
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2022-08-03 

Data Assimilation and Parameter Recovery for Rayleigh-Bénard Data Assimilation and Parameter Recovery for Rayleigh-Bénard 

Convection Convection 

Jacob William Murri 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Murri, Jacob William, "Data Assimilation and Parameter Recovery for Rayleigh-Bénard Convection" (2022). 
Theses and Dissertations. 9714. 
https://scholarsarchive.byu.edu/etd/9714 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9714?utm_source=scholarsarchive.byu.edu%2Fetd%2F9714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Data Assimilation and Parameter Recovery for Rayleigh-Bénard Convection

Jacob William Murri

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jared P Whitehead, Chair
Lennard Bakker
Blake Barker

Department of Mathematics

Brigham Young University

Copyright © 2022 Jacob William Murri

All Rights Reserved



abstract

Data Assimilation and Parameter Recovery for Rayleigh-Bénard Convection

Jacob William Murri
Department of Mathematics, BYU

Master of Science

Many problems in applied mathematics involve simulating the evolution of a system using
differential equations with known initial conditions. But what if one records observations
and seeks to determine the causal factors which produced them? This is known as an inverse
problem. Some prominent inverse problems include data assimilation and parameter recov-
ery, which use partial observations of a system of evolutionary, dissipative partial differential
equations to estimate the state of the system and relevant physical parameters (respectively).
Recently a set of procedures called nudging algorithms have shown promise in performing
simultaneous data assimilation and parameter recovery for the Lorentz equations and the
Kuramoto-Sivashinsky equation. This work applies these algorithms and extensions of them
to the case of Rayleigh-Bénard convection, one of the most ubiquitous and commonly-studied
examples of turbulent flow. The performance of various parameter update formulas is an-
alyzed through direct numerical simulation. Under appropriate conditions and given the
correct parameter update formulas, convergence is also established, and in one case, an
analytical proof is obtained.

The Python source code for methods are contained in an open-source GitHub repository
at https://github.com/jwp37/RB parameters.

Keywords: data assimilation, parameter recovery, partial differential equations, nudging,
Rayleigh-Bénard convection
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Chapter 1. Introduction

Because so many of the important physical systems in the universe relate to liquids and gases,

understanding and predicting fluid dynamics is a crucial scientific endeavor. Indeed, the

Earth’s oceans, atmosphere, and mantle all represent fluids governed by the laws of physics at

varying scales. Modeling fluid motion is also essential in many areas of engineering, including

hydraulics, aerospace, industrial, thermal, and chemical. One of the greatest contributions

of mathematics to the physical sciences is the ability to model fluids using partial differential

equations (PDEs). Applying well-known conservation laws (like conservation of mass, energy,

and momentum) to various mathematical objects representing different classes of fluids has

led to many different PDE models for fluid dynamics (including the wave equation, Euler

equations for an inviscid fluid, the Korteweg—De Vries equation, and the Navier-Stokes

equations for compressible and incompressible fluids, among many others). Such PDEs can

provide insight into the dynamical evolution of the fluid for many systems when subjected to

the tools of mathematical analysis and numerical simulation. In the practical sense, analysis,

simulation, and experimental study of fluid dynamics have led to dramatically more efficient

design of airplane and jet wings, and improved design of heating and cooling systems in

urban interiors such as office buildings.

This work will focus on a particular type of fluid system that may be called “convection

due to heating from below.” The term “convection” refers to fluid motion caused by temper-

ature differences [1]. For many fluids, this motion is caused by the expansion of the fluid as

it is heated (or rather, the relative difference in density between hot and cold fluid). Con-

vection is a well-known physical phenomenon that has been studied for centuries due to its

ubiquity. It has been argued, “convection due to nonuniform heating is, without overstate-

ment, the most widespread type of fluid motion in the Universe” [2]. Convection produces

chaotic dynamics which elude most classical analysis techniques. Therefore convection is

also studied as a prototypical example of a chaotic system. Perhaps the simplest form of
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convection, and the one focused on herein, is convection due to heating from below (hereafter

referred to as Rayleigh-Bénard convection). Readers likely have experience with this type of

convection, as it occurs in commonplace situations like boiling water on a stove (in addition

to less commonly-experienced but more fundamental systems like the interior of the earth).

As a mathematical representation of this system, consider an infinite horizontal fluid layer

bounded by infinite planes above and below, where the temperature is kept at a constant

hot temperature on the bottom and a constant cold temperature on the top. Section 1.1

introduces the relevant governing equations and mathematical formalism.

One might expect that if the physical first principles of the mathematical model are

correct, the model will produce good predictions which match what occurs in the real world.

However this is not always the case. A model may be only approximately correct (or very far

from correct), and errors can be introduced in a multitude of ways. Some of these include

• Measurement error. Many PDE models start from an initial state and evolve in time.

However, if the initial state is measured incorrectly, if noise is present in the measure-

ments, or if measurement of the full state of the system is impossible (for example,

measuring the full state of every particle in the atmosphere), then the predictions the

model makes may not match reality. The field of data assimilation seeks to overcome

this type of error /y optimally combining noisy and uncertain measurements with a

mathematical model derived from first principles.

• Model error. The derivation of many PDEs which model physical systems include

many simplifying assumptions which may not always reflect reality exactly. Further-

more, many models contain parameters which many be unknown or uncertain. If these

parameters are incorrect, the model may lead to incorrect predictions no matter how

detailed or accurate the measurements are. Determining the correct parameters may

be characterized as an “inverse problem” because it involves estimating the discrep-

ancy between the model’s predictions and reality, and propagating that uncertainty

backward rather than forward to determine the relevant differences in the model pa-
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rameters.

• Numerical error. Simulating the evolution of a PDE on a computer necessarily in-

volves discretizing both the domain of the system (using some kind of finite grid, or

a projection onto a finite dimensional subspace) and the variables of a system (using

floating-point arithmetic), and thus introduces some error.

This work seeks to demonstrate methods for overcoming certain types of measurement error

and model error when modeling Rayleigh-Bénard convection. To overcome measurement

error due to incomplete, inaccurate, or unavailable initial data, a data assimilation tech-

nique called nudging, which has been applied to this and several other systems successfully,

is employed [3, 4, 5, 6]. Using the nudging approach along with a parameter estimation

algorithm, it is possible to overcome model error due to errors in the control parameters

(here, the Rayleigh and Prandtl numbers) This could be called parameter estimation, pa-

rameter recovery, or parameter calibration. Furthermore, it is possible to do both of these

simultaneously (i.e. recover the parameters and state of the system when neither is known

exactly).

1.1 Boussinesq Equations

To construct a mathematical model for Rayleigh-Bénard convection, suppose that the fluid

in question may be modeled as a continuum, with the fluid velocity at a point (x, z) (this

work considers convection in only two spatial dimensions) at time t given by a velocity field

u : [0, L] × [0, h] × R → R2 defined on a the two-dimensional box. The fluid must satisfy

boundary conditions ((1.8), (1.5)) at the vertical boundaries of the box, and is periodic in

the horizontal direction (see (1.6)). For the sake of simplicity, further assume that the fluid is

incompressible, which implies that its density is nearly constant. Then mass and momentum
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conservation dictate that the fluid obeys the Navier-Stokes equations

ρ0
∂u

∂t
+ ρ0(u · ∇)u = −∇p+ η∆u+ F

∇ · u = 0,

(1.1)

where F is the external body force per unit volume, ρ0 is the (nearly constant) density of

the fluid, p is the pressure, and η is the dynamic viscosity. In Rayleigh-Bénard convection,

the forcing on the fluid is due to buoyancy from temperature differences (which cause small

variations in the density of the fluid). Let θ : R2×R → R be the scalar temperature field, and

assume that the fluid is expansive (meaning it becomes less dense at higher temperatures)

with expansion coefficient α. This means that if the mean density of the fluid is ρ0, then the

change in density due to change in temperature is given by

∆ρ = −αρ0∆θ. (1.2)

Letting z be the unit vector which points in the upward direction, the buoyancy force density

is

F = −g∆ρ(−ẑ) = gαρ0(θ − θ0)ẑ (1.3)

Setting the temperature at the top (z = h) of the box to θ0, the next step is to substitute (1.3)

into (1.1). First, it should be noted that (1.1) and (1.3) employ slightly different assumptions.

(1.1) assumes that the density of the fluid is essentially constant, while (1.3) assumes that the

density can vary when the temperature of the fluid changes. The Boussinesq approximation

assumes that differences in density only affect the gravitational force, so it is reasonable

to include the effect of density change in (1.3) but not in (1.1). Defining ν = η/ρ0, the

kinematic viscosity, and making the substitution, one obtains the dimensional Boussinesq
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equations

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ ν∆u+ gαθẑ,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = κ∆θ,

(1.4)

where the third equation represents the advection and diffusion of temperature, with the

thermal diffusion constant κ. As mentioned earlier, the box is heated from below and cooled

on top, so the temperature boundary conditions

θ|z=0 = θ0 + δθ, θ|z=h = θ0, (1.5)

apply to this problem. This work considers Rayleigh-Bénard convection along with the

periodic boundary conditions

θ|x=0 = θ|x=L, θx|x=0 = θx|x=L, θz|x=0 = θz|x=L (1.6)

u|x=0 = u|x=L, ux|x=0 = ux|x=L, uz|x=0 = uz|x=L, (1.7)

and the no-slip boundary conditions for the velocity field at the top and bottom plates

u|z=0 = u|z=h = 0. (1.8)

1.2 Nondimensionalization

Nondimensionalization involves picking characteristic scales for the relevant physical quanti-

ties in the problem (1.4) so that can redefine all of the variables as dimensionless versions of

themselves, and identify the truly important dimensionless parameters in the system. All of

the variables in the system (1.4) are constructed out of units of length, time, temperature,

and mass, so constructing a characteristic scale for each (call them [L], [T ], [Θ], and [M ],
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respectively) using the six independent physical constants ρ0, h, κ, δθ, ν, and αg which are

contained in the system will be sufficient to produce a nondimensionalized set of equations

(note that α and g are kept together because they never appear separately in the system

equations).

