Supported Monoethanolamine for CO2 Separation

Morris D. Argyle
mdargyle@byu.edu

Zhuoyan Sun

Maohong Fan

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Chemical Engineering Commons

Original Publication Citation

BYU ScholarsArchive Citation
Argyle, Morris D.; Sun, Zhuoyan; and Fan, Maohong, "Supported Monoethanolamine for CO2 Separation" (2011). Faculty Publications. 79.
https://scholarsarchive.byu.edu/facpub/79

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Supported Monoethenalamine for CO₂ Separation

Zhuoyan Sun§, Maohong Fan§ and Morris Argyle§,ζ

§ Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071
ζ Department of Chemical Engineering, Brigham Young University, Provo, UT 84602

ABSTRACT

An alternative method for using monoethenalamine (MEA) in CO₂ separation is developed from the viewpoints of the MEA-CO₂ reaction environment and the process of spent sorbent regeneration. The method could be used to considerably reduce energy consumption compared to conventional aqueous MEA processes. MEA-TiO₂ (MT) CO₂ sorbent is synthesized using pure MEA and a support material, TiO₂. The performance of the MT sorbent on CO₂ separation was investigated in tubular reactors under various experimental conditions. The effects of several major factors on CO₂ sorption by the MT sorbent were investigated. The sorption capacity of the MT sorbent increased with MEA loading, reaching 48.1 mg-CO₂/g-MT at 45 wt% MEA. However, an optimum of 40 wt% MEA loading was chosen for most of the sorption tests conducted in this research. Temperature affected the CO₂ sorption capacity considerably, with optimum values of 45°C for adsorption and 90°C for regeneration, while humidity had a small positive effect under initial test conditions. In addition to TiO₂, TiO(OH)₂ and FeOOH were also tested as potential supports for MEA. TiO(OH)₂ appears to be the best support material for
MEA, but more evaluation is needed. The MT sorbent is regenerable, with a multi-cycle sorption capacity of ~ 40 mg-CO₂/g-MT under the given experimental conditions.

INTRODUCTION

The atmospheric CO₂ concentration has increased by almost 38% since the beginning of the industrial revolution to a current level of about 386.8 ppm.¹ More than 30% of all anthropogenic CO₂ emissions are estimated to have resulted from fossil fuel based electricity generation.² These fossil fuels, including coal, oil and natural gas, will be used as major energy sources for the foreseeable future due to their low prices and abundance. However, people are concerned about the increase of CO₂ concentration in the atmosphere since CO₂ has been implicated as one of the main greenhouse gases leading to global climate changes. Accordingly, capture of CO₂ from flue gas streams in fossil-fuel based power plants has been considered as one of the major strategies for reduction of anthropogenic CO₂ emissions and thus the potential risks resulting from climate changes.

To date, all commercial CO₂ capture processes have been based on liquid amine compounds. Amine solutions are basic and can chemically remove many acid gases, including CO₂, from flue gas³. Among those frequently used amine compounds is monoethanolamine (MEA). Aqueous amines along with membranes have been successfully used for separation CO₂ from natural gas; however, they have not been used in fossil fuels based power plants since the overall costs associated with the current technologies are too high to be acceptable. The high costs are mainly due to use of large concentrations of water in the aqueous amine solutions made for carbon dioxide
separation. Typical amine solutions used by the natural gas industry for gas cleaning can contain as much as 70 wt% water.4,5

In recent years, people are increasingly interested in using solid sorbents synthesized with amines and solid supports or grafting materials for CO₂ capture in power plants. Different support materials6-8 have been used for immobilization of amines. Compared to aqueous amines, solid sorbents have several advantages when used for separation of CO₂ from flue gases in power plants.9-11 Firstly, solid amine sorbents require less energy than aqueous amines for separation of the same amount of CO₂ since they avoid energy needed to heat and evaporate H₂O, with its high specific-heat-capacity and latent heat of vaporization, in aqueous amine solutions during sorbent regeneration or CO₂ stripping processes. Secondly, they are easy to handle and transport. In addition, they are less problematic than aqueous amine solutions from an operational viewpoint because they are less corrosive.

