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ABSTRACT

AN IMPLEMENTATION OF FIELD-WISE WIND RETRIEVAL FOR

SEAWINDS ON QUIKSCAT

Andrew S. Fletcher
Department of Electrical and Computer Engineering

Master of Science

Field-wise wind estimation (also known as model-based wind estimation) is
a sophisticated technique to derive wind estimates from radar backscatter measure-
ments. In contrast to the more traditional method known as point-wise wind retrieval,
field-wise techniques estimate wind field model parameters. In this way, neighbor-
ing wind vectors are jointly estimated, ensuring consistency. This work presents an
implementation of field-wise wind retrieval for the SeaWinds scatterometer on the
QuikSCAT satellite.

Due to its sophistication, field-wise wind retrieval adds computational com-
plexity and intensity. The tradeoffs necessary for practical implementation are exam-
ined and quantified. The Levenberg-Marquardt algorithm for minimizing the field-
wise objective function is presented. As the objective function has several near-global
local minima, several wind fields represent ambiguous wind field estimates. A de-
terministic method is proposed to ensure sufficient ambiguities are obtained. An
improved method for selecting between ambiguous wind field estimates is also pro-

posed.



With a large set of SeaWinds measurements and estimates available, the o°
measurement statistics are examined. The traditional noise model is evaluated for
accuracy. A data-driven parameterization is proposed and shown to effectively esti-
mate measurement bias and variance. The parameterized measurement model is used
to generate Cramer-Rao bounds on estimator performance. Using the Cramer-Rao

bound, field-wise and point-wise performances are compared.
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Chapter 1

Introduction

For several decades, space-borne radar systems called scatterometers have been
used to estimate near-surface ocean winds. By examining the electromagnetic power
scattered and reflected off of the ocean’s surface, an estimate for both the wind
speed and direction may be derived. The traditional estimation method, known as
point-wise wind retrieval, is generally effective, although limitations to the method
have led to the development of more sophisticated methods. This thesis proposes
an implementation of one such method, known as field-wise wind retrieval, for the

Scatterometer SeaWinds on QuikSCAT, a NASA satellite launched in June of 1999.

1.1 Topic Motivation

Weather prediction and climate studies have been pursuits of great interest to
the scientific community. In recent years, this interest has intensified particularly as
the global community have become more aware of humanity’s effects on the global
ecosystem. Concerns about global warming and long-term weather patterns have
increased the desire to thoroughly understand the geophysics of our planet.

Fortunately, modern technology has provided many new avenues for geophys-
ical study. With the advent of space flight, global data is available to scientists on a
scale unimaginable just decades before. Earth observing satellites have the capability
to make daily high resolution measurements over much of the Earth’s surface. These
measurements can be made passively (e.g., measuring the Earth’s radiation or by

photography) or actively (e.g., radar systems).



Since its development, radar has demonstrated the capability to observe geo-
physical phenomena. Natural surfaces have distinctive signatures when illuminated
by an electromagnetic wave. Water, ice, vegetation, and dry land each reflect and
scatter waves in a measurable and distinctive way.

Radar systems also have great advantages for use with a satellite platform.
Unlike satellite photography, radar is not limited by cloud cover or daylight, but can

make measurements through virtually all weather conditions.

1.2 Scatterometer Wind Estimation

Remote sensing successfully gathers data from previously difficult sources.
When restricted to on-site data collection, geophysical data has been limited to the
more accessible sites. Remote sensing, however, allows measurements to be taken over
the Antarctic, the Arctic, deserts, jungles, and the Earth’s oceans. Ocean studies have
particular significance, as they comprise a large majority of the Earth’s surface.

The radar signature of the ocean surface is not constant across the globe.
Indeed, the presence of ocean waves and ripples in the surface affect the scattering
characteristics of the water. In this way, radar measurements can obtain information
about the ocean roughness. As near-surface winds are a major contributor to ocean
surface roughness, radar instruments can collect data to estimate wind vectors.

In 1978, the SeaSat Scatterometer (SASS) successfully demonstrated that
near-surface ocean winds are estimable using a space-borne radar measurement. Since
then, the relationship between ocean winds and radar backscatter has been explored
and utilized, with several more satellites launched to estimate the winds. In 1999,
NASA launched the instrument SeaWinds on QuikSCAT, which has proven to be a
powerful instrument for estimating ocean wind vectors. A large portion of the world’s
oceans are measured daily, and wind estimates are available on a global scale. Sea-
Winds provides data to geophysical researchers with previously unattainable coverage
and scale. Point-wise wind estimation has been successfully used with SeaWinds data;

however, the point-wise technique has limitations.



1.3 Thesis Overview

Field-wise wind estimation ([1],[2]) has been proposed as a method for ocean
wind retrieval which avoids some of the limitations of point-wise estimation. While
the comparative advantages of this method over the traditional point-wise estimation
have been presented [3], practical usage of field-wise is limited by its computational
difficulty. This thesis examines several of the complicating issues involved in field-wise
wind estimation, such as wind field model order, optimization routines, and ambiguity
selection. A practical implementation is presented for SeaWinds data.

In Chapter 2, a brief summary of scatterometry and wind estimation practices
are presented. The instrument SeaWinds is introduced, along with its unique charac-
teristics. An empirical relationship between radar backscatter and near-surface wind
vectors is presented. Point-wise wind retrieval, the traditional estimation method, is
summarized. The concept of field-wise wind retrieval is also introduced, along with
the Karhuenen-Loeve wind field model.

Chapter 3 examines the field-wise objective function, integral in obtaining
wind field estimates. An algorithm to find the local minima of the objective function
is presented. Chapter 3 also discusses the measures necessary to insure that sufficient
estimates are located to remove ambiguity from the wind field.

In Chapter 4, the details of ambiguity selection for field-wise wind retrieval
are presented. The chapter discusses combining separate wind field region estimates
into a more comprehensive swath estimate. Chapter 4 also discusses the frequency
resolution of field-wise wind estimates.

The noise model used in SeaWinds wind estimation is examined in Chapter
5. The traditional model is verified using point-wise SeaWinds estimates. A pa-
rameterization of the measurement bias variance is presented based upon SeaWinds
measurements and wind estimates. The Cramer-Rao bound on estimator performance

is presented for both point-wise and field-wise wind retrieval.






