
HydroShare GIS: Visualizing Spatial Data in the
Cloud
Case Study

Shawn Crawley1*, Daniel P. Ames2, Zhiyu Li3, David Tarboton4

1,2,3Brigham Young University
4Utah State University
*Corresponding Author: scrawley@byu.edu

ABSTRACT

Cloud-based data management systems are more conducive to collaborative efforts when they are integrated with
cloud-computing tools that interact with their stored data. HydroShare, a web based data management system for
climate and water data, has implemented an Application Programming Interface and a web application platform
deployed using Tethys Platform to encourage the development of apps that interact with its data. HydroShare GIS is
the result of one such development effort to provide cloud-based visualization of spatial data stored in HydroShare.
It functions by accessing the spatial metadata contained within the HydroShare resource data model and overlaying
datasets as layers within the OpenLayers JavaScript library. Data are passed from the app’s server to a GeoServer
data server and shared as web mapping service layers. Thus, users can easily build map projects from data sources
registered in HydroShare and save them back to HydroShare as map project resources, which can both be shared
with others and re-opened in HydroShare GIS. This paper will describe the design of the HydroShare GIS app and
the cyber-infrastructure that supports it, and evaluate its efficacy as a web based mapping tool.

Keywords
HydroShare, web app, spatial data

1. Introduction

Cloud-based applications are programs that run
on both hardware and software that are distributed
between one or more remote servers and made accessi-
ble to end users through an Internet connection. These
applications are desirable to end users for many reasons.
They help free up storage space on personal computers,
are accessible from anywhere with an Internet con-
nection, eliminate the hassle of installing and updat-
ing software, are operating system independent, and
facilitate collaboration with others. Due to the many

benefits of cloud-based applications, they are being
developed at a rapid rate and are transforming the way
of life around the world [Miller, 2008]. Though many
fulfill common needs and are interacted with on a daily
basis (i.e. Gmail, Facebook, LinkedIn, Google Drive,
Dropbox, Microsoft OneDrive), others are being devel-
oped to fill niche needs and desires in various fields,
industries, and markets, as is the case with HydroShare.

HydroShare (https://www.hydroshare.org) is a cloud
based system for sharing hydrologic data and models
(often referred to in HydroShare as “Resources”) aimed

Open Water 4

at giving hydrologists and water scientists the cyber
infrastructure needed to innovate and collaborate in
research to solve water problems. With HydroShare,
users can: (1) share data and models with colleagues;
(2) manage who has access to shared content; (3) share,
access, visualize and manipulate a broad set of hydro-
logic data types and models; (4) use the web services
Applications Programming Interface (API) to program
automated and client access; (5) publish data and mod-
els to meet the requirements of research project data
management plans; (6) discover and access data and
models published by others; and (7) use cloud-based
applications to visualize, analyze, and run models
on data in HydroShare [Ames et al., 2015; Horsburgh
et al., 2016; Idaszak et al., 2016]. HydroShare, at its
core, is a cloud-based data management system.

The trend with most mainstream cloud-based data
management systems (i.e. Google Drive, Box, Dropbox,
Microsoft OneDrive) is to provide not only cloud stor-
age for data, but also cloud-computing tools that interact
with the data already being stored and/or generate new
data to be stored. For example, Google Drive also pro-
vides users with a cloud-based word processor (Google
Docs) to edit or create documents, a cloud-based spread-
sheet (Google Sheets) to edit or create spreadsheets,
and a cloud-based presentation program (Google
Slides) to edit or create slideshows [Covili, 2016]. The
integration of these cloud-computing tools with the
basic cloud storage system is largely what encourages
and facilitates the collaborative efforts with its data.

Much like Google Drive, the capability to have cloud-
based applications that act on its data is a key part of
HydroShare that advances its capability within the

Figure 1: The basic architecture of HydroShare

5Open Water

general trend towards providing web-based software
services. At a high level, the HydroShare architecture
is organized into: (1) Resource storage, (2) Resource
exploration, and (3) actions on resources (Figure 1).
These are implemented using system components that
are relatively loosely coupled and interact through
APIs. The loose coupling is a variant on Services
Oriented Architecture (SOA) that enhances robustness,
as components can be upgraded and advanced rela-
tively independently. This also supports extensibility.

The Web Applications (Web Apps) approach is con-
figured so that anyone can establish a Web App server
that can act on HydroShare resources. This configura-
tion was accomplished by a number of important devel-
opments. First, an application programming interface
(API) was developed that gives third party programmers
the ability to interact with HydroShare’s data resources.
Second, the Web App resource type was developed to
define launching parameters for third party web apps
that act on HydroShare resources (Figure 2). This lets
anyone set up a web app to act on HydroShare resources,
a very general and powerful extensibility mechanism.
Finally, the team has developed an official web apps
portal (https://apps.hydroshare.org) as a platform
to host web applications developed for HydroShare
built using Tethys Platform [N Swain et al., 2015].