Unlike traditionally immobilized amine based CO₂ sorbents, the pure MEA in the sorbent developed in this research is immobilized during the CO₂ sorption phase, but is mobilized during CO₂ desorption phase. More specifically, immobilized MEA reacts with CO₂ in a sorption reactor, but is transported to another reactor during the CO₂ desorption process due to the difference in sorption and desorption temperatures. The MEA utilization approach studied in this research is expected to reduce CO₂ separation energy consumption. Several major factors potentially affecting the CO₂ sorption capacities of the MEA utilization method were investigated. The results obtained in the research could be used for further development or optimization of the MEA based CO₂ separation technology.
EXPERIMENTAL SECTION

TiO₂ preparation and characterization

The support material (TiO₂) used in this research was prepared with Ti(OC₂H₅)₄ (99 wt%, Acros) containing 33-35 wt-% TiO₂. The first preparation step was to add a predetermined amount of Ti(OC₂H₅)₄ to water with a H₂O:Ti(OC₂H₅)₄ molar ratio of 26.3, followed by stirring for 1 hour. The resulting precipitate was filtered, washed with deionized water, and then dried at 393 K for 1.5 h. TiO₂ was obtained by calcining the resultant TiO(OH)₂ in air at 1,023 K for 3 hours.

The prepared TiO₂ powder was characterized with a Micromeritics TriStar 3000 V6.04 A nitrogen physisorption analyzer to determine surface areas by the BET (Brunauer, Emmett, and Teller) method. Powder X-ray diffraction (XRD) of TiO₂ was performed on a Philips X’Pert diffractometer using Cu-Kα radiation under the following operating conditions: voltage, 40 kV; current, 40 mA; start angle, 10°; end angle, 90°; step size, 0.01°; time per step, 0.05 s; and scan speed, 0.02. The experimental data were digitally collected and recorded.

Each MEA-TiO₂ (MT) sorbent was prepared by loading a certain amount of as-purchased MEA (99 wt%, Acros) onto the prepared TiO₂. Five MEA:TiO₂ mass ratios or MEA loadings were used for preparing the MT sorbents tested for this research. The best loading was determined and used for all subsequent tests.

Apparatus
The experimental set-up used for the CO₂ separation tests is shown in Figure 1. It has three parts: a gas preparation unit, a CO₂ sorption/desorption system, and gas-phase CO₂ concentration analysis equipment. Dilute CO₂ from cylinder 1 (1 mol% CO₂ in 99 mol% N₂) was used for the sorption tests. N₂ from cylinder 2 (100 mol%) was used for CO₂ desorption tests and cleaning the apparatus. The flow rates of the inlet gases were controlled by two flow meters (Matheson Tri-gas FM-1050, labeled 3’ and 3’’). An additional flow meter (3’’’) was used to measure the flow rate of the whole system.

Sorption tests were performed in the bottom reactor (11’), which has an inner diameter and length of 9 mm and 610 mm, respectively. The sorbent bed (9) was prepared by loading MT sorbent between two bed holders (8) made from quartz wool. The bottom reactor (11’) was held in a tube furnace (10, Thermo Corporation, TF55030A-1), where its temperature was controlled (7, Yokogawa M&C Corporation, UT150). A syringe pump (4) was used to generate the water vapor used in moisture-containing gas streams. Temperature controlled (6, MiniTrol, Glas-Col Inc.) thermo-tapes (5) heated the inlet gas tubes to prevent condensation of water vapor prior to entering the bottom reactor. The effluent gas stream from the bottom reactor passed through a sorbent bed (12, consisting of the support material for MT sorbent, which was generally TiO₂) in the top reactor (11’’) to condense the MEA vaporized from the bottom reactor using cooling water circulating through a spiral copper pipe (13, inner diameter: 1.5 mm) and held at 12°C by a small refrigeration unit (14, MGW Lauda, RC-20 controller). The effluent gas from the top reactor (11’’) entered a water removal unit (15) and then an infrared gas analyzer (16, ZRE, Fuji Electric System Co. Ltd.). The sorption profiles were collected by a data collection computer (17).
CO₂ sorption/desorption