Chapter 2

Background

A brief summary of scatterometry and wind estimation is prerequisite to any
discussion of field-wise wind retrieval. First, an introduction to general scatterometry
is presented. Next, the relationship between backscatter measurements and the near-
surface ocean winds is discussed. The estimation problem is then defined, including
the statistical models for noise. Finally, several standard ambiguity selection methods

are described.

2.1 Scatterometry

Any instrument designed to measure the scattering coefficient (of a surface or
a volume) is known as a scatterometer [4]. The surface scattering coefficient can be
simply understood as a surface roughness measurement, specifically the roughness on
the same order as the electromagnetic wavelength. The standard measurement is the

normalized radar cross section, denoted ¢°, which is obtained by the radar equation

A7 3R4LPT
o = A (21)
i eff

where R is the range to the surface, L is the system loss, GG is the gain of the antenna, A
is the wavelength and A.ss is the effective area of the antenna. The radar crossection
is essentially a normalized ratio of the power received to the power transmitted. As

rougher surfaces will scatter more power, ¢° is proportional to surface roughness.
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Figure 2.1: The spacecraft and antenna geometries for SeaWinds on Quickscat.

2.1.1 SeaWinds on QuikSCAT

In June of 1999, NASA launched the Ku-band scanning pencil-beam scat-
terometer SeaWinds. Launched on the platform QuikSCAT, SeaWinds is unique
from previous scatterometers in that it employs a scanning pencil-beam as opposed
to the previous fixed, fan beam antennas.

The scanning nature of the SeaWinds antenna has several effects. Unlike the
NASA Scatterometer (NSCAT) and others, there is no nadir gap so that SeaWinds
has a continuous swath 1800 km wide.

While SeaWinds has a wider swath, the improvement comes with a perfor-
mance tradeoff. NSCAT and other scatterometers used fixed beams, and thus the
variation in measurements from cell to cell was small. SeaWinds employs two scan-
ning beams, both at Ku-band. On the swath edges, measurements are recorded only
for the outer beam (see Fig. 2.2). This limitation reduces wind estimation effective-

ness. Another tradeoff is experienced in examining the nadir region. While SeaWinds
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Figure 2.2: A top view of the SeaWinds swath showing the two overlapping swaths
from the inner and outer beam.

records backscatter from the region, there is limited azimuthal variation between the
measurements. As will be seen later in this chapter, azimuthal variation is necessary
for wind estimation.

Due to its azimuth sampling, SeaWinds’ performance varies greatly as a func-
tion of swath position. While performance can be good on either side of the swath
center (known as the “sweet spot”), performance along the swath edges and in the
nadir regions is significantly degraded.

SeaWinds is designed to generate a wind vector estimate for a grid of ocean
cells. These grid points, designated wind vector cells (wvc’s) are squares of side 25
km. Several backscatter measurements are observed in each cell, and in the estimation
they are all assumed to be colocated (i.e. there is assumed to be no spatial variance

within a wind vector cell).



2.2 The Geophysical Model Function

The ocean surface contains variations at many frequencies, with wavelengths
varying from hundreds of meters (or even kilometers) to centimeters and fractions
of centimeters. Microwave scatterometers observe roughness on the low end of this
spectrum, with wavelengths on the order of two centimeters. Near-surface winds are
the primary source for ocean surface roughness on the microwave wavelength. Thus,
observed ¢° measurements can be used to estimate the near-surface winds.

Accurate wind estimates from scatterometry require a known relationship be-
tween the observed 0° measurements and the wind vectors. Several theoretical scat-
tering models have been explored, but a complete model has yet to be theoretically
derived [5]. Instead, empirical data has been tabulated to form the Geophysical Model
Function (GMF), represented by

0° = M(S, x,0) (2.2)

where S is the near-surface wind speed, x the wind direction relative to the instrument
azimuth angle (0 — ¢, where 1) is the instrument azimuth angle and ¢ is the wind
direction), and # the instrument incidence angle.

The GMF variation with respect to both wind direction and wind speed in-
troduces an important and complicating dimension to wind estimation. Figure 2.3
demonstrates the variation with respect to both S and x. It is important to note that

° increases with S and varies in a nearly cos(2y) manner, with maxima at 180° (or

o
downwind) and 0° (or upwind). The variation in yx is not exactly sinusoidal — there is
an asymmetry referred to as the “upwind-downwind asymmetry” evident in larger ¢
at 0° than at 180°. The variation in x allows wind estimates to be a vector quantity,

as both speed and direction can theoretically be resolved [5].

2.3 Estimating the Wind

The Geophysical Model Function is inherently non-invertible. Even with a
fixed azimuth angle, the GMF maps the wind vector space of dimension 2 onto the

backscatter space of dimension 1. Figure 2.4 shows the continuum of wind vectors

8
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Figure 2.3: The Geophysical Model Function evaluated with 6 of 46°.

that give rise to a single 0°. For this reason, a wind estimate requires several o°
measurements.

In the noiseless case, several measurements can be used to generate a unique
estimate. Figure 2.5, a simulation without noise, shows a clear intersection of each
measurement at a single wind vector. Yet even without noise, several wind vectors
provide “near-solutions.” In the presence of noise, a unique solution cannot be deter-
mined; the “near-solutions” are indistinguishable from the correct estimate (see Fig.
2.6). Several wind vectors are classified as ambiguous estimates or aliases.

Noise is introduced into the estimation in two places. First, the GMF is not a

perfect model for o°. While near-surface winds are the primary source of backscatter,
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Figure 2.4: A single backscatter measurement (with fized geometries) is the range of
a continuous domain of wind vector estimates projected through the GMF.

the observed ¢° is also a function of unknown and inestimable variables (i.e. water
salinity, long waves, rain contamination, etc.). Thus, for a given wind vector the
observed ¢° will randomly vary from the predicted ¢°. This variation is classified as
“modeling error” or “modeling noise” and is modeled as a Gaussian random variable

with variance denoted Kgm [6]. Thus the “true” backscatter is a random variable
0% = (1 + Kppnv1 ) M(w), (2.3)

where v; is a unit variance Gaussian random variable, and M (w) refers to the GMF
evaluated at the wind vector w. (Note that for convenience, the dependence upon
the measurement geometries § and 1 have been omitted.)

