
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2022-12-14 

Wildfire Modeling with Data Assimilation Wildfire Modeling with Data Assimilation 

Andrew Johnston 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Johnston, Andrew, "Wildfire Modeling with Data Assimilation" (2022). Theses and Dissertations. 9788. 
https://scholarsarchive.byu.edu/etd/9788 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F9788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9788?utm_source=scholarsarchive.byu.edu%2Fetd%2F9788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Wildfire Modeling with Data Assimilation

Andrew Johnston

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Blake Barker, Chair
Emily Evans

Jared Whitehead

Department of Mathematics

Brigham Young University

Copyright © 2022 Andrew Johnston

All Rights Reserved



abstract

Wildfire Modeling with Data Assimilation

Andrew Johnston
Department of Mathematics, BYU

Master of Science

Wildfire modeling is a complex, computationally costly endeavor, but with droughts
worsening and fires burning across the western United States, obtaining accurate wildfire
predictions is more important than ever. In this paper, we present a novel approach to
wildfire modeling using data assimiliation. We model wildfire spread with a modification
of the partial differential equation model described by Mandel et al. in their 2008 paper
[1]. Specifically, we replace some constant parameter values with geospatial functions of
fuel type. We combine deep learning and remote sensing to obtain real-time data for the
model and employ the Nelder-Mead method to recover optimal model parameters with data
assimilation [2]. We demonstrate the efficacy of this approach on computer-generated fires,
as well as real fire data from the 2021 Dixie Fire in California. On generated fires, this
approach resulted in an average Jaccard index of 0.996 between the predicted and actual fire
perimeters and an average Kulczynski measure of 0.997. On data from the Dixie Fire, the
average Jaccard index achieved was 0.48, and the average Kulczynski measure was 0.66.

Keywords: wildfire model, fire perimeter, data assimilation, partial differential equations,
image segmentation, finite difference, finite element, remote sensing
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Chapter 1. Introduction

The United States is in the midst of one of the worst megadroughts in history; this period

of aridity is estimated to rival any period over the last 1,200 years [3]. With this extended

period of drought comes an increased wildfire risk across the country and much of the globe.

In recent years, climate change, irresponsible fire safety on the individual level, and a buildup

of fuel have exacerbated this risk, leading to wildfires taking more lives and destroying more

property and natural resources than ever previously recorded [4, 5]. This danger has inspired

government agencies on the local and federal levels to pour in time and resources toward

preparation for and mitigation of wildfire hazards.

Government agencies employ firefighters at the municipal and county level, support re-

gional mutual aid organizations, and fund state agencies across the country, such as the

California Department of Forestry. At the federal level, the National Interagency Fire Cen-

ter coordinates wildfire response in cooperation with the U.S. National Weather Service, and

other agencies within the Department of the Interior, the Department of Agriculture, the

Department of Homeland Security, and the Department of Commerce. In extreme cases,

even the United States Army may become involved, providing fire squadrons to help fight

larger fires.

These fire management teams can greatly benefit from accurate, real-time models for

wildfire spread. An understanding of where the fire perimeter will be in coming hours

or days informs decisions regarding evacuation of danger zones, allocation of resources for

optimally restricting the spread of fire, and strategic prioritization for mitigating damage to

property and resources.

In this paper we present a novel approach to wildfire modeling with data assimilation.

The following sections in this chapter further illustrate the current wildfire risk landscape,

discuss challenges inherent to wildfire modeling, and summarize our approach, highlighting

new contributions to the field. In chapter 2, we discuss the state of the art in wildfire
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modeling with the FARSITE system, where our approach differs from it, and a partial

differential equation (PDE) model by Mandel et al. [6, 1]. Chapter 3 presents numerical

methods for approximating the solutions to the PDE model. In chapter 4, we discuss a novel

approach to fuel mapping with deep learning. We use these fuel estimates and other sources

to perform data assimilation and improve our model, as described in chapter 5. In chapter

6, we evaluate our model, and then we conclude in chapter 7 with final remarks and ideas

for future work and improvements.

1.1 The Current Wildfire Risk Landscape

In 2021, 83% of the area of the Western United States was classified as being in a state of

moderate or worse drought conditions [3]. That’s an estimated 57 million people living in

drought conditions which drastically increase the risk of widespread, high-intensity wildfires

[3, 4]. In the 20th century, aggressive suppression efforts reduced wildfire size and intensity,

but caused a buildup of fuels that has resulted in larger wildfires in the 21st century [5].

Fires that burn a minimum of 1,000 acres are considered “large fires.” From 1970 to

2015, the average number of large fires burning each year more than tripled in the Western

U.S., with a more than sixfold increase in acreage burnt [7]. In 2020, over 13 million acres

burned and over 3 billion dollars were spent in fire suppression efforts alone [8]. Wildfires

have burned over 10 million acres during several years since 2015. As of November 16th, we

have seen 9.7 million acres burnt in 2022, resulting in over 3 billion dollars in suppression

costs and 3,796 structures destroyed [9]. The year 2022 has had the most active wildfire

season in over a decade, as measured by the number of recorded wildfires in the YTD report

in early November [10].

Of particular note in the United States are the wildfires in California. A national wildfire

risk assessment identified the geographic regions at greatest risk of wildfire to be California

(50.22% risk) and the Southern Area (15.53% risk) [11]. Since the time of the report, the

California wildfire risk has only increased. A 2019 study found that from 1972 to 2018,
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the average area burned each year increased fivefold, while the area burned by summer fires

increased eightfold [12]. The largest 7 fires in California history have happened since July

2018, six of which occurred in 2020 or 2021 [13]. In 2020, a series of particularly large

wildfires burned across California, Oregon, and Washington. They were described as an

“unprecedented, climate change-fueled event”[14]. The largest fire in California history, the

August Complex Fire, burned in 2020 and was estimated to have burned over 1 million acres

across seven counties [8]. The fires destroyed over 10,000 structures and cost over $12.079

billion in damages, including over $10 billion in property damage and $2.079 billion in fire

suppression costs [8, 15].

This trend continued in 2021 where we saw record breaking fires. The Dixie Fire was the

second largest fire (behind August Complex) and was chosen for our study because it’s the

largest single (non-complex) wildfire in recorded California history, burning 963,309 Acres

over 5 counties during 103 days [16, 17]. In Section 6.2, we demonstrate the efficacy of our

wildfire modeling approach on data from the Dixie Fire. It is particularly suitable as a demo

due to its long burn time, singular source, and gigantic area. Performing the same analysis

on any other wildfire in the United States can reasonably be expected to take less time, be

less computationally intensive, and have a higher resolution with more accurate predictions.

1.2 Challenges in Wildfire Modeling

While the benefits of accurate wildfire modeling are evident and the problem has been

studied for decades, it remains incredibly challenging to obtain accurate fire predictions

due to the complexity of the problem, the cost and difficulty of securing high-quality data,

and the speed with which that data changes according to climate, season, or man-made

infrastructure developments.

Wildfire dynamics include surface fire spread (fire along the surface of the earth), crown

fire spread (fire spreading across the tops of tall vegetation), and short and long-range

spotting (in which firebrands are carried by the wind to ignite another area). These different
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mechanisms are often modeled by a series of coupled empirical or PDE models. Additionally,

wildfire spread is affected by fuel type, volume, and density, live and dead fuel moisture,

surrounding atmosphere, including wind and precipitation, and surface topography.

The systems required to accurately model all these factors are computationally costly,

but the greatest hindrance in modeling wildfires is access to a comprehensive dataset. The

Landfire Program aims to assemble a variety of data resources nationwide for modeling and

responding to wildfires; these include maps of vegetation, operational roads for transporta-

tion, topography, fuel characteristics, and historical disturbances [18]. This data is assembled

through a combination of remote sensing and grounded research teams. It is costly to obtain

and only select parts of the country are updated frequently. The data may be months or

years old, and when it comes to what fuel is present in an area, for example, the difference of

a few months can mean drastic changes. The work in chapter 4 aims to address this problem

and demonstrates success in obtaining real-time fuel type estimation.

1.3 Our Contributions

Novel contributions in this work include a modification of the PDE model presented by

Mandel et al. in 2008 in which we replace constant values with functions dependent on

geospatial fuel distributions [1]. Accompanying our changes is code to solve the model using

a Crank-Nicolson finite difference scheme in two dimensions or a finite element method using

triangles implemented in Python with the FEniCS library [19, 20, 21, 22]. This is detailed

in chapter 3, with the code available on GitHub at https://github.com/drewjohnston13/

wildfire_modeling [23]. In chapter 4, we present a deep learning approach to real-time

fuel classification, an application of the U-Net architecture that, to our knowledge, has never

been used in this context [24]. These fuel classifications are combined with weather data

and fire perimeter data for data assimilation in parameter recovery through the Nelder-Mead

algorithm, as described in chapter 5 [2]. While data assimilation methods, such as ensemble

Kalman filters, have been previously employed in wildfire modeling, our approach using a
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simplex search algorithm for parameter recovery is, too our knowledge, unique for wildfire

modeling.

