
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2022-08-04

Gradient Conditioning in Deep Neural Networks Gradient Conditioning in Deep Neural Networks

Michael Vernon Nelson
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Physical Sciences and Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Nelson, Michael Vernon, "Gradient Conditioning in Deep Neural Networks" (2022). Theses and
Dissertations. 9660.
https://scholarsarchive.byu.edu/etd/9660

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F9660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9660?utm_source=scholarsarchive.byu.edu%2Fetd%2F9660&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Gradient Conditioning in Deep Neural Networks

Michael Vernon Nelson

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Tyler Jarvis, Chair
Emily Evans

Jared Whitehead

Department of Mathematics

Brigham Young University

Copyright c© 2022 Michael Vernon Nelson

All Rights Reserved

abstract

Gradient Conditioning in Deep Neural Networks

Michael Vernon Nelson
Department of Mathematics, BYU

Master of Science

When using Stochastic Gradient Descent (SGD) to train Artificial Neural Networks, gra-
dient variance comes from two sources: differences in the weights of the network when each
batch gradient is estimated and differences between the input values in each batch. Some
architectural traits, like skip-connections and batch-normalization, allow much deeper net-
works to be trained by reducing each type of variance and improving the conditioning of the
network gradient with respect to both the weights and the input. It is still unclear to which
degree each property is responsible for these dramatic stability improvements when training
deep networks. This thesis summarizes previous findings related to gradient conditioning
in each case, demonstrates efficient methods by which each can be measured independently,
and investigates the contribution each makes to the stability and speed of SGD in various
architectures as network depth increases.

Keywords: gradient conditioning, gradient step-consistency, gradient batch-dissonance, gra-
dient whitening, gradient confusion, gradient coherence, gradient diversity

Acknowledgements

First and foremost I would like to thank Dr. Tyler Jarvis for his continuing support

throughout the long process of completing this thesis. I would also like to thank my wife

Andi for her incredible patience and support despite all the time that this research has taken

me away from home.

Contents

Contents iv

List of Figures vi

Introduction 1

1 Gradient Step-Consistency and Batch-Dissonance 2

1.1 Objectives . 5

1.2 Terminology . 6

1.3 Notation . 7

1.4 What is Conditioning and How is it Related to SGD? 9

1.5 Estimating Gradient Conditioning . 13

1.6 Reducing Metric Costs with Random Masking 16

2 Gradient Step-Consistency 16

2.1 Quantifying Gradient Step-Consistency . 17

2.2 Gradient Conditioning with Respect to W 33

2.3 Generating Targeted Weight Perturbation Samples 37

2.4 Literature Related to Gradient Step-Consistency 42

3 Gradient Batch-Dissonance 49

3.1 Quantifying Gradient Batch-Dissonance . 50

3.2 Gradient Conditioning with Respect to X . 58

3.3 Generating Targeted Input Perturbation Samples 62

3.4 Literature and Metrics on Gradient Batch-Dissonance 66

3.5 Shattered Gradients, the Gradient Rank Metric, and CReLU 68

3.6 Non-Orthogonal Variance and Gradient Confusion 77

3.7 Gradient Diversity . 82

iv

3.8 Gradient Coherence . 86

4 Remaining Objectives and Future Work 90

4.1 Adapting Batch-Dissonance Metrics to Measure Gradient Step-Consistency

between Steps . 91

4.2 Future Work: Architecture and Hyper-Parameter Optimization Tests 100

4.3 Conclusions . 105

Appendix A Code 107

Bibliography 108

v

List of Figures

2.1 Simulation Results for Lemma 2.2 . 31

2.2 Magnitude Bias Simulation Results for Lemma 2.2 32

2.3 Mask Effectiveness for Gradient Conditioning w.r.t. W 36

2.4 Targeted Sampling methods in X . 40

2.5 Gradient Conditioning w.r.t. the Weight Space Throughout Training 41

2.6 Gradient Conditioning w.r.t. the Weight Space Performance Scatterplot . . . 42

3.1 Mask Effectiveness for Gradient Conditioning w.r.t. X 61

3.2 Targeted Sampling methods in X . 64

3.3 Gradient Conditioning w.r.t. the Input Space Throughout Training 65

3.4 Gradient Conditioning w.r.t. the Input Space Performance Scatterplot . . . 66

3.5 Balduzzi et al. Gradient Whitening Toy Example 69

3.6 Mask Effectiveness for ∆XR(hW, w, χ) . 71

3.7 Weight Gradient Rank Throughout Training in Various Networks 72

3.8 Weight Gradient Rank Performance Scatterplot 73

3.9 Input Gradient Rank Throughout Training in Various Networks 74

3.10 Input Gradient Rank Performance Scatterplot 75

3.11 Mirrored weights in Looks-Linear Layers Persist 77

3.12 Gradient Confusion Throughout Training in Various Networks 79

3.13 Gradient Confusion Performance Scatterplot 80

3.14 Mask Effectiveness for the Gradient Confusion Metric 82

3.15 Mask Effectiveness for the Gradient Diversity Metric 83

3.16 Gradient Diversity Throughout Training in Various Networks 84

3.17 Gradient Diversity Performance Scatterplot 85

3.18 Mask Effectiveness for Gradient Coherence Metric 88

3.19 Gradient Coherence Throughout Training in Various Networks 89

vi

3.20 Gradient Coherence Performance Scatterplot 90

4.1 Mask Effectiveness for ∆WDn(w, χ) . 93

4.2 Mask Effectiveness for ∆WHn(w, χ) . 93

4.3 Targeted Sampling Methods: Minimum Weight-Gradient Cosine Similarity . 94

4.4 Weight-Gradient Cosine Similarity Throughout Training in Various Networks 95

4.5 Weight-Gradient Cosine Similarity Performance Scatterplot 96

4.6 Weight-Gradient Diversity Throughout Training in Various Networks 97

4.7 Weight-Gradient Diversity Performance Scatterplot 98

4.8 Weight-Gradient Coherence Throughout Training in Various Networks 99

4.9 Weight-Gradient Coherence Performance Scatterplot 100

4.10 Metric Timing by Number of Learnable Parameters 104

vii

Introduction

When using Stochastic Gradient Descent (SGD) to train Artificial Neural Networks, variance

between batch gradient estimates is unavoidable. Too much variance between batch gradient

estimates can slow or prevent convergence. This variance comes from two sources: differences

in the weights of the network when each batch gradient is estimated, and differences between

the input values within each batch.

Certain architectural traits, such as skip connections (subsection 2.4.2), significantly

reduce gradient variance between steps during training and enable the training of much

deeper networks. These traits have a smoothing effect on the loss surface and reduce variance

between gradients estimated at network states that are close in weight space [7, 12, 19].

In other words, these traits improve the conditioning of the network gradient

with respect to weights. We will use the phrase gradient step-consistency or just step-

consistency when speaking of the degree to which an architecture exhibits this property.

Several papers published since the development of these architectural traits have inves-

tigated this ability to smooth the loss surface and increase the stability of SGD in deep

networks [12, 19]. However, these papers ignore the potential that architectural traits may

have for reducing variance between gradient estimates within each batch and rely solely upon

the batch-size parameter to control batch-gradient variance arising from this source.

More recently, a number of papers have demonstrated that high relative variance between

individual gradient estimates within a batch results in poor convergence regardless of batch-

size [1, 2, 18]. Furthermore, these demonstrate that relative variance between gradient

estimates within each batch increases rapidly with network depth for many architectures.

Fortunately, skip connections significantly reduce this type of variance and also reduce the

rate at which it grows with depth [1, 18]. In other words, skip connections improve

the conditioning of the network gradient with respect to the input. We will use the

phrase gradient batch-dissonance or simply batch-dissonance when speaking of the degree to

which an architecture exhibits this property.

1

Because skip connections both significantly improves gradient step-consistency and re-

duces gradient batch-dissonance, it is unclear to what degree each property is responsible for

the dramatic training improvements caused by including skip connections in deep networks.

This thesis demonstrates several efficient methods by which each property can be measured

concretely, which will enable a deeper understanding of why novel architectural traits benefit

SGD and will allow more targeted exploration of the architecture space. Using two metrics

we propose and several others from related literature, we also demonstrate that the amount

of variance resulting from gradient step-inconsistency and batch-dissonance during SGD can

be handled independently in an informed and targeted way by modifying the architecture

or changing the learning-rate and batch-size parameters.

Chapter 1. Gradient Step-Consistency and

Batch-Dissonance

When training a deep neural network using Stochastic Gradient Descent (SGD), high vari-

ance between gradient estimates relative to their magnitude causes instability and can pre-

vent convergence. This variance can be separated into two distinct sources, which we will

call gradient step-inconsistency and gradient batch-dissonance.

Definition 1.1 (Gradient Step-Consistency). Gradient step-consistency is the degree to

which a network state exhibits stability in the gradient when a small change is made to the

network weights, such as during a step in gradient descent. For an architecture or network,

gradient step-consistency refers to the degree to which network states typically experienced

within the given reference frame (such as near the beginning or end of training while using

industry-standard training methods) exhibit this same property. When referring to a lack

of gradient step-consistency the phrase gradient step-inconsistency may be used.

Definition 1.2 (Gradient Batch-Dissonance). Gradient batch-dissonance is the degree

to which a network state exhibits disagreement between gradients calculated with different

2

inputs at the same network state. During stochastic gradient descent, gradients are calcu-

lated for a batch of inputs at each network state, hence the name gradient batch-dissonance.

For an architecture or network, gradient batch-dissonance refers to the degree to which net-

work states typically experienced under the same reference frame and with the same training

set exhibit this property.

Networks with poor gradient step-consistency exhibit large relative variance between

gradient estimates made before and after small steps in weight space. This is indicative of a

rough loss surface and has been linked to poor convergence [12]. Networks with high gradient

batch-dissonance have large relative variance between individual gradient estimates within

each batch. This indicates that the batch-averaged gradient will reduce the loss less in each

individual case and will be more likely to increase the loss for some training examples [3,

4, 18]. Poor gradient step-consistency and gradient batch-dissonance both contribute to the

overall variance experienced between adjacent steps in SGD because the inputs and weights

both change between each step.

The variance between adjacent steps in SGD can be controlled using the batch-size and

step-size parameters. Namely, variance caused by gradient batch-dissonance can be reduced

by increasing the batch-size and variance caused by gradient step-inconsistency can be re-

duced by decreasing the step-size. However, when gradient batch-dissonance is too high or

gradient step-consistency is too low, convergence will not occur regardless of the step-size or

batch-size chosen (see sections 2.1 and 3.1).

The terms gradient step-consistency and gradient batch-dissonance as we have defined

them make it easier to talk about performance differences between different architectures,

but they are not easy to measure directly. Several recent papers have defined concrete metrics

to measure phenomena related to each term, but the lack of common terminology between

these related papers has caused a degree of confusion and makes it more difficult to search the

literature for papers on to each subject. Chapter 2: Gradient Step-Consistency and Chapter

3: Gradient Batch-Dissonance each contain several sections reviewing and validating results

3

for papers on each subject, and each outlines precisely how those papers fall under the topic

of gradient step-consistency or gradient batch-dissonance as we have defined them.

We will demonstrate through our own results, and by those of the papers we review on

each topic, that gradient step-consistency and gradient batch-dissonance both have a sig-

nificant impact on the effectiveness and speed of SGD at finding a minimum for a given

network. Because training performance is expensive to evaluate, is not deterministic, and

can be impacted by thousands of options in architectural design and hyperparameter usage,

optimizing for best training performance in an undirected way over any meaningful archi-

tecture space is impossible. By presenting, comparing, and analyzing metrics that measure

gradient step-consistency and batch-dissonance efficiently, we hope that we can improve the

discussion around the impact architectural design has on training and enable cheaper and

more targeted searches for new architectural traits. Furthermore, we will investigate the

connection between metrics on gradient step-consistency and batch-dissonance and the hy-

perparameters used to regulate their impact, step-size and batch-size, to determine if efficient

optimal control of these hyperparameters might be possible.

1.0.1 Summary of Contents. The majority of this thesis will be dedicated to defi-

nitions and analysis of the various metrics that have been proposed to measure gradient

step-consistency and batch-dissonance. In order to motivate these more clearly, we will

begin with a more formal statement of our objectives, and outline the methods we will

use accomplish them (section 1.1). In sections 1.2 and 1.3 we will define our terminology

and notation. Thereafter, since the metrics we will introduce in chapters 2 and 3 are both

strongly motivated by the relative condition number, we will briefly define conditioning and

the relative condition number in section 1.4 and demonstrate how it can be efficiently esti-

mated in section 1.5. The last section, 1.6, explains how random masking of gradient vectors

can be used to dramatically decrease the temporal and spatial complexity of calculating the

scale-invariant metrics we present.

Chapters 2 and 3 will consider gradient step-consistency and batch-dissonance respec-

4

tively in the mathematical context of conditioning including presentation of our own novel

metrics and analysis of other metrics and results already present in the literature. Further-

more, these chapters will consider the effect of the step-size and batch-size parameters on

reducing negative effects of high gradient step-inconsistency and batch-dissonance.

Chapter 4 will consist primarily of discussion on remaining objectives and the possible

paths to achieve them, in addition to a brief conclusion section.

1.1 Objectives

Our objectives in publishing this thesis have been stated in a few different ways throughout

the abstract and introduction. For clarity however, we will state them in a more formal way

and then consider in a more detail how we will accomplish them. Our objectives are:

1. Summarize previous findings related to gradient step-consistency and batch-dissonance

and place them in the uniform context of gradient conditioning.

2. Demonstrate efficient methods by which gradient step-consistency and batch-dissonance

can be measured independently.

3. Investigate the impact gradient step-consistency and batch-dissonance each have on

the stability and speed of SGD.

4. If possible, demonstrate that variance and instability from each source can be reduced

or mitigated independently and in a targeted way using architectural or hyperparam-

eter adjustments.

The remainder of this chapter will be dedicated to outlining the necessary context, proofs,

and techniques that will be needed to accomplish the first two objectives. Then these will

actually be accomplished in Chapter 2: Gradient Step Consistency and Chapter 3: Gradient

Batch-Dissonance.

In the field of deep learning, when empirically evaluating novel architectures, techniques,

metrics, etc. it is common practice to use the final performance or training speed of common

5

architectures as points of comparison. These are used to demonstrate some correlation or

relationship between the novel content and the desired result. This will also be our approach

to accomplishing objective 3 in Chapter 4. However, if gradient step-consistency and batch-

dissonance are too strongly correlated in all of the architectures we test, it may be difficult

to establish the independence between them that is required to accomplish objective 4. In

other words, if no architectural traits we test appear to benefit gradient step-consistency or

gradient batch-dissonance without also benefiting the other in a similar degree, we won’t be

able to test if targeted architectural modifications can alleviate instability caused by one or

the other specifically.

1.2 Terminology

We will now proceed to more carefully define the terminology and notation we will use to de-

fine metrics on gradient step-consistency and batch-dissonance in the following chapters. In

order to more easily discuss the plethora of factors which influence learning in Artificial Neu-

ral Networks, we will divide them into four families: namely the objective, the architecture,

the optimization, and the training set.

The objective determines the ideal final state of a network, and its desired behavior. We

will treat the loss function as the ideal numerical expression of that goal. In other words,

throughout this paper we will assume that the loss function is absolute, or that minimizing

it will result in exactly the desired behavior. All of the factors of interest then come from

the following two categories: architecture and optimization.

We use the term architecture to refer to every part of our neural network which is de-

termined before training begins. This includes the number and nature of layers, the type

of activation function(s) used, the use of batch normalization, etc. Given an objective and

dataset, these factors determine what the loss surface looks like when the full dataset is used

to calculate the gradient, including how deep the desired minima are, and how easily they

can be found using standard optimization techniques.

6

We use the term optimizer, or optimizer parameters, to refer to any and all user input

to the neural network after training has begun. This includes the type of algorithm used

(ADAM vs SGD etc.), learning rate schedules, momentum terms, etc. The chosen initializa-

tion is also part of the optimization, however, some architectures are designed with a specific

method of sampling the initial weights as a requirement. In this specific case we will refer

to the chosen sampling method as part of the architecture.

The training set significantly impacts training, but we are primarily concerned with how

a given architecture generalizes and responds to perturbations in the data set. Because

of this we will generally ignore factors in the training set that can impact training, such

as improper labels and how representative the data set is of the data the network will be

exposed to during deployment.

1.3 Notation

Unless otherwise specified, all subsequent notation in this thesis will be used according to

the following definition:

Definition 1.3 (Notation). Let an architecture g : ((Rm, || · ||W), (Rk, || · ||X))→ Rj and a

loss function L : (Rj,Rh) → R be given. The following shortened notation will be used for

these spaces throughout this thesis:

• Wg := Rm is the flattened weight space space with norm || · ||Wg induced by an inner

product 〈·, ·〉Wg

• Xg := Rk is the flattened input space with norm || · ||Xg
• and Tg := Rh is the space of target output values.

The subscript naming the architecture, g in this case, will be left off if an architecture has

not been specified.

Given parameters w ∈W, x ∈ X and t ∈ T, we will use the following shortened notation

for the loss and gradient functions:

7

• for the loss:

Lg(w, x, t) := (L ◦ g)(w, x, t)

• for the gradient of the loss with respect to the weight space:

hW(w, x, t) := ∇WLg(w, x, t)

• and for the gradient of the loss with respect to the input space:

hX(w, x, t) := ∇XLg(w, x, t) .

When a batch of inputs is used instead of individual inputs we will use the following

notation:

• the set of all batches of size b (the subscript b will be left off if a batch size has not

been specified):

Bb(X) := {(xi, ti) | 0 < i ≤ n, (xi, ti) ∈ X× T}

• a batch of gradient estimates:

hW(w, χ) := {hW(w, xi, ti) | (xi, ti) ∈ χ}, χ ∈ Bb(X)

• the average of a batch of gradient estimates:

hW(w, χ) :=
1

b

∑
(xi,ti)∈χ

hW(w, xi, ti), χ ∈ Bb(X)

• and for the true gradient (averaged over the entire dataset or theoretical sample space):

hW(w) .

8

1.4 What is Conditioning and How is it Related to SGD?

A number of metrics and (expensive) visualizations have been proposed that are closely

related to gradient step-consistency and gradient batch-dissonance as we have defined the

terms. A significant number of papers have investigated how various architectural traits im-

pact the roughness of the loss surface, which is strongly related to gradient step-consistency

as we have defined it (see section 2.4). Recently, several metrics have also been proposed for

measuring gradient batch-dissonance (see section 3.4). Using these metrics, a few architec-

tural traits have been shown to slow or prevent increases in gradient step-inconsistency and

batch-dissonance caused by increasing network depth. These traits enable the training of

much deeper networks and can make training significantly cheaper by increasing the range

of viable batch-sizes and learning rates. The most well-known architectural trait that does

this is the skip connection (subsection 2.4.2).

For example, architectures with skip connections have been shown to exhibit much smaller

variance between gradient estimates at small step-sizes than networks without skip connec-

tions [12]. Furthermore, skip connections have been shown to significantly reduce variance

between gradient estimates made with batch elements that are similar [1]. Thus skip con-

nections decrease gradient variance caused by differences in both the input and weights. In

other words, they improve the conditioning of the network gradient function with respect

to both the weights and inputs, thereby decreasing both gradient step-inconsistency and

batch-dissonance.

By measuring the relative conditioning of the gradient function (Definition 1.5) as op-

posed to variance or relative variance, we can more directly measure the effect architec-

tural attributes like skip connections have on gradient step-consistency and gradient batch-

dissonance. Furthermore, measuring the conditioning of an architecture with respect to

weights and the inputs individually may allow for informed and targeted architectural or hy-

perparameter changes in order to improve the conditioning or reduce the effect the resulting

variance has on the speed and stability of SGD (see sections 2.1 and 3.1).

9

In order to motivate further discussion of conditioning and its relation to gradient step-

consistency and batch-dissonance, we will proceed with brief definitions and explanations

of the absolute and relative condition numbers. We will begin by defining the absolute

condition number, which is motivated by the Fréchet derivative.

Definition 1.4 (Absolute Condition Number). Given a function f : (Rn, || · ||α) →

(Rm, || · ||β), the absolute condition number κ̂ at input x ∈ Rn is defined as follows:

κ̂f (x) = lim
ε→0

sup
||h||α<ε

||f(x+ h)− f(x)||β
||h||α

= ||Jf (x)||α,β (1.1)

where h ∈ Rn, Jf (x) is the Jacobian of f at x, and || · ||α,β is the induced norm. The second

equality holds if and only if Jf (x) exists, which is guaranteed if f is differentiable at x.

The absolute condition number measures the largest possible change to the output given

a measured perturbation in the input. In other words, it is a measure of how sensitive a

function is to changes or error in the input. Small changes in input are unavoidable in

floating point implementations, and the condition number indicates how much these errors

can be magnified in the output.

To put this in perspective, consider the function g(x) = ex. Near x = 1, ex is very well

conditioned. In a 32 bit floating point system machine epsilon (εm|x=1) is approximately

1.2 ∗ 10−7 at x = 1, and a change of 1
2
εm|x=1 in the input results in a change in the output of

1.6 ∗ 10−7 ≈ .67 ∗ εm|x=2.7. In this case κ̂g(1) ≈ 2.7. However, ex isn’t as well conditioned for

higher values of x. At x = 50 a change of 1
2
εm|x=50 (1.9 ∗ 10−6), which is slightly larger now

because floating point systems lose precision further away from zero, results in a change in

the output of 1.9 ∗ 1016. Now κ̂g(1) ≈ 5.2 ∗ 1021. Changing from an input with at least six

accurate decimal points to an output that could be off by as much as 1.9∗1016 is a massive loss

in precision, and that is accurately represented in the absolute condition number. However,

e50 ≈ 5.18 ∗ 1021, meaning that the first five digits of the answer are in fact correct, and we

only lost two digits of accuracy. Since εm|x=e50 ≈ 5.7 ∗ 1014, the total error is only about 17.5

10

times machine epsilon.

Because e50 is so large in our example, the absolute condition number made the loss in

accuracy appear much worse than it actually was. Without access to the size of the output

we would have had no way to judge how bad a precision loss of 1.9 ∗ 1016 was relative to

machine epsilon at our output. Because of this issue a normalized version of the condition

number, known as the relative condition number, is much more commonly used.

Definition 1.5 (Relative Condition Number). Given a function f : (Rn, || · ||α) →

(Rm, || · ||β), the relative condition number κ at x ∈ (Rn, || · ||α) is defined as follows:

κf (x) = lim
ε→0

sup
||h||α<ε

||f(x+ h)− f(x)||β
||h||α

· ||x||α
||f(x)||β

=
||Jf (x)||α,β · ||x||α
||f(x)||β

(1.2)

where h ∈ Rn, Jf (x) is the Jacobian of f at x, and || · ||α,β is the induced norm. The second

equality holds if and only if Jf (x) exists, which is guaranteed if f is differentiable at x.