Each CO₂ desorption test was started immediately after the bed was saturated with CO₂, as determined when the outlet CO₂ concentration during a sorption step became equal to the inlet CO₂ concentration. During a desorption step, pure N₂ from cylinder (1) was used as the carrier gas to bring the desorbed CO₂ from the bottom reactor (11’) through top reactor (11’’) and finally to the gas analyzer (16). MEA vapor resulting from the CO₂ desorption in the bottom reactor (11’) also flowed into the top reactor (11’’) and condensed there. Desorption temperatures were controlled by the bottom temperature controller (7). When CO₂ desorption was completed, the material in the bottom reactor (11’) was pure TiO₂ because all MEA was transported to the top reactor (11’’) and formed MT sorbent with the TiO₂ there due to the condensation of the MEA vapor from the bottom reactor (11’) on the surface of pure TiO₂ originally in the top reactor (11’’). Then the positions of the top and bottom reactors were switched to start the next sorption-desorption cycle.

3. Results and Discussion

3.1 Characterization of TiO₂

The BET surface area, pore average size and volume of the sorbent support material, TiO₂, are 5.68 m²/g, 66.4 nm and 0.11 cm³/g, respectively. The obtained TiO₂ X-ray diffraction pattern is shown in Figure 2. Three major diffraction peaks appear at 20
values of 27.5°, 36.2°, and 54.4°, corresponding to diffraction from the (110), (101), and (211) crystal planes, respectively, which are consistent with TiO₂ in the rutile phase.¹²,¹³

3.2 Factors affecting CO₂ sorption

3.2.1 MEA loading and distribution on TiO₂

The relationship between MEA loading on the surface of TiO₂ and CO₂ sorption capacity of synthesized MT sorbent is shown in Figure 3. The CO₂ sorption capacity of the MT sorbent increases with the MEA loading and reaches 48.1 mg-CO₂/g-MT when the MEA loading percentage is 45 wt% under the given experimental conditions.

The increasing trend in Figure 3 resulting from the reaction between CO₂ and pure MEA (instead of aqueous amine solution) can be understood through the following equations¹⁴

\[
Q_g \frac{dC_{CO_2}}{d(W_{MEA,0} - w_{MEA})} - kC_{CO_2}^n \rho_{MEA}^m = 0
\]

\[
= -Q_g \frac{dC_{CO_2}}{dw_{MEA}} - kC_{CO_2}^n \rho_{MEA}^m \quad (E1)
\]

\[
= 0
\]

\[
= \frac{d\alpha_{MEA}}{dt} = k_d C_{CO_2}^n \rho_{MEA}^m \quad (E2)
\]

where \(Q_g\) is the volumetric flow rate of the inlet gas mixture, \(W_{MEA,0}\) is initial loading of MEA on TiO₂, \(C_{CO_2}\) is the concentration of CO₂ in outlet gas stream at any sorption time \((t)\), \(k\) is the initial CO₂ sorption rate constant, \(k_d\) is the deactivation rate constant of pure MEA on the surface of TiO₂, \(n_{CO_2}\) is the reaction order with respect to CO₂, and \(m_{MEA}\) is
the exponent value of β_{MEA}. In E1 and E2, β_{MEA} is the activity of MEA, which ranges from 0 to 1, and can be defined as

$$\beta_{\text{MEA}} = \frac{W_{\text{MEA},0} - w_{\text{MEA},t}}{W_{\text{MEA},0}}$$ \hspace{1cm} (E3)

where $w_{\text{MEA},t}$ is the quantity of MEA consumed at reaction time t.

