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ABSTRACT 
 

Distribution and Transportation of Sand and Potential Sand Source Materials on Titan: 
Implications for the Geologic History 

 
Benjamin Dean Lake 

Department of Geological Sciences, BYU 
Master of Science 

  
Titan is an important planetary body for aeolian research because of the vast equatorial 

sand seas that span 20% of its surface. Previous studies have determined the general margins of 
sand and sand seas on Titan, and have speculated about the source of Titan’s sand. Little research 
has been done concerning where sand collects in the sand seas. Additionally, the relationships 
between material distributions as observed by the Cassini Visual and Infrared Mapping Spectrom-
eter (VIMS) and the history of erosion and transportation of sediments across equatorial latitudes 
is not fully understood. This work focuses on an in depth evaluation of sand distribution and abun-
dance across the sand seas, and presents evidence for an alternative sand source. This work also 
addresses a potential stratigraphy for the equatorial regions based on the excavation of materials 
from impact craters.  
 

We mapped the extent of relative sand abundances by comparing different Cassini image 
datasets, largely by mapping where the Imaging Science Subsystems (ISS) regions were darkest, 
indicating the presence of more sand. Our results revealed that greater abundances of sand accu-
mulate near the eastern margins of sand seas. This is in agreement with previous studies that 
demonstrated general W to E transport, and fits a general model of sand transport across the sand 
seas to collect at the downwind margins, perhaps ahead of topographic obstacles that mark the 
eastern ends of the sand seas. Additionally, we found that the largest continuous expanse of abun-
dant sand deposits lie across Belet, a large sand sea that occupies a broad equatorial lowland. 
Another sand sea of interest is Shangri-La, which has a recessed SE margin adjacent to the broad, 
albedo-bright depression Xanadu. We also found abundant sand deposits within Shangri-La across 
a corridor between highlands and along the SE boundary of the sand sea. Dune crest orientations 
across eastern Shangri-La indicate WNW to ESE transport in the region. We propose that the low 
topography of Xanadu, coupled with the strong gradient in albedo between Shangri-La and Xanadu 
would generate atmospheric disturbances similar to those responsible for transporting sand across 
positive changes in elevation on Mars, and may be responsible for the distinct boundary.  
 

VIMS-blue materials are generally associated with water ice mixed with organic com-
pounds. We found that VIMS-blue surfaces across equatorial latitudes tend to be directly adjacent 
to and upwind of sand seas. This, coupled with geomorphological observations of erosional char-
acteristics and examination of material properties, suggests that sand could at least in part be de-
rived from VIMS-blue materials. We propose 3 environments (alluvial fans, dry lakebeds, and 
ejecta from impact craters) for sand production using this interpretation and making comparisons 
with SAR, ISS, and VIMS imagery. 
 

Modeling suggests that Titan’s lithosphere significantly thickened 500 m.y. ago. We inter-
pret an elongate exposure of VIMS-blue materials adjacent to Aztlan to be a rift caused by a 



 
 

 
 

thickening of the lithosphere, similar to many of the other icy bodies of the solar system. Our 
interpretation is further supported by the distribution of cryovolcanic features alongside the pro-
posed rift. 
 

Anomalous VIMS-blue and bright regions within eastern Xanadu are distributed in a pat-
tern that resembles a multi-ringed impact basin. Additionally, when a value threshold was applied 
to ISS imagery, a bright circular feature was revealed within western Xanadu. These observations 
suggest two large impacts may have been significantly responsible for creating Xanadu. Compar-
isons of impact crater models with VIMS imagery of Paxsi, Menrva, Sinlap, Selk, and other craters 
suggest alternating layers of VIMS-bright and VIMS-blue cover much of the equatorial latitudes 
of Titan. 
 
We completed ground penetrating radar (GPR) and global positioning system (GPS) surveys 
across margins of the Kelso Dunes to evaluate the effects of fluvial interaction on sand depth. Our 
terrestrial model was compared to sand seas on Titan that appear to also have interactions with 
fluvial channels. Distributions of sand suggest that in both the Kelso Dunes and on Titan, fluvial 
obstruction is temporary and on Titan isolated across small regions. 
 
This work leads to a better understanding of sand production, accumulation and transport on Titan 
and in sand seas in general, and reveals a basic stratigraphy of the equatorial regions of Titan. This 
region is of particular interest because it is the landing site of the Dragonfly mission, now in design. 
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1. Introduction 

Equatorial regions of Saturn’s moon Titan are dominated by vast sand seas arranged pri-

marily in linear dunes (Lorenz et al., 2006; Barnes et al. 2008; Radebaugh et al., 2010; Radebaugh, 

2013; Lucas et al. 2014). These sand seas are large, covering up to 18% of the surface (Rodriguez 

et al. 2014; Arnold 2014), which is more than the Saharan and Arabian sand seas of Earth com-

bined. Titan’s dunes have many morphological similarities to terrestrial dunes, such as those found 

in the Namib Sand Sea and the Sahara Desert (Lorenz et al., 2006; Radebaugh et al., 2010). Dunes 

from both bodies have patterns that indicate topographic obstacles cause diversion of flow around 

them, or obstruct migration (Radebaugh et al., 2010). This apparent flow is down the dune long 

axis, so consequentially crests appear to be oriented along the average direction of sand migration 

(Courrech du Pont et al., 2014; Lucas et al., 2014). 

Sands as seen with the Cassini Visual and Infrared Mapping Spectrometer (VIMS) are most 

consistent with organic compounds and possibly some water ice (Soderblom et al., 2007; Jaumann 

et al. 2009; Mouelic, 2019). Organic compounds within the sands likely originated from tholins, 

which are complex organic molecules formed from interactions between solar ultraviolet radiation 

and atmospheric methane and nitrogen (Soderblom et al., 2007). Over time these complex organic 

molecules clump together, “snow” down, and accumulate on the surface (Radebaugh et al., 2013; 

Barnes et al., 2015). Basic questions for aeolian environments on Titan still remain, such as what 

are the sand sources, how is sediment produced, where does sand tend to accumulate within sand 

seas, and how far has the sand migrated (Barnes et al., 2015; Charnay et al., 2015; Malaska et al., 

2016). Barnes et al. (2015) presented three methods for sediment production: sintering and accre-

tion of organic tholins (also discussed in Lapotre et al. 2022), flocculation of organic compounds 

within methane lakes, and aeolian erosion of evaporite deposits. Radebaugh et al. (2013) also 
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proposed that dune sand may originate through fluvial erosion of lithified tholin deposits. In re-

gards to previous conclusions about how far dunes have migrated, Barnes et al. (2015) claimed 

dunes have migrated entirely around Titan’s equator and effectively formed one large sand sea, 

while Charnay et al. (2015) argued that dunes may have migrated only 45 km. 

 A sand sea of particular interest on Titan is Shangri-La, centered on 15° E, 5° S. It spans 

approximately 3,700 km E-W and 2,300 km N to S, and is over 7 times larger than the largest sand 

sea on Earth, the Rub’ al Khali (Abdallah and Kumar, 2011). Shangri-La resides just west of the 

lowland region Xanadu (Fig. 1), which contains rugged, mountainous terrain and well-developed 

river channels (Burr et al., 2009; Radebaugh et al., 2011; Matteoni et al., 2020). The SE boundary 

of Shangri-La is recessed along its margin adjacent to Xanadu. Available topographic data and 

imagery (Figs. 14, 15) indicate there is no substantial topographic obstacle, which means this 

boundary is unusual as terrestrial dune field margins are typically controlled by highland topogra-

phy (Lancaster, 1995). Barnes et al. (2015) compared the SE boundary of Shangri-La to the simi-

larly distinct northern boundary of the Namib Sand Sea, which is largely defined by an ephemeral 

drainage. Based on the topographic data for the area surrounding the SE margin of Shangri-La, 

this would require the region-bounding drainage to be perpendicular to regional slope for hundreds 

of kilometers and no such drainage is visible to the Cassini image resolutions (~ 0.5 km/pixel). 

Knowing where sand is sourced and collects in Shangri-La is of great importance because it is the 

site of the Dragonfly lander, a NASA rotorcraft lander mission to be sent to Shangri-La to study 

the sand dunes and complex organic compounds there (Turtle et al., 2020). Studies of these pro-

cesses may also reveal the nature of the transition between the sand sea and the Xanadu region. 
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Figure 1. Global VIMS map of Titan with sand sea boundaries outlined. Margins were created from primary map of this work (see Fig. 6).  
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The purpose of this study is to map the relative abundances of sand within sand seas and 

potential sand source materials across the equatorial latitudes of Titan, and make interpretations to 

better understand Titan’s aeolian environments and geologic history. Previous studies have 

mapped sand sea margins (Rodriguez et al., 2014; Arnold, 2014; Malaska et al., 2016), but have 

not focused on mapping sand abundances, which we define in Section 2. Mapping sand distribu-

tions and abundances reveals patterns in sediment transport and accumulation, and also reveals 

regions affected by obstruction of sand movement. It may also provide insights into the geologic 

history of Titan and erosional and depositional processes. We examined the distributions of VIMS-

bright, VIMS-brown, and VIMS-blue materials in order to determine potential sand sources. We 

also studied the presence of alternating VIMS-bright and VIMS-blue surfaces within impact cra-

ters, and examined what they indicate about a possible stratigraphy for Titan. Our interpretations 

concerning interactions between fluvial and aeolian processes was supplemented by calculated 

sand depths of the Kelso Dunes in the Mojave desert from GPR and GPS surveys. This field study 

helped constrain some aspects of the obstruction of sand migration on Titan.  

This work helps extend our understanding of the surface of Titan and provides context for 

the future data that will be provided from Dragonfly. 

 

2. Methods    

We sought to create a map of the equatorial region of Titan by making correlations con-

cerning presence and abundance of sand across Cassini VIMS, Imaging Science Subsystem (ISS), 

and Synthetic Aperture Radar (SAR) imagery (Figs. 2, 3). ISS relies on visible to near-infrared 

wavelengths within windows that allow imaging of the surface (Fig. 2a). The instrument utilized 

wavelengths of 200 - 1050 nm and has generally greater resolutions of 2 - 3 km/pixel across the 
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equatorial latitudes (Porco et al., 2005), which are focused on in this study. ISS is most similar to 

visible light imagery and reveals compositional differences of the surface.  

VIMS imagery was developed using spectra obtained at wavelengths of 300 - 5100 nm. 

Like ISS, wavelengths used for VIMS imagery were also within spectral windows which are able 

to pass through the atmosphere and reveal compositional differences of the surface (Le Mouélic et 

al., 2019). VIMS resolutions range widely from 10 - 1.5 km, however much of the imagery has a 

resolution of 1.4 km/pixel. The color scheme for the VIMS mosaic used is red: 1.59/1.27 μm; 

green: 2.03/1.27 μm; blue: 1.27/1.08 μm (Le Mouélic et al., 2019). VIMS-bright regions correlate 

with ISS-bright, and both VIMS-brown and VIMS-blue correlate with ISS dark to light gray. Both 

ISS and VIMS images contain significant contamination from atmospheric absorptions, and the 

severity of this contamination varies across the global image map. Radiative transfer models have 

sought to diminish this contamination with some success, but caution should be exercised in ap-

plying interpretations of spectra and compositions. This was done for this study through examining 

broad regional trends rather than small-scale interpretations. 