A characteristic mass scale is relevant to only one of the physical constants in the problem,

ρ0. Therefore the mass scale must be chosen in terms of ρ0. Since the units of ρ0 are [M ][L]−3,

a good choice would be [M ] = ρ0[L]
3.

It remains to choose the scales [L], [T ], and [Θ]. The most common nondimensionalization

chooses to set the coefficient on the temperature diffusivity term to unity. This may be

thought of as selecting the thermal diffusive time scale as the relevant time scale for the

problem. It requires choosing the characteristic scales

[L] = h, [T ] = h2/κ, [Θ] = δθ, [M ] = ρ0h
3

which results in a pressure scale ρ0κ
2/h2 and velocity scale κ/h. Rescaling all variables

appropriately gives

κ2

h3
∂u

∂t
+
κ2

h3
(u · ∇)u = −κ

2

h3
∇p+ κν

h3
∆u+ (gαδθ) θẑ,

κ

h2
∇ · u = 0,

δθκ

h2
∂θ

∂t
+
δθκ

h2
u · ∇θ = δθκ

h2
∆θ,

where the quantities u, θ, t, p are now dimensionless. Dividing out factors and making the

definitions

Pr =
ν

κ
, Ra =

gαδθh3

νκ
,

6



the equations become

∂u

∂t
+ (u · ∇)u+∇p = Pr∆u+ PrRa θẑ,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = ∆θ.

(1.9)

The dimensionless quantities Pr and Ra are known as the Prandtl and Rayleigh numbers

respectively. Pr expresses the ratio of momentum to thermal diffusivity, and Ra represents

the strength of the buoyancy forcing. The Rayleigh number Ra also designates whether the

flow is in a turbulent or laminar regime (the larger the Rayleigh number, the more turbulent

the flow due to an increased effective thermal forcing).

Another important nondimensionalization is formulated so that the parameters Pr and

Ra are in separate equations. To obtain it, multiply the temperature scale by Pr while

dividing the time scale by Pr:

[L] = h, [T ] = h2/ν, [Θ] = Pr δθ, [M ] = ρ0h
3

which results in a pressure scale ρ0ν
2/h2 and velocity scale ν/h (this is equivalent to using

a viscous time-scale as the dominant time-scale). In this case, rescaling all variables gives

ν2

h3
∂u

∂t
+
ν2

h3
(u · ∇)u = −ν

2

h3
∇p+ ν2

h3
∆u+ (gαPr δθ) θẑ,

ν

h2
∇ · u = 0,

Pr
δθν

h2
∂θ

∂t
+ Pr

δθν

h2
u · ∇θ = Pr

δθκ

h2
∆θ
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which simplifies to

∂u

∂t
+ (u · ∇)u+∇p = ∆u+Ra θẑ,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = 1

Pr
∆θ.

(1.10)

1.2.1 Streamfunction-Vorticity Form. Let u = (v, w). The equation ∇ · u = 0

is equivalent to the statement vx + wz = 0. Define a scalar streamfunction ψ so that

u = (−ψz, ψx). Writing u in this way eliminates the need for the equation ∇·u = 0 because

ψxz = ψzx. Then, define the scalar vorticity

ζ := ∆ψ = ψxx + ψzz = wx − vz,

which is the curl of u (it is a scalar because u is two-dimensional). To write an evolution

equation for ζ, first explicitly write down the equations for v and w,

vt + vvx + wvz + px = Pr (vxx + vzz)

wt + vwx + wwz + pz = Pr (wxx + wzz) + PrRa θ,

then differentiate the first with respect to z and the second with respect to x to find evolution

equations for vz and wx:

vtz + vzvx + vvxz + wzvz + wvzz + pxz = Pr (vxxz + vzzz)

wtx + vxwx + vwxx + wxwz + wwzx + pzx = Pr (wxxx + wzzx) + PrRa θx

Then subtracting the first from the second (assuming appropriate smoothness) yields

ζt + vxζ + vζx + wzζ + wζz = Pr∆ζ + PrRaθx.
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Using vx + wz = 0, it follows that

∂ζ

∂t
+ u · ∇ζ = Pr∆ζ + PrRa θx.

1.3 Nudging Framework

The nudging data assimilation algorithm employed here was first introduced for the 2D

Navier-Stokes equations in [7]. In the context of Rayleigh-Bénard convection, the true system

∂ζ

∂t
+ u · ∇ζ = Pr∆ζ + PrRa θx,

∂θ

∂t
+ u · ∇θ = ∆θ,

(1.11)

is coupled with the nudged system or assimilating system

∂ζ̃

∂t
+ ũ · ∇ζ̃ = P̃r∆ζ̃ + P̃rR̃aθ̃x + µPN(ζ − ζ̃),

∂θ̃

∂t
+ ũ · ∇θ̃ = ∆θ̃,

(1.12)

where PN is an observation operator which represents observations available to the observer

(i.e. the observer can only have partial information about the state). The rest of this work

will assume that PN is a linear projection operator to simplify the calculations. It should be

emphasized that this is likely not necessary, but does significantly simplify the underlying

analysis and calculations. As mentioned previously, this and similar nudging algorithms have

been studied extensively for the convection problem where it has been shown rigorously and

computationally that the full state can be adequately recovered (meaning that ζ̃ → ζ and

θ̃ → θ as t → ∞) for various types of observations under a variety of different assumptions

[3, 4, 5, 6].
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Chapter 2. Parameter Estimation Algo-

rithms

The goal of this chapter is to introduce and derive several algorithms which utilize partial

observations of the state of a dynamical system over time to concurrently estimate the

true state and true values of some of the system’s unknown parameters. The algorithms

introduced here are first introduced in a general case, then applied to Rayleigh-Bénard

convection specifically. In all cases, the assumption is that observations are accurate but

incomplete (there is no observational error). This fact is represented mathematically by

saying that there is some linear projection PN which maps from true states to observed

states, discarding some information along the way. In applications, this incompleteness

often arises from being unable to observe continuously in space; there must necessarily

be a discrete grid of sensors measuring the desired quantity which may have large gaps.

For example, when measuring temperature or pressure in the atmosphere, the stations or

balloons or sensors which make measurements may be spaced hundreds of miles apart. The

mathematical analysis that follows usually considers orthogonal projections onto Fourier

modes, because if one is able to observe data from N data points, one is able to calculate

the first N Fourier modes of the data. One type of error that the models in this work do

not consider is observational error or error due to noise. Specifically, it is assumed that

the observations, while incomplete, are exact and accurate, and that they are essentially

continuous in time.

The simplest paradigm for a parameter estimation algorithm is the “discrete” or “point-

in-time update”, which has been given the more memorable name “relax, then punch.” At

the beginning, the correct values of some system parameters are unknown, and the observer

has only partial information about the system state. Nevertheless, given an initial guess for

the values of the unknown system parameters, the algorithm may integrate forward a “nudged

system” which forces relaxation of the assimilating state variables towards the observable
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portion of the true state variables. After integrating the system forward over some interval

of time, it is assumed that the error between the true system and the assimilating system is

proportional to the model error which comes from the difference between the true parameter

values and the estimated (or guessed) values. When this time is reached, the algorithm selects

new values for the parameters using a procedure or formula (a few examples of which are

outlined in this section) and updates them accordingly. This is the aspect of the algorithm

referred to as the “punch”. Then the procedure repeats itself; at each iteration the system

is integrated forward farther in time and an instantaneous parameter update applied. The

central idea of this algorithm is alternating between estimating the true state and estimating

the true parameters. In the “relax” phase of the algorithm, integrating the nudged system

forward in time essentially produces the best possible estimate of the full state of the system

given the model error. Then the “punch” uses the better estimate of the state to produce

a better estimate of the parameters, which is then integrated forward to obtain a better

estimate of the state, and so on. As long as the error in the state can be bounded by some

constant times the model error, certain non-degeneracy conditions are satisfied, and each

successive state estimate and parameter estimate is better than the last, this algorithm will

eventually estimate the true values of the parameters and the full state of the system, up to

a small error.

2.1 Derivation of Algorithms

2.1.1 CHL Algorithm for Estimating a Single Parameter. The so-called “CHL”

algorithm originates from a paper of Carlson, Hudson and Larios [8], hence its name. What

follows is a general derivation of this algorithm, whereas the original presentation in [8] was

specifically developed to estimate the viscosity in 2D Navier-Stokes. Consider the system

ẋ = λLx+ F (x) (2.1)
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on the domain Ω ⊂ Rm, with x : Ω× [0,∞) → Rn, ẋ representing its time derivative, L being

a linear differential operator, λ ∈ R, and F being a smooth nonlinear operator. Assume that

x has either periodic or homogeneous Dirichlet boundary conditions on ∂Ω, and that 2.1 is

well-posed in the sense that x(t) ∈ L2(Ω) for all times t and is sufficiently smooth. To derive

the CHL algorithm for estimating the parameter λ it is also assumed that (2.1)) is coupled

with the nudged system

˙̃x = λ̃Lx̃+ F (x̃)− µPN(x̃− x), (2.2)

where µ > 0 is a nudging parameter and PN is a linear projection such that PN(x) rep-

resents the partial information from x available to the observer. It is assumed that PN is

idempotent, and commutes with L. Additional properties of PN may be needed to ensure

that the necessary theory outlined below can be rigorously established, but those assump-

tions are determined below as needed (see [7] for a further discussion on the required type

of interpolant). An example of a projection that satisfies these properties is a projection

onto N Fourier modes. It is further assumed that (2.1) is a dissipative system such that if

λ̃ = λ in (2.2), then x̃ → x, i.e. the standard nudging algorithm originally introduced in

[7] will work asymptotically in time. This framework is sufficiently broad that most cases of

single-parameter estimation can be fit into this framework. To proceed with the derivation,

let u := x̃− x and write down the time-evolution of u:

u̇ = ˙̃x− ẋ = λ̃Lx̃− λLx+ F (x̃)− F (x)− µPN(x̃− x).

Simplifying and using the simple identity

ãb̃− ab = ã(b̃− b) + (ã− a)b,

we have that

u̇ = λ̃Lu+ (λ̃− λ)Lx+ F (x̃)− F (x)− µPNu.