According to the zwitterion mechanism for the reaction between MEA and CO$_2$, both n_{CO_2} and m_{MEA} in E1 and E2 should be 1.\(^\text{15}\) Then, combining the integrated forms of E1 and E2 leads to\(^\text{14}\)

$$C_{\text{CO}_2} = C_{\text{CO}_2,0} \exp \left[1 - \exp(kW_{\text{MEA},0}(1 - \exp(-k_d t))/Q_g)\right] \exp(-k_d t)^t/[1 - \exp(-k_d t)].$$ \hspace{1cm} (E4)

E4 clearly shows that higher initial loading of MEA on TiO$_2$ results in lower outlet CO$_2$ concentration (C_{CO_2}) and thus higher CO$_2$ sorption capacity of MT. However, C_{CO_2} is also affected by other parameters, such as k and k_d in E1, E2 and E4. The values of k and k_d are determined by various factors including the surface area, particle size, and pore structure of TiO$_2$, and the distribution of MEA on the TiO$_2$. Therefore, the characteristics of TiO$_2$ affect its CO$_2$ sorption profiles considerably, although the relationship was not investigated as part of this research.

MEA is well-known for its reactivity with CO$_2$, which was also observed in this study. Typically, the MT sorbent could achieve one half of its total capacity within 10 minutes under any test conditions used in this research. However, much longer periods of time were needed to attain the full capacity of an MT sample. The average CO$_2$ adsorption rate of the supported sorbent in the first 5 minutes is \sim 8 mg-CO$_2$/g-MT/min, indicating that CO$_2$ is readily able to react with MEA on the surface of the sorbent. However, MEA molecules far away from the surface of MT sorbent (close to the surface
of the support TiO$_2$ particles) or condensed in the TiO$_2$ pores are not easily accessible to CO$_2$ due to diffusion limitations. This explains why the CO$_2$ sorption capacity did not improve much when MEA loading on the MT sorbent increases from 40 to 45 wt%, as observed in Figure 3. Therefore, 40 wt% MEA loading was chosen to evaluate the effect of all the other factors on CO$_2$ sorption.

3.2.2 Moisture

The MT sorbent was developed to overcome the shortcoming of conventional aqueous MEA-based CO$_2$ separation technologies by eliminating the use of water while maintaining its advantage of strong CO$_2$ absorption. However, the effect of water on the CO$_2$ sorption of MT has to be considered since flue gas from all combustion processes, including coal-fired power plants, contain water despite the MT sorbent being made without water. Therefore, a gas containing 0 vol% H$_2$O, 1.0 vol% CO$_2$ and 99 vol% N$_2$ and another gas with 1.0 vol% CO$_2$ and 99.0 vol% N$_2$ were compared for their CO$_2$ sorption profiles. The results are shown in Figure 4, which shows the CO$_2$ break through curves for these two gases. Generally speaking, moisture shows a positive effect on CO$_2$ sorption, especially in the initial CO$_2$ sorption period in which CO$_2$ outlet concentration is lower than 0.1 vol% (curve B). The performance of MT in this time period is important since it determines the breakthrough capacity of the sorbent.

The CO$_2$ sorption mechanisms with and without the presence of water are expected to be different. Within a humid environment, the associated MEA-CO$_2$ reaction mechanism based on the zwitterions theory proposed by Danckwerts3 and developed by others11,15,16 can be written as
\[
2\text{H}_2\text{O} \underset{k_{\text{R1}}}{\overset{k_{\text{p1}}}{\rightleftharpoons}} \text{OH}^- + \text{H}_3\text{O}^+ \quad \text{(R1)}
\]

\[
\text{CO}_2 + 2\text{H}_2\text{O} \underset{k_{\text{R2}}}{\overset{k_{\text{p2}}}{\rightleftharpoons}} \text{HCO}_3^- + \text{H}_3\text{O}^+ \quad \text{(R2)}
\]

\[
\text{HCO}_3^- + \text{H}_2\text{O} \underset{k_{\text{R3}}}{\overset{k_{\text{p3}}}{\rightleftharpoons}} \text{CO}_3^{2-} + \text{H}_3\text{O}^+ \quad \text{(R3)}
\]

