
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2003-05-07

Designing Active Smart Features to Provide Nesting Forces in Designing Active Smart Features to Provide Nesting Forces in

Exactly Constrained Assemblies Exactly Constrained Assemblies

Eric Pearce
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Pearce, Eric, "Designing Active Smart Features to Provide Nesting Forces in Exactly Constrained
Assemblies" (2003). Theses and Dissertations. 65.
https://scholarsarchive.byu.edu/etd/65

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/65?utm_source=scholarsarchive.byu.edu%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DESIGNING ACTIVE SMART FEATURES TO PROVIDE NESTING FORCES

IN EXACTLY CONSTRAINED ASSEMBLIES

by

Eric L. Pearce

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2003

Copyright © 2003 Eric L. Pearce

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Eric L. Pearce

This thesis has been read by each member of the following graduate committee and by
majority vote has been found satisfactory.

________________________ __
Date Alan R. Parkinson, Chair

________________________ __
Date Kenneth W. Chase

________________________ __
Date Spencer P. Magleby

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Eric L. Pearce in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative material including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

________________________ __
Date Alan R. Parkinson

Chair, Graduate Committee

Accepted for the Department
 __
 Brent L. Adams
 Graduate Coordinator

Accepted for the College

 __
 Douglas M. Chabries
 Dean, College of Engineering and Technology

ABSTRACT

DESIGNING ACTIVE SMART FEATURES TO PROVIDE NESTING FORCES

IN EXACTLY CONSTRAINED ASSEMBLIES

Eric L. Pearce

Department of Mechanical Engineering

Master of Science

Ever since the design and manufacture of products moved from the craftsman era

where individual craftsman designed and manufactured the entire product, to the mass

production era, where skilled laborers were crafting interchangeable parts or in some

cases single features on interchangeable parts, variation in assemblies has been a major

concern to designers, manufacturers, and in a more subtle way, customers. Variation, in

the end, affects quality, performance and the cost of products. One particular type of

design that is particularly robust to variation is an exactly constrained design.

Several researchers have recently explored the topic of exact constraint design.

An exactly constrained design is one in which each degree of freedom is constrained by a

single constraint until the desired degrees of freedom for the design is attained. One

attractive advantage of exactly constrained designs is that they are robust to variation.

However, exactly constrained designs often require nesting forces to maintain the

configuration of the design. This research develops a method for designing features that

will supply robust nesting forces such that the advantages of the exactly constrained

design are preserved.

The method developed in this work takes advantage of a proven method for

tolerance analysis and enhances this method to include the analysis of these features that

supply nesting forces. Along with the enhancement, principles are developed that aid this

analysis. All the examples provided in this work are verified using comparisons to

Monte Carlo simulations. The comparisons show good results, typically less than 2%

difference from the Monte Carlo simulations, verifying that this method accurately

predicts variation and allows for the robust design of features that supply the nesting

forces in exactly constrained assemblies.

ACKNOWLEDGMENTS

I would first like to thank my lovely wife, Harmony. Without her faith in me and

her unwavering support in returning to school full-time, I would have never made it. Our

children, Rachel, Rebecca, and Nathan also deserve my thanks, as they have always

believed their Dad could do it. I also owe very much to my advisor, Dr. Alan Parkinson.

He has supported me with intellect, guidance, and the occasional shove and obviously

without him, this work would have never been accomplished. Other professors that

deserve my thanks for the advice, mentorship and counsel they gave me have been Dr.

Ken W. Chase, Dr. Paul F. Eastman, and Dr. Robert H. Todd. I would like to express

thanks to my parents and my in-laws who have also supported and believed in my dreams

and me. I would like to thank the National Science Foundation who has supported this

research with grant DMI 0084880. And finally, I must express my greatest thanks to my

Heavenly Father, for the inspiration, skills and talents that have brought me to this point.

xv

TABLE OF CONTENTS

TABLE OF CONTENTS.. xv

LIST OF FIGURES ... xxi

LIST OF TABLES.. xxv

Chapter 1 Introduction... 1

1.1 Motivation for Research ... 1

1.1.1 Smart Assemblies.. 2

1.1.2 Exact Constraint and Nesting Forces.. 3

1.2 Thesis Objectives.. 5

1.3 Delimitations .. 5

1.4 Significance of Research .. 6

Chapter 2 Background and Literature Review .. 7

2.1 Introduction .. 7

2.2 Variation in Assemblies ... 7

2.3 Robust Design .. 8

2.4 Smart Assemblies and Features.. 9

2.5 Exact Constraint and Nesting Forces ... 10

2.6 DLM -- Direct Linearization Method... 15

2.6.1 DLM Example – Exactly Constrained Pinned Block 15

2.7 Conclusion.. 29

Chapter 3 General Method for Analysis and Design of Features that Supply Nesting
Forces ... 31

3.1 Introduction .. 31

3.2 Assembly Model Setup... 31

3.2.1 STEP 1 – Perform Assembly Design Synthesis 32

3.2.2 STEP 2 – Determine Placement and Configuration of Nesting Force...... 32

xvii

3.2.3 STEP 3 – Apply Part DRFs and Kinematic Joints.................................... 34

3.2.4 STEP 4 – Form Kinematic Assembly Vector Loops 34

3.2.4.1 Principles for Nesting Force Loops... 35

3.2.5 STEP 5 – Write Kinematic Equations .. 35

3.3 Assembly Model Analysis.. 36

3.3.1 STEP 6 – Perform Analysis of the Closed and Open Loop Equations..... 36

3.3.2 STEP 7 – Perform Analysis of the Nesting Force Loop Equations.......... 36

3.3.3 STEP 8 – Perform Force Analysis .. 38

3.4 Example: Pinned Block Assembly with Applied Nesting Force....................... 40

3.5 Summary of Method for Designing Nesting Forces... 49

3.6 Summary... 50

Chapter 4 Case Studies .. 51

4.1 Example 1 -- 1D Latch ... 51

4.2 Exactly Constrained Block ... 57

4.3 Wedge and Cylinder Example.. 73

Chapter 5 Conclusions and Recommendations ... 91

5.1 Contributions and Conclusions... 91

5.2 Recommendations .. 92

Bibliography ... 93

Appendix A... 97

Maple© Worksheets for Pinned Block Assembly ... 97

A.1 Explicit Equation Development.. 97

A.2 DLM Model Setup and Analysis .. 100

Appendix B ... 107

Maple© Worksheets for Exactly Constrained Block Assembly................................ 107

B.1 Explicit Equation Development.. 107

B.2 DLM Model Setup and Analysis .. 111

Appendix C ... 119

Maple© Worksheet for Wedge Assembly ... 119

C.1 DLM Model Setup, Analysis & Explicit Equation Development 119

xix

Appendix D... 133

Using Monte Carlo for Worst-Case Comparisons ... 133

xxi

LIST OF FIGURES

Figure 1.1: Exactly Constrained block assembly... 4

Figure 1.2: Exactly Constrained block assembly with an applied Nesting
Force. .. 4

Figure 2.1: Initial design of example assembly. .. 10

Figure 2.2: Two smart feature implementations to meet dimension 'd'. 10

Figure 2.3 - Exactly constrained, pinned block assembly. ... 11

Figure 2.4: Examples of and exactly constrained block and different types of
nesting forces. ... 13

Figure 2.5: Stability of nesting force. FA and FC are unstable. FB is stable. 14

Figure 2.6: Exactly Constrained Pinned Block with DLM DRFs shown. 16

Figure 2.7 - Dimensioned Pinned Block Assembly.. 16

Figure 2.8: Joints applied to the Pinned Block Assembly. .. 18

Figure 2.9 –Vector Loops for Pinned Block DLM model. ... 20

Figure 3.1 - Exactly constrained design using two forces to provide a single,
resultant nesting force. .. 33

Figure 3.2 - Actual assembly showing the use of a cantilevered spring molded
into a part. The spring supplies a vertical nesting force. ... 34

Figure 3.3 - The Pinned Block Assembly with a stable nesting force applied. 41

Figure 3.4 - Nesting force loop and associated variables for the Pinned Block
Assembly... 42

Figure 3.5 – Relationship of dependent nesting force loop dependent
variables to assembly. ... 43

Figure 4.1 - 1D Latch Assembly... 51

Figure 4.2 - Basic assembly for the exactly constrained block... 57

Figure 4.3 - Exactly constrained block with applied nesting force................................... 58

xxiii

Figure 4.4 - Placement of cantilevered beams used to provide the required
nesting force resultant. .. 59

Figure 4.5 - Exactly constrained block with dimension labels applied. 60

Figure 4.6 - Closed loops and their associated dimensions for the exactly
constrained block. ... 62

Figure 4.7 - Nesting force loops for the exactly constrained block. 63

Figure 4.8 - Wedge and Cylinder assembly.. 73

Figure 4.9 – Nesting forces applied to the Wedge assembly to obtain the
desired resultant nesting force. ... 74

Figure 4.10 - Wedge assembly with cantilevered beams providing the
required nesting forces. ... 75

Figure 4.11 - Wedge assembly with dimensions and their respective labels.................... 75

Figure 4.12 - Part DRFs and kinematic joints applied to the Wedge
Assembly... 77

Figure 4.13 - Closed loops 1 and 2 for the Wedge Assembly. ... 78

Figure 4.14 - Closed loop 3 for the Wedge Assembly.. 79

Figure 4.15 - Nesting force loops 1 and 2 for the Wedge Assembly................................ 80

Figure D.1 – Histogram of the uniformly distributed independent variable, x1. 133

Figure D.2 – Histogram of the normally distributed independent variable, x1. 134

Figure D.3 – Histfit() plot of the data for the dependent variable, u1. 135

Figure D.4 – Zoomed in on right-hand tail of the Histfit() plot for the
dependent variable, u1. .. 136

Figure D.5 – Histogram of the data for the dependent variable, u1 when the
independent variables were allowed to follow a uniform distribution.................... 137

Figure D.6 – Histogram of the data for the dependent variable, u1 when the
independent variables were allowed to follow a uniform distribution.................... 137

xxv

LIST OF TABLES

Table 2.1 - Nominal values, tolerances, standard deviations, and tolerance
percent of nominal values for Pinned Block Assembly.. 17

Table 2.2: 2D Datum Reference Frames.. 17

Table 2.3: 2D Kinematic joints and associated degrees of freedom and
capacity to transmit forces. ... 19

Table 2.4: DLM matrices for the One-way Clutch. ... 24

Table 2.5 - GAP sensitivity matrix for the Pinned Block Assembly. 25

Table 2.6 - Percent Difference comparison between standard deviation
returned by the DLM and a 100,000 run Monte Carlo simulation. 28

Table 2.7 - Difference value comparison between the worst-case values
returned by DLM and Monte Carlo simulation. ... 28

Table 3.1 - Nesting force independent variables and their nominal values,
tolerances, standard deviations, and tolerance percent of nominal........................... 42

Table 3.2 - Matrices for nesting force loop tolerances analysis for the Pinned
Block Assembly. ... 45

Table 3.3 - Results from both traditional DLM analysis and the new nesting
force loop analysis. ... 45

Table 3.4 - DLM and nesting force loop analysis standard deviations
compared with a 100,000 run Monte Carlo simulation. ... 46

Table 3.5 - Cantilevered Beam dimensions. Values for nominal sizes,
tolerances, standard deviations, and tolerance percent variation of
nominal are shown. ... 47

Table 3.6 - Nesting force statistical analysis with respect to the standard
deviation compared with a 100,000 run Monte Carlo simulation............................. 48

Table 3.7 - Comparison of Worse Case analysis for the nesting force using a
500,000 run Monte Carlo Simulation ... 48

xxvii

Table 4.1 - Nominal part dimensions and associated tolerances for the 1D
Latch example. .. 53

Table 4.2 - Comparison of the predicted standard deviation to a 100,000 run
Monte Carlo Simulation.. 54

Table 4.3 - Comparison of the predicted worst-case to a 500,000 run Monte
Carlo Simulation. .. 54

Table 4.4 - Revised tolerances for the independent variables in the Latch. 55

Table 4.5: Limits of the force as returned by the worst-case analysis. 56

Table 4.6 - Statistical comparison of DLM results with 100,000 run Monte
Carlo Simulation. .. 56

Table 4.7 - Worst case analysis comparison with 500,000 run Monte Carlo
simulation.. 57

Table 4.8 - Nominal values for independent dimensions and their respective
tolerances and standard deviations.. 61

Table 4.9 - Sensitivities for the closed loop dependent variables..................................... 65

Table 4.10 - Sensitivity matrix for the nesting force loop dependent variables. 65

Table 4.11 - Results of the DLM closed loop and nesting force loop analysis
for the exactly constrained block assembly. ... 66

Table 4.12 - Comparison of the predicted standard deviation against a
100,000 run Monte Carlo simulation for the exactly constrained block................... 67

Table 4.13 - Comparison of the predicted worst-case limits to a 500,000 run
Monte Carlo Simulation for the exactly constrained block. 67

Table 4.14 - The set of all independent variables and associated tolerances.
The revised tolerances are highlighted.. 68

Table 4.15 - The revised variations for the dependent variables for the exactly
constrained block. ... 69

Table 4.16 - Values for the independent variables and their respective
tolerances and standard deviations for the cantilevered beams in the
exactly constrained block assembly.. 70

Table 4.17 - Results of the DLM force analysis, including estimates for the
resultant force, Fr and the angle of the resultant force, θ F. 71

Table 4.18 - Comparison of DLM to 100,000 run Monte Carlo simulation for
the standard deviation (σ) for all the dependent variables for the Exactly
Constrained Block... 72

xxix

Table 4.19 - Comparison of DLM to 500,000 run Monte Carlo simulation for
the worst-case conditions for all the dependent variables for the exactly
constrained block. ... 72

Table 4.20 - Nominal values and the associated worst-case tolerances and
standard deviations for the Wedge Assembly... 76

Table 4.21 - Closed loop sensitivity matrix for the Wedge Assembly. 81

Table 4.22 - Nesting force loop sensitivities for the Wedge Assembly............................ 82

Table 4.23 - Results of the DLM closed loop and nesting force loop analysis
for the Wedge Assembly... 83

Table 4.24 - Comparison of the predicted standard deviation to a 100,000 run
Monte Carlo simulation for the Wedge assembly... 84

Table 4.25 – Comparison of predicted worst-case values with 500,000 run
Monte Carlo simulation for the Wedge assembly... 85

Table 4.26 – Revised results of the DLM nesting force loop analysis for the
Wedge Assembly. ... 85

Table 4.27 – Revised tolerances and standard deviations for the Wedge
Assembly... 86

Table 4.28 - Values for the independent variables and their respective
tolerances and standard deviations for the cantilevered beams in the
Wedge assembly. .. 87

Table 4.29 - Results of the DLM force analysis for the Wedge Assembly,
including estimates for the resultant force, Fr and the angle of the
resultant force, Fθ.. 87

Table 4.30 - Comparison of DLM to 100,000 run Monte Carlo simulation for
the standard deviation for all the dependent variables for the Wedge
Assembly... 88

Table 4.31 - Comparison of DLM to 500,000 run Monte Carlo simulation for
the worst-case conditions for all the dependent variables for the Wedge
Assembly... 89

1

Chapter 1 Introduction

1.1 Motivation for Research

Ever since the design and manufacture of products moved from the craftsman era

where individual craftsman designed and manufactured the entire product, to the mass

production era, where skilled laborers were crafting interchangeable parts or in some

cases single features on interchangeable parts, variation in assemblies has been a major

concern to designers, manufacturers, and in a more subtle way, customers. Variation, in

the end, affects quality, performance and the cost of products.