Chapter 2. Background

The current state of the art in wildfire modeling is a system called FARSITE developed

by Finney et al. at the Missoula Fire Sciences Laboratory [6]. The system is used by the

USDA Forest Service under the U.S. Department of Agriculture and is currently available

as part of the desktop application FlamMap. The complexity of this system leads to heavy

computational costs that require considerable time and computing resources to use. In this

chapter we summarize the FARSITE system as well as explain a simpler model by Mandel

et al. that sacrifices some aspects of modeling fire growth for lower complexity [1]. It is this

model by Mandel et al. that we build upon for the rest of the paper.

2.1 FARSITE

FARSITE is a fire growth simulation modeling system that combines weather and wind data

with topography and fuel maps to simulate fire growth in 2 dimensions. It incorporates

existing models for spread of surface fires and crown fires, spotting, and fire acceleration in

the presence of a variety of terrains, weathers, and fuels.

FARSITE receives as inputs spatial information regarding topography and fuels and out-

puts potential fire behavior characteristics and environmental conditions over a given land-

scape. Examples of fire behavior characteristics include spread rate, flame length, crown fire

activity, and environmental conditions include dead fuel moistures, mid-flame wind speeds,

and solar irradiance. The system can be used to simulate air and ground suppression actions,

enabling a fire management team to understand potential results of an incident response plan.

The following models are coupled together in the FARSITE system:

• Rothermel’s (1972) surface fire spread model [25]

5



• Van Wagner’s (1977) crown fire initiation model [26]

• Rothermel’s (1991) crown fire spread model [27]

• Albini’s (1979) spotting model [28]

• Nelson’s (2000) dead fuel moisture model [29]

• Albini et al.’s (1995) post-frontal combustion model [30].

These models are all based on knowledge of physical processes and aim to describe specific

physical phenomena. For a more comprehensive survey of the histories and uses of wildfire

models, see Pastor et al.’s 2003 paper [31].

2.2 Model by Mandel et al. [1]

While the FARSITE model is impressive in its ability to capture the many physical processes

involved in wildfire spread, this comes at the cost of speed. To obtain a faster running

model, Mandel et al. developed a simplification of a variety of physical properties of fire

that coalesced into two PDE’s coupled together, one describing temperature, and the other

describing the relative ratio of remaining fuel. This combustion model, while simple, has

been shown to produce solutions with traveling combustion waves, which are of paramount

importance when describing wildfire spread. These traveling waves are described by Mandel

et al. as “a propagating area of localized combustion made up of the preheated area ahead

of the fire, the combustion zone, and the post-frontal burning region” [1]. This PDE is

relatively simple to compute, but complex in its nonlinear behavior. For these reasons, we

build our approach in this work with the below PDE system at the center.

The following definitions are from Section 2 of Mandel et al.’s paper [1].

We consider the model of fire in a layer just above the ground. First, we define

the following terms:
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T (K) is the temperature of the fire layer,

S ∈ [0, 1] is the fuel supply mass fraction (the relative amount of fuel remaining),

k (m2s−1) is the thermal diffusivity,

A (Ks−1) is the temperature rise per second at the maximum burning rate with

full initial fuel load and no cooling present,

B (K) is the proportionality coefficient in the modified Arrhenius law,

C (K−1) is the scaled coefficient of the heat transfer to the environment,

CS (s−1) is the fuel relative disappearance rate,

Ta (K) is the ambient temperature, and

v⃗ (ms−1) is the wind speed given by atmospheric data or model.

The coupled PDE model from Mandel et al. is then derived from principles of conserva-

tion of energy, fuel reaction rate from the Arrhenius law, and fuel supply balance:

dT

dt
= ∇ · (k∇T )− v⃗ · ∇T + A

(
Se−B/(T−Ta) − C(T − Ta)

)
, (2.1)

dS

dt
= −CSSe

−B/(T−Ta), T > Ta (2.2)

with the initial values

S(t0) = 1 and T (t0) = T0. (2.3)

The diffusion term ∇ · (k∇) describes heat transfer by radiation, v⃗ · ∇T is an advection

term that models temperature change due to wind, Se−B/(T−Ta) is the rate at which fuel is

consumed when burning, and AC(T − Ta) describes the change in temperature due to heat

transfer to the atmosphere. The exponential term e−B/(T−Ta) is from the reaction rate e−B/T

from the Arrhenius law, modified so that no reaction occurs when the local temperature

matches ambient temperature.

For a more detailed look at the derivation of the model from physical principles, see

section 4 of their paper [1].
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Mandel et al. also make use of data assimilation to improve performance of their model;

they utilize an ensemble Kalman filter to modify temperature and fuel state outputs with

the intention to later couple the model with another PDE describing the local atmospheric

changes due to the fire [1]. In our data assimilation approach, rather than state updates, we

use a simplex search algorithm for parameter recovery, as described in chapter 5.

Chapter 3. Numerical Methods for Solving

the PDE Model

As we cannot solve the PDE analytically, we seek a numerical approximation to the solution

of the PDE. First, we explore the Crank-Nicolson finite difference scheme. In the second

section, we discuss an approach with a finite element method.

3.1 Crank-Nicolson Method

The Crank-Nicolson method is an implicit method based on the trapezoidal rule, giving

second-order convergence in time. It was selected because it is unconditionally stable for

diffusion equations, provides second-order convergence, and can be solved efficiently with

tri-diagonal or band-diagonal matrix algorithms.

First, we show a derivation and demonstration of the Crank-Nicolson finite difference

scheme in one dimension. After we’ve established that our code is working as expected, we

extend to the 2-dimensional case.

3.1.1 1-Dimensional Case. In one dimension we have

Tt = kTxx − vTx + A
(
Se−B/(T−Ta) − C(T − Ta)

)
St = −CSSe

−B/(T−Ta), T > Ta

8



with the initial values

S(t0) = 1 and T (t0) = T0

Let T n
i be the value of T evaluated at the point i∆x on a line segment at time t0 + n∆t.

Then the Crank-Nicolson scheme gives

St =
Sn+1
i − Sn

i

∆t

Tt =
T n+1
i − T n

i

∆t

Tx =
1

2

[
1

2∆x

(
T n
i+1 − T n

i−1 + T n+1
i+1 − T n+1

i−1

)]
Txx =

1

2

[
1

∆x2

(
T n
i−1 − 2T n

i + T n
i+1 + T n+1

i−1 − 2T n+1
i + T n+1

i+1

)]
.

Then this gives

T n+1
i − T n

i

∆t
=

k

2∆x2

(
T n
i−1 − 2T n

i + T n
i+1 + T n+1

i−1 − 2T n+1
i + T n+1

i+1

)
− v

4∆x

(
T n
i+1 − T n

i−1 + T n+1
i+1 − T n+1

i−1

)
+ A

(
Sn
i e

−B/(Tn
i −Ta) − C(T n

i − Ta)
)

Sn+1
i − Sn

i

∆t
= −CSS

n
i e

−B/(Tn
i −Ta).

or

T n+1
i = T n

i +
k∆t

2∆x2

(
T n
i−1 − 2T n

i + T n
i+1 + T n+1

i−1 − 2T n+1
i + T n+1

i+1

)
− v∆t

4∆x

(
T n
i+1 − T n

i−1 + T n+1
i+1 − T n+1

i−1

)
+∆tA

(
Sn
i e

−B/(Tn
i −Ta) − C(T n

i − Ta)
)

Sn+1
i = Sn

i −∆tCSS
n
i e

−B/(Tn
i −Ta).

We make use of array splicing so that the finite difference scheme can be solved on all

points of our discretization at once with matrices in a linear solver. For this demonstration,

we have used Dirichlet boundary conditions for T that we set to be the value of ambient

temperature, Ta, and numerical boundary conditions for S that result in zero flux across

the boundary. See the appendix for selections from the code used in this paper, or visit the

GitHub repository for this project to view all relevant code [23].
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In Figure 3.1, we use the following values to test our solution on the line segment [0, 10]:

k = 1, A = 10000, B = 300, C = 1
5A
, Cs = 2, v = 0, and Ta = 300. To create a smooth spike

in temperature around x = 4, we use the initial condition:

T0(x) = Ta +
1200

cosh(10(x− 4))
. (3.1)

To initialize a hill of fuel about x = 5 we set

S0(x) =


2 exp

((
(x−5

2
)2 − 1

)−1
)

if x ∈ [3, 7]

0 otherwise.