Essentially, the relative condition number is just the absolute condition number normal-

ized by the relative scale of the output and input. In our previous example g(x) = ex, the

relative condition number at x = 1 is in fact exactly 1, and at x = 50 the relative condition

number is 50. That’s because in R1 the absolute condition number is simply the magnitude

of the derivative, and of course | d
dx
ex| = |ex|. Once we normalize by | x

ex
| we just get |x| back.

In any case, the relative condition number is much more informative on its own than the

absolute condition number. As a general rule of thumb, if κf (x) ≈ 10k, then up to about k

digits of accuracy can be lost.

1.4.1 Simple Example Network. Deep neural networks contain dozens of nested cal-

culations and can therefore become extremely poorly conditioned because of seemingly simple

decisions, such as the choice of activation function. Now that we’ve defined what relative

conditioning is, we will demonstrate how this poor conditioning can occur easily in the

gradient of a deep neural network with a simple example.

11

Consider a small network with two hidden layers and an output layer, each with weight

Wi and bias bi. The activation function is f and the input to the network is x. This network

can be expressed in a system of equations as follows:

a1 = W1x + b1, h1 = f(a1) ,

a2 = W2h1 + b2, h2 = f(a2) ,

a3 = W3h2 + b3, and ŷ = fy(a3) .

(1.3)

For simplicity we choose fy to be a logistic activation function and use binary cross-

entropy loss as our loss function Le:

Le = − 1

N

∑
m,n

log ŷmn + (1− ymn) log(1− ŷmn) . (1.4)

This results in the following gradients and weight update rule:

δa3 = ∂Le
∂a3

= ŷ − y, δW3 = −δa3h
T
2 ,

δa2 = ∂Le
∂a2

= (W T
3 δa3)� f ′(a2), δW2 = −δa2h

T
1 ,

δa1 = ∂Le
∂a1

= (W T
2 δa2)� f ′(a1), δW1 = −δa1x

T ,

Wi,n = Wi,n−1 + lr · δWi,n−1

(1.5)

where � is the element-wise product and lr is the learning rate, which is a hyperparameter

used control the step-size in SGD.

1.4.2 Example: Poor Conditioning caused by Activation Functions. For our first

motivating example, we will consider how poor conditioning in the gradient function with

respect to the input space can be caused by the choice of activation function.

The derivative of the common activation function ReLU contains a discontinuity. By

the chain rule we know that the derivative of the activation function will appear in every

element of the gradient for layers it is used on, evaluated on the value ai from the forward

pass (see δWi, i < n in 1.5). When f ′ has a discontinuity it introduces a discontinuity in δai

12

for every element of ai, which is directly dependent on the input to the network (x in 1.3).

In other words, in a network where every layer is followed by a ReLU activation function

there will be as many jump discontinuities in the gradient function as there are neurons in

the network. Furthermore, these jump discontinuities are concentrated in the region of space

(W × X) where the network performs at full capacity, because the discontinuity is located

at the boundary between the active and inactive state for that neuron in the forward pass.

A number of different activation functions have been introduced that seek to avoid this is-

sue. Some, including GELU, SiLU, Softplus, and ELU, remove the discontinuity by smoothly

approximating ReLU. Unfortunately, these have not demonstrated a clear ability to increase

viable training depth.

Another activation function, CReLU [20], has been used in conjunction with symmetric

block initialization to minimize jump discontinuities and behave linearly at initialization

[1]. Balduzzi et al. demonstrated that this combination showed significantly improved

conditioning in the derivative of the loss function (and therefore in the network gradient as

well) with respect to the input. Furthermore, they successfully trained a 200 layer fully-

connected network that outperformed a 200 layer ResNet! This result is astonishing because

fully connected networks with other common activation functions and initializations become

impossible to train effectively at much lower depths.

After the first step the network must diverge partially from this linear behavior, but the

introduced jump discontinuities are significantly smaller than those in the derivative than

ReLU in regions of the weight space close to the initialization point (see figure 3.11). This

activation-function initialization pairing will be revisited in section 3.4.

1.5 Estimating Gradient Conditioning

Because it is so expensive to evaluate the performance of large architectures it is infeasible

to systematically search for new architectures, even with very simple extrapolations from

currently known architectural styles. This is why we would like to develop efficient metrics

13

that allow for cheaper and more systematic evaluation of the impact of novel architectural

traits on gradient stability. We believe that the most natural starting point in developing

these metrics is in the conditioning of the gradient function, which is mathematically very

simple but equally meaningful. We will begin by introducing a theorem that can be used

to efficiently estimate the relative condition number. Subsequently, we will define precisely

how the conditioning of a gradient estimation with respect to the weight space and the input

space can be measured independently.

Theorem 1.6. Let a function f : (Rn, || · ||α)→ (Rm, || · ||β) and a point x ∈ (Rn, || · ||α) be

given. Let the epsilon ball around x, Bε(x), be defined as follows:

Bε(x) := {y ∈ (Rn, || · ||α) : ||y − x||α < ε} . (1.6)

If f is differentiable at x, then an ε > 0 exists for which every p ∈ Bε(x) \ {x} satisfies the

following relation:

κf (x) + o(ε) ≥ ||f(p)− f(x)||β||x||α
||p− x||α||f(x)||β

. (1.7)

Proof: Assume the hypothesis. Since f is differentiable at x, we can estimate f(p) using a

linear approximation as follows:

f(p) = f(x) + Jf (x)(p− x) + δ ,

where the error ||δ||β = ||f(p) − f(x) − Jf (x)(p − x)||β ∈ o(||p − x||α). In other words,

||δ||β → 0 as p→ x significantly faster than ||x− p|| → 0.

Thus by the properties of the induced norm || · ||α,β, we can establish the bound

||Jf (x)(p− x)||β
||p− x||α

≤ ||Jf (x)||α,β ,

14

and, since f is differentiable at x:

κf (x) =
||Jf (x)||α,β · ||x||α
||f(x)||β

≥ ||Jf (x)(p− x)||β||x||α
||p− x||α||f(x)||β

=
||f(p)− f(x)− δ||β||x||α
||p− x||α||f(x)||β

.

Furthermore, by the reverse triangle inequality:

||f(p)− f(x)− δ||β||x||α
||p− x||α||f(x)||β

≥
∣∣∣∣(||f(p)− f(x)||β

||p− x||α
− ||δ||β
||p− x||α

)
||x||α
||f(x)||β

∣∣∣∣
=⇒ κf (x) ≥

∣∣∣∣ ||f(p)− f(x)||β||x||α
||p− x||α||f(x)||β

− ||δ||β||x||α
||p− x||α||f(x)||β

∣∣∣∣
=⇒ κf (x) + φ ≥ ||f(p)− f(x)||β||x||α

||p− x||α||f(x)||β
where φ =

||δ||β||x||α
||p− x||α||f(x)||β

.

Because ||δ||β ∈ o(||p− x||α) we have

||δ||β||x||α
||p− x||α||f(x)||β

∈ o(ε) ∀p ∈ Bε(x) ,

meaning that

κf (x) + o(ε) ≥ ||f(p)− f(x)||β||x||α
||p− x||α||f(x)||β

(1.7)

for any p ∈ Bε(x) \ {x} with sufficiently small ε.

Using this relationship we can efficiently estimate a lower bound on the relative condition

number of a function. Furthermore, if we have a set of n samples, we can improve our estimate

of κf simply by taking the maximum over all samples.

Definition 1.7 (Approximate Best Lower Bound on κ). Let ε > 0 and n ∈ N be given.

Then we define our approximate best lower bound on κ as

κ
'
f (x) := max

pi∈Bε(x),0<i≤n

||f(pi)− f(x)||β||x||α
||pi − x||α||f(x)||β

. (1.8)

15

1.6 Reducing Metric Costs with Random Masking

Unfortunately the memory requirement to calculate some of the metrics we will introduce

in chapters 2 and 3 can be quite large, depending on the batch-size and number of gradient

samples drawn. However, because random mappings on large vectors approximately preserve

distance and inner products between vectors [9], we can significantly reduce the temporal

and spatial complexity of calculating these metrics by applying the same random mapping

to each gradient vector prior to metric calculation.

We apply some constraints to the mask generation process. We require that each layer

of the network is sampled evenly relative to the number of parameters it contains. Thus

when we refer to a 5% mask we mean a random masking where 5% of the gradient vector is

chosen from each layer and stacked. The number of samples chosen from each layer is always

rounded up, so every layer will have at least one element present in each mask. The mask

is generated when the network is initialized and used consistently throughout the training

process.

Each time a metric is introduced by ourselves or is included in a review of another paper,

a figure will be shown documenting the effects of random masking on that metric. This

figure will include calculated average absolute error and computation time relative to the

unmasked metric for a ResNet with 26 layers and about 7,500,000 parameters. In each case

the error and timing is averaged over samples from five short training runs. Three masks of

each size were used in each training run, with samples drawn evenly throughout five training

epochs on CIFAR10. Our mask implementation is not parallelized and could be improved

significantly. In some cases, in particular where metrics require several different mask calls

during evaluation and are inexpensive to calculate once all inputs are provided, it can be

temporally cheaper to not use a mask. When this is the case, the caption of the mask result

and timing figure for that metric will make note if it.

16

Chapter 2. Gradient Step-Consistency

Since introducing the term gradient step-consistency in the first chapter we have discussed

several other topics, so we will review the term before proceeding. Recall, from Definition

1.1, that gradient step-consistency is a quality of networks and architectures, namely that of

having stable gradients across small steps in the weight space. Architectures that have high

gradient step-consistency can be trained much more quickly and efficiently using techniques

such as momentum. Furthermore the actual decrease in loss from a given step will be closer

to the expected decrease in loss (i.e., the derivative of the loss function in the direction of the

step times the step size). In other words, larger step sizes can be used without unexpected

changes in the loss occurring and the expected gain from a step of fixed size is higher. Before

moving on however, we’ll establish these in a theorem and proof.

2.1 Quantifying Gradient Step-Consistency

Given two neural networks, if one network exhibits higher gradient step-consistency than the

other within a provided context, then there are several quantifiable performance differences

that will be true in expectation within that context. In order to demonstrate these, however,

we need a more concrete mathematical definition of gradient step consistency.

Definition 2.1 (A Formal Definition of Gradient Step-Consistency). Let two neural

network architectures be given, one of which (network A) exhibits higher gradient step-

consistency than the other (network B) within some context (including a shared dataset

X = Y or two datasets X 6= Y). We will more formally define the relationship implied by

this statement as follows:

For any regions Φ ∈ (WA, ‖·‖A) and Ψ ∈ (WB, ‖·‖B), and batches χ ∈ B(X), γ ∈ B(Y),

that are contained within the provided context, there exists an ε > 0 such that the following

17

relationship holds for any δ1, δ2 between zero and ε:

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ, χ)− hWA
(φ− α, χ)

∥∥∥
A

‖α‖A

< E

ψ∈Ψ,γ∈B(Y)

∥∥∥hWB

(ψ, γ)− hWB
(ψ − β, γ)

∥∥∥
B

‖β‖B

 (2.1)

where α = δ1 hWA
(φ, χ) ,

and β = δ2 hWB
(ψ, γ) .

There are a few ways in which networks with high gradient step-consistency demonstrate

superior performance during learning compared to similar networks with lower gradient step-

consistency. In order to prove some of these benefits, the following lemma will be necessary.

Lemma 2.2. Given positive scalar values δA, δB ∈ R, and vectors u, v ∈ (Rn, ‖·‖A) and

vectors x, y ∈ (Rm, ‖·‖B), where

‖u− v‖A
‖δAu‖A

<
‖x− y‖B
‖δBx‖B

, (2.2)

and ‖·‖A and ‖·‖B are each induced by an inner product, we have that

‖u‖2
A − 〈u, v〉A
‖δAu‖2

A

<
‖x‖2

B − 〈x, y〉B
‖δBy‖2

B

+ ε+ ε2 (2.3)

with

0 < ε ∈ O
(
‖x− y‖B
‖δBx‖B

)
.

More specifically, the tightest bound that can be established using inequality (2.2) is the fol-

18

lowing:

(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
+

1

2

((
‖y‖2

‖δBx‖2 −
‖v‖2

‖δAu‖2

)
+ (ε2 − ε1)

)
(2.4)

where ε1 =
‖u− v‖A
‖δAu‖A

and ε2 =
‖x− y‖B
‖δBx‖B

.

Furthermore, if

ε1 −
‖v‖A
‖δAu‖A

< ε2 −
‖y‖B
‖δBx‖B

, (2.5)

inequality (2.3) holds even with the assumption that ε = 0.

Finally, in the case that

‖v‖A
‖δAu‖A

=
‖y‖B
‖δBx‖B

,

the width of the distance between the primary terms in inequality (2.4) is equal to one-half

of the width of the gap in inequality (2.2) and is in the same direction. In this case we also

have that θu,v and θx,y can each be expressed as a value between 0 and π inclusive where

θu,v < θx,y.

Proof. Assume the hypothesis. Using properties of inner products on a real space we have

that

‖u− v‖2
A

‖δAu‖2
A

=
〈u, u− v〉A + 〈v, v − u〉A

δA ‖u‖2

=

(
〈u, u− v〉A
δA ‖u‖2

A

)
1A

+

(
〈v, v − u〉A
δA ‖u‖2

A

)
2A

=

(
‖u‖2

A − 〈u, v〉A
δA ‖u‖2

A

)
1A

+

(
‖v‖2

A − 〈u, v〉A
δA ‖u‖2

A

)
2A

(2.6)

where we have separated the terms into groups 1 and 2 for ease of reference moving forward.

No terms will be transferred between these two groups and the letters A and B will be used

19

to designate whether a group corresponds to the left or right sides of inequality (2.2).

In order to establish a bound on the magnitude of ((·)2B − (·)2A) in terms of the known

quantities ε1, ε2, or ε2−ε1 (the gap in inequality (2.2)), we need to break each group of terms

down into quantities that are directly comparable to them. We accomplish this by replacing

the inner product in group A with an expression derived using the law of cosines:

(
‖v‖2

A − 〈u, v〉
δA ‖u‖2

A

)
2A

=
1

δA

(
‖v‖2

A

‖u‖2
A

− ‖u‖A ‖v‖A cos (θu,v)

‖u‖2
A

)

=
1

δA

(
‖v‖2

A

‖u‖2
A

− ‖v‖A
‖u‖A

(
‖u‖2

A + ‖v‖2
A − ‖u− v‖

2
A

2 ‖u‖A ‖v‖A

))

=
1

δA

(
‖v‖2

A

‖u‖2
A

− ‖v‖A
‖u‖A

(
‖u‖A

2 ‖v‖A
+
‖v‖A

2 ‖u‖A
− ‖u− v‖2

A

2 ‖u‖A ‖v‖A

))

=
1

δA

(
‖v‖2

A

‖u‖2
A

− 1

2
− ‖v‖

2
A

2 ‖u‖2
A

+
‖u− v‖2

A

2 ‖u‖2
A

)

=
1

2δA

(
‖v‖2

A

‖u‖2
A

− 1

)
+
‖u− v‖2

A

2δA ‖u‖2
A

(2.7)

=
1

2δA

((
‖v‖A − ‖u‖A
‖u‖A

+ 1

)2

− 1

)
+
‖u− v‖2

A

2δA ‖u‖2
A

=
1

2δA

((
‖v‖A − ‖u‖A
‖u‖A

)2

+ 2
‖v‖A − ‖u‖A
‖u‖A

+ 1− 1

)
+
‖u− v‖2

A

2δA ‖u‖2
A

=
1

2

(
‖v‖A − ‖u‖A√

δA ‖u‖A

)2

+
‖v‖A − ‖u‖A
δA ‖u‖A

+
‖u− v‖2

A

2 ‖δAu‖2
A

=
ε21∗

2
+

ε1∗√
δA

+
ε21
2

where ε1 =
‖v − u‖A
‖δAu‖A

and ε1∗ =
‖v‖A − ‖u‖A
‖δAu‖A

.

By the same logic

(
‖y‖2

B − 〈x, y〉B
δB ‖x‖2

B

)
2B

=
ε22∗

2
+

ε2∗√
δB

+
ε22
2

where ε2 =
‖y − x‖B
‖δBx‖B

and ε2∗ =
‖y‖B − ‖x‖B
‖δBx‖B

.

20

Furthermore, we know by the reverse triangle inequality that

|ε1∗| ≤ ε1 and |ε2∗| ≤ ε2 . (2.8)

Because z2 is a monotonically increasing function for any positive z ∈ R we have that

‖u− v‖A
‖δAu‖A

<
‖x− y‖B
‖δBx‖B

,

(2.9)

which implies that

‖u− v‖2
A

‖δAu‖2
A

=

(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
1A

+

(
ε21∗

2
+

ε1∗√
δA

+
ε21
2

)
2A

<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
1B

+

(
ε22∗

2
+

ε2∗√
δB

+
ε22
2

)
2B

=
‖x− y‖2

B

‖δBx‖2
B

.

This gives us that

=⇒(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
+

(
ε22∗ − ε21∗

2
+

ε2∗√
δB
− ε1∗√

δA
+
ε22 − ε21

2

)
. (2.10)

Until this point in time we have not made any approximations at all, so the above

expression is as tight an inequality as can be obtained using inequality (2.2). However, we

can express the error in big-O notation using a few approximations.

We know that 0 ≤ |ε1∗| < ε1 and 0 ≤ |ε2∗| ≤ ε2. Thus we also have that |ε22∗ − ε21∗| ≤ ε22.

These allow us to simplify the error term into an expression that depends only on the known

21

quantities ε2 and ε22 − ε21:

ε22∗ − ε21∗
2

+ (
ε2∗√
δB
− ε1∗√

δA
) +

ε22 − ε21
2

≤
∣∣∣∣ε22∗ − ε21∗2

∣∣∣∣+
|ε2∗|√
δB

+
|ε1∗|√
δA

+
ε22 − ε21

2

≤ ε22
2

+
ε2√
δB

+
ε1√
δA

+
ε22 − ε21

2
= ε22 +

(
1√
δA

+
1√
δB

)
ε2 ,

which means that

‖u‖2
A − 〈u, v〉A
‖δAu‖2

A

<
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

+ ε22 +

(
1√
δA

+
1√
δB

)
ε2 .

Thus if ε2 ≤ 1 the error is O(ε2), otherwise it is O(ε22).

In order to prove the final statements about the width of the gap in the above inequality,

and to express it in a way that is easier to interpret without making any approximations,

consider the intermediate expression 2.7 from earlier in this proof:

(
‖v‖2

A − 〈u, v〉A
‖δAu‖2

A

)
2A

=
1

2δA

(
‖v‖2

A

‖u‖2
A

− 1

)
+
‖u− v‖2

A

2 ‖δAu‖2
A

=
‖v‖2

A

2 ‖δAu‖2
A

− 1

2δA
+
ε21
2
.

This expression gives us the following:

(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
1A

+

(
‖v‖2

A

2 ‖δAu‖2
A

− 1

2δA
+
ε21
2

)
2A

<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
1B

+

(
‖y‖2

B

2 ‖δBx‖2
B

− 1

2δB
+
ε22
2

)
2B

=⇒(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
1A

<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
1B

+
1

2

(
‖y‖2

B

‖δBx‖2
B

− ‖v‖2
A

‖δAu‖2
A

)

+

(
1

δA
− 1

δB

)
+
ε22 − ε21

2
, (2.4)

as desired. Since no approximations or substitutions were made in the derivation, this bound

22

is equally as tight as in inequality (2.2). Furthermore, because ε22 − ε21 is the gap size in the

squared version of inequality (2.2), we know that if

1

2

(
‖y‖2

B

‖x‖2
B

− ‖v‖
2
A

‖u‖2
A

)
+

(
1

δA
− 1

δB

)
+
ε22 − ε21

2
< ε22 − ε21

or, equivalently, if

ε1 −
‖v‖2

A

‖u‖2
A

− 1

δA
< ε2 −

‖y‖2
B

‖x‖2
B

− 1

δB
,

then inequality (2.3) will hold even when the error term ε is assumed to be zero.

In order to prove the final two points of the lemma, consider the case where

‖y‖B
‖x‖B

=
‖v‖A
‖u‖A

and δA = δB .

Then the only non-zero error term in inequality (2.4) is
ε22−ε21

2
. We know that the width of

the gap in the squared version of inequality (2.2) we used is ε22 − ε21 and is strictly positive.

Therefore, (·)1B − (·)1A is smaller than ε22 − ε21 by
ε22−ε21

2
. In other words, excluding the error

term in this case cuts the width of the gap precisely in half while preserving the original

direction of the inequality.

Furthermore, by replacing each inner product with ‖u‖A ‖v‖A cos (θu,v) or ‖x‖B ‖y‖B cos (θx,y)

respectively, we have that

(
1− ‖v‖A
‖u‖A

cos (θu,v)

)
1A

<

(
1− ‖y‖B
‖x‖B

cos (θx,y)

)
1B

+
ε22 − ε21

2

=⇒

‖v‖A
‖u‖A

cos (θu,v) >
‖y‖B
‖x‖B

cos (θx,y)−
ε22 − ε21

2
.

23

Therefore, because the width of the gap size is

ε22 − ε21 >
ε22 − ε21

2
> 0 , and

‖y‖B
‖x‖B

=
‖v‖A
‖u‖A

,

we have that cos (θu,v) must be greater than cos (θx,y). Furthermore, the angle between two

vectors can always be expressed as a value between 0 and π inclusive, and cosine decreases

monotonically within that range. Thus if θu,v and θx,y are each expressed as an angle between

0 and π, we have that θu,v < θx,y.

The use of the scaling factors δA and δB in the lemma with arbitrary vectors can introduce

a significant amount of error. In the definition of gradient step-consistency the scaling factors

serve as a normalization term for differing step sizes and are counterbalanced by their effect

on the distance between the gradient vectors involved. Namely, as δ → 0, we have that

‖v‖ → ‖u‖. The lemma we just proved used arbitrary vectors without this requirement,

introducing a scaling constant on an error term in inequality (2.3) that can be quite large

when either δ is small.

inequality (2.4) doesn’t contain the approximations used to bound the error for 2.3 and

properly represents the relationship between the δ terms and the error that is introduced by

them. In this case the scaling factors divide out cleanly if they are the same and no error is

introduced. However, if the scaling factors are different, the error terms cannot approach 0

no matter how close the corresponding vector-norm ratios become. Because of this we will

need the requirement in our theorem that the step sizes for each network are the same for

any given inequality. This will not significantly weaken our results however.