12



Then apply the projection PN throughout and take an L2(Ω)-inner product with PNu to

obtain

⟨PNu, PN u̇⟩ = λ̃⟨PNu, LPNu⟩+(λ̃−λ)⟨PNu, LPNx⟩+⟨PNu, PN(F (x̃)−F (x))⟩−µ⟨PNu, PNu⟩.

The key identity here is that

⟨PNu, PN u̇⟩ =
∫
Ω

(PNu)
∂

∂t
(PNu) =

1

2

d

dt

∫
Ω

|PNu|2 =
1

2

d

dt
∥PNu∥2,

where ∥ · ∥ represents the norm on L2(Ω). Hence it follows that

1

2

d

dt
∥PNu∥2 = λ̃⟨PNu, LPNu⟩+ (λ̃− λ)⟨PNu, LPNx⟩+ ⟨PNu, PN(F (x̃)−F (x))⟩ − µ∥PNu∥2.

(2.3)

The central idea of the CHL algorithm is start out at time t0 with a guess λ̃ = λ0. Then the

system (2.1)-(2.2) is integrated forward. If the true value of λ were known and one set λ̃ = λ,

it is expected that nudging would eventually force x̃ → x, or in other words, u → 0. In the

case that λ̃ ̸= λ (where the discrepancy between the two is referred to as model error), ∥u∥

can be expected to decrease but not converge all of the way to zero. The key assumption

is that there will be a time t1 when the model error is the dominant factor preventing ∥u∥

from decreasing further; and therefore at the time t1,

d

dt

[
∥PNu∥2

] ∣∣∣
t=t1

≈ 0. (2.4)

Given that (2.4) holds, it is possible for the observer to solve (2.3) for the true value of λ, as

long as quantities which the observer does not have access to are appropriately dealt with.

One way of dealing with these terms is to eliminate them, which amounts to assuming that

they are small. Another approach is to approximate the terms with data that the observer

does have access to. Both of these approaches are outlined below.
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Eliminate the terms. To justify eliminating terms from (2.3), note that ∥u∥ is expected

to be relatively small at t = t1, so that terms which are quadratic in the error are negligibly

small unless they are multiplied by µ (which may be very large). This assumption means

that the terms

⟨PNu, LPNu⟩, and ⟨PNu, PN(F (x̃)− F (x))⟩,

should be neglected, leading to

0 ≈ (λ̃− λ)⟨PNu, LPNx⟩|t=t1 − µ∥PNu∥2|t=t1 . (2.5)

As long as ⟨PNu, LPNx⟩|t=t1 ̸= 0, solving for λ yields the relation

λ = λ̃− µ
∥PNu∥2

⟨PNu, LPNx⟩

∣∣∣
t=t1

Up until t1, the parameter estimate λ̃ has been set to the value λ0. Then at time t1, the

CHL algorithm updates the parameter λ̃ to the new best guess as to the true value of the

parameter λ:

λ̃ = λ1 := λ0 − µ
∥PNu∥2

⟨PNu, LPNx⟩

∣∣∣
t=t1

.

This process is then repeated by integrating forward again until ∥u∥ stops decreasing again,

choosing a new λ2, etc. In general, the update formula is given by

λn := λn−1 − µ
∥PNu∥2

⟨PNu, LPNx⟩

∣∣∣
t=tn

.

Estimate the terms. Another approach is to estimate the nonlinear term using the

best information about x available to the observer, namely PNx. This means making the

substitution

⟨PNu, PN(F (x̃)− F (x))⟩ ≈ ⟨PNu, PN(F (PN x̃)− F (PNx))⟩,
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so that at time t = t1

0 ≈ λ̃⟨PNu, LPNu⟩|t=t1+(λ̃−λ)⟨PNu, LPNx⟩|t=t1+⟨PNu, PN(F (PN x̃)−F (PNx))⟩|t=t1−µ∥PNu∥2|t=t1 ,

so if ⟨PNu, LPNx⟩|t=t1 ̸= 0, then

λ =
λ̃⟨PNu, LPN x̃⟩+ ⟨PNu, PN(F (PN x̃)− F (PNx))⟩ − µ∥PNu∥2

⟨PNu, LPNx⟩

∣∣∣
t=t1

.

As before, this leads to the parameter update formula

λn =
λn−1⟨PNu, LPN x̃⟩+ ⟨PNu, PN(F (PN x̃)− F (PNx))⟩ − µ∥PNu∥2

⟨PNu, LPNx⟩

∣∣∣
t=tn

.

Nondegeneracy Condition. In each case above it has been necessary to assume that

⟨PNu, LPNx⟩ ≠ 0 at the parameter update time. This requirement, commonly referred to as

a nondegeneracy condition, is worth elaborating on. If at a given time t = t1 this condition

does not hold, i.e. ⟨PNu, LPNx⟩ = 0, then it is impossible to solve (2.3) for the true value

of λ because that term vanishes. This makes sense because under this condition, all values

of λ would satisfy (2.3); hence the equation is degenerate. Looking back at the system

evolution equations (2.1)-(2.2) it is clear that if Lx = 0 at a particular time (which would

force ⟨PNu, LPNx⟩ = 0), then solving for λ is impossible; any value of λ would lead to the

same dynamics if Lx = 0 held over an interval of time.

However, this requirement is not particularly onerous to satisfy. If the requirement is not

satisfied at a particular time t, then the algorithm can usually wait longer until it is satisfied.

If this is not the case, then the CHL algorithm will break, i.e. CHL can not recover the true

parameter when this non-degeneracy condition is not satisfied.

Estimating Ra with Known Pr. Now that the CHL algorithm has been derived in

general, the discussion that follows will begin to apply it to the problem of estimating

parameters in the vorticity-temperature formulation of Rayleigh-Bénard convection. For
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now, suppose that the Prandtl number Pr is known, but the Rayleigh number Ra is unknown,

and that information about the full state (u, θ) is unavailable; the observer only has access

to (PN(u), PN(θ)); where PN is a projection onto a finite number N of Fourier modes. This

system, in vorticity-temperature formulation, is

∂ζ

∂t
+ u · ∇ζ = Pr∆ζ + PrRa θx,

∂θ

∂t
+ u · ∇θ = ∆θ,

∂ζ̃

∂t
+ ũ · ∇ζ̃ = Pr∆ζ̃ + Pr R̃a θ̃x − µPN

(
ζ̃ − ζ

)
,

∂θ̃

∂t
+ ũ · ∇θ̃ = ∆θ̃.

(2.6)

where µ > 0 is a nudging parameter. Now let w := ζ̃ − ζ be the error in the vorticity. Then

the time evolution of w can be written as

∂w

∂t
=
∂ζ̃

∂t
− ∂ζ

∂t
= −

(
ũ · ∇ζ̃ − u · ∇ζ

)
+Pr∆

(
ζ̃ − ζ

)
+Pr

(
R̃a θ̃x − Ra θx

)
−µPN

(
ζ̃ − ζ

)
.

Simplifying and applying the projection operator PN throughout (which as noted, commutes

with derivatives, is linear, and is idempotent), it follows that

PN(wt) = −PN

(
ũ · ∇ζ̃ − u · ∇ζ

)
+ PrPN(∆w) + Pr

(
R̃aPN(θ̃x)− RaPN(θx)

)
− µPNw.

Letting v := ũ− u, and η := θ̃ − θ, it follows that

ũ · ∇ζ̃ − u · ∇ζ = ũ · ∇w + v · ∇ζ,

R̃a θ̃x − Ra θx = R̃a ηx +
(
R̃a− Ra

)
θx,

so

PN(wt) = −PN(ũ·∇w)−PN(v·∇ζ)+PrPN(∆w)+Pr R̃aPN(ηx)+Pr
(
R̃a− Ra

)
PN(θx)−µPNw.
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At this point, take the L2-inner product of both sides with PNw. Then

⟨PNw,PN(wt)⟩ =
∫
Ω

PNwPNwt =

∫
Ω

∂

∂t

[
1

2
PNw

2

]
=

1

2

d

dt

∫
Ω

PNw
2 =

1

2

d

dt

[
∥PNw∥2

]
and

⟨PNw,PN(∆w)⟩ =
∫
Ω

PNw∆PNw = −
∫
Ω

|∇PNw|2 = −∥∇PNw∥2

so that the equation becomes

1

2

d

dt

[
∥PNw∥2

]
= −⟨PNw,PN(ũ · ∇w)⟩ − ⟨PNw,PN(v · ∇ζ)⟩ − Pr ∥∇PNw∥2

+ Pr R̃a⟨PNw,PN(ηx)⟩+ Pr
(
R̃a− Ra

)
⟨PNw,PN(θx)⟩ − µ∥PNw∥2.

(2.7)

Following the derivation above, integrate the system forward until time t = t1 at which ∥w∥

stops decreasing, i.e.

d

dt

[
∥PNw∥2

] ∣∣∣
t=t1

≈ 0. (2.8)

Then one can (approximately) solve (2.3) for the true value of Ra. If one eliminates terms

quadratic in the error (except those coupled with µ) and assume that the nondegeneracy

condition for this algorithm holds, i.e.

⟨PNw,PN(θx)⟩|t=t1 ̸= 0,

then one can solve for the (approximate) true value of Ra and assign it to be the next

estimate R̃a:

R̃a|t>t1 = R̃a|t∈[t0,t1) −
µ

Pr

∥PNw∥2

⟨PNw,PN(θx)⟩

∣∣∣
t=t1

.

If, instead, one tries to estimate the terms rather than eliminate them, then the update

becomes

R̃a|t>t1 =
R̃a|t∈[t0,t1)⟨PNw,PN(θ̃x)⟩ − 1

Pr
⟨PNw,PN(g)⟩ − ∥∇PNw∥2 − µ

Pr
∥PNw∥2

⟨PNw,PN(θx)⟩

∣∣∣
t=t1

.
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where

g := PN(ũ) · PN(∇w) + PN(v) · PN(∇ζ). (2.9)

While this update formula is much more complicated than the first one, it does not drastically

increase computational expense (the major expense in the algorithm is due to the integration

of the system forward in time). Furthermore, this “complex” update formula often ensures

convergence of the parameters and state, while the first “simple” one frequently fails to force

convergence (see Sections 4.2.1 and 4.2.2).