SAR imagery was obtained as active imagery utilizing the wavelength of 2.17 cm and il-

lustrates textural characteristics of near surface materials (Fig. 2c). Dark surfaces are smooth 

enough to reflect the RADAR signal and are thought to be in general covered with sand sized 

grains (0.1 – 0.3 mm in diameter [Lorenz et al., 2006]). Bright surfaces are rough and scatter the 

RADAR signal, causing more of the original signal to be reflected towards the SAR instrument. 

These images were obtained in long “swaths” as Cassini flew past Titan, such that the centers of 

each swath were narrowest (~150 km) and had the highest image resolutions. Nearly 50% of the 

surface was imaged in SAR, compared to nearly global coverage with the other two instruments 
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(Fig. 2). Notwithstanding its limited coverage, SAR imagery provides the highest resolution of up 

to 0.5 km/pixel (Elachi et al., 2005). 

Although the Huygens probe Descent Imager and Spectral Radiometer (DISR) imagery 

was not used directly in mapping, it was used to further support our mapped interpretations and to 

assist with identifying lithostratigraphic units (see Section 3.2). DISR captured imagery during the 

descent and soon after the landing of Huygens probe. DISR utilized wavelengths of 660 to 1000 

nm, and had a spatial range of 8.3° to 96° from nadir (Keller et al., 2008) and the imagery is most 

similar to what an observer would see in visible light. 

Significant correlations of boundaries, colors, and brightnesses can be seen between all 

three image datasets (Fig. 3). 
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Figure 2. Global Cassini imagery of Titan from the a) Imaging Science Subsystem (ISS), b) Visual and 
infrared Mapping Spectrometer (VIMS), and c) Synthetic Aperture Radar (SAR) instruments (black areas 
have no SAR coverage). 
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Figure 3. Images of eastern Shangri-La in a) ISS, b) VIMS, and c) SAR (underlain by ISS). d) is a 
stacked image of all imagery with 50% transparency of VIMS and SAR. Observe correlations of overall 
darker values between all three sets of imagery. 
 

Mapping was done using color and value threshold tools in GNU Image Manipulation Pro-

gram (GIMP) on VIMS and ISS published global imagery respectively. Due to a range of colors 

existing across sand seas and VIMS-blue surfaces, the color select tool was applied on various 

color ranges of blue and purple. An illustrated example of this mapping method is shown in Figure 

4. RGB channels for colors are also measured from 0 to 255 within each channel. The following 

chart includes all colors and color thresholds used to create the map. 
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VIMS 

Surface   

 

Channel 

 

Value 

 

VIMS 

Blue 

R 45 86 61 81 53 48 54 15 15 20 

G 25 78 55 47 27 19 55 20 4 1 

B 69 121 145 100 94 147 103 84 108 153 

Threshold 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 

            
  

VIMS 

Light 

Blue 

R 102          

G 98          

B 140          

Threshold 26.8          

            

 

VIMS 

Purple 

R 99 97 119 90 75 84 115 113   

G 65 87 59 51 45 82 90 94   

B 86 98 114 61 61 95 94 98   

 19.8 12.8 17.8 13.8 19.8 12.8 13.8 15.8   

 
Table 1. Colors in VIMS imagery used by color select tool in GIMP to select VIMS-blue, light blue, and 
purple regions. Colors are listed as values within the RGB color scheme. Each color selection was centered 
on these colors, and included all other colors within the listed thresholds (+/-). All values and thresholds 
are listed as standardized values between 0 – 255 according to the RGB color scheme. 
 

We mapped VIMS-purple, blue, and light blue regions using the color select tool on the 

colors and thresholds listed in Table 1. Due to VIMS-bright being strongly similar in color with 

VIMS-green, we did not explicitly map VIMS-bright surfaces. We acknowledge that these sur-

faces have been differentiated in other studies (Lopes et al., 2016; Solomonidou et al., 2018). Be-

cause much of the equatorial latitudes lack significant VIMS-green values, we interpreted the re-

maining unmapped regions as being covered with VIMS-bright. This method is similar to Brossier 

et al., (2018).  
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Figure 4. Geologic mapping process illustrated by using Sinlap crater. a), c), and e) are VIMS imagery 
with VIMS-purple, blue, and light blue values outlined respectively. White squares contain colors used by 
the color select tool in GIMP to select VIMS-values. Specific colors for selections are listed numerically 
in Table 1. b), d), and f) are ISS imagery with value thresholds 0 – 47, 47 – 70, and 70-117 (reduced by 
VIMS green channel values 132 – 255) respectively. These thresholds were used to map relative sand 
abundances. g) Resulting map from color selections and value thresholds when stacked (see Fig.  for 
stacking order). *Remaining unmapped regions were interpreted as bright lithified tholins. Due to strong 
similarities between VIMS-bright and VIMS-green they were not explicitly mapped, but nearly all un-
mapped regions across equatorial latitudes appear bright in VIMS. 
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VIMS color selections were correlated with SAR imagery (Fig. 5) to assist with the creation 

of unit descriptions. VIMS-purple surfaces have previously been interpreted as regions where 

VIMS-brown sand dunes exist with VIMS-blue interdunes (Rodriguez et al., 2014). Correlations 

with SAR and VIMS imagery support this interpretation, as SAR-dark dunes are present within 

VIMS-purple regions (Fig. 5). It is likely that VIMS-purple surfaces are the result of the low res-

olution imagery blurring together VIMS-brown dunes and VIMS-blue interdunes.  

We also found that VIMS-blue and light blue surfaces tend to be SAR-bright. Regions 

interpreted to be VIMS-bright are also SAR-bright, however as Soderblom et al. (2007) observed 

there is some variability. 

 

 



 
 

12 
 

 

Figure 5. SAR imagery of Sinlap overlain with the outlined margins of regions selected as a) VIMS-pur-
ple, c) VIMS-blue, and e) VIMS-light blue in GIMP using color select tool. Inset boxes are locations fo-
cused on in b), d), and f) for greater detail. Notice region selected as VIMS-purple contains SAR-dark 
dunes with SAR-bright interdunes. VIMS-blue and VIMS-light blue have similar SAR-bright values.    
*VIMS-bright regions were not explicitly mapped, but interpreted based on remaining unmapped regions 
generally correlating with VIMS-bright values. Notice particularly SAR-bright values across VIMS-
bright region. It is important to note that there is some variation in SAR values for VIMS-bright surfaces, 
as observed by Soderblom et al. (2007). This is due to the 2.17 cm RADAR wavelength used when creat-
ing SAR imagery penetrating VIMS-bright materials. 
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Values in ISS images are measured from 0 (black) to 255 (white). Relative abundances of 

sand were mapped by applying value thresholds in GIMP and correlating black to dark gray values 

of 0 - 47 in ISS imagery with the most abundant sand, less dark values of 47 - 70 with moderately 

abundant sand, and moderate gray values of 70 – 117 (with a reduction by the extent of 132 – 255 

in the VIMS green channel and color selections of VIMS-blue, light blue, and purple) with sand 

being present. While ISS values of surface materials can be contaminated by atmospheric absorp-

tions as previously discussed, the chosen ISS values are broadly consistent with particular SAR 

terrains. For example, there is a correlation between ISS-dark regions and dunes with varying 

shades of gray (assumedly due to varying coverage of sand) across interdunes in SAR (Fig. 6). 

Particularly dark regions in ISS correlate with dark regions in SAR and therefore have sand-rich 

interdunes, which can occur within sand seas on Earth (Liang et al., 2020). Dunes  

are generally more tightly spaced within these regions, which may also contribute to darker ISS 

values and leads to our interpretation of greater sand abundance (Fig. 6).  

Attempts were made to map the outer “sand present” regions of sand seas by making color 

selections on shades of brown in VIMS imagery, however we found that the results were restricted 

by the poorer image quality of VIMS. After thoroughly comparing generated maps to SAR, ISS, 

and VIMS imagery, we found that our method that relied most heavily on ISS imagery was most 

capable of mapping these outer regions of the sand seas. This method builds upon that used by 

Arnold, (2014), who mapped the extent of sand seas by applying a threshold of 0 – 155 on ISS 

imagery. 
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Figure 6. Correlations of various shades of gray in ISS and SAR imagery across NW Shangri-La. a) ISS 
imagery with value thresholds 0 – 47, 47 – 70, and 70 - 117 (reduced by VIMS green channel values 132 
– 255) outlined. No VIMS-blue, light blue, or purple regions are present. b) Outlined margins from a) 
overlain on SAR imagery of same region. Notice correlation between increasingly dark interdunes with 
lower (darker) ISS values. Some localized offset is due to a lack of detailed georeferencing of imagery.  
 

Sand sea boundaries (Fig. 1) were determined from the most distal extents of VIMS-brown 

and VIMS-purple surfaces, which is a similar method to that of Rodriguez et al. (2014).  

Once all surfaces were selected, they were stacked in the order that resulted with the most 

accurate map (Fig. 7). 
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Figure 7.  Stacking order of VIMS color selections, and ISS and VIMS threshold ranges used to create 
map. 
 

 

3. Material Properties and Lithostratigraphic Units 

 With material units mapped, we seek to understand what the various units may mean for 

the surface geology of Titan.  

3.1 Material Properties 

Previous work (Jaumann et al., 2008; Radebaugh 2013; Barnes et al., 2015; Malaska et al., 

2016; Brossier et al., 2018) sought to determine sand sources on Titan. Sand sources for sand seas 

on Earth are often found within, or near sand seas (Lancaster, 1995). Thus, an examination of the 

surface of Titan suggests that VIMS-bright, VIMS-blue, and even VIMS-brown materials (if there 

are lithified VIMS-brown materials not visible as distinct from mobile sand) are all sand source 

candidates.  
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VIMS-blue and VIMS-brown spectral signatures suggest both materials are made of water 

ice and organic compounds, while there is likely little to no water ice in VIMS-bright materials 

(Fig. 8; Jaumann et al., 2009; McCord et al., 2006; Soderblom et al., 2007). It is assumed that 

because of troughs in the spectral signature of water ice at roughly 1.57 and 2.01 μm, some pres-

ence of water ice within VIMS-brown and VIMS-blue materials suppressed the peaks of their 

spectral signatures at those same wavelengths relative to the much higher peaks of VIMS-bright 

surfaces. Minor differences between spectral signatures of VIMS-blue and VIMS-brown surfaces 

are attributed to VIMS-blue having greater concentrations of water ice, or differences in grain size 

(Jaumann et al., 2009; Mouelic, 2019). Jaumann et al. (2009) normalized the spectral signatures 

of these surfaces and concluded that VIMS-blue and VIMS-brown materials are likely the same 

compositionally, but are comprised of different sizes of sediment. Supporting evidence for this 

interpretation can be found from correlations with SAR imagery, which consistently show that 

VIMS-blue surfaces tend to be more SAR-bright, and are therefore likely made of larger clasts (~2 

cm being the optimal size for SAR brightness/roughness; Le Gall et al. 2010) than VIMS-brown, 

SAR-dark sand. 
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Figure 8. Spectral signatures of bright, brown, blue surfaces in VIMS, and 300 micron sized grains of 
water ice at 90 K. Adapted from Soderblom et al. (2007). 
 