Assuming the scaling factors are the same, this lemma gives us that any vectors u, v ∈

(Rm, ‖·‖A) and x, y ∈ (Rn, ‖·‖B) that satisfy inequality (2.2)

‖u− v‖A
‖u‖A

<
‖x− y‖B
‖x‖B

(2.2)

24

also satisfy the following inequalities:

(
‖u‖2

A − 〈u, v〉A
‖u‖2

A

)
<

(
‖x‖2

B − 〈x, y〉B
‖x‖2

B

)
+

1

2

((
‖y‖2

‖x‖2 −
‖v‖2

‖u‖2

)
+ (ε2 − ε1)

)
(2.4)

=

(
‖x‖2

B − 〈x, y〉B
‖x‖2

B

)
+

(
ε22∗ − ε21∗

2
+ (ε2∗ − ε1∗) +

ε2 − ε1
2

)
(2.10)

where ε1 =
‖u− v‖A
‖u‖A

, ε1∗ =
‖u‖A − ‖v‖A
‖u‖A

,

ε2 =
‖x− y‖B
‖x‖B

, and ε2∗ =
‖x‖B − ‖y‖B
‖x‖B

.

The lemma asserts that these error terms are O(ε2) or O(ε22), depending on whether ε2

is greater than or less than 1. This is certainly true. However, distributions with certain

qualities, such as when the angle θu,v is known to be small, can expect significantly less error.

In particular, for any case where

‖y‖2
B

‖x‖2
B

− ‖v‖
2
A

‖u‖2
A

< ε2 − ε1 or equivalently ε1 −
‖v‖2

A

‖u‖2
A

< ε2 −
‖y‖2

B

‖x‖2
B

,

the lemma guarantees that inequality (2.3),

‖u‖2
A − 〈u, v〉A
‖u‖2

A

<
‖x‖2

B − 〈x, y〉B
‖y‖2

B

+ ε+ ε2 , (2.3)

will hold even with the assumption that ε = 0. This will be used as an assumption in

the following proof. While the additional assumption is necessary to rigorously prove the

theorem, it is also likely to occur in any case where one network demonstrates higher step-

consistency than another. Following the proof we will demonstrate empirically that this is

the case in a variety of simulated circumstances (see figures 2.1 and 2.2).

Now that our lemma has been established and gradient step-consistency is more formally

defined, we can move on to our primary theorem concerning gradient step-consistency.

Theorem 2.3 (Expected Performance in Step-Consistent Networks). Let two neural network

architectures be given, one of which (network A) exhibits higher gradient step-consistency

25

than the other (network B) for a given ε > 0 within some context (including a shared dataset

X = Y or two datasets X 6= Y). Using the notation from Definition 2.1, if the networks

satisfy the additional constraint that

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ, χ)− hWA
(φ− α, χ)

∥∥∥
A

‖α‖A
−

∥∥∥hWA
(φ− α, χ)

∥∥∥
A

‖α‖A

< E

ψ∈Ψ,γ∈B(Y)

∥∥∥hWB

(ψ, γ)− hWB
(ψ − β, γ)

∥∥∥
B

‖β‖B
−

∥∥∥hWB
(ψ − β, γ)

∥∥∥
B

‖β‖B

 (2.11)

where α = δ hWA
(φ, χ)

β = δ hWB
(ψ, γ) ,

for any shared step size (δ < ε) and regions (Φ ∈ (WA, ‖·‖2) and Ψ ∈ (WB, ‖·‖2)) that are

contained within the provided context, then the following relationship also holds for those

step sizes and regions within the context:

E
φ∈Φ,χ∈B(X)

[
dLφ(hWA

(φ, χ))− dLφ−α(hWA
(φ, χ))

δdLφ(hWA
(φ, χ))

]

< E
ψ∈Ψ,γ∈B(Y)

[
dLψ(hWB

(ψ, γ))− dLψ−β(hWB
(ψ, γ))

δdLψ(hWB
(ψ, γ))

]
(2.12)

where dLwi(wj) is the directional derivative of the loss function L at a point w1 ∈ W taken

in the direction of wj ∈W.

In other words, the derivative of the loss function in the direction of a step taken decreases

proportionally less between the two endpoints of the step for network A than for network B.

This means that the expected decrease in loss for a step of any size less than ε is greater for

network A than for network B. More formally stated:

E
φ∈Φ,χ∈B(X)

[
LA(φ, χ)− LA(φ− α, χ)

δLφ(hWA
(φ, χ))

]
> E

ψ∈Ψ,γ∈B(Y)

[
LB(ψ, γ)− LB(ψ − β, γ)

δLψ(hWB
(ψ, γ))

]
. (2.13)

In short, greater gradient step-consistency increases the expected gain from a small step

26

during optimization, bringing it closer to the ideal result expected from a linearly projected

step of the same size.

Proof. Assume the hypothesis. By the definition of the gradient, for any differentiable func-

tion f : Rn → R, point x ∈ Rn, and direction vector v ∈ Rn, the gradient of f at x, (∇f)x,

is related to the directional derivative of f at x in the direction of v, dfx(v), as follows:

〈(∇f)x, v〉A = dfx(v) . (2.14)

If we let v = (∇f)x that gives us

‖(∇f)x‖2 = 〈(∇f)x, (∇f)x〉B = dfx((∇f)x) , (2.15)

and the directional derivative in the direction of the gradient is equal to the magnitude of

the gradient squared.

Additionally, all of the conditions for equation (2.3) in Lemma 2.2 are satisfied by the

theorem conditions. Furthermore, the second requirement of this theorem, equation (2.11),

satisfies the additional condition in Lemma 2.2 that allows us to set all error terms in equation

(2.3) to zero (the terms dependent on the step size are zero because the theorem statement

requires that the same step size is used). This means that

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ, χ)
∥∥∥2

A
−
〈
hWA

(φ, χ), hWA
(φ− α, χ)

〉
A

‖α‖2
A

 (2.16)

< E
ψ∈Ψ,γ∈B(Y)

∥∥∥hW2

B
(ψ, γ)

∥∥∥
B
−
〈
hWB

(ψ, γ), hWB
(ψ − β, γ)

〉
B

‖β‖2
B

 . (2.17)

27

Applying equations 2.14 and 2.15 results in the desired relation:

E
φ∈Φ,χ∈B(X)

[
dLφ(hWA

(φ, χ))− dLφ−α(hWA
(φ, χ))

δdLφ(hWA
(φ, χ))

]

< E
ψ∈Ψ,γ∈B(Y)

[
dLψ(hWB

(ψ, γ))− dLψ−β(hWB
(ψ, γ))

δdLψ(hWB
(ψ, γ))

]
.

Therefore the expected change in the slope of the loss surface for a sufficiently small step is

smaller in network A than in network B. Furthermore, because the expected change in the

slope of the loss is smaller for every step size smaller than epsilon, we have that the error

in a linear projection estimating the total change in loss using the slope at the beginning of

the step is smaller for network A than for network B (the total error in a linear projection

is equivalent to the integral of the change in slope across the length of the step). In other

words:

E
φ∈Φ,χ∈B(X)

δ1Lφ(hWA
(φ, χ))−

(
LA(φ, χ)− LA(φ− α, χ)

)
δLφ(hWA

(φ, χ))

< E

ψ∈Ψ,γ∈B(Y)

δ2Lψ(hWB
(ψ, γ))−

(
LB(ψ, γ − LB(ψ − β, γ)

)
δLψ(hWB

(ψ, γ))

 .

(2.18)

Our final desired result follows because a linear projection of the loss in the direction of the

gradient for a small step of a given size is the most accurate projection that can be made

with a first order derivative and it maximizes the expected change in the loss for a step of

that size relative to the magnitude of the loss derivative:

E
φ∈Φ,χ∈B(X)

[
LA(φ, χ)− LA(φ− α, χ)

δLφ(hWA
(φ, χ))

]
> E

ψ∈Ψ,γ∈B(Y)

[
LB(ψ, γ)− LB(ψ − β, γ)

δLψ(hWB
(ψ, γ))

]
. (2.13)

28

When gradient step-consistency is high the expected decrease in loss for a sufficiently

small step in the direction of the negative gradient changes more slowly with increasing step

size. In expectation this results in a greater decrease in loss for small steps of a fixed size

because the direction of the negative gradient maximizes the decrease in loss in the limit as

the step size approaches zero.

In practice, this means that for networks with high gradient step-consistency, larger step

sizes can be used reliably and the expected decrease in loss for a step of fixed size is closer to

the best expected gain from a step of that size given only first order derivative information.

When gradient step-consistency is low we can increase the stability of SGD by decreasing

the step size. However, this has no effect on the underlying shape of the loss surface that

causes poor gradient step-inconsistency, and when gradient step-consistency is too low SGD

may fail to converge regardless of step size.

2.1.1 Requirements of Theorem 2.3. In theorem 2.3 two assumptions were made in

addition to the primary requirement that the two networks involved had demonstrated a

clear difference in expected step-consistency. First of all, it was assumed that the same step

size is used in each case. Because the theorem results are true for any step size less than ε

however, this did not weaken the results at all. However, the second assumption, that

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ, χ)− hWA
(φ− α, χ)

∥∥∥
A

‖α‖A
−

∥∥∥hWA
(φ− α, χ)

∥∥∥
A

‖α‖A

< E

ψ∈Ψ,γ∈B(Y)

∥∥∥hWB

(ψ, γ)− hWB
(ψ − β, γ)

∥∥∥
B

‖β‖B
−

∥∥∥hWB
(ψ − β, γ)

∥∥∥
B

‖β‖B

 (2.11)

adds a potentially significant hurdle to applying the theorem. When the same step size is

used this basically amounts to the statement

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ− α, χ)
∥∥∥
A∥∥∥hWA

(φ, χ)
∥∥∥
A

 ≈ E
ψ∈Ψ,γ∈B(Y)

∥∥∥hWB

(ψ − β, γ)
∥∥∥
B∥∥∥hWB

(ψ, γ)
∥∥∥
B

 .

29

As long as these two terms are sufficiently close they will not reverse the direction of the

inequality. When the angle between each pair of vectors sampled from two given distributions

is consistently small, we believe this should be true a significant portion of the time, which

would make the second assumption unnecessary in many circumstances to expect the results

of theorem 2.3.

In order to test this hypothesis we ran a simulation. Parameters for 1000 distributions

were randomly generated and the distance between the two sides of inequality (2.2) and

inequality (2.3) (ignoring the error terms) were measured. We will refer to inequality (2.2)

as the condition inequality and inequality (2.3) as the result inequality.

The direction that the distance was measured for the result inequality was determined

by the direction that the condition inequality held true (in expectation). In other words,

the condition inequality distance is always positive and the second inequality distance is

positive only if the direction the inequality is satisfied is the same direction as the condition

inequality. We also measured the percentage of the time that the direction of each inequality

for individual samples agreed with the direction of the inequality in expectation. The results

can be seen in figure 2.1.

Notably, the direction of the condition and result inequality was the same in expectation

for every single one of the 1000 generated distributions. Furthermore, there was an extremely

strong correlation between the percent of the time that the inequality was satisfied for

individual samples (in the same direction as the inequality in expectation) for the condition

and result inequality. As might be expected, there were extremely few distributions that

had lower than fifty percent sample-wise agreement with the expected inequality direction

in both cases. However, in every single one of these cases, the direction of each expectation

inequality still agreed.

30

10 6 10 5 10 4 10 3 10 2

condition inequality gap size

10 5

10 4

10 3

10 2
re

su
lt

in
eq

ua
lit

y
ga

p
siz

e

50 60 70 80 90 100
% pairwise condition inequality accuracy

50

60

70

80

90

100

%
 p

ai
rw

ise
 re

su
lt

in
eq

ua
lit

y
ac

cu
ra

cy

max(|(||y||2
||x||2)2 (||v||2

||u||2)2|) = 0.006

Figure 2.1: Simulation Results for Lemma 2.2. Using 1000 pairs of normal distributions with
uniformly sampled parameters, we calculated the condition and result inequalities from Lemma
2.2 in expectation over 1000 sets of sampled vectors. Every single sampled distribution had the
same direction for both inequalities in expectation and there was an extremely strong correlation
between the percentage of the time that the direction of individual-sample inequalities matched
the direction of the corresponding expectation inequality.

Vector samples for the simulation results displayed in figure 2.1 were generated by ran-

domly sampling the first vector in each pair, u or x in the notation of Lemma 2.2, from a

normal distribution and then perturbing it by another randomly sampled vector to obtain

v or y. The scale and variance for each distribution used was sampled at the beginning of

each of the 1000 sub-simulations. The scale of the perturbation vector for each distribution

was sampled uniformly between zero and one-fifth of the scale of u or x respectively.

In order to more thoroughly strain the condition that

‖v‖A
‖u‖A

≈ ‖y‖B
‖x‖B

we ran the simulation a second time. During the second run we sampled a re-scaling factor

for each of the four vectors between .5 and 1.5. By multiplying this by the distribution

perturbation scale factor discussed previously (zero - one-fifth), we obtained a length bias

which would allow
‖y‖B
‖x‖B

and
‖v‖A
‖u‖A

to vary by up to .4 without considering the compounding

effect of perturbation size. Given that the width of the result inequality gap for every tested

distribution inequality was less than this, that is a very large introduced bias. The results

31

can be seen in figure 2.2.

10 4 10 3 10 2 10 1

condition inequality gap size

10 4

10 3

10 2

10 1

re
su

lt
in

eq
ua

lit
y

ga
p

siz
e

50 60 70 80 90 100
% pairwise condition inequality accuracy

60

70

80

90

100

%
 p

ai
rw

ise
 re

su
lt

in
eq

ua
lit

y
ac

cu
ra

cy

max(|(||y||2
||x||2)2 (||v||2

||u||2)2|) = 0.529

Figure 2.2: Magnitude Bias Simulation Results for Lemma 2.2. This simulation was run identically
to that displayed in figure 2.1, with the additional inclusion that for each distribution a set stretch
factors was calculated and applied to each vector sample. This resulted in a significant amount of
introduced error coming from differing vector lengths. However, the condition and result inequalities
from Lemma 2.2 were still in the same direction in expectation for every single one of the 1000
pairs of distributions tested.

Interestingly, adding a vector bias tended to increase the width of both inequality gaps

significantly, which means that the error term

1

2

(
‖y‖2

‖δBx‖2 −
‖v‖2

‖δAu‖2

)

in inequality (2.4)

(
‖u‖2

A − 〈u, v〉A
‖δAu‖2

A

)
<

(
‖x‖2

B − 〈x, y〉B
‖δBx‖2

B

)
+

1

2

((
‖y‖2

‖δBx‖2 −
‖v‖2

‖δAu‖2

)
+ (ε2 − ε1)

)
(2.4)

where ε1 =
‖u− v‖A
‖δAu‖A

and ε2 =
‖x− y‖B
‖δBx‖B

was either small relative to resulting increase in the condition inequality gap, or reinforced

the result inequality rather than undermining it, or both. There is a slight increase in this

second test in the slope of the correlation line, which would indicate that the error terms

reinforce the result inequality slightly in expectation. Furthermore, the percent of the time

32

the sample-wise result inequality matched the expectation inequality increased significantly.

This simulation was clearly not exhaustive with regards to vector sampling, and was

not run with actual gradient samples from neural networks satisfying the step-consistency

condition in theorem 2.3. However, the result set collected seems to indicate in the bounded

perturbation case we care about that the additional requirement in theorem 2.3 we included

to satisfy 2.2 is extremely likely to be true if the primary requirement of the theorem re-

garding step-consistency is true.

2.2 Gradient Conditioning with Respect to W

Theorem 2.3 gave us some useful and intuitive insights into the expected training performance

of networks that have high gradient step-consistency. However, the proof of each of these

results relied heavily upon the expectation found in equation (2.1). In other words, while

theorem 2.3 contains powerful statements about the average performance of an architecture

relative to another within the provided context, it provides very little information about the

consistency with which these performance improvements can be expected and allows for a

large amount of variance in performance. Naturally, because SGD is an iterative process,

this variance matters quite a bit.

Consider equation (2.1) below:

E
φ∈Φ,χ∈B(X)

∥∥∥hWA

(φ, χ)− hWA
(φ− α, χ)

∥∥∥
2∥∥∥hWA

(φ, χ)
∥∥∥

2

 (2.1)

< E
ψ∈Ψ,γ∈B(Y)

∥∥∥hWB

(ψ, γ)− hWB
(ψ − β, γ)

∥∥∥
2∥∥∥hWB

(ψ, γ)2

∥∥∥
 (2.19)

where α = δ1 hWA
(φ, χ)

and β = δ2hWB
(ψ, γ) .

In order to define a metric on gradient step-consistency that can be used more reliably

33

for networks in any context, we need to place a restriction on the size of step that is al-

lowed so that we achieve more repeatable results. Unfortunately, the radius of the region in

which linear projections of the loss are reliable could vary quite a bit for different networks.

Furthermore, because the step α is defined relative to the magnitude of the gradient, using

the learning rate δ1 is not sufficient to guarantee that step size for a given learning rate is

comparable between the weight spaces of two different networks, nor would it be desireable

to need to use the same learning rate in each case. We can fix the second issue very easily

by adding the normalization term to the quantity within each expectation:

∥∥∥hWA
(φ, χ)− hWA

(φ− α, χ)
∥∥∥

2∥∥∥hWA
(φ, χ)

∥∥∥
2

· ‖φ‖2

‖α‖2

.

Creating a metric using this term that accounts for variance caused by differences in

direction is more difficult. If we were estimating change in the loss caused by a step of

fixed size stepping in the direction of the gradient would always result in highest possible

change in the loss. Therefore, this quantity would very effectively become a representation

of the highest possible change induced by a step of a given size at that weight. However,

just because the gradient direction maximizes the change in loss or a small step does not

mean that it maximizes the change in the gradient for a step of that size. In other words,

the radius for which a gradient is expected to maximize the change in loss for a step inside

of that radius might be smaller for some networks than for others. In other words, we will

need to use a limit on the step size to ensure that our quantity is always measured inside of

this meaningful radius.

Fortunately, and perhaps unsurprisingly given the amount of attention given condition

numbers in chapter 1, our normalization of the gradient step-consistency quantity in Defini-

tion 2.1 means it is now equivalent to the quantity measured in the relative condition number

of the gradient function when restricted to changes in the weight space. The limit and supre-

mum found in the relative condition number mean that we can measure the quantity we are

34

interested in across a wide variety of networks and datasets and expect consistency in the

result. We define the relative condition number in this context below:

Definition 2.4 (Relative Condition Number with Respect to W). Let an architecture

g : ((Rm, || · ||W), (Rk, || · ||X))→ Rj and a loss function f : (Rj, T h)→ R be given. Using the

notation of Definition 1.3, the relative gradient condition number κhW,W(w), w ∈ W, of hW

with respect to the weight space W is defined as follows:

κhW,W(w) = κ̂hW,W(w) · ||w||W
||hW(w)||W

=
||Hf,W(w)||W,W · ||w||W

||hW(w)||W
(2.20)

where (2.21)

κ̂hW,W(w) = lim
ε→0

sup
||ω||W<ε

||hW(w + ω)− hW(w)||W
||ω||W

= ||JhW,W(w)||W,W = ||Hf,W(w)||W,W ,

(2.22)

JhW,W(w) is the Jacobian of hW with respect to W at w, Hf,W(w) is the Hessian of the loss

(f ◦g) with respect to W at w, and || · ||W,W is the induced norm on transformations between

the weight space and itself. The second equality in each case holds if and only if JhW,W(w)

is defined at w.

κhW,W(w) is a measure of the worst-case step-inconsistency of individual gradient esti-

mates during learning for a given point in weight space. The limit and supremum make it

difficult to estimate numerically however. However, we have a theorem in chapter 1 that

makes it possible to estimate it relatively easily.

By theorem 1.6, if hW(w) is differentiable with respect to W at w, then an ε > 0 exists

such that

κhW,W(w) + o(ε) ≥ ||hW(w + ω)− hW(w)||W||w||W
||ω||W||hW(w)||W

(2.23)

for any ω ∈W where ||ω||W < ε.

This allows us to define a viable metric for gradient step-consistency that does not rely

on an expectation, a limit, or a supremum: the approximate best lower bound on κhW,W:

35

Definition 2.5 (Approximate Best Lower Bound on κhW,W). Let ε > 0 and n ∈ N be given

and let Bε(0) = {p ∈W : 0 < ||p||W < ε}. Then we define our approximate best lower bound

on κhW,W as

κ
'
hW,W(w) := max

ωk∈Bε(0),0≤k<n

(
||hW(w + ωk, χj)− hW(w, χi)||W||w||W

||ωk||W||hW(w, χi)||W
, χi, χj ∈ Bb

)
. (2.24)

Unless i 6= j is clearly specified, this metric will always be used in this thesis with i = j.

However, it is possible to establish a probabilistic bound on the error introduced by allowing

i 6= j using the law of large numbers with sufficiently large b.

The above metric is dependent on the batch-size b in two distinctly different ways. As b

grows we have by the law of large numbers that hW(w, χ) becomes increasingly likely to be

close to hW(w). In this regard, κ
'
hW,W(w) with i = j, becomes a measure of the conditioning

of the theoretical gradient hW(w) as b→∞. However, the metric is equally valid for any b if

viewed as a measure on the conditioning of hW(w, χ), which is in fact the gradient estimation

which is actually experienced during training.

10 100
mask size (%)

0

2

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

3.8

4.0

4.2

se
co

nd
s

Mean Computation Time

Figure 2.3: Mask Effectiveness for Gradient Conditioning w.r.t. W

The second way that κ
'
hW,W(w) is dependent on the batch-size b has already been stated.

Namely, it is the confidence with which different batches, i 6= j, can be used without ex-

ceeding a specified amount of error. In practice this error can trivially be avoided simply

by using the same batch i = j. However, we have allowed for the introduction of additional

error into the metric in our definition for one very specific reason. When using a sample size

n = 1, we can estimate κ
'
hW,W(w) during training with very little additional cost as follows:

36

κ
'
hW,W(w) =

||hW(w + ω, χj)− hW(w, χi)||W||w||W
lr||hW(w, χi)||2W

, χi, χj ∈ Bb

where ω = −lr ∗ hW(w, χi), lr > 0, lr ∈ R .

It should be noted that estimating κ
'
hW,W(w) with i 6= j is not a valid way to measure

the conditioning of hW(w + ω, χ) with respect to changes in the weights and inputs simulta-

neously because there is no modification to the normalizing terms in the condition number

based on the magnitude of change in the input batch. While it would be possible to measure

the conditioning of hW(w, x, t) with respect to both W and X using a normalizing term of

the form ||concat(w, x)||α, the discrete nature of the subspace in X that can be paired with

known labels in Th (i.e. the training set) makes it impossible to reliably use the linear ap-

proximation applied in theorem 1.6 to estimate the conditioning with respect to X by using

pairs of inputs or batches from the training set.