Estimating Pr with Known Ra. The derivation for the parameter updates in this case

follows the same steps as before. Consider the system

∂ζ

∂t
+ u · ∇ζ = Pr∆ζ + PrRa θx,

∂θ

∂t
+ u · ∇θ = ∆θ,

∂ζ̃

∂t
+ ũ · ∇ζ̃ = P̃r

(
∆ζ̃ +Ra θ̃x

)
− µPN

(
ζ̃ − ζ

)
,

∂θ̃

∂t
+ ũ · ∇θ̃ = ∆θ̃.

(2.10)

Following the derivation above shows that once the error ∥w∥ stops decreasing at time t = t1

it follows that

0 ≈ −⟨PNw,PN(ũ · ∇w)⟩ − ⟨PNw,PN(v · ∇ζ)⟩+ P̃r⟨PNw,PN (∆w +Ra ηx)⟩

+
(
P̃r− Pr

)
⟨PNw,PN (∆ζ +Ra θx)⟩ − µ∥PNw∥2.

(2.11)

If one eliminates terms quadratic in the error except those coupled with µ and assume the

nondegeneracy condition

⟨PNw,PN (∆ζ +Ra θx)⟩|t=t1 ̸= 0

holds, then the update formula is given by

P̃r|t>tn = P̃r|t∈[tn−1,tn) − µ
∥PNw∥2

⟨PNw,PN (∆ζ +Ra θx)⟩
.
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If one tries to estimate terms rather than eliminating them, the (possibly more accurate)

update formula is given by

P̃r|t>tn =
−⟨PNw,PN(g)⟩+ P̃r|t∈[tn−1,tn)⟨PNw,PN

(
∆ζ̃ +Ra θ̃x

)
⟩ − µ∥PNw∥2

⟨PNw,PN (∆ζ +Ra θx)⟩

where g is defined as in (2.9).

Estimating Pr with Known PrRa. If, rather than assuming that Ra is known, PrRa

is known, then the system can be written as

∂ζ

∂t
+ u · ∇ζ = Pr∆ζ + PrRa θx,

∂θ

∂t
+ u · ∇θ = ∆θ,

∂ζ̃

∂t
+ ũ · ∇ζ̃ = P̃r∆ζ̃ + PrRa θ̃x − µPN

(
ζ̃ − ζ

)
,

∂θ̃

∂t
+ ũ · ∇θ̃ = ∆θ̃.

(2.12)

Following the derivations above shows that once the error ∥w∥ stops decreasing at time

t = t1, it follows that

0 ≈ −⟨PNw,PN(ũ · ∇w)⟩ − ⟨PNw,PN(v · ∇ζ)⟩+ P̃r⟨PNw,PN∆w⟩

+
(
P̃r− Pr

)
⟨PNw,PN∆ζ)⟩+ PrRa⟨PNw,PNηx⟩ − µ∥PNw∥2.

(2.13)

If one eliminates terms quadratic in the error except those coupled with µ and assume the

nondegeneracy condition

⟨PNw,PN∆ζ)⟩|t=t1 ̸= 0

holds, then the update formula is given by

P̃r|t>tn = P̃r|t∈[tn−1,tn) − µ
∥PNw∥2

⟨PNw,PN∆ζ⟩
.
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If one tries to estimate terms rather than eliminating them, a (possibly more accurate)

update formula is given by

P̃r|t>tn =
P̃r|t∈[tn−1,tn)⟨PNw,PN∆ζ̃⟩ − ⟨PNw,PN(g)⟩+ PrRa⟨PNw,PNηx⟩ − µ∥PNw∥2

⟨PNw,PN (∆ζ +Ra θx)⟩

where g is defined as in (2.9).

2.1.2 CHL Algorithm for Estimating Multiple Parameters. The CHL algorithm

can be used for estimating multiple parameters, as long as the system contains more than

one equation, and each parameter of interest is found in exactly one equation. The derivation

proceeds in a similar manner; each equation is used to derive a separate update. Note that

in this case it is necessary to use a different nondimensionalization of the Rayleigh-Bénard

equations (see (1.10)) which allows the Pr and Ra to be located in separate equations. For

added flexibility, a nudging term is placed on the temperature equation as well. The system

is as follows:

∂ζ

∂t
+ u · ∇ζ = ∆ζ +Ra θx,

∂θ

∂t
+ u · ∇θ = Pr−1∆θ,

∂ζ̃

∂t
+ ũ · ∇ζ̃ = ∆ζ̃ + R̃a θ̃x − µ1PN

(
ζ̃ − ζ

)
,

∂θ̃

∂t
+ ũ · ∇θ̃ = P̃r

−1
∆θ̃ − µ2PN

(
θ̃ − θ

)
(2.14)

Following the same steps in the derivations above, once the errors ∥w∥ and ∥η∥ stop decreas-

ing at time t = t1, it follows that

0 ≈ −⟨PNw,PNg⟩+ ⟨PNw,PN∆w⟩+R̃a⟨PN η̃x, PNw⟩− (R̃a−Ra)⟨PNθx, PNw⟩−µ1∥PNw∥2,

and

0 ≈ −⟨PNη, PNh⟩+ P̃r
−1
⟨PNη, PN∆η⟩+

(
P̃r

−1
− Pr−1

)
⟨PNη, PN∆θ⟩ − µ2∥PNη∥2,
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where

h := PN(ũ) · PN(∇η) + PN(v) · PN(∇θ),

and g is defined as in (2.9). If one eliminates terms quadratic in the error except those

coupled with µ and assume the nondegeneracy conditions

⟨PNθx, PNw⟩ ≠ 0, ⟨PNη, PN∆θ⟩ ≠ 0

hold, then the update formulae are given by

R̃a|t>tn = R̃a|t∈[tn−1,tn) − µ1
∥Pnw∥2

⟨PNθx, PNw⟩

∣∣∣∣∣
t=t1

and

P̃r
−1
|t>tn = P̃r

−1
|t∈[tn−1,tn) − µ2

∥Pnη∥2

⟨PNη, PN∆θ⟩
.

Similar updates are available as done above if instead of eliminating the nonlinear terms,

they are approximated with projections of the observed true state.

2.1.3 PWM Algorithm. This algorithm originates from a paper of Pachev, Whitehead,

and McQuarrie [9]. In that work, the authors propose a formula for updating a parameter

“continuously” and concurrently with the integration of the nudged system by performing

a parameter update at each time step. This work considers the update derivation in [9],

within the context of the “relax and punch” algorithm.

Consider a partial differential equation given by

ẋ =

p∑
k=1

λkLkx+ F (x),

where ẋ is the time-derivative of x, {Lk}pk=1 are spatial linear differential operators, {λk}
p
k=1

are parameters, and F is a smooth (potentially nonlinear) differential operator (with a

sufficient amount of dissipation to give the system a finite dimensional attractor [10]. Given
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an orthogonal projection PN , this system is coupled with the nudged system

˙̃x =

p∑
k=1

λ̃kLkx̃+ F (x̃)− µPN(x̃− x). (2.15)

Then the error u := x̃− x evolves according to

u̇ =

p∑
k=1

λ̃kLkx̃+ F (x̃)− ẋ− µPNu.

Apply the projection PN throughout and take an inner product with PNu; it follows that

1

2

d

dt

[
∥PNu∥2

]
=

[〈
p∑

k=1

λ̃kLkPN x̃+ PNF (x̃)− PN ẋ, PNu

〉]
− µ∥PNu∥2.

achev, Whitehead, and McQuarrie’s [9] original observation was that if one can select the

parameter estimates {λ̃k(t)}pk=1 in order to enforce

〈
p∑

k=1

λ̃kLkPN x̃+ PNF (x̃)− PN ẋ, PNu

〉
= 0, (2.16)

over some interval [t0, t1], then ∥PNu∥ will satisfy

∥PNu(t)∥ = ∥PNu(t0)∥e−µ(t−t0)

over that interval [9]. The key idea was that because the error in the state along the projected

modes will decrease exponentially, the parameter estimates will eventually have to converge

to the true parameters (otherwise, the error in state would not be able to become small).

However, it turns out that selecting the parameters to enforce (2.16) is not actually necessary,

and can be counterproductive. Indeed, computational evidence shows that choosing to satisfy

(2.16) rather than following the principles in Section 2.1.3 often causes the PWM algorithm

to fail to converge (see Section 4.3.1 for computational evidence and further detail). Instead,
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looking at relation (2.15), the goal is to enforce {λ̃}pk=1 so that

p∑
k=1

λ̃kLkx̃+ F (x̃)− ẋ = 0. (2.17)

However, several immediate concerns arise. First of all, ẋ is not fully available to the ob-

server; only PN ẋ (assuming that observations are sufficiently dense in time). Secondly, the p

variables {λ̃k}pk=1 cannot be chosen to enforce what is effectively an infinite number of linear

conditions. Even if the projection PN of both sides is taken, as long as N > p the system

is still overdetermined. To make the system solvable, p linearly independent vectors {bj}pj=1

must be chosen, then the free variables {λ̃k}pk=1 can be chosen to solve the system along

these directions; yielding the p equations

〈
p∑

k=1

λ̃kLkx̃+ F (x̃)− ẋ, bj

〉
= 0, j = 1, . . . , p.

Defining the p × p matrix A by Ajk = ⟨Lkx̃, bj⟩ and the p-vector g by gj = ⟨ẋ − F (x̃, bj⟩,

the system becomes Aλ̃ = g, where λ̃ = (λ̃1, . . . , λ̃p). As long as the vectors b1, . . . bp

are in the image of the orthogonal projection PN (i.e. they are observable modes), then

⟨bj, v⟩ = ⟨bj, PNv⟩, so the observer can calculate all of the entries of A and b and solve the

linear system for λ̃. Here, as in the CHL algorithm, there is also a non-degeneracy condition,

namely that the matrix A is nonsingular, or that detA ̸= 0. If this condition holds, then

λ̃ = Ag is a formula for a parameter update. Note also that this parameter update does not

explicitly depend on the previous parameter estimates, as it does in the CHL algorithm.

