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abstract

Vector-Valued Mock Theta Functions

Clayton Williams
Department of Mathematics, BYU

Master of Science

Ramanujan introduced his now celebrated mock theta functions in 1920, grouping them
into families parameterized by an integer called the order. In 2010 Bringmann and Ono
discovered generalizations of Ramanujan’s mock theta functions for any order relatively
prime to 6; this result was later strengthened by Garvan in 2016. It was also shown that by
adding suitable nonholomorphic completion terms to the mock theta functions the family
of mock theta functions corresponding to a given order constitute a complex vector space
which is closed under the action of the modular group. We strengthen the Bringmann, Ono,
and Garvan result by constructing a vector-valued modular form of weight 1/2 transforming
according the Weil representation for orders greater than 3 by introducing an algorithm
which simultaneously numerically constructs the form and proves its transformation laws.
We also explicitly construct the 7th order form and prove analytically that it has the proper
modular transformations. It is conjectured the same method will apply for other orders.

Keywords: mock theta functions, mock modular forms, Maass forms, Weil representation
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Notation

The following notations and conventions are used in this thesis.

e(z) := e2πiz (1)

q := e(τ) (2)

H := {τ ∈ C : ℑ{τ} > 0} (3)

ζb := e

(
1

b

)
(4)

(a; z)0 := 1 (5)

(a; q)n :=
n−1∏
m=1

(1− aqm) (6)

(a; q)∞ :=
∞∏

m=1

(1− aqm) (7)

Our convention is that τ is an element of H. Here (a; q)n is the standard q-Pochhammer sym-

bol. We define log(z) to be the principal branch of the logarithm function, that is, log(z) has

argument lying in (−π, π]. This resolves the ambiguity in the definition of
√
z = z

1
2 by defin-

ing zc = ec log(z). Hence for z = |z| eiθ, we have
√
z = e

1
2
log |z|eiθ = |z|

1
2 exp{ i

2
arg
(
log eiθ

)
}, so

arg(
√
z) ∈ (−π

2
, π
2
], identifying

√
z with the principal branch of the square-root. Other roots

and powers of roots are simultaneously resolved with this convention.

Recall that a unitary linear transformation is one which has inverse equal to its Hermitian

(or complex-conjugate) transpose. We denote the Hermitian transpose of g by g†.

We also use the Legendre symbols and their generalizations the Kronecker symbols. These

are traditionally denoted by
( ·
n

)
and

(
n
·

)
. In order to avoid confusion with fractions, care is

taken not to write any fractions in parentheses unless they are the argument of a function,

as in e
( ·
·

)
.

For χ a character we denote by G(χ) the Gauss sum of χ, that is, G(χ) =
∑

h (mod d) χ(h)e
(
h
d

)
,

where d is the modulus of the character.

v



Chapter 1. Introduction

1.1 History of the Mock ϑ-Functions

In January 1920 S. Ramanujan sent his last letter to his mentor G.H. Hardy. In this letter he

introduced 17 examples of his now celebrated mock ϑ-functions and gave a loose definition

which these functions satisfy. All these functions are Fourier series in the variable q = e2πiτ .

Ramanujan grouped his functions into 3 families using a parameter he called the order; each

of his original 17 functions had order 3, 5 or 7 respectively. What Ramanujan meant by the

order is still mysterious today, though we now have a better understanding of how functions

of each order are related. In his 1920 letter Ramanujan also listed some conjectured relations

between his mock ϑ-functions. An annotated copy of Ramanujan’s letter to Hardy can be

found in [BR95, pages 220-224].

Ramanujan died in April 1920 but other mathematicians, such as G.N. Watson and A.

Selberg, continued the study of his mock ϑ-functions. In 1976 G. Andrews rediscovered some

of Ramanujan’s notebooks, one of which contained 10 conjectured identities of the 5th order

mock ϑ-functions. These became the mock ϑ-conjectures, and were proved in 1988 by D.

Hickerson using q-series methods [Hic88].

A revolution in the study of mock ϑ-functions came in 2002 when S. Zwegers wrote

his PhD thesis for Utrecht University. In his thesis Zwegers proved that previous work on

the classical Ramanujan mock ϑ-functions follows from the fact that these 17 functions are

each simultaneously examples of Lerch sums, quotients of indefinite ϑ functions, and Fourier

coefficients of Jacobi forms. This was shown to be equivalent to stating these functions are

the holomorphic parts of harmonic Maaß forms of weight 1
2
; the study of analogous functions

for other weights is the study of mock modular forms.

In recent years evidence has been accumulating that the most natural perspective from

which to study the mock ϑ-functions uses vector-valued weak Maaß forms with Weil rep-

resentations. In 2010 and 2016 familes of completed mock ϑ-functions were introduced for

1



each order relatively prime to 6 whose span is preserved under modular transformations by

SL2(Z) [BO10][Gar16]. Garvan’s result was later published in 2019 [Gar19]. These functions

are completed in the sense that they have modular transformations at the cost of adding a

nonholomorphic term to each of the mock ϑ-functions. While Bringmann, Ono, and Garvan

did not specify a representation giving the transformation law for each vector-valued form,

using this result Andersen was able to reprove the mock ϑ-conjectures by constructing a

vector-valued form transforming according to the Weil representation which has as its com-

ponents the completed 5th order mock ϑ-functions. Andersen proved the mock ϑ-conjectures

by realizing them as the difference between two vector-valued forms, which difference cor-

responds to a Jacobi form lying in a 0 dimensional space [And16]. In their 2017 and 2018

master’s theses (later published in The Ramanujan Journal [KK21]), D. Klein and J. Kupka

constructed weight 1
2

vector-valued weak Maaß forms with Weil representations, each with

components whose holomorphic part is equal to one of 22 mock ϑ-functions of order 2, 3, 6,

or 8.

In this thesis we strengthen Bringmann, Ono, and Garvan’s result by constructing a

weight 1
2

vector-valued harmonic Maaß form of order 7 whose components are completed

mock ϑ-functions, and specify the Weil representation under which the vector-valued form is

a weak Maaß form. Our construction generalizes to other prime orders. While our objective

overlaps superficially with the Klein and Kupka theses our results do not overlap; our method

will produce harmonic weak Maaß forms for orders relatively prime to 6 and so our results

are disjoint.

1.2 The Mock ϑ-Functions

Let τ ∈ H, where H is the complex upper half-plane, and define e(τ) = e2πiτ . Each of the

mock ϑ-functions is a Fourier series in the variable q = e(τ). In his last letter to Hardy,

Ramanujan proposed a definition for his mock ϑ-functions, specifying that a q-series f(q)

which converges for |q| < 1 is a mock ϑ-function if it satisfies the following:

2



(i) infinitely many roots of unity are exponential singularities of f,

(ii) for every root of unity ξ there exists a ϑ-function ϑξ such that f −ϑξ = O(1) for q → ξ

radially,

(iii) there is no single ϑ-function satisfying condition (ii) for every ξ, implying f is not

simply the sum of a ϑ-function with a bounded function.

There is some ambiguity in what Ramanujan meant by a ϑ-function. It wasn’t until 2013

that it was proven by M. Griffin, K. Ono, and L. Rolen that Ramanujan’s original mock

ϑ-functions obey his condition (iii) in which a ϑ-function is essentially a modular form of

weight 1
2

[GOR13]. According to Zwegers, by ϑ-function Ramanujan likely meant a sum,

product, or quotient of functions of the form
∑

n∈Z ϵ
nqan

2+bn for some a, b ∈ Q and ϵ = 1

or −1 [Zwe02, page 63]. The main result of Zwegers’ thesis is that vector-valued mock ϑ-

functions differ from real-analytic modular forms by a bounded function, contradicting a

relaxed version of condition (iii).

This thesis is connected to Ramanujan’s original mock ϑ-functions by the mock ϑ-

conjectures, which relate Ramanujan’s 5th order functions to the function

M(r; q) :=
∞∑
n=1

qn(n−1)

(qr; q)n(q1−r; q)n
.

An example of a mock ϑ-conjecture is the following. Let

f0(q) :=
∞∑
n=0

qn
2

(−q; q)n
. (1.1)

This is one of Ramanujan’s classical 5th order mock ϑ-functions. Then

f0(q) = −2q2M

(
1

5
; q10

)
+ θ4(0, q

5)G(q), (1.2)

where θ4 is a theta function and G(q) is a Rogers-Ramanujan function (definitions can be

found in [And16]). The function M is a mock ϑ-function in the modern sense, meaning it

is the holomorphic part of a harmonic Maaß form of weight 1
2
. The mock ϑ-functions that

Bringmann, Garvan, and Ono found, N(a, b; τ) and M(a, b; τ), are generalizations of the M

function from the mock ϑ-conjectures.
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1.2.1 This Thesis. The results of this thesis can be broadly divided into two categories:

the first, numerical, centers on an algorithm constructing a vector-valued form transforming

according to the Weil representation, with components which are completed mock ϑ-functions

for any prime ≥ 5, using numerical tools for solving systems of linear equations in Mathe-

matica. The program constructing this form produces numerical coefficients for each mock

ϑ-function and specifies which components that mock ϑ-function is a part of. It simulta-

neously constructs the forms and proves their transformation properties, and with enough

computing power one could produce numerical forms of any prime order. With our available

computing power we were limited to orders 11 and below.