(3.2)

Under these conditions we can expect the fire to move toward the center of the fuel at

x = 5, increase in temperature until the fuel is burned away, and then die out, as displayed

in Figure 3.1.

Figure 3.1: 1-Dimensional Crank-Nicolson Example (No Wind Present)

To test our advection term, we now add wind to our previous conditions by setting v = 2.

This results in the fire being pushed to the right, as shown in Figure 3.2.

We now extend to the 2-dimensional case.

3.1.2 2-Dimensional Case. In two dimensions we have

Tt = ∇ · (k∇T )− v⃗ · ∇T + A
(
Se−B/(T−Ta) − C(T − Ta)

)
= k(Txx + Tyy)− (v1Tx + v2Ty) + A

(
Se−B/(T−Ta) − C(T − Ta)

)
,

St = −CSSe
−B/(T−Ta), T > Ta

10



Figure 3.2: 1-Dimensional Crank-Nicolson Example with Wind

with the initial values

S(t0) = 1 and T (t0) = T0.

Let T n
i,j be the value of T evaluated at the point (i∆x, j∆y) in our plane at time t0+n∆t.

Then the Crank-Nicolson scheme gives

St =
Sn+1
i,j − Sn

i,j

∆t

Tt =
T n+1
i,j − T n

i,j

∆t

Tx =
1

2

[
1

2∆x

(
T n
i+1,j − T n

i−1,j + T n+1
i+1,j − T n+1

i−1,j

)]
Ty =

1

2

[
1

2∆y

(
T n
i,j+1 − T n

i,j−1 + T n+1
i,j+1 − T n+1

i,j−1

)]
Txx =

1

2

[
1

∆x2

(
T n
i−1,j − 2T n

i,j + T n
i+1,j + T n+1

i−1,j − 2T n+1
i,j + T n+1

i+1,j

)]
Tyy =

1

2

[
1

∆y2
(
T n
i,j−1 − 2T n

i,j + T n
i,j+1 + T n+1

i,j−1 − 2T n+1
i,j + T n+1

i,j+1

)]
.

Then for v⃗ = (v1, v2) we have
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T n+1
i,j − T n

i,j

∆t
=

k

2

[
1

∆x2

(
T n
i−1,j − 2T n

i,j + T n
i+1,j + T n+1

i−1,j − 2T n+1
i,j + T n+1

i+1,j

)
+

1

∆y2
(
T n
i,j−1 − 2T n

i,j + T n
i,j+1 + T n+1

i,j−1 − 2T n+1
i,j + T n+1

i,j+1

) ]
− v1

4∆x

(
T n
i+1,j − T n

i−1,j + T n+1
i+1,j − T n+1

i−1,j

)
− v2

4∆y

(
T n
i,j+1 − T n

i,j−1 + T n+1
i,j+1 − T n+1

i,j−1

)
+ A

(
Sn
i,je

−B/(Tn
i,j−Ta) − C(T n

i,j − Ta)
)

Sn+1
i,j − Sn

i,j

∆t
= −CSS

n
i,je

−B/(Tn
i,j−Ta).

We assume a square grid with ∆x = ∆y. Then we have

T n+1
i,j − T n

i,j

∆t
=

k

2∆x2

(
T n
i−1,j + T n

i,j−1 − 4T n
i,j + T n

i,j+1 + T n
i+1,j

+ T n+1
i−1,j + T n+1

i,j−1 − 4T n+1
i,j + T n+1

i+1,j + T n+1
i,j+1

)
− 1

4∆x

(
v1

[
T n
i+1,j − T n

i−1,j + T n+1
i+1,j − T n+1

i−1,j

]
+ v2

[
T n
i,j+1 − T n

i,j−1 + T n+1
i,j+1 − T n+1

i,j−1

] )
+ A

(
Sn
i,je

−B/(Tn
i,j−Ta) − C(T n

i,j − Ta)
)

Sn+1
i,j − Sn

i,j

∆t
= −CSS

n
i,je

−B/(Tn
i,j−Ta)

or

T n+1
i,j = T n

i,j +
k∆t

2∆x2

(
T n
i−1,j + T n

i,j−1 − 4T n
i,j + T n

i,j+1 + T n
i+1,j

+ T n+1
i−1,j + T n+1

i,j−1 − 4T n+1
i,j + T n+1

i+1,j + T n+1
i,j+1

)
− ∆t

4∆x

(
v1

[
T n
i+1,j − T n

i−1,j + T n+1
i+1,j − T n+1

i−1,j

]
+ v2

[
T n
i,j+1 − T n

i,j−1 + T n+1
i,j+1 − T n+1

i,j−1

] )
+∆tA

(
Sn
i,je

−B/(Tn
i,j−Ta) − C(T n

i,j − Ta)
)

Sn+1
i,j = Sn

i,j −∆tCSS
n
i,je

−B/(Tn
i,j−Ta).

We flatten our matrix of values of T n
i,j into one long array so that we can consider every

point in our 5-point stencil as part of a single vector for each i, j; then we define a matrix
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that maps the flattened array to the finite difference scheme. Then, because our system is

linear in time (the only nonlinearity in space is known at each time step), we can frame

this finite difference method as a linear system of (J − 1)2 equations for J steps in space

(not J2 equations because the boundaries can be solved separately at each step). This

is significantly faster than solving a nonlinear system, especially if we make use of sparse

computing methods.

Suppose our spatial discretization has Nx points in the x direction and Ny in the y

direction, and let [x]k represent the kth entry of a vector x. Our linear system then looks

like:

(I −M)xn+1 = bn

where [xn]Nyi+j = T n
i,j,

[Mxn]Nyi+j =
k∆t

2∆x2

(
T n
i−1,j + T n

i,j−1 − 4T n
i,j + T n

i,j+1 + T n
i+1,j

)
− ∆t

4∆x

(
v1

[
T n
i+1,j − T n

i−1,j

]
+ v2

[
T n
i,j+1 − T n

i,j−1

])
,

and [bn]Nyi+j = [(I +M)xn]Nyi+j +∆tA
(
Sn
i,je

−B/(Tn
i,j−Ta) − C(T n

i,j − Ta)
)
.

To view an explicit example of how to define M in this system, see the code in section

A.1 of the appendix.

In our code we again make use of array splicing so that the finite difference scheme can

be solved on all points of our discretization at once with matrices in a linear solver. In our

2-dimensional case, the matrices are largely sparse, so we make use of SciPy’s sparse linear

solvers for greater efficiency [32]. These matrices are also more difficult to define; view the

code in section A.1 for details.

We use similar values to test our 2-D solution on the square [0, 10] × [0, 10]: k = 1,

A = 10000, B = 300, C = 0, Cs = 3, v = [0, 0], and Ta = 0. To create a smooth spike in

temperature around the point (4, 4), we use the initial condition:

T0(x, y) = Ta +
1200

cosh((x− 4)2 + (y − 4)2)
. (3.3)
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To initialize a hill of fuel centered at the point (5, 5) we set

S0(x, y) =


2 exp

((
(x−5)2+(y−5)2

22
− 1

)−1
)

if (x, y) ∈ [3, 7]× [3, 7]

0 otherwise.

(3.4)

Under these conditions we expect the fire to move toward the center of the fuel at (5, 5),

increase in temperature until the fuel is burned away, and then die out. We can view this

behavior in the 3D plots of Figure 3.3. Here, the z-axis takes on the values of temperature

and the remaining fuel ratio. Heat maps of these plots can be seen in Figure B.1 of the

appendix, if desired.

Figure 3.3: 2-Dimensional Crank-Nicolson Example (No Wind Present)

We again test our advection term by adding nonzero wind to our previous conditions.

We set v = [2, 2]. This results in the fire being pushed in the positive x and y directions, as

shown in the panels of Figure 3.4. Again, heat maps can be viewed in the appendix, Figure

B.2.
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Figure 3.4: 2-Dimensional Crank-Nicolson Example with Wind

3.2 Finite Element Method

While the Crank-Nicolson method is admirable, a custom PDE solver is difficult to integrate

with PyMC, a Python package for Bayesian statistical modeling and probabilistic machine

learning [33]. While a Bayesian approach is not ultimately what this paper focuses on, it

was long considered during the course of our research, which led us to implement a solution

to the PDE in FEniCS, a Python package for solving PDE’s using finite element methods

[20]. FEniCS integrates well with PyMC, and has the added advantage of being easily

parallelizable. FEniCS code can be adapted with a few simple changes to parallelize meshes,

functions, and solvers with OpenMPI, a Message Passing Interface library [34]. This allows

us to consider problems on much larger domains and solve problems considerably faster.