Thus, larger VIMS-blue clasts may fluvially erode and then comminute from further ero-

sion to sand and consequentially appear VIMS-brown. Brown features imaged by the Huygens 

Descent Imager/Spectral Radiometer (DISR) are correlated with both VIMS-blue and VIMS-

brown surfaces. Contrastingly, bright regions in DISR appear bright in VIMS (Le Mouélic et al., 

2019, Soderblom et al., 2007). Although sediments on Earth can darken from exposure to the sun, 

or erosion into smaller clast sizes, the VIMS-bright and VIMS-brown surfaces are significantly 

different spectrally and thus not likely made of the same materials. 

In addition to spectral data, there is geomorphological reasoning to suggest that sand is 

sourced from VIMS-blue materials. The shapes of upwind sand sea margins often reflect shapes 

of adjacent upwind VIMS-blue margins. Outside of the rugged Xanadu region, a few impact 
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craters, and northern and southern limits to sand seas, wherever there is VIMS-blue sand is found 

immediately downwind (Fig. 6). 

The sand of Titan is likely to be relatively durable, because the dunes are assumed to be 

millions of years old (Barnes et al., 2015) and may have migrated many kilometers. Assuming the 

sand and its source are both durable materials, we suggest that sand is not generally sourced from 

VIMS-bright materials as they appear to be weaker, more porous, and methane-soluble than 

VIMS-blue materials. There are several lines of evidence for this: 

1) Mechanical Strength 

Typically, deeper-sourced rocks on Earth tend to be more durable, and the VIMS-

blue surfaces on Titan are assumed to be from a layer beneath much of the visible VIMS-

bright, organic-rich surfaces (Brossier et al., 2018, Soderblom et al., 2007). Laboratory 

experiments with water ice and lab-created tholins found tholins (which may form the 

VIMS-bright materials) to be more brittle than water ice (Yu et al., 2018). 

2) Porosity 

Deeper-sourced rocks on Earth also tend to be less porous, suggesting the strati-

graphically lower VIMS-blue materials on Titan are also less porous. Additionally, VIMS-

bright materials have been interpreted to be more transparent in SAR than VIMS-brown or 

VIMS-blue materials (Soderblom et al., 2007), which suggests that they may be relatively 

porous and weakly compacted. Furthermore, observations of headward erosion and 

rounded valleys in VIMS-bright deposits similar to spring-fed drainages in the south-west-

ern U.S. imply subsurface flow (Malaska et al., 2020). Some of these morphologies are 

even seen in the Huygens landing site drainages. This suggests VIMS-bright materials are 

more permeable than VIMS-blue materials. 
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3) Solubility 

Lakebeds covered with evaporites have been interpreted within southern Xanadu 

(Moore and Howard, 2010) and are spectrally similar to VIMS-bright surfaces (MacKen-

zie et al., 2014). Several lacustrine features surrounded by VIMS-bright regions have been 

interpreted to have karst morphologies (Cornet et al., 2015). Altogether, this suggests that 

VIMS-bright materials may be soluble in methane. This interpretation is further supported 

by solubility experiments with lab-created tholins in methane and ethane (Carrasco et al., 

2009; Coll et al., 1999; Mckay et al., 1996). Evaporites can form local sand sources as in 

White Sands, NM, but the sands must be continually re-supplied and do not often travel far 

because of their ability to dissolve in precipitation. As there is little correlation between 

the distribution of VIMS-bright surfaces and adjacent downwind sand seas, we argue that 

even if Titan’s sands are partially methane-soluble it would be more logical to assume that 

VIMS-blue sediments are the primary sand source. 

Observations by Jaumann et al. (2008) found that VIMS-bright materials quickly 

disintegrate across floodplains compared to VIMS-blue sediments. Bright clasts in DISR 

(correlated as VIMS-bright and ISS-bright) tend to be pebble to cobble sized, while dark 

deposits (correlated with VIMS-blue, VIMS-brown, and ISS-dark) tend to be made of 

smaller pebble to sand sized clasts. Further comparisons between SAR and VIMS imagery 

across drainages and floodplains suggest that VIMS-bright materials may in general exist 

as pebble to cobble sized clasts before quickly disintegrating. Partially soluble rocks on 

Earth also tend to exist as larger clasts due to the larger surface area of smaller sediments, 

which more quickly dissolve and disintegrate (Tamrakar and Shrestha, 2008). This reflects 
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the steep gradient of values across VIMS-bright/VIMS-blue boundaries (Jaumann et al., 

2008). 

3.2 Identification of Lithostratigraphic Units 

Mapped surfaces where identified as lithostratigraphic units by correlating previous inter-

pretations of surfaces with ISS, VIMS, SAR, and DISR imagery (Fig. 7). Surfaces that appear 

bright in DISR also appear bright in ISS, VIMS, and SAR (with some variability in SAR). Dark 

values in DISR appear dark in ISS, but can appear brown, purple, or blue in VIMS, and bright or 

dark in SAR. VIMS-light blue surfaces appear to be generally moderate gray in DISR (likely due 

to greater detail), light gray to bright in ISS, and bright in SAR.  

Based on material appearance in imagery, the relative locations of materials, and the spec-

tral similarity of VIMS-blue and brown materials compared with VIMS-bright materials (Fig. 8), 

we conclude there are 2 primary substances compositionally, with VIMS-blue materials existing 

as VIMS-brown sand only because of clast size differences making slight differences in spectral 

signatures. These slight differences were exaggerated in VIMS imagery due to the assigned color 

scheme (Le Mouélic et al., 2019). 
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Figure 9. Region surrounding Huygens landing site in a) ISS, b) VIMS, c) SAR, d) DISR (image credit: 
ESA/NASA/JPL/University of Arizona/Erich Karkoschka), and e) the geologic map (Fig. 11). Notice 
strong correlations between DISR, which is near visible light, and ISS. According to the geologic map, 
the Huygens landing site is surrounded by a surface dominated by icy organic sand partially covering icy 
organic gravel and bedrock. 
 

 VIMS-blue and VIMS-brown materials (and consequently VIMS-purple surfaces), are 

made mostly of complex organic compounds with some lesser concentration of water ice (Jaumann 

et al., 2009; Mouelic, 2019; Soderblom et al., 2007). Relying on these spectral compositions and 

textural characteristics observed in SAR (Figs. 5, 6, 9), we identified VIMS-blue materials to be 

“icy organic gravel and bedrock,” where “icy” refers to water ice. Based on the spectral similarity 

between VIMS-blue and VIMS-brown, we found that VIMS-brown materials (which were mapped 

using 0 – 117 values in ISS and reducing the selection by the extent of 132 – 255 in VIMS green 

channel and VIMS-blue, light blue, and purple surfaces) are “icy organic sand.” Varying abun-

dances of sand were given separate units as described in Section 2. Based on our interpretation 

that VIMS-purple is VIMS-brown dunes with VIMS-blue interdunes, we determined VIMS-purple 

surfaces to be “icy organic sand partially covering icy organic gravel and bedrock.” It is possible 
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that the greater region surrounding the Huygens landing site, which was largely mapped as icy 

organic sand partially covering icy organic gravel and bedrock, is generally covered with sand 

sheets and streaks partially concealing icy organic gravel based on observations of descent imagery 

(Fig. 11). 

Due to Jaumann et al. (2009) and Mouelic (2019) concluding that VIMS-bright materials 

have greater concentrations of organic compounds, and Soderblom et al. (2007) further suggesting 

that VIMS-bright materials are largely lithified bright tholins, we interpreted VIMS-bright as 

“bright lithified organic materials.”  

VIMS-light blue surfaces appear to generally be distributed as small isolated surfaces 

across dominantly VIMS-bright regions, or as margins surrounding VIMS-blue surfaces. It has 

also been interpreted that VIMS-blue materials underly a VIMS-bright mantle (Soderblom et al., 

2007; Brossier et al., 2018). Based on these observations, and VIMS-light blue regions appearing 

bright in SAR, we concluded that VIMS-light blue surfaces are “icy organic gravel and bedrock 

partially covered by bright lithified tholins.” 

Due to the Huygens probe landing near a thin exposure of bright lithified organic materials 

that overlies exposed icy organic bedrock, it is likely that the landing imagery (Fig. 10b) represents 

a light purple value in VIMS if resolutions would allow. Icy organic sand, gravel, and bright lith-

ified organic materials all appear to be present. 
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Figure 10. Enhanced DISR imagery of a) region NE of Huygens landing site with blank extension to 
show relative position of landing site and location of b) landing site facing south. Marked distances from 
probe and 10 cm scale for cobble were adapted from Keller et al. (2008). Outlined location of b) in a) is 
not to scale. Lithologies are labelled in their various forms that are present within imagery.  
Image credit: ESA/NASA/JPL/University of Arizona. 
 

 

4. Map of Sand and Bedrock Distributions 

We created a partial map of the equatorial regions of Titan (from roughly 40˚ N to 40˚ S) 

that illustrates the distributions of sand and VIMS-blue materials (Fig. 11). While there are equally 

detailed maps with a wider variety of units (see Lopes et al. [2020] global geologic map), this map 

is the first to display interpreted relative sand abundances and regions where sand is partially cov-

ering VIMS-blue materials (seen as VIMS-purple). 
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Figure 11. Global equatorial map of relative abundances of icy organic sand, icy organic gravel and bedrock, bright lithified tholins, and 
regions of icy organic sand partially covering icy organic gravel and bedrock, and icy organic gravel and bedrock partially covering bright 
lithified tholins. Color scheme is roughly based on the VIMS color scheme created by Le Mouelic et al. (2019). Relative sand abundances 
mapped as various shades of tan. Areas with most abundant sand are mapped as dark tan and moderately sandy areas are medium tan, both 
as determined by dark (0 – 47) and moderate (47 – 70) gray values in ISS. Least sandy areas are light tan and were mapped by applying a 
value threshold of 70 – 117 to ISS, and further restricting the selected area by the extent of 132 – 255 in the green channel of VIMS. The 
resulting selection was then overlain by all other selections and the remaining extent visible was interpreted as icy organic sand present. 
Other units were created from color selections on VIMS imagery (see Table 1). *Extent of bright lithified tholins unit was interpreted as 
being the remaining unmapped regions of the map and were not explicitly mapped due to strong similarities with VIMS-green. 
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Table 2. Units from map (Fig. 11) with descriptions, interpreted origins and colors as seen in ISS, VIMS, 
and SAR. Probable visible light colors are also listed as interpreted from Huygens descent imagery. 
 

The map (Fig. 11) has various limitations and errors. Low resolution imagery, particularly 

in an area west of Menrva Crater and north of Xanadu, was used while mapping. Accuracy is no 

better than 50 km in such areas. Additionally VIMS and ISS imagery have not yet been thoroughly 

georeferenced and consequently isolated regions appear to be shifted relative to one an-other. We 

found these discrepancies to generally be less than 20 km. Mapped boundaries have various arti-

facts that originated from artifacts created during the development of the VIMS mosaic. Causes 

for VIMS artifacts include the stitching of low resolution images, localized differences in the 
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atmosphere that were insufficiently compensated for, and calibration errors (Le Mouélic et al., 

2019). Similar errors exist with the ISS mosaic (Porco et al., 2005). Some features (see Section 7) 

were unable to be mapped at this large of a scale due to their small sizes and/or subtle differences 

in VIMS values, but are referenced in this work due to their significance in revealing geologic 

processes.  