The second category of results, which we may broadly term analytic, concern writing an

explicit solution for such vector-valued forms and proving that they transform appropriately

without the use of computational aids. We present such a solution for order 7; moreover,

we’ve proven the transformation laws for this solution using identities of character sums.

We obtained this solution by first constructing a numerical form using the above mentioned

program, then solving for the coefficient of each mock ϑ-function.

It should be emphasized that once one has an analytic solution matching the numerical

solution the program has proved the transformation laws for that function. What was

desired in proving the transformation laws without the computer was a method which would

generalize to other orders. We have a method which we conjecture can be generalized to

construct a vector-valued completed mock ϑ-function and prove the transformation law for

each order simultaneously.

Chapter 2 introduces the completed mock ϑ-functions and their transformation laws

while chapter 3 introduces the Weil representation and vector-valued forms. Many of the

results depend on evaluations of exponential sums (such as Gauss sums); a small selection

of elementary lemmata related to exponential sums is found in appendix A.

In chapter 4 we prove a series of identities which, for a vector-valued mock ϑ-function,

are equivalent to proving that it transforms according to the Weil representation. Chapter 5

4



is devoted to proving that a 7th order vector-valued mock ϑ-function transforms according

to the Weil representation, while in section 5.1 we provide a conjectured formula for certain

coefficients for forms of general order.

5



Chapter 2. Mock ϑ-Functions and their Non-

holomorphic Completions

2.1 Nonholomorphic Completions of Mock ϑ-Functions

This chapter is included to record the Bringmann, Ono, and Garvan results generalizing mock

ϑ-functions to any order and giving their modular transformations [BO10][Gar19]. Most of

the material can be found in [Gar19, sections 2 and 3]. Our perspective is less general than

Garvan’s, and so we adapt his notation to streamline it for our application. Notably we

suppress the order c and make an identification between his M
(
a
c
; z
)

and M(a, 0, c; z), and

similarly for N. We use Ñ , M̃ for the completed functions instead of G1,G2. We also use

an identity of Garvan’s (relating his Θ1

(
a
c
; z
)

to Θ2(0,−a, c; z)) to reduce the number of

ϑ-functions introduced [Gar19, page 13].

Let c > 0, (c, 6) = 1 and let (a, b) ∈ (Z/cZ × Z/cZ) \ {(0, 0)}, with a, b having least

non-negative residue. Let τ ∈ H. We first define the mock ϑ-functions of order c. Define

M(a, b; τ) :=
1

(q; q)∞

∞∑
n=−∞

(−1)nqn+a/c

1− ζbcq
n+a/c

q
3
2
n(n+1) (2.1)

(2.2)

and

k(b, c) :=



0 if 0 < b
c
< 1

6
,

1 if 1
6
< b

c
< 1

2
,

2 if 1
2
< b

c
< 5

6
,

3 if 5
6
< b

c
< 1.

Note this is well defined because (c, 6) = 1. Then for a ̸= 0 let

N(a, 0; τ) :=
1

(q; q)∞

(
1 +

∞∑
n=1

(−1)n(1 + qn)(2− 2 cos 2πa
c
)

1− 2 cos 2πa
c
qn + q2n

q
1
2
n(3n+1)

)
(2.3)

and for b ̸= 0 define

N(a, b; τ) :=
1

(q; q)∞

(
iζ−a

2c q
b/2c

2(1− ζ−a
c qb/c)

+
∞∑
n=1

K(a, b, n; τ)q
n(3n+1)

2

)
, (2.4)

6



where

K(a, b, n; τ) :=
(−1)n

(
qn sin

(
πa
c
− πτ

(
b
c
− 2nk(b, c)

))
+ sin

(
πa
c
− πτ

(
2nk(b, c) + b

c

)))
1− 2qn cos

(
2πa
c

− 2πbτ
c

)
+ q2n

.

These are the generalized mock ϑ-functions of order c. M and N must be completed to

have proper modular transformations; defining their completions requires the introduction

of period integrals of certain ϑ-functions. Define for 0 ≤ f < d, both integers, the ϑ-function

θ(f, d; τ) :=
∞∑

m=−∞

(dm+ f)e

(
τ(dm+ f)2

2d

)
. (2.5)

Define the ϑ-functions

Θ1(a, b; τ) := ζ3abc2 ζ−a
2c

6c−1∑
m=0

(−1)m sin
(π
3
(2m+ 1)

)
e

(
−ma

c

)
θ(2mc− 6b+ c, 12c2; τ) (2.6)

and

Θ2(a, b; τ) :=
2c−1∑
m=0

(
(−1)me

(
−b(6m+ 1)

2c

)
θ(6cm+ 6a+ c, 12c2; τ) (2.7)

+(−1)me

(
−b(6m− 1)

2c

)
θ(6cm+ 6a− c, 12c2; τ)

)
.

Further, define

ε(a, b; τ) :=


2ζ−2b

c exp
{
−3πiτ

(
a
c
− 1

6

)2} if 0 ≤ a
c
< 1

6
,

0 if 1
6
< a

c
< 5

6
,

2 exp
{
−3πiτ

(
a
c
− 5

6

)2} if 5
6
< a

c
< 1.

(2.8)

The M,N functions are completed by the addition of nonholomorphic period integrals

of ϑ-functions. The integrals are

T1(a, 0; τ) := − 1

2c
√
3

∫ i∞

−τ̄

Θ2(0,−a; z)√
−i(z + τ)

dz, (2.9)

T2(a, 0; τ) :=
i

3c

∫ i∞

τ̄

Θ1(0,−a; z)√
−i(z + τ)

dz, (2.10)

and for b ̸= 0

T1(a, b; τ) :=
ζ−5b
2c

3c

∫ i∞

−τ̄

Θ1(a, b; z)√
−i(z + τ)

dz, and (2.11)

T2(a, b; τ) := − ζ−5b
2c

2i
√
3c

∫ i∞

τ̄

Θ2(a, b; z)√
−i(z + τ)

dz. (2.12)

7



We can now define the completed versions of the mock ϑ-functions N and M. Define

Ñ(a, 0; τ) :=
1

sin aπ
c

q−1/24N(a, 0; τ)− T1(a, 0; τ) and (2.13)

M̃(a, b; τ) := 2q
3a
2c (1−

a
c )−

1
24M(a, b; τ) + ε(a, b; τ)− T2(a, b; τ). (2.14)

Finally, for b ̸= 0, we have

Ñ(a, b; τ) := 4e

(
−a

c
k(b, c)

)
e

(
3b

2c

(
2a

c
− 1

))
ζ−b
c q

b
c
k(b,c)− 3b2

2c2
− 1

24N(a, b; τ) (2.15)

− T1(a, b; τ).

2.2 Modular Transformations of Completed Mock ϑ-Functions

We can now state the modular transformations of the completed mock ϑ-functions [Gar19,

theorem 3.1]. Recall T : τ 7→ τ + 1 and S : τ 7→ − 1
τ
. We have for the T transformation:

Ñ(a, b; τ + 1) =

 ζ3b
2

2c2 ζ
−1
24 Ñ(a− b, b; τ) if a ≥ b,

−ζ3b
2

2c2 ζ
−3b
c ζ−1

24 Ñ(a− b+ c, b; τ) otherwise
(2.16)

M̃ (a, b; τ + 1) = ζ5a2c ζ
−3a2

2c2 ζ−1
24 M̃(a, a+ b mod c; τ). (2.17)

Now S switches M̃ and Ñ and preserves their a, b indices.

1√
−iτ

M̃

(
a, b;

−1

τ

)
= Ñ(a, b; τ) (2.18)

1√
−iτ

Ñ

(
a, b;

−1

τ

)
= M̃(a, b; τ) (2.19)

8



Chapter 3. Vector-Valued Weak Maaß

Forms and the Weil Representation

3.1 The Metaplectic Group

Let γ ∈ Γ ⊂ SL2(Z). Define the Möbius fractional linear transformation for τ ∈ H and

( a b
c d ) ∈ SL2(Z) as the transformationa b

c d

 τ : τ 7→ aτ + b

cτ + d
.

A function transforms with automorphy factor J(γ, τ) with respect to Γ if for all γ ∈ Γ we

have f(γτ) = J(γ, τ)f(τ). For integers k, a weight k modular form on SL2(Z) transforms

with automorphy J (( a b
c d ) , τ) = (cτ + d)k. There is a difficulty in extending this definition

to half-integer weight k + 1
2
; this arises from ambiguity in the choice of the square-root

function. Because the group action resulting from the Möbius transformation is associative

it is possible, for any congruence subgroup Γ of SL2(Z), to act on τ by matrices γ1 and

γ2 ∈ Γ so that J(γ1γ2, τ) = −J(γ1, τ)J(γ2, τ). Hence there are no non-zero half-integer

weight forms whose factor of automorphy is (cτ + d)k [Kob93, page 178].