In order to use our finite element method, we must derive the variational form of our PDE

system. Beginning with Equation 2.1, we apply a forward Euler finite difference scheme for

the time derivative. Then we multiply by a test function, q, and integrate over our domain,
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Ω, to get:∫
Ω

(Tn+1 − Tn)

dt
q dx⃗ =

∫
Ω

(
k∆Tnq − v⃗ · ∇Tnq + A

(
Sne

−B/(Tn−Ta)q − C(Tn − Ta)q
))

dx⃗

=

∫
∂Ω

k∇Tn · n̂q ds⃗+
∫
Ω

(
− k∇Tn · ∇q − v⃗ · ∇Tnq + A

(
Sne

−B/(Tn−Ta)q

− C(Tn − Ta)q
))

dx⃗

by Green’s first identity where n̂ is the outward pointing unit normal at each point on the

boundary.

We apply pure Neumann boundary conditions, so the integral over the boundary is zero.

Then, by collecting all nonzero terms on one side of the equation we get∫
Ω

(Tn+1 − Tn)q + dt

(
k∇Tn · ∇q + v⃗ · ∇Tnq − A

(
Sne

−B/(Tn−Ta)q − C(Tn − Ta)q
))

dx⃗ = 0

We perform the same process on our fuel equation with a different test function, p, and

get ∫
Ω

(Sn+1 − Sn)

dt
p dx⃗ =

∫
Ω

−CSSne
−B/(Tn−Ta)p dx⃗

which simplifies to ∫
Ω

(Sn+1 − Sn)p+ dt
(
CSSne

−B/(Tn−Ta)p
)
dx⃗ = 0.

Upon testing, this variational form results in diverging temperature values due to the insta-

bility of the forward Euler method with diffusion equations. To resolve this issue, we use a

backward Euler finite difference scheme for the time derivative instead. This gives∫
Ω

(Tn+1 − Tn)q + dt
(
k∇Tn+1 · ∇q +

(
v⃗ · ∇Tn+1 − A

(
Se−B/(Tn+1−Ta) − C(Tn+1 − Ta))

)
q
)
dx⃗ = 0

and ∫
Ω

(Sn+1 − Sn)p+ dt
(
CSSn+1e

−B/(T−Ta)p
)
dx⃗ = 0.

While our variational form is now stable, we no longer have linearity in Tn+1. In order

to avoid depending on nonlinear solvers, we linearize our nonlinear term by the following

Taylor expansion:

e−B/(Tn+1−Ta) = e
−B

Tn−Ta +
Be

−B
Tn−Ta

(Tn − Ta)2
(Tn+1 − Tn) +O(T 2

n+1).

16



Now that our variational form is linear, we can define it in FEniCS and leverage paral-

lelized linear solvers such as MUMPS (MUltifrontal Massively Parallel Solver) [35, 36]. To

see example code, view section A.2 of the appendix. We test our code with the same values

from our 2D Crank-Nicolson example without wind, except the initial fuel is a circle centered

at (5,5) instead of a hill. The result is found in Figure 3.5.

Figure 3.5: Finite Element Example Using FEniCS

Chapter 4. Image Segmentation Using Deep

Learning

One vital aspect of wildfire modeling is obtaining an accurate geospatial fuel distribution

map. However, current methods for doing this are costly and time consuming. These fuel

maps may include information about the type of fuel present as well as the volume, density,

and moisture level of the fuel. We aim to implement a pipeline for extracting fire fuel

distributions from satellite images in close-to-real time. To accomplish this goal, we simplify

the fuel data and focus on extracting accurate vegetation classification maps from satellite
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images, which can be adapted to fuel distributions through different fire models. In this

chapter we outline how we develop a novel dataset and make use of the well-known UNet

deep learning architecture to achieve over 81% accuracy on 4-class vegetation classification,

and over 74% accuracy with 12 classes [24]. Once we have vegetation classifications in the

form of geospatial raster data, we adjust the values of our fuel-dependent parameters. These

parameters are k (thermal diffusivity), A (the temperature rise per second at the maximum

burning rate with full initial fuel load and no cooling present), and Cs (the fuel relative

disappearance rate). Instead of constant values across our domain, these parameters become

functions of geographical location with different values being selected for each vegetation

class in our domain.

To develop fuel distribution maps we require accurate geospatial vegetation classification

across the area of interest, so we set out to define suitable vegetation classes for fuel modeling

and acquire sufficient data to train a deep learning model for image segmentation. All

the models discovered in our literature review for mapping vegetation with remote sensing

were either limited to binary classification (vegetation vs no vegetation), or were heavily

supplemented by field sample data from ground-based teams. This is the current standard for

vegetation fuel mapping, but due to restrictions on cost, man-power, and weather patterns,

these vegetation maps cannot be completed everywhere with a high degree of accuracy. Even

in the places where accurate surveys are possible, such surveys are infrequent and quickly

become outdated as fuel distributions for fire models. For these reasons, we implement a

deep learning segmentation model to generate vegetation maps for use in wildfire modeling

in near-real time.

4.1 Data Collection

As we were unable to find any available datasets that fit our needs, we assemble our own

dataset from publicly available databases. The European Space Agency provides public ac-

cess to images from the Sentinel 2 satellite, and NASA does the same with the Landsat 8
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satellite [37]. While they both provide bands in the red, green, blue, near-infrared, and short-

wave infrared spectrum frequencies, Sentinel 2 has much better resolution (10m compared

to 30m) for many bands, as well as a number of additional medium frequency bands that

Landsat 8 does not have, called vegetation red edge bands. These bands capture reflectances

from frequencies between red and near-infrared bands that have historically been used to

measure vegetation health. These bands have not been used to discern between vegetation

classes previously, but we set out to test whether they hold any efficacy in that regard. For

those reasons, Sentinel 2 was chosen as our source for image data.

As we collected appropriate Sentinel 2 products to build a dataset, we made some sim-

plifying assumptions about our problem to make it feasible in the time frame we had. We

only considered daytime images of the western United States with under 5% cloud coverage.

Additionally, we restricted our data to spring or summer months of 2020 when vegetation

would be thickest and most vibrant. The most dangerous wildfires in the United States

occur in this geographical area during this time of year, and cloud coverage greatly restricts

the effectiveness of a majority of the bands in question. While making our model robust

to other data is important in the long term, this restriction is justified for a first attempt.

We identified seven suitable products of size 12,980 by 12,980 and divided each of them up

into 1,296 smaller images of size 305 by 305 using Python’s RasterIO and ImageIO libraries.

These smaller images were stored in folders to be used as training input for our model.

To complete our dataset we used data from the 2020 Fuel Vegetation Type Continental

United States raster provided by the LANDFIRE Program [38]. This program is run by

the U.S. Department of Agriculture Forest Service and the U.S. Department of the Interior

and provides the most accurate vegetation fuel maps in the country. While these maps are

the best we have for vegetation labels to give our models, they are inappropriate for use in

fire models due to how quickly vegetation data changes week to week and season to season.

Nevertheless, we believe a deep learning approach can become robust enough to perform

reasonably well on novel data after training on this restricted dataset.
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4.2 Preprocessing

Across all images and reflectance bands, noise could be present that would bring individual

pixel values outside of the expected range for that reflectance. To combat this, we clip each

of the 13 spectral bands included in a Sentinel 2 product by replacing any value above the

expected range with the max value. After this filter is applied, each band is normalized to

have values between 0 and 1.

Throughout much of the literature in this domain, experts have made use of the Nor-

malized Difference Vegetation Index, as evaluated by Huang et al. in their 2021 paper [39].

The NDVI for each image was calculated from the red (R) and near-infrared (NIR) bands

as follows: NDV I = NIR−R
NIR+R

. This index was the first data we used for image segmentation,

but we wanted to test out other bands to see what kind of performance they could achieve.

A number of different band compositions were mentioned in literature for different uses.

The band compositions we focused on were RGB or true color (red, green, and blue), false

color (red, green, and near-infrared), SWIR (red, near-infrared, and shortwave infrared 2),

Agriculture (blue, near-infrared, and shortwave infrared 1), and Geology (blue and shortwave

infrared 1 and 2). The false color, Agriculture, and Geology bands have been used to monitor

plant health and density. The Agriculture, Geology, and SWIR bands have shown to be useful

in estimating moisture content in soil and vegetation. The SWIR band has also been used

to identify snow, water, clouds, and newly burned land.