2.3 Generating Targeted Weight Perturbation Samples

A variety of methods could be employed to generate samples of ωk ∈ Bε(0) in equation (2.5).

Randomly sampling directions is easy and often effective. Furthermore, when drawing a

limited number of samples in a space as high dimensional as the weight space, each sample

is nearly guaranteed to be orthogonal to the others. However, in an over-parameterized

network, there are several reasons to believe that perturbing the weights in randomly sampled

directions may have very little impact on the loss or gradient.

In networks that use rectifier activation functions, neurons have distinct active and inac-

tive states. During a typical forward pass for a given input, a large number of neurons will

not activate. Several studies have demonstrated that in over-parameterized classification

networks small groups of neurons specialize to recognize particular features that are unique

to a class or group of classes (for example: [20]). A small random weight perturbation is

37

unlikely to make groups of neurons that are unrelated to a given input activate. However, a

targeted shift in weights for neurons that would already be active for that input otherwise,

or to groups that are close to activating on that input, would have a much larger impact

relative to the magnitude of the perturbation.

The insensitivity of the loss function to random perturbations in the weight space could

be further complicated in classification problems by the small number of class labels and

the limited number of samples within the evaluating batch. Within each batch the loss is

evaluated over a relatively small number of samples. Any weight perturbation that does

not significantly change the output for at least one sample in the evaluating batch will not

change the loss or gradient very much. Furthermore, when the number of potential labels

is small a large portion of the network output space results in the same classification and,

depending on the loss function, a very similar loss value.

This potential insensitivity to random perturbations is not particularly relevant to the

theoretical considerations of this paper. It does, however, mean that random sampling will

likely not be sufficient to consistently get a tight lower bound on the maximum in equation

(2.5). In order to avoid this issue, we have developed and tested a targeted method for

generating weight perturbation samples ωk ∈ Bε(0). This technique includes preferential

treatment of the gradient direction.

Specifically, we will generate samples by estimating the gradient with a single input (or

rather a batch of inputs at a time without averaging) as outlined in the following definition:

Definition 2.6 (Targeted Samples Technique for Weight Perturbation Directions).

Let a batch χ ∈ Bb(X) and a sample size n < b be given. When generating weight pertur-

bation direction samples, ωi, where it is desireable to maximize the change in loss or in the

gradient (such as ω in equation (2.5)), the samples will be drawn from the set

{
η ζ hW(w, xi, ti)

‖hW(w, xi, ti)|)‖W
| ζ ∼ U({−1, 1}), hW(w, xi, ti) ∈ hW(w, χ)

}
(2.25)

where η ∈ R is the desired scale. Unless otherwise specified we will use η = .001.

38

It should be noted that using samples generated in this way is highly memory intensive

if the samples must be stored while other forward or backward passes are executed, as when

calculating equation (2.5).

Perturbing in the direction of a weight-gradient calculated with a single input (or the

batch-averaged gradient if individual gradients are not available) should have a significant

impact on any elements of the evaluating batch from the same class. Furthermore, because

we use a subset of the evaluating batch to generate these samples it will maximize the change

in loss for those elements. Up to b samples can be drawn with minimal additional temporal

cost because they can be computed in the backward pass for |hW(w, χ)| which is already

required to calculate κ
'
hW,W(w).

This sampling technique should increase the rate at which the lower bound on the max-

imum in equation (2.5) is expected to initially converge over fully random samples and

significantly reduce the number of samples required. Random sampling would be guaran-

teed to match or exceed the best lower bound identified using any bounded sampling method

as n → ∞, but our use case is necessarily restricted to a small number of samples and the

initial convergence rate is much more important.

When the memory requirements of storing individual gradients for this sampling tech-

nique is too high, the following sampling mechanism may be used:

Definition 2.7 (Limited Targeted Samples for Weight Perturbation Directions).

Let a batch χ ∈ Bb(X) and a sample size n < b be given. When generating weight pertur-

bation direction samples, ωi, where it is desireable to maximize the change in loss or in the

gradient (such as ω in equation (2.5)), up to two samples will be drawn from the set

 η hW(w, χ)∥∥∥hW(w, χ)
∥∥∥
∞

,
−η hW(w, χ)∥∥∥hW(w, χ)

∥∥∥
∞

 (2.26)

where η ∈ R is the desired scale. Unless otherwise specified we will use η = .001.

We performed a test comparing these targeted sampling techniques to random sampling.

39

Elements were drawn from a normal distribution with the same mean and standard deviation

as the weights being perturbed, with a scaling factor of η = .001. The results can be see in

figure 2.4. Because using the batch-averaged gradient sample performed so well compared

to using individual gradient samples and is so much more efficient, we opted to use that

method for each of our other tests. This will also enable us to more easily compare results

between small networks that are able to use individual gradient sampling without running

out of available memory on the GPU with larger models that must use the batch-averaged

gradient technique.

0 1000 2000 3000 4000 5000 6000 7000 8000
iteration

103

3 × 102

4 × 102

6 × 102

ex
pe

ct
ed

 m
ax

im
um

 o
ve

r 1
6

sa
m

pl
es

Targeted Sampling Methods: Maximizing the Lower Bound on Gradient Conditioning w.r.t. the Weights

Individual Gradient Directions
Random Directions
Batch-Averaged Grad Direction

Figure 2.4: Targeted vs Random Sampling in W. During the training of an 11 layer convolutional
network (with normalization but without skip connections), 64 input perturbation directions were
generated via the sampling methods described in section 2.3. Bootstrapping was used to estimate
an expected maximum over a sample size of 16.

Using the batch-averaged gradient sampling technique, we measured the gradient condi-

tioning with respect to the weight space for several networks throughout a full training run.

The results can be seen in Figure 2.5.

40

0 2000 4000 6000 8000 10000 12000 14000
iteration

102

103

104

105

106

107

108

109

11
26

3

51

11
26

3

101

76

11
26
3

51

10111
151
2635176

101

151

76

Moving Average: h , (w, x, t) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

102

103

104

11263

11

26

3

11

263

Moving Average: h , (w, x, t) - Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 2.5: The Gradient Conditioning w.r.t. the Weight Space (see Definition 2.5) was mea-
sured throughout training for several different types of architectures. It tends to change slowly for
networks that converge, but is consistent when no convergence occurs.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

For many of the networks we trained the gradient conditioning with respect to the weight

space was relatively constant throughout training, although some changed rapidly at certain

points.

41

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

102

103

104

105

106

107

108

109
sm

oo
th

ed

h
,

(w
,x

,t
)

11

11

26

26
33

5111
26

3
11

11

26

26
3

3

101

76

11
26

3

51

101
11

151
263 5176

101

151

76

h , (w, x, t) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

102

103

104

105

106

107

108

109

sm
oo

th
ed

h

,
(w

,x
,t

)

11

11

26

26
3 3

51 11
26

3
11

11

26

26
3 3

101

76

11
26

3

51

101
11

151
263 51 76

101

151

76

h , (w, x, t) vs Lowest Training Loss

Figure 2.6: The Gradient Conditioning w.r.t. the Weight Space was measured at the point of
steepest descent as well as at the point with the lowest loss (smoothed over a few hundred iterations
in each case) and plotted as a point for each network. It can be seen clearly in this figure that
networks with excessively high gradient conditioning w.r.t. the weight space fail to converge.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

While the correlation between gradient conditioning in the weight space and the highest

average decrease in loss (a moving average over 20 samples) is not as pronounced as we would

like, it does seem clear that exceptionally poor conditioning results in a near complete lack

of convergence.

2.4 Literature Related to Gradient Step-Consistency

There is a significant body of literature that is related to gradient step-consistency, generally

belonging to one of two categories. The first category includes papers that study the smooth-

42

ness of the loss surface in limited regions. The usage of the term “smoothness” is colloquial

in this case, although some papers have been able to establish more formal results. Because

the parameter space of deep neural networks is so large, calculating the loss, evaluating

smoothness, or generating visualizations are all extremely expensive for even small regions

of weight space. Because of this, the region chosen for study is almost always restricted to

the area immediately surrounding a local minimizer, which limits the use of these results

and techniques for our purpose of evaluating learning effectiveness throughout training.

Furthermore, to reduce expense, the dimension of the loss surface is typically reduced

by projecting down onto a basis of random vectors in the weight space prior to evaluating

the loss over the target region. It was observed by Li et al., however, that fully-random

directions are unlikely to observe sharp features in the loss surface [12]. Our own results

when testing gradient conditioning in randomly generated weight directions in section 2.3

supports this hypothesis. Li et al., utilized a targeted method to construct directions for

the basis of their loss surface visualization projections. However, as in our own tests, it

is impossible to determine by the same method what features are not being observed by a

projection without finding another targeted sample direction generation technique that is

even more effective or exhaustively exploring the space. The second group of papers we are

about to discuss may provide a way to evaluate the effectiveness of random projections at

capturing sharp features more effectively.

All of these issues make exploration of the loss surface through lower-dimensional projec-

tions an unlikely candidate for evaluating the loss-smoothness or gradient-step consistency

of a potential architecture.

The second body of work that is strongly related to gradient step-consistency includes

papers studying the spectrum of the Hessian of the loss function with respect to the weight

space. The relative condition number of the gradient with respect to the weight space,

equation (2.4), is the norm of the Hessian with respect to the weight space multiplied by a

normalizing constant. If the two-norm is used then this is the largest singular value of the

43

Hessian multiplied by a normalizing factor.

Calculating even the first few eigenvalues of the Hessian for large networks was pro-

hibitively expensive until Ghorbani et al. published their algorithm for estimating the entire

Hessian spectrum with high precision in 2019 [5]. This publication represented a distinct

turning-point in studies of this nature. In the words of Ghorbani et al.:

Previous studies on the Hessian have focused on small models, or are lim-

ited to computing only a few eigenvalues (Sagun et al., 2016; 2017; Yao et al.,

2018). In the absence of such concrete information about the eigenvalue spec-

trum, many researchers have developed clever ad hoc methods to understand

notions of smoothness, curvature, sharpness, and poor conditioning in the land-

scape of the loss surface. Examples of such work, where some surrogate is defined

for the curvature, include the debate on flat vs sharp minima (Keskar et al., 2016;

Dinh et al., 2017; Wu et al., 2017; Jastrzȩbski et al., 2017), explanations of the

efficacy of residual connections (Li et al., 2018b [12]; Orhan & Pitkow, 2017

[14]) and batch normalization (Santurkar et al., 2018 [19]), the construction of

low-energy paths between different local minima (Draxler et al., 2018), quali-

tative studies and visualizations of the loss surface (Goodfellow et al., 2014),

and characterization of the intrinsic dimensionality of the loss (Li et al., 2018a;

Fort & Scherlis, 2018). In each of these cases, detailed knowledge of the entire

Hessian spectrum would surely be informative, if not decisive, in explaining the

phenomena at hand.

Since the publication of Ghorbani et al.’s algorithm for estimating the full spectrum of

the Hessian, a few papers have already been published containing more concrete results on

the effect batch normalization, skip-connections, and other architectural traits have on the

loss surface than were ever available previously. This method demonstrates extreme promise

for learning how different architectural traits impact gradient stability and usefulness during

training. However, it is well outside the scope of this thesis in terms of implementation

44

alignment with the other metrics and techniques used. Because of this we will restrict

ourselves to a brief summary of related results and attempt to observe these findings in our

own results.

Because the two methods common in the field are computationally expensive relative to

the other methods we present, we will not be able to use them in our own tests. However,

we will present a brief summary of relevant findings and identify the results in our own tests

that would validate them. Our primary interest is in architectural traits that have been

observed to have a smoothing effect on the loss surface, these being likely candidates for

improving gradient step-consistency.

2.4.1 The Impact of Batch Normalization. In 2015 batch normalization was first

introduced by Ioffe et al. [8]. They proposed it as a solution to an issue they named

internal covariate shift, which is when the distribution of each output for a given layer

changes throughout training. They argued that this caused issues for subsequent layers,

which therefore had to continually adjust to a changing input. Their proposed solution,

batch normalization, fixed this perceived issue by re-centering and re-scaling each output of

a layer to fit a standard normal distribution across each batch.

Because inputs to a batch normalization (batch-norm) layer are each re-centered and

re-scaled across an entire batch it doesn’t neatly fit inside our definition of an architectural

trait. It is influenced slightly during training by the batch-size, which is an optimization

parameter. However, it does learn the bias and scaling corrections over time, meaning that

a network containing batch normalization layers can be evaluated consistently on individual

inputs. Several other normalization layers have been proposed since then that behave very

similarly to batch-norm, including layer-norm, instance-norm, and group-norm [26]. Each of

these others normalizes inputs across a portion or all of the layer instead of across the batch.

It has been demonstrated that these can have superior performance to batch-norm when a

small batch is used.

Batch normalization is extremely effective at improving training in many types of ar-

45

chitectures, and was widely adopted very quickly. It can significantly reduce training time

and makes networks less sensitive to initialization. The reason it does these things has been

disputed however. In 2015 Santurkar et al. argued that reducing internal covariate shift

had very little to do with batch normalization’s positive benefits. They demonstrated this

by explicitly injecting covariate-shifted random noise after batch-norm layers and showing

that the positive benefits of batch-norm persisted even with this injected noise [19]. They

proposed instead that batch normalization smooths the loss surface, and therefore stabilizes

gradients, allowing for faster training.

Ghorbani et al. in 2019 disputed this result using eigenvalues of the Hessian in networks

with and without batch normalization [5]. Santurkar et al. clearly demonstrated that on a

per-layer basis, the Lipschitz bound on change in the loss (which is similar to the absolute

condition number of the loss but is over pairs of inputs without a limit on the distance

between them) is reduced when batch normalization is used. However, Ghorbani et al.

argue that this per-layer analysis impacts only a block-diagonal portion of the Hessian and

is insufficient to establish smoother training generally.

As an example they train two identical networks with batch normalization. One by

using the full-dataset to evaluate each gradient and the other using typically-sized batches.

Each network has nearly identical largest eigenvalues and the magnitudes of the learned

parameters in each case is similar. Because of this the two networks would have roughly

equivalent gradient step-consistency and conditioning with respect to the weight space (see

Definition 2.4). However, the network trained with gradients calculated using the full dataset

learns much more slowly than the network trained with batches and the Hessian had a larger

number of outlier eigenvalues. They conclude with the observation that the largest eigenvalue

(and thus gradient step-consistency, assuming similarly sized parameters), is not sufficient

to explain ease of training. Notably, the only difference between these two networks is

the batch-size, which falls under our discussion of gradient batch-dissonance in chapter 3.

The arguments made by Ghorbani et al. align well with our own argument that gradient

46

step-consistency and batch-dissonance are both critical to ease and speed of training.

Another paper from 2019 by Yao et al. [28] observed a similar suppression of outlier

eigenvalues in deep networks, but demonstrated that this smoothing effect was largely absent

in shallower networks. However, batch normalization demonstrated clear benefits in the

shallow networks even without the suppression of outlier eigenvalues noted by Ghorbani et

al. [5]. Wu et al. [25] and Papyan [15] confirm and explain this suppression of outlier

eigenvalues more extensively.

2.4.2 The Impact of Skip-Connections. The second architectural trait that has re-

ceived significant attention from these related papers is the skip connection. More specifically,

the residual skip connection. A skip connection in a deep neural network is a method of

transferring the output of a layer to a subsequent layer or layers without it passing through

the layers in between. There are two common types types of skip connections: residual

connections and concatenation connections.

Concatenation connections are the type of connection most directly implied by the name

“skip connection”. Effectively, the output of a chosen layer is provided without modification

as input to another layer deeper in the network. This later layer then takes input from two

layers, the layer immediately before it in the forward pass and the layer connected to it

through the skip connection. In other words, the output from the layer connected by the

skip connection is concatenated to the output of the previous layer. Since the development of

residual connections however, these have featured much less prominently in related literature.

The other type, residual connections, are additive in nature. Instead of transforming

the input, a residual connection layer or block operates on the input by passing it through

one or more traditional layers, but instead of giving its own output to the next layer, it

re-scales and it adds it to the original input. In a ResNet, or Residual Network, there are

typically very few traditional layers that directly transform the input and they usually reside

at the beginning and/or end of the network. Instead a single tensor is gradually transformed

through repeated addition by residual blocks through the majority of the network.

47

Introduced in 2015 by He et al., residual connections are particularly effective at making

the backward pass shallower by reducing the number of repeated applications of the chain

rule. This is well known for making the backward pass more resilient against common

gradient issues, such as vanishing or exploding gradient magnitudes.

There has been as much or more research about the exact mechanism behind the dramatic

improvement in learning that can be caused by adding residual connections to an architecture

as there has been about batch normalization.

In 2017 Li et al. [12] proposed using their surface-visualization technique that skip con-

nections could dramatically smooth the loss surface. They demonstrated this for both types

of skip connections we have mentioned, showing that ResNet architectures and an architec-

ture called DenseNet [7] (which has a very large number of concatenation skip-connections)

appear incredibly smooth in their projections compared to networks with a similar structure

but without any skip connections. Naturally, both types of networks also compared very fa-

vorably in speed of training and final performance against the similar architectures without

skip connections.

Another paper in 2017, by Ornhan et al. [14], demonstrated that residual connections

reduce the prevalence of various types of singularities that slow learning. Yet another paper

in 2017, this one by Masato Taki [22], demonstrated that ResNets are more robust against

poor initialization than other similar architectures, especially when paired with batch nor-

malization.

In 2018 Zaeemzadeh et al. demonstrated that residual connections are norm-preserving

[30]. In other words, they demonstrate that adding residual connections causes the magni-

tude of the gradient to be more consistent throughout the backward pass, making the the

gradient much more stable throughout learning.

The results from all of these papers that were published quickly after the introduction of

residual connections indicated that skip connections dramatically smooth the loss surface,

especially when paired with batch-normalization. However, in 2019 two Hessian-spectrum

48

papers, by Ghorbani and Yao [5, 28] presented a more nuanced picture. Both observed that

adding residual connections in deep networks resulted in a rapid compression of all eigenval-

ues towards zero, resulting in a smoother loss surface and better conditioning. Furthermore,

this effect is more dramatic in deeper networks, with the increase in eigenvalue magnitudes

caused by removing residual connections being much more rapid in deeper networks. How-

ever, Yao and Ghorbani both observe that the smoothing effect of adding residual connections

is reversed in shallow networks. This reversal was observed in networks smaller than 20 layers

by Yao and in a 32-layer ResNet by Ghorbani. Moving forward we will make note of whether

our own test results reflect these observations on skip-connections and batch-normalization

in the literature.

Chapter 3. Gradient Batch-Dissonance

Chapter 2 reviewed gradient step-consistency and introduced theorems and related litera-

ture. This chapter will do the same for gradient batch-dissonance. Recall from Definition

1.2 that gradient batch-dissonance is a quality of networks and architectures, and that archi-

tectures with lower gradient batch-dissonance will have more consistent gradient estimates

for different batches. This means that the expected decrease in loss from a step for elements

that aren’t in the batch used to estimate the gradient used to make the step is higher. It

also means that the variance between gradient estimates made with different batches will

generally be lower, which means that first order optimization methods will progress more

smoothly. We will establish the definition of gradient step-consistency more quantitatively

and establish these results in the next section before moving on to reviewing related litera-

ture.

49

3.1 Quantifying Gradient Batch-Dissonance

Given two neural networks, if one network exhibits lower gradient batch-dissonance than the

other within a provided context, then there are several quantifiable performance differences

that will be true in expectation within that context. We will first define the concept of

gradient batch-dissonance in a quantifiable way, and then proceed to prove a few more

relationships that follow from this definition.

Definition 3.1 (A Formal Definition of Gradient Batch-Dissonance). Let two neural

network architectures be given, one of which (network A) exhibits lower gradient batch-

dissonance than the other (network B) within some context (including a shared dataset

X = Y or two datasets X 6= Y). We will more formally define the relationship implied by

this statement as follows:

For any regions Φ ∈ (WA, ‖·‖2 and Ψ ∈ (WB, ‖·‖2) that are contained within the provided

context, the following relationships hold in expectation for elements (xi ∈ X, yp,∈ Y):

E
xi,xj∈X

[
‖hWA

(φ, xi)− hWA
(φ, xj)‖2

‖hWA
(φ, xi)‖2

]
< E

yp,yq∈Y

[
‖hWB

(ψ, yp)− hWB
(ψ, yq)‖2

‖hWB
(ψ, yp)‖2

]
(3.1)

where φ ∈ Φ and ψ ∈ Ψ.

Theorem 3.2 (Expected Performance in Networks with Low Batch-Dissonance).

Let two neural network architectures be given, one of which (network A) exhibits lower gra-

dient batch-dissonance than the other (network B) within some context (including a shared

dataset X = Y or two datasets X 6= Y). In other words, assume that equation (3.1) is true

for the provided context.

For any regions Φ ∈ (WA, ‖·‖2 and Ψ ∈ (WB, ‖·‖2) that are contained within the provided

context, the following relationships hold in expectation for elements (xi ∈ X, yp,∈ Y) and

batches of the same size (χi ∈ Bb(X), γp ∈ Bb(Y)) drawn from the provided datasets:

50

E
χi∈Bb(X),xj∈X

∥∥∥hWA

(φ, χi)− hWA
(φ, xj)

∥∥∥
2∥∥∥hWA

(φ, χi)
∥∥∥

2

< E

γp∈Bb(Y),yq∈X

∥∥∥hWB

(ψ, γp)− hWB
(ψ, yq)

∥∥∥
2∥∥∥hWB

(ψ, γp)
∥∥∥

2

 (3.2)

and

E
χi,χj∈Bb(X)

∥∥∥hWA

(φ, χi)− hWA
(φ, χj)

∥∥∥
2∥∥∥hWA

(φ, χi)
∥∥∥

2

< E

γp,γq∈Bb(Y)

∥∥∥hWB

(ψ, γp)− hWB
(ψ, γq)

∥∥∥
2∥∥∥hWB

(ψ, γp)
∥∥∥

2

 (3.3)

where φ ∈ Φ and ψ ∈ Ψ.