Because HydroShare primarily manages data of
hydrologists and water scientists, both of whom interact

with a significant amount of spatial data, cloud-com-
puting tools that interact with HydroShare’s spatial data
would be a significant addition and fill a niche need. It
would also likely generally increase users’ motivation
to use HydroShare as a storage space for spatial data.

The problem is that though many cloud-based appli-
cations and cloud-computing tools that interact with
spatial data already exist, none of them could be readily
integrated with HydroShare. Many of them are either
already filling a niche need and being tightly coupled
with an existing cloud-based data management system,
or provide generalized components that can be ingested
and integrated into other development efforts. Google
Earth (https://www.google.com/earth/) facilitates web-
based spatial data visualization through its system of
user-developed KML (https://developers.google.com/
kml/) files that can be uploaded and shared via the Google
web services. Esri’s ArcGIS Online (http://doc.arcgis.
com/en/arcgis-online/reference/what-is-agol.htm)
system facilitates a commercial web and cloud-based
data storage system that allows users to develop custom
map data and share it with users in a web-based geo-
graphic information system (GIS). The OpenStreetMap
Foundation and its contributors have developed a mas-
sive web-based open access spatial data repository via
crowd-sourced individual contributions (https://www.
openstreetmap.org/about) and include cloud-based
tools for viewing and interacting with these datasets.

Figure 2: Diagram showing how HydroShare is set up to interact with web applications

Open Water 6

The good news is that much advancement and inno-
vation has been achieved in the field of spatial data
cloud computing in recent years that could contribute
to and greatly simplify the development of a cloud-
based application for interacting with HydroShare’s
spatial data. For example, in 2015, Swain, Latu et al.
(2015) performed a study of available free and open
source software (FOSS) for geographic information
systems (FOSS4G). As a result of this study, many
of the best libraries were incorporated into the soft-
ware development kit (SDK) of Tethys Platform,
HydroShare’s chosen web application platform.
Additionally, the Open Geospatial Consortium has
provided standards and protocols that have largely
facilitated the integration of distinct spatial-centric sys-
tems (http://dx.doi.org/10.1016/j.envsoft.2012.11.010).
CyberGIS is another organization that has been lead-
ing research efforts in the fields of spatial data sci-
ence and spatial cyber infrastructure since 2010
[Wang, 2010; 2016; Wang et al., 2013; Yin et al., 2017].

In light of all of these advances, we undertook the
development effort to create a lightweight, cloud-based
GIS that would provide customizable viewing of one
or more HydroShare spatial resources on an interac-
tive spatial data display (map). The app, developed
using Tethys Platform, was named HydroShare GIS
and is currently deployed on HydroShare’s app portal.

This paper first describes the methods that were
used to develop HydroShare GIS, including the soft-
ware design and a few potential use cases for the
app. Then, the resulting web application as it cur-
rently stands is discussed in terms of its features,
behavior, and ability to perform as expected during
the potential use cases. Finally, conclusions are
drawn from the development and deployment of
HydroShare GIS, lessons learned, and opportunities
for the future of HydroShare and other web based
systems or projects that interact with spatial data.

2.0 Key Features and Functionality

We identified the following key features
as being important in enabling HydroShare
GIS to support customizable visualiza-
tion of spatial data stored in HydroShare.

1. An interactive map that allows the user to:
a. Pan
b. Zoom

2. A way for the user to:

a. Add one or more HydroShare resources to
the map, each as a layer
b. Add one or more local files to the map, each
as a layer
c. Save the current configuration of HydroShare
GIS back to HydroShare as a resource

3. An interactive and dynamic list of the current
layers, where each layer entry can be interacted
with to:

a. Change the display order of its correspond-
ing layer
b. Toggle the visibility of its corresponding layer
c. Change its own display name text
d. View the attribute table of its corresponding
layer (if applicable)
e. Modify the symbology of its corresponding
layer
f. View the legend of its corresponding layer
g. Zoom to the extents of its corresponding
layer
h. Open the web page of its corresponding
resource in HydroShare
i. Remove its corresponding layer from the map
and itself from the current layers list

We also wanted HydroShare GIS to exist as a sin-
gle-page web application because of the many benefits
of doing so[Mikowski and Powell, 2013]. This would
mean that all features and functionality would need to
be accessible without reloading the page or loading a
new page. The graphical user interface (GUI), or the
way this single page would be laid out, in HydroShare
GIS can be seen in Figure 3. Because the core purpose
of this app is to view spatial data, the map would be the
main focus, taking up about 75% of the screen space.
Most of the remaining space would be taken by the side
panel, which would contain a list of the layers currently
added to the map and a few buttons for adding new lay-
ers to the map and saving the current state of the app.