With image data preprocessed, we had only to geospatially match the images to the labels

in order to train our models. We had longitude and latitude coordinates for the corners of

each satellite product, and we could use RasterIO to map the LANDFIRE raster to the same

coordinate reference system as the satellite products. From there, we initially tried to use

traditional affine transformations to match the raster to the satellite image position, but

found difficulty in getting an exact match. This was because the raster data was made as if

from the perspective directly above each pixel, while the satellite image was taken from an

angle by a camera at a fixed location on a satellite orbiting the earth.
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In order to project the raster data onto the satellite image, we made planar assumptions

about both the satellite image and the raster and calculated an appropriate homography

using the coordinates for the four corners of the satellite image. To accomplish this we used

OpenCV’s find_homography() function and a variety of methods supported by RasterIO.

See Figure 4.1 for an illustration of the process, in which the raster data being plotted is

a map of NDVI values colored by a gradient map from red to yellow to green. First, a

square containing the satellite image coordinates (blue dots on the left plot of the figure)

was extracted from the raster. Then this section of the raster was cut out with a mask, and a

homography was calculated taking the corners of the mask into a square. This homography

was applied to the raster to get the final plot of Figure 4.1, which matched the satellite

product.

Figure 4.1: Matching raster data to satellite product

These labels contained hundreds of specific classes of vegetation. In order to simplify

the segmentation problem we built a dictionary to map each specific class into more general

classes of vegetation. One dictionary was built to map everything into one of four classes:

Trees, Shrubs, Grasses, and Other. We used another dictionary to map the classes into 12

groups based on known differences in fire behavior across these vegetation types. The 12

classes included wet grasses, dry grasses, wet shrubs, dry shrubs, deciduous trees, evergreen

trees, mixed trees, other trees, water, snow, urban area, and sparse vegetation.
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4.3 UNet Model

The UNet model, described in Ronneberger et al.’s 2014 paper, is a popular and effective

deep learning architecture for image segmentation [24]. We chose to implement this model

in PyTorch using the convolutional, pooling, and upsampling layers as described in the

original paper. We used ReLU activation functions, a cross-entropy loss function across all

vegetation classes present, a learning rate of 10−3, and a dropout layer with a dropout rate

of 0.25 after every block in the architecture with a linear layer except the final layer. This

approach provided pixel-wise probability estimates for each class which were turned to class

predictions by way of softmax regression. The learning rate and dropout ratio were decided

by experimentation.

4.4 Results

We began by examining results attained by training a model on the NDVI data. For the

4-class labels, we produced accuracy and loss graphs shown in Figure 4.2.

Figure 4.2: Accuracy and Loss

We don’t see signs of overfitting, loss consistently decreases in the validation set, and

accuracy consistently increases in the validation set over time. Figure 4.3 displays an example

image, the ground truth classes, and our model’s prediction on 12 classes.
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Figure 4.3: Example of Model Performance on 12 Classes

Note that the model is making steps toward differentiating between different crop types,

which our truth labels are unable to do. This is an example of a limitation of the data we

have that we aim to overcome through deep learning.

Figure 4.4: Example Image for Band Compositions

Different band compositions capture different properties in each image. In Figure 4.4 we
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see an example of what the different compositions look like over the same area. Each band

has different uses and illustrates different aspects of the vegetation. This is an interesting area

of potential further research. Using deep learning, or more explainable statistical learning

techniques, one could attempt to create an accurate profile of the information gained from

each band composition. While some uses for each composition have been explained by

literature, we did not come across literature comparing and contrasting what each band

composition captures regarding vegetation or land features specifically.

The different performances achieved by each band composition are displayed in Table

4.1 below. Overall, performances are comparable across the board in both accuracy and

F1-score. As we are considering multi-class problems, we average the F1-score across the

classes and show the results of computing with weighted averaging and macro-averaging.

Table 4.1: Performance across band compositions

All NDVI True Color False Color SWIR Agriculture Geology

4-Class
Accuracy 0.81 0.79 0.78 0.81 0.82 0.80 0.81
4-Class F1
(weighted) 0.78 0.76 0.76 0.79 0.79 0.78 0.78
4-Class F1
(macro) 0.37 0.35 0.35 0.36 0.38 0.35 0.36
12-Class
Accuracy 0.75 0.71 0.74 0.75 0.74 0.75 0.74
12-Class F1
(weighted) 0.71 0.66 0.69 0.70 0.70 0.70 0.71
12-Class F1
(macro) 0.14 0.11 0.11 0.13 0.13 0.13 0.14

As an example of the different predictions from different data, consider Figure 4.5. While

the SWIR composition outperforms NDVI when it comes to our metrics, in this example the

model trained on SWIR incorrectly reads a large swath of forest (dark green) as shrub (tan),

where NDVI does not. Further exploration should be done to identify in what situations

band compositions flourish and when they’re likely to fail.
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Figure 4.5: Example Comparing Results Using NDVI vs SWIR Bands

Figure 4.6 shows another comparison, this time between a model trained on the RGB

composition and one trained on the Geology band composition. Note that while the RGB

Figure 4.6: Example Comparing Results Using RGB vs Geology Bands
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model captures much of the shape of the landscape represented in the 4-Class True Labels

panel, the Geology model does not seem to match predictions at all.

For our work, we elect to use a model trained on NDVI, largely due to qualitative results

and recommendations from literature [39]. To view more comparisons between results using

different bands, see Appendix B.

4.5 Potential Improvements

Looking to the future, there are some clear areas of improvement. One potential improvement

would be to adjust the loss function. Experimenting with alternative loss functions, such as

Dice Loss, Focal Loss, Intersection Over Union, Boundary Loss, or even some adversarial loss

may yield crisper boundaries, better ways to deal with unbalanced segmentation, or greater

performance generally.

Another potential improvement to be considered is to use alternative architectures, such

as Atrous Spatial Pyramid Pooling. More modern improvements to the current UNet archi-

tecture should also be considered, such as Dual Attention, MA UNet, and UNet++.

One important area of improvement is the robustness of our model. Incorporating alter-

native data (and possibly nested model techniques) may allow our model to perform well

with significant cloud cover, handle images captured at night, and work well for images from

different seasons of the year and geographical areas. These limitations are significant and

should be addressed for the model to generalize to fires in a variety of circumstances.

Chapter 5. Data Assimilation

The goal of data assimilation is to optimally combine a mathematical model with observed

data. For example, Mandel et al. make use of observed temperature data to update the

states of their model with an ensemble Kalman filter [1]. In our approach, we seek to

recover the optimal parameters for our PDE to most accurately describe and predict wildfire
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behavior. We have access to geospatial data describing fire perimeters at discrete times

as a wildfire evolves, provided to the public on FTP servers by the National Interagency

Fire Center [40]. As data assimilation in this context has a number of complexities, the

first part of this chapter details the data assimilation process for parameter recovery with

the SIR (Susceptible-Infected-Removed) model for spread of disease, a much simpler PDE

model. We use this as a stepping stone toward data assimilation in the context of wildfire

prediction.

5.1 SIR model example

5.1.1 The SIR Model. An SIR model is a well-known epidemiological model that com-

putes the number of people in a population that are infected with a contagious disease,

susceptible to it, or “removed” (either they have deceased or they have recovered and devel-

oped immunity to the infection).

Among the simplest SIR models is the Kermack-McKendrick Model, given by

dS

dt
= −kSI

dI

dt
= kSI − qI

dR

dt
= qI

where t is time, S(t) is the fraction of susceptible people in the population, I(t) is the

fraction of the population that is infected, R(t) is the fraction of the population who have

been removed, k is the infection rate, and q is the recovery rate. For our example, we use

this model and choose k = 1 and q = 0.3. The curves for S, I, and R produced with these

parameter values from t = 0 to t = 20 are shown in Figure 5.1. In this example, the majority

of the population is classified as “susceptible” at the beginning of the epidemic, but that

portion of the population gradually declines to near 0 by the end. The infected population

increases until t = 7.5, then decreases back toward zero. The recovered population increases

throughout the duration of the experiment.
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5.1.2 Data Assimilation with the Nelder-Mead Method. We begin by generating

noisy “observable” data with which to perform data assimilation. We do this by randomly

selecting t values from the first quarter of the model’s lifespan (t ∈ [0, 5]), then calculating

I(t) + ϵt and R(t) + δt where ϵt ∼ N (0, 0.05) and γt ∼ N (0, 0.05) for each t. These noisy

data points become our “observed” data. We plot the observed data along with the “true”

SIR model in Figure 5.1.

Figure 5.1: The True SIR Model and Generated Observable Data Points

The goal of our data assimilation process now is to find the parameters that define the

SIR model that best fits our data. Our approach to accomplishing this is to define a function

that accepts proposed values for k and q as inputs. The function solves the SIR model with

these proposed parameters at the t values for which we have observed data, then computes

the 2-norm of the vector of differences between the values of the proposed SIR model and the

observed data. We then use the Nelder-Mead method to find the parameters that minimize

this function [2]. There are a plethora of optimization algorithms to choose from, but we
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select the Nelder-Mead method because it is among the best algorithms for multidimensional

unconstrained optimization without using derivatives. While we can find gradients in this

SIR example, we will not be defining a smooth function to optimize in our wildfire context.