Further noise is introduced by the scatterometer during measurement. The

standard noise model [7] is that the observed measurement, z, is a realization of a

10
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Figure 2.5: To resolve a unique wind vector estimates, several measurements at vary-
ing geometries are required. FEach curve represents the possible solution for a given
noisy o° measurement.

random variable with mean o°:
z=0%+n, (2.4)
where n is a zero-mean Gaussian random variable. The variance of n is given by
Var[n] = a(c°)* + Bo° + v (2.5)

where «, (3, and 7 are noise parameters which are dependent upon the instrument

but independent of the wind vector [7]. Equation (2.4) is often expressed
z = (1 + Kpev9)0°, (2.6)

where vy is a zero-mean, unit variance Gaussian random variable, and K, is

K, = \/a + g + (UZ)Z. (2.7)

11
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Figure 2.6: In the presence of noise, no unique wind estimate can be determined.

Combining both the modeling noise and the instrument noise into one model

completes the statistical model for the estimation:
z = (1+ Kpcva) (1 + Kpmvr) M(w). (2.8)

Thus the observed measurement is a realization of the random variable z. While
instrument noise (K,.) is a relatively well understood quantity [5], modeling error

(Kpm) is not [8]. Therefore, K, is in general be assumed to be 0 in this thesis.

2.4 Point-wise Wind Retrieval

Point-wise wind estimation calculates a wind vector estimate for each wvc. In
the estimation phase, the estimate at each wvc is calculated independently — there
is no implicit correlation from cell to cell. A correlation is assumed only after the
estimate has been performed to select between the ambiguous estimates. Point-wise

wind retrieval is the primary method employed by the SeaWinds science team.

12



2.4.1 The Point-wise Objective Function

Under the preceding noise model, the observed measurements are a random
variable parametrized by the true wind vector w. Thus we may compute the proba-
bility density function

1 (z — M(w))?
pew) = oo {0 (2.9

V2ms 2
a(M(w))? + BM(w) + 1. (2.10)

S

If we assume each measurement is independent, we may compute the joint distribution

of the K measurements at a given wind vector cell as the product of the individual

pdf’s:

o 2 — My(w))?
p(zlw) = kl:[l\/mexp{—( 2%( ) } (2.11)

We may formulate a maximum likelihood estimate as the maximum of the
conditional pdf given in Eq. (2.11):

w = arg max p(z|w). (2.12)

This arg max operation is equivalent to minimizing the negative log-likelihood func-

tion

w = argmaxp(z|w)

= arg m“i,n {—In(p(z|w))}

-1 (
= argmvénz §ln(27r§k)+
k=1

= arg m“ilni {ln(27r§k) + w} . (2.13)

k=1
Equation (2.13) can be interpreted as a cost function or objective function, the
variance-normalized squared error between the observations and the forward pro-
jection of the wind vector. Calculating the objective function minimum is equivalent
to maximizing the conditional pdf of Eq. (2.11). Equation (2.13) is referred to as the

point-wise objective function.

13
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Figure 4.7: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 3081 beginning at alongtrack 150. The field-wise product
s performed using 26 model parameters.
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Figure 4.9: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 04790 beginning at alongtrack 155. The field-wise product
s performed using 26 model parameters.
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Chapter 5

Examination of the Backscatter Noise Model

The wind retrieval objective function, both for the point-wise and the field-
wise case, utilizes a model for the 6° measurements. The model, presented in Chapter
2 and defined in Eq. (2.8), contains representations for measurement noise (K,.) and
for modeling noise (K,). The measurement noise, also known as communication
noise, can be derived from first principles [8] and is modeled as quadratic in SNR.
The modeling noise for the wind estimation problem is less understood. Johnson 8]
developed a model similar in form to that used for K,.and attempted an iterative
estimation of the value K,,,. While the iterative approach demonstrated surprisingly
large values for K,,,, the lack of a closed form representation results in the parameter
being disregarded in wind estimation implementations.

For simplicity in the field-wise implementation presented in this thesis, the
noise model of Eq. (2.8) is reduced in two manners. First, as mentioned in Chapter
2, Kpp,is assumed to be 0. The second reduction, represented by Eq. (3.6), bases the
communication noise on the observed backscatter, rather than the “true” backscatter.
By such an assumption, the noise variance is no longer a function of the estimated
wind, simplifying the objective function considerably.

This chapter examines the validity of the noise model in both its complete and
reduced form. A separate noise parameterization is presented, which is based solely

on data from the SeaWinds instrument.
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5.1 Evaluating the Noise Model

With months of SeaWinds data available as a sample set, a verification of
the noise model is possible. To develop the experiment, recall that the observed

backscatter is modeled as a random variable
z = (1+ Kpevs)0°, (5.1)

where o° represents the “true” backscatter. Using the assumption that K, is zero,
the “true” backscatter is the forward projection of the wind vector w (i.e., 0° =
M (w)). While the true wind is unknown to generate this model, we can use the
estimated wind vector to determine the measurement variance.

Assuming that the point-wise estimated winds are equivalent to the true winds
in the mean, we may generate a histogram to demonstrate the accuracy of the noise
model. The histogram permits a comparison of the variance estimate of Eq. (3.6)
with the more traditional Eq. (3.3).

The experiment is performed as follows. The quantity y = z — M(W) is a zero

mean random variable. The variance is represented by either
7 = aM(W)? + BM(W) + 7, (5.2)
or
G =az’ + Bz +7. (5.3)

The quantities % and % are calculated for 50 revs of SeaWinds data and a histogram
is created.

The resulting histograms, shown in Fig. 5.1, have an interesting symmetry.
At first glance, ¢; and ¢, appear to invert the distribution about y = 0. This in-
terpretation is incorrect. Note that both distributions are calculated with the same
values of y. Given that both ¢; and ¢, are always positive values, the normalization
does not affect the sign of the random variable.

The symmetry may be instead interpreted in terms of variance bias. The

random variable y is calculated as the difference between z and M (W), which are

o8



-10 -5 0 5 10

Figure 5.1: A histogram of the random variable y = z — M(W) normalized with (a)
G1 and (b) s3. Overlaying both figures is a unit normal distribution for comparison.

used to calculate ¢, and ¢; respectively. When y > 0, the value of z is larger, and
the ¢ normalization is aggressive, causing a small tail, while the ¢; normalization is

weak, allowing a longer tail. For y < 0 the performance is reversed.

5.2 Data-driven Parameterization of Backscatter Measurements

Aside from a discussion of the symmetries, Fig. 5.1 demonstrates some de-
ficiencies in the current o° distribution. With K, assumed to be 0, the calculated
value of K is insufficient to normalize the backscatter vectors to unit variance. Fur-
thermore, the Gaussian assumption appears an oversimplification of the problem.

