any 

commonalities across students.   

 Differential 
relationship is 
proportional  

 Directly sub in dø 
for dt 

 General how refer 
back to differential 
substitution 

 Differential 
Relationship 

L: Okay. Yes, I'll do that. 
So from Zero to a π/2, 
250 And then, sin(𝜗𝜗) 
𝑑𝑑𝜗𝜗 

L: Because, well, we 
don't have t anymore 
because we've 
replaced t so we can't 
use it dt, which is like 
very small change t so 
the way you would 
have to measure it is 
you'd have to multiply 
that by very small 
change the angle 

B: Means that your sign of 
  theta is going to follow 
the same pattern as 
shown here, right. As it 
moves 
  along, it's moving along 
the same way as the π is. 
But your change in theta 
  is actually changing by 
12 over π instead of 
normally as the time, 
because 
  the differences in time 
of theta are with that rate 
π over 12. 

A: I think that's what the 
  relationship between the 
two are, is that D of T is, 
getting infinitesimally 
smaller. over a period of six 
hours, which is whereas 
that's where 𝑑𝑑𝜗𝜗 is getting 
infinitely smaller over the 
range of π/2. So that's how 
they're equal each other.  

B: 

And then you can 
solve for 𝑑𝑑𝑅𝑅 yeah. Plug 
that in too . 

A: 

 

J: So I mean, what we did is 
just do a major 
substitution. I mean, we 
substituted a 𝑑𝑑𝑅𝑅 with what 
we came up with for a 
𝑑𝑑𝜗𝜗,, which is 12 over π 
times, ,𝑑𝑑𝜗𝜗, we substitute, 

E: Wait a minute. When you 
say that, that way it gets 
𝜋𝜋/12 which between what? 
One Hour of, So yeah. Oh 
yeah. No, that makes sense. 
So one, one of the six hours 
equal to 𝜋𝜋/12, which we 
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uh, what's inside the sin 
function with 𝜗𝜗 and we 
set it equal to that. And 
then we changed our 
bounds from being 
respected time to being in 
respect to the, or to angle 
measurements. 
 

already knew  

J: So, I mean, I mean, we 
just take the derivative 
of both sides, right. 
Um, so this is… the 
derivative of theta is 
𝑑𝑑𝜗𝜗, the little  change 
of theta. And then we 
apply, um, we take the 
derivative of the right 
hand side, um, which 
is, um, if we're.., or it 
is just a constant times 
a multiple. So we can 
do the constant out 
here times the little 
change in time out 
here.  

L: 

 

A: Yeah. I think, you know, 
dt is just as time gets 
infinitely smaller and 
infinitesimally small 
amounts of time and this 
is infinite, infinite to 
infinitetes... Infinitely 
small amounts of theta in 
relation to like the same 
amount of time, so it's not 
just infinitely small 
amounts of theta, however 
much theta you want, but 
it's infinitely small 
amounts of data within 
the timeframe of 12 π 
radians. 

B: So basically this one is 
  going in terms of time, 
right. And your time is 
moving from zero hours, to, 
  six hours, right? Yeah. 
Your time is .. Like is being 
shown. Your small changes 
in time is being shown 
within the sin graph 
because it follows the same 
sin pattern as we, we heard 
in here. Right. And that 
changes as time moves 
along. It it's being rotated 
kind of. I don't really know 
if 𝜋𝜋 always means rotation, 
but kind of means rotation 
in mathematics half the 
time. And so it is changing 
within this at 𝜋𝜋/12 right. 
Which is the same thing as 
if your degree, as we have 
shown here changes, right. 
Is being changed by the 
same thing, which means 
because your change in 
time is growing at a faster 
rate, Is that faster rate that's 
actually smaller rate, but is 
changing with 𝜋𝜋 12ths for 
every small changein theta.  

L: Because, well, we 
don't have 𝑅𝑅 anymore 
because we've replaced 
𝑅𝑅 so we can't use it 𝑑𝑑𝑅𝑅, 
which is like very 
small change 𝑅𝑅 so the  
way you would have to 
measure it is you'd 
have to multiply that 
by very small change 
the angle  . 

  L: 
So we're kind of, we're 
kind of with this logic, 
with this piece, we're just 
changing this, so that it's 
equivalent l here, but we 
also want, You know, the 
relationship between 𝑑𝑑𝑅𝑅 
and 𝑑𝑑𝜗𝜗,. So we went over 
here. We multiplied both 
sides by, 

N: We found the relationship 
between r and T Um, so, 
uh, we know that like for 
whatever T we put in there, 
it's gonna come up to like 
the right r to get the same 
result as this one  

J: So I mean, what we 
did is just do a major 
substitution. I mean, 
we substituted a 𝑑𝑑𝑅𝑅 
with what we came up 
with for a 𝑑𝑑𝜗𝜗, which is 
12 over π times, dø, 

  E: So We need to Plug this 
in so that it's 12 𝑑𝑑𝜗𝜗 over π 
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we substitute, uh, 
what's inside the sin 
function with ø and we 
set it equal to that. And 
then we changed our 
bounds from being 
respected time to being 
in respect to the, or to 
angle measurements. 
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