As a simplex search algorithm, Nelder-Mead is ideal for non-smooth optimization problems.

For our example, we provide initial guesses of 0.8 and 0.5 for our parameters, and the

Nelder-Mead algorithm returns optimal values of 0.984 and 0.284, which are off by only 0.016

in both cases from our chosen values k = 1 and q = 0.3.

We plot the predicted SIR model based on these recovered parameters alongside the true

model in Figure 5.2. Note the darker colors are associated with the predicted solution.

Figure 5.2: Comparing True SIR Model to Model from Nelder-Mead Solution

This approach to parameter recovery for data assimilation is effective and relatively

efficient. In the following section we explore an alternative approach with Bayesian data

assimilation.
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5.1.3 Bayesian Data Assimilation. Data assimilation can also be performed in a

Bayesian framework. The idea of Bayesian inference is to use Bayes’ Theorem to update

the probability of a hypothesis by using knowledge from informative data. In the context

of Bayesian inference of parameters, Bayes’ Theorem describes the relationship between

prior knowledge of the parameters, knowledge provided through observed data, and updated

knowledge after observing the data. The theorem is given by

P (θ|x) = P (x|θ)P (θ)

P (x)
, (5.1)

where each P defines a probability distribution, x represents data, and θ represents a set of

parameters. We call P (θ) the “prior” distribution, which captures our beliefs about how the

parameters are distributed prior to observing data. We call P (x|θ) the “likelihood” as it is

the likelihood of the observed data as a function of the model parameters. Then P (θ|x) is

our “posterior” distribution that combines our prior beliefs about our parameters and our

likelihood calculated from our data. P (x) is a normalization factor that can be difficult

to solve for, but this is overcome through the use of Markov Chain Monte Carlo (MCMC)

methods, Variational Inference methods, or others. Because we have some idea of what

parameters are realistic for a wildfire, this Bayesian approach seems to have promise.

For our SIR model, we model k and q with LogNormal distributions so that they cannot

take on negative values. For our example, we choose prior distributions

k ∼ LogNormal(log(0.9), 0.1) and q ∼ LogNormal(log(0.5), 0.2). We define our likelihood

function to be a Normal probability density function centered at our predicted model values

for S or I at the times for which we have observations to compare.

For this problem we use NUTS (No U-Turn Sampler), a Hamiltonian Monte Carlo

Method. This method converges faster and chooses samples better than MCMC methods

such as Metropolis-Hastings, but it requires gradient computations. This makes it infeasible

for our wildfire problem, but it is a powerful tool in the SIR context.

The details of these methods are beyond the scope of this paper, but to recover best model

parameters, we fit a distribution to a collection of samples from the posterior distribution
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that we retreive from our Monte Carlo algorithm, find the mode of the distribution, and

call that our maximum a posteriori (MAP) estimate. This histograms of samples, fitted

distributions, and MAP estimates for each parameter are found in Figure 5.3

Figure 5.3: Posterior Distributions of Parameters for SIR Model

The parameters we recover from this process are k = 1.049 and q = 0.353. To evaluate

our parameter recovery process, we plot our predicted SIR model using these values next to

Figure 5.4: Comparing True SIR Model to Model from NUTS Solution
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the true model in Figure 5.4 and see that the curves produced are quite similar, with the

largest error being a small overestimation of the infected population during the peak of the

epidemic.

5.2 Extension to wildfire model

The main idea of our approach to data assimilation with the wildfire model is the same as

with the SIR model: we recover parameters that minimize a function that measures the

difference between our model output and observed data. However, additional complexities

in our wildfire model necessitate some changes to be outlined in this chapter. The PDE’s in

our wildfire model are more computationally expensive and must be performed many more

times because of the size of the geographical mesh considered for a real wildfire, as well as the

length of time the model must be solved over. Therefore, it takes much longer to solve the

whole system (∼ 2 hours compared to under a second for our SIR model example). Paral-

lelization reduces this time by more than half, but this is not enough to make a Bayesian data

assimilation approach feasible, as that would require potentially tens of thousands of func-

tion calls to generate enough samples to accurately approximate the posterior distributions

of our parameters. Another obstacle to Bayesian inference is defining an effective likelihood

function. Effective metrics for prediction of wildfire spread are often taken from set theory

and are generally not smooth, such as the Jaccard Index (also known as Intersection over

Union, or IoU), given by

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, (5.2)

for any two sets S1 and S2. This is a much better approach than comparing whether fire is

present pointwise across all the coordinates of our predicted fire and the actual data. Such

a naive result would be skewed by the size of the geographic area considered; for example,

if we consider the entire State of California as part of our domain, we could predict no

fire at all and still get 99% of the points correct. Ideally, a likelihood function would look
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something more like intersection over union, but a non-differentiable likelihood function

further complicates MCMC methods and makes an already infeasible problem even more

computationally expensive. For this reason, we will only consider the Nelder-Mead method

for data assimilation in the context of wildfires.

5.2.1 Performance Metrics. This IoU measure is one of many valuable metrics for

assessing wildfire models [41]. To describe IoU in terms of fire perimeters, let a refer to the

area that burns in both the predicted and actual fire perimeters, b refer to the area that

burns in the predicted fire perimeter, but not the actual fire perimeter, and c be the area

that burns in the actual fire perimeter, but not the predicted one. Then

IoU =
a

a+ b+ c
. (5.3)

Other metrics include Simpson’s coefficient,

a

min(a+ b, a+ c)
, (5.4)

Braun’s coefficient,

a

max(a+ b, a+ c)
, (5.5)

and the Kulczynski measure, which is the arithmetic mean of Simpson’s coefficient and

Braun’s coefficient [42, 43, 44, 41]. When predicting the spread of a fire, it’s better to

overestimate the size of the fire than to underestimate it and fail to protect people or resources

in an area that was not expected to burn. With that in mind, we choose to use a weighted

Kulczynski measure that favors a
a+c

over a
a+b

. Then the performance metric we will focus on

for data assimilation is given by

K =
1

4

(
a

a+ b

)
+

3

4

(
a

a+ c

)
. (5.6)

For each of these metrics, 1 indicates perfect overlap and 0 indicates no overlap at all.

To view visualizations demonstrating these measures and many others, see Jeffrey Chao’s

excellent thesis on the subject [41].
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5.2.2 The Final Model. We have some final adjustments to make to our model as we

put everything together. While our Sentinel 2 images have 10m resolution, this would require

a 12, 000× 12, 000 square mesh of 10m units to cover the area burned by the fire. We adjust

the resolution to 500× 500 so that it’s more manageable for our constraints on computation

time and memory required to store our mesh. We further adjust our atmospheric data to

reflect proper units. We have ambient temperature data and wind data from the National

Centers for Environmental Information that need to be adjusted [45]. The temperature

is transformed from Fahrenheight to Kelvin, and the wind data is converted from speed

(s) and direction (d) values to a vector to be used in our PDE by the following function,

f(s, d) = [s sin(d), s cos(d)]. These values are adjusted every hour for which we have data,

and the wind vector is scaled by a parameter, w, for which we solve in the Nelder-Mead

simplex.

The data we are using for assimilation describes only the perimeters of the fire at discrete

times, as shown in Figure 5.5. As we do not have temperature data, we initialize our temper-

Figure 5.5: The Dixie Fire (California, 2021)

ature function with the ambient temperature everywhere outside the initial fire perimeter,
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and 800C within the fire perimeter. We record the maximum temperature at each coordinate

for the duration of the model, choose a generous cut-off value of 600C, and consider a point

to be within our fire perimeter if at any point its temperature exceeded this cut-off. These

values are inspired by a typical temperature trace of a flame front during a grass fire, as

recorded by Mike Wonton at the Firelab of the University of Toronto [46]. We initialize our

fuel function in a similar way, setting every point outside the initial fire perimeter to 1 and

every point within the fire perimeter to 0.2, signifying the majority of the fuel has burned.

In addition to w, our model has parameters B and C, from the PDE model due to Mandel

et al. [1]. These values are independent of fuel type, and so remain constant throughout the

geographical area of interest. The other parameters, k, A, and Cs are functions of fuel type.

For each of these parameters, we use the fuel map with 4 fuel types (Grass, Shrub, Tree, and

Other) from our deep learning model to create a function that maps 4 values to the locations

of the 4 fuel types in our fuel map. Then, for example, if grass is present at location (xi, yj),

the PDE will use values k1, A1, and Cs1 to compute the change in temperatuer and fuel at

that location. If shrubs are present, the values will be k2, A2, and Cs2 , and so on.