While the non-Gaussian nature of the measurements is intrinsic, the large
sample of measurements and corresponding wind estimates can be used to parame-
terize the variance of y. By calculating a joint histogram of z and M(w) (shortened
hereafter to M) we may approximate p(z, M), the joint probability density function.

The joint pdf allows data-driven estimates for all of the desired moments z, M, and

y.
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. E(ylz,) " E(ylz,-E(ylz,))®

Figure 5.3: The first and second central moments of y|zg = z — M|zy. In words, for
a given observed measurement (zy) value, the figures show the measurement bias and
variance.

The moments of y vary both as a function of z and M, but it is desirable to
parameterize in z, as z is the observed backscatter, and is known prior to estimation.

Thus, for a given 2y, we may calculate the central moments of y,

E(ylzg) = E(z0 — M|z,) = 20 — E(M|zy) = B(2), (5.4)
E(ylzo — E(yl=))* = E(z20 — M|z — B(x))
= E(M)|%)* - (20 — B(20))>. (5.5)

A plot of each moment appears in Fig. 5.3.

It is of interest to note that y is not zero mean. The first moment has a bias
which is negative over the first half of the range of values for z. The larger values of
z, where the bias is positive, are much less common comprising less than 5% of the
observed backscatter measurements. Thus for most backscatter, M is greater than
z. This is verified by the histograms taken in Fig. 5.1. In each case, there are more

values of y less than zero (although this is difficult to ascertain from the figures).
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Figure 5.4: A piecewise polynomial fit to the first and second moments of y = z — M.
The solid line is the parameterization and the dots represent measured data points.

As the dependence on z is quantifiable, both the bias and the variance may
be parameterized. Both moments are too complicated to be represented by a single
polynomial fit without a prohibitively high the polynomial order. Instead, the data
is segmented into smaller pieces, and each piece is fit with a second order polynomial.
The resulting piece-wise polynomial fit is shown in Fig. 5.4.

Using the parameterization, a histogram is computed for the random variable

z—M-—b>
Yy = =M-b ), (5.6)
S
¢ = avpz2 + ﬂvp + Yops

b = abpz2 + ﬁbp + Yops

where «, (3, and ~ are the piece-wise polynomial coefficients for the variance and the
bias. The resulting histogram is shown in Fig. 5.5.
While it is clear from Fig. 5.5 that the measurements are not normally dis-

tributed, the first two moments can be represented quite accurately. Thus the error
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Figure 5.5: A histogram of ', the parameter normalized backscatter. The parameter-
ization of the bias successfully normalizes the distribution, i.e. vy is zero-mean and
unit variance. The unit Gaussian distribution is included for reference.
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between the forward projection M(W) and the observed backscatter z can be nor-

malized to zero mean and unit variance to a much greater degree of accuracy.

5.3 Estimator Performance Bounds

The empirical noise model adds legitimacy to several statistical analyses. Per-
haps the most valuable analysis comes in the realization of bounds on the error
covariance. Oliphant and Long [6] analyzed the accuracy of the wind estimates based
upon the Cramer-Rao (C-R) bound. Using the parameterized bias and variance mod-
els, these results can be refined. Given the statistical accuracy of the first and second
moments, greater confidence may be placed upon the results.

The C-R bound may be expressed

R(w) = E{[w—w]w-w]"} (5.7)
> JY(w), (5.8)

where J(w) is the Fisher information matrix (FIM). The FIM is defined as

J(w)=F { [aLé”v"v’ Z)} oLtw,2) } , (5.9)

where
L(w,z) = Inp(z|w). (5.10)

We may write the distribution of the backscatter measurements as

1 . {_% 5 (2 — My(w) — bk)2} )

p(zlw) = ;
(2m)K/24 /SN 2 k=1

Sk
Before proceeding, we should note the limitations of this model. As demonstrated in

Fig. 5.5, the measurements are not normally distributed. The first two moments are
known, however, and thus the Gaussian model in Eq. (5.11) is accurate only in mean
and variance.

Furthermore, both b and ¢ are estimates parameterized by the realization of z.

In essence, the variance and mean of the random variable are functions its realization.
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While this is not good statistical practice, it is included here to simplify the expression
of J(w). The same assumption is made in the variance estimate of Eq. (3.6).

Using Eq. (5.11),

, 5.12
ow; p— G} ow; (5.12)
and
o 0L(w,z) OL(w,z)
(N)ij = E, du. ow, (5.13)
K K
N (Zk - Mk(W) - bk) aMk(W)
- E;; 2 T,
(z — M(w) — by) OM;(w)
X 2 s (5.14)

Assuming the measurements are independent, the elements of the FIM simplify to

Ey(zi — My(w) — by)? OM,(w) OM, (w)

M=

()i = (5.15)

k

1

1 OMy(w) OMy(w)

¢ Ow; ow;

I
M=

. (5.16)

B
Il

1
(Note that in this equation the vector w may be composed of either the speed and
the direction of the wind vector, or the rectangular components of the wind field, u
and v.)

Averaging the C-R bound for each rectangular component as a function of
crosstrack position, we may compare the bound as derived in [6] with the new distri-
bution presented here. To help compare the bounds, we also estimate the estimator
variance by correlating the selected wind alias with the ECMWF nudging field. While
ECMWFEF winds cannot be considered truth data, in the mean they provide a statis-
tical measure of the estimate moments. Figure 5.6 shows the bound under each noise
model as well as the variance computed against the ECMWF fields.

From Fig. 5.6 it is evident that the parameterized estimate for the C-R bound
is much closer to the observed variance of the estimate. Neither, however, approaches

the variance estimate computed with ECMWEF fields. To explain the significant
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separation between the bound and the ECMWF estimated variance, we note three
caveats. First, the ECMWF fields are considered “true” wind fields when generating
the estimated variance. The ECMWF is a weather model, and its inaccuracies, as well
as inaccuracies in the scatterometer derived estimate, are included in the variance.
We may consider the curve in Fig. 5.6 as an upper limit on the estimator variance.
Secondly, the C-R bound requires evaluating the GMF at the true wind. As the
true wind is unavailable, the selected ambiguity is used in its place. While necessary
given the absence of truth data, this practice likely introduces inaccuracies in the C-R
bound estimate. Finally, it should be noted that for an estimator with ambiguous

solutions at low SNRs, the C-R bound is less accurate [15].