All assemblies have key features or key characteristics (KCs) that must be

satisfied for the assembly to meet its design intent. Due to variation in the parts that

make up an assembly, individual part variation typically propagates to these key

characteristics. A number of methodologies and tools have been developed that allow the

designer to predict how part variation propagates to the key characteristics. Long viewed

as a tolerancing problem, out-of-control variation in key characteristics is traditionally

solved by controlling part tolerances. Even today it is common practice to control

variation in the overall assembly by simply controlling the part tolerances. This often

leads to tighter tolerances and higher part costs due to the limits of the chosen or required

manufacturing processes.

Taguchi proposed another means of satisfying KCs[Taguchi et. al., 1999]. He

indicates that instead of changing the manufacturing processes, or tightening part

tolerances, assemblies can be designed such that they are insensitive to the variation in

the individual parts.

2

Taguchi initially conceptualized the idea of a robust design. A robust design is

one that meets key characteristics regardless of the variation in the parts. By design, the

assemblies are able to absorb the part variation. Though the concept seems

straightforward at the outset, the design of robust assemblies has only recently been

studied to the extent where methodologies are now being developed. One such

methodology upon which this work intends to build is the concept of a ‘smart assembly.’

1.1.1 Smart Assemblies

A smart assembly, by definition, is an assembly that has a feature or features, not

otherwise required, that allow the assembly to absorb the variation in the individual parts

that make up that assembly. Thus, in theory, a designer could design an assembly that

will be a perfect assembly built out of imperfect parts [Downey, et. al. 2001]. Work on

smart assemblies has thus far been limited. Parkinson and Chase, 2002 present the

overall general concept, and [Downey, 2001] and [Downey et. al., 2002] developed a

general design methodology. The smart assembly design methodology establishes two

types of features that can be designed into an assembly to make it ‘smart.’ The two types

of smart features are “passive” and “active”.

A passive smart feature will allow for the absorption of assembly variation once,

at assembly time, but is then fixed and can no longer absorb variation without external

adjustment. A Passive Smart Feature will add an additional rigid constraint to the

assembly. Examples of passive smart features are slotted holes, adjustment screws, and

shims.

An active smart feature will allow for the absorption of manufacturing,

operational, and environmental variation throughout the life of the assembly. Examples

of active smart features are springs and other parts that have the capacity to adjust and

absorb variation continuously in order to accommodate wear or other changes over time.

Active smart features essentially provide a Degree of Freedom (DoF) in the direction of

variation absorption. This DoF will typically only be for small kinematic adjustments

3

and often a force will be transmitted in the direction of the DoF as well. For example,

springs are often implemented as active smart features. Springs will typically allow a

DoF, but provide a force in that DoF as well. One type of design that can require forces

to keep the assembly properly assembled is an exactly constrained design.

1.1.2 Exact Constraint and Nesting Forces

Blanding [Blanding, 1999] states that an exactly constrained design is one where

“each and every one of the body’s degrees of freedom has been individually accounted

for and constrained, one constraint at a time.” Exactly constrained assemblies have each

DoF constrained by exactly one constraint.

In two-dimensional space, a rigid body has three degrees of freedom. For an

exactly constrained, static assembly of two parts in 2D space, one part in the assembly

must properly apply three constraints to the second part in the assembly. Figure 1.1

shows a block assembly as an example of an exactly constrained design. The block is

restricted in the x, y and θ degrees of freedom, where C3 and C2 constrain the x and the y

DoFs respectively and C1 constrains the rotation, θ.

Because of the one-to-one relationship of constraints to DoFs in exactly

constrained designs, exact constraint (EC) design relies heavily on nesting forces. In

fact, [Hale, 1999] states that preload, or the nesting force, “is a central concept to the

design of kinematic couplings.” Essentially, nesting forces help exactly constrained

designs by keeping parts seated in their exactly constrained positions. Clearly in Figure

1.1 a nesting force will be required to keep the block seated against its constraints. In

Figure 1.2, a nesting force is applied to the exactly constrained block assembly.

4

Figure 1.1: Exactly Constrained block
assembly.

Figure 1.2: Exactly Constrained block
assembly with an applied Nesting Force.

C2

C3

C1

C2

C3

C1 Nesting
Force

5

Nesting forces can themselves be seen as constraints. As seen in Figure 1.2, if a

rigid device supplies the nesting force, the nesting force becomes an additional hard

constraint and the design becomes an over-constrained design. If, however, the nesting

force is supplied by a flexible part such as a cantilevered beam or a compression spring,

the constraint is considered a soft constraint and can actively adjust to the variation in the

parts and operating conditions.

For a nesting force to be effective, it must provide the required force over the

range of variation an assembly may experience. This is true whether the variation is due

to manufacturing variation at assembly time or because of operational and/or

environmental conditions throughout the life of the assembly. Active Smart Features are

particularly well suited to provide these nesting forces because active smart features are

able to absorb variation while continuously providing the required nesting force. In fact,

[Downey, 2001]states that smart features should be used to provide the nesting forces in

an assembly. However, to this point, no method exists that specifies how to design the

features that supply these nesting forces in exactly constrained assemblies.

1.2 Thesis Objectives

The purpose of this research is to develop a method for the analysis and design of

the active smart features that will be used to supply nesting forces in exactly constrained

assemblies. Because of the use of active smart features, these nesting forces will be

robust to the variation inherent in the assemblies. Finally, this work will also illustrate

the need for multiple active smart features used as nesting forces in a single assembly.

1.3 Delimitations

No mechanism synthesis will be performed in this work. It will be assumed that

all the designs presented in this work have been previously synthesized to meet design

requirements.

6

All parts will be assumed to be rigid, with the exception of the active smart

feature(s).

In addition, this work will be restricted to 2D space.

Because part variations and the subsequent variations in the assembly are

typically small, the deflections of the active smart features will be considered small and

linear. Therefore only small deflection analysis will be used.

1.4 Significance of Research

Exact constraint is a valuable machine design tool, so much so that [Kriegel,

1994] argues that exact constraint design should be taught as part of the standard

engineering curriculum. The advantages of exact constraint can be summed up in the

following statements:

• Exactly Constrained designs can assemble over a wide variety of conditions.
• Exactly Constrained designs do not have any play.
• Exactly Constrained designs will not bind.
• Exactly Constrained designs do not have any internal stresses or strains caused by

over-constraint.
• Exactly Constrained designs can tolerate wear of parts, minor damage and

deformations caused by creep or overload.
• Exactly Constrained designs are easier to assemble and maintain than over-

constrained designs.

Many exactly constrained designs rely on nesting forces. Because of this

dependence on nesting forces, this work proposes to develop a method for the analysis

and design of the active smart features that will supply the nesting forces in exactly

constrained assemblies. It will provide yet another robust design tool to be placed in the

“designer’s toolbox.” It will also enhance the current literature by further extending the

understanding of how to design these features that will supply nesting forces as part of

Exact Constraint Design.

7

Chapter 2 Background and Literature Review

2.1 Introduction

This chapter will explain the necessary background information and related

literature that will be used throughout the remainder of this work. It begins with the

topics of variation in assemblies and robust assemblies. The chapter will then provide

more information about one means of achieving a robust assembly called smart assembly

design. Then, exact constraint and nesting forces and their associated benefits as related

to robust design will be discussed. The chapter will end with a presentation of a

tolerance analysis tool called the Direct Linearization Method or DLM. The DLM will

allow the variation in the assembly to be characterized in terms of the part variation.

2.2 Variation in Assemblies

Variation arises in assemblies as a result of the variation in the parts that make up

the assemblies. Part variation usually occurs due to the manufacturing processes that

were used to make the parts. For instance, when a lathe is used to form a part, the

machine may be set up to cut the dimension perfectly, but due to deflection in the cutter,

wear in the cutting tool or other causes, the formed parts are no longer true to the exact

dimension. As a result, designers assign tolerances to dimensioned parts to indicate limits

on how far features can deviate from the nominal dimension.

Designers have been applying several different methods to analyze how assigned

part tolerances stack-up in a design. These various methods of analysis allow designers

to adjust dimensions such that the parts, when assembled, form an assembly that meets all

8

customer requirements. A survey of these methods is given in [Parkinson and Chase,

2002].

2.3 Robust Design

In light of the variation that exists in assemblies, a designer should be concerned

with how robust his design will be with respect to this variation. Taguchi defines

robustness as “the state where the technology, product, or process performance is

minimally sensitive to factors causing variability (either in the manufacturing or user’s

environment) and aging at the lowest unit manufacturing cost” [Taguchi et. al, 1999].

According to Taguchi’s definition of robustness, a robust design or assembly is

one that will meet all assembly requirements regardless of the variation in the parts that

make up the assembly. This type of a robust assembly results in a high level of customer

satisfaction due to a higher quality product and lower consumer cost because fewer parts

are scrapped. It also results in increased profit due to increase market share, less scrap,

and greater efficiency in the manufacturing process.

Though the idea for robust designs initially came from Taguchi [Taguchi et all.,

1989], [Peace, 1993], others have looked at applying nonlinear programming methods to

include design constraints and the effects of correlation among the independent variables

[Parkinson, 1995], [Yu and Ishii, 1994], [Otto and Antonsson, 1993], and [Chen et al.,

1996]. These design tools are focused on either allowing the design to function properly

regardless of variation, or reducing the sensitivity of the design to variation. However, in

some cases, there is still sufficient variation in the design to cause problems. Two design

tools that can be used to achieve robust assemblies are smart assembly features and

exactly constrained designs. They are discussed in the following sections.

9

2.4 Smart Assemblies and Features

Smart assemblies have features, not required by the function of the design, which

allow the design to absorb, or cancel out the effects of part variation so that the assembly

always meets the design requirements [Parkinson and Chase, 2002], [Downey, 2001], and

[Downey et. al, 2002].

The smart features that are used in the design of smart assemblies come in two

variants, passive and active smart features. A passive smart feature is one that absorbs

variation once, such that one or more design requirements are met, and statically

maintains that requirement for the life of the assembly. Several examples of passive

smart features include, but are not limited to, slotted holes, shims, adjustment screws, and

welded slip joints. An active smart feature is one that actively absorbs variation for the

life of the assembly. Some examples of active smart features are linear bearings, springs,

and part flexure or compliance.

Smart features can be implemented in assemblies as described in an example from

[Downey, 2001]. In this example a passive smart feature is used to cancel out the effects

of variation in a simple assembly. The initial assembly is shown in Figure 2.1. The

design requirement for this assembly is dimension ‘d’; however, due to variations in parts

A, B, and C, the design requirement will not be met for all assemblies. Two

implementations of passive smart features can be seen in Figure 2.2. In Figure 2.2a,

shims are added to the assembly as a passive smart feature. At assembly time an

indicator gage would be used to stack shims to meet dimension ‘d’. In Figure 2.2b, an

adjustable screw would be used in conjunction with a gage to ensure dimension ‘d’ is

met.

10

Figure 2.1: Initial design of example assembly.

a) Shims to meet dimension ‘d’ b) Adjustable screw and gage to meet dimension ‘d’

Figure 2.2: Two smart feature implementations to meet dimension 'd'.

Smart assemblies provide a powerful tool to the designer who is trying to mitigate

the effects of variation in a design. One type of design in which smart features have a

great advantage is an exactly constrained design. The following section will explain the

idea of an exactly constrained design.

2.5 Exact Constraint and Nesting Forces

One type of design that is particularly robust to variation is an exactly constrained

design. Exactly constrained designs are discussed by [Blanding, 1999], [Skakoon, 2000],

[Kriegel, 1994], and [Kamm, 1993]. Additional discussion of exact constraint design can

A

B CSHIMS

11

also be found in [Hale, 1999]. Hale indicates exact constraint design involves applying

constraints to a body to eliminate DoFs in a one-to-one fashion. Hale goes on to say “It

is the objective of exact-constraint design to achieve some desired freedom of motion or

perhaps no motion by applying the minimum number of constraints required.” Blanding

states an exactly constrained design is one where “each and every one of the body’s

degrees of freedom has been individually accounted for and constrained, one constraint at

a time.” An example of the type of two dimensional, exactly constrained assemblies used

in this work can be seen in the pinned block assembly shown in Figure 2.3. Notice the

one-to-one nature of the constraints to DoFs in that the pin constrains the block in both

the x and the y translations and the second constraint only constrains the rotation θ.

Figure 2.3 - Exactly constrained, pinned block assembly.

When analyzing an exactly constrained assembly, such as the Pinned Block in

Figure 2.3, the advantages of exact constraint become apparent. In fact, [Kamm, 1993]

writes that by employing EC design,

“you will achieve zero looseness and zero binding of moving parts; you
will achieve assembly of fixed parts without strains or rework; and you
will do so despite loose manufacturing tolerances and semiskilled
assembly labor. You will minimize the manufacturing cost of your
mechanism, you will make it more reliable, you will make it easier to
disassemble and reassemble, and you will make it easier to maintain.”

12

Hale indicates that in an exact constraint design “parts will fit together precisely

and without backlash.” Blanding states that exactly constrained designs achieve an

extraordinary level of precision automatically using ordinary, low-cost, and inaccurate

parts. Skakoon states that when over-constrained designs do not work as intended, the

problems are hard to identify, whereas, in exactly constrained designs, the problems are

easily identified and resolved.

Due to the one-to-one nature of DoFs to constraints in exactly constrained

designs, there often arises a need for nesting forces in these designs. [Hale, 1999],

[Blanding, 1999], and [Skakoon, 2000], all mention the need for nesting forces in exactly

constrained designs. Consider the block being constrained by the two pins found in

Figure 2.4a. It can be observed that the block could likely be unseated from the

constraints if the assembly were subjected to external loads or accelerations. Therefore,

in Figure 2.4b, c, and d three different types of nesting forces are shown being applied to

the block to keep it seated against the pins. The first two, b and c, show passive smart

features applying nesting forces, in which the force is applied by rigid parts and then

fixed in that position. The third example in d illustrates an active smart feature, in the

form of a compression spring, applying the nesting force. This active nesting force can

provide a force throughout a range of variation.

Several issues exist with nesting forces in exact constraint design. First,

placement of the nesting force must be done such that the nesting force maintains the

stability of the design. Second, nesting forces must be applied as ‘soft constraints’.

Applying nesting forces using rigid features imposes over-constraints on exactly

constrained designs. Finally, part variation in rigid features used as nesting forces can

result in the failure of the nesting force. Each of these issues will now be discussed in

detail.