Now the function to be minimized by the Nelder-Mead method has 15 parameters: w, B,

C, k1, k2, k3, k4, A1, A2, A3, A4, Cs1 , Cs2 , Cs3 , and Cs4 . This function computes our PDE

solution with proposed parameters and calculates the weighted Kulczynski values comparing

each predicted and real fire perimeter. Then it takes 1−Kp for each Kulczynski measure, Kp,

of perimeter p, and returns the sum
∑n

p=1(1−Kp) where n is the total number of perimeters

for which we have data. We complete our data assimilation by using Nelder-Mead to find

the parameters that minimize this function.

Chapter 6. Model Evaluation

We evaluate our resulting model both qualitatively and quantitatively. We calculate IoU

and Kulczynski values to measure how well the predicted and actual perimeters match up,

and plot the perimeters on top of one another to evaluate how well they match visually.
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6.1 On Generated Fires

In this section we generate fires and fuel maps on which to test our model.

6.1.1 Two ignition points and a lake. In this example, we ignite two square fires in

a grassland with a circular lake in the center. See the corresponding fuel map in Figure 6.1.

Red represents fire, green is grass, and blue is water. With these initial conditions, and initial

Figure 6.1: Example 1 Fuel Map

fuel map of 1 everywhere but the fires, we choose parameters w = 0, B = 100, C = 0.0001,

k1 = 0, k2 = 0.0333, k3 = 0.0417, k4 = 0.05, A1 = 8000, A2 = 15000, A3 = 12000,

A4 = 10000, Cs1 = 3, Cs2 = 2, Cs3 = 2.5, and Cs4 = 3. This generates fire perimeters on our

domain as shown in Figure 6.2.

After performing our data assimilation parameter recovery method with random initial

starting parameters, we recover parameters w = 0, B = 125.799108, C = 0.00018934749,

k1 = 0, k2 = 0.037337778333333335, k3 = 0.04667222291666667, k4 = 0.0560066675, A1 =

10588.94016, A2 = 19854.2628, A3 = 15883.41024, A4 = 13236.1752, Cs1 = 0.449094034,

Cs2 = 0.29939602266666665, Cs3 = 0.37424502833333334, and Cs4 = 0.449094034. While

these values do not precisely match the actual parameters, and therefore the models may
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Figure 6.2: Example 1 Fire Perimeters

produce different temperature predictions, we see that the actual fire perimeters predicted

overlap almost exactly with the true fire perimeters. In Table 6.1, we can see the resulting

IoU and weighted Kulczynski scores, which are all very close to 1. This is an excellent result!

Table 6.1: Example 1 Evaluation Metrics

Perimeter # 1 2 3 4 5 6 7 8

Kulczynski 1 0.990 0.996 0.996 0.997 0.999 0.999 0.999
IoU 1 0.986 0.994 0.995 0.997 0.998 0.998 0.998

We have recovered parameters that accurately describe how the fire has developed in our

domain. In Figure 6.3, we see this visually. The true fire perimeters are plotted in white,

and the predicted ones are plotted over them in red. The resulting orange-pink hue indicates

that they overlap almost exactly.
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Figure 6.3: Example 1 Predictions

6.1.2 Heterogeneous fuel map. In this second example, we consider a heterogeneous

fuel map, as shown in Figure 6.4. Once again, blue represents water, red is fire, and light

green is grass. However, now we have added a tan color to represent shrubs, and a dark

green to represent trees.

Figure 6.4: Example 2 Fuel Map
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We use parameters w = 0, B = 100, C = 0.000125, k1 = 0, k2 = 0.03333, k3 = 0.0416667,

k4 = 0.1, A1 = 1600, A2 = 12000, A3 = 9600, A4 = 8000, Cs1 = 3, Cs2 = 2, Cs3 = 2.5,

and Cs4 = 3. These values were chosen partially to demonstrate drastic differences in the

temperature and speed at which different fuel types burn. In Figure 6.5, we can see the

resulting fire perimeters. Note how the fire burns through grass more quickly than shrubs

or trees.

Figure 6.5: Example 2 Fire Perimeters

Upon performing data assimilation, we recover parameters w = 0, B = 149.001811,

C = 0.00019198904, k1 = 0, k2 = 0.045877042400000005, k3 = 0.05734630300000001, k4 =

0.1376311272, A1 = 2097.74372, A2 = 15733.0779, A3 = 12586.46232, A4 = 10488.7186,

Cs1 = 1.77412965, Cs2 = 1.1827531, Cs3 = 1.478441375, and Cs4 = 1.77412965. Using

these parameters, we model and record predicted fire perimeters to compare to our true
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perimeters. Once again, predicted perimeters are in red, while true perimeters are in white.

The resultant pink-ish hue represents overlapping prediction and truth.

Figure 6.6: Example 2 Predictions

In Table 6.2, we can see the resulting IoU and weighted Kulczynski scores, which are

again all close to 1.

Table 6.2: Example 2 Evaluation Metrics

Perimeter # 1 2 3 4 5 6

Kulczynski 1.000 0.986 0.996 0.997 0.996 0.995
IoU 1.000 0.981 0.989 0.991 0.987 0.983

Perimeter # 7 8 9 10 11 12

Kulczynski 0.993 0.992 0.992 0.991 0.990 0.993
IoU 0.972 0.970 0.967 0.963 0.960 0.970
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6.2 On Data from the Dixie Fire (2021)

We now perform our approach on real fire data. While perimeters were predicted exactly

on generated data, we know that our simplified model does not encapsulate every aspect of

fire spread in the real world, so we should expect some significant error when transitioning

to real data. There are a variety of other sources of error to consider as well.

Figure 6.7: Predicted Temperature for the Dixie Fire

After some experimentation, we initialized our parameters to be w = 0.001, B = 200,
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C = 0.001, k1 = 0, k2 = 0.00005, k3 = 0.00005, k4 = 0.00005, A1 = 800, A2 = 2000, A3 =

2000, A4 = 2000, Cs1 = 0.05, Cs2 = 0.01, Cs3 = 0.01, and Cs4 = 0.01. Despite running this

process for several days, Nelder-Mead failed to find a minimum in that time frame. However,

the best parameter set located during this period is w = 0.00142528678, B = 202.087845,

C = 0.000897715211, k1 = 9.75×10−6, k2 = 6.17728210×10−6, k3 = 8.23637613×10−6, k4 =

1.23545642× 10−5, A1 = 836.732853, A2 = 2510.19856, A3 = 2008.15885, A4 = 1673.46571,

Cs1 = 0.0428445756, Cs2 = 0.0142815252, Cs3 = 0.0285630504, and Cs4 = 0.0428445756.

This results in the temperature predictions found in Figure 6.7. Recall that the temperatures

plotted here are the maximum temperatures recorded at each coordinate up to the time

specified.

These temperature predictions (in Kelvin) are reasonable values to be expected in a

Wildfire context. We use our cut-off value to produce masks of the predicted fire perimeters

and plot them over the true fire perimeters in Figure 6.8. As before, the true perimeters are

in white, while the predicted perimeters are in red.

While not perfect, our predicted fire perimeters approximate the size of the fire and the

speed at which it is spreading well. The goal is to improve the accuracy through future work,

but current qualitative results may help inform fire management decisions. In Table 6.3, we

see the values of our metrics for each perimeter.

Table 6.3: Dixie Evaluation Metrics

Perimeter # 1 2 3 4 5 6 7 8

Kulczynski 1.00 0.74 0.67 0.65 0.58 0.72 0.72 0.60
IoU 1.00 0.64 0.56 0.54 0.45 0.50 0.48 0.41

Perimeter # 9 10 11 12 13 14 15 16

Kulczynski 0.60 0.59 0.59 0.59 0.59 0.57 0.70 0.66
IoU 0.41 0.39 0.38 0.38 0.38 0.36 0.42 0.34

We see in both metrics (and the figures) that the predicted perimeters are better for

the first few weeks, and drop off in quality significantly after that. When using the model

in real time, the computations could be restarted with new initial conditions each time an

42



Figure 6.8: Predicted Fire Perimeters for the Dixie Fire

observation is made. This method results in the perimeters found in Figure 6.9. The metrics

for these perimeters are found in Table 6.4.