Choosing a Basis. One might wonder how to select the vectors {bj}pj=1. While at the

level of the analysis it does not seem to matter what the {bj}pj=1 are as long as they lie within

the image of the projection PN (see Sections 3.1 and 3.2), in practice the choice of the basis

is critical to ensuring convergence of the state and parameters (see Section 4.3.1).

By defining a p × N matrix B where Bji is ith projected mode (under PN) of bj, and

an N × p matrix L by setting Lik to be the ith projected mode of Lkx̃, then it is clear that
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A = BL. Similarly, let f be the vector whose ith component is the ith projected mode of

ẋ − F (x̃); then g = Bf . Choosing the vectors {bj}pj=1 amounts to selecting the entries of

the matrix B, and the system Aλ̃ = g can be rewritten as BLλ̃ = Bf . Recall that the

original goal was to choose λ̃ to satisfy (2.17), or at least to satisfy it on the N projected

modes which are observable. In the new notation, the system (2.17) can be written Lλ̃ = f ,

which is indeed an overdetermined system of N equations in p variables. Making the choice

B = LT the system becomes LTLλ̃ = LT f , which has the solution

λ̃ = (LTL)−1LT f ,

which is the ordinary least squares solution to Lλ̃ = f . Hence this choice of B leads to a

choice of parameter estimates λ̃ which minimizes ∥Lλ̃−f∥2. This is equivalent to minimizing

the quantity ∥∥∥∥∥PN

(
p∑

k=1

λ̃kLkx̃+ F (x̃)− ẋ

)∥∥∥∥∥.
This makes choosing B = LT , or in other words, choosing bj = PNLkx̃, as the optimal choice

in the sense outlined above.

Estimating Ra with known Pr. Consider the system (2.6). The discussion that follows

will apply the derivation in the previous section to this sytem. Letting w = ζ̃ − ζ be the

error in vorticity, it follows that

∂w

∂t
=
∂ζ̃

∂t
− ∂ζ

∂t
= −ũ · ∇ζ̃ + Pr∆ζ̃ + Pr R̃aθ̃x − µPN

(
ζ̃ − ζ

)
− ζt,

where ζt := ∂ζ/∂t. Simplifying and applying the projection operator PN throughout (which

as noted, commutes with derivatives, is linear, and is idempotent), it follows that

PNwt = PrPN(∆ζ̃) + Pr R̃aPN(θ̃x)−
[
PN(ũ · ∇ζ̃) + PNζt

]
− µPNw
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At this point, the goal is to choose R̃a to enforce

PrPN(∆ζ̃) + Pr R̃aPN(θ̃x)−
[
PN(ũ · ∇ζ̃) + PNζt

]
= 0 (2.18)

to the extent possible. Section 2.1.3 dictates choosing b1 = PN(θ̃x) and seeking to satisfy

(2.18) along this direction. Taking the inner product with b1 yields

Pr R̃a∥PN θ̃x∥2 = ⟨PN(ũ · ∇ζ̃) + PNζt + PrPN(∆ζ̃), PN θ̃x⟩

which yields the update equation

R̃a|t>tn =

〈
1
Pr

[
PN(ũ · ∇ζ̃) + PNζt

]
+ PN(∆ζ̃), PN θ̃x

〉
∥PN θ̃x∥2

∣∣∣∣∣
t=tn

as long as ∥PN θ̃x∥ ≠ 0, which is a weaker nondegeneracy condition than in the CHL case.

Estimating Pr with known Ra. To derive the PWM update formula for (2.10), let

w = ζ̃ − ζ be the error in vorticity. It follows that

∂w

∂t
=
∂ζ̃

∂t
− ∂ζ

∂t
= −ũ · ∇ζ̃ + P̃r∆ζ̃ + P̃rRa θ̃x − µPN

(
ζ̃ − ζ

)
− ζt,

where ζt := ∂ζ/∂t. Simplifying and applying the projection operator PN throughout (which

as noted, commutes with derivatives, is linear, and is idempotent), it follows that

PNwt = P̃r
[
PN(∆ζ̃) + RaPN(θ̃x)

]
−
[
PN(ũ · ∇ζ̃) + PNζt

]
− µPNw

At this point, the goal is to choose P̃r to enforce

P̃r
[
PN(∆ζ̃) + RaPN(θ̃x)

]
−
[
PN(ũ · ∇ζ̃) + PNζt

]
= 0 (2.19)
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to the extent possible. Section 2.1.3 dictates choosing the basis vector b1 = PN(∆ζ̃ +Ra θ̃x)

and seeking to satisfy (2.19) along this direction. Taking the inner product with b1 yields

Pr ∥PN(∆ζ̃ +Ra θ̃x)∥2 = ⟨PN(ũ · ∇ζ̃) + PNζt, PN(∆ζ̃ +Ra θ̃x)⟩

which yields the update equation

P̃r|t>tn =
⟨PN(ũ · ∇ζ̃) + PNζt, PN(∆ζ̃ +Ra θ̃x)⟩

∥PN(∆ζ̃ +Ra θ̃x)∥2

∣∣∣∣∣
t=tn

as long as ∥PN(∆ζ̃ + Ra θ̃x)∥ ̸= 0, which is a weaker nondegeneracy condition than in the

CHL case.

Estimating Ra and Pr. Unlike for CHL, the PWM algorithm is capable of estimating

Pr and Ra simultaneously while nudging the vorticity alone. In other words, one need only

consider (2.12) in order to recover both of the relevant non-dimensional parameters. Starting

with this system, let w = ζ̃ − ζ be the error in vorticity, it follows that

∂w

∂t
=
∂ζ̃

∂t
− ∂ζ

∂t
= −ũ · ∇ζ̃ + P̃r∆ζ̃ + P̃rR̃aθ̃x − µPN

(
ζ̃ − ζ

)
− ζt,

where ζt := ∂ζ/∂t. Simplifying and applying the projection operator PN throughout (which

as noted, commutes with derivatives, is linear, and is idempotent), it follows that

PNwt = P̃rPN(∆ζ̃) + P̃rR̃aPN(θ̃x)−
[
PN(ũ · ∇ζ̃) + PNζt

]
− µPNw

At this point, the goal is to choose P̃r and R̃a to enforce

P̃rPN(∆ζ̃) + P̃rR̃aPN(θ̃x)−
[
PN(ũ · ∇ζ̃) + PNζt

]
= 0 (2.20)

to the extent possible. Section 2.1.3 dictates choosing b1 = PN(∆ζ̃) and b2 = PN(θ̃x) and

seeking to satisfy (2.20) along these directions. In practice, the Gram-Schmidt procedure
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would be employed to orthonormalize this basis and make it more numerically stable, but

that level of detail is unnecessary for the present analysis. The conditions P̃r and R̃a must

be chosen to satisfy are

P̃r∥PN(∆ζ̃)∥2 + P̃rR̃a⟨PN(θ̃x), PN(∆ζ̃)⟩ = ⟨PN(ũ · ∇ζ̃) + PNζt, PN(∆ζ̃)⟩

P̃r⟨PN(∆ζ̃), PN(θ̃x)⟩+ P̃rR̃a∥PN(θ̃x)∥2 = ⟨PN(ũ · ∇ζ̃) + PNζt, PN(θ̃x)⟩

which can be written in matrix form: ∥PN(∆ζ̃)∥2 ⟨PN(θ̃x), PN(∆ζ̃)⟩

⟨PN(∆ζ̃), PN(θ̃x)⟩ ∥PN(θ̃x)∥2


 P̃r

P̃rR̃a

 =

⟨PN(ũ · ∇ζ̃) + PNζt, PN(∆ζ̃)⟩

⟨PN(ũ · ∇ζ̃) + PNζt, PN(θ̃x)⟩

 .

(2.21)

Letting A be the matrix on the left-hand side of (2.21) and b be the vector on the right-hand

side of (2.21), the parameter update takes the form

P̃r|t>tn = (A−1b)1|t=tn , R̃a|t>tn =
(A−1b)2
(A−1b)1

∣∣∣
t=tn

as long as the matrix A is nonsingular (detA ̸= 0 is the nondegeneracy condition in this

case), and as long as (A−1b)1 ̸= 0. This second condition is new, but makes sense because

the Rayleigh-Bénard system becomes ill-posed if the Prandtl number is close to zero.

2.2 Comparison of Algorithms

Both the CHL and PWM algorithms appear to perform well at recovering unknown pa-

rameters for a dissipative dynamical system. It appears that both algorithms rely on the

“relax and punch” concept that the system needs to first relax via nudging so that the state

converges up to a model error determined by the difference in parameters. After this conver-

gence in the state is satisfied then the system is “punched” via an update in the parameters

and the system is run again. As numerically demonstrated below, both approaches ap-
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pear to work well for Rayleigh-Bénard convection, recovering both the Rayleigh and Prandtl

numbers under certain reasonable conditions.

A distinct advantage that PWM has over CHL is that it is more conducive to estimation

of multiple parameters simultaneously even if all of the parameters are contained in a single

equation. This observation is due to the choice of the basis vectors bj as described above for

PWM. On the other hand PWM also requires the numerical estimation of the projected time

derivative which can lead to significant numerical error (see [9] for a thorough discussion of

this issue for the continuous version of the same algorithm). At the same time, incorporating

the time derivative into the algorithm update in PWM eliminates the need to show that this

term is bounded as is done when rigorously establishing convergence for CHL in [11, 12].

This indicates that while PWM may be prone to numerical error from the temporal spacing

of the observations, it is more grounded theoretically, and less prone to errors that may

creep in from potentially unbounded (or exponentially large) growth in the projected time

derivative.

Chapter 3. Theoretical Analysis of Con-

vergence

3.1 Formalizing the PWM Algorithm

To formalize the PWM algorithm for a given system and put it in a rigorous setting, a few

more assumptions are necessary. Firstly, assume that the system is d-dimensional and can

be written as

ẋ = Lx+ F (x), (3.1)
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where ẋ = dx/dt, x : [0,∞) → Rd, and L is a linear combination of linear operators {Lj}pj=1

mapping from Rd to Rd having the form

L =

p∑
j=1

αjLj.