5.3.1 Performance Comparisons using the C-R Bound

The C-R bound can be computed for the field-wise model parameters by the

same derivation as the point-wise model. The distribution for field-wise is

1
zZlx) = X
vk (2m)MNK \/Zz]il 29{1 Zlf:ijl gizjk
i=1 j=1 k=1 ijk
and the elements of the FIM are given by
YL A 1 OMOM
(J)pq = ;;; % axp (9Xq . (5-18)

Before the point-wise bounds and the field-wise bounds can be compared, we
must examine several issues. First of all, the field-wise C-R bound is performed in the
parameter space. In other words, the variance of each parameter estimate is bounded,
rather than each individual wind vector.

The second issue is examined by Oliphant [9]. Oliphant writes the error co-

variance matrix as a sum of two matrices, the covariance of the wind estimate and
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Figure 5.6: The point-wise Cramer-Rao bound with the traditional variance estimate
and the parameterized variance estimate. An estimated variance based on ECMWF
nudging fields is also presented.
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the modeling error matrix:

ce = E[w—w|T[w—w]
= EW - Ew+ Ew — w|'[W — Ew + Ew — w|
= FE[w — Ew|'[W — Ew] — E[Ew — w|'[Ew — W]
= Cy+CF. (5.19)

Assuming that the estimator is unbiased, (i.e., Ex = x = FTw), the C-R bound
places a bound only upon the matrix C,. Before comparing the point-wise C-R bound
with the field-wise result, the modeling error matrix CZ must also be included.

For the unbiased estimator, the error covariance matrix can be written [9]

Cr = E[Ew —w|"[Ew — W]
= E[FEx—w|'[FEx — W]
= E[FF'w —w|'[FFTw — w]|

= (FF' - Eww™(FFT —1I). (5.20)

For the KL model, we may further simplify this expression for C¥. Recall
that the KLL model is computed by taking the eigen decomposition of the wind au-
tocorrelation matrix, Eww?’. The model matrix F is composed of the eigenvectors

associated with the largest eigenvalues. Thus,

. 5 FT
Eww” = [F @] . (5:21)
Yo G

= FX,FT + GE,G7, (5.22)

where F' is the transform matrix, G' contains the eigenvectors not included in the

model, and 3; and ¥, represent the eigenvalues of Eww?’. (Note that FT'G = 0 as
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the eigenvectors are mutually orthogonal.) Using Eq. (5.22), Eq. (5.20) becomes

Cl = (FF" = I)(FX, F" + GY,GT)(FF" - 1)
= FF'FS\FT'FFT — P\ FTFFT - FFTF2 FT + FY, FT
+ GEL.GT
= 2F% FT —2F% FT + G%,GT

= G,GT. (5.23)

To convert the field-wise C-R bound into a bound on individual wind vectors,

we rewrite the bound equation and note the following:

Ex —x|x—-x" > J(x) (5.24)
FEx —x|[x - x]"FT > FJ'x)FT (5.25)
Ew —w][w—-w]" > FJ ' (x)F" (5.26)
Cw > FJ'(x)FT (5.27)
Including the modeling error,
Ce, > FJ Hx)FT + GS,G". (5.28)

This result is now directly comparable to the point-wise C-R bound. The average
C-R bound in the field-wise swath is compared to the point-wise C-R bound in Fig.
5.7. Note that field-wise has significantly improved performance at nadir as well as
along the swath edges, even accounting for modeling error. In general, field-wise C-R
bound suggests superior performance to point-wise wind retrieval.

It is interesting to note that the field-wise C-R bound is comparatively flat
across the swath. Nadir performance is not significantly worse than sweet-spot per-
formance. Such a result suggests that field-wise is successful in incorporating measure-
ments from neighboring wind vector cells to compensate for minimal data at nadir.

The C-R bound quantifies claims of improvement in areas with limited measurements.
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Figure 5.7: The field-wise Cramer-Rao bound is compared to the parameterized point-
wise Cramer-Rao bound. The field-wise bound is displayed twice, with and without

accounting for modeling error. For comparison, the estimated point-wise variance
using the ECMWEF is also included.
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Chapter 6

Conclusion

This thesis has presented an implementation of field-wise wind estimation from
actual scatterometer data and considered a number of key issues described below. The
results are directly applicable to SeaWinds data, and can be implemented on a large

scale with reasonable computational cost.

6.1 Summary of Contributions

The contributions of this thesis can be divided into two areas. First, an im-
proved algorithm has been presented to minimize the objective function and and as-
sure a sufficiently complete ambiguity set. Second, an improved ambiguity selection
algorithm has been presented. The selection method includes a two-step estimator
to verify that the wind spectrum can be completely represented. In addition to the
field-wise estimation process, the measurement noise model has been examined. By
creating a more accurate model, the effectiveness of both field-wise and point-wise
wind estimates may be quantified. Each of these contributions is considered in greater

detail below.

6.1.1 Objective Function Minimization

In Chapter 3, several objective functions were examined and compared. A
weighted least squares objective function with a simplified noise model was presented
for use in field-wise wind estimation. The Levenberg-Marquardt minimization al-
gorithm was applied to the field-wise objective function. The gradient and Hessian

matrices were derived for use within the algorithm.
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Chapter 3 also discussed generating a sufficiently complete set of local minima
for the objective function. The tradeoff between ambiguity set completeness and com-
putational load was quantified, and a set of initial vectors was presented to maximize

performance within reasonable computational parameters.

6.1.2 Swath Estimate Selection to Span the Wind Spectrum

A field-wise ambiguity selection algorithm was presented in Chapter 4. Mod-
ified from an algorithm presented by Richards [3], the swath estimate was selected
using a field-wise median filtering approach. The modeling accuracy across the wind
field region was presented, and the resulting modeling errors were used to combine
adjacent region ambiguities into a consistent wind field.

The spectrum of model-based wind estimation was examined in Chapter 4 and
compared with the estimated spectrum of the near-surface ocean winds. A method
was presented to generate model-based estimates that completely span the wind spec-
trum. This was accomplished using a two-step estimator. The initial estimator used
six model parameters to obtain a general wind flow. The second estimate was per-
formed on a higher order (26 model parameters) to enhance the frequency resolution

of the estimates.

6.1.3 Measurement Noise Model and Estimator Performance

The traditional models for scatterometer wind estimation were examined in
Chapter 5. The measurement variance as used to weight the objective function was
quantified, by examining a large set of SeaWinds data. It was found that the standard
noise model underestimates the measurement variance. The existence of a bias in the
point-wise estimator was verified and quantified.