\[
\text{CO}_2 + \text{RNH}_2 \underset{k_{\text{R4}}}{\overset{k_{\text{p4}}}{\rightleftharpoons}} \text{RNH}_2^+\text{COO}^- \quad \text{(R4)}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{RNH}_2 \underset{k_{\text{R5}}}{\overset{k_{\text{p5}}}{\rightleftharpoons}} \text{RNH}_2^+ + \text{RNHCOO}^- \quad \text{(R5)}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{H}_2\text{O} \underset{k_{\text{R6}}}{\overset{k_{\text{p6}}}{\rightleftharpoons}} \text{H}_3\text{O}^+ + \text{RNHCOO}^- \quad \text{(R6)}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{OH}^- \underset{k_{\text{R7}}}{\overset{k_{\text{p7}}}{\rightleftharpoons}} \text{H}_2\text{O} + \text{RNHCOO}^- \quad \text{(R7)}
\]

\[
\text{RNHCOO}^- + \text{H}_2\text{O} \underset{k_{\text{R8}}}{\overset{k_{\text{p8}}}{\rightleftharpoons}} \text{RNH}_2^+ + \text{HCO}_3^- \quad \text{(R8)}
\]

\[
\text{RNH}_3^+ + \text{H}_2\text{O} \underset{k_{\text{R9}}}{\overset{k_{\text{p9}}}{\rightleftharpoons}} \text{RNH}_2^+ + \text{H}_3\text{O}^+ \quad \text{(R9)}
\]

\[
\text{CO}_2 + \text{OH}^- \underset{k_{\text{R10}}}{\overset{k_{\text{p10}}}{\rightleftharpoons}} \text{HCO}_3^- \quad \text{(R10)}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{HCO}_3^- \underset{k_{\text{R11}}}{\overset{k_{\text{p11}}}{\rightleftharpoons}} \text{H}_2\text{CO}_3^- + \text{RNHCOO}^- \quad \text{(R11)}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{CO}_3^{2-} \underset{k_{\text{R12}}}{\overset{k_{\text{p12}}}{\rightleftharpoons}} \text{HCO}_3^- + \text{RNHCOO}^- \quad \text{(R12)}
\]

\[
2\text{RNH}_2 + \text{CO}_2 \underset{k_{\text{R13}}}{\overset{k_{\text{p13}}}{\rightleftharpoons}} \left[(\text{RNH}_3)^+ (\text{R NHCOO})\right] \quad \text{(R13)}
\]

\[
\text{RNH}_2 + \text{CO}_2 + \text{H}_2\text{O} \underset{k_{\text{R14}}}{\overset{k_{\text{p14}}}{\rightleftharpoons}} \left[(\text{RNH}_3)^+ (\text{HCO}_3)\right] \quad \text{(R14)}
\]

where \(k_i\), \(k_{-i}\), and \(K_i\) are the forward reaction rate constant, the reverse reaction rate constant, and the equilibrium constant of the reversible reactions, \(i\), respectively. The reaction rate of \(\text{CO}_2\) can be expressed as\(^{11,15,17}\)

\[
r_{\text{CO}_2-ME4} = \frac{[\text{CO}_2][\text{RNH}_2] - k_{-4}}{k_4 + \frac{k_{-4}}{k_4 \sum k_b B}} \sum k_{-b} [B]^+ \quad \text{(E5)}
\]
where B represents the species which can abstract the proton from the zwitterion, including [H$_2$O], and k_b and k_{-b} are the forward and reverse reaction rate constants of the reverse reactions involving B. However, according to their experimental data and derivations, many researchers$^{17, 18}$ proposed that the zwitterion reaction scheme based CO$_2$ sorption rate can be written as

$$r_{CO_2-MEA} = k_4[CO_2][RNH_2]$$ \hspace{1cm} (E6)

where r_{CO_2-MEA} is not a function of water concentration. Ramachandran et al.15 concluded that E5 is more representative than E6 for the kinetics of MEA based CO$_2$ sorption within a humid environment, although they demonstrated that E5 needs to be modified. The data in Figure 4 is in accordance with their finding. The results in Figure 4 also agree with the kinetic model of Crooks and Donnellan$^{17, 19}$ using a termolecular mechanism

$$r_{CO_2-MEA} = -k_{RNH_2}[RNH_2] + k_{H_2O}[H_2O][RNH_2][CO_2]$$ \hspace{1cm} (E7)

in which k_{RNH_2} and k_{H_2O} are the corresponding rate constants with respect to RNH$_2$ and H$_2$O.