It is assumed that F : Rd → Rd is smooth, and that {αj}pj=1 ⊂ R are the unknown system

parameters. It is also required that the system (3.1) is dissipative, which means that it

possesses a finite-dimensional global attractor (if L is autonomous) or a pullback attractor

(if L is non-autonomous). Therefore, given an initial point x0 ∈ Rd, there must exist a

unique solution x(t;x0) of (3.1) defined for all t ≥ 0, and such a solution must eventually be

bounded. Denote the trajectory of this unique global solution {x(t;x0}t≥0.

Let PN be the orthogonal projection onto the span of an orthogonal basis {ei}Ni=1 ⊂ Rd,

where p ≤ N ≤ d. It is assumed that the observations are available continuously in time;

that is, the observer has access to PNx and PN ẋ at all times t. To include the possibility

of different nudging parameters for different modes of the system, let M = diag(µ1, . . . , µd),

where µ1, . . . , µd > 0, be a diagonal matrix, and consider the nudged system

˙̃x = L̃x̃+ F (x̃)−MPN(x̃− x), (3.2)

where

L̃ =

p∑
j=1

α̃jLj.

and {α̃j}pj=1 are the parameter estimates. For convenience, the following discussion will

use the vector notation α = (α1, . . . , αp) and α̃ = (α̃1, . . . , α̃p) when necessary. Because

µ1, . . . , µd > 0, the system (3.2) is also dissipative. Let

x̃0(t) = x̃(t; x̃0, α
0, {PNx(t;x0)}t≥0) = x̃(t; x̃0, α

0)

be the solution corresponding to the initial value x̃0, parameter estimates α̃ = α0, and
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observations {PNx(t, x0)}t≥0 from the system (3.1). Allow the system to proceed forward in

time until a sufficiently large time t1 > 0 when the system has relaxed.

Let u := x̃− x be the error in state. Then u̇ can be written

u̇ = L̃x̃+ F (x̃)− ẋ−MPNu.

As before (see Section 2.1.3), the PWM algorithm seeks to choose α̃ in order to enforce

[
L̃x̃+ F (x̃)− ẋ

] ∣∣∣
t=t1

= 0 (3.3)

to the extent that it is possible. Indeed, (3.3) is a system of p variables in d equations. To

ensure solvability of the system, vectors {b0j}
p
j=1 ⊂ PN(Rd) are chosen (an optimal choice

would be b0j = PNLjx̃|t=t1 ; see Section 2.1.3) to construct a p× p system

⟨L̃x̃+ F (x̃)− ẋ, bj⟩|t=t1 = 0, j = 1, . . . p.

As before, let the p× p matrix A0 and the vector g0 ∈ Rp have entries

A0
jk = ⟨Lkx̃, bj⟩|t=t1 , g0j = ⟨ẋ− F (x̃, bj⟩|t=t1

so that the system above can be written A0α̃ = g0. Note that each of the entries of A

and g can be calculated with information available to the observer. Assuming that A0 is

nonsingular at time t1, the parameters are updated using the formula

α1 = (A0)−1g0|t=t1 ,

then the new nudged system x̃1(t; x̃1, α
1) is considered for t > t1.

The first step in proving the convergence of the PWM algorithm is to find an explicit
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representation for the parameter error. Using the relations

p∑
j=1

α1
j⟨Ljx̃, bi⟩ = ⟨ẋ− F (x̃, bi⟩, i = 1, . . . , p

and making the substitution

⟨ẋ, bi⟩ =
p∑

j=1

αj⟨Ljx, bi⟩+ ⟨F (x), bi⟩, i = 1, . . . , p

(see (3.1)) yields

p∑
j=1

α1
j⟨Ljx̃, bi⟩ =

p∑
j=1

αj⟨Ljx, bi⟩+ ⟨F (x)− F (x̃, bi⟩, i = 1, . . . , p.

Now subtract
∑p

j=1 αj⟨Ljx̃, bi⟩ from both sides to obtain

p∑
j=1

(α1
j − αj)⟨Ljx̃, bi⟩ = −

p∑
j=1

αj⟨Lju, bi⟩ − ⟨F (x̃)− F (x), bi⟩, i = 1, . . . , p. (3.4)

Define a p× p matrix U0 and a vector f0 ∈ Rp whose entries are

U0
ij = −⟨Lju, bi⟩, f 0

i = −⟨F (x̃− F (x), bi⟩

Then (3.4) can be written more succinctly as

A0(α̃−α) = U0α+ f

Using the assumption that A0 is invertible at time t1, it follows that there is explicitly

represent the parameter error in terms of the true parameters:

α̃−α = (A0)−1(Uα+ f)
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Then the above process is repeated. At the (n+1)th stage, it is assumed that α0, . . . , αn

have been constructed under the proper conditions, i.e. that the orthonormal bases Bi

have been identified satisfying the condition {bij}
p
j=1 ⊂ PN(Rd) at times t = ti+1 and that

detAi|t=ti+1
̸= 0 for i = 0, . . . , n−1 as well. Letting x̃n ∈ Rd be arbitrary, one then considers

the solution x̃n(t) = x̃(t; x̃n, α
n) corresponding to initial value x̃n and parameter values αn−1.

Once again, suppose let tn+1 be sufficiently large that x̃n(tn+1) has relaxed. Then, a basis

Bn = (bn1 , . . . , b
n−1
p ) ⊂ PN(Rd) is identified, and, assuming that detAn|t=tn+1 ̸= 0, the next

parameter update is given by

αn+1 = (An)−1gn|t=tn+1 .

According to the error representation above, it is clear that

αn+1 − α = (An)−1(Unα+ fn)
∣∣∣
t=tn+1

.

Our goal is to establish the following bound for some constants C, c > 0:

(An)−1(Unα+ fn)
∣∣∣
t=tn+1

≤ C
|αn − α|

(detAn|t=tn+1µ
c)
.

Provided that µ is chosen large enough, this will ensure that there exists some β < 1 for

which

|αn+1 − α| ≤ β|αn − α|,

therefore establishing geometric convergence of the parameter estimates to the true values.

3.2 Statement and Proof of Convergence

Before proving the theorem, it is necessary to set forth some new notation and a few more

assumptions. Define

Ak
l := Ak|t=tl+1

, Uk
l := Uk|t=tl+1

, fk
l := |t=tl+1

.
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and let

un = x̃(t, x̃n, α
n)− x(t;x0), ∆αn = αn − α.

The following additional assumptions will be made:

(i) By time t = 0 the system x(t;x0) has relaxed to be within the absorbing ball of the

dynamics, so that there exists R > 0 such that |x(t;x0)| ≤ R for all t > 0.

(ii) Each parameter update produces parameters for which the nudged system (3.2) is still

well-posed and still has global solutions with absorbing ball bounds of the same order.

Theorem 3.1. Assume that F : Rd → Rd is locally Lipschitz and that the coefficients of

each Lj : Rd → Rd are uniformly bounded in time. Suppose that there exist T > 0 and

constants q, CT > 0 such that the following model error estimate holds for all t ≥ T :

|x̃(t; x̃0, α̃, {PNx(t;x0)}t≥0)− x(t;x0)| ≤
CT

µq
|α̃− α| (3.5)

for all t ≥ T . Then for each n ≥ 1, there exist constants r, Cn > 0 such that

| detAn
n||αn+1 − α| ≤ Cn

µr
|αn − α|. (3.6)

Proof. Let the initial parameter estimates α0 ∈ Rp be fixed, and let t0 = 0. Let t1 be large

enough that (3.5) holds at time t1. Then

|u1| ≤ CT

µq
|∆α0|

holds for some power q > 0, where µ = min{µ1, . . . , µd}. Then, using representation of the

error above, it follows that

A0
0∆α

1 = U0
0α + f 0

0 .
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Since each Lj has bounded coefficients by hypothesis, CL := |L| <∞. Therefore

|U0
0 | ≤ CL|u1|

based on the definition of U , since B1 is an orthonormal basis. Letting Cn
F denote the local

Lipschitz constant of F at time t = tn, it follows that

|f 0
0 | ≤ |F (x̃1)− F (x1)| ≤ C1

F |u1|.

Utilizing the fact that there exists a constant cd > 0 such that

| detM ||M−1| ≤ cd|A|d−1

for any that for d× d matrix M ,

|∆α1| ≤ |(A0
0)

−1|
(
|U0

0 ||α|+ |f 0
0 |
)

| detA0
0||∆α1| ≤ cd

|
A0

0|d−1(CL + C1
F )
CT

µq
|∆α0|.

Letting

C1 :=
cd

|A0
0|d−1

(CL + C1
F )CT ,

we have that

| detA0
0||∆α1| ≤ C

µq
|∆α0|.

Suppose that (3.6) holds for all m = 1, . . . , n. Now consider the case m = n+1. Suppose

tn+1 > 0 is large enough that (3.5) holds at time tn. Then

|un| ≤ CT

µq
|∆α0|

holds for some power q > 0, where µ = min{µ1, . . . , µd}. Then, using the representation of
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the error, it follows that

An
n∆α

n+1 = Un
nα + fn

n .

We also have |Un
n | ≤ CL|un|, and letting Cn

F denote the local Lipschitz constant of F at time

t = tn, it follows that

|fn
n | ≤ |F (x̃n)− F (xn)| ≤ Cn

F |un|.

Then

|∆αn+1| ≤ |(An
n)

−1| (|Un
n ||α|+ |fn

n |)

| detAn
n||∆αn+1| ≤ cd

|
An

n|d−1(CL + C1
F )
CT

µq
|∆αn|.

Letting

Cn :=
cn

|An
n|d−1

(CL + Cn
F )CT ,

we have that

| detAn
n||∆αn+1| ≤ C

µq
|∆αn|

as claimed.

Chapter 4. Computational Analysis of Con-

vergence

4.1 Methodology

Writing code to simulate Rayleigh-Bénard convection along with data assimilation and pa-

rameter recovery was a large undertaking. Rather than write the partial differential equation

solvers from scratch, I made use of the python package Dedalus, version 2.0. Dedalus is a

“flexible, open-source, parallelized computational framework for solving general partial dif-

ferential equations using spectral methods” [13]. Dedalus features an object-oriented design,
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symbolic manipulation through a computer algebra system, and good performance. More

information about Dedalus is available at http:dedalus-project.org.