13

a) Exactly Constrained block
on two pins.

b) Cam being used as a
nesting force.

c) Set screw being used as a
nesting force

d) Compression Spring being
used as a nesting force.

Figure 2.4: Examples of and exactly constrained block and different

types of nesting forces.

First, placement of nesting forces must be done with respect to the stability of the

design. This is clearly illustrated by revisiting the exactly constrained block on two pins.

A nesting force is applied to the block in Figure 2.5 at three different positions. Because

of moments generated about the constraints, forces FA and FC would be unstable and

likely unseat the block from one or more constraint. By observation, FB would keep the

block properly seated against the constraints while maintaining the stability of the design.

Second, as with the examples in Figure 2.4b and c, when hard constraints are used

to provide the nesting forces, even if using passive smart features, the design becomes

over-constrained. In fact, it is reasoned that by adding nesting forces, one sacrifices the

benefits of exactly constrained designs [Hale, 1999]. However, if the designer only

desires to absorb manufacturing variation, and the design will not experience any

14

significant environmental or operational variation, then passive smart features can

effectively be used to supply nesting forces.

Figure 2.5: Stability of nesting force. FA and FC are unstable.
FB is stable.

Finally, variation in rigid features being used as nesting forces can result in the

failure of the nesting force. An example of this is illustrated in the nesting forces being

supplied by rigid features in Figure 2.4b and c. If variation arises in the life of the

assembly due to wear or thermal effects it can clearly be seen that either these rigid

features will either impose unwanted stresses or strains, or gaps will form leaving the

assembly without the required nesting force.

Because of variation in assemblies, Downey states that smart features should

always supply the nesting forces in exactly constrained designs [Downey, 2001].

However, Downey does not indicate the type of smart feature to be used as a nesting

force. As stated previously, failure can result when passive smart features are used to

provide nesting forces. This can be overcome by always using active smart features to

supply the nesting forces in exactly constrained designs. Some active smart features have

the unique quality of providing a force, while maintaining an active DoF in the direction

of the force. This implies a need to know how the variation in the parts of an assembly

will affect the design of the active smart features being used as nesting forces. This

knowledge can be obtained by performing a tolerance analysis on the design. This work

will rely on the Direct Linearization Method for tolerance analysis.

FA FB FC

15

2.6 DLM -- Direct Linearization Method

The Direct Linearization Method (DLM) can be used to analyze tolerance

stackups in both 2D and 3D assemblies. The DLM is preferred because it does not

require explicit assembly functions [Chase, 1999], [Chase et. al, 1995] as do other

tolerance analysis methods. It linearizes non-linear equation sets so they can be used in

algebraic matrix manipulations to calculate the dependent variable sensitivities. These

sensitivities can then be used to predict the variation in the dependent variables.

As this work will rely heavily on the DLM and its results, Section 2.6.1 will

explain the process of applying the DLM.

2.6.1 DLM Example – Exactly Constrained Pinned Block

The Pinned Block Assembly can be seen in Figure 2.6. In this exactly constrained

assembly, it is assumed that the pin will always exactly fit in the hole. The Base consists

of a rigidly fixed pin that locates the Block in the x and y DoFs and a locator pin that

eliminates the Block’s θ DoF. The design objective for this assembly is that the points

A and B in Figure 2.7 are spaced 0.67” in the GAPy dimension and always less than .03”

in the GAPx dimension. Nominal values for the independent and dependent variables are

shown with their respective labels in Figure 2.7. The nominal values, tolerances,

standard deviations, and percent variation from nominal of the respective independent

variables can be seen in Table 2.1.

The process for applying the DLM to this assembly model proceeds as follows.

16

Figure 2.6: Exactly Constrained Pinned Block with DLM
DRFs shown.

0.625 (x1)

3.500 (x2)

3.875 (x9)

0.625
 (x8)

1.125
 (x6)

2.5014°
 (u2)

1.625
 (x4)

2.8504 (u1)

4.500 (x3)

0.500 (x5)

1.250
 (x7)

0.0236 (GAPx)

0.6697
 (GAPy)

BLOCK
DRF

BASE
DRF

(Ø0.750)

A

B

Figure 2.7 – Dimensioned Pinned Block Assembly.

BLOCK
DRF

BASE
DRF

17

Table 2.1 - Nominal values, tolerances, standard deviations, and
tolerance percent of nominal values for Pinned Block Assembly.

Inputs Nominal WC Std. Dev. % of Nom.
x1 0.625 δx1 0.019 0.006 3.0%
x2 3.500 δx2 0.105 0.035 3.0%
x3 4.500 δx3 0.135 0.045 3.0%
x4 1.625 δx4 0.049 0.016 3.0%
x5 0.500 δx5 0.015 0.005 3.0%
x6 1.125 δx6 0.034 0.011 3.0%
x7 1.250 δx7 0.038 0.013 3.0%
x8 0.625 δx8 0.019 0.006 3.0%
x9 3.875 δx9 0.117 0.039 3.0%

STEP 1 – Assign a Datum Reference Frame to each part
Each part in the assembly must have its own local coordinate system. Individual

local coordinate systems are called Datum Reference Frames (DRF) and are specific to

each part in the assembly. For 2D analysis, the only two applicable DRFs can be seen in

Table 2.2. The DRFs for the Pinned Block Assembly example can be seen in Figure 2.7.

Table 2.2: 2D Datum Reference Frames.

Center Datum Rectangular Datum

STEP 2 – Specify Kinematic Joints between Parts
All parts in the assembly must be linked together by kinematic joints. Kinematic

joints allow for the kinematic adjustments that are necessary when variation is present.

Kinematic joints indicate how the parts can move relative to each other. For 2D

assemblies there are only 6 different joints that are of concern. These six joints can be

seen in Table 2.3. For the purposes of this thesis, additional information on how each

joint transfers forces or moments has also been included.

18

It can be see in Table 2.3 that the set of DoFs and the set of transmitted force

directions are mutually exclusive. The unconstrained directions allow kinematic motion.

The constrained directions transmit forces. When active smart features are applied as

nesting forces, the joint’s force transmittal direction is the direction in which the nesting

force will be applied.

For the Pinned Block Assembly, there are two joints. There is one Revolute joint

between the pin on the Base and the hole in the Block, and there is one Edge Slider joint

between the Block and the Base. The joints for the Pinned Block Assembly can be seen

in Figure 2.8.

Figure 2.8: Joints applied to the Pinned Block Assembly.

BLOCK
DRF

BASE
DRF

A

B

19

Table 2.3: 2D Kinematic joints and associated degrees of
freedom and capacity to transmit forces.

Joint
DoF

Forces
Transmitted

Joint
DoF

Forces
Transmitted

Revolute Cylinder Slider

Edge Slider Parallel Cylinders

Planar Rigid

STEP 3 – Form Vector Loops for the Assembly
With the joints attached, the final step in developing the tolerance analysis model

requires the formation of a set of vector loops that completely describes the assembly.

There are several rules that aid and govern the creation of these vector loops. The rules

[Chase, 1999] for forming vectors loops are:

• Enter through a joint
• Follow the independent or dependent dimensions to a DRF
• Follow the independent or dependent dimensions leading to another joint
• Exit to the next adjacent part in the assembly
• No loop can pass through the same part or same joint twice.
• Loops must pass through each part and each joint in the assembly, but a

single loop does not necessarily pass through every part or every joint.

20

• If a vector loop includes the same dimension twice, with vectors passing that
dimension in opposite directions, then that dimension will be omitted due to
redundancy.

• There must be enough closed loops to solve for all kinematic variables. The
number of closed loops L required in an assembly is given by 1+−= PJL
where J is the number of joints and P is the number of parts.

• There can be as many open loops as there are design requirements on the
assembly.

Figure 2.9 –Vector Loops for Pinned Block DLM model.

When the loops are established, the assembly variation model is defined. For the

Pinned Block Assembly, there are two loops: one closed loop to identify the relative

x1

x2

x6

u1x8

x4

(u2)

Closed Loop
BLOCK

DRF

BASE
DRF

A

B

x3

x1

x4

x8 x9

(u2)

x5

Open Loop
BLOCK

DRF

BASE
DRF

A

B

21

location of parts and one open loop to identify the relative location of the points A and B.

These loops can be seen in Figure 2.9.

STEP 4 – Write Kinematic Equations from Vector Loops
Step 4 begins by forming the kinematic equations that will allow for the variation

analysis of the Vector Assembly Model. Using the vector loop(s) created in Step 3,

kinematic equations are written in the form of 0),(,, =uxh yx θ for each closed vector loop

and () GAPuxp yx =,,, θ for each open vector loop. Each vector is broken into x, y and θ

components forming three equations for each loop. For the Pinned Block Assembly, the

loop starts at the DRF of the Base and proceeds around the vector loop from vector x2 to

vector x1. The hx and hy equations, given in equation 2.1 are simply the sum of the x and

y components, respectively.

For the formulation of hθ, the process involves starting at 0° and summing vector

rotations around the loop. For instance, for the Pinned Block Assembly, start at 0° for x2,

then rotating 90° for x6, rotate another +90°+ u2 for u1, -90° for x8, then +180°- u2 for x4,

then -90° for x6, then add -180° to return alignment to the positive x axis and to sum the

equation to zero. The resulting set of hi equations can be seen in equation 2.1.

Evaluating these equations in terms of known angles results in equation set 2.2.

0180901809090900

0)(180sin+)(-90sin+)+(90sin+

)+(180sin+)09(sinx+)(0sin

0)cos(180+)cos(-90+)+cos(90+

)+cos(180+)09cos(+)cos(0

22

1428

2162

1428

2162

=−−−+−+++=

=⋅⋅⋅

⋅⋅⋅=

=⋅⋅⋅

⋅⋅⋅=

οοοοοοο

οοο

οοο

οοο

οοο

uuh

xxux

uuxh

xxux

uuxxh

y

x

θ

 (2.1)

00

0cossin
0sincos

428216

128212

==

=⋅=
=⋅⋅=

θh

)-x(u*)+x(u-uxh
)-x(u)-x(u-uxh

y

x

 (2.2)

22

Three items of note can be seen in equation set 2.2. First, there are two non-linear

implicit equations in the two desired assembly dimensions. Second, for assemblies like

the Pinned Block where there is only one dependent angular dimension, the hθ equation

will equal zero and drop out of the set. Also, obtaining explicit functions for the

dependent variables can be very difficult. Even for this simple example the explicit

solution for the dependent angle, u2 is extremely complicated, and without either a

numerical non-linear equation solver, or a symbolic math package such as Maple©,

finding the explicit equations for these variables can be very difficult.

STEP 5 – Linearize the Vector Loop Equations for the Closed Loops
The variables in the assembly equations are only perturbed by small amounts, i.e.

the tolerances, therefore it is reasonable to employ a first-order Taylor Expansion to

linearize the equations. This linearization process converts a set of complex, non-linear

equations to a set of linear equations, which can be manipulated with linear algebra. A

summary of the process is to convert equation set [] [] []0)(== XFH to

[] [] []0)(== XdFdH . This is illustrated in detail for the Pinned Block in equation 2.3,

where δxi represents the tolerances on the respective variables. The set of h(xi) equations

are differentiated against all of the independent and dependent variables for the Pinned

Block.

0

0

2
2

1
1

8
8

6
6

4
4

2
2

1
1

2
2

1
1

8
8

6
6

4
4

2
2

1
1

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

u
u
h

u
u
h

x
x
h

x
x
h

x
x
h

x
x
h

x
x
h

h

u
u
hu

u
hx

x
hx

x
hx

x
hx

x
hx

x
hh

yyyyyyy
y

xxxxxxx
x

δδδδδδδδ

δδδδδδδδ
 (2.3)

23

It can be seen in equation 2.3 that the set of linearized assembly equations can be

written in matrix form as follows:

{ } { } 0=




∂
∂

+




∂
∂ u

u
hx

x
h δδ

Where:

 




∂
∂

x
h is the matrix of partial derivatives with respect to independent variables,

 




∂
∂
u
h is the matrix of partial derivatives with respect to dependent variables,

 { }xδ is a vector of tolerances on the independent variables, and
 { }uδ is a vector of unknown tolerances on dependent variables.

The values of the 




∂
∂

x
h and 




∂
∂
u
h matrices can be obtained by evaluating all

partial derivatives at the nominal values of the independent and dependent dimensions.

The nominal values for the dependent dimensions can be obtained from the CAD

package that is being used to model the assembly. It is desired to solve for the unknown

variations of the dependent variables. Algebraic manipulation of the matrix equation

results in equation 2.4.

{ } { }x
x
h

u
hu δδ 




∂
∂






∂
∂

−=
−1

 (2.4)

Equation 2.4 is the essence of the DLM. The matrix 




∂
∂






∂
∂

−
−

x
h

u
h 1

 contains the

sensitivities indicating how variation of the independent variables propagates to produce

variation in the dependent variables. For the Pinned Block the 




∂
∂

x
h , 




∂
∂
u
h ,

1−






∂
∂
u
h and






∂
∂






∂
∂

−
−

x
h

u
h 1

 matrices are given in Table 2.4.

24

Table 2.4: DLM matrices for the One-way Clutch.






∂
∂

x
h Matrix:

 x1 x2 x3 x4 x5 x6 x7 x8 x9

hx -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0436 0.0000

hy 0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 0.9990 0.0000






∂
∂
u
h Matrix:

1−






∂
∂
u
h Matrix:

 u1 u2

hx -0.9990 -0.5000 u1 1.0086 -0.1754

hy -0.0436 -2.8750 u2 -0.0153 0.3505






∂
∂






∂
∂

−
−

x
h

u
h 1

 Matrix:

 x1 x2 x3 x4 x5 x6 x7 x8 x9

u1 -1.0086 1.0086 0.0000 0.1754 0.0000 -0.1754 0.0000 -0.2193 0.0000

u2 0.0153 -0.0153 0.0000 -0.3505 0.0000 0.3505 0.0000 0.3508 0.0000

Open Loops

The procedure is similar for the open loop pictured in Figure 2.9. The equations

evaluated in terms of known angles for the open loop are found in equation set 2.5.