One way to resolve this difficulty is to pass from SL2(Z) to a double cover which is agnostic

with respect to the choice of square-root. This group is the metaplectic group Mp2(Z).

Definition 3.1. The metaplectic group on R is defined by the set

Mp2(R) :=
{
(M,ϕ(τ)) : M = ( a b

c d ) ∈ SL2(R), ϕ(τ)2 = cτ + d and ϕ is a holomorphic function
}

(3.1)

along with the group operation

(M1, ϕ1(τ))(M2, ϕ2(τ)) = (M1M2, ϕ1(M2τ)ϕ2(τ)). (3.2)

Here Mτ is the Möbius transformation.

We see Mp2(R) is a double cover of SL2(R). Let Mp2(Z) = Γ̃ be the inverse image of

SL2(Z) under the covering map. We have the following theorem for Γ̃.

9



Theorem 3.2. Γ̃ is finitely generated by (T, 1) and (S,
√
τ), where T = ( 1 1

0 1 ) , S = ( 0 −1
1 0 ) .

This theorem follows from the fact that SL2(Z) = ⟨T, S⟩ and (S,
√
τ)4 = (I,−1), where I

is the 2× 2 identity matrix. The significance of theorem 3.2 is that computing the modular

transformations of a function amounts to computing the results of the transformations

Tτ 7→ τ + 1 and (3.3)

Sτ 7→ −1

τ
. (3.4)

3.2 The Weil Representation

We introduced Γ̃ = Mp2(Z) to resolve ambiguity arising from the choice of the square-root,

however, the modular group SL2(Z) is much more tractable because it is a group of linear

transformations. In this section we introduce a unitary representation of Γ̃ as a subgroup

of GL(V ) for a vector space V. A representation of a group G is a group homomorphism

ρ : G → GL(V ) and is a unitary representation if it maps elements of G to unitary matrices

(so ρ(g)† = ρ(g) for all g ∈ G). The construction of the Weil representation is given in

[Bru02, pages 15-16].

Let L be an even lattice, that is, a finitely generated Z-module together with a symmetric

bilinear form (·, ·) : L× L → Z whose associated quadratic form q(x) = 1
2
(x, x) is such that

q(x) ∈ Z for all x ∈ L. We can extend L to a vector space over Q by taking its tensor product

L⊗Z Q and extending (., .) : L⊗Z Q → Q. Note that L ⊂ L⊗Z Q by inclusion ι : l 7→ (l, 1).

Using this we can construct the dual lattice L′.

Definition 3.3. If L is an even lattice then L′ = {x ∈ L⊗Z Q : (x, y) ∈ Z for all y ∈ L} is

the dual lattice of L.

Since by definition (., .) : L× L → Z under restriction we have L ⊂ L′.

Definition 3.4. The quotient group L′/L is the discriminant group.
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The discriminant group is a finite Abelian group. The group ring C[L′/L] has a standard

basis conventionally denoted by {eγ : γ ∈ L′/L}. Define the inner product ⟨eγ, eγ′⟩ = δγ,γ′ , δ

the Dirac delta function and extend by linearity.

Because (., .) is a symmetric bilinear form it can be represented by a symmetric matrix,

say B, so (x, y) = ytBx. Because a real symmetric matrix has real eigenvalues we can define

n− to be the number of negative eigenvalues, n+ to be the number of positive eigenvalues,

and n0 to be the dimension of the null space of B. The eigenvalues do not depend on the

choice of basis, so the triple (n0, n−, n+) — called the signature of L — is invariant of the

matrix representation B. If (., .) is nondegenerate then n0 = 0 and we write the signature as

(n−, n+). If n− = 0 then (., .) is positive definite, similarly for negative definite. We assume

(., .) is nondegenerate.

Definition 3.5. The Weil Representation of Γ̃ on L is defined on the generators (T, 1), (S,
√
τ)

by the linear transformations with action on {eγ} given by

ρL((T, 1))eγ = e(q(γ))eγ, (3.5)

ρL((S,
√
τ))eγ =

e
(
n−−n+

8

)√
|L′/L|

∑
γ∈L′/L

e(−(γ, γ′))eγ′ , (3.6)

where (n−, n+) is the signature of the lattice L.

Let f : H → C[L′/L] and fix k ∈ 1
2
Z. We define the action of Γ̃ on f.

Definition 3.6. Let (M,ϕ) ∈ Γ̃. The Petersson slash operator on f : H → C[L′/L] is then

[Bru02, equation 1.7]

(f |k (M,ϕ))(τ) = ϕ(τ)−2kρL((M,ϕ))−1f(Mτ).

Vector-valued modular forms are defined with respect to the dual lattice arising from

taking the Hermitian transpose. Our representation, however, is unitary, so the theory is in-

variant under the operator †. We may now define a vector-valued modular form transforming

according to the Weil representation [Bru02, definition 1.2].
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Definition 3.7. Let f : H → C[L′/L] and fix k ∈ 1
2
Z. A function f : H → C[L′/L] is a

vector-valued modular form of weight k with respect to the representation ρL if

(i) f |k (M,ϕ) = f for all (M,ϕ) ∈ Γ̃,

(ii) f is holomorphic on H, and

(iii) f is holomorphic at the cusp ∞.

We will often use the following equivalent formulation of condition (i).

(i)′ f(Mτ) = ϕ(τ)2kρL((M,ϕ))f(τ).

3.2.1 An Example. Let d ∈ Z>0 and L = Z with bilinear form (x, y) = 2dxy. The

associated quadratic form q(x) = dx2 is even and L has dual lattice L′ = {x ∈ Q : 2dxy ∈

Z for all y ∈ L = Z}. The 2dxy ∈ Z for all y ∈ Z means 2dx ∈ Z so the denominator of x

divides 2d. Hence L′ = 1
2d
Z. Then L′/L ∼= Z/2dZ.

While the elements of L′/L are of the form h
2d
+Z for 0 ≤ h < 2d, we will write eh instead

of e h
2d

+ Z. Note dim(C[L′/L]) = 2d. The matrix representing (., .) is (2d) in the basis {1},

so n− = 0, n+ = 1. The Weil representation on C[L′/L] is given by

ρL((T, 1))eh = e

(
h2

4d

)
eh

ρL((S,
√
τ))eh =

1√
2id

∑
h′ (mod 2d)

e

(
−hh′

2d

)
eh′ .

Now let η(τ) be the Dedekind eta function

η(τ) := q1/24
∞∏
n=1

(1− qn).

Theorem 3.8. Let d = 6 in the construction above. Then

f(τ) :=
∑

h (mod 12)

(
12

h

)
η(τ)eh

is a vector-valued modular form of weight 1
2

and representation ρL, where
(
12
·

)
is the Dirichlet

character given by the Kronecker symbol.
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Before proving this theorem, we record the following identity for the character
(
12
·

)
. It

is used frequently elsewhere in this thesis. We have

G

((
12

·

))
= 2

√
3, (3.7)

where G(χ) is the Gauss sum of the character χ. See appendix A. We can now prove the

modular transformations for f above.

Proof. Note that because Γ̃ = ⟨(T, 1), (S,
√
τ)⟩ it is sufficient to determine that f | 1

2
(T, 1) =

f and similarly f | 1
2
(S,

√
τ) = f. Now η(τ + 1) = e

(
1
24

)
η(τ). Then

f(τ + 1) =
∑

h (mod 12)

(
12

h

)
e

(
1

24

)
η(τ)eh.

It is easily verified that
(
12
h

)
e
(

h2

24

)
=
(
12
h

)
e
(

1
24

)
. Hence

f(τ + 1) =
∑

h (mod 12)

e

(
1

24

)(
12

h

)
η(τ)

=
∑

h (mod 12)

e

(
h2

24

)(
12

h

)
η(τ)

= ρL((T, 1))f(τ)

as required. The modular transformation for η under S is given by η(Sτ) = η
(−1

τ

)
=

√
−iτη(τ). We therefore have

f

(
−1

τ

)
=

√
−iτf(τ).

Now the Weil representation yields

√
τρL((S,

√
τ))

∑
h (mod 12)

(
12

h

)
η(τ)eh =

√
τ

12i

∑
h (mod 12)

(
12

h

)
η(τ)

∑
h′ (mod 12)

e

(
hh′

12

)
eh′

=

√
τ

12i

∑
h′ (mod 12)

 ∑
h (mod 12)

(
12

h

)
e

(
hh′

12

) η(τ)eh′ .

We can apply lemma A.4 because
(

12
h+6

)
=
(

12
h+4

)
= −

(
12
h

)
for all h ∈ Z/12Z. Then∑

h (mod 12)

(
12
h

)
e
(
hh′

12

)
=
(
12
h′

)
G
((

12
·

))
, because

(
12
·

)
is a real character. Hence on substitu-
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tion we obtain

√
τρL((S,

√
τ))

∑
h (mod 12)

(
12

h

)
η(τ)eh =

√
τ

12i
G

((
12

·

)) ∑
h (mod 12)

(
12

h

)
η(τ)eh

=
√
−iτf(τ)

= f

(
−1

τ

)
.