We designed HydroShare GIS to be launched both
directly from its root URL, and from the landing page of
any HydroShare resource that the app can interact with.
If launched directly, HydroShare GIS would display a
blank map and an empty current layers list. Layers could
then only be added to the map through a user clicking
on either the “Add HydroShare Resource” button or the
“Add Local File” button. If launched from the landing
page of a HydroShare resource, the app would launch
and then automatically begin loading the correspond-

7Open Water

ing resource as if it had been selected using the “Add
HydroShare Resource” button method described next.

In the case that the user clicks the “Add HydroShare
Resource” button, the appearing UI modal (Figure 4)
would contain a list of all of the resources stored in
HydroShare that the user has permission to access,
which would include both resources owned by the user
and those owned by others, but made public. From
here, the user would be able to select one of the listed
resources and then click an “Add” button to trigger the
process of adding the chosen resource to the map. The
successful termination of this process would result in
the rendering of the associated spatial data in its appro-
priate location as a layer on the map, and the appear-
ance of a new corresponding entry at the top of the
current layers list. As mentioned, this is the state the
app would be initially loaded in if launching the app
from the landing page of a valid HydroShare resource.

In the case that a user clicks the “Add Local File”
button, the appearing UI modal would contain a form
that lets the user specify both the location where the
uploaded file(s) will be stored and the specific file(s) to
be added. The user can either store the file(s) in a new,
separate HydroShare resource, or within the resource
that contains the previously saved state of the current
HydroShare GIS session. If the user chooses to store
the file(s) in a new, separate resource, they will be
given the additional options to specify the title, type,
abstract, and keywords of the new resource. Once all
of the required options are specified, the user could
then select an “Add” button, which would trigger the
process of storing the file(s) in the appropriate resource
and adding the file(s) to the map. Just as with the pro-
cess following a click of the “Add” button from the “Add
HydroShare Resource” modal, the successful termina-
tion of this process would result in the rendering of

Figure 3: Mockup of the user interface representing the main screen of the HydroShare GIS

Open Water 8

the associated spatial data in its appropriate location as
a layer on the map, and the appearance of a new cor-
responding entry at the top of the current layers list.

We designed each layer in the current layers list to
contain three main parts. First, a checkbox on the left
side of the layer list item would allow the user to tog-
gle the visibility of the corresponding layer on the map,
with checked being visible and unchecked being invis-
ible. Second, a modifiable display name for the corre-
sponding layer would appear immediately to the right
of the visibility checkbox that defaults to either the
corresponding resource’s title or file name. Modifying
the display name would not modify the underlying
resource or file. The third part of the layer list item
would be a hamburger menu icon that, when clicked,
would bring up a dropdown context menu providing
context-specific options for the corresponding layer.

Since the core feature of HydroShare GIS is the abil-
ity to visualize spatial data (map layers) in a custom-
izable way, the most important context-specific drop-

down option item is the “Modify symbology” button.
When the user clicks this button, a modal dialog will
appear that will look much like the mockup in Figure
5. This figure captures what it might look like when
modifying the symbology of a vector-based spatial
dataset, such as a shapefile of polygons. Color pick-
ers would allow the user to choose any possible color
based on red, green, and blue (RGB) values; hue, satu-
ration, and value (HSV) values, or a visual color wheel.
The user would also be able to turn feature labels on
and off, specify which attribute field to provide the
labels from, and choose the label’s font size and color.

The “Save Project” button would bring up a UI modal
with form data to specify the title, type, abstract, and
keywords of the new resource that would be created
to store the file that encodes the current state of the
app. This file would be in JavaScript Object Notation
(JSON) and store key/value pairs that capture the state
of the app at the time of clicking the “Save” button.

Figure 4: Mockup of the modal dialog used to add a HydroShare resource to the current HydroShare GIS project

9Open Water

2.1 System Architecture

To provide all of the key features and function-
ality of HydroShare GIS with the desired UI lay-
outs, many existing technologies were integrated to
form the system architecture seen in Figure 6. The
remainder of this section will go into detail breaking
down and explaining each component seen therein.

HydroShare GIS was designed using the Model-
view-controller (MVC) pattern, which separates the
application into three interconnected parts – the
Model, View, and Controller – to isolate the logic and
functionality of each part and to simplify the devel-
opment process. This pattern was chosen since the
Django and Tethys platform frameworks that it is
built upon are each MVC frameworks themselves.

Django (https://www.djangoproject.com/) is a free
and open source, high-level Python web framework
that facilitates Web development. It simplifies the
Model aspect of MVC by encapsulating the bulk of
the SQL and database interaction into custom Python
classes, properties, and methods that can be inherited
from and added to. It simplifies the Controller aspect
of MVC by leveraging URL mappings that specify

Python functions that should be triggered based on
the URL endpoint browsed to. It simplifies the view
aspect of MVC by providing pseudo-object-oriented
HTML templates that allow for inheritance, over-
riding and the insertion of Django-specific logic,
filters, and variables that are converted to standard
HTML by the Django functions that render them.
These features, and others, make Django very ver-
satile and perfect for any web development project.