Furthermore, when a step is made in the direction of a batch-averaged gradient, the ex-

pected average decrease in loss for individual elements for network A is closer to the decrease

in loss they would have experienced individually from a step of the same size in the direction

of their own gradient than for network B. This is expressed as an inequality below:

E
χ∈B(X)

[
LA(φ, χ)

]
− E

χ∈B(X)

[
LA(φ− α(χ), χ)

]
E
x∈X

[LA(φ, x)]− E
x∈X

[LA(φ− α(x), x)]
(3.4)

>

E
γ∈B(Y)

[
LB(ψ, γ)

]
− E

γ∈B(Y)

[
LB(ψ − β(γ), γ)

]
E
y∈Y

[LB(ψ, y)]− E
y∈Y

[LB(ψ − β(y), y)]

where α(χ) = δ1hWA
(φ, χ), α(x) = δ1hWA

(φ, x, t), (x, t) ∈ X× TA ,

β(γ) = δ2hWB
(ψ, γ), β(x) = δ2hWB

(ψ, y, s), (y, s) ∈ Y× TB , (3.5)

0 < δ1 < ε, and 0 < δ2 < ε (3.6)

for some sufficiently small ε > 0.

51

Because the expected gain from a step in the direction of a batch-averaged gradient is

bounded above by the expected gain from a step of the same size in the direction of an

individual gradient, this ratio is between zero and one for both networks.

Simply speaking, the relationship expressed in equation (3.4) means that the cost inflicted

on network A’s learning speed by dissimilarities in the input space is less for network A than

it is for network B. Furthermore, network A is less likely to experience stagnation during

learning that can be caused by the batch-gradient not decreasing the loss for a sizeable portion

of the input space.

Proof. Assume the hypothesis. Equations 3.2 and 3.3 follow naturally from equation (3.1)

because averaging either gradient estimate over more elements doesn’t modify the expecta-

tion at all, and in fact significantly reduces the variance of the input to the expectation in

each case. However, in order to maintain the inequality between the two networks the batch

size of an element on either side must be changed in the same way.

In order to prove equation (3.4) consider the following. By the definition of the gradient

we have for any point in weight space, we will use φ ∈ Φ from the context for network A

here, that ‖hWA
(φ, xi, ti)‖2 = Lφ(hWA

(φ, xi, ti)) the directional derivative in the direction of

the gradient. Furthermore, using a first-order approximation we can estimate the change in

loss from a step α (as defined in 3.4):

LA(φ, xi, ti)− LA(φ− α(xi), xi, ti) ≈ 〈α(xi), hWA
(φ, xi, ti)〉

= 〈δ1hWA
(φ, xi, ti), hWA

(φ, xi, ti)〉

= δ1 ‖hWA
(φ, xi, ti)‖2

2

= δ1Lφ(hWA
(φ, xi, ti)) . (3.7)

The change in overall loss from a step in the direction of a batch gradient can be estimated

52

in the same way:

LA(φ, χ)− LA(φ− α(χ), χ) ≈ δ1Lφ(hWA
(φ, χ)) (3.8)

= δ1

∥∥∥hWA
(φ, χ)

∥∥∥2

2
.

Furthermore, by Theorem 1 in [3], which proves that the expected decrease in loss for

an individual element from a small step in the direction of its gradient is greater than the

expected decrease in the loss evaluated using a batch from a step of the same size in the

direction of the batch-averaged gradient, we have that equation (3.8) is bounded above in

expectation by equation (3.7), with equality guaranteed when every input is the same. In

other words:

E
x∈X

[LA(φ, x)− LA(φ− α(x), x)] ≥ E
χ∈B(X)

[
LA(φ, χ)− LA(φ− α(χ), χ)

]
or, equivalently,

E
x∈X

[
‖hWA

(φ, x, tx)‖2
2

]
− E

χ∈B(X)

[∥∥∥hWA
(φ, χ)

∥∥∥2

2

]
≥ 0

where tx is the label for input x. This difference is the expected efficiency loss from a given

optimization step of size δ1 caused by disagreement between gradients within the batch. To

say it another way, the expected decrease in loss for a step of size δ1 with a batch χ is less

than or equal to the expected decrease in loss for a step of the same size with a batch size

of one, meaning the ratio between them is less than or equal to one:

E
χ∈B(X)

[∥∥∥hWA
(φ, χ)

∥∥∥2

2

]
E
x∈X

[
‖hWA

(φ, x, tx)‖2
2

] ≤ 1 . (3.9)

Now that the meaning of the above ratio has been established, we will proceed to demonstrate

that the left side of equation (3.9) is greater for network A than for network B within the

53

provided context using the relationship from equation (3.2) below:

E
χ∈Bb(X),x∈X

[∥∥∥hWA
(φ, χ)− hWA

(φ, x, tx)
∥∥∥

2

]
E

χ∈Bb(X)

[∥∥∥hWA
(φ, χ)

∥∥∥
2

]

<

E
γ∈Bb(Y),y∈Y

[∥∥∥hWB
(ψ, γ)− hWB

(ψ, y, ty)
∥∥∥

2

]
E

γ∈Bb(Y)

[∥∥∥hWB
(ψ, γ)

∥∥∥
2

] . (3.2)

By the properties of inner products we know that

∥∥∥hWA
(φ, χ)− hWA

(φ, x, tx)
∥∥∥2

2
=
∥∥∥hWA

(φ, χ)
∥∥∥2

2
− 2

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
+ ‖hWA

(φ, x, tx)‖2
2 .

Using this to expand the terms on each side of equation (3.2) gives us the following

relationship:

E
χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− 2

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
+ ‖hWA

(φ, x, tx)‖2
2∥∥∥hWA

(φ, χ)
∥∥∥2

2

< E
γ∈Bb(Y),y∈Y

∣∣∣∣∥∥∥hWB

(ψ, γ)
∥∥∥2

2
− 2

〈
hWB

(ψ, γ), hWB
(ψ, y, ty)

〉
+ ‖hWB

(ψ, y, ty)‖2
2

∣∣∣∣∥∥∥hWB
(ψ, γ)

∥∥∥2

2

 .

54

Consider the following re-arrangement of terms:

E
χ∈Bb(X),x∈X

(∥∥∥hWA

(φ, χ)
∥∥∥2

2
+ ‖hWA

(φ, x, tx)‖2
2

)
− 2

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
∥∥∥hWA

(φ, χ)
∥∥∥2

2

< E
γ∈Bb(Y),y∈Y

(∥∥∥hWB

(ψ, γ)
∥∥∥2

2
+ ‖hWB

(ψ, y, ty)‖2
2

)
− 2

〈
hWB

(ψ, γ), hWB
(ψ, y, ty)

〉
∥∥∥hWB

(ψ, γ)
∥∥∥2

2

 .

(3.10)

Note that because the sum of the two norms in the numerator is strictly positive, minimiza-

tion can only occur by convergence of the inner product to the average of the two norms. In

other words, the inner product for network A must be closer in expectation to the average of

the squared gradient magnitudes than for network B. We can use this as follows. Equation

(3.1) implies that

E
χ∈Bb(X),x∈X

(∥∥∥hWA

(φ, χ)
∥∥∥2

2
+ ‖hWA

(φ, x, tx)‖2
2

)
2
∥∥∥hWA

(φ, χ)
∥∥∥2

2

−

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
∥∥∥hWA

(φ, χ)
∥∥∥2

2

< E
γ∈Bb(Y),y∈Y

(∥∥∥hWB

(ψ, γ)
∥∥∥2

2
+ ‖hWB

(ψ, y, ty)‖2
2

)
2
∥∥∥hWB

(ψ, γ)
∥∥∥2

2

−

〈
hWB

(ψ, γ), hWB
(ψ, y, ty)

〉
∥∥∥hWB

(ψ, γ)
∥∥∥2

2

 ,

but, because

E
χ∈Bb(X)

[∥∥∥hWA
(φ, χ)

∥∥∥2

2

]
= E

χ∈Bb(X)

[
‖hWA

(φ, x, tx)‖2
2

]

55

we can simplify this as

E
χ∈Bb(X),x∈X

2 ‖hWA
(φ, x, tx)‖2

2

2
∥∥∥hWA

(φ, χ)
∥∥∥

2

−

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
∥∥∥hWA

(φ, χ)
∥∥∥2

2

< E

χ∈Bb(Y),y∈Y

2 ‖hWB
(ψ, y, ty)‖2

2

2
∥∥∥hWB

(ψ, γ)
∥∥∥

2

−

〈
hWB

(ψ, γ), hWB
(ψ, y, ty)

〉
∥∥∥hWB

(ψ, γ)
∥∥∥2

2

 .

Define τ1 as the numerator of the above expectation for network A and τ2 as the numerator

of the above expectation for network B. Then consider following substitution:

E
χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− 2

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
+ ‖hWA

(φ, x, tx)‖2
2∥∥∥hWA

(φ, χ)
∥∥∥2

2

= E

χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− 2

〈
hWA

(φ, χ), hWA
(φ, x, tx)

〉
− 2τ1 + 2τ1 + ‖hWA

(φ, x, tx)‖2
2∥∥∥hWA

(φ, χ)
∥∥∥2

2

= E

χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− 2 ‖hWA

(φ, x, tx)‖2
2 + 2τ1 + ‖hWA

(φ, x, tx)‖2
2∥∥∥hWA

(φ, χ)
∥∥∥2

2

= E

χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− ‖hWA

(φ, x, tx)‖2
2 + 2τ1∥∥∥hWA

(φ, χ)
∥∥∥2

2

 .

We already know that

E
χ∈Bb(X),x∈X

 τ1∥∥∥hWA
(φ, χ)

∥∥∥2

2

 < E
γ∈Bb(Y),y∈Y

 τ2∥∥∥hWB
(ψ, γ)

∥∥∥2

2

 ,

therefore, we can make a corresponding replacement with τ2 for network B, and obtain the

56

following relationship:

E
χ∈Bb(X),x∈X

∥∥∥hWA

(φ, χ)
∥∥∥2

2
− ‖hWA

(φ, x, tx)‖2
2 − 2τ1∥∥∥hWA

(φ, χ)
∥∥∥2

2

< E

γ∈Bb(Y),y∈Y

∥∥∥hWB

(ψ, γ)
∥∥∥2

2
− ‖hWB

(ψ, y, ty)‖2
2 − 2τ2∥∥∥hWB

(ψ, γ)
∥∥∥2

2

 .

This combined with equations 3.7 and 3.8 gives us the desired result:

E
χ∈Bb(X),x∈X

(LA(φ, χ)− LA(φ− α, χ))− (LA(φ, x, tx)− LA(φ− α, x, tx))− 2τ1∥∥∥hWA
(φ, χ)

∥∥∥2

2

< E

γ∈Bb(Y),y∈Y

(LB(ψ, γ)− LB(ψ − β, γ))− (LB(ψ, y, ty)− LB(ψ − β, x, tx))− 2τ2∥∥∥hWB
(ψ, γ)

∥∥∥2

2

which means that

E
χ∈Bb(X)

[LA(φ, χ)− LA(φ− α, χ)]

E
(x,tx)∈X×T

[LA(φ, x, tx)− LA(φ− α, x, tx)]

>

E
γ∈Bb(Y)

[LB(ψ, γ)− LB(ψ − β, γ)]

E
(y,ty)∈Y×T

[LB(φ, y, ty)− LB(ψ − β, y, ty)]
.

In other words, the cost inflicted on network A’s learning speed by dissimilarities in the

input space is less for network A than it is for network B. Note that the batch size b is in

this expression. The cost inflicted on individual gain from each step increases with batch

size at the cost of decreased variance between batch gradient estimates.

The result from this theorem about the decrease in benefit from each step on a per-

element basis is important. It demonstrates that there is an important trade-off between

57

the expected per-element decrease in loss per step and the amount of variance experienced

between batch-averaged gradient estimates.

While the variance between batch-averaged gradient estimates scales predictably in pro-

portion with 1√
b

for every network, some networks perform much better at the other end

of the trade-off. Specifically, as for network B that was used in the proof of theorem 3.2,

some networks will experience a greater proportional decrease in per-element loss decrease

from batches of the same size. Because of this, for some networks it may be impossible to

find a batch size that is both large enough to avoid instability between steps in SGD and is

still small enough that learning does not stagnate due to a lack of variance and progress for

individual classes and inputs.

3.2 Gradient Conditioning with Respect to X

Theorem 3.2 gave us some powerful insights into the learning performance of networks with

low gradient batch-dissonance. However, each of the results from Theorem 3.2 in the previous

section relied heavily upon the expectation found in equation (3.1). Naturally, each of the

resulting relationships established were also proven only in expectation. This allowed us to

prove very general statements about the performance differences that can be expected when

a difference in gradient batch-dissonance is observed within a given context. However, this

approach also allowed us to ignore what could amount to a very large amount of variance in

actual performance.

Consider Equation (3.2), shown here:

E
χi∈Bb(X),xj∈X

∥∥∥hWA

(φ, χi)− hWA
(φ, xj)

∥∥∥
2∥∥∥hWA

(φ, χi)
∥∥∥

2

< E

γp∈Bb(Y),yq∈X

∥∥∥hWB

(ψ, γp)− hWB
(ψ, yq)

∥∥∥
2∥∥∥hWB

(ψ, γp)
∥∥∥

2

 . (3.2)

Depending on the dataset or datasets chosen, the variance on the term within each ex-

58

pectation could be extremely large. Furthermore, this statement relies upon a context being

defined for equation (3.1) that could include only very limited regions in the weight space of

each architecture. Theorem 3.2 might be useful for establishing the expected performance

of more than two networks if a reliable context were established, for example evaluating

the performance of several networks on the same dataset in a small region around a local

minimizer. However, it falls far short of being applicable to the wide set of circumstances

that would be required for it to be used in the loss function of an architecture search, or any

of the other purposes established in chapter 1.

The issue preventing the quantity in each expectation in Equation (3.1)

‖hWA
(φ, xi)− hWA

(φ, xj)‖2

‖hWA
(φ, xi)‖2

(3.11)

from being used under more generic circumstances is variance introduced by the samples

xi, xj ∈ X. In other words, it is not normalized for dissimilarity between the two inputs

chosen. Unfortunately, we cannot simply normalize using the distance between the two

inputs. Because the inputs could be so far apart in weight space, there is no reason to believe

that the distance between them actually has any reliable correlation with the differences

between the gradient estimates.

However, if the distance between the chosen samples was small enough we could normalize

using the distance between them (relative to their magnitudes). Normalizing the gradient

step-consistency quantity in section 2.2 was very straightforward, because the step in weight

space between adjacent gradient estimates is typically very small in application already, and

it is easy to reduce the learning rate if needed. However, the discrete nature of the subspace in

X that can be paired with valid labels makes it impossible to reliably sample paired elements

that are close enough for this use case. Instead of using two known samples from the input

space it will be necessary to measure the change in the gradient across a small perturbation

to a single input, with the assumption that the same label is valid for the perturbed input.

In this case the magnitude of the perturbation (relative to the magnitude of the input being

59

perturbed) can be easily controlled to maximize applicability of the resulting metric across

different datasets. This modification results in the quantity below:

‖hWA
(φ, x)− hWA

(φ, x+ δ)‖W
‖hWA

(φ, x)‖W
· ‖x‖X
‖δ‖X

. (3.12)

As it did in section 2.2 for the related equations on gradient step-consistency, the required

normalization of the quantity measured in Theorem 3.2 resulted in the quantity measured

by the relative condition number as it would be used for measuring changes in the gradi-

ent caused by differences in the input. We define the relative condition number for this

circumstance below.

Definition 3.3 (Relative Condition Number with respect to X). Let an architecture g :

((Rm, || · ||W), (Rk, || · ||X)) → Rj and a loss function f : (Rj, T h) → R be given. Using the

notation of Definition 1.3, the relative gradient condition number κhW,X(w, x, t), w ∈W, x ∈

X, t ∈ Th, with respect to the input space X is defined as follows:

κhW,X(w, x, t) = κ̂hW,X(w, x, t) · ||x||X
||hW(w, x, t)||W

(3.13)

where

κ̂hW,X(w, x, t) = lim
ε→0

sup
||δ||X<ε

||hW(w, x+ δ, t)− hW(w, x, t)||W
||δ||X

= ||JhW,X(w, x, t)||X,W ,

JhW,X(w) is the Jacobian of hW with respect to X at w and || · ||X,W is the induced norm on

transformations between X and W. The second equality in each case holds if and only if

JhW,X(w, x, t) is defined at (w, x, t).

By theorem 1.6, if hW(w, x, t) is differentiable with respect to X at (w, x, t) ∈W×X×Th,

then an ε > 0 exists such that

κhW,X(w, x, t) + o(ε) ≥ ||hW(w, x+ δ, t)− hW(w, x, t)||W||x||X
||δ||X||hW(w, x, t)||W

(3.14)

for any δ ∈ X where ||δ||W < ε.

60

This allows us to define a viable metric for gradient batch-dissonance that does not rely

on an expectation, a limit, or a supremum: the approximate best lower bound on κhW,X.

Definition 3.4 (Approximate Best Lower Bound on κhW,X). Let ε > 0 and n ∈ N be given

and let Bε(0) = {p ∈ X : 0 < ||p||X < ε}. Then we define our approximate best lower bound

on κhW,X(w, x, t) as

κ
'
hW,X(w, x, t) := max

δk∈Bε(0),0≤k<n

||hW(w, x+ δk, t)− hW(w, x, t)||W||x||X
||δk||X||hW(w, x, t)||W

(3.15)

with an accompanying average defined using a batch of size b as follows:

κ
'
hW,X(w, χ) :=

1

m

∑
(x,t)i∈χ,i<m

(
max
δ∈γn

||hW(w, x+ δ, t)− hW(w, x, t)||W||x||X
||δ||X||hW(w, x, t)||W

)
(3.16)

where γn = {γk ∈ Bε(0)|0 ≤ k < n}

and m,n ≤ b for optimal use of parallelization.

10 100
mask size (%)

0

2

4

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

6.25

6.50

6.75

se
co

nd
s

Mean Computation Time

Figure 3.1: Mask Effectiveness for Gradient Conditioning w.r.t. X

If a batch size b = max(m,n) is used and the same set Γn is used for every (x, t)i ∈ χ,

then this metric can be calculated in n iterations, with each iteration requiring a forward

and backward pass through the network. However, because two sets of pre-averaged batch

gradients must be used simultaneously it can nearly double the worst-case memory usage that

occurs during a typical optimization step with the same batch-size if implemented without

the memory-reducing random masking discussed in section 1.6. However, as can be seen

in figure 3.1, the temporal savings achieved in the norm calculation from random masking

61

was not sufficient to overcome the additional cost incurred by our non-parallelized masking

implementation.

3.3 Generating Targeted Input Perturbation Samples

Previously, in section 2.3, we discussed how random directions in weight space are frequently

degenerate, meaning changes along those directions have very little impact on the perfor-

mance of the network. This may also true in the input space for networks that have been

partially or fully trained. For example, consider a simple image classification network. If the

network is able to generalize and correctly identify a given class of images, it must also be

able to ignore changes to each image along directions that don’t change the classification.

This expected insensitivity means that the lower bound on the maximum in equation (3.16)

could converge very slowly, possibly requiring a much larger sample size than is desireable.

In section 2.3, we described how we can avoid sampling degenerate directions in the

weight space by sampling perturbation directions from the individual gradient estimates,

hW(w, xi, ti), in the evaluating batch. Directions sampled in this way are less likely to be

degenerate and have a higher expected change in loss than samples drawn via a fully random

process. A larger expected change in loss means that they will also have a higher expected

change in the gradient (which depends directly on the loss via the chain rule), thus increasing

the initial rate of convergence for the maximum in equation (2.5).

We can decrease the likelihood of sampling degenerate directions in the input space in a

similar way by sampling from from a batch of gradient estimates with respect to the input

space. A gradient taken with respect to a given input maximizes the change in loss for a

sufficiently small perturbation of fixed size for that input. Furthermore, this effect generalizes

to a lesser degree to other inputs from the same class, resulting in an expected maximum

change in loss that is greater than for fully random samples in partially or fully converged

networks. This generalization effect has been demonstrated in studies on adversarial attacks

[10, 21, 27], where it has been found that adversarially targeted noise generalizes across

62

inputs in the same class, and even between networks with different architectures.

We will generate samples using gradients with respect to the input as detailed in the

following definition:

Definition 3.5 (Targeted Sampling Technique for Input Perturbation Directions).

Let a batch χ ∈ Bb(X) and a sample size n < b be given. When generating input perturbation

direction samples, δi, where it is desireable to maximize the change in loss or in the gradient

(such as δ in equations 3.15 and 3.16), the samples will be drawn from the set

{
η ζ hX(w, xi, ti)

‖hX(w, xi, ti)‖X
| ζ ∼ U({−1, 1}), hX(w, xi, ti) ∈ hX(w, χ)

}
(3.17)

where η ∈ R is the desired scale. Unless otherwise specified we will use η = .001.

We can efficiently calculate up to b targeted samples simply by adding the input layer to

the backward pass used to calculate the samples hW(w, x, t) ∈ hW(w, χ) that are already used

in equation (3.16) —the input layer is computationally identical to any other layer in the

backward pass, and increases the expense at the same rate that adding additional learnable

parameters would. We performed a test comparing this targeted sampling method to samples

with elements drawn from a uniform distribution with the same mean and standard deviation

as the elements of the source batch and scaled down by the same scaling factor η = .001.

The results of this test can be seen in figure 3.2. Unlike in section 2.3, the targeted sampling

technique had no apparent benefit in maximizing the lower bound on the condition number

in equation (3.16). We also added an interpolation toward another random element of the

batch as a third direction sample option and it also performed identically to random sampling

in the 11-layer convolutional network. Because generating the targeted samples is so cheap

however we will continue using that method in case it has a larger impact near the end of

training or in deeper networks.

63

0 1000 2000 3000 4000 5000 6000 7000 8000
iteration

0.036

0.038

0.040

0.042

ex
pe

ct
ed

 m
ax

im
um

 o
ve

r 1
6

sa
m

pl
es

Targeted Sampling Methods: Maximizing the Lower Bound on Gradient Conditioning w.r.t. the Input

Individual Gradient Directions
Random Directions
Interpolation

Figure 3.2: Targeted vs Random Sampling in X. During the training of an 11 layer convolutional
network (with normalization but without skip connections), 64 input perturbation directions were
generated via the sampling methods described in section 3.3. Bootstrapping was used to estimate
an expected maximum over a sample size of 16.

Using the input-gradient targeted sampling technique, we measured the gradient condi-

tioning with respect to the input space for several networks throughout a full training run.

The results are displayed in figure 3.3.