A parameterization of the measurements was presented as a function of radar
cross-section. Using a piece-wise polynomial fit, both the measurement bias and
variance can be estimated from the backscatter. In this way, the distribution of the

measurements as a function of wind vector may be known with greater accuracy.
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Using the more accurate parameterized measurement distribution, the estima-
tor performance may be known with greater accuracy. The Cramer-Rao bound was
re-derived in Chapter 5 for both point-wise and field-wise estimation with the param-
eterized noise model. The bounds were compared, with field-wise retrieval showing

distinctly lower estimate variance, particularly at nadir and in the swath edges.

6.2 Future Research

The field-wise estimation algorithm has been applied to a set of 55 revolutions
of SeaWinds data. This set represents four days of measurements. While such an
implementation is sufficient for developmental purposes, an evaluation over a range of
revolutions should be performed and the results analyzed. Such an implementation
could provide greater insight into the ambiguity selection process. Point-wise quality
assessment algorithms [16] [17] could be adapted to the field-wise selection process.

While the implementation of field-wise estimation presented in this thesis has
an acceptable computational cost, point-wise estimation is still much cheaper to per-
form. As field-wise and point-wise estimates have similar performance in many re-
gions, future research could develop a hybrid scheme, using field-wise estimation only
in regions contaminated by rain or demonstrating noisy estimates.

The parameterization of the noise model opens several areas of research. With
a more accurate Cramer-Rao bound, the variance of the wind estimates may be exam-
ined on a more detailed basis. For example, the estimator variance may be computed
as a function of along-track position, backscatter power, or azimuth angle. Estimator
performance may also be examined as function of time, to analyze the stationarity of
the instrument. The Cramer-Rao bound may also have value in quality assessment
algorithms. Wind estimates with unusually high variance bounds may be flagged as
potential errors. The bound may also be used in developing hybrid algorithms be-
tween point-wise and field-wise, flagging areas where field-wise estimation might be

warranted.
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Appendix A

Field-wise Objective Function Derivatives

In order to minimize the field-wise objective function, first derivative infor-
mation is necessary. For the Levenberg-Marquardt algorithm implemented in this
thesis, first and second derivative information is necessary. This appendix presents
the four standard field-wise objective functions (Squared Error, Weighted Squared
Error, Maximum Likelihood, and Reduced Maximum Likelihood) and derives the
gradient for each and Hessian for the Squared Error and Weighted Squared Error

Objective functions.

A.1 Field-wise Objective Functions

To mathematically represent the measurements in a region, let z be a three-
dimensional array containing the observed values (0°) for each measurement. The first
two dimensions index the measurement location (along-track and cross-track position)
of a wind field region. The third dimension indexes the measurement number in each
cell. Thus z;j is the k" measurement of the ij™ cell in the region. (Note that the
number of measurements may vary at each swath location).

To represent the forward projection of one wind vector measurement, let
M(U, — ¢,0) be the GMF, where ¢ is the wind direction, U is the wind speed,
and v is the instrument azimuth angle. As x parameterizes every wind vector in the
region, the forward projection of the k* measurement of the ij%* cell can be denoted

Mk (x) where the measurement geometry is implied by k.
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A.1.1 The Squared Error (SE) Objective Function

Perhaps the simplest and most common objective function is the squared error
objective function. This error metric can be described as the Euclidean distance or
the £, norm, which gives rise to the “least squares” solution. Thus, the objective

function can be written as

K”

Tsp(0) = 37303 (e — M), (A1)

i=1 j=1 k:l

where Kj;; is the number of measurements per cross-track cell, 7j.

A.1.2 The Weighted Squared Error (WSE) Objective Function

While certainly the simplest option, the squared error objective function fails
to make use of all available information, and, as a result, can be overly sensitive to
noise. The measuring instrument introduces noise that has been well studied. The
noise is represented by a zero-mean, Gaussian random variable v, with variance (K3)
given by

¢* = a(o})’ + for + 7. (A-2)

The parameters «, 3, and v are functions of the instrument design and signal to
noise ratio (SNR), and of is the “true” ¢° measurement (i.e. the ¢° that would
be observed in the absence of measurement noise). Thus, ¢° is a realization of the
random variable equation

0°=o0f+ . (A.3)

Using the variance estimate from Eq. (A.2), instrument noise can be accounted
for, by dividing each term in the squared error sum by the measurement variance.

Thus,

<zz-jk — Miji(x) ) g (A.4)

Sijk

Twsp(x) =Y >

i=1 j=1 k=1
represents an objective function that can be classified as a “weighted squared error.”

It may be valuable to note that minimizing this objective function can be considered

a maximum likelihood estimator, assuming that the variance of each measurement is

76



constant with respect to x. This assumption will be examined in greater detail in the

following section. Jysg(x) is also a quantity known as a “chi-square” (x?).

A.1.3 Maximum Likelihood (ML) Estimation

In the preceding section, the weighted squared error objective function was
casually mentioned to be a maximum likelihood (ML) estimator given a constant
measurement variance. The ML estimator is explicitly derived in this section.

The ML estimator calculates the model parameters most likely to give rise to
the observed measurements. For a given x, the estimator evaluates the probability
that the observed measurements z would occur. The estimated quantity X,z is the

x that maximizes this probability. Thus,
Xy = argmaxp,(z|x). (A.5)

If the measurements are assumed to be independently Gaussian, with variance ¢2

defined above, then

9 =TI~ o exp{—§ (Z”’“‘M”’“(X))Q}. (A6)

i=1 j=1 k=1 Sijk

Computing the maximum of p,(z|x) is equivalent to computing the minimum of the

negative log-likelihood function £(x) = —Inp,(z|x), which is

N M Kij 2
1/ 20 — M.,
_ Z Z Z { In2r 4+ = ln §Uk (Zzglc Mz]k(X)> } ] (A7)
i=1 j=1 k=1 2 Sijk

Note that the first two terms in the sum are constant with respect to x, so they may
be disregarded when calculating the arg min. The common scale factor of % may also

be ignored. Therefore the weighted squared error objective function is

Xy = argminp,(z|x)
X

Kyj

N M 2
. Zijk — Uk(x)
= argmin E E
x
j=1 k=1

1=

= arg mm{JSE(x)} (A.8)
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Before declaring the weighted squared error a maximum likelihood estimator,
the constant variance assumption needs to be examined in greater detail. Recall from
Eq. (A.2) that ¢? depends upon the value of 0%. Also recall that in computing p, (2]x),
we estimate the probability of the observed measurements under the assumption that
the true wind field is represented by x. Under this assumption, 0% = M(x). Thus,

¢? is a function of x:

Gk (%) = M, (x) + B Miji(x) + 7. (A.9)

This dependence on x changes the simplification of £(x); the 1 In¢? term must be
retained the minimization. Thus the objective function for maximum likelihood esti-

mation is

K;j
k=

Taan(x i%Z{(Z”k_ z;k( )>2+1ng3jk(x)}. (A.10)

=1 j=1 k=1

While both Egs. (A.4) and (A.10) can be said to represent objective functions
of maximum likelihood estimation, the constant variance assumption in Eq. (A.4) is
inconsistent with the probability model p,(z|x). Therefore, for the duration of this

paper “maximum likelihood” will refer exclusively to Eq. (A.10).