 The equatorial map (Fig. 11) reveals that sands are globally distributed across the equato-

rial regions, with the exception of Xanadu, a rugged, dissected and sand-free region (Radebaugh 

et al., 2009; Rodriguez et al., 2014; Monteleone et al., 2020). We measured the total sand cover-

age of the map region (which covers equatorial latitudes only) to be 30.5%. Out of sand covered 

regions the total coverage of most abundant sand, moderately abundant sand, sand present, and icy 

organic sand partially covering icy organic gravel and bedrock are 11.3%, 33.8%, 46.0%, and 8.9% 

respectively. Sand is locally interrupted by other regions that are SAR bright, rugged, and in some 

cases with clear peaks or mountain chains assumed to be highlands between various sand seas 

(Radebaugh et al., 2007; Radebaugh et al., 2010; Liu et al., 2014). Dune long axes tend to have a 

flow-like morphology around these landforms, further confirming their elevated nature (Lorenz 

and Radebaugh, 2009; Malaska et al., 2016). 

 Our equatorial map (Fig. 11) reveals that VIMS-blue surfaces tend to be located upwind of 

and adjacent to sand seas, with Xanadu as the most prominent exception. Although small and 

isolated, some VIMS-blue surfaces are distributed just upwind (west) of Shangri-La and Senkyo. 

Significant VIMS-blue surfaces are immediately upwind (west) of Fensal and Aztlan (Fig. 11). 

Some upwind margins of VIMS-blue surfaces are also similar in shape to downwind and adjacent 

margins of sand seas. This is particularly visible on the western margins of Fensal and Aztlan (Fig. 

11).  
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1.3% of the mapped surface is covered with icy organic gravel and bedrock. If coverage of 

the units icy organic sand partially covering icy organic gravel and bedrock (2.7% of surface) and 

icy organic gravel and bedrock partially covered by bright lithified materials (2.5% of surface) are 

included they altogether make up 6.5%. 43.7% of the icy organic gravel and bedrock unit is within 

a 6,300 km long, E to W trending, linear feature that extends across southern Xanadu up to SW 

Aaru. Much of this ice-rich corridor is upwind (west) and adjacent to Aztlan (Griffith et al., 2019). 

42.4% of the icy organic gravel and bedrock unit is associated with the Menrva and Sinlap impact 

craters, and 16.9% is within Xanadu. VIMS-light blue surfaces within eastern Xanadu are arranged 

in 2 concentric circles. 

VIMS-purple surfaces tend to be distributed as narrow bands directly between VIMS-blue 

and VIMS-brown surfaces and along upwind margins of sand seas (Figs. 2, 11). 

 

5. Interpreted Causes for Sand Distributions 

Mapped distributions of sand obtained in this study, coupled with previous research, ob-

servations in SAR imagery, global topography, and atmospheric modeling (Larson, 2019; Tokano, 

2008) suggest 5 primary causes for sand accumulation on the surface of Titan. 3 of these are related 

to topography: topographic obstacles, basin entrapment, and channeling within corridors. 2 involve 

other factors: opposing wind currents and fluvial margins. 

5.1 Influence of Topography on Sand Accumulation 

Topography can cause obstruction of sand movement, as observed in sand seas on Earth 

(Lancaster, 1995; Wilson, 1971). Eastern Fensal appears to be obstructed by the outer slopes of 

ejecta from the Sinlap impact crater. Some of the most abundant sand deposits of Fensal are located 

along the upwind margin of Sinlap’s ejecta rim.  
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There is some variability in sand abundance between sand seas. Coverage of most abundant 

icy organic sand deposits across Belet is relatively high (20.3%), and is low across Fensal (0.1%) 

and Aztlan (0%). There are large sandy SAR-dark and ISS-dark regions across Belet, and it appears 

very little bedrock protrudes through the interior of the sand sea. This may be due to Belet occu-

pying a relative lowland (Fig. 12). Within Fensal and Aztlan there is a greater abundance of un-

derlying SAR-bright terrain and bedrock, indicating larger sand-poor regions at the surface. These 

sand seas have relatively higher elevations (Fig. 12). Furthermore, Fensal and Aztlan are down-

wind of Xanadu, which may preclude the movement of sand from the west and cause lower sand 

abundances in those sand seas (Barnes et al., 2015). 

 

Figure 12. Global topographic map of Titan by Lorenz et al. (2013) overlain by sand sea margins (filled 
with fine horizontal lines) and most abundant icy organic sand deposits (filled with thick diagonal lines). 
Equatorial lowlands roughly correlate with abundant sand deposits, primarily in the case of Belet. 

 

The most abundant sand deposits tend to be in the eastern areas of sand seas (Fig. 12). 

Although most of the abundant sand deposits within Belet are in the sand sea’s southern region, 

there is apparent displacement to the east relative to the sand sea’s boundaries. Abundant sand 

deposits extend across the center of a narrow corridor running from western to eastern Shangri-La 

and merge with a broad deposit of abundant sand along the eastern boundary of the sand sea (Fig. 

12). Sand deposits become gradually less abundant toward the NE of Shangri-La. 
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Lakebeds, riverbeds, and land adjacent to oceans are places that trap sand within sand seas 

on Earth (Lancaster, 1995; Bubenzer et al., 2020). Given there is methane rainfall on Titan, even 

at equatorial latitudes, there may be the possibility of similar sand entrapment on Titan. SAR-dark 

lobate features similar to other identified lakebeds (Moore and Howard, 2010) were observed 

across southern regions of Belet. Dunes within them were more closely spaced and interdunes 

were generally darker in SAR than those across surrounding regions of the sand sea. These inter-

preted lakebeds were also within a broad region mapped as having abundant sand de-posits.  

Notable isolated regions mapped as having most abundant icy organic sand deposits that 

are correlated with isolated depressions are at (-4°, 190°) within central Shangri-La roughly 750 

m lower in elevation than surrounding topography, and at (-15°, 300°) within Senkyo roughly 375 

m below surrounding elevations (Fig. 12). 

Sand is often transported across sand seas along pathways between highlands, as can be 

seen across the Sahara Desert described by Lancaster (1995). On Titan in Shangri-La, a narrow W 

to E trending part of the sand sea at (-7°, 165°) is covered by thick sand deposits and is bounded 

to the north and south by what appear to be highlands in SAR. Supporting evidence for this is 

found in the topographic map Fig. 12. As the dominant wind direction is also W to E, we inter-

preted this narrow part of Shangri-La to be a sand corridor similar to those on Earth.  

5.2 Opposing Wind Currents Causing Sand Accumulation 

Opposing wind currents are known to affect sand accumulation on Earth. There is some 

evidence that opposing wind currents affect the southern margin of the Rub’ al Khali (Amin and 

Seif, 2019). Similar processes may control sand sea boundaries on Titan. 

Atmospheric modeling suggests that opposing wind currents collide over the recessed SE 

margin of Shangri-La (Larson, 2019; Tokano, 2008). Abundant sand deposits along this margin 
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(Fig. 13) may have accumulated because of this possible opposing wind current. The SE margin 

of Shangri-La is also recessed towards the west compared to the more northern sand sea margins. 

The region is adjacent to the SAR, VIMS, and ISS-bright Xanadu terrain (Fig. 2), which is domi-

nantly low in elevation (Fig. 12). Previous research concluded that an ephemeral river must flow 

along the SE margin because of a similar appearance with the Namib Sand Sea and its northern 

margin, which is strongly influenced by the Tsondab River (Barnes et al., 2015). 

 

Figure 13. Geologic map centered on eastern Shangri-La. Note the significant coverage of abundant sand 
along the SE margin of the sand sea, consistent with a dominantly W to E wind direction and some form 
of obstruction along the eastern margin. Note also the recessed SE boundary where the sand sea abuts 
Xanadu, which occupies bottom right of figure. 
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We note that the regional slope of the SE margin of Shangri-La is oriented SE (Fig. 14), 

which would cause the proposed channel to be flowing perpendicular to regional slope for more 

than 600 km. Although smaller examples of this are observed on Earth, they are caused by deep 

canyons that prevent the channels from avulsing, or re-routing toward the regional slope. While 

SAR resolutions are low (0.5 km/pixel), a prominent canyon would likely be visible in SAR if it 

were present because nearby channels are easily seen. Additionally, if a methane river was flowing 

along the downwind margin of Shangri-La, sand would likely be blown into and transported by 

the river to a distal alluvial fan (Barnes et al., 2015). Available VIMS imagery does not show 

evidence of dune-like organic sediment, or a fan near the terminus of a possible drainage. 
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Figure 14. a) Topographic map of Titan (Lorenz et al., 2013) cropped and centered on eastern Shangri-La 
(outlined) and western Xanadu. Transect A – A’ is oriented parallel to linear dune crests at the center of 
the SE margin of Shangri-La. b) Topographic profile A – A’ across Shangri-La and Xanadu. Profile was 
created from data provided by Titan Trek at trek.nasa.gov/titan. Notice sand sea margin ends at a regional 
downhill slope. 
 

Dune crests splay outwards towards the northeast at the northern extent of the recessed 

boundary, and towards the southeast at the southern end of the recessed boundary. These dune 
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long axis orientations are consistent with shaping by an opposing (westward) wind current ema-

nating from Xanadu. Similarly, dune crests appear deflected along the southern margin of the Ara-

bian Rub' al Khali sand sea (Fig. 15a). This region is largely influenced by seasonal, northeasterly 

winds that oppose the dominant sand-bearing, southwestern winds that cover much of the interior 

of the sand sea (Fig. 16a). Linear dune crests angle southward across the eastern extent of the 

southern margin. Dune crests are oriented towards the west along the central and western parts of 

the southern margin.  

Dune morphologies along the southern margin of the Rub’ al Khali sand sea provide further 

evidence for obstruction from opposing winds. Progressing from the interior of the sand sea to-

wards the margins, there are linear dunes, then complex linear dunes overprinted by other dune 

types, sinuous “wiggly” dunes with an overall shape like linear dunes, but appear to be connected 

star dunes, then fully disjointed star dunes at the edge where the winds nearly equally converge 

(Fig. 15a).    

 

Figure 15. a) Dunes at the southern margin of the Rub’ al Khali Sand Sea (from Google Earth imagery) 
and b) the southeastern margin of Shangri-La (SAR). Notice comparable patterns in dune morphology 
and sand sea margins. 
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Minor isolated topographic obstacles are observed near the SE margin of Shangri-La (ob-

served as isolated SAR-bright features (Fig. 15b)), and across topographic profiles (Fig. 14b). 

Similarly, an isolated section along the southern margin of the Rub’ al Khali interacts with inclined 

topography (Fig. 16b); however, the gradient in slope is comparable to un-obstructing slopes 

within the center of the sand sea. Both sets of topographic obstacles appear to be minor compared 

to other topographic anomalies within the sand seas and are minor compared to the scale of the 

margins themselves. 

 

Figure 16. a) Dominant wind directions as mapped from orientations of barchan dunes (Amin and Seif, 
2019). b) Topographic map of the Rub’ al Khali Desert. Contour intervals are in meters. Dashed line out-
lines the margin of the Rub’ al Khali Sand Sea, colored tan. Notice the southern sand sea margin’s inde-
pendence from slope gradient and the relatively steep gradients found within the center of the sand sea 
where the sand migrated unobstructed (2006). 
 