Furthermore, the degree to which water concentration affects r_{CO_2-MEA} may need to be reconsidered. According to E7, the CO$_2$-MEA reaction is first order with respect to both H$_2$O and CO$_2$. However, the data in Figure 4 do not support this conclusion since water did not show such a large positive effect. Actually, the effect decreases, disappears and finally becomes slightly negative as the sorption process proceeds. Therefore, the kinetics associated with the reactions in dry and wet environments may need further polishing.
3.2.3 Sorption temperature

Effects of sorption temperature on the total CO$_2$ sorption capacity of MT sorbents were evaluated in the temperature range of 25-65°C. Figure 5 shows the CO$_2$ breakthrough curves for each of these conditions. The CO$_2$ sorption capacity increases with temperature in the range of 25 to 45°C, but decreases with the further increases of temperature from 45 to 65°C.

The relationship between T and CO$_2$ sorption capacity can be understood from the thermodynamic and kinetic characteristics of R13. R13 is an exothermic reaction20,21 or its enthalpy change ($\Delta H_{R13} < 0$) is negative under the experimental conditions. Based on the van’t Hoff relationship,22 temperature increases do not favor R13 since equilibrium CO$_2$ sorption capacity (determined by K_{R13} and associated with K_{R4} and K_{R5}) decreases due to the negative ΔH_{R13}

$$
\frac{d \ln K_{R13}}{dT} = \frac{d \ln K_{R4}K_{R5}}{dT} = \frac{\Delta H_{R13}}{RT^2}. \quad (E8)
$$

Two methods can be used for calculation of K_{R13} for MT-based CO$_2$ sorption in a dry environment at a given temperature, T. The first is based on the thermodynamic properties of MEA, CO$_2$, [(RNH$_3$)$^+$(R NHCOO)$^-]$ in R13 using

$$
\Delta G_{R13}^o = -RT \ln K_{R13} = \Delta H_{0,R13}^o - \frac{T}{T_0}(\Delta H_{0,R13}^o - \Delta G_{0,R13}^o) + \Delta C_p^o(T - T_0) - T\Delta C_p^o \ln \frac{T}{T_0} \quad (E9)
$$
where T_0 is reference temperature, ΔH_0^0 and ΔG_0^0 are the standard enthalpy and free Gibbs energy changes of R13 at the reference temperature, and

$$
\Delta C_P^o = C_P^o,\left[\text{RNH3}+(\text{RNHCOO})^-\right]-2C_P^o,\text{RNH}_2-C_P^o,\text{CO}_2
\tag{E10}
$$

where $C_P^o,\left[\text{RNH3}+(\text{RNHCOO})^-\right]$, C_P^o,RNH_2 and C_P^o,CO_2 represent the heat capacities of the three reactants and products at constant pressure. The second method is to combine E8 with the following relationship

$$
K_{R13} = K_{R4}K_{R5} = \frac{k_{R4}}{k_{-R5}} = \frac{k_{R4}}{k_{-R5}}
\tag{E11}
$$

where k_{R4}, k_{-R4}, k_{R5} and k_{-R5} are the forward and reverse rate constants of reactions R4 and R5.

The forward reaction rate constants, k_{R4} and k_{R5}, increase with T according to the Arrhenius equation23 while K_{R13} in E8 and E11 decreases with T. Therefore, an optimal CO$_2$ sorption temperature exists that is a compromise between these kinetic and thermodynamic factors to obtain a reasonably high rate of R13 and yet large CO$_2$ sorption. In other words, the optimal sorption temperature for the MT based CO$_2$ sorption technology is defined as that which maximizes the CO$_2$ sorption capacity within a given reaction time period. The optimal temperature at which the maximum total CO$_2$ adsorption capacity was achieved under the given experimental conditions is 45°C.