64

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0094

0.0096

0.0098

0.0100

11
26

3

51

11

26

3

Moving Average: h , (w, x, t) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0092

0.0094

0.0096

0.0098

0.0100

0.0102

0.0104

11
26
3
11

26

311
26

3

Moving Average: h , (w, x, t) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

11

263

51

1126

3

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.3: The Gradient Conditioning w.r.t. the Input Space (see Definition 3.16) was measured
throughout training for several different types of architectures. No apparent correlation is apparent
between learning effectiveness and the Gradient Conditioning w.r.t. the Input Space. In every case
the metric was extremely consistent (notice the scale in the upper two graphs).
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

From figure 3.3 above it seems that there is very little correlation between training success

and measurements of the lower bound on our relative gradient condition number with respect

to the input space. We had in fact expected plots that looked similar to this from the targeted

sampling test performed previously. However, in the figure below it seems that there may

be a correlation between our lower gradient conditioning bound and the slope of the loss

function. It is difficult to tell however because the scale on each gradient conditioning axis

is quite small.

65

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.0096

0.0098

0.0100

0.0102

0.0104
sm

oo
th

ed

h
,

(w
,x

,t
)

11

11

26

26

3

3

511126

3

11

11

26

26

3

3

h , (w, x, t) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.0095

0.0096

0.0097

0.0098

0.0099

0.0100

0.0101

0.0102

sm
oo

th
ed

h

,
(w

,x
,t

)

11

11

26

26

3

3

51

11

26
3

11

11

26

26

3

3

h , (w, x, t) vs Lowest Training Loss

Figure 3.4: The Gradient Conditioning w.r.t. the Input Space was measured throughout training
for several different types of architectures at the point of steepest descent as well as at the point
with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a point for
each network. Excluding the outlier ConvNet26, there is a strong correlation between the fastest
rate of descent and the gradient conditioning w.r.t. the input at that point.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

While the correlation between gradient conditioning in the weight space and the highest

average decrease in loss (a moving average over 20 samples) is not as pronounced as we would

like, it does seem clear that exceptionally poor conditioning results in a near complete lack

of convergence.

3.4 Literature and Metrics on Gradient Batch-Dissonance

Section 2.4 on literature relating to conditioning in the weight space was relatively short.

While there are dozens of papers related to smoothness in the loss surface and gradient

66

step-conditioning, the methods used in those papers are generally very expensive to use

and are not easy to compress into a metric that might be used to direct an architecture

search. Fortunately, however, there have been several recent papers related to gradient

batch-dissonance and conditioning in the input that are easily applicable to our own empirical

study. Specifically, several papers introduce strongly related metrics on individual or batch-

gradient variance that are easily adapted for our own tests. Because of that, the literature

review for this chapter has been broken down into several sections, and each one includes

some of our own results in addition to an actual review of the paper under consideration.

Papers relating to gradient batch-dissonance and conditioning with respect to the input

space generally fall into two broad categories. The first category is primarily concerned with

the ability of neural networks to generalize in the input space and with their robustness

against input modification adversarial attacks [10, 21, 27]. The second category is more

directly related to this thesis, in that they are concerned with the amount of variance that

occurs between gradient estimates and the effect this has on training. Several different

metrics have been proposed by these papers to measure gradient variance, and each paper

establishes theorems or numerical correlations between their metric and learning ability.

These papers have introduced several different terms to describe the same issue. These

include: gradient confusion, gradient step-consistency, gradient diversity, shattered gradi-

ents, gradient whitening, gradient coherence, etc. Some of these refer to batch-dissonance

or variance between batch gradient estimates and some refer to variance between individual

estimates within each batch. To reduce confusion we will consistently use the phrase gra-

dient batch-dissonance. Unless otherwise specified, this refers to batch-dissonance between

individual gradient estimates at a fixed point in weight space. The phrase batch gradient

batch-dissonance will be used when referring to batches.

A metric called β-smoothness was recently introduced by Yang et al. in [10] that is almost

identical to the absolute condition number in Definition 3.4, except it takes the maximum

over pairs of distinct inputs instead of perturbing individual ones. They note that similar

67

metrics have been seen in the literature several times previously, and that their definition

can be interpreted as the Lipschitz bound on hW. Furthermore, they demonstrate that it is

an important indicator of robustness against adversarial attacks.

Another paper, the one that introduced the phrases “gradient whitening” and “shattered

gradients”, provided the original motivation for this thesis. In their paper “The Shattered

Gradients Problem: If resnets are the answer, then what is the question?” [1] Balduzzi et al.

strike particularly closely to our topic. Balduzzi et al. clearly demonstrate something they

call gradient whitening, a phenomenon where changes in the derivative of the loss function

caused by small changes to the input lose any visible structure with respect to the size of the

change in the input. Because this loss of structure makes gradient samples look like white

noise and they name it gradient whitening.

After defining a metric to measure gradient whitening, Balduzzi et al. found two notable

architectural traits that significantly reduce gradient whitening and allow for the training of

much deeper networks. The first is skip connections, and the second is use of the activation

function CReLU with a specific initialization pattern that minimizes the discontinuity in the

derivative of CReLU. We consider both more in depth in our first subsection on literature

related to conditioning in X below.

3.5 Shattered Gradients, the Gradient Rank Metric, and CReLU

In their paper “The Shattered Gradients Problem: If resnets are the answer, then what is the

question?” [1], Balduzzi et al. question why, when gradient magnitudes are well managed by

careful initialization and batch normalization, that architectures containing skip connections

perform so much better in practice than feedforward networks.

To answer this question they investigate the condition of the loss function with respect

to the input space and subsequently define a metric to measure variance in the partial

derivatives of the loss function with respect to the input space (hX(w, x, t) as defined in

Definition 1.3). We are primarily concerned with the conditioning of the gradient hW(w, x, t)

68

with respect to the input space, but these are directly related. Namely, if the loss function

itself is poorly conditioned with respect to the input, then the gradient hW(w, x, t) will likely

also be poorly conditioned with respect to the input.

Among other things, in order to empirically demonstrate the conditioning of ResNet and

standard feedforward architectures of various depths, they construct several architectures, all

of which map R1 → R1, such that hX(w, x, t) ∈ R1, and plot hX(w, x, t) vs x for −2 ≤ x ≤ 2

giving the results shown in figure 3.5.

Figure 3.5: Using a small toy network mapping a 1-dimensional input to a 1-dimensional output,
Balduzzi et al. demonstrated that gradients lose structure in deep feedforward networks without
skip connections. This gradient decay is much less pronounced in networks containing residual
connections. Figure found in [1] under the name Figure 1.

For the tested networks, they note that hX(w, x, t) resembles brown noise in the shal-

low networks and in ResNet architectures, and resembles white noise in the non-shallow

feedforward networks without skip connections. In other words, they show that hX(w, x, t)

is poorly conditioned in their non-shallow architectures without skip connections. They

name this phenomenon gradient whitening, and refer to it as the shattered gradients prob-

lem. Furthermore, they note that gradient whitening is further reduced by use of batch

normalization.

Thereafter they propose using a metric known as the relative effective rank to measure

dissimilarity between values of hX(w, x, t) for each element of a mini-batch χ. We will use

the name relative gradient rank to refer to the relative effective rank as used in this context

and define this below.

69

Definition 3.6. The effective, numerical, or stable rank of a matrix A is defined as follows:

R(A) =
‖A‖2

F

‖A‖2
2

=
tr(ATA)

‖A‖2
2

. (3.18)

R(A) is bounded above by the rank of A. The effective rank of A relative to Y is

R(A)

R(Y)
(3.19)

and it compares the second moments of A and Y .

Definition 3.7 (Relative Gradient Rank). Let an architecture g : ((Rm, || · ||W), (Rk, || ·

||X)) → Rj and a loss function f : (Rj, T h) → R be given. Using the notation given

in Definition 1.3, and the effective rank R from 3.18, we define the relative gradient rank

∆XR(h,w, χ) as follows:

∆XR(h,w, χ) :=
R(A(h,w, χ))

R(Y)
(3.20)

w ∈W, χ ∈ Bb, and Y ∈ {Λ ∈ Rdim(A(h,w,χ))|λ ∼ N (0, 1) ∀λ ∈ Λ}

where

A(h,w, χ) =

[
h(w, x1, t1) h(w, x2, t2) · · · h(w, xb, tb)

]
, (xi, ti) ∈ χ . (3.21)

If h = hX, then ∆XR(h,w, χ) is defined as in Balduzzi et al. [1]. Using h = hW instead

results in a metric more closely aligned with κhW,X the other metrics introduced later in this

section.

As mentioned previously the relative gradient rank is a measure of dissimilarity between

gradient samples calculated using elements of a batch. Generally, a matrix constructed using

gradient samples as in equation (3.21) will have low rank if the gradient samples (columns)

are highly correlated and will have a higher rank if the gradient samples are less similar.

70

Because the matrix Y in equation (3.20) is randomly sampled its effective rank represents

the worst case scenario. Thus a relative effective rank close to 1 means the gradient samples

are unstructured, while a relative effective rank closer to 0 means the gradient samples are

highly correlated, and thus informative. The relative gradient rank matrix is normalized for

gradient magnitudes but does not use any information about the disparity of values within

the batch used to calculate it, and thus is a measure of relative variance and not conditioning.

Unfortunately, the gradient rank metric can be prohibitively expensive to calculate.

hX(w, x, t) is usually significantly smaller in dimension than hW(w, x, t), which may be one

reason Balduzzi et al. chose to investigate the conditioning of hX(w, x, t) instead of hW(w, x, t)

to begin with. Fortunately, the effective rank of the randomly sampled matrix Y is dependent

only on the dimensions of A, so we can increase efficiency by calculating the effective rank of

a few samples of a given dimension and storing the average for repeated use. Furthermore,

the use of random masking can further reduce the cost of calculating ∆XR(hW, w, χ) as can

be seen in figure 3.6 below (also see section 1.6).

10 100
mask size (%)

0

5

10

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

0.4

0.6

se
co

nd
s

Mean Computation Time

Figure 3.6: Mask Effectiveness for ∆XR(hW, w, χ)

We were able to calculate both ∆XR(hX, w, χ) and ∆XR(hW, w, χ) throughout training

for several networks of various sizes and architectural styles. The results can be seen in figure

3.7

71

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

11

26

3

51

11
263

Moving Average: R(h , w,) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.06

0.08

0.10

0.12

0.14

1126

3

11

26

3

11
26

3

Moving Average: R(h , w,) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

11

263

51

1126

3

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.7: The Weight Gradient Rank (see Definition 3.20) was measured throughout training for
several different types of architectures. No apparent trends are visible in this view of the collected
results, but figure 3.8 contains more compelling trends visible in this metric.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Notably, ∆XR(hX, w, χ) tends to decrease throughout training, although the correlation

with training speed or final performance does not seem to be strong.

72

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
sm

oo
th

ed

R(
h

,w
,

)

11

11

26

26

3
3

51

11
26

3
11

11
26

26

33

R(h , w,) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

sm
oo

th
ed

R(

h
,w

,
)

11
11

26

26
3

3

51

11

26

311

11
26

26

3
3

R(h , w,) vs Lowest Training Loss

Figure 3.8: The Weight Gradient Rank metric (see Definition 3.20) was measured throughout
training for several different types of architectures at the point of steepest descent as well as at the
point with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a
point for each network. Excluding the outlier ConvNet26, there is a strong correlation between the
fastest rate of descent and the Weight Gradient Rank at that point. A correlation is not evident
at the point of lowest loss however.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

∆XR(hW, w, χ) seems to have a stronger correlation with training speed and final per-

formance than ∆XR(hX, w, χ). In particular, networks measuring higher in ∆XR(hW, w, χ)

never learn appreciably at all, although this is also true of some networks that have low

∆XR(hW, w, χ) values as well.

73

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 11
26

3

51

11
26

3

10176
11
26

3
51

101
11
15126

3

5176

101
151

76

Moving Average: R(h , w,) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1126

3

11
26

3

11

26

3

Moving Average: R(h , w,) - Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.9: The Input Gradient Rank (see Definition 3.20) was measured throughout training for
several different types of architectures. Interestingly, some architectures experienced a significant
decrease in Input Gradient Rank without converging appreciably.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

74

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.05

0.10

0.15

0.20

0.25

0.30

0.35
sm

oo
th

ed

R(
h

,w
,

)

11

11

26

26

33 51

1126

3
11

11

26
26

33

10176
11

26

3
51

101

11

15126

3

51
76

101
151

76

R(h , w,) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

sm
oo

th
ed

R(

h
,w

,
)

11

11

26

26

3
3 51

11

26

3
11

11

26 26
3 3

10176
11

26

3
51

101

11

151
26

3
51

76
101

151

76

R(h , w,) vs Lowest Training Loss

Figure 3.10: The Input Gradient Rank metric (see Definition 3.20) was measured throughout
training for several different types of architectures at the point of steepest descent as well as at the
point with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as
a point for each network. Excluding the outlier ConvNet26, there is a strong correlation between
the fastest rate of descent and the Input Gradient Rank at that point. Furthermore, it is apparent
that networks with very high Input Gradient Rank often fail to converge.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

3.5.1 Pseudo-Linear Networks and Gradient Whitening. In order to demonstrate

further that gradient whitening significantly impacts SGD in a negative way, Balduzzi et al.

carefully construct a network which minimizes the variance in hX(w, x, t). They do this by

carefully initializing a fully connected network in a way that causes the activation functions

throughout the network to act like the identity function, thereby removing the discontinuity

in every activation function. In order to do this they use an activation function called the

concatenated-ReLU, or CReLU.

75

Definition 3.8 (CReLU activation function).

CReLU(x) =

 ReLU(x)

−ReLU(x)

 . (3.22)

The CReLU activation function has significant advantages over ReLU in many applica-

tions. For example, in convolutional neural networks, which have a strong tendency to create

mirrored filters, using CReLU nearly doubles the effective information density per filter in

early layers by automatically supplying the mirrored version of every filter [20].

By initializing the weight matrix of a fully connected layer with a mirrored block struc-

ture, [W −W], while using a CReLU activation function, Balduzzi et al. create a layer which

behaves linearly at initialization, causing f ′(x) to be constant for the first step of training.

Definition 3.9 (Looks-Linear Initialization). Let W ∈ Rm,n be initialized orthogonally.

Using a CReLU activation function with a mirrored block structure (each block is W) as

shown below results in linear behavior at initialization.

[W −W] ·

 ReLU(x)

−ReLU(x)

 = WReLU(x)−WReLU(−x) = Wx . (3.23)

At initialization, fully-connected layers initialized in this way with CReLU behave per-

fectly linearly, and have no discontinuities at all. After the first update step affecting each

paired set of weights a discontinuity appears, but the discontinuity is significantly smaller

than that of non-symmetrically initialized layers and some mirrored pairs persist during

training. Figure 3.11 was generated by training a 40-layer fully-connected network. Each

layer except the last used the CReLU activation function and was initialized according to

Definition 3.9. The pairwise distance was calculated by taking the absolute value of the

sum of two weights (since they have opposite signs when paired). We were unable to train

a comparable network without symmetric initialization. Every attempt diverged or failed

to converge while the symmetrically initialized 40-layer fully-connected network converged

76

smoothly as long as batch normalization was used, though significantly more slowly than a

ResNet with the same number of layers and total parameters did.

0.01

0.10

1.00

di
st

an
ce

median absolute pairwise distance
Final Layer

0 2 4 6 8 10
epoch

1

100

pe
rc

en
t

pairs less than 0.001 apart

5

10

15

20

25

30

35

40

la
ye

r d
ep

th

Figure 3.11: Mirrored weights in Looks-Linear Layers persist during training.

Even though fully linear behavior is lost at the first update step, Balduzzi et al. demon-

strate that the looks-linear initialization performs at a level with ResNet architectures con-

sistently in architectures up to 200 layers deep, while equivalently sized deep architectures

initialized without the mirrored block structure or using ReLU instead of CReLU fail to

learn appreciably. We experienced identical results in our own tests.

3.6 Non-Orthogonal Variance and Gradient Confusion

Our previous discussion of variance and conditioning in gradient estimates have operated

under the assumption that high variance in the gradient results in poor convergence, which

is generally true. However, in their paper “The Impact of Neural Network Overparameter-

ization on Gradient Confusion and Stochastic Gradient Descent” [18], Sankararaman et al.

make the more targeted and restricted argument that negative correlation between batch

gradient estimates hW(w, χi) interferes with training. In other words, that variance be-

tween non-orthogonal portions of different gradient estimates is harmful. In order to study

the worst case amount of variance along non-orthogonal directions between batch gradient

estimates they define the following bound:

77

Definition 3.10 (Gradient Confusion Bound η). Let an architecture g : ((Rm, ||·||W), (Rk, ||·

||X)) → Rj and a loss function f : (Rj, T h) → R be given. Using the notation given in

Definition 1.3, the gradient estimates hW(w, χ) calculated at a fixed w ∈ W using batches

from a set of n batches of size b, {χ ∈ Bb | 0 < i ≤ n}, have gradient confusion bound η ≥ 0

if the pair-wise inner products between gradients satisfy:

−η ≤ 〈hW(w, χi), hW(w, χj)〉, ∀ χi, χj ∈ {χ ∈ Bb | 0 < i ≤ n}, i 6= j .

In order to facilitate efficient comparison of this bound between networks of different

sizes, we define a normalized estimate of this bound over a fixed set of n sampled pairs of

batches.

Definition 3.11 (Gradient Confusion Bound Estimate ∆WCn(w)). Let an architecture g :

((Rm, || · ||W), (Rk, || · ||X)) → Rj and a loss function f : (Rj, T h) → R be given. Using the

notation given in Definition 1.3, we define the gradient confusion bound estimate over a set

of n pairs of batches of size b as follows:

∆XCn(w) := −min

(
min

(χi,χj)∈ζn

(
〈hW(w, χi), hW(w, χj)〉W

||hW(w, χi)||W · ||hW(w, χj)||W

)
, 0

)
, (3.24)

where ζn = {(χi, χj)k | χi, χj ∈ Bb(X), i 6= j, 0 < k < n} .

We note that Sankararaman et al. also used a sampled set of n pairs of batches to

estimate η in practice instead of using every possible pairing from a given set of batches.

Furthermore, the normalization is performed as suggested at the end of their paper, making

∆WCn(w) equivalent to the most negative cosine similarity over the sampled pairs of batches.

We were able to measure gradient confusion throughout training for a significant variety

of network depths and architectural styles. The results can be seen in figures 3.12 and 3.13

below.

78

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

1126

3

511126

3

101
151

76

11

26

3

51

101

11

151

26

3

51
76

101
151
76

Moving Average: Cn(w) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.1

0.2

0.3

0.4

0.5

0.6

11
26

3

11

26
3

11

26

3

Moving Average: Cn(w) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.12: The Gradient Confusion metric (see Definition 3.24) was measured throughout training
for several different types of architectures. It is difficult to observe compelling trends in this figure
about the Gradient Confusion Metric (figure 3.13 instead), however, it is interesting to note that
the Gradient Confusion can sometimes change significantly for a network over many epochs of
training that fail to decrease the loss appreciably (see Ortho11, which begins to converge only near
the end of the testing window but for which Gradient Confusion increases consistently throughout
training).
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Notably, there is a strongly pronounced correlation between gradient confusion and train-

ing ability. In figure 3.13 below it can be seen that final performance and speed of training are

both strongly correlated with gradient confusion measurements, with low gradient confusion

being better of course.

79

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.0

0.1

0.2

0.3

0.4

0.5
sm

oo
th

ed

C n
(w

)

11

11

26

26

3

3

51
11
26

3

11

11

26

26

3
3

101
151

76

11

26

3

51

101

11

151

26

3

51

76

101

151

76

Cn(w) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.0

0.1

0.2

0.3

0.4

0.5

sm
oo

th
ed

C n

(w
)

11

11

26

26

3
3

51

11

26

3

11

11

26

26

3

3

101

15176

11

26

3

51

101

11

151

26

3

51

76

101

151

76

Cn(w) vs Lowest Training Loss

Figure 3.13: The Gradient Confusion metric (see Definition 3.24) was measured throughout training
for several different types of architectures at the point of steepest descent as well as at the point
with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a point
for each network. There is a clear correlation between the fastest rate of descent and the Gradient
Confusion at the point of steepest descent. There is also a strong correlation between lower Gradient
Confusion and improved final performance.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

Theories and Results from Sankararaman et al. There are a significant number of

theories and interesting implications in this paper, but we will restrict ourselves to the most

relevant, namely:

(i) Extremely low gradient confusion measurements are correlated with fast convergence

and a lower noise floor at convergence (i.e. better final performance).

(ii) They demonstrate that increasing width in an architecture of fixed depth reduces

gradient confusion and speeds network training.

80

(iii) They demonstrate that increasing depth in a narrow network increases gradient con-

fusion and makes the network difficult to train.

(iv) They find that adding skip-connections or batch normalization both individually im-

prove training and reduce gradient confusion. However, they note specifically that

using both together enabled the training of much deeper networks than using either

alone, and that gradient confusion measurements tend to be very low even in very deep

networks in this case.

(v) When gradient magnitude and variance are bounded reducing the learning rate is

guaranteed to reduce the variance between gradient estimates taken before and after

each step.

(vi) Finally, they prove that linear networks (i.e. fully connected networks without activa-

tion functions) with orthogonal initialization are independent of gradient confusion at

initialization.

These results and conclusions agree very well with findings from other papers we have

cited, and we expect that we can validate these findings in our own tests. Item (iv) above was

particularly striking to us, although not surprising. Linear networks are generally not used

in practice because they cannot express non-linear behavior. Without activation functions

between layers the network can be collapsed to a single matrix multiplication with no loss

of information, hence the independence of depth if each layer is initialized orthogonally.

However, the Looks-Linear Initialization discussed in the previous section (see Definition

3.9) is a peculiar network configuration that has the potential to learn non-linear behavior,

but is linear at initialization. Even more interesting is that it performs astoundingly well for

a fully-connected network. We were able to train a 200-layer fully-connected network using

CReLU and the Looks-Linear initialization to similar performance as a 200-layer ResNet.

Unfortunately, however, we did not observe a striking difference in our measurements of

the Looks-Linear architecture compared to other linear networks. Because of a package

81

incompatibility we were unable to measure our full set of metrics on any networks containing

the CReLU activation function, so we intend to investigate the Looks-Linear initialization

further in the future.

10 100
mask size (%)

0

5

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

10.6

10.8

11.0

se
co

nd
s

Mean Computation Time

Figure 3.14: Mask Effectiveness for the Gradient Confusion Metric

It should be noted that while Sankararaman et al. established concrete and meaningful

results using minimum cosine similarity, they were not the only group to use it as a gradient

metric in deep learning. Minimum cosine similarity was used separately by [27]. Since

Sankararaman et al. published this paper however, the Gradient Confusion metric as defined

by Sankararaman et al. has been used or referenced in several other papers: [3, 6, 11, 23].