Tethys Platform is a web development framework
that is powered by Django [N R Swain et al., 2016].
While Django is a versatile, generalized web devel-
opment platform, Tethys Platform adds to it a care-
fully chosen set of libraries and tools to support the
web app feature and functionality needs of the water
resource engineering and hydro-informatics com-
munity. Ultimately, the development of HydroShare
GIS was largely simplified by taking advantage of the
spatial and GIS features provided by Tethys Platform.

2.1.1 Model

In the MVC architecture, the Model defines
how all of the application’s data is stored and

Figure 5: Mockup of a modal dialog to modify layer symbology in HydroShare GIS

Open Water 10

accessed. In HydroShare GIS, the Model is com-
posed of HydroShare, GeoServer, and PostgreSQL.

In the context of the HydroShare GIS system archi-
tecture, HydroShare is the principal component
of its model. Essentially all of the data that is han-
dled by the app and made available to the end users
comes from HydroShare. Even the files representing
the saved state of HydroShare GIS are stored back
on HydroShare to be persisted there as resources.

HydroShare resources generally consists of (1) one
or more files that share many common metadata, and
(2) the metadata itself. Each resource has a specific
type, which restricts the breadth of file types that are
associated with it in order to provide more specific-
ity, simplicity, and depth. For example, TIF files have
many specific metadata that would not be applicable
to, say, Python files. Thus, a TIF file can be uploaded as
a Raster resource rather than a Script resource, which
would accept Python files. However, because files and
their metadata can also be grouped based on a rela-

tionship other than common file types, such as being
part of a project or being collected at the same loca-
tion, HydroShare also provides a Generic resource,
which sacrifices the depth of specific metadata for
the breadth of associated files. Any number and
type of files can be contained in a Generic resource.

With all resource types except Generic, HydroShare
will automatically extract much of the file-specific
metadata upon resource creation based on the resource
type. For example, the coordinate reference system, spa-
tial extents, and cell value extremes are automatically
extracted and stored for Raster resources. In addition to
automatic metadata extraction, certain metadata can be
manually entered for any resource, such as spatial cover-
age metadata representing where the associated data was
collected or what spatial location or entity it represents.

Because we designed HydroShare GIS principally as a
spatial data viewer, the resource types that HydroShare
GIS should interact with at a minimum are Raster and
Geographic Feature. However, since all resources may

Figure 6: System architecture of HydroShare GIS

11Open Water

contain spatial coverage metadata, we extended the
design and scope of the app to be able to also inter-
act with Referenced Time Series, Script, and Generic
resources. However, it is possible for a Generic resource
to contain spatial files, such as TIFs and shapefiles, and
in this case it would be treated somewhat as if it were
one or more Raster or Geographic Feature resources.

GeoServer acts as another key component of the
HydroShare GIS model. The spatial files retrieved from
Raster and Geographic Feature HydroShare resources
(or Generic resources storing similar files) are uploaded
to GeoServer, whereupon the data is both stored on the
server and also processed and converted into spatially
referenced (projected) image tiles that are then retrieved
using a URL endpoint and rendered on the map.

GeoServer was chosen as a key component of
HydroShare GIS because it would easily facilitate the
persistence of the HydroShare resource layers by act-
ing as a layer database. Once a resource’s spatial files
are uploaded to GeoServer and processed as web
mapping service layers, these layers can be stored
there indefinitely. This means that the delay expe-
rienced by a user during this uploading and pro-
cessing would be a one-time expenditure. All sub-
sequent viewing of that resource using HydroShare
GIS would happen relatively instantaneously since
the layers would persist and need only be re-fetched.

It is possible that a HydroShare user modifies the
files belonging to a resource that has been previously
viewed using HydroShare GIS. In this case, it would not
be desirable to simply re-fetch this resource’s previously
processed layer since the updates made to this resource’s
files would not be reflected in the existing layer. To han-
dle this, HydroShare GIS extracts the timestamp meta-
data corresponding to the most recent modification of
the resource and stores it in a PostgreSQL database (see
the next section for a full explanation of PostgreSQL).
This is done on the first load of all resources. Then, on
each subsequent load of the same resource, its current
modification timestamp metadata is extracted and
compared to the previously stored timestamp. If the
modification timestamp of the file is more recent than
what the database reflects, the resource is reloaded
as if it were the first time and overwrites the exist-
ing, outdated layers. Otherwise, the resource’s corre-
sponding layers are simply re-fetched from GeoServer.

PostgreSQL, though not essential to the core func-
tionality of HydroShare GIS, was integrated into
its model to optimize the performance of the app. It
does so by providing a database management sys-

tem that stores the subset of resource metadata from
HydroShare and the subset of layer metadata from
GeoServer that are needed by the app, as well as other
metadata calculated by the app itself. This would pro-
vide quicker access to each resource’s correspond-
ing metadata on post-initial loads than HydroShare
and GeoServer are able to provide. This is because
(1) SQL databases are engineered and optimized for
data retrieval, and (2) the database would be hosted
on the same server as the app, as opposed to remotely.