Thus f(τ) transforms as a vector-valued modular form of weight 1
2

and representation ρL.

3.2.2 Vector-Valued Weak Maaß Forms. The forms we construct are not holomor-

phic, however, they are eigenfunctions of the differential operator ∆k when considered

component-wise. This leads us to introduce harmonic Maaß forms. See, for example,

[BFOR17, definition 18.9].

Definition 3.9. Let τ = x+iy = ℜ(τ)+iℑ(τ). The weight k hyperbolic Laplacian is defined

by

∆k := −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

The advantage of ∆k is its invariance under the Möbius fractional linear transformation.

If γ ∈ SL2(R), then

∆k(f |k γ) = ∆k(f) |k γ.

A vector-valued weak Maaß form f of weight k and representation ρL satisfies definition

3.7 slightly relaxed.

Definition 3.10. A vector-valued weak Maaß form f : H → C[L′/L] of weight k and

representation ρL on Γ̃ satisfies:

(i) f |k (M,ϕ) = f for all (M,ϕ) ∈ Γ̃,

(ii) There exists a constant λ such that, for all τ , ∆kf(τ) = λf(τ) (∆k is applied compo-

nentwise), and

(iii) f has at most linear exponential growth at the cusp at ∞.
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A harmonic weak Maaß form is one with λ = 0. This is a generalization of definition 3.7

because holomorphic functions are harmonic functions.

In the following sections we will construct vector-valued modular forms transforming

according to a Weil representation. In [Gar19, corollary 3.2], stated below as in the original,

Garvan proves the Ñ and M̃ functions satisfy (ii) and (iii); he also determines the modular

transformations of these functions. A similar theorem appears in [BO10, theorem 3.4].

Theorem 3.11. Suppose c is a fixed positive integer with (c, 6) = 1. Then

Dc :=

{
Ñ(a, b; τ), M̃(a, b; τ) : (a, b) ∈ (Z/cZ× Z/cZ) \ {(0, 0)}

}
is a vector-valued Maaß form of weight 1

2
for SL2(Z).
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Chapter 4. Mock ϑ-Functions and their

Vector-Valued Forms

The functions we construct will be vector-valued forms transforming according to a Weil

representation. By equating the transformation laws for the Weil representation in definition

3.5 with those of Bringmann-Ono and Garvan in section 2.2 we obtain a system of linear

equations that we can solve for the coefficient of each mock ϑ-function. In what follows let

(c, 6) = 1 and c be prime; we do this so T has full span as a linear transformation on the

complex vector spaces Span{Ñ(j, k) : 0 ≤ j, k ≤ c and (j, k) ̸= 0}, similarly for M̃.

First we need a representation of Γ̃. Let (c, 6) = 1 and L = Z have bilinear form (x, y) =

−12c2xy. Then L has signature (1, 0) and dual lattice L′ = 1
12c2

Z. The Weil representation

on C[L′/L] is given by transformations on the basis vectors eh by

ρL((T, 1))eh = e

(
−h2

24c2

)
eh, (4.1)

ρL((S,
√
τ))eh =

1√
−12ic2

∑
h′ (mod 12c2)

e

(
hh′

12c2

)
eh′ . (4.2)

Let
∑′

be the restricted sum ∑′

j,k

=
∑

0≤j,k≤c−1
(j,k)̸=(0,0)

.

Represent a vector-valued mock ϑ-function H⃗(τ) in the standard basis eh by

H⃗(τ) =
∑

h (mod 6c2)

∑′

j,k

[
ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)

]
(eh − e−h). (4.3)

Here H⃗(τ) has the property H⃗(τ)eh = −H⃗(τ)e−h because ρL((S
2, i))eh = in−−n+e−h [Bru02,

equation 1.4]. Then H⃗(τ) transforms according to the Weil representation on L if

H⃗(Tτ) = ρL((T, 1))H⃗(τ) (4.4)

and

H⃗(Sτ) =
√
τρL((S,

√
τ))H⃗(τ). (4.5)

In the next sections we substitute the Bringmann-Ono and Garvan transformations from
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section 2.2 into H⃗(τ).

4.1 The Fundamental Relations

4.1.1 The Fundamental Relations for (T, 1). Let

ζM(a) := ζ5a2c ζ
−3a2

2c2 ζ−1
24 .

Also, let

ζN(a, b) :=


ζ3b

2

2c2 ζ
−1
24 if a ≥ b

−ζ−3b
c ζ3b

2

2c2 ζ
−1
24 otherwise.

Writing H⃗ in the standard basis, note that H⃗(τ) transforms according to the Weil represen-

tation for (T, 1) if

H⃗(Tτ) = ρL((T, 1))H⃗(τ);

substituting equation (4.1) and the identities in section 2.2 into this relation yields∑
h (mod 6c2)

∑′

j,k

[
ζN(j, k)ah(j, k)Ñ(j − k (mod c) , k; τ) + ζM(j)bh(j, k)M̃(j, j + k (mod c) ; τ)

]
× (eh − e−h)

=
∑

h (mod 6c2)

∑′

j,k

e

(
−h2

24 · 49

)[
ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)

]
(eh − e−h).

Note that j + k (mod 7) ≥ k, taking least nonnegative residues, is true if and only if

j + k < 7. Similarly j + k (mod 7) < j is true if and only if 0 ≤ j + k < j. Knowing this

allows us to rewrite the definition of ζN below. Equating coefficients of the M̃(j, k; τ)(eh−e−h)

and Ñ(j, k; τ)(eh − e−h) summands yields the fundamental relations for (T, 1) given in the

following theorem.

Theorem 4.1. Take all residues modulo 7 to be the least nonnegative residue. Let

H⃗(τ) =
∑

h (mod 6c2)

∑′

j,k

[
ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)

]
(eh − e−h).
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Then

H⃗(Tτ) = ρL((T, 1))H⃗(τ).

if and only if

ah(j, k) =


ζ−3k2

2c2 ζ−1
24 e

(
h2

24·c2

)
ah(j + k (mod 7) , k) if j + k < 7

−ζ−3k
c ζ3k

2

2c2 ζ
−1
24 e

(
h2

24·c2

)
ah(j + k (mod 7) , k) otherwise

(4.6)

and

bh(j, k) = ζ5j2c ζ
−3j2

2c2 ζ−1
24 e

(
h2

24 · 49

)
bh(j, k − j (mod 7)) (4.7)

for all h, j, and k.

4.1.2 The Fundamental Relations for (S,
√
τ). Writing H⃗ in the standard basis and

applying the Weil transformation for (S,
√
τ) to it yields

√
τρL((S,

√
τ))H⃗(τ)

=

√
τ√

−12ic2

∑′

j,k

∑
h (mod 6c2)
h′ (mod 12c2)

e

(
hh′

12c2

)[
ah′(j, k)N(j, k; τ) + bh′(j, k)M̃(j, k; τ)

]
(eh − e−h).

From section 2.2 we see that

H⃗(Sτ) =
√
−iτ

∑
h (mod 6c2)

∑′

j,k

[
ah(j, k)M̃(j, k; τ) + bhÑ(j, k; τ)

]
(eh − e−h).

Equating the coefficients of M(j, k; τ)(eh − e−h) and N(j, k; τ)(eh − e−h) yields the fun-

damental relations for (S,
√
τ) given in the following theorem.

Theorem 4.2. If

H⃗(τ) =
∑

h (mod 6c2)

∑′

j,k

[
ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)

]
(eh − e−h)

then

H⃗(Sτ) =
√
τρL((S,

√
τ))H⃗(τ).
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if and only if

i√
12c2

∑
h′ (mod 12c2)

e

(
hh′

12c2

)
ah′(j, k) = bh(j, k) (4.8)

and

i√
12c2

∑
h′ (mod 12c2)

e

(
hh′

12c2

)
bh′(j, k) = ah(j, k) (4.9)

for all h, j, and k.

The significance of the fundamental relations lies in the observation that Γ̃ = ⟨(T, 1), (S,
√
τ)⟩;

using this fact we have the following theorem.

Theorem 4.3. The function

H⃗(τ) =
∑

h (mod 6c2)

∑′

j,k

[
ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)

]
(eh − e−h)

is a vector-valued modular form transforming according to the Weil representation with lattice

L = Z and bilinear form (x, y) = −12c2xy if and only if the coefficients ah(j, k) and bh(j, k)

are related by equations (4.7) - (4.9).

We have numerically solved the system of equations (4.7) - (4.9) for orders c = 5, 7, and

11.
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Chapter 5. Analytic Proof of Transfor-

mation Laws for the Seventh Order

Vector-Valued Form

The goal of this chapter is to prove, using the theory of exponential sums, the following

theorem.

Theorem 5.1. Let

εα(h) =


1 if h ≡ α (mod 7) ,

−1 if h ≡ −α (mod 7) ,

0 otherwise.