() ()
() () yy

xx

GAPxuxuuxp
GAPxuxuuxp

=−⋅+⋅−=
=−⋅−⋅−=

428216

128212

cossin
sincos

 (2.5)

When linearized, this set of open loop equations results in an equation in the form

of equation 2.6. To obtain the sensitivities for the variation in the GAP variables a

substitution is required. By substituting δu from equation 2.4, the true sensitivities of the

GAP variables to the independent variables can be found. This substitution results in

25

equation 2.7. The sensitivity matrix for the GAP variables for the Pinned Block is found

in Table 2.5.

u
u
px

x
pdGAP δδ 




∂
∂

+





∂
∂

= (2.6)

x
x
h

u
h

u
p

x
pdGAP δ


















∂
∂

⋅




∂
∂

⋅




∂
∂

−





∂
∂

=
−1

 (2.7)

Table 2.5 - GAP sensitivity matrix for the Pinned Block
Assembly.

 x1 x2 x3 x4 x5
GAPx 1.0070 -0.0070 -1.0000 -0.1596 0.0000
GAPy 0.0597 -0.0597 0.0000 -0.3664 -1.0000

 x6 x7 x8 x9
 GAPx 0.1596 0.0000 0.2034 0.9990
 GAPy 1.3664 0.0000 0.3687 0.0436

STEP 6 – Estimate Variation in Dependent Variables
The 6th and final step in the DLM is to estimate the variation of the dependent

variables. Two common estimates of the variation are Worst Case (WC) and Root Sum

Squares (RSS). Given that sij represents the sensitivity elements of the 




∂
∂






∂
∂

−
−

x
h

u
h 1

and the

















∂
∂

⋅




∂
∂

⋅




∂
∂

+





∂
∂ −

x
h

u
h

u
p

x
p 1

 matrices, WC can be calculated by equation 2.8.

Using a RSS estimation, the standard deviation can be obtained by equation 2.9 for both

the U and GAP sets of dependent variables, respectively.

26

∑
=

=
N

j
jijU xs

i
1

|| δδ:CaseWorst (2.8)

()∑
=

=
N

j
xijU ji

s
1

2σσ:RSS (2.9)

The WC and RSS calculations for the Pinned Block are illustrated below for both

GAPx and GAPy as they were specified as the requirements for this design.

() () ()

() () () ()

() () ()

() () () ()2
929

2
828

2
626

2
525

2
424

2
222

2
121

2
919

2
818

2
616

2
414

2
313

2
212

2
111

929828626525

424222121

919818616414

313212111

||||||||

||||||

||||||||

||||||

xsxsxsxs

xsxsxs

xsxsxsxs

xsxsxs

xsxsxsxs

xsxsxs

xsxsxsxs

xsxsxs

y

x

y

x

GAP

GAP

GAP

GAP

σσσσ

σσσσ

σσσσ

σσσσ

δδδδ

δδδδ

δδδδ

δδδδ

⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

:RSS

:WC

27

Performing two separate Monte Carlo simulations will validate the worst-case

variations and the standard deviations predicted by equations 2.8 and 2.9. Thus, the

standard deviations that were previously calculated were compared to a 100,000 run

Monte Carlo simulation, where the independent variables were allowed to vary according

to normal distributions with their respective standard deviations. This comparison is

given in Table 2.6. The number 100,000 runs was chosen based on running the same

simulation for 30k runs, 50k runs, 100k runs, 500k runs and finally, 1,000k runs. The

difference between the standard deviations produced by the 30k and 50k was significant,

but from 50k to 1,000k runs, there was virtually no change in the standard deviation;

therefore, for this work all standard deviations will be compared to Monte Carlo

simulations of 100k runs.

The worst-case values calculated previously were compared against a 500,000 run

Monte Carlo simulation assuming a uniform distribution for the independent variables.

The Monte Carlo simulation using a uniform distribution allows the independent

variables to be at their maximums and minimums more often; this coupled with the

increased number of simulation runs allowed the dependent variables to be pushed to

() () ()
() () () ()

() () ()

() () () ()
0.0173

0.0390.04360.0060.36870.0111.36640.0051.00-

0.0160.3664-0.0350.0597-0.0060.0597

0.0599
0.0390.99900.0060.20340.0110.15960.0160.1596-

0.0451.00-0.0350.0070-0.0061.0070

0.0989
0.117|0.0436|0.019|0.3687|0.034|1.3664|0.015|-1.00|

0.049|-0.3664|0.105|-0.0597|0.019|0.0597|

0.2889
0.117|0.9990|0.019|0.2034|0.034|0.1596|0.049|-0.1596|

0.135|-1.00|0.105|-0.0070|0.019|1.0070|

2222

222

2222

222

=
⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

=
⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

=
⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

=
⋅+⋅+⋅+⋅+

⋅+⋅+⋅=

y

y

x

x

y

y

GAP

GAP

GAP

GAP

GAP

GAP

GAP

GAP
x

x

σ

σ

σ

σ

δ

δ

δ

δ

:RSS

:WC

28

their respective limits. More details on using a Monte Carlo simulation for worst-case

comparisons can be seen in Appendix D. The worst-case comparison is given in Table

2.7. Because a worst-case analysis is focused on the limits of the problem, the

comparison in Table 2.7 is given as “Good” if the limits returned by the Monte Carlo

simulation fall within the limits predicted by the DLM and as “Low/High” if the Monte

Carlo limits fall outside the respective “High/Low” limits returned by the DLM. For both

the statistical and worst case calculations, the predictions from the DLM analysis are

shown as generally conservative and good estimators of how the design will perform

under typical manufacturing conditions.

As can be seen in these comparisons, the DLM is an effective means of predicting

how variation in the features and parts will propagate to cause variation in the assemblies.

The DLM can also be easily automated and used in CAD packages to analyze assemblies

directly within the CAD model [Chase, 1999].

Table 2.6 - Percent Difference comparison between standard
deviation returned by the DLM and a 100,000 run Monte Carlo

simulation.

DLM

σ
MC

σ
Percent
Error

σGAPx 0.059923 0.060106 0.304%
σGAPy 0.017250 0.017257 0.039%

Table 2.7 - Difference value comparison between the worst-case
values returned by DLM and Monte Carlo simulation.

DLM
High

MC
High

Compare
High

DLM
Low

MC
Low

Compare
Low

GAPx 0.4874 0.4711 Good -0.4403 -0.4325 Good
GAPy 0.7639 0.7670 Low 0.5756 0.5949 Good

29

2.7 Conclusion

This chapter has introduced several topics as background to the remainder of this

work. Variation in parts will propagate to assemblies and can lead to the failure of a

design in satisfying the design’s key requirements. Robust design methodologies are an

attempt to manipulate the design such that it will be less sensitive to the variation in the

parts.

Exact constraint design is one approach for designing mechanical assemblies as it

provides robustness of design and many other advantages not found in over or under

constrained designs. Exactly constrained designs will often rely on nesting forces to keep

the assembly properly seated against its constraints. The best way to supply nesting

forces is with flexible features that actively adjust to the variations that result from

manufacturing processes and environmental and operating conditions throughout the life

of the assembly.

The DLM is an effective tool for analyzing tolerance models. It can provide both

worst case and statistical tolerance predictions of how the assembly will propagate part

and feature variation to the assembly’s key requirements. The DLM will be the means of

analysis for the design of the active smart features that will be used to supply the nesting

forces in exactly constrained designs.

31

Chapter 3 General Method for Analysis and Design of
Features that Supply Nesting Forces

3.1 Introduction

This chapter will explain the method developed in this research for the analysis

and design of active smart features that will supply nesting forces for exactly constrained

designs. For this method it is assumed that all parts are rigid except the active smart

feature. The following sections will explain the steps for the assembly model setup and

how subsequent analysis of the assembly model is to be performed. An example of the

process will be provided which will be a continuation of the Pinned Block example in

Section 2.6.1. A summary of the method will then be provided.

3.2 Assembly Model Setup

The method that has been developed in this work for the assembly model setup

closely parallels the first steps in the DLM but with new principles associated with

nesting forces. This method consists of 5 steps: 1) perform the design synthesis, 2)

determine the placement and configuration of nesting forces, 3) apply part DRFs and

kinematic joints, 4) form kinematic vector loops, and finally, 5) write the kinematic

equations from the respective vector loops. The sections that follow will explain, in

detail, each step of the assembly model setup.

32

3.2.1 STEP 1 – Perform Assembly Design Synthesis

The first step in setting up the model is generating the design for the assembly.

However, because mechanism synthesis will not be covered in this work, the assembly

designs will be assumed as given.

3.2.2 STEP 2 – Determine Placement and Configuration of Nesting Force

This step requires the designer to determine the placement of nesting force(s) in

the assembly. This can be done by observation using a logical placement for the nesting

force(s) or, in more complicated assemblies, the position of the nesting force can be

determined by performing an appropriate force analysis. There are several ways to

perform this force analysis; however, these methods are beyond the scope of this work.

The most important issue for this placement of the nesting force(s) is it needs to result in

a stable, robust design that will meet the design requirements. In this work the placement

of all nesting forces will be done by inspection.

In some cases, the nesting force required will be in a resultant direction similar to

the nesting force shown in Figure 1.2. It is preferable to use one feature to supply the

nesting force to ease analysis. However, in some cases, the geometry may not easily

allow the desired nesting force configuration. In these cases, multiple nesting forces can

be combined to supply a resultant force that acts in the desired direction and magnitude.

This is illustrated in Figure 3.1 where two nesting forces, Fx and Fy, are being used to

supply a single, resultant nesting force, FR.

In this work, cantilevered beams will be used as the springs that supply the

nesting forces. This choice of this type of active smart feature is reasonable due to the

fact that cantilevered beams can easily be molded into injection-molded parts and not

increase part count or complexity in assemblies. An example of this can be seen in

Figure 3.2. Here a small, poly-acrylic view window is being held in a larger plastic

housing via a cantilevered spring. The spring keeps the part firmly seated in the

33

assembly while also acting as a retainer. The Slot in the bottom keeps the part from

moving side-to-side.

Figure 3.1 - Exactly constrained design using two forces to
provide a single, resultant nesting force.

Fy

Fx

C2

C3

C1

FR

34

Figure 3.2 - Actual assembly showing the use of a cantilevered
spring molded into a part. The spring supplies a vertical nesting

force.

3.2.3 STEP 3 – Apply Part DRFs and Kinematic Joints

Now that the type of feature(s) that supply the nesting force(s) have been chosen

and located, the DLM will be set up. The first step in this process is applying the

appropriate DRFs to each part. Then, kinematic joints are applied to the appropriate

contacts in the assembly.

3.2.4 STEP 4 – Form Kinematic Assembly Vector Loops

With part DRFs located and the kinematic joints identified, vector loops are now

applied to the model. All features, including the nesting forces, are to be included in their

appropriate loops. The closed and open loops are formed as explained in Section 2.6.1.

As the closed and open loops are identified, it will be seen that the features that supply

the nesting forces and their associated independent and dependent variables are not found

in the traditional closed or open loops. Therefore, nesting force loops must be created.

Cantilevered spring keeps
window nested against

constraint below.

Tab constrains vertical
and horizontal movement.

35

These nesting force loops do not contain any forces. They simply characterize the

dimensional variation in the deflections that will produce the nesting forces. Most of the

principles that govern the creation of closed and open loops apply to nesting force loops.

However, there are two principles that require some revision.

3.2.4.1 Principles for Nesting Force Loops

First, each nesting force will have one complete, closed loop associated with it.

Second, the nesting force loop must include all independent locator dimensions

for the feature that applies the respective nesting force. In 2D, two independent

dimensions will position the active smart feature that applies the nesting force.

These two principles, used in conjunction with the principles established in the

DLM, will allow for the creation of nesting force loops.

3.2.5 STEP 5 – Write Kinematic Equations

The kinematic equations must now be written from the vector loops. Extract the

x, y, and θ equations in the form as shown in Equation 3.10, where h(x,u) are the standard

DLM closed loop equations and g(x,u,v) are the equations for the new nesting force

loops. Notice the addition of the v variables in g. These are the assembly or dependent

variables associated with the nesting forces and their relative location with respect to

other parts in the assembly. One of the dependent vi variables will represent the

deflection of the active smart feature. The other vi will typically represent the location of

the nesting force with respect to the DRF of the part to which the nesting force is applied.

0),,(
0),(

,,

,,

=

=

vuxg
uxh

YX

YX

θ

θ (3.10)

36

With the creation of the equations for the nesting force loops, the assembly model

setup is complete and ready for analysis.

3.3 Assembly Model Analysis

It is important to note here that forming nesting force loops is a slight deviation

from the DLM as contained in [Chase, 1999]. In [Chase, 1999], the open loops identify

the ‘gap’ dimensions. All locating dimensions for the gap(s) are given by independent

variables and the open loop equations can be written explicitly for the gaps in terms of

known independent variables.

The nature of nesting forces requires a different treatment. Typically, two

dependent variables will help to locate each of the nesting force features. These

dependent variables do not appear in the closed loops or the open loops of the DLM.

Therefore, these loops are an addition to the DLM and must be analyzed differently.

This analysis of the nesting forces loops requires two additional steps in the

analysis of the assembly model. After the traditional DLM closed and open loop

analysis, these two additional steps consist of the analysis of the nesting force loops, and

finally analysis of the force equation using the results of the previous steps. These steps

will be explained in the following sections.

3.3.1 STEP 6 – Perform Analysis of the Closed and Open Loop Equations

The analysis of the closed and open loops is performed as explained in Section

2.6.1. Information from this analysis is also required in the nesting force loop analysis.

3.3.2 STEP 7 – Perform Analysis of the Nesting Force Loop Equations

Nesting force loop analysis builds on the closed loop sensitivities as shown in

equation 2.4 which is repeated here as Equation 3.11.

37

[] []x
x
h

u
hu δδ ⋅




∂
∂

⋅




∂
∂

−=
−1

 (3.11)

The nesting force loop equations contain the new set of dependent variables, v.

The variation in these variables can be obtained by linearizing the nesting force loop

equations just as was done for the closed loop equations using a first order Taylor series

as seen in Equation 3.12.

[] [] [] [] 0=⋅





∂
∂

+⋅




∂
∂

+⋅





∂
∂

=∂ v
v
gu

u
gx

x
gg δδδ (3.12)

This equation can be rearranged in preparation to solve for [δv] as in Equation

3.13.

[] [] []u
u
gx

x
gv

v
g

δδδ ⋅




∂
∂

+⋅





∂
∂

=⋅





∂
∂

− (3.13)

Inverting and left multiplying by
1−







∂
∂

−
v
g will provide the variation in the nesting

force loop dependent variables. Also, by substituting [δu] from Equation 3.11 into

Equation 3.13 [δv] can now be expressed explicitly in terms of the variation in the

independent variables. This final expression for the variations in [δv] can be seen in

Equation 3.14.

[] []x
x
g

x
h

u
h

u
g

v
gv δδ ⋅



















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂

=
−− 11

 (3.14)

38

The sensitivities for how the variations in vi change with respect to variations in xi

are contained in the sensitivity matrix, S. The sensitivity matrices for the closed, open

and nesting force loops are given in Equation 3.15.

[]

[]

[]


















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂

=






∂
∂

⋅




∂
∂

⋅




∂
∂

+





∂
∂

=







∂
∂

⋅




∂
∂

−=

−−

−

−

x
g

x
h

u
h

u
g

v
gS

x
h

u
h

u
px

x
pS

x
h

u
hS

nfl

ol

cl

11

1

1

LoopsForceNesting

LoopsOpen

Loops Closed

δ (3.15)

Worst case and statistical variations in [δv] can be calculated using the same

equations as used for the DLM, namely equations 2.8 and 2.9.