Of these papers, we are most interested in the results of Guilin et al. [11], who successfully

used a normalized form of the Gradient Confusion metric as the optimization parameter in

an architecture search algorithm, which is one of our own objectives.

3.7 Gradient Diversity

While most of the papers we have found that are related to our topics of study are interested

in minimizing the variance between gradients estimated with different inputs, the authors

of [29] focus on the detriments caused by too little variance between gradients for different

inputs. Yin et al. claim that too much similarity can be detrimental to stability in learning

near the end of training, and can cause significant loss in the ability of a network to generalize.

They use a metric they name Gradient Diversity to measure the variance between gradients

calculated with various sizes of mini-batches. Notably, this metric is equally well, if not

better, suited to measuring high variance between batch gradient estimates. We will formally

82

define gradient diversity as it is used by Yin et al. and measure it in our own tests with an

interest in both the high and low variance cases.

Definition 3.12 (Gradient Diversity). Let an architecture g : ((Rm, ||·||W), (Rk, ||·||X))→ Rj

and a loss function f : (Rj, T h)→ R be given. Using the notation given in Definition 1.3, we

define the Gradient Diversity ∆XDn(w) metric using a set of n batches χi ∈ Bb as follows:

∆XDn(w) :=

∑n
i=1

∥∥∥hW(w, χi)
∥∥∥2

2∥∥∥∑n
i=1 hW(w, χi)

∥∥∥2

2

=

∑n
i=1

∥∥∥hW(w, χi)
∥∥∥2

2∑n
i=1

∥∥∥hW(w, χi)
∥∥∥2

2
+
∑

i 6=j〈hW(w, χi), hW(w, χj)〉W
(3.25)

with the final equality following via the linearity and symmetry conditions of the inner

product over the real space Rm.

10 100
mask size (%)

0

2

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

7.2

7.4

se
co

nd
s

Mean Computation Time

Figure 3.15: Because Gradient Diversity requires several backward calls, and the vector two norm
is so cheap to calculate, it is significantly cheaper temporally to use the full gradient vector than
to mask it. Gradient Diversity also requires very little additional memory to calculate.

Because the only interaction between gradient estimates for different batches in the above

formula is in an inner product, the magnitudes calculated serve only in a normalizing capac-

ity. In that sense gradient diversity measures much the same thing as the gradient confusion.

Specifically, gradient diversity is concerned with the net dissimilarity between batch gradi-

ent estimates while gradient confusion measures the worst case dissimilarity. The gradient

diversity metric has a large advantage in numerical implementation over gradient confusion

or the condition numbers however. Namely, it doesn’t require temporary storage of every

gradient sample used and doesn’t actually require the calculation of pairwise inner products.

Instead samples of hW(w, χ) and ||hW(w, χ)||22 can be summed as they are drawn. Note that

83

the gradient diversity does have a dependence on the sample size n, thus the same sample

size should be used when comparing any two given networks.

We were able to measure gradient diversity throughout training for a variety of network

depths and architectural styles. The results can be seen in figures 3.16 and 3.17.

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.2

0.4

0.6

0.8

1.0

1.2

11

26

3

51

1126
3
101
151

76

1126
3

51

101

11

151

26
3

51
76

101

151

76

Moving Average: Dn(w) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

11

26

3

1126
3

11

26

3

Moving Average: Dn(w) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.16: The Gradient Diversity metric (see Definition 3.25) was measured throughout training
for several different types of architectures. It is difficult to observe compelling trends in this figure
(see figure 3.17 instead). In general however, it seems that gradient diversity tends to increase
slowly throughout training when networks converge successfully.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Similar to the Gradient Confusion metric, there is a pronounced correlation between

gradient diversity and training ability. In figure 3.17 it can be seen that final performance

and speed of training are both correlated with low gradient diversity.

84

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.2

0.4

0.6

0.8

1.0

1.2

1.4
sm

oo
th

ed

D
n(

w
)

11

11

26

26

3

3 51
11
26

3

1111
26

26

3
3101
151

761126
3

51

101

11

151

26

3

51

76

101

151

76

Dn(w) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sm
oo

th
ed

D

n(
w

)

11

11

26

26

3
3 51

11

26

3

11 11

26

26

3 3 101

1517611
26

3

51

101

11

151

26

3

51

76

101

151

76

Dn(w) vs Lowest Training Loss

Figure 3.17: The Gradient Diversity metric (see Definition 3.25) was measured throughout training
for several different types of architectures at the point of steepest descent as well as at the point
with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a point
for each network. There is a clear correlation between the fastest rate of descent and the Gradient
Diversity at that point. Furthermore, there is a strong correlation between lower Gradient Diversity
and improved final performance as well.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

A few other papers have referenced and used the gradient diversity, including [10, 27] on

adversarial robustness and transfer.

3.7.1 Is Variance Beneficial. It is clear that extremely low variance between gradient

estimates can slow learning significantly. This has been demonstrated in several papers,

including Ghorbani et al. [5], Neelakantan et al. [13], and the two papers just cited on

adversarial robustness. In figure 3.17 it appears as though low measurements in the gradient

diversity metric strictly benefit a network during training, in particular near the end of train-

85

ing. This was also the case for the gradient confusion metric. However, low measurements

in the metric Gradient Coherence we introduce in the following section is correlated with

weaker performance in some types of networks (see figure 3.20).

3.8 Gradient Coherence

The past few years has seen a significant interest in a particular phenomenon. Specifically,

why do networks trained on real datasets (namely ones where training labels are assigned via

some non-random process) generalize so much better than networks trained with randomly

generated labels when similar accuracy is obtained on the training set. The intuitive answer

is that networks trained with meaningful labels learn generalizeable trends in the data, and

networks trained with random labels are forced to memorize inputs because trends in the

data are dissociated from the training label.

The paper “Coherent Gradients: An Approach to Understanding Generalization in Gra-

dient Descent-Based Optimization” [2] by Satrajit Chatterjee at Google AI proposed a

straightforward theory along these lines. Though the suggested ideas were present to an

extent in the literature prior to this time, Chatterjee puts it all together with the name the

Coherent Gradients hypothesis, included here:

1. Gradients are coherent, i.e, similar examples (or parts of examples) have

similar gradients (or similar components of gradients) and dissimilar examples

have dissimilar gradients.

2. Since the overall gradient is the sum of the per-example gradients, it is

stronger in directions where the per-example gradients are similar and reinforce

each other and weaker in other directions where they are different and do not

add up.

3. Since network parameters are updated proportionally to gradients, they

change faster in the direction of stronger gradients.

86

4. Thus the changes to the network during training are biased towards those

that simultaneously benefit many examples instead of a few (or one example).

They note that previous papers (published at ICLR 2020) focus their analysis on converg-

ing to generalizeable points in weight space, but Chatterjee argues that algorithmic stability,

and generalizeability at all points during training, is more likely to yield meaningful results.

This theorem and idea align extremely well with our analysis on gradient conditioning with

respect to the input space, though the initial motivation is different.

The subsequent paper, “Making Coherence Out of Nothing at All: Measuring the Evo-

lution of Gradient Alignment” [3] by Chatterjee and Piotr Zielinski, also at Google AI,

introduces a metric to measure this, defined as follows:

Definition 3.13 (Gradient Coherence). Let an architecture g : ((Rm, || · ||W), (Rk, || · ||X))→

Rj and a loss function f : (Rj, T h) → R be given. Using the notation given in Definition

1.3, we define the Gradient Coherence as follows:

∆XH(w) :=

E
(xi,ti)∼X×Th

[〈hW(w), hW(w, xi, ti)〉W]

E
(xi,ti)∼X×Th

[〈hW(w, xi, ti), hW(w, xi, ti)〉W]
.

For a sample size b this can be calculated as

∆XHb(w) :=
1
b

∑
(xi,ti)∈χ〈hW(w, χ), hW(w, xi, ti)〉W

1
b

∑
(xi,ti)∈χ〈hW(w, xi, ti), hW(w, xi, ti)〉W

=

∑
(xi,ti)∈χ〈hW(w, χ), hW(w, xi, ti)〉W∑

(xi,ti)∈χ ||hW(w, xi, ti)||2W
(3.26)

where χ ∈ Bb.

Notably, this is extremely similar to both the gradient confusion and gradient diversity

metrics, and this is acknowledged at introduction. However, Chatterjee et al. make a very

particular choice of normalization constant, which allows them to demonstrate that their

metric, (∆XH(w)),

“is the change in the overall loss due to a small gradient step as a fraction of the

maximum possible change in loss if each component of the loss could be optimized

87

independently.”

Furthermore, they show that ∆XHb(w) is the average fraction of elements in χ ∈ Bb that

a given hW(w, xi, ti) decreases the loss for, itself included. This is more easily interpretable

than the gradient confusion or gradient diversity metrics, and like the other two, is scale

invariant.

The gradient coherence metric has a further advantage over the gradient confusion,

namely that it can be calculated in O(b) time without compromising the search space where

gradient confusion relies on sampling a subset of possible pairs over the targeted sample

space to avoid a O(b2) calculation cost.

10 100
mask size (%)

0

2

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

0.38

0.40

se
co

nd
s

Mean Computation Time

Figure 3.18: Mask Effectiveness for Gradient Coherence Metric

If the batch-size b is large, ∆XHb(w) appears to be an extremely suitable measure on

gradient variance induced by differences between inputs within a batch, and is likely more

consistent than the gradient confusion because it relies on calculating differences between

the batch gradient estimate and each individual gradient estimate, rather than pairwise

differences. In this way it is more closely related to the defined condition number, though

it also does not normalize for the size of difference between inputs and is therefore more

dependent on the known training set and given batch than the condition number is.

We measured gradient coherence throughout training for a variety of network depths and

architectural styles. The results can be seen in figures 3.19 and 3.20 below.

88

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.016

0.017

0.018

0.019

0.020

0.021

11

26
3

51

11
26

3

Moving Average: H(w) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.008

0.010

0.012

0.014

0.016

0.018

0.020

11

26

3

11
26
3

11
26
3

Moving Average: H(w) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

11

263

51

1126

3

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 3.19: The Gradient Coherence metric (see Definition 3.13) was measured throughout train-
ing for several different types of architectures. There is a clear division in this metric between
convolutional and fully-connected networks that doesn’t seem to be associated with convergence.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Interestingly there is a pronounced difference in gradient coherence measurements be-

tween fully connected networks and convolutional ones, with fully connected networks mea-

suring uniformly lower in coherence. Otherwise, gradient coherence does not seem strongly

predictive of training performance between convolutional networks (see figure 3.20 below). It

does appear from our limited set of tests that extreme values of coherence in either direction

in convolutional networks is an indicator of poor performance.

89

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.008

0.010

0.012

0.014

0.016

0.018

0.020
sm

oo
th

ed

H
(w

)

1111 26

26

3

3

51

1126
3

11

11 26

26

3

3

H(w) vs Highest Averaged Decrease in Loss per Step

With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.008

0.010

0.012

0.014

0.016

0.018

sm
oo

th
ed

H

(w
)

11

11

26

26

3
3

51

11

26

3

11

11
26

26

3
3

H(w) vs Lowest Training Loss

Figure 3.20: The Gradient Coherence metric (see Definition 3.13) was measured throughout training
for several different types of architectures at the point of steepest descent as well as at the point
with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a point
for each network. Interestingly, there is a strong separation between fully-connected architectures
and convolutional architectures in both graphs, but no other trends are apparent.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

Chapter 4. Remaining Objectives and Fu-

ture Work

Recall from chapter 1 that our stated objectives are the following:

1. Summarize previous findings related to gradient step-consistency and batch-dissonance

and place them in the uniform context of gradient conditioning.

2. Demonstrate efficient methods by which gradient step-consistency and batch-dissonance

90

can be measured independently.

3. Investigate the impact gradient step-consistency and batch-dissonance each have on

the stability and speed of SGD.

4. If possible, demonstrate that variance and instability from each source can be reduced

or mitigated independently and in a targeted way using architectural or hyperparam-

eter adjustments.

Our intent with objective 1 was accomplished in chapters 2 and 3. We have also accom-

plished what he had hoped to accomplish for objectives 2 and 3 with regards to gradient

batch-dissonance. However, we were unable to find the the number and variety of metrics

on gradient step-consistency that we were able to find for gradient batch-dissonance. This

is also an obstacle to accomplishing objective 4. We will attempt to address this lack in the

following section. Thereafter we will consider what is required to accomplish objective 4 in

our future work section 4.2.

4.1 Adapting Batch-Dissonance Metrics to Measure Gradient

Step-Consistency between Steps

Given the relative lack of viable metrics to measure gradient step-consistency across opti-

mization steps in chapter 2 compared to chapter 3 we will adapt a few of the metrics from

the later chapter to measure relative variance between samples of hW(w, χ) with varying w

instead of hW(w, x, t) with varying (x, t). Consider the following definition.

Definition 4.1 (Batch-Dissonance metrics modified to measure Step-Consistency).

Let an architecture g : ((Rm, || · ||W), (Rk, || · ||X))→ Rj and a loss function f : (Rj, T h)→ R

be given. Using the notation given in Definition 1.3, we define the minimum weight-gradient

cosine similarity, weight-gradient diversity, and weight-gradient coherence for a sample size

n ∈ N as follows:

91

∆WC
∗
n(w, χ) := min

0<i≤n

(
〈hW(w + ωi, χ), hW(w, χ)〉W

||hW(w + ωi, χ)||W · ||hW(w, χ)||W

)
, (4.1)

∆WDn(w, χ) :=

∑n
i=1

∥∥∥hW(w + ωi, χ)
∥∥∥2

2∥∥∥∑n
i=1 hW(w + ωi, χ)

∥∥∥2

2

, (4.2)

and

∆WHn(w, χ) :=

∑n
i=1〈hW(w, χ), hW(w + ωi, χ)〉W∑n

i=1 ||hW(w + ωi, χ)||2W
(4.3)

where w ∈W, χ ∈ Bb, and ωi ∈ {ω ∈W | 0 < ||ω|| < ε} for some ε > 0.

More significant adaptations were required for the modified Gradient Confusion metric

(∆WC
∗
n(w, χ) in equation (4.1)) than for the other two. Gradient Confusion was designed

to consider only gradients that are partially in opposite directions, but this will very rarely

be the case with a small perturbation as defined here. Because of that it was necessary to

include non-negative cosine similarity values (by removing the outer minimum), otherwise

the metric would be uniformly zero for almost all network states.

Because the metrics these were derived from were all designed to operate on vectors that

differ considerably more than these gradient estimates will after a small perturbation, the

expected variance between samples is quite small. We can maximize the expressivity of each

metric in a consistent way by using the targeted sampling technique from Definition 2.6 or

Definition 2.7. In other words, these metrics will be the most representative of behavior

during SGD if gradient samples are used as perturbation directions. If they are calculated

at the same time as the gradient conditioning with respect to the weight space the same

samples can be used.

92

10 100
mask size (%)

0

10

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

3.8

4.0

4.2

se
co

nd
s

Mean Computation Time

Figure 4.1: Mask Effectiveness for ∆WDn(w,χ)

10 100
mask size (%)

0

10

20

%
 o

f s
td

Mean Absolute Error

10 100
mask size (%)

3.8

4.0

4.2

se
co

nd
s

Mean Computation Time

Figure 4.2: Mask Effectiveness for ∆WHn(w,χ)

No figure on the mask effectiveness of the minimum weight-gradient cosine similarity is

available because the modifications noted at the bottom of Definition 4.1 were made after

the mask-accuracy test was completed and the test takes a significant amount of time to

run.

The effect of the targeted sampling methods from section 2.3 on the samples used in the

minimum weight-gradient cosine similarity can be seen in figure 4.3.

93

0 1000 2000 3000 4000 5000 6000 7000 8000
iteration

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
ex

pe
ct

ed
 m

in
im

um
 o

ve
r 1

6
sa

m
pl

es

Targeted Sampling Methods: Minimum Weight-Gradient Cosine Similarity

Individual Gradient Directions
Random Directions
Batch-Averaged Grad Direction

Figure 4.3: Targeted Sampling Methods: Minimum Weight-Gradient Cosine Similarity. During the
training of an 11 layer convolutional network (with normalization but without skip connections),
64 input perturbation directions were generated via the sampling methods described in section 2.3.
Bootstrapping was used to estimate an expected maximum over a sample size of 16.

We measured all three of these adjusted metrics throughout training for a variety of

network depths and architectural styles using the batch-averaged gradient direction sampling

technique (see Definition 2.7). The results will be discussed in the order the metrics were

defined.

94

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

11
26
3

51

11263

101

151

76112635110111151263517610115176

Moving Average: C *
n (w,) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.92

0.94

0.96

0.98

1.00 11263

11

26

311263
Moving Average: C *

n (w,) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 4.4: The Weight-Gradient Cosine Similarity metric (see Equation 4.1) was measured
throughout training for several different types of architectures. There is a strong separation in
this metric between architectures tested with and without the Opacus module enabled, so we can-
not draw any conclusions without identifying why this strong divergence exists.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Weight-Gradient Cosine Similarity. Interestingly, there was a stark division between

networks that measured high and low in Weight-Gradient Cosine Similarity (∆WC
∗
n(w, χ)).

After further investigation we determined that the divide was perfectly between networks run

in two test batches with slightly modified settings. These settings are completely separate

from the calculation of ∆WC
∗
n(w, χ), and pertained exclusively to the package Opacus that

was used to calculate individual gradient samples efficiently. (Opacus is memory intensive

and exhibits a bug in networks using our implementation of the CReLU activation function,

which is why these networks were included in a separate test group.) A similar split was not

observed in any other metric, and while the ResNets and Convolutional Networks trained in

95

the second test group (depth greater than 55) have significantly decreased performance, this

could be caused by the additional depth and stride adjustments necessary for them to fit on

the GPU we used. In any case, this merits further investigation in the future.

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sm
oo

th
ed

C

* n
(w

,
)

11
11

26

26 33
51

1126 3 1111
26

26 33

101

151

761126351101 11151263 5176101151 76

C *
n (w,) vs Highest Averaged Decrease in Loss per Step

With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.0

0.5

1.0

1.5

2.0

sm
oo

th
ed

C

* n
(w

,
)

11
11

26

263 3
51

11 26311 11
26

263 3

101

151

7611 263 5110111 151263 51 76101 15176

C *
n (w,) vs Lowest Training Loss

Figure 4.5: The Weight-Gradient Cosine Similarity metric (see Definition 4.1) was measured
throughout training for several different types of architectures at the point of steepest descent
as well as at the point with the lowest loss (smoothed over a few hundred iterations in each case)
and plotted as a point for each network. There is a strong separation in this metric between archi-
tectures tested with and without the Opacus module enabled, so we cannot draw any conclusions
without identifying why this strong divergence exists.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

96

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0 11

26

3

51

11
26
3

10176
11
26
3
51

101

11

151

2635176

101

151

76

Moving Average: Dn(w,) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.86

1.88

1.90

1.92

1.94

1.96

1.98

2.00 11263

11

26

3
11
263

Moving Average: Dn(w,) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 4.6: The Weight-Gradient Diversity metric (see Equation 4.2) was measured throughout
training for several different types of architectures. It is difficult to observe any clear trends in this
graph. However, figure 4.7 presents a different view of this data that demonstrates a few interesting
correlations.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Results: Weight-Gradient Diversity Metric. Our measurements of the Weight-

Gradient Diversity metric in our training runs show a distinct performance gap between net-

works that have high and low Weight-Gradient Diversity. While many of the networks with

high Weight-Gradient Diversity learned appreciably, every single network that converged

near zero loss had quite low Weight-Gradient Diversity measurements near convergence. In

other words, only the networks whose Weight-Gradient Diversity measurements decreased

during training were able to converge close to zero loss.

97

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

1.2

1.4

1.6

1.8

2.0
sm

oo
th

ed

D
n(

w
,

)

11

11

26

26 33

51

11

26

3

11

11

26

26 33
101761126351

101

11151263 51
76101

151

76
Dn(w,) vs Highest Averaged Decrease in Loss per Step

With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

1.2

1.4

1.6

1.8

2.0

sm
oo

th
ed

D

n(
w

,
)

11

11

26

263 3

51

11

26

3

11

11

26

263 3
1017611 263 51

101

11

151

263 51
76

101

151

76
Dn(w,) vs Lowest Training Loss

Figure 4.7: The Weight-Gradient Diversity metric (see Definition 4.2) was measured throughout
training for several different types of architectures at the point of steepest descent as well as at the
point with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as
a point for each network. The most apparent feature of these graphs is that there was very little
difference in the Weight-Gradient Diversity metric measurements at convergence except for the
networks that converged to zero loss (with a few exceptions). It is partially obscured by the scale
issue caused by the outlier ConvNet26, but there is also a trend apparent in the point of steepest
descent graph.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

98

0 2000 4000 6000 8000 10000 12000 14000
iteration

1

0

1

2

3

11263

51

11263

101

76
11

26

3

51

101

11

151

263

51

76

101

151

76

Moving Average: H(w,) - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000 1126311

26

3

11

263

Moving Average: H(w,) - Without Normalization

ConvNet
ResNet
LooksLinear
CReLU
Ortho

0 2000 4000 6000 8000 10000 12000 14000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

11

263

51

1126

3

10115176

11

26

3

51
101

11

15126

3

5176

101
151

76

Moving Average: Training Loss - With Normalization

0 2000 4000 6000 8000 10000 12000 14000
iteration

1.2

1.4

1.6

1.8

2.0

2.2

1126

3

1126

3

11

26

3

Moving Average: Training Loss - Without Normalization

Figure 4.8: The Weight-Gradient Coherence metric (see Equation 4.3) was measured throughout
training for several different types of architectures. It is difficult to pick out any clear patterns
in this graph due to the number of architectures tested and the amount of noise in the metric.
However, figure 4.9 presents the measurements in a way that is more interpretable.
The architectures tested included fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each line is the number
of layers in the architecture.

Results: Weight-Gradient Coherence Metric. Some weak trends are evident in the

weight-gradient coherence metric in figure 4.9. Generally speaking, values of weight-gradient

coherence between zero and one at convergence correlate generally with a lower final loss

value, although that trend is not strong because most values measure close to one with a

few outliers that failed to converge appreciably.