Using Dedalus had several advantages particularly appropriate to the needs of this

project. Firstly, Dedalus uses spectral methods (specifically a first-order generalized tau for-

mulation which discretizes equations into banded matrices). Variables within equations are

represented as field objects, which have the capability to quickly transition between Carte-

sian grid representation and spectral grid representation. Given the boundary conditions

for Rayleigh-Bénard convection, it was appropriate to use a Fourier basis in the horizontal

direction and a Chebyshev basis in the vertical direction, and Dedalus made this easy. The

spectral numerical methods offered high performance, and the ease of transitioning between

spectral and Cartesian grid representations of field objects made implementing projection

operators easy. Implementing a projection operator was also simple: one could transform

a field by simply transitioning to spectral representation, zeroing out certain modes, and

transitioning back to grid representation.

Because Dedalus allows the user to input the governing equations of the system as a

parseable string, it was easy to make small modifications to the system as necessary. For

example, given an initial guess for parameter estimates for Pr and Ra, it was possible to fix

these parameters and treat the terms which they multiply implicitly. Then when updates

to the parameter estimates were made, the difference between the new parameter estimates

and the original guesses, which is relatively small compared to the parameter estimates

themselves, could be treated explicitly. Compared to the simple approach of treating all of

the terms explicitly (which may result in large timestep restrictions), this method has the

advantage of allowing the largest portion of the terms to be treated implicitly.

Another advantage of Dedalus was its automatic paralellization. While some PDEs are

relatively cheap to simulate, Rayleigh-Bénard convection is very computationally expensive.

Dedalus’s built-in parallelization using MPI enabled computations to be performed in a

matter of hours rather than days or weeks.
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File input and output was handled automatically by Dedalus and by code written by

Shane McQuarrie [14]. Dedalus allows the user to record snapshots of the state of the

system as well as custom calculations based on the state of the system at specified time

intervals. In addition to enabling seamless recording of data, this allowed some processing

and analysis to be performed on the data before it was written to files.

All simulations were performed on a 384 × 192 grid, with points having equally spaced

horizontal coordinates and Chebyshev collocation points as vertical coordinates. The domain

was [0, 4]×[0, 1], meaning that the horizontal dimension was four times as large as the vertical.

All states were initialized using an initial state with Ra = 105 and Pr = 1 that had been

run out for a long time to ensure that all statistics had constant time averages. The initial

conditions used for the true system are shown in Figure 4.1. The assimilating (nudged)

system was initialized at a low-mode projection of these states (following [14]), and with

the parameter estimates changed from the true values according to whether multiparameter,

Ra-only, or Pr-only estimation was being tested.

4.2 CHL Algorithm

4.2.1 Estimating a Single Parameter. Figures 4.2 and 4.3 show the performance of

the CHL algorithm when estimating either only Ra (with known Pr) or only Pr (with known

Ra), and how the performance depends upon which update formula is selected and to what

degree temperature nudging is used. In each figure, the algorithms are started from the

same initial state. The true system has Pr = 1.0 and Ra = 105. Each of the algorithms use

µ = 8000, and at time t = 0.1 start updating every 0.02 units of simulation time.

In Figure 4.2, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with R̃a = 9×104 and P̃r is held at the true value. The “Simple” update formula

which eliminates quadratic terms not coupled with µ fails to force convergence, even when

temperature nudging is turned on, and soon blows up (at around t = 0.35). Meanwhile, the

“Complex” update formula which approximates these terms forces convergence whether or
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Intial State Temperature (Ra = 105, Pr = 1)
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(a) The temperature satisfies the boundary conditions at the top and bottom plates. It features
hot and cold plumes separated by rotational areas.

Intial State Vorticity (Ra = 105, Pr = 1)
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(b) Vorticity describes the local spinning motion of the fluid; different signs correspond to different
directions of rotation.

Intial State Streamfunction Contours (Ra = 105, Pr = 1)

30
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15
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(c) The streamlines of the fluid, which correspond to the trajectories of particles in a steady flow,
are level sets of the streamfunction ψ shown here.

Figure 4.1: The convective state used as initial condition for computational experiments
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not temperature nudging is used. In each case, the state converges to an error of order 10−10,

and R̃a converges to within a relative error of 10−11. However, the convergence is somewhat

faster when the temperature nudging is used (i.e. µT > 0).

In Figure 4.3, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with P̃r = 1.1 and R̃a is held at the true value. The “Simple” update formula

which eliminates quadratic terms not coupled with µ fails to force convergence, even when

temperature nudging is turned on, and soon blows up (at around t = 0.2). Meanwhile, the

“Complex” update formula which approximates these terms forces convergence whether or

not temperature nudging is used. In each case, the state converges to an error of order 10−11,

and P̃r converges to within a relative error of 10−12. However, the convergence is very quick

when the temperature nudging is used (i.e. µT > 0).

Figures 4.4 and 4.5 show the effect of different relaxation times on the convergence of

the single-parameter CHL algorithm. Each of the simulations uses µ = 8000. In each

simulation, the initial states for the true systems and assimilating systems are identical,

with the assimilating system starting at a low-mode projection of the true state. In each

simulation, there is an initial relaxation period of 0.1 units of simulation time. Then a

parameter update is made repeatedly after a relaxation interval with a length called the

“delay time.” The figures show the effect of changing the “delay time” on the convergence.

The results seem to show that decreasing the relaxation time increases the rate of convergence

until a certain threshold around 0.04 units of time, below which the performance of the

algorithm is essentially the same.

In Figure 4.4 the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with R̃a = 9 × 104 and P̃r is held at the true value. With each selection of

relaxation time, the state and parameters do converge to an error of order 10−10. However, if

the relaxation period is above a certain threshold, then the rate of convergence slows slightly.

In Figure 4.5 the true system has Pr = 1.0 and Ra = 105, while the assimilating system is

initialized with P̃r = 1.1 and R̃a is held at the true value. With each selection of relaxation
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Figure 4.2: Comparing the performance of the Ra-only CHL algorithm when eliminating
most terms (“Simple”) and estimating them (“Complex”)
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Figure 4.3: Comparing the performance of the Pr-only CHL algorithm when eliminating
quadratic terms (“Simple”) and approximating them (“Complex”)
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Figure 4.4: Comparing the performance of the Ra-only CHL algorithm when using different
relaxation times
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time, the state and parameters do converge to an error of order 10−10 and 10−11, respectively.

Additionally, unlike the Ra-only case above, they appear to converge at approximately the

same rate.

4.2.2 Estimating Pr and Ra Simultaneously. In the multiparameter CHL algorithm,

it is necessary to use the nondimensionalization (1.10) rather than the nondimensionaliza-

tion (1.9) used elsewhere in this work. This is because (1.10) places Pr and Ra in separate

equations. Due to the fact that the CHL algorithm requires letting the state error reach a

steady level, then solving an equation to estimate the true parameter value, it is necessary to

solve two equations for two parameters, which was not possible in the usual nondimension-

alization. However, in this version as in the single-parameter versions, one can follow two

approaches to derive an update formula. The “simple” approach is to eliminate terms which

are quadratic in the error but not coupled to µ, while the “complex” approach is to strive

to approximate those terms. Figures 4.6-4.8 show the difference in performance between

these two approaches. In each figure, the algorithms are started from the same initial state.

The true system has Pr = 1.0 and Ra = 105, while the assimilating system is initialized

with P̃r = 1.1 and R̃a = 9 × 104. Each algorithms use µ = 8000, and at time t = 0.1 start

updating every 0.02 units of simulation time.

In each case it is clear that the “simple” approach fails to converge, and instead quickly

blows up. However, the “complex” approach converges as long as the temperature nudging

is turned on. It yields an error of about order 10−10 in the state and about 10−11 in the

parameters. If µT , the temperature nudging parameter, is set to 0, then even the “complex”

approach fails to converge because it does not update the estimate for Pr correctly.

Figure 4.9 shows the convergence for the “Complex” scheme at each value of µT , this

time plotted together on the same graph. From these plots it is evident that setting µT = 0

causes the Pr estimates to fail to change by much, thus hobbling the convergence of the

state and the convergence of the Ra estimates. However, when µT > 0 (and especially when

µT = µ = 8000) the convergence is relatively quick for both the state and the parameters.
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Figure 4.5: Comparing the performance of the Pr-only CHL algorithm when using different
relaxation times

44



0.0 0.2 0.4 0.6 0.8 1.0
Simulation time

10 1

100

101

102

St
at

e 
er

ro
r, 

|u
u|

L2

Effect of Update Formula on State Convergence 
(Multiparameter CHL, T = 0)

Simple
Complex

0.0 0.2 0.4 0.6 0.8 1.0
Simulation time

10 3

10 2

10 1

100

101

102

Re
la

tiv
e 

Pa
ra

m
et

er
 E

rro
r, 

|
|/

Effect of Update Formula on Parameter Convergence
(Multiparameter CHL, T = 0)

Simple, Ra
Simple, Pr
Complex, Ra
Complex, Pr

Figure 4.6: Comparing the performance of the multiparameter CHL algorithm when elimi-
nating most terms (“Simple”) and estimating them (“Complex”), without temperature nudg-
ing
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Figure 4.7: Comparing the performance of the multiparameter CHL algorithm when elim-
inating most terms (“Simple”) and estimating them (“Complex”), with some temperature
nudging
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Figure 4.8: Comparing the performance of the multiparameter CHL algorithm when elim-
inating most terms (“Simple”) and estimating them (“Complex”), with full temperature
nudging
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Figure 4.9: Analyzing the effect of temperature nudging on the multiparameter CHL algo-
rithm
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4.3 PWM Algorithm

4.3.1 Basis Selection. Figures 4.10-4.12 compare the performance of the PWM algo-

rithm using two different bases and show that the selection of the basis matters in practice.

In each figure, the initial states for the true systems and assimilating systems are identical,

with the assimilating system starting at a low-mode projection of the true state. “Origi-

nal,” which uses a basis consisting of the projection of the state error and the projection of

the x-derivative of the temperature (the linear term coupled with PrRa), is compared with

“New,” which uses the projections of the x-derivative of the temperature and laplacian of

the vorticity (the optimal basis according to Section 2.1.3).