There are at least two cases in which, without the
PostgreSQL database, the app would not be able to
detect whether or not a resource should be re-pro-
cessed after its initial load. The first case, described
in the previous section, would occur when a resource
had been updated on HydroShare since being previ-
ously processed by the app for viewing. The second
case would occur when attempting to view a Generic
resource whose files constitute more than one spatial
layer to be stored in GeoServer. Since most resources
correspond to one GeoServer layer, the resource’s
unique identifier (ID) was chosen to also be the unique
GeoServer layer identifier used to re-fetch the layer.
This, however, no longer works in a one-resource-to-
many-layers relationship. If the PostgreSQL database
was integrated into the app, each individual GeoServer
layer created would get its own entry in the database
that would contain its associated metadata, such as the
ID of the resource it corresponds to. Thus, the unique
ID of all layers associated with one resource could eas-
ily be discovered by querying the database for all entries
whose corresponding resource ID match the ID of the
resource in question. Then, each layer could easily be
re-fetched from GeoServer using its unique layer ID.

With the PostgreSQL database implemented, after a
resource has been loaded for viewing once, each sub-
sequent viewing would generally consist of extract-
ing all of the relevant metadata from this database,
as opposed to from HydroShare and GeoServer.

2.1.2 View

In the MVC pattern, the View consists of essen-
tially everything that is displayed or accessible to the
user. For web development in general, and thus for
HydroShare GIS, the view is created and managed
using three technologies: Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS) and JavaScript
(JS). Many web development frameworks, libraries, and
plugins exist that implement one or more of these tech-

Open Water 12

nologies. Of these, those most heavily implemented by
HydroShare GIS are contained in the following list con-
taining a brief description of the functionality provided.

OpenLayers (http://openlayers.org) - Renders the
map, interacts with GeoServer to fetch and display the
HydroShare resource layers, and provides an API to aid
in handling all user interactions with the map, such as
panning and zooming.

Bootstrap (http://getbootstrap.com) - Simplifies the
style, layout, and responsiveness of the app’s graphical
user interface (GUI) by providing well-designed form
elements (i.e. inputs, buttons) and modal windows and
by making the content resize and fill space appropri-
ately based on the user’s browser size.

jQuery (https://jquery.com) - Provides functions
that simplify the programming required to react to a
user’s interaction with the app and update its content
accordingly. It also provides simplifies much of the
communication between the user’s browser (client)
and the app server that happens using Asynchronous
JavaScript and XML (AJAX).

jQuery UI (https://jqueryui.com/) - Simplifies the
programming required to react to the specific user
interaction in which layer list items in the current lay-
ers list are reordered by click-and-drag. This is accom-

plished through jQuery’s Sortable interaction (https://
jqueryui.com/sortable).

contextMenu.js (http://ignitersworld.com/lab/con-
textMenu.html) - Provides the dropdown menu of
options for each layer list item in the current layers
list and either provides or simplifies the handling of all
user interactions with it.

DataTables (http://datatables.net/) - Provides the
style and layout of the resource layer attribute table and
the table of all HydroShare resources and either pro-
vides or simplifies the handling of all user interactions
with it. This includes the user’s ability to sort the table
by column in ascending or descending order; a search
field that dynamically filters the table’s contents by
partial or full match of a user’s typed string; and table
pagination with contextual info about what is currently
being displayed.

Spectrum (http://bgrins.github.io/spectrum/) -
Used extensively in the “Modify Symbology” modal to
provide to users with interactive color pickers that pro-
vide simplified, intuitive GUIs for choosing from mil-
lions of colors to customize the visualization of their
resource layers in the map.

2.1.3 Controller

Figure 7: Screenshot of HydroShare Apps Portal highlighting the HydroShare GIS application

13Open Water

The Controller in the MVC paradigm consists of
the logic that connects the Model to the View. In other
words, it handles the details of how data is transferred
between the Model and View, what data should be
transferred, and when the data should be transferred.

In HydroShare GIS, the core Controller functionality
is programmed using both JavaScript and Python and
leverages many of the features provided by the technolo-
gies already discussed such as Django, Tethys Platform,
jQuery, and OpenLayers. This section will focus on
additional third-party Python libraries that are relevant
to the HydroShare GIS Controller model. These include
HydroShare’s Representational State Transfer (REST)
Client (hs_restclient), the Geospatial Data Abstraction
Library (GDAL), Requests, and the xmltodict package.

hs_restclient (http://hs-restclient.readthedocs.io/) –
Wraps the HydroShare REST API calls in Python func-
tions and is used to establish all connections to transfer
data between HydroShare GIS and HydroShare.

GDAL (http://www.gdal.org/) – Used in certain sit-
uations to extract additional metadata from the raster
datasets that HydroShare might not provide and mod-
ify the projection metadata of raster files.