3.3.3 STEP 8 – Perform Force Analysis

The deflections and their associated variation have now been identified. The

nesting forces can be analyzed using the data from the previous section. The general

form of the force equation when dealing with springs is found in equation 3.16 where K

is the spring constant in force/unit length and δ is the deflection in length.

iii KF δ⋅= where i = max, min (3.16)

This work will be using cantilevered beams to provide the nesting forces;

therefore, the force analysis requires the equation of K for a cantilevered beam. K for a

cantilevered beam can be obtained by recalling that the deflection for a cantilevered beam

39

is given by
EI

FL3

3
1

⋅=δ , where E is the Modulus of Elasticity and L is the length of the

beam from ground to the point of application of the deflecting force F. If the

cantilevered beam is a simple rectangular cross section, then I is given as
12

3wtI = , where

w is the width of the beam into the page and t is the thickness of the beam. Substituting

these equations into equation 3.16 and then rearranging and simplifying results in

equation 3.17. However, because the examples in this work all assume that the

dimensional variables in K also have manufacturing variation, the worst-case equation for

K is given in equation 3.18 where all subscripted variables have variation in them.

3

3

4 L
EtwK

⋅
⋅⋅

= (3.17)

3

3

4 j

ii
i L

Etw
K

⋅

⋅⋅
= where i = max, min and j = min, max (3.18)

The process for analyzing the nesting force now follows two different paths. For

worst-case analysis, the results of the variation in the deflection can be applied directly to

equations 3.16 and 3.18. For a statistical analysis, a new equation is required. For

statistical calculations a first order uncertainty analysis as described in [Figliola and

Beasley, 1995] and [Drake, 1999] will provide the desired data. The standard deviation

of the force can be calculated, where all the nominal values of the independent variables

and their associated standard deviations are known via equation 3.19.

2
1

1

22
1

22

2
2

2

1
1






















∂
∂

=




















∂
∂

++







∂
∂

+







∂
∂

= ∑
=

n

i
i

i
n

n
y x

f
x
f

x
f

x
f

σσσσσ Λ (3.19)

40

This analysis will provide the information needed to refine the design of the

assembly as well as the features that provide the nesting force by adjusting the nominal

values of the dimensions as well as the associated tolerances to achieve a robust design.

In the following section, this method is applied to the Pinned Block example from

Section 2.6.1

3.4 Example: Pinned Block Assembly with Applied Nesting Force

To illustrate the method presented previously in sections 3.2 and 3.3, the Pinned

Block Assembly example will be continued from Section 2.6.1.

STEP 1 – Perform Assembly Design Synthesis

The assembly is shown again in Figure 3.3.

STEP 2 – Determine Placement and Configuration of Nesting Force
Due to a design requirement that the Block always remain exactly constrained

relative to the Base, a nesting force will be applied to the Pinned Block Assembly to keep

it appropriately seated against the constraints. Therefore, a single active smart feature

will be used to apply a vertical nesting force in the position and orientation shown in

Figure 3.3.

The nesting force for the Pinned Block can be seen along with the new

independent variables that locate the feature that applies the nesting force and the

dependent variables, vi the nesting force loop introduces in Figure 3.4. Table 3.1 shows

the values for the two new independent variables for the nesting force and their

associated tolerances, standard deviations, and percentage variation for the tolerance from

the nominal value for the dimension. The active smart feature that supplies the nesting

force is connected to the Base. This feature is located by the dimensions x10 horizontally

and x11 vertically. To clarify the relationship of the dependent variables to the parts in the

assembly, as well as to clarify how and where the nesting force is applied, Figure 3.5

shows the Pinned Block perturbed by two instances of manufacturing variation. The new

41

independent variables associated with the nesting force remain at the values listed in

Table 3.1. However, the dependent nesting force variables, v1 and v2, change to

accommodate the two changes shown in x6, where x6 is set to 0.9375” and 1.250”

respectively.

Figure 3.3 - The Pinned Block Assembly with a stable nesting
force applied.

BLOCK
DRF

BASE
DRF

Fy

42

Figure 3.4 - Nesting force loop and associated variables for
the Pinned Block Assembly.

Table 3.1 - Nesting force independent variables and their
nominal values, tolerances, standard deviations, and

tolerance percent of nominal.

Inputs Nominal WC Std. Dev.
Percent of
Nominal

x10 2.250 δx10 0.068 0.023 3.0%
x11 2.125 δx11 0.064 0.021 3.0%

STEP 3 – Apply Part DRFs and Kinematic Joints

This step was discussed in Section 2.6.1 and is shown in Figure 2.8.

STEP 4 – Form Kinematic Assembly Vector Loops

The nesting force loop for the Pinned Block can be seen in Figure 3.4. Notice that

the loop includes the two locators for the nesting force feature. The loop also includes

the two dependent location dimensions, v1 and v2, with v2 representing the deflection of

the active smart feature and v1 representing the location of the nesting force with respect

to the Block’s DRF.

2.250 (x10)

2.125
 (x11)

1.6539 (v1) 0.1966
 (v2)

x8 v1

(u2)

v2

x10

x1

x4

x7

Nesting Force
Loop

x11

BLOCK
DRF

BASE
DRF

y

43

a) x6 perturbed by -0.1875”.

b) x6 perturbed by +0.125”.

Figure 3.5 – Relationship of dependent nesting force loop
dependent variables to assembly.

STEP 5 – Write Kinematic Equations

Kinematic equations are now derived for the nesting force loop. These equations

for the Pinned Block in terms of known angles are given in equation 3.20. Notice that

there are two equations and two unknowns.

() () ()
() () () 0cossincos

0sin8cossin

4282127211

12212710

=−⋅+⋅−⋅−+
=−⋅−⋅−⋅+
xuxuvuxv=xg

xuxxuvux=xg

y

x (3.20)

Nesting Force
Loop

1.6118 (v1)

2.250 (x10)

2.125
 (x11)

0.0899
 (v2)

Fy

1.2424° (u2)

0.938
 (x6)

Nesting Force
Loop

1.6861 (v1)

2.250 (x10)

2.125
 (x11)

0.2701
 (v2)Fy

5.0173°
 (u2)

1.250
 (x6)

44

STEP 6 – Perform Analysis of Closed and Open Loops

The analysis of the closed and open loops can be seen in Section 2.6.1.

STEP 7 – Perform Analysis of Nesting Force Loop

The matrices 





∂
∂

x
g , 




∂
∂
u
g , and 





∂
∂

v
g are now formed by differentiating the

g(x,u,v) equations with respect to the x, u, and v variables. These matrices as well as the
1−







∂
∂

v
g and the



















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂ −−

x
g

x
h

u
h

u
g

v
g 11

 matrices are evaluated in terms of

known values and are given in Table 3.2. A complete symbolic and numerical analysis

off the Pinned Block assembly can be found in Appendix A.

Using equations 2.8 and 2.9, the worst case and the statistical variations in the v

set of dependent variables are calculated. These calculations are performed using the

appropriate values from Table 2.1 and Table 3.1. These calculations are performed in a

manner similar to the GAP equations as shown at the end of Section 2.6.1. The results of

these calculations as well as the results from the Section 2.6.1 calculations are given in

Table 3.3.

45

Table 3.2 - Matrices for nesting force loop tolerances analysis for
the Pinned Block Assembly.







∂
∂

x
g Matrix:

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
gx -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0436 -0.0436 0.0000 1.0000 0.0000
gy 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.9990 0.9990 0.0000 0.0000 1.0000






∂
∂
u
g Matrix:







∂
∂

v
g Matrix:

1−







∂
∂

v
g Matrix:

 u1 u2 v1 v2

gx 0.0000 0.6966 -0.9990 0.0000 v1 -1.0010 0.0000
gy 0.0000 -1.6250 -0.0436 1.0000 v2 -0.0437 1.0000

 

















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂ −−

x
g

x
h

u
h

u
g

v
g 11

 Matrix:

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
v1 -0.9903 -0.0107 0.0000 -0.2444 0.0000 0.2444 0.0437 0.2009 0.0000 1.0010 0.0000
v2 -0.0183 -0.0253 0.0000 0.4198 0.0000 0.5802 1.0010 -0.4202 0.0000 0.0437 -1.0000

 Table 3.3 - Results from both traditional DLM analysis and the
new nesting force loop analysis.

Worst
Case

Standard
Deviation

Closed Loop Analysis

δu1 0.1438 0.0360

δu2 0.0377 0.0071
Open Loop Analysis

δGAPx 0.2889 0.0599

δGAPy 0.0989 0.0173
Nesting Force Loop Analysis

δv1 0.1138 0.0243

δv2 0.1563 0.0265

46

The design of a robust nesting force requires that there always be a deflection, v2

in the active smart feature. In the worst-case analysis it can be seen that the predicted

variation in v2 is less than the nominal value, i.e. 022 >− vv δ . This will result in all of

the assemblies having a positive nesting force.

To validate the results from the nesting force loop analysis, a 100,000 run Monte

Carlo simulation was performed under the assumption that all independent variables

follow a normal distribution with the respective standard deviation given in Table 2.1 and

Table 3.1. The data were then analyzed statistically and these results were compared to

the predicated results from the nesting force loop analysis. The results for this

comparison can be seen in Table 3.4. These results show less than 1% error between the

Monte Carlo and the DLM with the nesting force loop analysis.

Table 3.4 - DLM and nesting force loop analysis standard
deviations compared with a 100,000 run Monte Carlo simulation.

 DLM Monte Carlo Percent
Difference

Closed Loop:

δu1 0.036002 0.036062 0.1659%

δu2 0.007144 0.007152 0.1135%

Open Loop:

δGAPx 0.059923 0.060106 0.3040%

δGAPy 0.017250 0.017257 0.0393%

Nesting Force Loop:

δv1 0.024285 0.024334 0.2040%

δv2 0.026539 0.026540 0.0022%

STEP 8 – Force Analysis

The nominal dimensions of the cantilevered beam for the Pinned Block Assembly

along with their associated tolerances and standard deviations are shown in Table 3.5.

47

Table 3.5 - Cantilevered Beam dimensions. Values for nominal
sizes, tolerances, standard deviations, and tolerance percent

variation of nominal are shown.

Variable Nominal Worst
Case

Standard
Deviation

Percent
Variation

Ly 2.530 δLy 0.0760 0.0260 3.00%

wy 1.000 δwy 0.0300 0.0100 3.00%

ty 0.030 δty 0.0009 0.0003 3.00%

Ey 3.E+07 δEy 0.0000 0.0000 0.00%

Statistical analysis of the force equation requires equation 3.19. The results of the

statistical analysis of the nesting force for the Pinned Block and the associated

comparison to a 100,000 run Monte Carlo simulation can be seen Table 3.6. The 100,000

run Monte Carlo simulation was run with the independent variables varying according to

a normal distribution and their respective standard deviations.

The worst-case analysis was performed using equations 3.16 and 3.18. The

results for this analysis of the force can be found in Table 3.7. These results were

compared against a 500,000 run Monte Carlo simulation assuming a uniform distribution

for the independent variables. As stated previously, only the limits are considered, and if

the Monte Carlo limits are within the DLM predictions, then the comparison is

considered ‘Good’, if the DLM value under-predicts the value from the Monte Carlo then

the comparison is stated as ‘Low/High’ respectively for the High/Low limits.

The results given in Table 3.6 and Table 3.7 show the nesting force loop analysis

provides good predictions of both the standard deviation and the worst-case limits of the

nesting force.

48

Table 3.6 - Nesting force statistical analysis with respect to the
standard deviation compared with a 100,000 run Monte Carlo

simulation.

 Predicted
σ

Monte
Carlo σ

Percent
Difference

σFy 0.35563 0.3596 1.103%

Table 3.7 - Comparison of Worse Case analysis for the nesting
force using a 500,000 run Monte Carlo Simulation

DLM
High

MC
High

Compare
High

DLM
Low

MC
Low

Compare
Low

Fy 4.4860 4.8373 Low 0.4303 0.6150 Good
Good = DLM is provides a conservative estimate of the worst-case
condition.
Low/High = DLM under estimates the extent of the worst-case
condition.

A summary of the method now follows.

49

3.5 Summary of Method for Designing Nesting Forces

The method for the design of nesting forces using active smart features can be
summarized as follows:

1. Perform assembly design synthesis for the exactly constrained design.

2. Determine the placement and configuration of active smart features that
will provide the nesting force based on the mechanical stability of the
design.

3. Apply part DRFs and kinematic joints in the model representing the
contacts between parts including the nesting force feature(s).

4. Form kinematic loops according to the principles in the DLM. Also:

i. There must be one nesting force loop for each feature that
applies a nesting force.

ii. Nesting force loops must contain all of the independent
variables that locate the nesting force features.

5. Write the kinematic equations from the respective loops. These equations
will exist in the forms () 0,,, =uxh yx θ for closed loops, () GAPuxp yx =,,, θ
for open loops, and for the nesting forces loops, 0),,(,, =vuxg yx θ .

6. Analyze the closed and open loops by performing the DLM on the
() 0,,, =uxh yx θ and () GAPuxp yx =,,, θ equations according to the process

outlined in the DLM to find the respective sensitivities.

7. Analyze the nesting force loops by performing the DLM nesting force
loop analysis according to equation 3.14 on the),,(,, vuxg yx θ equations.

8. Analyze the forces according to statistical and/or worst case analysis to
determine the best tolerances for the independent variables that will
achieve design requirements and supply a robust design.

50

3.6 Summary

This chapter has explained an effective method for the analysis and design of

nesting forces in exactly constrained designs using active smart features. The method has

been illustrated using the Pinned Block Assembly. The method has also been compared

to a Monte Carlo simulation with good results. The following chapter will present case

studies that will further illustrate the method and verify its validity.

51

Chapter 4 Case Studies

4.1 Example 1 -- 1D Latch

The 1D Latch will be the first example used to illustrate the design of nesting

forces using active smart features. The graphical representation of this 1D Latch is

illustrated in Figure 4.1.

NESTING
FORCE

Y

X

PART S

PART T

PART U

PART V

x1

v1

x3

x2

Lx

Figure 4.1 - 1D Latch Assembly.

STEPS 1 & 2 – Perform Assembly Design Synthesis & nesting Force Placement
This example consists of a simple latch mechanism consisting of four parts. Part

S is the upper latch, Part T is the lower latch, Part U is a rigid connector between Parts T

and V, and finally Part V is a cantilevered beam acting as the active smart feature that

52

will provide a robust nesting force while absorbing the unwanted variation in the only

assembly dimension v1. The assembly dimension v1 represents the deflection the active

smart feature will experience to produce a nesting force to maintain the assembly as a

solid stack-up. This problem requires that Parts T & U are always in compression

between Parts S and V.

STEPS 3 & 4 – Apply Part DRFs and Kinematic Joints & Form Kinematic
Assembly Vector Loops

With the definition of the assembly complete and the location of the nesting force

determined, a vector loop is now required to indicate the geometric relationships between

parts and how forces are transmitted through the assembly. Since this is a 1D problem,

application of part DRFs and kinematic joints to the assembly will be skipped because it

strictly involves the one-dimensional lengths of the indicated features.