In Figure 4.10, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with P̃r = 1.1 and R̃a = 9× 104. Both algorithms used µ = 8000, and at time

t = 0.1 started updating every 0.02 units of simulation time. The algorithm with the new

basis converges quickly and achieves a state error of about 10−10 and parameter error of

about 10−11, while the algorithm with the original basis makes a bad update which causes

the system to blow up at t ≈ 0.12.

In Figure 4.11, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with R̃a = 9 × 104 and P̃r is held at the true value. Both algorithms used

µ = 8000, and at time t = 0.1 started updating every 0.02 units of simulation time. The

algorithm which uses the new basis converges quickly and achieves a state error of about

10−10 and parameter error of about 10−11, while the algorithm with the original basis makes

a bad update which causes the system to blow up at t ≈ 0.3.

In Figure 4.12, the true system has Pr = 1.0 and Ra = 105, while the assimilating

system is initialized with P̃r = 1.1 and R̃a is held at the true value. Both algorithms used

µ = 8000, and at time t = 0.1 started updating every 0.02 units of simulation time. The

algorithm which uses new basis converges quickly and achieves a state error of about 10−10

and parameter error of about 10−11, while the algorithm with the original basis fails to

converge and maintains a large error in both the parameter estimates and the system state.
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Figure 4.10: Comparing the performance of the multiparameter PWM algorithm using the
original basis (“Original”) and the new basis (“New”)
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Figure 4.11: Comparing the performance of the Ra-only PWM algorithm using the original
basis (“Original”) and the new basis (“New”)
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basis (“Original”) and the new basis (“New”)
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4.3.2 Relaxation Time Selection. Figures 4.13-4.15 show the effect of relaxation time

on the convergence of the algorithm. In each figure, the initial states for the true systems

and assimilating systems are identical, with the assimilating system starting at a low-mode

projection of the true state. In each simulation, there is an initial relaxation period of 0.1

units of simulation time. Then a parameter update is made repeatedly after a relaxation

interval with a length called the “delay time.” The figures show the effect of changing the

“delay time” on the convergence. The results seem to show that decreasing the relaxation

time increases the rate of convergence until a certain threshold around 0.02 units of time,

below which the performance of the algorithm is essentially the same.

In Figure 4.13, the true system has Pr = 1.0 and Ra = 105, while the assimilating

system is initialized with P̃r = 1.1 and R̃a = 9× 104. Both algorithms used µ = 8000. The

algorithms with longer relaxation times of 0.08 and 0.04 take longer to converge, while all

of the other relaxation times appear to converge at about the same rate (for the 0.02 time,

the state appears to converge ever so slightly faster).

In Figure 4.14, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with R̃a = 9 × 104 and P̃r is held at the true value. Both algorithms used

µ = 8000. The algorithms with the relaxation times of 0.08 take longer to converge, while

all of the other relaxation times appear to converge at about the same rate.

In Figure 4.15, the true system has Pr = 1.0 and Ra = 105, while the assimilating system

is initialized with P̃r = 1.1 and R̃a is held at the true value. Both algorithms used µ = 8000.

The algorithms with longer relaxation times of (0.04, 0.08) take longer to converge, and the

algorithm with the relaxation time of 0.02 converges more slowly at first, but soon catches

up to the other two.

4.3.3 Temperature Nudging. Figure 4.16 shows the effect of temperature nudging on

convergence in the multiparameter PWM algorithm. The true system has Pr = 1.0 and

Ra = 105, while the assimilating system is initialized with P̃r = 1.1 and R̃a = 9 × 104.

Both algorithms used µ = 8000, and at time t = 0.1 started updating every 0.02 units of
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Algorithm Average State Error Average Relative Ra Error Average Relative Pr Error
PWM 2.25× 10−11 1.17× 10−11 1.50× 10−12

CHL 7.43× 10−11 4.01× 10−11 4.51× 10−10

Table 4.1: Averaged errors over the interval t ∈ [0.4, 1] for PWM and CHL algorithms

simulation time. The algorithm converges quickly in each case, although with higher values

of µT it achieves a lower error of about order 10−11 in the state and order 10−12 in the

parameters, compared with the baseline (µT = 0) which is roughly an order of magnitude

worse in the error.

4.4 Comparing CHL and PWM Algorithms

Figure 4.17 compares the performance of CHL and PWM multiparameter algorithms when

utilized on the same initial conditions. Both are started at the same initial state, while their

assimilating systems are initialized to a low-mode projection of that state. In each case, the

true system has Pr = 1.0 and Ra = 105, while the assimilating system is initialized with

P̃r = 1.1 and R̃a = 9 × 104. In the simulations shown in the plots below, the algorithms

used a relaxation time of 0.02. They used vorticity nudging with µ = 8000 and temperature

nudging, also with µT = 8000. Note that in Section 4.2.2 (and especially in Figure 4.9), it

is documented that without temperature nudging, the CHL multiparameter algorithm fails

to converge. Hence, to compare the two algorithms side-by-side it was chosen to include

temperature nudging.

In Figure 4.17 it is clear that the CHL algorithm converges more quickly both in state

and parameters; the error from the CHL algorithm seems to bottom out at just after time

t = 0.2. The PWM algorithm converges more slowly (and this is probably not because of

the chosen relaxation time; see Section 4.3.2). However, it reaches an error that is smaller

than the CHL algorithm. This can be seen in Table 4.1.

Table 4.1 shows that PWM produced a state error and a Ra error which were more than

three times smaller than the errors from CHL, while the Pr error was more than 300 times
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smaller. This is an interesting phenomenon which lacks explanation. Indeed, the Pr error

was smaller than the Ra error for PWM, while it was larger than the Ra error in CHL.

Chapter 5. Conclusion

This work proposes and derives several algorithms for simultaneous data assimilation and

parameter recovery in Rayleigh-Bénard convection. Beyond deriving these algorithms, it is

also shown through computational evidence (and mathematical analysis in the case of the

PWM algorithm) which of these algorithms succeed in estimating parameters and the state

of the convective system correctly.

The mathematical analysis put forward in this work claims that the PWM algorithm will

succeed in forcing parameter recovery as long as the chosen nudging parameter µ is chosen

large enough. In practice, as long as the basis is chosen well (see Sections 2.1.3 and 4.3.1),

the value µ = 8000 is sufficient to force parameter recovery for the situations described here.

Choosing a bad basis was enough to prevent the PWM algorithm from converging. Because,

from the point of view of the analysis, the choice of basis did not affect convergence, it bears

pondering why this might have taken place. The analysis makes several assumptions that

may not have been satisfied by this computational setup: it assumes that relaxation times are

sufficiently large, that the state of the system lies in an absorbing ball, and that the nudged

system with the proposed parameter update is a well-posed system with similar absorbing

ball bounds. It must be the case that some or all of these assumptions were not fully satisfied

in the case of the PWM simulations which did not converge. Nevertheless, the combination

of analytical and computational evidence presented herein clearly demonstrates the potential

of the PWM algorithm, which had previously only been tested on the Kuramoto-Sivashinsky

equations (see [9]), but is here shown to be effective for Rayleigh-Bénard convection.

Additionally, this work presents interesting new findings related to the CHL algorithm.

In particular, the computational evidence presented in Sections 4.2.1 and 4.2.2 shows that

the “simple” method of deriving the CHL update formula (wherein terms quadratic in the
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Figure 4.17: Comparing the convergence of CHL and PWM algorithms
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error are discarded unless coupled with a nudging parameter) fails to ensure convergence

for Rayleigh-Bénard convection in many cases. To force parameter and state convergence,

approximating these terms is necessary. This work also derives a multiparameter CHL update

formula using a non-standard nondimensionalization (see Section 2.1.2), and demonstrates

via numerical simulation that this procedure is successful as long as temperature nudging is

used in addition to vorticity nudging (see Sections 4.2.2 and 4.4).

Lastly, the computational framework developed for Rayleigh-Bénard convection using

Dedalus demonstrates how that platform can be used for testing parameter recovery algo-

rithms. To the author’s knowledge, these types of parameter recovery algorithms have never

been demonstrated on a system as computationally expensive as Rayleigh-Bénard convection

before.

5.1 Further Work

While this work addresses and answers several important questions about data assimilation

and parameter recovery for Rayleigh-Bénard convection, it also opens the door to further

research. Because these nudging-based algorithms are so new, there is much more that can

be done to increase understanding of how, why, and when these procedures work.

From a mathematical perspective, the derivation of the updates and the proof of conver-

gence for the PWM algorithm in each case rested on a so-called “nondegeneracy condition.”

Further work is needed to explore and explain these conditions. Relevant questions include,

what does the “nondegeneracy condition” tell us about the system? To what extent can the

system converge when the nondegeneracy conditions almost fail? Are there algorithmic or

mathematical ways to circumvent these conditions?

This work presents a proof of convergence for the PWM algorithm. However, the proof

rests on some shaky assumptions, and more work is needed to make the proof fully rigorous

and describe how the assumptions are relevant in the computational and practical application

of these algorithms. Furthermore, work is needed to establish a similar proof for the CHL
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algorithm in the case of Rayleigh-Bénard convection.

Computationally, further study is needed to replicate these results in different dynamical

regimes. This work only considers systems with Ra = 105,Pr = 1, but future work could use

higher Ra numbers (which correspond to more turbulent regimes) and different Pr numbers

(smaller, larger, or infinite) which correspond to different settings for convection. This would

be a fruitful area of study because different regimes have different applications (see [14] for

exploration of large-Prandtl systems), and because turbulence may affect the performance

of these algorithms. It is possible that greater turbulence would aid in convergence because

of the greater amount of dissipation; but it could also sufficiently destabilize the system

that the types of updates considered here would no longer perform well. It would also be

productive to consider convection with different geometries and boundary conditions than

those considered here.

This work essentially assumes that error in observations is due to lack of spatial resolution,

rather than measurement error. Another interesting future research direction would be to

evaluate these types of parameter recovery procedures in situations where there is random

noise, or where orthogonal Fourier projections are no longer a good model to represent

spatially sparse observations.

Lastly, the scientific community should attempt to apply the PWM and CHL algorithms

to different systems (for example, the Navier-Stokes equations) and try to adapt them to

estimate even more variables (for instance, forcing in a forced dynamical system).
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