Computer modelling of atmospheric currents above Xanadu conducted by Larson (2019) 

modeled Xanadu as a large depression and revealed that W to E, sand-bearing wind currents may 

be deflected along the western margin of Xanadu by eddy currents across Xanadu and are forced 

to flow towards the NE (Fig. 17). Although there is a striking resemblance between these model 

results and the overall orientations of observed dune crests in the NE of Shangri La, we propose 

that there may be additional forces that generate more directly opposing wind currents across the 

SE margin of Shangri-La. Dune crests there are oriented perpendicular to the modeled wind 
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directions. RADAR brightness temperatures (a combination of real temperature and emissivity, 

which are related to material properties), are 20˚ C colder across much of central Xanadu than SE 

Shangri-La (Janssen et al., 2016; Fig. 18). This is likely partially due to the relatively high albedo 

of Xanadu (Solomonidou et al., 2014). Such a temperature gradient may generate katabatic, or 

cold density-driven, winds across Xanadu (Radebaugh et al., 2011). These katabatic winds may 

flow for a distance up the gradual slope at the SE boundary of Shangri-La, where they would 

collide with westerly, sand-bearing winds. These opposing winds would likely promote the accu-

mulation of abundant sand deposits near the SE boundary of Shangri-La because of the reduction 

in velocity of the sand-bearing current. The influence of a strong gradient in surface temperatures 

may also be responsible for the deflected SE oriented dune crests at the southern end of the re-

cessed sand sea margin. 

 

Figure 17. Modeled wind vectors with colors representing W to E vector magnitude (Larson, 2019). 
Xanadu may behave as an atmospheric eddy and deflect westerly winds to the NE preventing sand-bear-
ing winds from passing directly across its surface. 
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Figure 18. RADAR brightness temperature map of Titan. Eastern Shangri-La outlined (completed by 
hand tracing around dark values in ISS imagery). Xanadu is cold (Janssen et al., 2016). 
 

Studies of topography and winds on Mars (Chojnacki et al., 2019) revealed that wind cur-

rents generated by differences in albedo can have a strong influence on sand migration. A differ-

ence in normal albedo of 0.1 between two Martian landmasses is associated with winds that trans-

ported sand 2 km upwards in elevation over a horizontal distance of 200 km on Mars (Chojnacki 

et al. 2019; Fig. 19). In Titan’s thicker atmosphere with greater heat capacity, the roughly 0.2 

difference in normal albedo between Shangri-La and central Xanadu (Solomonidou et al., 2014) 

may create similar influences on sand flux. 

 

Figure 19. Topographic profile of Syrtis Major with primary wind directions indicated by orange arrows. 
(Chojnacki et al., 2019). 
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In summary, we propose an alternative explanation for the recessed SE boundary of Shan-

gri-La in which a combination of gyroscopic and katabatic winds are generated by the surface of 

Xanadu due to its high albedo, relatively cooler temperature, and being a broad depression. These 

generated winds across western Xanadu flow toward the west and oppose sand-bearing winds at 

the boundary between Shangri La and Xanadu, leading to obstruction of sand movement and dune 

progression into Xanadu. We also acknowledge that localized topographic obstacles are partially 

responsible for sand obstruction. 

5.3 Influences of Fluvial Margins on Sand Distribution 

River channels can obstruct sand migration on Earth, causing downwind margins to be 

abrupt. For example, the Namib Sand Sea is bordered by the Tsondab River, which precludes 

movement of sand to the north (Lancaster, 1995). In order to better understand the affects fluvial 

activity can have on sand sea margins, we compared observations of Titan SAR imagery with GPR 

and GPS surveys of the Kelso Dunes in California, USA.  

5.3.1 Surveying Kelso Dunes, CA as a Terrestrial Analog 

5.3.1.1 Geologic History 

The Kelso Dunes were chosen as a terrestrial analog for this study because of the presence 

of linear dunes similar to those observed on Titan, a high abundance of sand, and interactions with 

topographic and fluvial landforms at the dune field margins. SAR imagery suggests that river 

channels may also interact with sand seas on Titan.  

The Kelso Dunes originated from wind-blown sediment from the Mojave River. Additional 

sediment has also been introduced from adjacent alluvial fans to the south and east of the dune 

field (from the Granite and Providence Mountains respectively), and Budweiser Wash to the west. 

The dune field likely formed 25,000 years ago. Linear dunes developed and were later overprinted 
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by transverse dunes. Outer regions, particularly across the eastern extent of the dune field, have 

become stabilized and are currently inactive (Muhs et al., 2017). 

Cottonwood Wash, an ephemeral river, flows through the dune field roughly S to N in a 

perpendicular orientation to the crests of the linear dunes. This channel separates an active region 

of the dune field from a largely inactive region to the east (Muhs et al., 2017). Under current 

conditions, sand is unable to be transported by saltation across the steep channel walls. It can be 

assumed that previously when either there was a greater sediment supply or the climate was drier, 

the sand migrated across the dune field without obstruction.   

5.3.1.2 Research Design 

We surveyed across the Kelso Dunes’ eastern and southern margins (Fig. 20) to determine 

how fluvial activity influences sand thickness along the dune field’s margins, and ultimately how 

fluvial activity affects the migration of sand within the dune field. Participants of the survey were 

Benjamin Dean Lake (primary author), Jani Radebaugh (thesis committee chairperson), and Chey-

enne Pratt (fellow BYU geology graduate student). We chose to make 2 transects across the eastern 

margin; one across a margin that directly contacts the Cottonwood Wash (which is roughly ori-

ented perpendicular to the dominant wind direction) and another to the south that crosses a margin 

not in contact with Cottonwood Wash. A third transect was conducted across the southern margin 

where another river channel directly contacts the dune field. This third location was chosen as the 

channel there is oriented roughly parallel with the dominant wind direction. 

We used a 200 MHz GPR antenna attached to a bistatic GSSI SIR 4000 controller. A die-

lectric constant of 5 was used due to the significant amount of quartz present in the sand (Martinez 

and Byrnes, 2002). We set the controller to 1024 samples per scan, 19.7 scans/meter, and a record-

ing time of 150 ns. A GPS unit was used to compensate for topography.  
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GPR data was processed by applying exponential gain correction, automatic gain control, 

surface correction to ground surface, and a “background removal” filter to remove the direct arri-

val. 

 

Figure 20. Google Earth imagery with approximate locations of surveyed transects T1, T2, and T3 anno-
tated as yellow lines. a) Site 1 with T1 and T2, c) Site 2 with T3. b) Google Earth imagery of the Kelso 
Dunes with survey sites labelled as yellow boxes. d) Locator map showing location of Kelso Dunes 
within the United States. 
 

5.3.2 Results From Surveys and Comparisons with Titan’s Dunes 

Processed GPR profiles (Fig. 21) from our surveys at the Kelso Dunes show some cross-

bedding within dunes and gradually dipping reflections we interpreted as the lower contact of the 

dune sand. Because the GPR controller had a malfunction after surveying the eastern margin of 

the Kelso Dunes, we were only able to conduct a GPS survey across T3 at the southern margin. It 
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is likely that the depth range of interpretable reflections was reduced due to the presence of ground-

water from a rainstorm that covered the area before we arrived to conduct the survey. 
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 Figure 21. GPR surveys of T1 (a, b) and T2 (c, d) across margins of the Kelso Dunes. T1 crosses a margin that directly contacts  
 Cottonwood Wash.T2 crosses a margin that has no to very little fluvial interaction. a) and c) are uninterpreted GPR profiles, b) and d) 
 have interpreted lower contacts of dune sand represented by black lines. Bold lines have greater confidence, dashed have low confidence. 
 



 
 

42 
 

 

Figure 22. Annotated topographic profiles T1, T2, and T3 across margins of the Kelso Dunes sourced 
from GPS surveys. See Fig. 20 for locations. Extent of alluvial fan gravel, dune sand, and water at high 
flow were interpreted from field observations. Profiles are vertically exaggerated. 
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Based on the elevation profiles (Fig. 22), interpreted lower contacts of the dune field from 

GPR profiles (Fig. 21), and field observations, the dune field likely has depths of several meters 

within its interior and quickly thins out to 0 m at Cottonwood Wash. Consequently, we support 

previous findings (Barnes et al., 2015; Lancaster, 1995) that ephemeral rivers can obstruct migrat-

ing sand. The elevation profile of T3 appears similar to T1 and indicate similar influences of fluvial 

activity on the dunefield margins. Although T1 did not cross the entire Cottonwood Wash, we did 

observe a similar steep slope of sand on its opposite side towards the eastern half of the dune field. 

Due to sand existing on both sides of the Cottonwood Wash and the channel that crossed T3, we 

further conclude that although ephemeral rivers obstruct migrating sand, the channels must be 

sufficiently active for the sand flux in a given region.  

We observed in SAR imagery of Titan small, isolated, and relatively SAR-bright regions 

that lack dunes downwind of fluvial channels within Fensal, Forseti Crater, and Belet (Figs. 23a, 

b, c). We interpret these channels to be where sand migration is obstructed by ephemeral fluvial 

activity. A fluvial channel within Shangri-La was also observed (Fig. 23d), however no downwind 

SAR-bright region was found.  
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Figure 23. Fluvial channels (see white brackets) within sand seas and dune fields observed in SAR. Ar-
rows indicate SAR bright regions downwind of channel meanders that may be sand poor due to fluvial 
activity removing migrating sand that enters the channels. Channels are located within a) Belet, b) south-
ern sand corridor within Fensal near Aztlan, c) eastern crater floor of Forseti, d) southern ejecta of impact 
crater within Santorini and eastern Shangri-La.   
 

Further comparisons with the Namib Sand Sea indicates a balance between fluvial and 

aeolian processes. Along the northern most downwind extent of the Namib Sand Sea, sand is able 

to cross the Kuiseb River near the coast where winds are stronger than further inland (Lancaster, 



 
 

45 
 

1985). The rate of sand migration near the coast is great enough to transport sand across the chan-

nel before it becomes active. Further inland where wind speeds are generally slower, sand enters 

the Kuiseb River channel and is transported by the river when it is active.  

In the case of Kelso Dunes, it is most likely that the sediment supply has been reduced (the 

dune sand is mostly sourced from the Mojave River, which is no longer perennially active). The 

reduction of sediment supply has allowed for the ephemeral Cottonwood Wash to obstruct the 

migration of sand from the largely active western half of the dune field from the mostly inactive 

eastern half.  

Overall, channels observed on Titan in SAR (Fig. 23) appear to generally cause little to no 

obstruction to sand migration, as linear dunes appear along upwind channel margins and at most 

10 km downwind of all channels (with a possible exception of the site near the crater wall of 

Forseti). As SAR imagery is of the near surface, and the equatorial latitudes of Titan are thought 

to be drier than they were previously (Lorenz et al., 2013, Birch et al., 2016), it is possible that the 

interpreted channels are currently inactive and buried. We conclude that fluvial activity appears to 

have only temporarily obstructed sand migration on Titan, and that the current dry climate across 

equatorial latitudes is promoting aeolian forces to dominate the transportation of sand.  