STEP 5 – Write Kinematic Equations
 The vector loop for the Latch is simple and results in a simple linear equation for

v1. This simple linear equation for the latch assembly is shown in equation 4.21.

Equation 4.22 represents the nesting force supplied by the cantilevered beam, Part V.

3211 xxxv −−= (4.21)

3

3

1 4 y

yy

L

Etw
vNF

⋅

⋅⋅
⋅= (4.22)

This Latch is a 1D problem; therefore the only dimensions and variations that are

of interest are along the x-axis. A one-dimensional problem also means that all matrix

equations are reduced to simple scalar equations. The nominal dimension values and

their associated tolerances for this example are given in Table 4.1.

53

Table 4.1 - Nominal part dimensions and associated tolerances
for the 1D Latch example.

Inputs Nominal WC σ
Percent of
Nominal

x1 (mm) 29.50 δx1 0.885 0.295 3.000%
x2 (mm) 10.00 δx2 0.300 0.100 3.000%
x3 (mm) 20.00 δx3 0.600 0.200 3.000%
ty (mm) 1.00 δty 0.030 0.010 3.000%

wy (mm) 10.00 δwy 0.300 0.100 3.000%
Ly (mm) 50.00 δLy 1.500 0.500 3.000%

STEP 6 & 7 – Perform Analysis of the Loop Equation

Before the DLM is applied to equation 4.21, equation 4.21 must be rewritten in

the form Σ = 0. This is done and the DLM is applied to the result, as given in equation

4.23. Because this is a linear equation, the predicted results from the DLM will be exact.

1
1

3
3

2
2

1
1

v
v
h

x
x
h

x
x
h

x
x
h

h xxxx
x δδδδδ

∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

= (4.23)

The result of this process can be rearranged for dv1 so there will now be an

explicit expression for dv1. This is found in equation 4.24.

3211v xxx δδδδ −−= (4.24)

For worst-case analysis, the absolute values of the sensitivities are taken, as

shown in equation 4.25.

785.1600.0300.0885.0
|1||1||1|

1

3211

=++=
⋅−+⋅−+⋅=

v
xxxv

δ
δδδδ

 (4.25)

54

The standard deviation can be predicted in a similar manner using equation 2.9.

This computation is given in equation 4.26.

() () () 0877.0034.01017.1079.01 222

2

3
3

2

2
2

2

1
1

1

1

=⋅+⋅+⋅=









∂
∂

+







∂
∂

+







∂
∂

=

v

v x
v

x
v

x
v

σ

σσσσ
 (4.26)

The result of equation 4.26 was compared to a 100,000 run Monte Carlo

simulation where the independent variables were allowed to follow normal distributions

with their respective standard deviations. The result of equation 4.25 was compared to a

500,000 run Monte Carlo simulation where the independent variables were allow to

follow uniform distributions. The results of these comparisons can be seen in Table 4.2

and Table 4.3.

Table 4.2 - Comparison of the predicted standard deviation to a
100,000 run Monte Carlo Simulation.

 Nominal DLM σ MC σ
Percent

Difference
v1 -0.5000 0.3702 0.3725 0.6236%

Table 4.3 - Comparison of the predicted worst-case to a 500,000
run Monte Carlo Simulation.

 Nominal
DLM
High

MC
High Compare

DLM
Low

MC
Low Compare

v1 0.5000 2.2850 2.2624 Good -1.2850 -1.2522 Good
Good = DLM is provides a conservative estimate of the worst-case condition.
Low/High = DLM under estimates the extent of the worst-case condition.

The comparisons found in Table 4.2 and Table 4.3 show good agreement between

the predicted results and those returned from the Monte Carlo simulations. However, the

55

result of equation 4.25 shows that there will be a problem with the nesting force.

Nominally, v1 equals 0.500 mm. The predicted worst-case Low for v1 equals

285.1785.15.6 −=− mm. This result indicates a potential for some assemblies to have a

nesting force of zero. A design requirement states there must always be a nesting force.

Therefore the tolerances of x1, x2, and x3 are reduced; the revised tolerances are shown in

Table 4.4. These new values result in a predicted Low of 0.1140 mm. This new Low

indicates there will always be a nesting force for the Latch.

Table 4.4 - Revised tolerances for the independent variables in
the Latch.

Inputs Nominal WC σ
Percent of
Nominal

x1 (mm) 29.50 δx1 0.236 0.079 0.800%
x2 (mm) 10.00 δx2 0.050 0.017 0.500%
x3 (mm) 20.00 δx3 0.100 0.034 0.500%

STEP 8 – Perform Force Analysis
The results from the DLM analysis can now be used to calculate both the worst-

case values and standard deviation for the nesting force from the values calculated for the

deflection, v1. This is done by applying the nominal values and the associated variations

in independent variables Ly, ty and wy to equations 3.16 and 3.18. The equations and

resulting values are given in Table 4.5. Also, in order to predict the standard deviation of

the force, the first order uncertainty analysis was performed by applying equation 3.19 to

equation 4.22. The computed values are summarized in Table 4.6.

56

Table 4.5: Limits of the force as returned by the worst-case
analysis.

Application of Equations 3.16 and 3.17 Equation Results

() ()
3

3

max)(4
)(

LL
EtthhvvF

δ
δδ

δ
−⋅

⋅+⋅+
⋅+= 4.4251 N

() ()
3

3

min)(4
)(

LL
EtthhvvF

δ
δδ

δ
+⋅

⋅−⋅−
⋅−= 0.3741 N

Comparisons were done against a Monte Carlo simulation for both the worst case

and the statistical analysis. For the comparison of the standard deviation, a 100,000 run

Monte Carlo simulation was performed. This simulation applied normal distributions to

the independent variables. The results are shown in Table 4.6.

Table 4.6 - Statistical comparison of DLM results with 100,000
run Monte Carlo Simulation.

 Nominal
Value

DLM
σ

Monte Carlo
σ

Percent
Difference

v1 -0.5000 0.087670 0.087433 0.2712%

Fx 2.0250 0.365870 0.365878 0.0023%

The worst case analysis was compared to a 500,000 run Monte Carlo simulation

where the independent variables were assumed to have a uniform distribution. The

results of this comparison are given in Table 4.7. These results for a one-dimensional

tolerance analysis show that the method accurately predicts both the worst case and

statistical variation in the deflection and the force.

57

Table 4.7 - Worst case analysis comparison with 500,000 run
Monte Carlo simulation.

 Nominal DLM
High

MC
High

Compare
High

DLM
Low

MC
Low

Compare
Low

v1 0.5000 0.8860 0.8823 Good 0.1140 0.1178 Good

Fx 2.0250 4.42509 4.2452 Good 0.37405 0.4408 Good

Good = DLM is provides a conservative estimate of the worst-case condition.
Low/High = DLM under estimates the extent of the worst-case condition.

 This example has illustrated the method for a 1D problem that requires a nesting

force. The design used a single cantilevered beam as an active smart feature. The

following example, an Exactly Constrained Block, will illustrate the method in two

dimensions, as well as explain the application of multiple nesting forces.

4.2 Exactly Constrained Block

STEP 1 – Perform Assembly Design Synthesis
The exactly constrained block assembly consists of a base that constrains a block

with three simple constraints. The assembly is illustrated in Figure 4.2. For this design,

each constraint can be considered part of the rigid base.

Figure 4.2 - Basic assembly for the exactly constrained block.

C2

C3

C1

58

STEP 2 – Determine Placement and Configuration of Nesting Force
It is clear for the exactly constrained block that a nesting force will be required to

keep the block seated against the constraints of the base. After a careful observation, the

location of the nesting force is determined to be in the location shown in Figure 4.3.

However, cantilevered beams have been chosen as the active smart features to provide

the nesting force, and they can only provide a force that is normal to the surface.

Therefore, two active smart features will be used to obtain the required nesting force

resultant. The placement of the cantilevered beams is illustrated in Figure 4.4.

Figure 4.3 - Exactly constrained block with applied nesting
force.

C2

C3

C1 Nesting
Force

59

Figure 4.4 - Placement of cantilevered beams used to provide the
required nesting force resultant.

With the general design done and the placement of the active smart features

determined, dimensions are applied to the exactly constrained block. The dimensions are

displayed in Figure 4.5. The dependent dimension u4 represents the rotation of the block

caused when the independent dimensions vary in size. The block is shown at its nominal

angle of 0°. The values of all independent variables and their associated worst-case

tolerances and standard deviations are given in Table 4.8.

C2

C3

C1

Cantilever
Spring

Cantilever
Spring

60

Figure 4.5 - Exactly constrained block with dimension labels
applied.

STEP 3 – Apply Part DRFs and Kinematic Joints
Now that the assembly is designed and dimensioned, the DLM model can be

developed. Model setup starts with establishment of Datum Reference Frames for each

part and the application of kinematic joints for the contacts between parts. For the

Exactly Constrained Block, the joints will be represented by the constraints. Both the

part DRFs and the kinematic joints are shown in Figure 4.5.

Fy

Fx

x1

x2

4

x6 x8

C2

C3

C1

x10

x9

DRF
BLOCK

DRF
BASE

x3

x5

x7

u1

u3

u2

u4

v1

v2

x12

x11

v4

v3

61

Table 4.8 - Nominal values for independent dimensions and their
respective tolerances and standard deviations.

 Nominal
Value ± δX σX

Percent
Variation

x1 2.625 δx1 0.079 0.027 3.00%

x2 10.000 δx2 0.3 0.1 3.00%

x3 13.000 δx3 0.39 0.13 3.00%

x4 9.750 δx4 0.293 0.098 3.00%

x5 9.000 δx5 0.27 0.09 3.00%

x6 3.000 δx6 0.09 0.03 3.00%

x7 1.000 δx7 0.03 0.01 3.00%

x8 5.250 δx8 0.158 0.053 3.00%

x9 8.000 δx9 0.24 0.08 3.00%

x10 12.000 δx10 0.36 0.12 3.00%

x11 1.290 δx11 0.039 0.013 3.00%

x12 1.200 δx12 0.036 0.012 3.00%

STEP 4 – Form Kinematic Assembly Vector Loops
Kinematic loops are established using the principles outlined in Sections 2.6 and

3.2.4.1. For the Block there are 3 joints and 2 parts; thus 1231 +−=+−= PJL = 2

loops; therefore, two closed kinematic vector loops are needed to establish the relative

position of the parts in the assembly. Since there are two nesting forces; according to the

principles outlined in Section 3.2.4.1, two nesting force loops are required. There are no

open loops for the Exactly Constrained Block assembly. The two closed vector loops are

illustrated in Figure 4.6 and the two nesting force loops can be seen in Figure 4.7.

62

Figure 4.6 - Closed loops and their associated dimensions for the
exactly constrained block.

C2

C3

C1

DRF
BLOCK

DRF
BASE

u1

x1

x7

x5

x4

u3

x9

CLOSED LOOP 1

C2

C3

C1

DRF
BLOCK

DRF
BASE

x4

u3

x10

u2

x3

x9

x5

x8

CLOSED LOOP 2

63

Figure 4.7 - Nesting force loops for the exactly constrained
block.

Note that there are four vi dependent variables for the two nesting force loops.

For each loop, one vi represents the deflection of the cantilevered beam. The vertical

C2

C3

C1

DRF
BLOCK

DRF
BASE

x6

x1

x7

u1

x11 NESTING FORCE
LOOP 1

v3

v1

C2

C3

C1

DRF
BLOCK

DRF
BASE

x4

x12

x7

x2

x5

x9

u3

NESTING FORCE
LOOP 2

v4

v2

64

nesting force, Fy, is the result of the deflection, v4. The horizontal nesting force, or Fx, is

the result of the deflection, v3.

STEP 5 – Write Kinematic Equations

Now that the kinematic vector loops have been formed, the equations for the

respective loops can be written. The equations for the Closed Loop 1 and the Nesting

Force Loop 1, evaluated in terms of known angles, can be seen in equations 4.27 and

4.28. The development of all vector loops and subsequent symbolic and numerical

analysis were performed using Maple© and can be found in Appendix B.

() () ()
() () () 0sincossin

0cossincos

543494171

443494111

=−⋅+⋅+⋅−=
=−⋅+⋅−⋅−=

xuuuxuuxh
xuuuxuuxh

y

x (4.27)

() ()
() () 0cossin

0sincos

4141671

414131111

=⋅+⋅−−=
=⋅−⋅−−−=

uvuuxxg
uvuuvxxg

y

x (4.28)

STEP 6 – Perform Analysis of the Closed and Open Loop Equations
The setup of the DLM model is now finished and the model can now be analyzed.

The 




∂
∂

x
h , 




∂
∂
u
h and the

1−






∂
∂
u
h matrices are created and each of these matrices is

given in both its symbolic and numerical representations in Appendix B. The values for

the closed loop sensitivity matrix, equal to 




∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

, are given in Table 4.9.

STEP 7 – Perform Analysis of the Nesting Force Loop Equations

With the 




∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

 matrix formed, the DLM is applied to the nesting force

loop equations. This requires the formation of the 





∂
∂

x
g , 




∂
∂
u
g , 





∂
∂

v
g and the

1−










∂

∂

v
g

matrices. As with the closed loop matrices, these can be found in Appendix B. The

65

sensitivities for the dependent variables in the nesting force loop analysis are shown in

Table 4.10.

Table 4.9 - Sensitivities for the closed loop dependent variables.






∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

Matrix:

 x1 x2 x3 x4 x5 x6
u1 -1.0000 0.0000 1.0000 0.0000 0.5965 0.0000
u2 0.0000 0.0000 0.0000 0.0000 1.4561 0.0000
u3 0.0000 0.0000 1.0000 -1.0000 -0.5263 0.0000
u4 0.0000 0.0000 0.0000 0.0000 -0.1404 0.0000

 x7 x8 x9 x10 x11 x12
 -0.5965 0.0000 -0.5965 -1.0000 0.0000 0.0000
 -0.4561 -1.0000 -1.4561 0.0000 0.0000 0.0000
 0.5263 0.0000 0.5263 -1.0000 0.0000 0.0000
 0.1404 0.0000 0.1404 0.0000 0.0000 0.0000

Table 4.10 - Sensitivity matrix for the nesting force loop
dependent variables.



















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂ −−

x
g

x
h

u
h

u
g

v
g 11

 Matrix:

 x1 x2 x3 x4 x5 x6
v1 0.000 0.000 0.000 0.000 0.228 1.000
v2 0.000 1.000 -1.000 0.000 -0.596 0.000
v3 0.000 0.000 1.000 0.000 0.316 0.000
v4 0.000 0.000 0.000 0.000 1.035 0.000

 x7 x8 x9 x10 x11 x12
 -1.228 0.000 -0.228 0.000 0.000 0.000
 0.596 0.000 0.596 1.000 0.000 0.000
 -0.316 0.000 -0.316 -1.000 -1.000 0.000
 -0.035 0.000 -1.035 0.000 0.000 -1.000

66

The results of the both the worst-case and statistical analysis for dependent

variables ui and vi using equations 2.8 and 2.9 are given in Table 4.11.