99

0.0 0.2 0.4 0.6 0.8 1.0
maximum averaged decrease in loss per step 1e 7

0.5

0.0

0.5

1.0

1.5
sm

oo
th

ed

H
(w

,
)

11

11

26

26 33
51

1126 3
11

11

26

26 33
101

76

11

263

51101

11

151

26

3

51

76101

151

76

H(w,) vs Highest Averaged Decrease in Loss per Step
With Normalization
Without Normalization
ConvNet
ResNet
LooksLinear
CReLU
Ortho

0.0 0.5 1.0 1.5 2.0
training loss

0.5

0.0

0.5

1.0

1.5

sm
oo

th
ed

H

(w
,

)

11

11

26

263 3
51

11 263
11

11

26

263 3

101

76

11

263

51

101

11
151

26

3

51

76

101

151

76

H(w,) vs Lowest Training Loss

Figure 4.9: The Weight-Gradient Coherence metric (see Definition 4.3) was measured throughout
training for several different types of architectures at the point of steepest descent as well as at the
point with the lowest loss (smoothed over a few hundred iterations in each case) and plotted as a
point for each network. Interestingly, it seems that very low values of Weight-Gradient Coherence
are correlated with decreased final performance. Each architecture that converged to near-zero loss
had similar measurements at convergence.
The architectures tested include fully connected networks with orthogonal initialization and the
ReLU or CReLU activation function, the Looks-Linear architecture (see Definition 3.9), and con-
volutional networks with and without residual connections. The label on each point is the number
of layers in the architecture.

4.2 Future Work: Architecture and Hyper-Parameter Opti-

mization Tests

The fourth and most challenging of our stated objectives was the following:

4. If possible, demonstrate that variance and instability from each source can be reduced

or mitigated independently and in a targeted way using architectural or hyperparam-

eter adjustments.

100

A number of further tests are required in order to accomplish this goal for informed

architecture design and optimal hyper-parameter control. We will address these separately

in the following two subsections.

4.2.1 Informed Architecture Design Tests. Some of the metrics we measured in our

tests showed clear linear trends. In other words, within the scope of our tests learning speed

or final training loss was always optimal when that metric was minimized or maximized.

However, in several cases the picture was a little more nuanced. In some cases, such as the

gradient rank metric with respect to the input ∆XR(hX, w, χ), higher values were correlated

strongly with faster learning at the point of steepest descent in networks that successfully

converged (see figure 3.10). However, every network that failed to converge at all also had

high measurements in ∆XR(hX, w, χ). While for most networks ∆XR(hX, w, χ) decreased as

the network was trained, there is a relatively clear boundary in the value of ∆XR(hX, w, χ)

at initialization between networks that failed to converge and those that converged. A

few networks managed to converge meaningfully when measuring ∆XR(hX, w, χ) > .15 at

initialization, but most failed to do so.

A similar picture occurred with gradient confusion ∆XCn(w) and gradient diversity

∆XDn(w). There was a very strong linear correlation between the best sustained rate of

decrease in the loss with decreases in both gradient confusion and gradient diversity in net-

works that converged at all. However, a number of networks (all without normalization) had

very low gradient confusion and low gradient diversity at initialization and failed to converge

appreciably.

This is a slightly more nuanced picture than stated in objective 4, however, from our re-

sults it appears that optimizing structure in an architecture search or optimizing the learning

rate and batch size during training might both be achieved using a mixture of maximization

and minimization objectives with boundary constraints over the metrics we have tested.

In order to gain a clearer picture of how different architectural traits impact learning

ability and how they perform with regards to the gradient step-consistency and gradient

101

batch-dissonance metrics we have presented, we will need to expand the number and types

of architectures included in our train-to-convergence tests. Namely, other novel and suc-

cessful architectures should be included, such as DenseNet, Feedback and Direct Feedback

Alignment networks, various forms of RNN (including with memory units such as LSTM

and RUM), transformer networks, etc.

Tests should also be executed on various modifications to the architectures already tested,

such as varying widths, types of normalization, pooling, etc. with an emphasis on modifica-

tions where existing theorems and results indicate stronger performance, such as increasing

width.

4.2.2 Optimal Hyper-Parameter Control Tests. Because all of our tests thus far

have used the same batch-size and learning rate (a decrease on plateau learning rate sched-

ule was used, which means that most of the successfully trained networks all used the same

learning rate until near convergence), we cannot say conclusively that any of our metrics

could be used to inform an optimal learning-rate or batch-size policy for a given architec-

ture. However, increasing the variety of batch sizes, learning rates, and schedules for both

parameters and testing these against the metrics we have presented should reveal whether

this is possible.

Optimal Control of the Learning Rate. Early in our research for this thesis, in an

attempt to identify a viable target for an optimal learning rate and create a way to validate

the correlations already identified in our tests, we tested using the scipy.minimize package

to find the distance to the nearest minimum in the loss surface in the direction of the batch-

averaged gradient in a ten-layer ResNet at initialization. Unfortunately, we found that this

slice of the loss surface was frequently complex enough to make finding the nearest minimum

in the direction of the gradient both expensive and inconsistent, even when the same batch

was used for every evaluation. However, when a single input was used to evaluate the loss

instead of a batch, the slice of the loss surface in the direction of the batch-averaged gradient

was not only easy to consistently optimize, it was consistently convex and smooth, appearing

102

parabolic in a neighborhood centered around the nearest minimum that contained both the

starting point and an equal distance in the other direction.

Unfortunately, due to the large amount of variance present in most training sets, the only

information we could determine that per-element optimal steps provide about the aggregated

loss surface in the direction of the gradient are loose lower and upper bounds on the distance

to the closest minimum if it exists.

If, based on our observations about the per-element loss surfaces, we make the following

assumptions:

• that the loss surface is parabolic for every input within a batch in the neighborhood

containing the nearest minimum,

• and that the closest per-element minimum is always in the direction of the negative

batch-averaged gradient rather than the positive batch-averaged gradient,

then the distance to the nearest per-element minimum is smaller than the distance to the

nearest minimum of the loss calculated using the batch. This is because, if our assumptions

are true, the loss for every element of the batch is uniformly decreasing between the current

point and the closest per-element minimum in the direction of the batch-averaged gradient.

However, this was not sufficient information to justify the significant expense of perform-

ing a batch of optimizations at every sample point, so we opted against including any metrics

based on this in our tests. Furthermore, because this minimization test was performed only

at initialization, where convergence is often very rapid for a few iterations, the behavior of

the per per-element loss surface in the direction of the batch-averaged gradient could be

much less predictable at other points in training.

Moving forward, it seems the most conclusive way to learn what an optimal learning rate

policy looks like in relation to the metrics we have presented is to perform a broader range

of tests that include variable learning rates and a wider variety of architectures. If these

tests revealed connections between the values of any of the metrics that can be efficiently

calculated, then the next test required would be to design a learning-rate policy using the

103

correlated metrics and perform tests using variants of that policy. In order to demonstrate

viability of a proposed optimal schedule that is informed by the metrics we have tested, they

would need to be tested against final testing performance, wall clock time, etc.

In our own tests we sampled every metric approximately twice per epoch, which increased

wall clock time for training runs by a considerable amount for larger models. However, there

is considerable room for optimization in our implementations, and it may be possible that

near-optimal hyperparameter control would not require multiple samples per epoch. Addi-

tionally, a subset of the more efficient metrics we tested may be sufficient for hyperparameter

optimization. There was a significant difference in expense across the tested metrics (see fig-

ure 4.10 below), with the metrics requiring multiple shifted forward calls and ∆XR(w) being

significantly more expensive to calculate than the others in large networks.

0.2 0.4 0.6 0.8 1.0
learnable parameters 1e7

0

1

2

3

4

5

se
co

nd
s

Metric Wall-Clock Time vs Number of Learnable Parameters
conditioning_x
weight_grad_rank_x
coherence_x
confusion_x
diversity_x
conditioning_w
confusion_w
diversity_w
coherence_w

Figure 4.10: Metric Timing by Number of Learnable Parameters

Furthermore, in some cases the value of a metric for a given learning rate or batch size

at initialization was highly predictive of convergence. These could be used both to inform

architecture design and initial hyperparameter choice without increasing wall-clock time

appreciably. Finally, calculating all of the metrics we tested is parallelizable with training if

additional GPU’s are available, meaning that the training of large models on GPU-clusters

could be optimized using a small subset of the cluster.

104

Optimal Control of the Batch Size. Unfortunately, in practice the batch-size param-

eter is used much less carefully than the learning-rate parameter. In most cases it is never

updated during training. It is true that there is often a large range of viable batch sizes

that persists throughout all of training. However, given the evidence we have presented in

our literature review and our training tests, there is ample reason to believe that networks

could benefit from varying amounts of variance from the batch at different training times.

It is well known that small batch-sizes tend to increase final performance with respect to

the loss function, while larger batch-sizes result in more stable training. There have been a

number of recent papers treating different aspects of this stability-performance trade-off in

SGD [16, 17, 24]. In the set of tests included in this thesis only one batch size was used (64),

and that decision was motivated primarily by the additional memory requirements imposed

by using a larger batch size in parallel with the package Opacus that was used to estimate

individual gradients. In order to gain a more complete picture of how the batch-size impacts

the various metrics we have presented in this thesis, we will need to perform more tests with

a variety of batch sizes.

If enough information is gained from these tests to motivate a policy for updating the

batch size during training, it would need to be tested in a variety of networks against final

testing performance and speed of training.

4.3 Conclusions

This thesis was motivated primarily by a single observation. The observation that dozens

of papers in the field of deep learning could be found approaching the issue of gradient

instability from two separate perspectives, many without acknowledging the other. These

two perspectives are of course what we have named gradient step-consistency and gradient

batch-dissonance. We have cited several papers that analyze gradient step-consistency and

smoothness in the loss surface through random projections and analysis of the Hessian. The

awareness of gradient batch-dissonance in the field as an issue separate from smoothness in

105

the loss surface has been growing in the past several years, including the papers we have

cited on adversarial attacks, generalization, and particularly the papers that introduced the

Relative Effective Rank, Gradient Confusion, Gradient Diversity, and Gradient Coherence

metrics. These last papers each present a compelling picture of two distinct ways in which

neural networks can exhibit gradient stability.

We have tested these four metrics on a much larger scope than has been performed in any

other publication. Furthermore, we introduced six additional metrics that are adaptations

of those four or are motivated by our own work with conditioning in chapters 2 and 3.

Strong correlations have been demonstrated between several of these metrics and the speed

of training and final network performance on the training set. Further tests have been

outlined that would not only confirm these observations on a larger variety of architectures

and hyperparameter choices, but could also be used in the target for architecture searches

(as was done by Guilin et al. using gradient confusion alone [11]) and in designing optimal

policies to control the learning-rate and batch-size parameters throughout training.

Moving forward, we hope that this thesis can help unify these two connected, but sep-

arate, topics in deep learning, inform more targeted exploration and evaluation of novel

architectures, and contribute to more direct and optimal control of hyperparameters during

training in deep networks.

106

Appendix A. Code

All of the code used for this thesis can be found at: https://bitbucket.org/mvnelson422/

gradientconditioning/commits/tag/ThesisComplete

107

https://bitbucket.org/mvnelson422/gradientconditioning/commits/tag/ThesisComplete
https://bitbucket.org/mvnelson422/gradientconditioning/commits/tag/ThesisComplete

Bibliography

[1] David Balduzzi et al. “The Shattered Gradients Problem: If resnets are the answer,

then what is the question?” In: (2017). doi: 10.48550/ARXIV.1702.08591. url:

https://arxiv.org/abs/1702.08591.

[2] Satrajit Chatterjee. Coherent Gradients: An Approach to Understanding Generaliza-

tion in Gradient Descent-based Optimization. 2020. doi: 10.48550/ARXIV.2002.

10657. url: https://arxiv.org/abs/2002.10657.

[3] Satrajit Chatterjee and Piotr Zielinski. Making Coherence Out of Nothing At All:

Measuring the Evolution of Gradient Alignment. 2020. doi: 10.48550/ARXIV.2008.

01217. url: https://arxiv.org/abs/2008.01217.

[4] Satrajit Chatterjee and Piotr Zielinski. On the Generalization Mystery in Deep Learn-

ing. 2022. doi: 10.48550/ARXIV.2203.10036. url: https://arxiv.org/abs/2203.

10036.

[5] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. “An Investigation into Neural

Net Optimization via Hessian Eigenvalue Density”. In: Proceedings of the 36th Inter-

national Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan

Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019,

pp. 2232–2241. url: https://proceedings.mlr.press/v97/ghorbani19b.html.

[6] Shuxuan Guo, Jose M. Alvarez, and Mathieu Salzmann. ExpandNets: Linear Over-

parameterization to Train Compact Convolutional Networks. 2018. doi: 10.48550/

ARXIV.1811.10495. url: https://arxiv.org/abs/1811.10495.

[7] Gao Huang et al. Densely Connected Convolutional Networks. 2016. doi: 10.48550/

ARXIV.1608.06993. url: https://arxiv.org/abs/1608.06993.

[8] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. 2015. doi: 10.48550/ARXIV.1502.

03167. url: https://arxiv.org/abs/1502.03167.

108

https://doi.org/10.48550/ARXIV.1702.08591
https://arxiv.org/abs/1702.08591
https://doi.org/10.48550/ARXIV.2002.10657
https://doi.org/10.48550/ARXIV.2002.10657
https://arxiv.org/abs/2002.10657
https://doi.org/10.48550/ARXIV.2008.01217
https://doi.org/10.48550/ARXIV.2008.01217
https://arxiv.org/abs/2008.01217
https://doi.org/10.48550/ARXIV.2203.10036
https://arxiv.org/abs/2203.10036
https://arxiv.org/abs/2203.10036
https://proceedings.mlr.press/v97/ghorbani19b.html
https://doi.org/10.48550/ARXIV.1811.10495
https://doi.org/10.48550/ARXIV.1811.10495
https://arxiv.org/abs/1811.10495
https://doi.org/10.48550/ARXIV.1608.06993
https://doi.org/10.48550/ARXIV.1608.06993
https://arxiv.org/abs/1608.06993
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167

[9] S. Kaski. “Dimensionality reduction by random mapping: fast similarity computation

for clustering”. In: 1998 IEEE International Joint Conference on Neural Networks Pro-

ceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

Vol. 1. 1998, 413–418 vol.1. doi: 10.1109/IJCNN.1998.682302.

[10] Sungyoon Lee, Hoki Kim, and Jaewook Lee. GradDiv: Adversarial Robustness of Ran-

domized Neural Networks via Gradient Diversity Regularization. 2021. doi: 10.48550/

ARXIV.2107.02425. url: https://arxiv.org/abs/2107.02425.

[11] Guilin Li et al. Hierarchical Neural Architecture Search via Operator Clustering. 2019.

doi: 10.48550/ARXIV.1909.11926. url: https://arxiv.org/abs/1909.11926.

[12] Hao Li et al. Visualizing the Loss Landscape of Neural Nets. 2017. doi: 10.48550/

ARXIV.1712.09913. url: https://arxiv.org/abs/1712.09913.

[13] Arvind Neelakantan et al. Adding Gradient Noise Improves Learning for Very Deep

Networks. 2015. doi: 10.48550/ARXIV.1511.06807. url: https://arxiv.org/abs/

1511.06807.

[14] A. Emin Orhan and Xaq Pitkow. Skip Connections Eliminate Singularities. 2017. doi:

10.48550/ARXIV.1701.09175. url: https://arxiv.org/abs/1701.09175.

[15] Vardan Papyan. “Traces of Class/Cross-Class Structure Pervade Deep Learning Spec-

tra”. In: CoRR abs/2008.11865 (2020). arXiv: 2008.11865. url: https://arxiv.

org/abs/2008.11865.

[16] Xin Qian and Diego Klabjan. The Impact of the Mini-batch Size on the Variance of

Gradients in Stochastic Gradient Descent. 2020. doi: 10.48550/ARXIV.2004.13146.

url: https://arxiv.org/abs/2004.13146.

[17] Sashank J. Reddi et al. On Variance Reduction in Stochastic Gradient Descent and

its Asynchronous Variants. 2015. doi: 10.48550/ARXIV.1506.06840. url: https:

//arxiv.org/abs/1506.06840.

109

https://doi.org/10.1109/IJCNN.1998.682302
https://doi.org/10.48550/ARXIV.2107.02425
https://doi.org/10.48550/ARXIV.2107.02425
https://arxiv.org/abs/2107.02425
https://doi.org/10.48550/ARXIV.1909.11926
https://arxiv.org/abs/1909.11926
https://doi.org/10.48550/ARXIV.1712.09913
https://doi.org/10.48550/ARXIV.1712.09913
https://arxiv.org/abs/1712.09913
https://doi.org/10.48550/ARXIV.1511.06807
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807
https://doi.org/10.48550/ARXIV.1701.09175
https://arxiv.org/abs/1701.09175
https://arxiv.org/abs/2008.11865
https://arxiv.org/abs/2008.11865
https://arxiv.org/abs/2008.11865
https://doi.org/10.48550/ARXIV.2004.13146
https://arxiv.org/abs/2004.13146
https://doi.org/10.48550/ARXIV.1506.06840
https://arxiv.org/abs/1506.06840
https://arxiv.org/abs/1506.06840

[18] Karthik A. Sankararaman et al. The Impact of Neural Network Overparameterization

on Gradient Confusion and Stochastic Gradient Descent. 2019. doi: 10.48550/ARXIV.

1904.06963. url: https://arxiv.org/abs/1904.06963.

[19] Shibani Santurkar et al. How Does Batch Normalization Help Optimization? 2018.

doi: 10.48550/ARXIV.1805.11604. url: https://arxiv.org/abs/1805.11604.

[20] Wenling Shang et al. Understanding and Improving Convolutional Neural Networks via

Concatenated Rectified Linear Units. 2016. doi: 10.48550/ARXIV.1603.05201. url:

https://arxiv.org/abs/1603.05201.

[21] Mayank Singh, Abhishek Sinha, and Balaji Krishnamurthy. Neural Networks in Adver-

sarial Setting and Ill-Conditioned Weight Space. 2018. doi: 10.48550/ARXIV.1801.

00905. url: https://arxiv.org/abs/1801.00905.

[22] Masato Taki. Deep Residual Networks and Weight Initialization. 2017. doi: 10.48550/

ARXIV.1709.02956. url: https://arxiv.org/abs/1709.02956.

[23] Nicholas J. Teague. Geometric Regularization from Overparameterization explains Dou-

ble Descent and other findings. 2022. doi: 10.48550/ARXIV.2202.09276. url: https:

//arxiv.org/abs/2202.09276.

[24] Chong Wang et al. “Variance Reduction for Stochastic Gradient Optimization”. In:

Advances in Neural Information Processing Systems. Ed. by C.J. Burges et al. Vol. 26.

Curran Associates, Inc., 2013. url: https://proceedings.neurips.cc/paper/

2013/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf.

[25] Yikai Wu et al. Dissecting Hessian: Understanding Common Structure of Hessian in

Neural Networks. 2020. doi: 10.48550/ARXIV.2010.04261. url: https://arxiv.

org/abs/2010.04261.

[26] Yuxin Wu and Kaiming He. “Group Normalization”. In: CoRR abs/1803.08494 (2018).

arXiv: 1803.08494. url: http://arxiv.org/abs/1803.08494.

110

https://doi.org/10.48550/ARXIV.1904.06963
https://doi.org/10.48550/ARXIV.1904.06963
https://arxiv.org/abs/1904.06963
https://doi.org/10.48550/ARXIV.1805.11604
https://arxiv.org/abs/1805.11604
https://doi.org/10.48550/ARXIV.1603.05201
https://arxiv.org/abs/1603.05201
https://doi.org/10.48550/ARXIV.1801.00905
https://doi.org/10.48550/ARXIV.1801.00905
https://arxiv.org/abs/1801.00905
https://doi.org/10.48550/ARXIV.1709.02956
https://doi.org/10.48550/ARXIV.1709.02956
https://arxiv.org/abs/1709.02956
https://doi.org/10.48550/ARXIV.2202.09276
https://arxiv.org/abs/2202.09276
https://arxiv.org/abs/2202.09276
https://proceedings.neurips.cc/paper/2013/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://doi.org/10.48550/ARXIV.2010.04261
https://arxiv.org/abs/2010.04261
https://arxiv.org/abs/2010.04261
https://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1803.08494

[27] Zhuolin Yang et al. TRS: Transferability Reduced Ensemble via Encouraging Gradient

Diversity and Model Smoothness. 2021. doi: 10.48550/ARXIV.2104.00671. url:

https://arxiv.org/abs/2104.00671.

[28] Zhewei Yao et al. “PyHessian: Neural Networks Through the Lens of the Hessian”. In:

(2019). doi: 10.48550/ARXIV.1912.07145. url: https://arxiv.org/abs/1912.

07145.

[29] Dong Yin et al. Gradient Diversity: a Key Ingredient for Scalable Distributed Learning.

2017. doi: 10.48550/ARXIV.1706.05699. url: https://arxiv.org/abs/1706.

05699.

[30] Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. Norm-Preservation:

Why Residual Networks Can Become Extremely Deep? 2018. doi: 10.48550/ARXIV.

1805.07477. url: https://arxiv.org/abs/1805.07477.

111

https://doi.org/10.48550/ARXIV.2104.00671
https://arxiv.org/abs/2104.00671
https://doi.org/10.48550/ARXIV.1912.07145
https://arxiv.org/abs/1912.07145
https://arxiv.org/abs/1912.07145
https://doi.org/10.48550/ARXIV.1706.05699
https://arxiv.org/abs/1706.05699
https://arxiv.org/abs/1706.05699
https://doi.org/10.48550/ARXIV.1805.07477
https://doi.org/10.48550/ARXIV.1805.07477
https://arxiv.org/abs/1805.07477

	Gradient Conditioning in Deep Neural Networks
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	1 Gradient Step-Consistency and Batch-Dissonance
	1.1 Objectives
	1.2 Terminology
	1.3 Notation
	1.4 What is Conditioning and How is it Related to SGD?
	1.5 Estimating Gradient Conditioning
	1.6 Reducing Metric Costs with Random Masking

	2 Gradient Step-Consistency
	2.1 Quantifying Gradient Step-Consistency
	2.2 Gradient Conditioning with Respect to TEXT
	2.3 Generating Targeted Weight Perturbation Samples
	2.4 Literature Related to Gradient Step-Consistency

	3 Gradient Batch-Dissonance
	3.1 Quantifying Gradient Batch-Dissonance
	3.2 Gradient Conditioning with Respect to TEXT
	3.3 Generating Targeted Input Perturbation Samples
	3.4 Literature and Metrics on Gradient Batch-Dissonance
	3.5 Shattered Gradients, the Gradient Rank Metric, and CReLU
	3.6 Non-Orthogonal Variance and Gradient Confusion
	3.7 Gradient Diversity
	3.8 Gradient Coherence

	4 Remaining Objectives and Future Work
	4.1 Adapting Batch-Dissonance Metrics to Measure Gradient Step-Consistency between Steps
	4.2 Future Work: Architecture and Hyper-Parameter Optimization Tests
	4.3 Conclusions

	Appendix A Code
	Bibliography