 

6. Exposed Rift of Exposed Icy Organic Bedrock as a Regional Sand Source 

Several icy moons in the outer solar system have large rifts that have been attributed to 

thickening lithospheres due to a greater volume the ices occupy when frozen (Collins et al., 2009; 

Rudolph, M. L., et al., 2022; Steinbrügge, G., et al., 2020). Computer modeling revealed that Ti-

tan’s lithosphere likely thickened significantly 500 m.y. ago from 15 km to 100 km thick (Tobie 

et al., 2006). Lopes et al. (2010) similarly found from crater surveys that the lithosphere 
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significantly thickened somewhere between 1.0 - 0.5 billion years ago. Such a substantial thicken-

ing of the lithosphere would likely exert extensional forces on the upper lithosphere and cause 

rifting on Titan’s surface. We interpret the linear VIMS-blue feature adjacent to Aztlan to be a rift 

similar to those observed on many other icy moons in the solar system. 

 

Figure 24. A closeup of Fig. 11 showing Fensal and Aztlan sand sea deposits (in tans), the VIMS-blue 
deposits upwind and adjacent to the sand seas, and a narrow band of VIMS-purple interpreted to be de-
posits of sand that partially cover underlying VIMS-blue. 

 

Doom Mons (a probable cryovolcano) and its associated features Sotra Patera (a large deep 

depression thought to be a caldera), and Mohini Fluctus (a lobate SAR-bright feature interpreted 

to be a cryovolcanic flow from Doom Mons) are the among the most convincing cryovolcanic 

landforms identified on Titan’s surface (Lopes et al., 2013). All of these features are all located 

https://en.wikipedia.org/wiki/Sotra_Patera
https://en.wikipedia.org/w/index.php?title=Mohini_Fluctus&action=edit&redlink=1


 
 

47 
 

along the interpreted rift (Fig. 25c). Volcanism and cryovolcanism near linear features across the 

solar system are often associated with tectonic rifting (Collins et al., 2009; Ruggieri, 2018). Cry-

ovolcanism from rifting induced by thickening of an icy lithosphere has previously been modeled 

by Manga and Wang (2007). We also interpreted from SAR imagery within the proposed rift a 

cluster of three, 5 – 10 km. wide, gradually sloped inselbergs (assumed by the relatively subtle 

amounts of dune obstruction) with vent-like features at their summits (Fig. 25b). We found these 

features to be similar in overall appearance to Sapas Mons (a large shield volcano on Venus) in 

SAR (Fig. 25a). Although the scale of these features are different  they are all roughly circular and 

SAR-bright, and most appear to have 2 vents at their summits.  
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Figure 25. a) Sapas Mons from SAR imagery captured from Magellan on Venus. b) Interpreted cryovol-
canoes from Cassini SAR imagery on Titan within interpreted rift. c) VIMS imagery centered on inter-
preted rift with location of b) outlined by black and yellow box. Location of Doom Mons is labelled with 
a black and yellow circle. Axis of interpreted rift is outlined with a light blue line. 
 

Previous models have concluded that sand on Titan has migrated anywhere from only 45 

km (Charnay et al., 2015) to around the entire equator (Barnes et al., 2015). Fig. 24 appears to help 

resolve this debate. Based on our interpretation that VIMS-blue materials are the primary sand 

source, and observations of upwind margins of Aztlan closely resembling upwind margins of 
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VIMS-blue surfaces, we concluded that much of the sand within Aztlan has not migrated more 

than 300 kms. 

Although Aztlan may be a younger sand sea compared to others across Titan (based on its 

small size and lack of most abundant icy organic sand deposits), the shapes of sand sea margins 

across their downwind extents generally often appear feathery and the distribution of dark gray 

ISS regions suggest that typically the furthest downwind reaches of the sand seas have not been 

significantly obstructed. If sand had migrated distances of more than ~300 km., then we would 

likely see ISS-dark regions just north and just south of the current extent of the sand seas because 

of global opposing wind directions oriented towards the equator at these mid-latitudes. Addition-

ally, if sand had migrated larger distances sand sheets should be visible across low lying 

 

7. Mid-Latitude Icy Organic Gravel Sheets, Dune Fields and Sand Sheets  

We observed several mid-latitude, isolated, lobate features previously identified as macula 

(Fig. 1). These features (lower left of images within Fig. 26) appear VIMS-brown (except in the 

case of Elpis Macula which is partially VIMS-purple), ISS-dark, and SAR-dark. Observed macula 

are also located upwind of more diffuse VIMS-brown deposits. We interpreted these diffuse 

VIMS-brown surfaces to be sand sheets, based on their elongate shapes that parallel the dominant 

wind directions (Malaska et al., 2016), generally brown color in VIMS, and relatively darker val-

ues in ISS and SAR. 
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Figure 26. Lobate sand sheets associated with maculas. Elpis Macula (top), Omacatl Macula (middle), 
and Genetaska Macula (bottom) with diffuse downwind sand deposits in VIMS, ISS, and SAR (left to 
right). All are VIMS brown, ISS dark, and portions are SAR dark. See Fig. 28 for reference. 
 

Fluctus are defined as being overall SAR-bright and lobate features that emanate from 

SAR-bright fans which terminate SAR-bright channels. Originally these features were assumed to 

be associated with cryovolcanism (summarized by Lopes et al., 2013); however, closer inspection 

revealed that many are likely the result of fluvial activity and associated fans are probably alluvial 

fans (Jaumann et al., 2009). More recent research concluded that fluctus may be shaped by aeolian 

processes as many are oriented parallel with dominant wind directions (Malaska et al., 2016).  

We observed that fluctus appear as SAR-bright (plausibly gravel) VIMS-blue surfaces ad-

jacent to and downwind of alluvial fans at midlatitudes. Both the interpreted gravel sheets and 
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associated alluvial fans appear to curve towards dominant wind directions (Malaska et al., 2016). 

Observed fluctus appear to be wind-transported, icy organic gravel sheets. Calculated saltation 

threshold velocities by Lorenz, (2014) and Comola et al. (2021) further support this interpretation 

as they calculated threshold velocities for gravel sized clasts made of approximated densities for 

sediment on Titan to be less than 0.3 m/s. This threshold velocity is below normal calculated wind 

speeds of 0.5 m/s (Lorenz, 2021) and measured wind speeds by Huygens at the surface, which 

were ~ 1 m/s (Bird et al., 2006). Gravel sheets are observed in several wind-dominated regions on 

Earth, such as the Puna of Argentina (Bridges et al., 2015, De Silva et al., 2015). 

Although sand dunes are generally restricted to the equatorial latitudes (Brossier et al., 

2018;  Radebaugh et al., 2010), there may be some dune fields at even greater latitudes than the 

isolated sand sheets in Fig. 26. Radebaugh et al. (2011), Rodriguez et al. (2014), and Lopes et al. 

(2019) interpreted dunes from SAR imagery across Winia Fluctus, an icy organic gravel sheet at 

53°, 42°, far north of Fensal (Fig. 27a).  

Similar gravel sheets and dune fields were observed across virgae (Fig. 27b), which are 

identified as various forms of relatively more angular sheets of ISS-dark material. Many virgae 

have already been previously mapped as containing sand sheets and dunes (Brossier et al., 2018; 

Lopes et al., 2020). Based on correlations across ISS, VIMS, and SAR imagery, it is possible that 

the primary differences between virgae and fluctus are topographic obstacles creating more linear 

margins for virgae, such as those found by Malaska et al. (2016) adjacent to Perkunas Virgae. We 

also found slightly greater coverage of sand across virgae. Outer regions of virgae, particularly 

across upwind margins, tend to be SAR-bright (Fig. 27b) and VIMS-blue or purple (Fig. 1). Both 

fluctus (other than the likely cryovolcanic feature Mohini Fluctus near Doom Mons) and virgae 
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are oriented parallel with dominant wind directions, are ISS-dark, and tend to be VIMS-blue. A 

few fluctus are difficult to correlate from SAR to ISS and VIMS due to poor resolutions. 

Moderate latitude dune fields across fluctus and virgae tend to be isolated, small, and ap-

pear to be overwhelmed visually in low resolution VIMS imagery by surrounding and interdunal 

VIMS-blue surfaces. Due to their subtle nature and small surface areas, they were not included in 

the global-scale map (Fig. 11).  
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Figure 27. SAR imagery of linear, possibly stabilized dunes at or near mid-latitudes. Yellow ovals denote 
locations of observable linear dunes. a) Perkunas Virgae, a region south of southeastern Shangri-La at -
28°, 159°, that was previously mapped as having sand dunes (Brossier et al., 2018). b) Winia Fluctus, far 
north of Fensal at 53°, 42°, is a SAR-bright lobate feature with features previously interpreted to be linear 
dunes (Rodriguez et al., 2014; Lopes et al., 2019). Narrow, SAR-bright features are consistent with radar 
reflections seen on dunes at equatorial latitudes (Neish et al., 2010). Dominant wind directions in both im-
ages are from the WNW (Malaska et al., 2016). See Fig. 13 for locations. 
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Although SAR imagery is limited, we made correlations with VIMS and higher resolution 

ISS imagery in order to identify several mid-latitude sand and gravel sheets (Fig. 27). 

 

Figure 28. Global ISS imagery as a locator map outlining interpreted VIMS-blue gravel sheets (orange 
rectangles) and lobate VIMS-brown sand sheets (yellow circles). Areas of interest focused on in this work 
are labelled. Compare with Fig. 1. 

 

It is also worth noting that yardang fields have also been identified within mid-latitudes 

(Paillou et al. 2016; Northrup, 2018). The most probable candidates are all unassociated with fluc-

tus and virgae, and appear ISS-bright, VIMS-bright, and SAR-bright. Likely yardang field candi-

dates tend to lie within relatively circular SAR-bright features and some have been associated with 

isolated rises of exposed bedrock (Northrup, 2018). Although yardangs can have similar linear 

shapes to linear dunes, we argue that they can be differentiated by the regions they occupy and 

SAR values that traverse crests. Paillou et al. (2016) found that linear dunes’ triangular shape in 

cross section spaced apart by relatively horizontal interdunes cause backscatter that would result 

in the pattern of SAR-dark, bright, and gray observed in dunes across Titan. This same pattern is 
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present in a more muted form across the interiors of some fluctus including Winia Fluctus (Fig. 

27b). 

 

8. Sand Producing Environments 

8.1 Wind-swept, Reshaped Alluvial Fans 

One possible dominant environment responsible for sand production on Titan is wind 

swept alluvial fans. The distribution of sand seas across broad relatively high elevation regions 

(Fig. 12) and observations of drainage termini across equatorial and temperate latitudes (Figs. 10, 

23, 27, 30) support this hypothesis. Greater rates of precipitation exist across more temperate lati-

tudes than across the equator (Birch et al., 2016). Consequentially, the transportation of sediment 

is likely more influenced by fluvial interactions at higher latitudes. Hesse (2019) found that across 

wetter environments alluvial fans tend to exist unburied, while across drier environments wind 

selectively transports sand from the alluvial fans and accumulates it in dunes and sand sheets across 

adjacent downwind alluvial fans (Fig. 29). 
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Figure 29. Illustration adapted from Hesse (2019), which was adapted from Weismann et al. (2010) 
showing affects of aridification on a system of alluvial fans. Over time, wind dominates the transportation 
of sediment, sorting out sand from the alluvial fans and burying them.  