Table 4.11 - Results of the DLM closed loop and nesting force
loop analysis for the exactly constrained block assembly.

Nominal

Value
DLM
WC

DLM
σ

u1 1.625 δu1 1.151 0.1929
u2 4.250 δu2 0.914 0.1832
u3 8.750 δu3 1.327 0.2120
u4 0.000 δu4 0.076 0.0170
v1 2.000 δv1 0.243 0.0425
v2 9.000 δv2 1.372 0.2156
v3 0.290 δv3 0.960 0.1815
v4 0.200 δv4 0.565 0.1252

The results of both the closed and nesting force loop analysis can now be

compared against Monte Carlo simulations. The standard deviations are compared

against a 100,000 run simulation where the independent variables were allowed to

randomly follow their respective normal distributions. The worst-case limits were

compared to a 500,000 run simulation where the independent variables followed uniform

distributions. The results of these comparisons are seen in Table 4.12 and Table 4.13,

respectively.

67

Table 4.12 - Comparison of the predicted standard deviation
against a 100,000 run Monte Carlo simulation for the exactly

constrained block.

 DLM σ MC σ
Percent

Difference

u1 0.1929 0.1927 0.1120%

u2 0.1832 0.1825 0.3999%

u3 0.2120 0.2118 0.1109%

u4 0.0170 0.0169 0.2579%

v1 0.0425 0.0426 0.3721%

v2 0.2156 0.2158 0.0661%

v3 0.1815 0.1812 0.1307%

v4 0.1252 0.1249 0.2621%

Table 4.13 - Comparison of the predicted worst-case limits to a
500,000 run Monte Carlo Simulation for the exactly constrained

block.

DLM
High

MC
High Compare

DLM
Low

MC
Low Compare

u1 2.7761 1.6308 Good 0.4739 0.6111 Good
u2 5.1643 4.2537 Good 3.3357 3.3482 Good
u3 10.0772 8.7518 Good 7.4228 7.5190 Good
u4 0.0758 0.0744 Good -0.0758 -0.0817 High
v1 2.2432 1.9964 Good 1.7568 1.7021 High
v2 10.3721 9.0089 Good 7.6279 7.7570 Good
v3 1.2495 0.2954 Good -1.2495 -1.2552 High
v4 0.7649 0.2039 Good -0.7649 -0.8040 High
Good = DLM is provides a conservative estimate of the worst-case
condition.
Low/High = DLM under estimates the extent of the worst-case condition.

68

The results in Table 4.12 and Table 4.13 show overall good results with the

percent difference in the predicted standard deviation an average of 0.214%. The worst

case conservatively estimates the High values well, but falls slightly high on several of

the Low values. Even with the slight under-estimation of the low values for worst-case,

the results are still adequate for design purposes. However, there is a noticeable problem

with the predicted worst-case conditions where the possibility exists that some assemblies

will not have a nesting force because of a gap instead of a deflection. Therefore,

tolerances of some independent variables were adjusted. The revised tolerances on the

independent variables are given in Table 4.14. The new variations in the dependent

variables are given in Table 4.15.

Table 4.14 - The set of all independent variables
and associated tolerances. The revised tolerances

are highlighted.

 Nominal
Value ± δX σX

Percent
Variation

x1 2.625 δx1 0.079 0.027 3.00%

x2 10.000 δx2 0.300 0.100 3.00%

x3 13.000 δx3 0.065 0.022 0.50%

x4 9.750 δx4 0.293 0.098 3.00%

x5 9.000 δx5 0.045 0.015 0.50%

x6 3.000 δx6 0.090 0.030 3.00%

x7 1.000 δx7 0.010 0.004 1.00%

x8 5.250 δx8 0.158 0.053 3.00%

x9 8.000 δx9 0.080 0.027 1.00%

x10 12.000 δx10 0.060 0.020 0.50%

x11 1.290 δx11 0.007 0.003 0.50%

x12 1.200 δx12 0.012 0.004 1.00%

69

Table 4.15 - The revised variations for the
dependent variables for the exactly constrained

block.

Nominal

Value
DLM
WC

DLM
σ

u1 1.625 δu1 0.285 0.0443
u2 4.250 δu2 0.345 0.0695
u3 8.750 δu3 0.489 0.1037
u4 0.000 δu4 0.019 0.0044
v1 2.000 δv1 0.131 0.0312
v2 9.000 δv2 0.506 0.1060
v3 0.290 δv3 0.175 0.0315
v4 0.200 δv4 0.142 0.0322

STEP 8 – Perform Force Analysis

The results from the DLM show that the revised variations in the two deflections,

v3 and v4 are now less than the nominal value; therefore there will always be a force at the

desired locations. The force analysis can now be performed using these results.

Cantilevered beams are being used as active smart features to supply the required nesting

forces and their respective force output is given in equations 3.16 and 3.17. The

independent variables that describe these beams along with their worst-case tolerances

and standard deviations are given in Table 4.16.

70

Table 4.16 - Values for the independent variables and their
respective tolerances and standard deviations for the cantilevered

beams in the exactly constrained block assembly.

X-axis
Nominal

Value

Worst
Case
Value

Standard
Deviation

Values
Percent

Variation
Lx 1.980 δLx 0.0600 0.0200 3.00%
wx 1.000 δwx 0.0300 0.0100 3.00%
tx 0.025 δtx 0.0008 0.0003 3.00%
Ex 3.0E+07 δEx 0.0000 0.0000 0.00%

Y-axis
Ly 2.530 δLy 0.0760 0.0260 3.00%
wy 1.000 δwy 0.0300 0.0100 3.00%
ty 0.030 δty 0.0009 0.0003 3.00%
Ey 3.0E+07 δEy 0.0000 0.0000 0.00%

Calculation of the worst-case and statistical variations in the nesting forces can be

performed by applying the values from Table 4.11 for v3 and v4, and the respective x and

y values from Table 4.16, to equations 3.16, 3.18, and 3.19. The results of these

calculations are shown in Table 4.17. Also included in Table 4.17 are estimates for the

worst-case variation in the resultant force, Fr and the angle at which the resultant acts, θF.

These values are provided for design purposes, to verify the resultant force is as desired.

No statistical analysis was done for the resultant force.

71

Table 4.17 - Results of the DLM force analysis, including
estimates for the resultant force, Fr and the angle of the resultant

force, θ F.
 Nominal Maximum Minimum σ

Fx 4.3781 8.7089 1.4011 0.5196
Fy 2.5009 5.2704 0.5902 0.4178
Fr 5.0420 10.1795 1.5203 N.A.

θ F (r) 0.5190 0.5442 0.3987 N.A.
θ F (°) 29.74 31.18 22.84 N.A.

Again, two Monte Carlo simulations were performed to validate the results. For

the statistical analysis, a 100,000 run Monte Carlo simulation was performed; the results

are given in Table 4.18. For the worst-case analysis, a 500,000 run simulation was

performed. The worst-case values are compared in Table 4.19. The results show that the

DLM accurately estimates the standard deviations, with an average percent difference of

only 0.255% for all the dependent variables. The worst-case comparison shows some

error but for the DLM part of the analysis the under-estimation is small and could reliably

be used for the purposes of design.

72

Table 4.18 - Comparison of DLM to 100,000 run
Monte Carlo simulation for the standard deviation (σ)

for all the dependent variables for the Exactly
Constrained Block.

DLM

σ

Monte
Carlo

σ
Percent

Difference

u1 0.0443 0.0443 0.1819%
u2 0.0695 0.0696 0.1600%
u3 0.1037 0.1035 0.1688%
u4 0.0044 0.0044 0.1485%
v1 0.0312 0.0311 0.2853%
v2 0.1060 0.1064 0.3814%
v3 0.0315 0.0316 0.3533%
v4 0.0322 0.0322 0.0616%
Fx 0.5196 0.5224 0.5494%
Fy 0.4178 0.4188 0.2564%

Table 4.19 - Comparison of DLM to 500,000 run Monte
Carlo simulation for the worst-case conditions for all the

dependent variables for the exactly constrained block.

DLM
High

MC
High Compare

DLM
Low

MC
Low Compare

u1 1.9095 1.6254 Good 1.3405 1.3717 Good
u2 4.5946 4.2503 Good 3.9054 3.9072 Good
u3 9.2391 8.7500 Good 8.2609 8.2843 Good
u4 0.0189 0.0192 Low -0.0189 -0.0196 High
v1 2.1308 1.9997 Good 1.8692 1.8699 Good
v2 9.5055 9.0006 Good 8.4945 8.5225 Good
v3 0.4646 0.4570 Good 0.1154 0.1287 Good
v4 0.3417 0.3477 Low 0.0583 0.0556 High
Fx 8.7089 4.3958 Good 1.4011 1.7623 Good
Fy 5.2704 2.5118 Good 0.5902 0.6398 Good
Good = DLM is provides a conservative estimate of the worst-case
condition.
Low/High = DLM under estimates the extent of the worst-case
condition.

73

4.3 Wedge and Cylinder Example

STEP 1 – Perform Assembly Design Synthesis
The Wedge and Cylinder assembly consists of a Base, Cylinder and a Wedge as

shown below. The Wedge is intended to keep the cylinder firmly nested in the corner of

the base as illustrated in Figure 4.8.

Figure 4.8 - Wedge and Cylinder assembly.

STEP 2 – Determine Placement and Configuration of Nesting Force
The placement of the nesting force in the assembly is given in Figure 4.9. It

should be noted that if just a horizontal force is applied, the moment created by the

Cylinder on the Wedge could un-seat the Wedge from the rear constraint. Therefore, this

assembly will also require a downward nesting force that will resist the moment

BASE

WEDGE

CYLINDER

74

generated by the cylinder. The desired resultant nesting force as well as the two nesting

forces that will be used to generate the resultant are displayed in Figure 4.9.

Figure 4.9 – Nesting forces applied to the Wedge assembly to
obtain the desired resultant nesting force.

One possible configuration of the base, with the cantilevered beams molded into

it, is shown in Figure 4.10. With the active features positioned, the assembly is now

dimensioned and labeled for the DLM setup. This can be seen in Figure 4.11. The

dimension, u6, represents the rotation the block may experience due to variations in x2

and x4. Nominally, u6 is 0 radians. The dependent dimensions, v1 and v4, represent the

deflections of the active smart features in the x and y directions, respectively. The values

for all the independent dimensions are shown in Table 4.20.

Fy

Fx

BASE

WEDGE

CYLINDER

Fr

75

Figure 4.10 - Wedge assembly with cantilevered beams
providing the required nesting forces.

Figure 4.11 - Wedge assembly with dimensions and their
respective labels.

BASE

WEDGE

CYLINDER

x13

x6

x14

8

u2

x3

x9

x11u4

u6

x7

x2

x1

u3

u1

x10

u5

x12

v2

x5

x4

v3

+x14

Fy

Fx

v1

v4

u6

76

Table 4.20 - Nominal values and the associated worst-case
tolerances and standard deviations for the Wedge Assembly.

 Nominal
Value ± δX σX

Percent
Variation

x1 2.500 δx1 0.075 0.025 3.00%

x2 0.500 δx2 0.015 0.005 3.00%

x3 5.000 δx3 0.150 0.050 3.00%

x4 0.500 δx4 0.015 0.005 3.00%

x5 1.750 δx5 0.053 0.018 3.00%

x6 2.400 δx6 0.072 0.024 3.00%

x7 4.000 δx7 0.120 0.040 3.00%

x8 3.800 δx8 0.114 0.038 3.00%

x9 5.620 δx9 0.169 0.057 3.00%

x10 1.000 δx10 0.030 0.010 3.00%

x11 5.100 δx11 0.153 0.051 3.00%

x12 2.000 δx12 0.060 0.020 3.00%

x13 1.125 δx13 0.034 0.012 3.00%

x14 0.349 δx14 0.011 0.004 3.00%

STEP 3 – Apply Part DRFs and Kinematic Joints
Part DRFs and kinematic joints are now applied to the model and can be seen in

Figure 4.12.

77

Figure 4.12 - Part DRFs and kinematic joints applied to the
Wedge Assembly.

STEP 4 – Form Kinematic Assembly Vector Loops
Kinematic loops are now applied to the model. This assembly has two parts, five

joints, and two nesting forces; therefore there will be 3 closed loops and two nesting force

loops. The first two closed loops are illustrated in Figure 4.13. The third closed loop can

be seen in Figure 4.14. The two nesting force loops are displayed in Figure 4.15. The

nesting force Fx is the result of the deflection v1, and the nesting force Fy is the result of

the deflection v4.

DRF
BASE

DRF
WEDGE

DRF
CYLINDER

Fy

Fx

78

Figure 4.13 - Closed loops 1 and 2 for the Wedge Assembly.

CLOSED LOOP 1

DRF
BASE

DRF
WEDGE

u1

u2

DRF
CYLINDER

x1 x2

x3

x4

Fy

Fx

u4

DRF
BASE

u3 CLOSED LOOP 2
DRF
WEDGEu1

DRF
CYLINDER

x1 x2

x10

x13

x13
Fy

Fx

79

Figure 4.14 - Closed loop 3 for the Wedge Assembly.

STEP 5 – Write Kinematic Equations
Now that the kinematic vector loops have been formed, the equations for the

respective loops can be written. The equations for the Closed Loop 1 and the Nesting

Force Loop 1, evaluated in terms of known angles, are given in equations 4.29 and 4.30.

The development of all vector loops and subsequent symbolic and numerical analysis can

be found in Appendix C.

() ()
() () 0cossin

0coscos

2616241

1616231

=−⋅+⋅−=
=−⋅+⋅−=

xuuuuxh
xuuuuxh

y

x 4.29

() () ()
() () () 0sincossin

0cossincos

5261162611

19161162611

=+−⋅−⋅−⋅=
=++−⋅−⋅+⋅=

xxuxuvuug
vxxuxuvuug

x

x 4.30

CLOSED LOOP 3

DRF
BASE

u3

DRF
WEDGE

u5

u2

DRF
CYLINDER

x13

x13x7

x10

x3

x4

Fy

Fx

80

Figure 4.15 - Nesting force loops 1 and 2 for the Wedge
Assembly.

DRF
BASE

DRF
WEDGE

u1

v2

DRF
CYLINDER

v1

x1 x2

x5

x9

x11

Fy

Fx
NESTING FORCE

LOOP 1

DRF
BASE

DRF
WEDGE

u1

v3

DRF
CYLINDER

NESTING FORCE
LOOP 2

x1 x2

x8

x11

x6

x12
v4

Fy

Fx

81

STEP 6 – Perform Analysis of the Closed and Open Loop Equations

The setup of the DLM model is now finished, and the DLM is now performed on

the closed loop equations that have been formed. The 




∂
∂

x
h , 




∂
∂
u
h and the

1−






∂
∂
u
h are

created and each of these matrices can be seen in both their symbolic and numerical

representations in Appendix C. The values for the closed loop sensitivity matrix or






∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

 matrix are given in Table 4.21.