3.2.4 Desorption temperature

CO$_2$ desorption tests were performed at 80°C, 90°C, 100°C and 110°C to evaluate the effect of temperature on CO$_2$ sorption capacity of the MT sorbent regenerated for next
cycle of sorption and desorption. The results are shown in Figure 6. The intermediate temperatures, 90°C and 100°C, are better based on the sorption capacities obtained in the next sorption-desorption cycle. However, due to the higher energy consumption at 100°C, 90°C was chosen as the CO₂ desorption temperature for all other MT evaluation tests.

3.2.5 Alternative support materials for MEA

An alternative Ti based support material is TiO(OH)₂, which can be easily prepared at low temperatures compared to TiO₂. It is stable even at 400°C.²⁴ Its performance as a support for MEA is better than TiO₂ to some degree during most of the sorption period, as shown in CO₂ break through curves in Figure 7. The fact might be explained with the kinetic model obtained by Ramachandran et al.¹⁵ They found that the OH⁻ increases the reaction rate between MEA and CO₂. Therefore, TiO(OH)₂ can probably accelerate CO₂ sorption to some degree due to the OH⁻ in its structure.

Among many other possible highly porous and inexpensive MEA support materials is FeOOH. FeOOH starts to dehydrate at 213°C or 490 K.²⁵ Therefore, it is thermally stable under the operation conditions used in this research. It also has OH⁻ in its structure and is less expensive than TiO₂ and TiO(OH)₂. The sorption results with the pure MEA supported with FeOOH is also shown in Figure 7. FeOOH is better than TiO₂, but not as good as TiO(OH)₂. When choosing support materials for MEA, other factors should also be considered. For example, acidic compounds in the flue gas, SOₓ and NOₓ, may affect the life spans of the support materials due to their potential reactions with the acidic compounds. Ti based compounds are better than FeOOH from the perspective of their corrosion-resistance abilities. Therefore, comprehensive comparisons should be
made when a support material is selected for synthesis of future MEA-based CO₂ separation sorbents.

3.3 Sorbent regeneration

Industrial chemisorbents are required not only to be highly active and selective, but also regenerable. Therefore, five-cycle CO₂ sorption-desorption tests with MT sorbents were run under conditions with and without moisture. The results are presented in Figures 8A and 8B. The average adsorption capacities for five-cycle tests at 45°C under dry and humid (1 vol% H₂O) sorption conditions are 45.8 and 48.1 mg-CO₂/g-MT, respectively, indicating MT can be used in both dry and wet environments for effective CO₂ separation.

The capacities of MT under the two different environments are higher than that of aqueous MEA, which can absorb 36 mg-CO₂/g-aqueous-MEA. In addition, they are also higher than the CO₂ sorption capacities of 21 sorbents among 24 evaluated by Sjostrom and Krutka in 2010. Most of those 24 sorbents contain 40-50 wt% amines, which is equal to or higher than the MEA percentage (40 wt%) of the MT sorbent used in this research. The regeneration temperatures of those sorbents varied from 80 to 120°C and increased by 10°C with each subsequent sorption-desorption cycle compared to the constant 90°C used for the spent MT regeneration. The quantities of CO₂ immobilized on MT during the sorption period and CO₂ desorbed from spent MT during the desorption process, determined by integrating CO₂ concentration change profiles in each sorption-desorption cycle, are very close. In other words, the working capacity, as defined by Sjostrom and Krutka, is almost equal to sorption capacity for the MT sorbent. This is
the reason that the CO$_2$ sorption capacities do not fluctuate considerably from one sorption-desorption cycle to another, as shown in Figures 8A and 8B.

The amount of energy needed for regeneration of a spent sorbent is an important consideration in its applicability, and can be evaluated by the following equation28, 29

$$\frac{Q}{m} = \frac{m_e}{m_c} \cdot C_e \cdot \Delta T + \frac{B}{L} \cdot C_s \cdot \Delta T + C_{p,c} \cdot T_2 - C_s \cdot T_1 + \frac{Q_r}{m_c}$$

where 1 and 2 stand for the CO$_2$ sorption and regeneration states, respectively, the subscripts, e, s, and c respectively represent the equipment, the sorbent, and the CO$_2$, m is the mass, C is the specific heat, C_p is the constant pressure heat capacity for CO$_2$, Q is the heat input, Q_r is the heat of reaction, B is a constant of proportionality with dimensional units, and L is the CO$_2$ loading capacity, defined as mole-CO$_2$/kg sorbent. To reduce energy consumption needed for MT sorbent regeneration, more effort needs to made to increase L, which can be realized by exploring better support materials and optimizing CO$_2$ sorption conditions.