Define the vector-valued form H⃗7(τ), τ ∈ H by

H⃗7(τ) =
1

2 sin π
7

∑
h (mod 6·49)

0≤α≤6

(
12

h

)
(eh − e−h)

×

{
ε1(h)

[
ie

(
57α− αh2

4 · 49

)
M̃(1, α; τ) + e

(
5

14

)
e

(
α + αh2

4 · 49

)
Ñ(α, 1; τ)

]
−ε2(h)

[
ie

(
−40α− 4αh2

4 · 49

)
M̃(2, α; τ) + e

(
10

14

)
e

(
86α + 4αh2

4 · 49

)
Ñ(α, 2; τ)

]
+ε3(h)

[
ie

(
−60α− 12αh2

4 · 49

)
M̃(3, α; τ) + e

(
15

14

)
e

(
−102α + 12αh2

4 · 49

)
Ñ(α, 3; τ)

]
−ε4(h)

[
ie

(
−24α− 16αh2

4 · 49

)
M̃(4, α; τ) + e

(
20

14

)
e

(
46α + 16αh2

4 · 49

)
Ñ(α, 4; τ)

]
+ε5(h)

[
ie

(
−142α− 10αh2

4 · 49

)
M̃(5, α; τ) + e

(
25

14

)
e

(
−44α + 10αh2

4 · 49

)
Ñ(α, 5; τ)

]
−ε6(h)

[
ie

(
6α− 6αh2

4 · 49

)
M̃(6, α; τ) + e

(
30

14

)
e

(
−8α + 6αh2

4 · 49

)
Ñ(α, 6; τ)

]}

+
1

sin π
7

∑
h (mod 6·7)

0≤β≤6

(
12

h

)
sin

hβπ

7

{
e

(
5β

14

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e7h − e−7h).

Then H⃗7(τ) is a vector-valued weak Maaß form of weight 1
2

for SL2(Z) transforming according

to the Weil representation with lattice L = Z and bilinear form (x, y) = −(12 · 49)xy.
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5.1 Boundary Terms

The Ñ(j, k; τ) and M̃(j, k; τ) functions each have an especially simple transformation under

T when one of their indices is 0, but the dependence on index is different for Ñ and M̃. This

property makes Ñ(β, 0; τ) and M̃(0, β; τ) eigenfunctions of T . The same cannot be said for

Ñ(0, β; τ) and M̃(β, 0; τ). To keep track of the eigenfunction property we say Ñ(j, k; τ) is a

boundary term of H⃗c(τ) if j = 0 and M̃(j, k; τ) is a boundary term if k = 0.

Recall that we have numerical forms of order 5, 7, and 11. We can write the boundary

terms of H⃗5, H⃗7, and H⃗11 in a more unified way. Define the boundary of a linear combination

of Ñ , M̃ terms to be

Bd
(∑

ah(j, k)Ñ(j, k; τ) + bh(j, k)M̃(j, k; τ)
)
(eh − e−h) (5.1)

=
∑
β

ah(β, 0)Ñ(β, 0; τ) + bh(0, β)M̃(0, β; τ)(eh − e−h).

The boundary term of H⃗5 is

Bd(H⃗5)(τ) =
1

sin π
5

∑
h (mod 6·5)

0≤β≤4

(
12

h

)
sin

hβπ

5

{
e

(
5β

10

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e5h − e−5h).

(5.2)

Similarly we have

Bd(H⃗7)(τ) =
1

sin π
7

∑
h (mod 6·7)

0≤β≤6

(
12

h

)
sin

hβπ

7

{
e

(
5β

14

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e7h − e−7h)

(5.3)

and

Bd(H⃗11)(τ) =
1

sin π
11

∑
h (mod 6·11)

0≤β≤10

(
12

h

)
sin

hβπ

10

{
e

(
5β

22

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e11h − e−11h).

(5.4)

From the order 5, 7, and 11 cases we may conjecture Bd(H⃗c)(τ) is the following for
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(c, 6) = 1.

Bd(H⃗c)(τ) =
1

sin π
c

∑
h (mod 6·c)

0≤β≤c

(
12

h

)
sin

hβπ

c

{
e

(
5β

2c

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(ech − e−ch).

(5.5)

The importance of the boundary terms is in the following lemma.

Lemma 5.2. Let c be a prime, (c, 6) = 1. Every Ñ(j, k; τ) and M̃(j, k; τ) is of the form

r
√
τ
u
M̃(0, β; (T vSu)τ) or r

√
τ
u
Ñ(β, 0; (T vSu)τ) for 0 ≤ u ≤ 1, 0 ≤ v ≤ c, and r ∈ C.

Proof. First consider if k = 0. Then Ñ(j, k; τ) is a boundary term and we are done. Other-

wise k > 0. If j = 0 then M̃(0, k;Sτ) =
√
−iτÑ(0, k; τ) and we are done. Suppose j ̸= 0.

Then j ∈ (Z/cZ)× and k generates the units modulo c. Define v by vk ≡ j (mod c). Using

section 2.2 we see that Ñ(j, k; τ) is a constant multiple of Ñ(0, k;T vτ). Hence Ñ(j, k; τ) =

r
√
τ
u
M̃(0, k; (T vSu)τ) for 0 ≤ u ≤ 1, 0 ≤ v ≤ c, and r ∈ C.

The proof for M̃(j, k; τ) is identical.

The fact that c is prime is essential here. Suppose for example that c = 25, the smallest

composite relatively prime to 6. Then Ñ(2, 5; τ) is not of the form r
√
τM̃(0, β; (T vS)τ) for

any β because 2 ̸∈ ⟨5⟩ ⊂ Z/25Z.

Here we present a sample calculation using lemma 5.2 together with the relations imposed

by equations (4.6) - (4.9) to write a general coefficient of H⃗7(τ) in terms of a boundary

coefficient, supposing Theorem 5.4. Consider ah(1, 4). Because 5−4 ≡ 1 (mod 7) and 5 ≥ 4

we have

ah(1, 4) = ζ3·4
2

2·49ζ
−1
24 e

(
h2

24 · 49

)
ah(5, 4).

Similarly we have

ah(5, 4) = −ζ−3·4
7 ζ3·4

2

2·492ζ
−1
24 e

(
h2

24 · 49

)
ah(2, 4).

Continuing in like manner the chain1 of coefficients obtained is ah(1, 4) 7→ ah(5, 4) 7→

ah(2, 4) 7→ ah(6, 4) 7→ ah(3, 4) 7→ ah(0, 4). In this chain there are 3 terms ah(j, 4) — other
1Here chain is meant in the usual sense; that is, as an ordered subset of a partially ordered set. The order

on the set is the number of applications of the T transformation until a boundary term is reached.
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than ah(1, 4) — with j < 4. Hence

ah(1, 4) =
(
−ζ−3·4

7

)3(
ζ−3·42
2·492 ζ

−1
24 e

(
h2

24 · 49

))5

ah(0, 4).

Now substituting the fundamental relations imposed by (S,
√
τ) on ah(0, 4) yields the

following identity for ah(1, 4) if H⃗7(τ) is a vector-valued modular form with appropriate

representation.

ah(1, 4) =
(
−ζ−3·4

7

)3(
ζ−3·42
2·492 ζ

−1
24 e

(
h2

24 · 49

))5
i√

12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(0, 4).

Hence if H⃗(τ) transforms according to the Weil representation we must be able to write

ah(1, 4) using a boundary term. Note the chain from ah(0, 4) to ah(1, 4) consists of 5 ap-

plications of identity (4.6). In each application of the identity the first index changes by

4; the reason there are 5 applications of the identity is then seen to be because 5 is the

solution to 4n+ 1 ≡ 0 (mod 7) with least nonnegative residue. The number 3 above is also

an important factor, and determining it is an important step in the calculation of H⃗c(τ). We

present the problem explicitly below.

Question 5.3. Fix c a prime and let a, b ∈ Z with 0 ≤ a < c, 0 < b < c. Define n ≡

−ab̄ (mod c) with 0 ≤ n < c, b̄b ≡ 1 (mod c) . How many elements x of the set

{a+ lb (mod c) : 0 < l ≤ n}

satisfy x < b?

Label the number of such elements v(a, b). Note that n is the number of applications

of the identity in 4.6; in each application the first index changes by a, so n is the least

nonnegative residue such that an + b ≡ 0 (mod 7). Using v(a, b), lemma 5.2, and the

relations imposed by equations (4.6) - (4.9) we have the following theorem allowing us to

write a general coefficient in terms of boundary coefficients.

Theorem 5.4. Let α ̸= 0. Let m(α, β) ≡ ᾱβ (mod 7) with 0 ≤ m(α, β) < 7. Similarly

define n(β, α) ≡ −βᾱ (mod 7) with 0 ≤ n(β, α) < 7. Let v(β, α) be the number of elements

x in the set {β + lα (mod 7) : 0 < l ≤ n(β, α)} with x < α. Then H⃗7(τ) is a vector-valued
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form if and only if

ah(β, α) =
i
(
−ζ−3α

7

)v(β,α) (
ζ3α

2

2·49ζ
−1
24 e

(
h2

24·49

))n(β,α)
√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(0, α) (5.6)

and

bh(α, β) =
i
(
ζ5α14 ζ

−3α2

2·49 ζ−1
24 e

(
h2

24·49

))m(α,β)

√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
ah′(α, 0). (5.7)

Using the notation just introduced we have the following computationally verified identity

for H⃗7(τ) which is more amenable to proving Theorem 5.4.