 

In addition to Winia Fluctus, we also interpreted linear dunes across the center of Leilah 

Fluctus (Fig. 30). Comparing these observations with Fig. 29, we concluded that within Hesse’s 

diagram these fluctus represent a relatively wet, fluvially-dominated environment.   

 

 



 
 

57 
 

 

Figure 30. Leilah Fluctus, a SAR-bright surface immediately downwind of and possibly sourced from 
wind-swept alluvial fans at 51.2° N, 100.7° E, roughly 475 km north of Fensal. Dominant wind direction 
is ESE. White arrow is directed towards an interpreted dune field with linear dunes. 
 

 To further illustrate our interpretation of fluctus, we created the block diagram Fig. 31 with 

both VIMS and DISR (near visible light) color schemes. 
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Figure 31. Block diagram of sand produced from isolated wind-swept alluvial fan at a temperate latitude 
based on observations of Leilah Fluctus (Fig. 30). a) VIMS color scheme and b) Huygens descent im-
agery (near true color) color schemes. 



 
 

59 
 

It has been previously observed that alluvial fans are mostly distributed across the mid-

latitudes where coincidentally there are greater rates of precipitation than at the equator (Birch et 

al., 2016). Drainage termini at equatorial latitudes appear to be largely influenced by other forces 

other than fluvial activity as there are several fluvial channels, but few observed alluvial fans there. 

We propose that alluvial fans across equatorial latitudes have been altered by burial from wind 

transported sediment, and by sand and pebble-sized clasts from the alluvial fans being transported 

downwind. For example, we interpret the lack of significant VIMS-blue surfaces adjacent to Belet 

as being a result of VIMS-blue alluvial fans being buried by VIMS-brown sand. We suggest that 

VIMS-blue and VIMS-bright sediments are deposited at the terminus of drainages where alluvial 

fans form during flash flood events, or periodic wet climates. VIMS-bright sediments quickly dis-

integrate (Jaumann et al., 2008), and sand sized VIMS-brown clasts (which previously existed as 

VIMS-blue gravels and cobbles [see Section 3]) are transported by wind and accumulate in adja-

cent dune fields and sand seas (Fig. 32).  
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Figure 32. Illustrations depicting the primary interpreted method of sand production on Titan. a) VIMS 
color scheme and b) Huygens descent imagery (near to true visible color) color schemes. Occasional 
storms fill drainages and liquid methane rivers fluvially erode VIMS-blue and overlying VIMS-white ma-
terials into sediments, which are deposited at the terminus of drainages. Wind transports gravels and sand 
downwind of the drainages and organizes the sediments into VIMS-blue gravel sheets and VIMS-brown 
sand seas. VIMS-bright materials quickly disintegrate and dissolve. During wetter climates alluvial fans 
prograde, while during dry climates sand deposits transgress across the basin. These cycles are preserved 
in patterned deposits beneath the sand sea. 
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We compare this generalized interpreted method of sand production and transport on Titan 

to the Nafud desert in northern Saudi Arabia (Fig. 33). Lower Paleozoic quartz arenites from the 

Tabuk Formation to the west of the Nafud Sand Sea are the primary source rocks, and appear to 

be comparable to VIMS-blue exposures within highlands on Titan. Basalt flows overlay the Tabuk 

Formation and supply an insignificant amount of sediment to the Nafud Sand Sea, perhaps similar 

to VIMS-bright materials (Garzanti et al., 2013). Although there is fluvial erosion on the upper 

layer of basalt in the Nafud Desert, most of the basalt breaks down to clays and ions through 

chemical weathering, reducing the presence of sand-sized basalt clasts. Braided river deposits at 

the base of drainages that lead toward the sand sea appear to have pebble to cobble sized clasts of 

basalt mixed with sand derived from the Tabuk Formation (Fig. 33a), and the downwind sand sea 

has little basalt sourced sediment (Garzanti et al., 2013). The landscape morphologies, materials 

involved, and distributions of materials all have characteristics similar to those observed at the 

Huygens landing site (Fig. 33b; Garzanti et al., 2013; Jaumann et al., 2008). Both regions have 

highlands mantled with partially soluble materials, and the primary source rocks for the sands 

appear to be the underlying materials. Within the Nafud Sand Sea there are negligible amounts of 

basalt-sourced materials (Garzanti et al., 2013). Similarly, the spectral data of the sandy surfaces 

on Titan is more similar to VIMS-blue than VIMS-bright surfaces, indicating the sands reflect 

their source and not other adjacent materials. To further compare the Nafud Desert to the Huygens 

landing site, we inverted the colors of Fig. 33a and covered it with a partially transparent orange-

brown layer in GIMP (see Fig. 33c). 
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Figure 33. a) Western Nafud desert upwind of Nafud Sand Sea showing jointing within the light tan 
Tabuk sandstone, and overlying dark basalt flows. b) Huygen descent imagery showing similar jointing to 
a) within a dark brown material correlated with VIMS-blue. c) Same as a), but with values inverted and 
covered with a partly transparent orange-brown layer in GIMP for further comparison with b).  
 

8.2 Lakebeds 

Computer models (Lora et al., 2014; Mitchell and Lora, 2016) and reasoning based on 

orbital characteristics and distributions of various lacustrine features (Hörst, 2017) suggest that 

Titan undergoes regular large scale climate fluctuations. Cooler temperatures promote condensa-

tion of methane, while warmer temperatures promote the evaporation of methane. Lorenz et al. 

(2013) suggested that as Titan warms, liquid bodies of methane evaporate and are abandoned. 

Close examination of SAR imagery has revealed possible SAR-dark lakebeds beneath sand 

seas (Fig. 34). One of these interpreted lakebeds is surrounded by channels and drainages that 

appear to empty into them (Fig. 34b). All of these interpreted lakebeds have similar overall shapes 

to previously identified lakebeds and active lakes (Fig. 34a), and have generally higher concentra-

tions of dunes than the surrounding regions of the sand seas they occupy. These SAR-dark features 
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are correlated to VIMS-brown and are assumed to be covered with sand. Other SAR-bright 

lakebeds previously identified by Barnes et al. (2011) appear VIMS-bright and have been inter-

preted to be covered by evaporite deposits. These evaporite covered lakebeds appear across polar 

latitudes and within Xanadu far from any visible deposits of sand. We suggest that interpreted 

lakebeds within sand seas may or may not have also been originally covered with evaporites, but 

are now buried by VIMS-brown sand. It is of more importance that the interpretation of these 

features allowed us to investigate the origins of macula and associated sand sheets which are make 

up some of the most distal regions of sand seas. 
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Figures 34. SAR imagery of a) previously identified active lakes (L) and paleolakes (bright lobate 
patches covering much of image, outlined by distinct bright and dark margins) in polar regions (Moore 
and Howard, 2010). b) Eastern Shangri-La with a SAR-bright channel leading to an interpreted SAR-dark 
paleolake, and c) eastern Belet with several probable SAR-dark paleolakes. Notice consistent morphol-
ogy, but different scattering properties of the surfaces of these interpreted paleolakes. It is likely that the 
bright polar paleolakes are covered with rough textured evaporite deposits, while dark equatorial paleo-
lakes are behaving as sediment sinks and are accumulating sand. 
 

As with alluvial fans, it appears that the currently dry equatorial latitudes may also be more 

strongly influenced by wind than the accumulation of sediment from past lacustrine activity. Dark 
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lobate features in SAR are typically located within regions mapped as having abundant sand de-

posits (Figs. 2, 11, 34), suggesting lakebeds are behaving as localized basins that trap sediment. 

However, there is not a clear correlation of lakebeds and downwind abundant sand deposits within 

sand seas suggesting that much of the sand within sand seas is not sourced from lakebeds. 

At more moderate latitudes are macula (previously described in Section 7), which appear 

similar to the interpreted lakebeds previously mentioned within sand seas in SAR. We similarly 

interpret these as lakebeds. Macula, however, are strongly associated with isolated downwind 

VIMS-brown sand sheets (Fig. 35). Elpis and Genetaska Macula specifically have previously been 

mapped as having dunes (Brossier et al., 2018). 

 

Figure 35. Omacatl Macula, a probable dried lakebed containing VIMS-brown sediment surrounded by 
VIMS-bright deposits acting as a sand source for an isolated sand sheet. a) ISS, b) VIMS, and c) SAR. 
 

We interpret VIMS-brown lakebeds, such as those that likely occupy macula, to be sand 

sinks. Some of these appear to be losing sand from wind and are behaving as sand sources for 

isolated sand sheets and dune fields (Fig. 36). 
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Figure 36. A model of a dried lakebed containing VIMS-brown sediment surrounded by VIMS-bright 
deposits acting as a sand source for an isolated sand sheet. Based on observations of macula in SAR and 
VIMS (Fig. 35), and mapped interpretations by Brossier et al. (2018). VIMS color scheme a), and color 
scheme based on Huygens descent imagery b). 
 

Numerous paleolakes have also been identified throughout the western Nafud Desert adja-

cent to and upwind of the sand sea amongst wadis (ephemeral river channels). This region has 

been identified as a deflation zone, such that sand first deposited within these paleolakes is now 

within the Nafud Sand Sea (Rosenberg et al., 2013). Some paleolakes were also identified beneath 
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the sand sea (Parton et al., 2018; Breeze et al., 2017; Rosenberg et al., 2013). It is possible that 

paleolakes underneath sand seas on Titan, such as those interpreted from Figure 34, acted as sand 

sources and are now accumulating sediment from other upwind paleolakes and other various sand 

sources.   

8.3 Impact Craters 

We interpreted 2 examples (downwind regions of Sinlap and Menrva) of precipitated 

VIMS-blue sediment sheets from impacts acting as sand sources for downwind dunes. Interpreta-

tions were based on comparisons with ISS, VIMS, and SAR imagery. Due to the apparent rela-

tively minor amounts of sand produced by these sheets compared to the previously outlined meth-

ods of sand production, and the difficulty of creating an accurate block diagram without revealing 

concepts explained in better detail in Section 8, we encourage the reader to consider viewing the 

appendix for more information regarding impact craters as sand sources. 

 

9. Titan’s Stratigraphy and A Proposed Geologic History 

9.1 Stratigraphy Exposed in Impact Craters 

Several impact craters, including Sinlap, Selk, and Paxsi (Fig. 37) have VIMS-blue mate-

rials within crater floors and across ejecta when present. This pattern was also observed in previous 

work (Neish et al., 2015; Hofgartner et al., 2016; Brossier et al., 2018). Additionally, more weath-

ered impact craters tend to have larger exposures of VIMS-bright within crater floors and are lack-

ing ejecta (Hofgartner et al., 2016). We observed VIMS-bright central rebound features surrounded 

by VIMS-blue surfaces. Correlations between VIMS and ISS imagery of Sinlap and Selk suggest 

VIMS-bright and VIMS-blue materials are within their ejecta (Fig. 37; Brossier et al., 2018). It is 
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important to note that the outermost VIMS-blue surfaces from the crater rims of Sinlap and Selk 

have been interpreted to be the result of vaporization, condensation, and precipitation of impact-

vaporized water (Le Mouelic et al., 2006; Brossier et al., 2018), and were likely deposited after 

the ejecta.  