Requests (http://docs.python-requests.org/) – Used
to establish connections to transfer data between

HydroShare GIS and all external servers except
HydroShare.

xmltodict () – Unifies the way responses are handled
in the app by converting all XML responses to JSON-
like Python dictionaries.

2.2 Use Cases

To demonstrate and test the efficacy of the devel-
oped HydroShare GIS web application, two use cases
were explored. This section describes each use case,
discusses the common procedures used to setup and
test each use case, and lists the criteria for measur-
ing the success of HydroShare GIS in each use case.

Utah Lake Data Integration Use Case. A
HydroShare user needs to aggregate all available water
quantity and quality data on HydroShare with other
related, non-spatial HydroShare datasets for presen-
tation of a water quality study in Utah Lake. The data
exists in multiple HydroShare resources of various
types, such as a Raster resource, a pair of Geographic
Feature resources, a Referenced Time Series resource,
a Script resource, and a couple Generic resources.

Hydrologic Terrain Analysis Use Case. The CyberGIS
TauDEM app is another app linked to HydroShare that
lets users perform advanced hydrologic terrain analyses

Figure 8: Screenshot of the main screen of HydroShare GIS

Open Water 14

Figure 9: Screenshot of the initial state of HydroShare GIS upon loading data corresponding to the Utah Lake Data Integration Use
Case.

Figure 10: Screenshot of the state of HydroShare GIS after modifying the display properties and symbology of the data corresponding
to the Utah Lake Data Integration Use Case.

15Open Water

Figure 11: HydroShare GIS attribute table for Utah Lake wetlands layer as part of the Utah Lake Data Integration Use Case.

Figure 12: HydroShare landing page for HydroShare GIS project session state saved for the Utah Lake Data Integration Use Case.

Open Water 16

in high performance computers at NCSA. A user starts
from a digital elevation model in a HydroShare resource
and does the following: (1) Opens the CyberGIS app,
(2) selects the terrain analysis products to be com-
puted, (3) configures any needed input parameters,
and (4) submits for computation. Once the results are
computed on the NCSA supercomputer, the results are
saved back into HydroShare in a resource containing
many files. The use case for HydroShare GIS is to orga-
nize and visualize these files, which are of varying types
such as TIFs, shapefiles, text files, and a bash script.

For each use case, desired resources were loaded
into a HydroShare GIS session either from its associ-
ated landing page on HydroShare by using the “Open
with…” dropdown and selecting the “HydroShare
GIS” option, or from within a fresh, blank instance of
HydroShare GIS by using either the “Add Resource”
button or the “Add Local File” button. Once all desired
resources were loaded into the app, the current layer
list entries were first reordered to change the render-
ing order of their corresponding layers. Then, the sym-
bology of each layer was modified using the “Modify
symbology” button appearing in the context menu
of the layer’s corresponding list item in the current
layers list to customize the visualization of the lay-
ers. Then, the resulting state of the app was saved to
HydroShare as a new resource using the “Save as…”
button. Next, the newly-created project resource was
located in HydroShare and then loaded into a new, sep-
arate instance of the app by using the “Open with…”
dropdown and selecting “HydroShare GIS.” Finally,
these two existing instances of the app were compared.

Success of the HydroShare GIS app in
each use case is determined by its ability to:

1. Accurately load and display each spatial dataset
chosen from HydroShare as a distinct layer on
the map.

2. Accurately load and display each spatial dataset
uploaded from the user’s local file system as a
distinct layer on the map.

3. Create a new HydroShare resource for each spa-
tial dataset uploaded from the user’s local file
system.

4. Provide a layer list item in the current layers list
for each distinct spatial dataset layer.

5. Provide a relevant layer context menu for each
layer list item.

6. Accurately update symbology for each spatial
dataset layer, according to user specification,
upon request.

7. Accurately display a legend for each layer upon
request.

8. Accurately display an attribute table (where
applicable) upon request.

9. Accurately remove each layer list item and its
associated spatial dataset layer upon request.

10. Accurately display an updated (edited) layer
name for each layer list item.

11. Accurately load the HydroShare landing page
for the corresponding resource of each spatial
dataset layer, upon request.

12. Save the app state (project file) back to
HydroShare as a new resource.

13. Load the project file from the HydroShare
resource landing page into a new HydroShare
GIS instance whose state is indistinguishable
from the app instance that created the project file
resource.

3.0 Results

This section discusses the results of the HydroShare
GIS web application development process in terms
of its software implementation and use cases.

3.1 Software Implementation

HydroShare GIS, as it appears on the HydroShare
Apps portal, can be seen in Figure 7. Clicking on its
corresponding icon will launch the app, whereupon the
browser will redirect to the application’s main screen,
which should resemble Figure 3. As compared to the
UI Mockup in Figure 3, the final design was extremely
similar. There were only minimal layout modifica-
tions made and a few additional features added that
were not included in the original scope and plans.