A.1.4 The Reduced Maximum Likelihood (RML) Objective Function

While a theoretically sound objective function, in practice Eq. (A.10) presents
some difficulties. Examining the scale of the terms in the summation reveals one
reason. The first term is the square of a zero-mean, unit-variance Gaussian random
variable, thus a x? random variable with one degree of freedom, which has mean value
of 1. ¢% is on the order of 107°, so In¢? is on the order of -11.5, so summed over all of
the measurements, the In¢? dominates. The parameters o, 8, and 7 are only rough
approximations, though, so the dominant term is not as accurate as the x? term.

For this reason, the final objective function analyzed here is the reduced max-

imum likelihood objective function:

K;;

Trap(x iﬁz (Z”’“ e ”’“( )>2. (A.11)

i=1 j=1 k=1
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A.2 Objective Function Gradients

As mentioned before, to be useful as an estimation tool, the objective function
minima must be obtained. Many minimization routines require the calculation of the
objective function gradient. Below, the gradient is analytically derived for the four

cited objective functions.

A.2.1 SE Objective Function Gradient

Evaluation of the gradient requires a straightforward application of the chain
rule, differentiating with respect to each model parameter. With respect to the p*
model parameter, the partial derivative of Eq. (A.1) is:

N M Kij

0 0
A Tsp(%) = =2 ) ) (zik — Mijr(x)) 5 Mij(x) (A.12)
0%y i=1 j=1 k=1 0%y
where
0 o 8M (Uij, Uij) 8ui]‘ 8M (Uij, Uij) 8vij
0%, Migw(x) = Ouj 0%, N 0v;j 0%, (A.13)

The terms u;; and v;; represent the rectangular components of the wind field at the
17i, wve. Note that these may be represented in terms of the F' matrix representing

any linear wind field model:

Uiy = F}TX, (A14)
vij = FlunX, (A.15)
I = N(@-1)4j, (A.16)

where [ is the index into the column scanned representation of the wind region and

FT is the I row of the wind field model transform matrix. Therefore,

8uij

= F Al
8Xp lap ( 7)
8UZ"
8—Xj, = Fiiunp (A.18)
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The Geophysical Model Function is an empirically derived table of values with no
closed form solution. The table has three dimensions: wind speed U, relative azimuth
X (instrument azimuth 1 - wind direction ¢), and incidence angle #. In order to
evaluate the function, an interpolation routine must be used. The IMSL bspline
function is used, interpolating in all three directions. Through this function, partial

derivatives can be easily obtained with respect to wind speed and relative azimuth,

i.e. 33—/;" and %—A;. These are related to the rectangular components by
s = Vu?+ 2, (A.19)
X = Y—0, (A.20)
= tan~'(2). (A.21)
u
Thus,
oM OMOs OMOP
B~ G5 v 99 dw (4-22)
oM OMOs  OMOP
Fu ~ 05 ou’ g ou (4.23)
0s U
i T Ve 20
0s v
o T Vare 29
oM _ oMox
dp — Ox 09
oM
= —W. (A.26)

The partials of ¢ with respect to v and v require more careful attention. The inverse

tangent with only one argument, defined on the interval [—7, 7], has a well known
derivative:
d 1
—tan '(z) = ——. A.27
dx an-(z) 1+ 2? ( )

For purposes in wind retrieval, the four quadrant inverse tangent (defined on the

interval [—7, 7], and denoted tan; ') is necessary. This can be defined in the following
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way:

/

tan~' (%) Quadrants I and IV,

v
tanzl(a) = tan (%) + 7 Quadrant II, (A.28)

ISHS]

tan~'(%) —7 Quadrant IIL
\

Thus the partial derivatives will be the same in all quadrants, i.e.

op 0 VU 1 —v
o™ Q) T T
—v
= —. A2
u? + v? (4.29)
Jdp 0 Uy 1 1
ov %t T (5) N 1+Z—§u
u
—_ m. (A-30)
Therefore,
oM oM v oM u
= = A.31
ov 0s \/u2+1)2+ 0¢ u? +v?’ (A-31)
OM _OM_u_ M v (A52)

ou 0s VuZ+v2  0¢ u?+v?
A.2.2 WSE Objective Function Gradient

The WSE objective function differs from the SE objective function by only
the ¢ term which is constant with respect to x. Thus, the gradient differs from Eq.
(A.12) by the same term:

0 N oMKy Zzgk Z]k(x)) 0
—JWSE = —2222 Mijk(X). (A33)
0%y i=1 j=1 k=1 0%

A.2.3 RML Objective Function Gradient

The RML objective function differs from the WSE objective function only in

that ¢? depends upon x. Computation of the gradient requires use of the derivative
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quotient rule:

N M Kjj QZijk_ (x
s ) = Y33

P i=1 j=1 k=1

L (A3)
(ginkV
where
agz?jk 8Mijk(x) 8./\/1”16(){)
a—xp = QCMM,]]C(X) 8Xp + ﬂ 8Xp (A35)

A.2.4 ML Objective Function Gradient

Differentiating Eq. (A.10) requires only the addition of one term to Eq. (A.34):

K;;

a%JML(X) = aiJRML )+ ZZZ 5 ! ) (A.36)

X
P lelklgljk ap

A.3 Objective Function Hessian Matrices

Several minimization algorithms for the objective function require a realization
of the Hessian matrix, or the matrix of double partials. Although the derivation is

involved, like the gradient, it is a straightforward implementation of the chain rule.