 

Figure 37. Sinlap, Selk, and Paxsi impact craters ordered according to increasing level of degradation 
(left to right), with rim diameters of 88 km, 84 km, and 115 km respectively (diameters measured by 
Hedgepeth et al., 2018). Top row is VIMS, bottom row is ISS. Notice that even after significant erosion 
there are still both VIMS-blue and VIMS-bright materials present. 

 

Sinlap, Selk and Paxsi all have VIMS-bright central peaks surrounded by VIMS-blue ma-

terials within their crater rims. As VIMS-bright has been interpreted to have little, or no water ice 

(Jaumann et al. 2009; McCord et al., 2006; Soderblom et al., 2007), and even eroded craters such 

as Paxsi exhibit alternating patterns of VIMS-blue and VIMS-bright, we conclude the observed 
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patterns are not entirely the result of fractional melting and are likely caused by the presence of 

preexisting, alternating layers of VIMS-blue and VIMS-bright in the subsurface.  

The Upheaval Dome feature in Canyonlands National Park, Utah has been argued to be a 

confirmed eroded meteor impact crater due to the presence of shocked quartz and micro fluid 

structures within quartz crystals (Buchner and Kenkmann, 2008). This probable impact is an ideal 

terrestrial analog for weathered impact craters on Titan as it has been well surveyed and has a 

central uplift feature. By comparing the cross section created by Kenkmann, et al., 2005 (Fig. 38) 

with VIMS imagery, we created an interpreted model of Sinlap crater (Fig. 39). 

 

Figure 38. Cross sections of Upheaval Dome, a confirmed weathered impact crater with central uplift. 
Adapted from Kenkmann, et al., 2005. Compare with Figures 37 and 39. 
 

Previous work concluded that the heat of large impacts such as Sinlap would have vapor-

ized underlying water ice, creating an ephemeral cloud. Because vaporized materials would have 

had to condense, precipitate, then deposit on the surface, it has been thought that solid ejecta would 

have deposited first, and then a thin blanket of condensed VIMS-blue materials (Le Mouélic et al., 

2006). This interpretation is supported by the lack of correlations between the condensed blanket 

of VIMS-blue materials surrounding Sinlap in VIMS and SAR imagery as SAR likely penetrates 

into the shallow subsurface (Brossier et al., 2018; Soderblom et al., 2007). It is thought that ephem-

eral channels of precipitated methane over time erode this blanket of VIMS-blue material and 

reveal the dominantly VIMS-bright ejecta.  
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VIMS-blue surfaces are also exposed within channels that incised the dominantly VIMS-

bright ejecta surrounding Sinlap (Figs. 37, 39). We interpreted these VIMS-blue surfaces to be 

exposures of an underlying layer of VIMS-blue ejecta (separate from the previously mentioned 

sheet of precipitated VIMS-blue materials) laying underneath VIMS-bright ejecta. Additionally, a 

faintly VIMS-blue surface is exposed across the upwind, NW slopes of the otherwise dominantly 

VIMS-bright ejecta cone. We interpret these VIMS-blue surfaces to be the result of wind trans-

porting the uppermost layers of VIMS-bright ejecta. 
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Figure 39. Diagram outlining proposed geologic history of Sinlap crater. a) Moment of impact. Solid 
ejecta is thrown into the atmosphere. b) Elastic rebound creates a central peak within impact crater. Solid 
ejecta falls to the surface covering eastern Fensal and is organized with an inverted stratigraphy of the 
subsurface. Vaporized materials, including water ice, condense as a large cloud. c) The water ice bearing 
cloud is transported by wind, further condenses and precipitates VIMS-blue materials onto ejecta and 
crater floor as a thin blanket. d) Precipitated methane erodes away much of the thin layer of VIMS-blue 
across the upper slopes of ejecta and central peak, and reveals the underlying VIMS-bright ejecta and 
bedrock respectively. Fluvial channels expose VIMS-blue ejecta. Wind removes some VIMS-bright clasts 
on the upwind flanks of the exposed ejecta and exposes some underlying VIMS-blue ejecta. Sand from 
Fensal migrates over some upwind margins of ejecta and landslides occur within the crater.  
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9.2 Possible Multiple Impact Origin of Xanadu 

Brown et al. (2011) and Soderblom et al. (2009) together found evidence for two large 

eroded impact basins that occupy most of Xanadu. They found annular drainage patterns within 

both interpreted craters and spectral evidence for evaporites across the floors of basins that occupy 

the southern regions of the proposed impact craters.  

Mapped VIMS-blue surfaces within eastern Xanadu (Fig. 40) are distributed in two con-

centric circles that resemble a weathered multi-ringed impact basin similar to Odysseus Crater on 

Tethys. This interpreted impact basin is 1,000 km. wide. 
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Figure 40. a) A close up of Fig. 11 showing eastern Xanadu. b) Fig. a) with annotated multi-ringed im-
pact basin. c) Tethys with 450 km wide Odysseus Crater occupying the upper left of image. 
NASA/JPL/Space Science Institute. 
 

A value threshold was applied to VIMS imagery and revealed an approximately 1,500 km. 

wide circular feature occupying western Xanadu. An annular drainage pattern was also found in 

VIMS by applying a color inversion to exaggerate the originally VIMS-blue values (Fig. 41). 

 

https://photojournal.jpl.nasa.gov/catalog/PIA08400
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Figure 41. a) Original VIMS imagery. Box outlines location of b), western Xanadu in VIMS with value 
inversion applied in GIMP to exaggerate fluvial channels obscured in SAR. c) VIMS imagery with a 
value threshold of 181 – 255 applied in GIMP, revealing a large circular feature within western Xanadu. 
d) A cropped image of b) with interpreted fluvial channels.  
 

 These new observations support the interpretations of Brown et al. (2011) and Soderblom 

et al. (2009), and we conclude that two large weathered impact craters occupy much of Xanadu. 

9.3 A Proposed Geologic History of Titan 

We propose the following geologic history: An early ocean of water mixed with tholins 

from the atmosphere and froze. VIMS-bright tholins subsequently accumulated on the surface by 

airfall and lithified. Large impacts excavated and deposited crustal material containing water ice 

and tholins as ejecta across much of the surface as suggested by Crosta et al. (2021). Later cry-

ovolcanism may have also deposited VIMS-blue layers, similar to the hypothesized model by 

Soderblom et al. (2007). VIMS-bright tholins continued to be deposited, creating observed 



 
 

75 
 

alternating layers of VIMS-blue and VIMS-bright within impact craters. Currently, methane pre-

cipitates and creates channels. Eroded surface materials are transported to alluvial fans. Wind re-

moves VIMS-brown sand eroded from larger VIMS-blue clasts and deposits it in downwind sand 

seas.  

 

10. Conclusions 

Regions of most abundant sand are generally along the eastern margins of sand seas and 

within the broad topographic basin of Belet. Mapped ISS-dark regions support previous findings 

that sand on Titan appears to be obstructed by topographic obstacles and opposing wind currents 

generated by the large, cold, reflective depression Xanadu. Fluvial obstructions appear to be tem-

porary and localized. 

 VIMS-blue exposures are present as small isolated patches across Xanadu and much of 

the upwind margins of sand seas. VIMS-purple surfaces, which we interpreted to be icy organic 

sand partially covering icy organic gravel and bedrock, were also found within sand seas. A tec-

tonic rift may be responsible for the linear VIMS-blue feature adjacent to Aztlan. 

VIMS-blue materials, which are likely a mixture of water ice and tholins, may be the pri-

mary source for VIMS-brown sand on Titan. The inferred higher porosity, methane solubility, and 

low strength of VIMS-bright compared to VIMS-blue materials make the former an unlikely sand 

source. Spectral signatures also suggest that VIMS-blue and VIMS-brown surfaces are more sim-

ilar compositionally to each other than VIMS-bright surfaces (Jaumann et al., 2009; Le Mouélic, 

2019). Because of their material properties and distribution along western sand sea margins, we 

suggest that VIMS-brown sand is predominantly sourced from VIMS-blue materials. 
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Rivers of methane erode layers of VIMS-blue and white materials into sediments and 

transport them to alluvial fans. Because of the low density of the sediments, the high density of 

the atmosphere, and low surface gravity on Titan, wind is able to transport much of the sediment 

from alluvial fans. Across the dry equatorial latitudes, alluvial fans are nearly non-existent because 

aeolian processes dominate over fluvial, causing alluvial fans to be reorganized into gravelly 

VIMS-blue surfaces, and sand seas. VIMS-brown sand likely exists in the form of dune fields and 

sand sheets within virgae and fluctus at mid-latitudes, but due to the low resolution of VIMS im-

agery, the small sizes of the dunes, and relatively wide surfaces of VIMS-blue gravels, these sandy 

features are hidden in VIMS imagery by the dominantly VIMS-blue surfaces. Some sand may also 

be sourced from VIMS-brown lakebeds and precipitated VIMS-blue sheets from impacts. VIMS-

brown sand on Titan may have only migrated ~300 km. Impact craters have revealed multiple 

alternating layers of VIMS-blue and bright that cover the surface of Titan. 

Additional work may be done using spectral analysis on laboratory generated materials 

similar to those on Titan. Further comparisons could be made between sand sea margins on Titan 

and Earth. Further evaluations, perhaps computer modeling, should be done on Xanadu to deter-

mine if the tectonic features there could be formed from a rebounding of shattered bedrock or 

upwelling from the heat of the impact. Additional research needs to be done on the Nafud Sand 

Sea, the underlying paleolakes, the source rock and overlying basalt, and the surfaces between the 

source rock and the sand seas in order to further test the interpretations made during our research. 

Currently no work has been done on this region specifically for the purpose of comparing envi-

ronments with those on Titan. 
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The surface history of Titan at the equatorial regions is complex, but can be revealed 

through Earth-analogue studies and analysis of material properties. With the advent of Dragonfly, 

a distinct understanding of materials and landscapes will clarify this history 
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APPENDIX 

 
Based on our conclusions in Sections 7.3 and 8, we interpret thin blankets of condensed 

VIMS-blue materials from impacts to be a sand source. 

Impact craters large enough to excavate underlying VIMS-blue materials appear to produce 

some VIMS-brown sand, or sediment that after being further processed become VIMS-brown 

sand, as suggested by the NW boundaries of Fensal reflecting the distribution of VIMS-blue ejecta 

SE of Menrva (Fig. 11). Some sand also appears to be sourced from eastern VIMS-blue ejecta of 

Sinlap. 

Using Sinlap as a model, we created the block diagrams in Fig. 42. 
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Figure 42. Sand production from VIMS-blue impact crater ejecta. a) VIMS color scheme and b) color 
scheme based on Huygens descent imagery b). Diagrams are based on observations of Sinlap crater in 
VIMS, ISS and SAR imagery, and a topographic profile. We suggest that large impactors struck the sur-
face of Titan after some VIMS-bright had been deposited, created interpreted impact basins within 
Xanadu (see Section 8.2), and spread VIMS-blue materials across much of the surface. More VIMS-
bright then was deposited and created alternating layers of VIMS-bright and blue at depth. See Section 8 
for more on interpreted stratigraphy. 
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