3.2 Use Cases

For the Utah Lake Data Integration use case,
a fresh instance of HydroShare GIS was initiated
from the HydroShare Apps Portal by clicking the
HydroShare GIS icon. From there, the “Add Resource”
button was used to locate and add all of the desired
resources corresponding to Utah Lake. This was
simplified by filtering the results through a search
for “Utah Lake” from within the “Add Resource”
modal dialog that pops up when clicking the button.

Figure 9 shows the state of HydroShare GIS upon
loading all of the data corresponding to the Utah Lake

17Open Water

Data Integration Use Case. Many of the layers could
not be seen on initial load due to the order in which
they were initially loaded and rendered by the app.
The topmost layers in the current layers list are ren-
dered last and overlay the bottom-most layers. Also,
each layer was displayed using a default color scheme.

It was possible to change the rendering order of the
layers by reordering their corresponding entries in the
current layers list. In this case it made sense that the
raster be rendered first (the bottom-most layer), fol-
lowed by the polygon shapefiles, and then finally the
point shapefiles. The symbology of certain layers was

changed to enhance their understandability and mean-
ing. For example, the symbology of the shapefile repre-
senting the lake was modified to have a blue fill color,
which is more indicative of the water that it represents.

The display names of each layer were also changed
as desired to reflect which layer in the map it corre-
sponds to, since neither the HydroShare resource name
nor its corresponding file name was adequate. A base
map and inset map were also added to enhance visual
understanding and confirm that the layers were all ren-
dered in their proper geospatial location. This result-
ing state of HydroShare GIS can be seen in Figure 10.

Figure 13: HydroShare landing page of a single Generic resource which was visualized in HydroShare GIS as part of the Hydrologic
Terrain Analysis Use Case.

Open Water 18

Figure 14: HydroShare GIS session upon successfully loading files associated with the Hydrologic Terrain Analysis Use Case.

Figure 15: Screenshot of the resulting state of HydroShare GIS after modifying the display properties and symbology as part of the
Hydrologic Terrain Analysis Use Case.

19Open Water

Each of the Geographic Feature resources (shapefiles)
had a “View attribute table” option in its context menu
(triggered by the hamburger icon). Figure 11 shows the
actual attribute table that was generated for the layer
titled “Utah Lake wetlands boundaries.” This table was
filtered by the “Shape_Area” column (from smallest
to largest) and filtered by a search for “Scrub/Shrub”.

For the Hydrologic Terrain Analysis Use Case
there was only one resource to be visualized using
HydroShare GIS, but this single resource was a Generic
resource containing 22 separate files. Among these
files were many raster datasets (TIF extension), shape-
files (a set of SHP, SHX, DBF, and PRJ extensions),
and a shell script (SH extension). Because only one
resource would be added to HydroShare GIS, this was
done from the “Open with…” button on the resource’s
own landing page, which can be seen in Figure 13.

It took about a minute for HydroShare GIS to process
and render all of the resource files, but did so success-
fully. Instead of loading the 22 separate files each as their
own layer, the app successfully identified harvested all
of the corresponding shapefile components and loaded
each set into a single shapefile layer. In the case of the
shell script, since this file was part of the resource, it too
was added to the current list. However, because it was
not an inherently spatial file and lacked any spatial com-
ponent metadata, it had no corresponding map layer.
To make that clear, the layer visibility checkbox is dis-
abled for this particular entry in the current layers list.

Of the 22 files contained in the Generic resource, 13
total entries were added to the current layers list, 12 of
which had corresponding layers that were added to the
map. The state of HydroShare GIS immediately follow-
ing the successful loading of the resource can be seen
in Figure 14. As with the previous case study, the initial
display of all rendered layers was not very interesting
or helpful since the last layer to load was a large raster
file that was then rendered on top of all other layers

As with the previous use case, the user proceeded
to reorder each entry in the current layers list and
modify each layer’s symbology until a more inter-
esting and useful map display was achieved. This
involved toggling layers on and off or moving them
closer to the bottom of the current layers list to deter-
mine which other layers they were covering on the
map. Moving the shapefiles to the top and turning
off most raster layers established the best configura-
tion. It is important to note that it would not ever be
possible to view all these layers at once because there
are many raster layers that share the same extents.

Every entry in the current layers list correctly pro-
vided relevant options in its context menu based on the
type of file it represented. Each entry provided an option
for modifying its own display name text, viewing the
web page of its associated resource in HydroShare, and
removing itself and its associated layer from the project.
Each entry representing a spatially based file with an
associated layer had options to modify its symbology,
view its legend, and zoom to its rendered extents. Each
shapefile had the option to view its associated attribute
table. The single entry representing the non-spatial
resource had the unique option to view its associated file.

As with the previous use case, once the layers were
modified to the desired state, the HydroShare GIS ses-
sion state was successfully saved back to HydroShare
as a Generic resource containing a map project
file that was able to be successfully re-opened in
HydroShare GIS from its landing page in HydroShare.