H⃗7(τ) (5.8)

=
1

2 sin π
7

∑
h (mod 6·49)

1≤α≤6
0≤β≤6

(−1)α+1εα(h)

(
12

h

){
i

(
ζ5α14 ζ

−3α2

2·49 ζ−1
24 e

(
h2

24 · 49

))m(α,β)

M̃(α, β; τ)

+ e

(
5α

14

)(
−ζ−3α

7

)v(β,α)(
ζ3α

2

2·49ζ
−1
24 e

(
h2

24 · 49

))n(β,α)

Ñ(β, α; τ)

}
(eh − e−h)

+
1

sin π
7

∑
h (mod 6·7)

0≤β≤6

(
12

h

)
sin

hβπ

7

{
e

(
5β

14

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e7h − e−7h).

Equivalently, if ah(β, α) is the coefficient of Ñ(β, α; τ) in ⟨H⃗7(τ), eh⟩ and similarly for bh(α, β)

and M̃(α, β; τ), we have the identities

ah(β, α) =



(−1)α+1εα(h)
2 sin π

7

(
12
h

)
e
(
5α
14

) (
−ζ−3α

7

)v(β,α) (
ζ3α

2

2·49ζ
−1
24 e

(
h2

24·49

))n(β,α)
if α ̸= 0,

−i sin hβπ
49

sin π
7

(
12
h

)
if α = 0 and 7 | h,

0 otherwise

(5.9)

and

bh(α, β) =



i(−1)α+1εα(h)
2 sin π

7

(
12
h

) (
ζ5α14 ζ

−3α2

2·49 ζ−1
24 e

(
h2

24·49

))m(α,β)

if α ̸= 0,

sin hβπ
7

sin π
7
e
(
5β
14

) (
12
h

)
if α = 0 and 7 | h,

0 otherwise.

(5.10)
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5.2 Proving Identities (4.6) and (4.7) for H⃗7

Recall that in proving Theorem 5.4 it is sufficient to verify identities (4.6) - (4.9). In this

section we verify (4.6) and (4.7). There are 2 cases to consider: the boundary terms and the

nonboundary terms.

5.2.1 Boundary Terms: ah(β, 0) and bh(0, β). Consider ah(β, 0). Substituting into

equation (4.6) we must prove

ah(β, 0) = ζ−1
24 e

(
h2

24 · 49

)
ah(β, 0).

It is sufficient to prove that h2 ≡ 49 (mod 24 · 49) whenever ah(β, 0) ̸= 0. Note ah(β, 0) ̸= 0

only if (h, 6) = 1 and 7 | h. It so happens that ah(β, 0) ̸= 0 implies 7 || h, but that is a

stronger condition than we will need. Write h = 7x with (x, 6) = 1. (x, 6) = 1 is true if and

only if x2 ≡ 1 (mod 24) , so we may write x2 = 1+24l for some l ∈ Z. Then h2 = 49(1+24l)

and h2 ≡ 49 (mod 24 · 49) . We have therefore proven identity (4.6) for ah(β, 0); the proof

for bh(0, β) is identical. Then we have the following theorem.

Theorem 5.5. We have

ah(β, 0) = ζ−1
24 e

(
h2

24 · 49

)
ah(β, 0)

and

bh(0, β) = ζ−1
24 e

(
h2

24 · 49

)
bh(0, β).

5.2.2 Nonboundary Terms. We record an identity of v(j, k), easily verified in Mathe-

matica, which is useful in determining the desired transformation law for ah(j, k).

Theorem 5.6. Take all residues modulo 7 to be the least nonnegative residue. Then

v(j + k (mod 7) , k) =


v(j, k) if j + k < 7

v(j, k)− 1 if j + k > 7

0 otherwise

25



and

v(j,−j (mod 7)) = 1.

Now consider ah(β, α) with α ̸= 0. Our aim is to verify

ah(β, α) = ζ3α
2

2·49ζ
−1
24 e

(
h2

24 · 49

)
ah(β + α, α). (5.11)

Suppose that β + α < 7. On substitution we see equation (5.11) is true if and only if

(−1)α+1εα(h)
(
12
h

)
e
(
5α
14

)
2 sin π

7

(−ζ3α
2

7 )v(β,α)
(
ζ−1
24 e

(
h2

24 · 49

))n(β,α)

= ζ3α
2

2·49ζ
−1
24 e

(
h2

24 · 49

)
(−1)α+1εα(h)

(
12
h

)
e
(
5α
14

)
2 sin π

7

(−ζ3α
2

7 )v(β+α,α)

(
ζ−1
24 e

(
h2

24 · 49

))n(β+α,α)

.

This is true if and only if

v(β + α, α) = v(β, α)

n(β + α, α) + 1 = n(β, α).

The v identity is true by Theorem 5.6. The identity for n follows on substitution: n(β +

α, α) = −α(β + α) = −αβ − 1. Hence equation (5.11) is an identity, as desired.

Now consider the case β + α > 7. In this case we must verify

ah(β, α) = (−ζ−3α
7 )ζ3α

2

2·49ζ
−1
24 e

(
h2

24 · 49

)
ah(β + α− 7, α). (5.12)

On substitution equation (5.12) is equivalent to

(−1)α+1εα(h)
(
12
h

)
e
(
5α
14

)
2 sin π

7

(−ζ3α
2

7 )v(β,α)
(
ζ−1
24 e

(
h2

24 · 49

))n(β,α)

= (−ζ−3α
7 )ζ3α

2

2·49ζ
−1
24 e

(
h2

24 · 49

)
(−1)α+1εα(h)

(
12
h

)
e
(
5α
14

)
2 sin π

7

(−ζ3α
2

7 )v(β+α−7,α)

(
ζ−1
24 e

(
h2

24 · 49

))n(β+α−7,α)

,

which is true if and only if

v(β + α− 7, α) = v(β, α)

n(β + α− 7, α) + 1 = n(β, α).

Our previous work establishes these identities. Hence equation (5.12) is an identity.
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Our final case for ah is when α + β = 7. The desired identity is

ah(7− α, α) = (−ζ−3α
7 )ζ3α

2

2·49ζ
−1
24 e

(
h2

24 · 49

)
ah(0, α).

On substitution this identity is true if and only if v(7− α, α) = 1 and n(7− α, α) = 1. The

first is true by Theorem 5.6. The second is true because n(−α (mod 7) , α) ≡ 1 (mod 7) .

The case for bh(α, β) with α ̸= 0 follows in a near-identical manner, save there is no need

to apply Theorem 5.6. Hence we have the following theorem.

Theorem 5.7. Suppose α ̸= 0. Then

ah(β, α) =


ζ−3α2

2·49 ζ−1
24 e

(
h2

24·49

)
ah(β + α (mod 7) , k) if β + α < 7,

−ζ−3α
7 ζ3α

2

2·49ζ
−1
24 e

(
h2

24·49

)
ah(β + α (mod 7) , k) otherwise,

(5.13)

and

bh(α, β) = ζ5α14 ζ
−3α2

2·49 ζ−1
24 e

(
h2

24 · 49

)
bh(α, β − α (mod 7)) (5.14)

for all h.

5.3 Proving Identities (4.8) and (4.9) for H⃗7

In this section we verify (4.8) and (4.9). There are 3 cases to consider:

(i) ah(β, 0) or bh(0, β), which are boundary terms;

(ii) ah(0, α) and bh(α, 0), are terms which are related to boundary terms by equations (4.8)

and (4.9); and

(iii) ah(β, α) and bh(α, β) with neither α nor β equal to 0.

5.3.1 Boundary Terms: ah(β, 0) and bh(0, β). Our aim is to prove

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(0, β) = ah(0, β). (5.15)
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Then on substitution the left hand side of equation (5.15) becomes

i

sin π
7

√
12 · 49

∑
h′ (mod 12·7)

e

(
hh′

12 · 7

)(
12

h′

)
e

(
5β

14

)
sin

h′πβ

7

=
e
(
5β
14

)
2 sin π

7

√
12 · 49

∑
h′ (mod 12·7)

(
12

h′

)(
e

(
h′(h+ 6β)

12 · 7

)
− e

(
h′(h− 6β)

12 · 7

))
.

Define J(x) :=
∑

h′ (mod 12·7) e
(

h′x
12·7

) (
12·49
h′

)
. Then equation (5.15) becomes

e
(
5β
14

)
2 sin π

7

√
12 · 49

(J(h+ 6β)− J(h− 6β)) = ah(0, β). (5.16)

Note we can use the Kronecker symbol
(
12·49
h′

)
instead of

(
12
h′

)
because when 7 | h′ we have

both
(
49
h′

)
= 0 and sin h′πβ

7
= 0. To determine J(x) there are 3 cases for x, not all disjoint

but which together cover every possibility.

(i) (x, 6) > 1,

(ii) (x, 6 · 7) = 1, and

(iii) (x, 7) > 1.