As the Dixie Fire is the largest single fire in California history, it burned over a much

larger area and for a longer time than the vast majority of wildfires [13]. We expect our

method to produce even more accurate results on smaller, shorter-lived fires.
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Table 6.4: Dixie Evaluation Metrics with Restarts

Perimeter # 1 2 3 4 5 6 7 8

Kulczynski 1.00 0.74 0.86 0.91 0.85 0.84 0.95 0.75
IoU 1.00 0.64 0.79 0.85 0.78 0.50 0.81 0.65

Perimeter # 9 10 11 12 13 14 15 16

Kulczynski 0.98 0.97 0.99 0.99 0.99 0.95 0.86 0.78
IoU 0.92 0.93 0.96 0.97 0.97 0.92 0.61 0.41

Figure 6.9: Predictions Restarting with Each Observation
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Chapter 7. Conclusion

We have shown that our model, although much simpler than what is considered state-of-the-

art, can effectively approximate the size and speed of an active wildfire. We have developed a

novel deep learning application for recovering fuel distributions in real time and an efficient,

parallelizable numerical method for evaluating our PDE model. In particular, our approach

recovers accurate fire perimeters within the first few weeks of modeling the Dixie Fire. We

expect our method to produce more accurate results on fires that are smaller and do not

burn for as lengthy a time as the Dixie Fire. In the next section we present some ideas for

potential improvements upon the method described in this paper.

7.1 Future Directions

There are many changes that could be made to immediately improve our approach, the most

effective of which may be to add a term to the PDE, or a method to adjust temperature and

fuel initializations, in order to describe the effect of topography on the change in temperature.

For example, fire burns more quickly uphill, and will not travel across the boundary of a

steep cliff face. Other improvements include an effort to measure vegetation volume and

density, or to remotely estimate moisture content of fuel [47, 48, 49].

For quicker and more accurate parameter recovery, this method could be adapted using

the idea behind the architecture of ProGAN [50]. We could begin with a low resolution and

recover optimal parameters for the system. Then, we could transform these parameters to

get initial parameters for the same problem at a higher resolution, and continue this process

until we recover parameters at full resolution.

Appendix A. Selections from Code

45



All code for this project can be found on GitHub at: https://github.com/drewjohnston13/

wildfire_modeling.

A.1 Crank-Nicholson Finite Difference Scheme Code

Below is a function for approximating the solution to our PDE model with the Crank-

Nicholson scheme in two dimensions.

import numpy as np

import scipy.sparse as sp

import scipy.sparse.linalg as spla

def crank2D(k,A,B,C,Cs,T0,S0,g,Ta,v,a,b,tf,J,N):

"""

Uses the Crank-Nicholson scheme to compute the solution to the PDE system:

T_t = k(T_xx+T_yy) - (v1T_x+v2T_y) + A(Se^(-B/(T-T_a))-C(T-T_a))

S_t = -C_SSe^(-B/(T-T_a)), T > T_a

on R = [a,b]×[a,b]

Boundary Conditions:

T(t,x,y) = g(x,y) on dR (Dirichlet)

S(t,x,y) = S(t-1,x+(-)dx,y+(-)dy) on dR (Numerical: No Flux)

Initial Conditions:

T(0,x,y) = T0(x,y)

S(0,x,y) = S0(x,y)
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given N time steps and J space steps.

"""

# Initialize space and time grids

x,dx = np.linspace(a,b,J+1,retstep=True)

y,dy = np.linspace(a,b,J+1,retstep=True)

t,dt = np.linspace(0,tf,N+1,retstep=True)

X,Y = np.meshgrid(x,y)

# Initialize solution array

T = np.zeros((N+1,J+1,J+1))

S = np.zeros((N+1,J+1,J+1))

T[0] = T0(X,Y)

S[0] = S0(X,Y)

# Define matrix for Laplacian term

block = sp.diags(([1]*(J-2),[-4]*(J-1),[1]*(J-2)),offsets=(-1,0,1))

Dxxyy = sp.block_diag([block]*(J-1)) \

+ sp.diags(([1]*((J-1)**2-J+1),[1]*((J-1)**2-J+1)),

offsets=(-J+1,J-1))

Dxxyy = Dxxyy*k*dt/(2*dx**2)

# Define matrix for single derivative term

v1, v2 = v

block = sp.diags(([-v1]*(J-2),[v1]*(J-2)),offsets=(-1,1))

Dxy = sp.block_diag([block]*(J-1)) \

+ sp.diags(([v2]*((J-1)**2-J+1),[-v2]*((J-1)**2-J+1)),

offsets=(-J+1,J-1))
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Dxy = Dxy*dt/(4*dx)

# Define matrix for T^n+1_i,j term.

I = sp.eye((J-1)**2)

# Collect "n+1 terms" on left side in matrix for solving

M = Dxxyy-Dxy

left = (I-M).tocsr()

# Solve at each time step.

for n in range(N):

# Collect "n terms" for right side

Tn = T[n,1:-1,1:-1].flatten()

Sn = S[n,1:-1,1:-1].flatten()

f = Tn+M@Tn+dt*A*(Sn*np.exp(-B/(Tn-Ta))-C*(Tn-Ta))

# Add Boundary Conditions

p = np.zeros((J-1,J-1))

p[:,[0,-1]] = g(X[1:-1,[0,-1]],Y[1:-1,[0,-1]])

p = p.flatten()/dx**2

q = np.zeros((J-1)**2)

q[:J-1] = g(X[0,1:-1],Y[0,1:-1])/dx**2

q[-J+1:] = g(X[-1,1:-1],Y[-1,1:-1])/dx**2

# Solve the system

T[n+1] = g(X,Y)

T[n+1,1:-1,1:-1] = spla.spsolve(left,f-p-q).reshape((J-1,J-1))

48



S[n+1,1:-1,1:-1] = S[n,1:-1,1:-1] \

- dt*Cs*S[n,1:-1,1:-1]*np.exp(-B/(T[n,1:-1,1:-1]-Ta))

# Numerical BCs:

S[n+1,[0,-1],:] = S[n,[1,-2],:]

S[n+1,:,[0,-1]] = S[n,:,[1,-2]]

return T,S

A.2 Finite Element Code

Below is a function for solving the PDE model in two dimensions using FEniCS.

def solve_pde(k, A, B, C, Cs):

# Define constants.

a,b = 0,10

x1,y1 = a,a

x2,y2 = b,b

Nx = 800

Ny = 800

tf = 3

Nt = tf*10

t,dt = np.linspace(0,tf,Nt+1,retstep=True)

dt = fa.Constant(dt)

Ta = fa.Constant(20.) # Ambient Temperature.

v = fenics.as_vector([fa.Constant(0.), fa.Constant(0.)]) # Wind vector.

# Define function space.

mesh = fa.RectangleMesh(fenics.Point(x1, y1), fenics.Point(x2, y2), \

Nx, Ny, ’crossed’)

V = fenics.FunctionSpace(mesh, ’CG’, 1)
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# Define initial values.

T_0 = fenics.Expression(’1200/cosh(pow(x[0]-b,2)+pow(x[1]-b,2))+Ta+0.1’,

degree=2, b=4, Ta=Ta)

T_n = fa.interpolate(T_0, V)

funcstring = "(pow(x[0]-5,2)+pow(x[1]-5,2) <= 1.0)? 1.0 : 0.0;"

S_0 = Expression(funcstring, degree=2)

S_n = fa.interpolate(S_0, V)

# Define Trial and Test Functions.

T_n1 = fenics.TrialFunction(V)

S_n1 = fenics.TrialFunction(V)

q = fenics.TestFunction(V)

p = fenics.TestFunction(V)

# Define Boundary Conditions: BC = dot(grad(T_n),N)

# where N is the unit normal vector.

BC = fa.Expression("0.", degree=1) # Pure Neumann BCs.

# Define variational forms.

T_diff = T_n-Ta

linearized = exp(-B/T_diff) + B*exp(-B/T_diff)/(T_diff**2)*dt

F_T = (T_n1-T_n)*q*dx \

+ dt*(k*dot(grad(T_n1),grad(q)) + dot(v,grad(T_n1))*q \

- A*(S_n*linearized*q - C*(T_n1-Ta)*q))*dx \

+ (k*BC*q)*ds

F_S = (S_n1-S_n)*p*dx + dt*Cs*S_n*linearized*p*dx
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# Separate into bilinear and linear form.

a_T, L_T = lhs(F_T), rhs(F_T)

a_S, L_S = lhs(F_S), rhs(F_S)

# Step in time.

T = fa.Function(V)

S = fa.Function(V)

for i in range(len(t)):

# Solve for T, update solution.

fa.solve(a_T==L_T, T)

T_n.assign(T)

# Solve for S, update solution

fa.solve(a_S==L_S, S)

S_n.assign(S)

return T,S

Appendix B. Additional Figures
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Figure B.1: 2-Dimensional Crank-Nicolson Example Heat Map (No Wind Present)

Figure B.2: 2-Dimensional Crank-Nicolson Example Heat Map with Wind

52



Figure B.3: Comparing Results Using RGB, NDVI, SWIR, and Agriculture Bands

53



Figure B.4: Comparing Results Using RGB, NDVI, Agriculture, and Geology Bands
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