This use case demonstrated that HydroShare GIS
is able to correctly identify files based on their type
when loading them from a Generic resource. Though
the app will add entries for all file types (both spatial
and non-spatial) to the current layers list, it will pro-
vide different context menu options and appropriately
enable or disable the checkbox to toggle the associ-
ated layer’s visibility based on the resource’s file type.

4.0 Conclusion

We developed a cloud-based application called
HydroShare GIS to provide HydroShare users a cloud-
based tool for visualizing their spatial data resources.
It was designed using the model-view-controller
(MVC) pattern and implemented primarily using
Tethys Platform. The app is currently deployed on the
HydroShare Apps Portal (http://apps.hydroshare.org).

HydroShare GIS is able to recognize and load spa-
tial data from HydroShare whether contained in an
inherently spatial resource type (Raster, Geographic
Feature), or a Generic resource. It will also recog-
nize non-spatial data contained in a Generic resource
and provide a unique, relevant context menu with
appropriate options for interacting with it. The state
of any HydroShare GIS session can be saved back to
HydroShare as a special map project file stored within
a Generic resource. Once the resource is created, the
saved map project can be re-launched from the “Open
with…” option on its landing page within HydroShare.

HydroShare GIS has shown that there are many
open source technologies available that can be lever-

Open Water 20

aged to develop cloud-based applications and tools for
visualizing and manipulating spatial data. The same
architecture, patterns, and methods demonstrated by
HydroShare GIS could be implemented elsewhere,
built upon, and improved. The surface is just now only
being scratched. Almost all of these technologies imple-
mented are still under continual development and are
releasing new features that will open up new opportuni-
ties for both HydroShare GIS and other similar projects.

Acknowledgements

This work was supported by the National Science
Foundation under collaborative grants ACI 1148453
and 1148090 for the development of HydroShare
(http://www.hydroshare.org). Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Software Availability

HydroShare GIS, 1.0.0, Shawn Crawley, MIT
License, 08/30/2016, Source code available at https://
github.com/hydroshare/tethysapp-hydroshare_gis.

References

Ames, D., Z. Li, X. Qiao, D. G. Tarboton, R. Idaszak, J.
Horsburgh, V. Merwade, B. Miles, N. Swain, and R. Lineberger
(2015), Web-Based Data Visualization and Analysis using
HydroShare and the Open Source Tethys Platform, paper
presented at AGU Fall Meeting Abstracts.

Covili, J. J. (2016), Going Google: Powerful tools for 21st century
learning, Corwin Press.

Horsburgh, J. S., D. G. Tarboton, R. Idaszak, D. P. Ames, J. L.
Goodall, V. Merwade, A. Couch, R. P. Hooper, P. Dash, and
M. J. Stealey (2016), HydroShare: Promoting Collaborative
Publication, Interoperability, and Reuse of Hydrologic Data
and Research Products.

Idaszak, R., D. G. Tarboton, H. Yi, L. Christopherson, M. J.
Stealey, B. Miles, P. Dash, A. Couch, C. Spealman, and
J. S. Horsburgh (2016), 10 HydroShare–A Case Study of
the Application of Modern Software Engineering to a
Large Distributed Federally-Funded Scientific Software
Development Project, in Software Engineering for Science,
edited, pp. 217-234, CRC Press.

Mikowski, M. S., and J. C. Powell (2013), Single page web appli-
cations, B and W.

Miller, M. (2008), Cloud computing: Web-based applications
that change the way you work and collaborate online, Que
publishing.

Swain, N., S. Christensen, J. Nelson, and N. Jones (2015), Tethys
Platform: A Platform for Water Resources Modeling and
Decision Support Web Apps.

Swain, N. R., S. D. Christensen, A. D. Snow, H. Dolder, G.
Espinoza-Dávalos, E. Goharian, N. L. Jones, E. J. Nelson, D. P.
Ames, and S. J. Burian (2016), A new open source platform for
lowering the barrier for environmental web app development,
Environmental Modelling & Software, 85, 11-26.

Wang, S. (2010), A CyberGIS framework for the synthesis of
cyberinfrastructure, GIS, and spatial analysis, Annals of the
Association of American Geographers, 100(3), 535-557.

Wang, S. (2016), CyberGIS and spatial data science, GeoJournal,
81(6), 965-968.

Wang, S., L. Anselin, B. Bhaduri, C. Crosby, M. F. Goodchild, Y.
Liu, and T. L. Nyerges (2013), CyberGIS software: a synthetic
review and integration roadmap, International Journal of
Geographical Information Science, 27(11), 2122-2145.

Yin, J., Y. Gao, and S. Wang (2017), CyberGIS-enabled urban
sensing from volunteered citizen participation using mobile
devices, in Seeing Cities Through Big Data, edited, pp. 83-96,
Springer.