A.3.1 SE Objective Function Hessian

To completely specify the derivation, it is sufficient to derive expressions for

the following:

(A.37)
5 AN OMik(x) _ (OMin(x) "
aszE =2 [(zwk — Mijr(x)) 8;!; ( 3’]: ) ’
i=1 j=1 k=1 ’
and
2 Jeg AR 0% M (x)
0x, 0% _21':21];119—1 [(Zijk . Mii’“(x))m
OM ;i (x) OM;jk (%)
ox,  Ox; |’ i
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where p # q. By the chain rule,

PM 9 (OM Ou N oM Ov
ox2  0x, \ Ou 9x, Ov Ox,
0 (OMN\ Ou  OMOPu O [(OMY Ov N OM 0%v
 Ox, \ Ou ) Ox, Ou Ox2  Ox, \ Ov ) Ox, Ov Ox2
0 (OMY\ Ou 0 (OMY\ Ov
= A.
0x, ( ou ) 0x, N ox, ( ov ) ox,’ (A-39)
2
OM 0 (OM) Ou 0 (OMY\ Ov ' (A.40)
0x,0x, ox, \ Ou ) 0x, Ox, \ Ov ) 0%,

Note that the double partials, g% and 327‘; are both 0. The mixed partials of the
V4 V4

model function are further developed as

i aﬂ _ 0*M ou N 0’ M Ov (A1)
0x, \ Ou T Qw2 ox, Oudvox,’ ’
0 (6./\/1) M ou  0*M Ov

ox, \ v ~ Oudv 8xp+ ov? 0x,’ (A.42)

and thus, the above simplifies to

PM _ PM (u\ | PM v du  PM (v’
> = > | 2 2 + , (A43)
o ou? \ 0%, Oudv 0x, 0x,  Ov? \0x,
PM  PM du du n O*M v du
Ox,0x,  Ou? 0x,0x, Oudvidx,0x,
2 2
M Ou v O°M Ov Ov (A.44)

t ud o, %, T 97 Ox, 0%,
When using the bspline version of the Geophysical Model Function, the double

M 92M
u2 ? o2

92M

and 3= are not directly available, as the model function is splined

partials

with respect to s and x. Thus, expressions for these partials must also be derived to

83



implement the Hessian matrix.

PM 9 [(OM
ou?: ~ ou E)
0 U oM v oM
T Ou \/mﬁs_u2+v28¢)
_ o (oM v? oM
T V2 +20u (%) (u2 + v2)3/2 9s
B 0 (8./\/[) N 2uv OM
(u?2 +v?)0u \ 0¢ (u?2+0v2)? 0¢
PM 0 [OM
o v W)
_ 0 v oM L 8M>
ov \Vu? + 02 0s u? +v2 9¢
B o (oM u? oM
T Vet 02 0v <§) (u? +v2)3/2 Os
2uv. OM u 0 (OM
T (W24 02)? 8¢ u2+v2%(6¢>’
where
0 (8M> 9’ M 0s N 0’M 0¢
ou \ 0s 0s? Ou  0¢p0s Ou
u PM v O*M
V@2 + 02 02 u?+020¢0s’
o (M) _ Mo oMo
ou \ 0¢ 0p0s Ou  O0¢? Ou
u 0’ M v OPM
ViZ +102000s  u2+ 02 942
0 (8/\4) 0’ M 0s N P M o
ov \ 0Os 0s? Ov  0¢0s Ov
v O*M u  0*M
VuZ+ 02 052 u?+ 0?2 0¢ds’
0 (6/\4) 0’ M 0s N 0?M D¢
ov \ 0¢ 0pds Ov ~ 0¢? Ov

v 0’ M u  0*M

Vi £ 070605 | uE+ o O
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(A.48)

(A.49)

(A.50)



Thus,

PM w2 9*°M uv 0?M v? oM
o w402 05> (v + v2)32 0¢0s * (u? +v2)3/2 9s
uv 0’ M v? 0?M 2uv OM
(u2 + v2)3/2 9¢ds * (u? +v2)? 0¢? * (u?2 +v2)? 0¢
B u?  OPM N v? oM 2uv  O*M
u? +v2 0s2  (u2+v2)32 9s  (u? + v2)3/2 0gp0s
v? 0P M 2uv OM
(u2 + v2)2 0¢? + (W2 + v2)2 06’ (A.51)
PM v?2  0°M N 2uv  O*°M N u? oM
ov? u? + 02 05?2 (u? 4 v2)%20¢0s  (u? + v2)3/2 0Os
2uv OM w2 OPM
T @122 06 T 122 042 (A.52)
The mixed partial is found to be
a%vt_g( v M 8M>
oudv ou \Vu2+v2 0s  u?+0v? 0¢
B v 0 (oM uv oM
T Vi@ + 02 ou ( ds ) (w2 +02)32 s
v 0 [(OM v?2 —u? OM
u2 4 v2 Ju ( 0¢ ) (u? +0v2)? 0¢
w  0°M v? 0*M uv oM
T w402 052 (W2 +v2)320¢0s  (uf+v2)3/2 Os
2u?  OM u? 0?’M w  0°M
T (u? +02)? 99 + (u2 4+ v2)32 9¢ds  (u? + v2)? P2
_ w  0PM N w2 —v? 9°M B uv oM
w2402 052 (u2+02)320¢0s  (u2+v2)3/2 Os
v2—u? oM w  0*°M (A.53)

T 06 (Pt ) 07

Obtaining 882 ;\2" and % from the model function requires only a simple ap-

plication of the chain rule. Recall that

oM oM
S = 5 (A.55)
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Therefore,

92 M ? <8M>
o¢> 99 \ 9¢

~ a(_avu)
C 9\ ox

oMoy
ox* 0¢
P M
= — A.
v (A.56)
PM _ 0 (oM
0p0s 0¢ \ Os
82/\/[8_)(
0x0s 0¢
0’ M
= - ) A.57
dx0s (A.57)

A.3.2 The WSE Hessian Matrix

As with the gradient of Jy s, the Hessian requires only the addition of the

constant ¢2 term to the Jgz Hessian matrix

(A.58)
I 2 Miju(x 0\ 2

Phuss _53n3ny! (i = Mige(00) =585 (25t \ 7]

- = 2 - 2 )

ox; i=1 j=1 k=1 | Sijk Sijk J
(A.59)

i 7 [ aZMZ X BMl X BMZ X

Pwsy |y ynghgh | Mot RS SR

0%0%, i=1 j=1 k=1 gizjk gizjlc
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