The First and Second Cases. In these first two cases our approach is similar to

the proof of lemma A.4. Suppose (x, 6) > 1. Then p | x for some p ∈ {2, 3}. Note that(
12

h+ 12·7
p

)
= −

(
12
h

)
for all h. Now x = py for some y ∈ Z, so

J(x) = J(py) =
∑

h′ (mod 12·7)

e

(
ph′y

12 · 7

)(
12 · 49
h′

)

=
∑

h′ (mod 12·7)

e

(
p(h′ + 12·7

p
)y

12 · 7

)(
12 · 49
h′ + 12·7

p

)
under the translation h′ 7→ h′ + 12·7

p
. Then

J(py) = −
∑

h′ (mod 12·7)

e

(
ph′y

12 · 7

)(
12 · 49
h′

)
= −J(py)

so J(x) = −J(x) = 0.

Now suppose (x, 6 · 7) = 1. Then x is invertible modulo 12 · 7; let xx ≡ 1 (mod 12 · 7) .
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Then

J(x) =
∑

h′ (mod 12·7)

e

(
h′x

12 · 7

)(
12 · 49
h′

)

=

(
12 · 49

x

) ∑
h′ (mod 12·7)

e

(
h′

12 · 7

)(
12 · 49
h′

)

=

(
12 · 49

x

)
G

((
12 · 49

·

))
,

under the translation h′ 7→ h′x, which is a bijection of Z/12Z, noting that
(
12·49
x

)
=
(
12·49
x

)
.

But G
((

12·49
·

))
= µ(7)

(
12
7

)
G
((

12
·

))
, from theorem A.3. Then for (x, 6 · 7) = 1 we have

J(x) =

(
12

x

)
G

((
12

·

))
=

(
12

x

)
2
√
3. (5.17)

The Third Case. We now want to compute J(7x). There are two possibilites for x :

(x, 6) = 1 and (x, 6) > 1. If (x, 6) > 1 then J(7x) = 0 by case (i). So suppose (x, 6) = 1.

Note that ∑
h′ (mod 12·7)

e

(
7h′x

12 · 7

)(
12 · 49
h′

)
=

∑
h′ (mod 12·7)

(h′,7)=1

e

(
h′x

12

)(
12

h′

)

because for every h′ divisible by 7 we have
(
49
h′

)
= 0.

Using the Chinese Remainder Theorem we can, for each h′, find a y (mod 7) and a

z (mod 12) such that h′ = 12y + 7z; conversely, every y (mod 7) and z (mod 12) yields a

unique h′ (mod 12 · 7). Because e
(
12yx
12

) (
12

7z+12y

)
=
(
12
7z

)
we have

J(7x) =
∑

h (mod 12·7)
(h,7)=1

e

(
h′x

12

)(
12

h′

)
=

∑
y (mod 7)

y ̸=0

∑
z (mod 12)

e

(
7zx

12

)(
12

7z

)

=

(
12

x

) ∑
y (mod 7)

y ̸=0

∑
z (mod 12)

e
( z

12

)(12

z

)
= 6

(
12

x

)
G

((
12

·

))
,

using the transformation z 7→ 7xz with (7x)(7x) ≡ 1 (mod 12) .

Hence J(7x) = 6
(
12
x

)
G
((

12
·

))
is true for both (x, 6) = 1 and (x, 6) > 1.

29



Condensing our results for J we obtain

J(x) =



(
12
x

)
2
√
3 if (x, 6 · 7) = 1,

−
(
12
x

)
12
√
3 (if x, 7) > 1,

0 otherwise.

(5.18)

It can be verified that (
12

h± 6β

)
= (−1)β

(
12

h

)
. (5.19)

Recall our objective is to prove equation (5.15), which requires computing J(h+6β)−J(h−

6β). There are again 3 cases:

(i) (h, 6) > 1,

(ii) (h, 6) = 1 and h ≡ ±β (mod 7) ,

(iii) (h, 6) = 1 and h ̸≡ ±β (mod 7).

The First Case. When (h, 6) > 1 we have J(h± 6β) = 0, so

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(0, β) =

e
(
5β
14

)
2 sin π

7

√
12 · 49

(J(h+6β)−J(h−6β)) = ah(0, β)

because
(
12
h

)
= 0.

The Second Case. Suppose (h, 6) = 1 and h ≡ β (mod 7) . Then h+6β ≡ 0 (mod 7)

and h− 6β ̸≡ 0 (mod 7) , so

J(h+ 6β)− J(h− 6β) = −
(

12

h+ 6β

)
12
√
3−

(
12

h− 6β

)
2
√
3

= (−1)β+1

(
12

h

)
14
√
3

using equation (5.19). Hence

i√
12 · 49

∑
h′ (mod 12·7)

e

(
hh′

12 · 7

)
bh′(0, β) =

e
(
5β
14

)
2 sin π

7

√
12 · 49

(J(h+ 6β)− J(h− 6β))

= (−1)β+1 e
(
5β
14

)
2 sin π

7

√
12 · 49

(
12

h

)
14
√
3

= (−1)β+1 e
(
5β
14

)
2 sin π

7

(
12

h

)
.
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Similarly if (h, 6) = 1 and h ≡ −β (mod 7) then

J(h+ 6β)− J(h− 6β) = −(−1)β+1

(
12

h

)
14
√
3

and

i√
12 · 49

∑
h′ (mod 12·7)

e

(
hh′

12 · 7

)
bh′(0, β) = −(−1)β+1 e

(
5β
14

)
2 sin π

7

(
12

h

)
.

Hence if (h, 6) = 1 and h ≡ ±β (mod 7) then

i√
12 · 49

∑
h′ (mod 12·7)

e

(
hh′

12 · 7

)
bh′(0, β) = εβ(h)(−1)β+1 e

(
5β
14

)
2 sin π

7

(
12

h

)
= ah(0, β).

The Third Case. Now suppose (h, 6) = 1 and h ̸≡ ±β (mod 7) . Then 7 ∤ (h±6β) and

J(h+ 6β)− J(h− 6β) = 2
√
3

(
12

h+ 6β

)
− 2

√
3

(
12

h− 6β

)
= 0 = ah(0, β).

Note that ah(β, 0) and bh(0, β) differ by a constant. We have therefore proven the iden-

tities in (4.8) and (4.9) for the boundary terms.

Theorem 5.8. We have

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(0, β) = ah(0, β)

and

i√
−12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
ah′(β, 0) = bh(β, 0)

for all h and all β, 0 < β ≤ 6.

5.3.2 Nonboundary Terms with One 0 Index: ah(0, α) and bh(α, 0). Consider

bh(α, 0), 0 < β ≤ 6. Our aim is to prove equation (4.9) for this coefficient. On substitution

equation (4.9) becomes

i(−1)α

2 sin π
7

√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
εα(h

′)

(
12

h′

)
=


−i
(
12
h

) sin πhα
49

sin π
7

if 7 | h,

0 otherwise.
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Define

Jα(h) =
∑

h′ (mod 12·49)
h′≡α (mod 7)

e

(
hh′

12 · 49

)(
12

h′

)
. (5.20)

Then the identity we wish to verify becomes

(−1)α

2
√
12 · 49

(Jα(h)− J−α(h)) =


i
(
12
h

)
sin hπα

49
if 7 | h,

0 otherwise.
(5.21)

Let us find Jα(h). Note h′ ≡ α (mod 7) for h′ ∈ {0, 1, ..., 12 · 49− 1} is true if and only

if h′ = α + 7r for r ∈ {0, 1, 2, ..., 12 · 7− 1}. Then

Jα(h) =
∑

r (mod 12·7)

e

(
h(α + 7r)

12 · 49

)(
12

α + 7r

)
.

For each such r there exists a unique y modulo 7 and z modulo 12 such that r = 12y + 7z,

by the Chinese Remainder Theorem. On substitution, then, we obtain

Jα(h) = e

(
hα

12 · 49

) ∑
y (mod 7)

∑
z (mod 12)

e

(
hz

12

)(
12

α + z

)
.

Consider
∑

z (mod 12) e
(
hz
12

) (
12
α+z

)
. Under translation by −α this becomes∑

z (mod 12)

e

(
hz

12

)(
12

α + z

)
= e

(
−hα

12

) ∑
z (mod 12)

e

(
hz

12

)(
12

z

)
.

If (h, 12) > 1, say h = 2x for some integer x, this becomes∑
z (mod 12)

e
(zx
6

)(12

z

)
= 0

for all x; only one set of representatives x modulo 12 need to be tested. Similarly if 3 | h we

have
∑

z (mod 12) e
(
hz
12

) (
12
α+z

)
= 0. Hence

∑
z (mod 12) e

(
hz
12

) (
12
α+z

)
is 0 when

(
12
·

)
is.

On the other hand, if (h, 12) = 1 let hh ≡ 1 (mod 12) . Then multiplication by h̄ is a

bijection of Z/12Z and∑
z (mod 12)

e

(
hz

12

)(
12

α + z

)
=

(
12

h

) ∑
z (mod 12)

e
( z

12

)( 12

α + z

)

=

(
12

h

)
G

((
12

·

))
.