4. Conclusion

The MT sorbent can be prepared using a simple method in an environmentally benign manner since no additional chemicals, such as organic solvents, are needed. The equipment requirements for separation of CO$_2$ with the MT based technology should not be as demanding as those associated with the majority of other CO$_2$ separation technologies since spent sorbent regeneration temperature is 90°C, lower or much lower than those needed for other technologies,28 with no external addition of water to the sorption system. Therefore, the capital equipment investment needed for the MT based CO$_2$ separation technology should be low.
Operational costs account for the majority of the overall CO₂ separation costs in all CO₂ capture technologies, with CO₂ desorption typically being the most expensive step. Avoidance of use of water and the reduction of CO₂ desorption temperature should contribute significantly to the total cost reduction of CO₂ separation.

However, much more work needs to be done before the MT based CO₂ separation process can be industrialized. For example, the mechanism of the positive effect of OH⁻ on CO₂ sorption capacity needs to be further understood. In addition, studies on the thermodynamics and kinetics of R13 are still lacking, even though those of R14 are well-researched. R13 and R14 have different reactants and products. Therefore, the thermodynamic and kinetic study results reported in the literature for R14 can not be used for R13. Actually, even for R14, many disagreements exist among the published papers regarding its thermodynamic and kinetic properties under the same CO₂ sorption conditions. For example, the enthalpy change of R14 during CO₂ sorption at 320 K is reported by Palmeri et al.²⁰ as ~57 kJ/mole-CO₂, while Mathonat et al.³⁰ report the value as ~80 kJ/mole-CO₂. Finally, the overall costs of using MT for CO₂ separation should be systematically compared to other amine-based CO₂ sorption technologies.

ACKNOWLEDGEMENTS

This research was supported by the School of Energy Resource at the University of Wyoming and the Department of Energy.

REFERENCES

List of Figures

Figure 2. X-ray diffraction pattern of the prepared TiO2.

Figure 3. Effect of MEA loadings on sorption capacity of MT sorbent (CO2: 1.0 vol%; N2: 99.0 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C).

Figure 4. Effect of moisture [A (H2O: 0 vol%; MT: 40 wt% MEA loading; CO2: 1.0 vol%; N2: 99 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C), B (H2O: 1.0 vol%; MT: 40 wt% MEA loading; CO2: 1.0 vol%; N2: 98.0 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C)].

Figure 5. Effect of temperature on CO2 sorption profile (A) and capacity (B) (MT: 40 wt-% MEA loading; CO2: 1.0 vol%; N2: 99.0 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C).

Figure 6. Effect of desorption temperature (MT: 40 wt% MEA loading; CO2: 1.0 vol%; N2: 99 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C).

Figure 7. Comparison of different support materials (A: TiO2; B: TiO(OH)2; C: FeOOH) for their effects on CO2 sorption (MEA loading in each sorbent: 40 wt%; CO2: 1.0 vol%; N2: 99.0 vol%; gas flow rate: 0.3 L/min; sorption temperature: 45°C).

Figure 8. CO2 sorption capacities of MT during five sorption-desorption cycles [A (sorption gas: CO2: 1.0 vol%; N2: 99 vol%), B (sorption gas: H2O: 1.0 vol%; CO2: 1.0 vol%; N2: 98 vol%), sorption (MT: 40 wt-% MEA loading; gas flow rate: 0.3 L/min; sorption temperature: 45°C), desorption (N2: 100 vol-%; gas flow rate: 0.3 L/min; sorption temperature: 90°C)].
Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

(A) CO₂ Concentration (vol-%) over time for different temperatures.

(B) Capacity (mg CO₂/g sorbent) vs. sorption temperature (℃).
Figure 6
Figure 7
Figure 8