Now consider
∑

y (mod 7) e
(
hy
7

)
. It is a standard result (see, for example, [IR82, section 6.3,
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lemma 1]) that

∑
y (mod 7)

e

(
hy

7

)
=


7 if 7 | h,

0 otherwise.

Summarizing, we have

Jα(h) =


7
√
12e

(−4hα
49

) (
12
h

)
if 7 | h,

0 otherwise,
(5.22)

since e
(−4hα

49

)
= e

(
hα

12·49

)
e
(−hα

12

)
.

On substitution equation (5.21) is an identity if and only if

(−1)α
(
12

h

)
sin

8πhα

7
=

(
12

h

)
sin

πhα

7
(5.23)

for all h. Note that sin 8πhα
7

= sin πhα
7

cos(πhα), hence our identity is true if and only if

(−1)α
(
12

h

)
cos(hπα) =

(
12

h

)
. (5.24)

This is true because cos πhα = (−1)α for h ≡ 1 (mod 2) and
(
12
h

)
=
(
3
h

) (
4
h

)
. We therefore

have the following theorem.

Theorem 5.9. We have

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(α, 0) = ah(α, 0).

Now for ah(0, α) the proof is almost identical. Note that on substitution ah(0, α) and

bh(0, α) satisfy identity (4.8) if and only if

i(−1)α+1e
(
5α
14

)
2 sin π

7

√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
εα(h)

(
12

h

)
=


−e
(
5α
14

) (
12
h

) sin πhα
49

sin π
7

if 7 | h,

0 otherwise,

which we can simplify to

i(−1)α

2
√
12 · 49

(Jα(h)− J−α(h)) =


(
12
h

)
sin πhα

49
if 7 | h,

0 otherwise.

This is an identity already verified in the proof for bh(α, 0). Hence we have the following

theorem.
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Theorem 5.10. We have

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
ah′(0, α) = bh(0, α).

5.3.3 General Nonboundary Terms with No 0 Indices. In this section we present

a character sum, the determination of which is equivalent to proving

i√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
bh′(α, β) = ah′(α, β) (5.25)

for α, β ̸= 0; this verifies identity (4.9) for all nonboundary bh terms. A similar identity

applies for equation (4.8). While the identity in question is computationally confirmed, we

do not yet have an analytic proof.

Note from section 5.2 that

bh(α, β) =

(
ζ5α14 ζ

−3α2

2·49 ζ−1
24 e

(
h2

24 · 49

))m(α,β)

bh(α, 0)

and

ah(α, β) = (−ζ−3β
7 )v(α,β)

(
ζ3β

2

2·49ζ
−1
24 e

(
h2

24 · 49

))n(α,β)

ah(0, β).

On substitution of bh(α, 0) and ah(0, β) from equation (5.8) into (5.25) we have

1√
12 · 49

∑
h′ (mod 12·49)

e

(
hh′

12 · 49

)
e

(
m(α, β)h′2

24 · 49

)
εα(h

′)

(
12

h′

)
= (−1)α+β+1ζ

−5m(α,β)α
14 ζ

3m(α,β)α2+3n(α,β)β2

2·49 ζ
m(α,β)−n(α,β)
24 (−ζ−3β

7 )v(α,β)

× e

(
n(α, β)h2

24 · 49

)
εβ(h)

(
12

h

)
e

(
5β

14

)
.

Define

Rα(x, y) :=
∑

h′ (mod 12·49)
h′≡α (mod 7)

e

(
xh′2 + 2yh′

24 · 49

)(
12

h′

)
. (5.26)

when x ̸= 0. Using Mathematica we have proven the following theorem.
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Theorem 5.11.

1√
12 · 49

[Rα(m(α, β), h)−R−α(m(α, β), h)]

= (−1)α+β+1ζ
−5m(α,β)α
14 ζ

3m(α,β)α2+3n(α,β)β2

2·49 ζ
m(α,β)−n(α,β)
24 (−ζ−3β

7 )v(α,β)

× e

(
n(α, β)h2

24 · 49

)
εβ(h)

(
12

h

)
e

(
5β

14

)
.

5.4 Proof of Theorem 5.4

Here the main theorem, Theorem 5.4, is presented, with H⃗7 rewritten using identity (5.8).

Theorem. Let

H⃗7(τ)

=
1

2 sin π
7

∑
h (mod 6·49)

1≤α≤6
0≤β≤6

(−1)α+1εα(h)

(
12

h

){
i

(
ζ5α14 ζ

−3α2

2·49 ζ−1
24 e

(
h2

24 · 49

))m(α,β)

M̃(α, β; τ)

+ e

(
5α

14

)(
−ζ−3α

7

)v(β,α)(
ζ3α

2

2·49ζ
−1
24 e

(
h2

24 · 49

))n(β,α)

Ñ(β, α; τ)

}
(eh − e−h)

+
1

sin π
7

∑
h (mod 6·7)

0≤β≤6

(
12

h

)
sin

hβπ

7

{
e

(
5β

14

)
M̃(0, β; τ) + iÑ(β, 0; τ)

}
(e7h − e−7h).

Then H⃗7(τ) is a vector-valued weak Maaß form of weight 1
2

for SL2(Z) transforming according

to the Weil representation with lattice L = Z and bilinear form (x, y) = −(12 · 49)xy.

Proof. We observe that in proving Theorem 5.4 it is sufficient to verify that the coefficients

ah(α, β) and bh(α, β) all satisfy the identities in equations (4.6) - (4.9). There are, broadly,

2 classes of coeffficients of H⃗(τ) : boundary terms and nonboundary terms. In section 5.2 it

was proven that the coefficients of H⃗7(τ) satisfy the identities in equations (4.6) and (4.7),

culminating in Theorem 5.5 for the boundary terms and Theorem 5.7 for the rest. In section

5.3 it was proven that the coefficients of H⃗7(τ) satisfy the identities in equations (4.8) and

(4.9). This proof was split into 3 parts: in section 5.3.1 the identities were proven for the

boundary terms, culminating in Theorem 5.8; in section 5.3.2 the identities were proven for
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nonboundary terms with a 0 index, culminating in Theorems 5.9 and 5.10; and finally in

section 5.3.3 the identities were proven for general nonboundary terms with nonzero indices,

culminating in Theorem 5.11.

Generalizing this result to general prime orders should be possible once analogs of The-

orems 5.6 and 5.11 are obtained; the other necessary results should generalize in a straight-

forward manner.
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Appendix A. Lemmata on Exponential Sums

Recall the definition of the Gauss sum G(χ) for a Dirichlet character χ:

Definition A.1. G(χ) =
∑

h (mod d) χ(h)e
(
h
d

)
, where d is the modulus of the character χ.

Now a Kronecker symbol
(
x
·

)
is a Dirichlet character if it satisfies certain conditions. See,

for example, [AG18, corollary 3.3].

Theorem A.2.
(
x
·

)
is a Dirichlet character if and only if x ̸≡ 3 (mod 4) .

Our characters of interest are typically
(
12
·

)
or
(
12·49

·

)
.

Gauss sums of nonprimitive characters can be computed in terms of the character they

are induced by, as seen in the following theorem [MV07, theorem 9.10].

Theorem A.3. If χ is a character modulo q and is induced by a character χ∗ modulo q∗

then

G(χ) = µ

(
q

q∗

)
χ∗
(

q

q∗

)
G(χ∗),

where µ is the multiplicative Möbius µ function.

We have the following lemma for transforming an exponential sum into a Gauss sum.

Lemma A.4. Let χ be a character with modulus d. Suppose there exists a prime p dividing

the modulus d for which there exists a root of unity ξp ̸= 1 such that χ(h+ d/p) = ξpχ(h) for

all h ∈ Z/dZ. Then ∑
h (mod d)

χ(h)e

(
hh′

d

)
= χ(h′)G(χ). (A.1)

Proof. There are two possibilites for h′ : either (h′, d) = 1 or (h′, d) > 1. If (h′, d) = 1 let

h′h′ ≡ 1 (mod d) , then h 7→ h′h is an automorphism of Z/dZ and hence

∑
h (mod d)

χ(h)e

(
hh′

d

)
=

∑
h (mod d)

χ(h′)χ(h)e

(
h′h′h

d

)

= χ(h′)
∑

h (mod d)

χ(h)e

(
h

d

)
.
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In this case we are done.

When (h′, d) > 1, let p be a prime satisfying the hypothesis. Note {h : h ∈ Z/dZ} =

{h+ d
p
: h ∈ Z/dZ}. Then we have∑

h (mod d)

χ(h)e

(
hh′

12

)
=

∑
h (mod d)

χ(h+ d/p)e

(
p(h+ d/p)x

d

)

= ξp
∑

h (mod d)

χ(h)e

(
phx

d

)
e (x)

= ξp
∑

h (mod d)

χ(h)e

(
hh′

d

)
.

But ξp ̸= 1. Hence
∑

h (mod d) χ(h)e
(
hh′

d

)
= 0. Since (h′, d) > 1 we have χ(h′) = 0 so∑

h (mod d)

χ(h)e

(
hh′

d

)
= χ(h′)G(χ) = 0.

We have therefore proved the identity for both of the possible cases.
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