Table 4.21 - Closed loop sensitivity matrix for the Wedge
Assembly.






∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

Matrix:

 x1 x2 x3 x4 x5 x6 x7
u1 1.0000 -3.3086 0.0000 0.5611 0.0000 0.0000 2.7475
u2 0.0000 -3.3086 1.0000 0.5611 0.0000 0.0000 2.7475
u3 0.0000 -4.5319 0.0000 1.6081 0.0000 0.0000 2.9238
u4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
u5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
u6 0.0000 -0.4000 0.0000 0.4000 0.0000 0.0000 0.0000

 x8 x9 x10 x11 x12 x13 x14
 0.0000 0.0000 -2.7475 0.0000 0.0000 -6.6713 -2.7171
 0.0000 0.0000 -2.7475 0.0000 0.0000 -6.6713 -2.7171
 0.0000 0.0000 -2.9238 0.0000 0.0000 -5.6713 -1.4283
 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000
 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

82

STEP 7 – Perform Analysis of the Nesting Force Loop Equations

With the 




∂
∂

⋅




∂
∂

−
−

x
h

u
h 1

 matrix formed, the DLM is applied to the nesting force

loop equations. This requires the formation of the 





∂
∂

x
g , 




∂
∂
u
g , 





∂
∂

v
g and the

1−










∂

∂

v
g

matrices. As with the closed loop matrices, these are shown in Appendix C. The

sensitivities for the dependent variables in the nesting force loop analysis are given in

Table 4.22.

Table 4.22 - Nesting force loop sensitivities for the Wedge
Assembly.



















∂
∂

−




∂
∂

⋅




∂
∂

⋅




∂
∂

⋅





∂
∂ −−

x
g

x
h

u
h

u
g

v
g 11

 Matrix:

 x1 x2 x3 x4 x5 x6 x7
v1 0.0000 3.8086 0.0000 -1.0611 0.0000 0.0000 -2.7475
v2 0.0000 0.2946 0.0000 -1.2946 1.0000 0.0000 0.0000
v3 0.0000 4.1086 0.0000 -1.3611 0.0000 0.0000 -2.7475
v4 0.0000 -0.4800 0.0000 -0.5200 0.0000 1.0000 0.0000

 x8 x9 x10 x11 x12 x13 x14
 0.0000 -1.0000 2.7475 1.0000 0.0000 6.6713 2.7171
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 -1.0000 0.0000 2.7475 1.0000 0.0000 6.6713 2.7171
 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000

The results of the both the worst-case and statistical analysis using equations 2.8

and 2.9 are given in Table 4.23.

83

Table 4.23 - Results of the DLM closed loop and nesting force
loop analysis for the Wedge Assembly.

Nominal

Value
DLM
WC

DLM
σ

u1 1.8635 δu1 0.8019 0.1424
u2 4.3635 δu2 0.8769 0.1488
u3 0.9293 δu3 0.7392 0.1406
u4 2.8750 δu4 0.1540 0.0418
u5 1.1250 δu5 0.0340 0.0120
u6 0.0000 δu6 0.0120 0.0028
v1 0.1165 δv1 1.0639 0.1600
v2 1.2500 δv2 0.0768 0.0192
v3 1.9365 δv3 1.0179 0.1545
v4 0.1000 δv4 0.1470 0.0314

The results of both the closed and nesting force loop analysis for the Wedge

assembly can now be validated against Monte Carlo simulations. As with the previous

examples in this work, the standard deviations are compared against a 100,000 run

simulation where the independent variables were allowed to randomly follow their

respective normal distributions. The worst-case limits were compared to a 500,000 run

simulation where the independent variables followed uniform distributions. The results

of these comparisons are seen in Table 4.24 and Table 4.25, respectively.

84

Table 4.24 - Comparison of the predicted standard
deviation to a 100,000 run Monte Carlo simulation for

the Wedge assembly.

 DLM σ MC σ
Percent

Difference

u1 0.1424 0.1419 0.3082%

u2 0.1488 0.1484 0.2374%

u3 0.1406 0.1400 0.4748%

u4 0.0418 0.0415 0.5962%

u5 0.0120 0.0120 0.0933%

u6 0.0028 0.0028 0.3387%

v1 0.1600 0.1601 0.0834%

v2 0.0192 0.0192 0.0365%

v3 0.1545 0.1543 0.1164%

v4 0.0314 0.0315 0.1407%

The comparisons contained in Table 4.24 and Table 4.25 both show good

agreement between the predicted values and the values returned by the Monte Carlo

simulations. There are a couple of dependent variables that are slightly under-predicted

but the results are close and should be acceptable for design purposes. Again, because of

the relatively large 3.0% variation in the worst-case tolerances, the resulting variation in

both the deflections can result in gaps in at the nesting force features. Therefore, the

variations in the independent variables are again adjusted with respect to the sensitivity

matrix for the nesting force loop variables. The resulting changes to the set can be seen

in Table 4.27.

85

Table 4.25 – Comparison of predicted worst-case values with
500,000 run Monte Carlo simulation for the Wedge assembly.

DLM
High

MC
High Compare

DLM
Low

MC
Low Compare

u1 2.6654 2.6099 Good 1.0616 1.1375 Good

u2 5.2404 5.1715 Good 3.4866 3.5624 Good

u3 1.6685 1.6460 Good 0.1901 0.2336 Good

u4 3.0290 3.0285 Good 2.7210 2.7212 Good

u5 1.1590 1.1590 Good 1.0910 1.0910 Good

u6 0.0120 0.0128 Low -0.0120 -0.0127 High

v1 1.1804 1.0766 Good -0.9474 -0.8664 Good

v2 1.3268 1.3332 Low 1.1732 1.1687 High

v3 2.9544 2.8333 Good 0.9186 1.0338 Good

v4 0.2470 0.2420 Good -0.0470 -0.0419 Good

The revised tolerances result in changes to the variations in the dependent

variables for the Wedge assembly. For brevity, only the changes in the nesting force loop

variables are given in Table 4.26. These results can now be used for the force analysis.

Table 4.26 – Revised results of the DLM nesting force loop
analysis for the Wedge Assembly.

Nominal

Value
DLM
WC

DLM
σ

v1 0.1165 δv1 0.0923 0.0127
v2 1.2500 δv2 0.0578 0.0180
v3 1.9365 δv3 0.1991 0.0400
v4 0.1000 δv4 0.0670 0.0161

86

Table 4.27 – Revised tolerances and standard deviations for the
Wedge Assembly.

 Nominal
Value ± δX σX

Percent
Variation

x1 2.500 δx1 0.075 0.025 3.00%

x2 0.500 δx2 0.003 0.001 0.50%

x3 5.000 δx3 0.150 0.050 3.00%

x4 0.500 δx4 0.003 0.001 0.50%

x5 1.750 δx5 0.053 0.018 3.00%

x6 2.400 δx6 0.024 0.008 1.00%

x7 4.000 δx7 0.006 0.002 0.15%

x8 3.800 δx8 0.114 0.038 3.00%

x9 5.620 δx9 0.009 0.003 0.15%

x10 1.000 δx10 0.005 0.002 0.50%

x11 5.100 δx11 0.013 0.005 0.25%

x12 2.000 δx12 0.040 0.014 2.00%

x13 1.125 δx13 0.003 0.001 0.25%

x14 0.349 δx14 0.002 0.001 0.50%

STEP 8 – Force Analysis

With the revised results from the DLM, it can be seen that the variations in the

two deflections, v1 and v4 are less than the nominal value; therefore there will always be a

force at the desired locations. Now the force analysis can be performed using these

results. The independent variables for each cantilevered beam along with their worst-

case tolerances and respective standard deviations are presented in Table 4.16.

87

Table 4.28 - Values for the independent variables and their
respective tolerances and standard deviations for the cantilevered

beams in the Wedge assembly.

X-axis
Nominal

Value

Worst
Case
Value

Standard
Deviation

Values
Percent

Variation
Lx 2.000 δLx 0.0600 0.0200 3.0%
wx 1.000 δwx 0.0300 0.0100 3.0%
tx 0.025 δtx 0.0008 0.0003 3.0%
Ex 3E+07 δEx 0.0000 0.0000 0.0%

Y-axis
Ly 2.500 δLy 0.0750 0.0250 3.0%
wy 1.000 δwy 0.0300 0.0100 3.0%
ty 0.030 δty 0.0009 0.0003 3.0%
Ey 3E+07 δEy 0.0000 0.0000 0.0%

Calculating both the worst-case and statistical variations in the nesting forces

requires the use of equations 3.16, 3.18, and 3.19. Applying the values from Table 4.26

for v1 and v4, and the respective x and y values from Table 4.28 to these equations results

in the values given in Table 4.29. Also included in these results are estimates for the

worst-case variation in the resultant force, Fr and the angle at which the resultant acts, θ

F. These values are provided to verify the resultant force is as desired. No statistical

analysis was done for the resultant force or resultant angle.

Table 4.29 - Results of the DLM force analysis for the Wedge
Assembly, including estimates for the resultant force, Fr and the

angle of the resultant force, Fθ.
 Nominal Maximum Minimum σ

Fx 1.7065 5.7340 0.2856 0.2035
Fy 1.2960 2.6690 0.3465 0.2167
Fr 2.1429 6.3248 0.4491 0.2084

θ F (r) 3.791 4.606 3.202 N.A.
θ F (°) 217.2 263.9 183.5 N.A.

88

Two Monte Carlo simulations were performed to validate the results. For the

statistical analysis, a 100,000 run Monte Carlo simulation was performed and the results

were compared against those returned by the DLM. This comparison is given in Table

4.30. For the worst-case analysis, a 500,000 run Monte Carlo was performed and the

worst-case values are compared in Table 4.31. The results found in Table 4.30 and in

Table 4.31 show that the DLM accurately estimates both the worst-case conditions as

well as the standard deviations for all the dependent variables.

Table 4.30 - Comparison of DLM to 100,000 run Monte Carlo
simulation for the standard deviation for all the dependent

variables for the Wedge Assembly.

DLM

σ

Monte
Carlo

σ
Percent

Difference
u1 0.0274 0.0275 0.4093%
u2 0.0512 0.0513 0.1033%
u3 0.0112 0.0112 0.0700%
u4 0.0022 0.0022 0.2221%
u5 0.0010 0.0010 0.2647%
u6 0.0006 0.0006 0.2276%
v1 0.0127 0.0127 0.0230%
v2 0.0180 0.0181 0.0215%
v3 0.0400 0.0401 0.1842%
v4 0.0161 0.0162 0.1261%
Fx 0.2035 0.2034 0.0673%
Fy 0.2167 0.2173 0.2930%

89

Table 4.31 - Comparison of DLM to 500,000 run Monte Carlo
simulation for the worst-case conditions for all the dependent

variables for the Wedge Assembly.

DLM
High

Monte
Carlo
High Compare

DLM
Low

Monte
Carlo
Low Compare

u1 2.0058 1.9957 Good 1.7212 1.7296 Good
u2 4.5808 4.5633 Good 4.1462 4.1599 Good
u3 0.9998 0.9929 Good 0.8589 0.8642 Good
u4 2.8840 2.8840 Good 2.8660 2.8660 Good
u5 1.1280 1.1280 Good 1.1220 1.1220 Good
u6 0.0024 0.0026 Low -0.0024 -0.0026 High
v1 0.2088 0.1939 Good 0.0242 0.0385 Good
v2 1.30777 1.30785 Low 1.19223 1.19216 High
v3 2.1356 2.1144 Good 1.7374 1.7571 Good
v4 0.1670 0.1662 Good 0.0330 0.0340 Good
Fx 5.7340 3.2791 Good 0.2856 0.5159 Good
Fy 2.6690 2.5766 Good 0.3465 0.3886 Good
Good = DLM provides a conservative estimate of the worst-case
condition.
Low/High = DLM under estimates the extent of the worst-case
condition.

91

Chapter 5 Conclusions and Recommendations

5.1 Contributions and Conclusions

The research presented in this work provides a method that will aid the design of

exactly constrained assemblies. Specifically, this work has presented a method for the

analysis and design of nesting forces. The method has specifically addressed the

advantages of using active smart features to provide nesting forces. Due to the nature of

the analysis, the resulting nesting forces will be robust to variations in the assembly

arising from manufacturing, operational, and environmental conditions.

The method presented has illustrated the use of nesting force loops in the DLM

analysis. Previous to this work, the only loops required in DLM analysis were the

traditional closed and open loops. The closed loops allowed for the solution of the

variation in the dependent dimensions that position the parts of the assembly with respect

to each other. The open loops were used for characterizing the variation in other features

of the assembly not contained in the closed loops. This method has shown that there are

times when an assembly may need additional closed loops that can characterize the

variation in features not otherwise located by either the traditional closed or open loops.

These new closed loops have been labeled nesting force loops.

Four examples have been presented as a means of illustrating the process for

designing robust nesting forces and for validating the method. Each example was

presented in a step-by-step manner so the reader can understand the process of applying

the method to assemblies. The results obtained for each of these examples have been

verified by comparing both statistical and worst-case results to their respective Monte

Carlo simulations. These comparisons have shown that though a linearized estimation is

92

used, the method accurately predicts how the variation of independent variables

propagates to the variation in the dependent variables. Using this information designers

can now refine their designs to provide robust nesting forces where needed.

This research has also further validated the effectiveness of smart assemblies and

their correlation to exact constraint design. Specifically, active smart features have been

shown to be very effective in providing nesting forces in exactly constrained assemblies.

A key element comes in the form of providing a nesting force while maintaining an

active DoF in the direction of the force so that the advantages of the exactly constrained

design are preserved.

5.2 Recommendations

This work has identified a method that allows for the design of robust nesting

forces for exactly constrained assemblies. There are several areas that could be explored

to further the work in exactly constrained assemblies and nesting forces. The

recommendations that have arisen from this research are as follows:

• The assumption that all parts in the assembly are rigid simplified the
analysis and made the development of this method possible. However,
this assumption limits the applicability of the method to all assemblies. It
is therefore recommended that further work explore assemblies made up
of combinations of rigid and flexible parts.

• This work, as well as the preceding work in smart assemblies, is limited to
two-dimensional analysis. Further work is needed to extend both methods
into three dimensions for greater application in real assemblies.

• This work relied on observation and intuition for the placement of nesting
forces. It is recognized that placement of nesting forces by observation is
an over-simplification of a potentially complicated process. It is
recommended that a mathematical method be developed for identifying
the location of nesting forces with respect to the robust stability of the
design.

93

Bibliography

Blanding, D. L., Exact Constraint: Machine Design Using Kinematic Principles, ASME
Press, 1999.

Chase, K. W. “Chapter 13--Multi-Dimensional Tolerance Analysis” In Dimensioning &
Tolerancing Handbook, McGraw-Hill, 1999.

Chase, K. W. and Parkinson, A. R., “A survey of research in the application of tolerance
analysis to the design of mechanical assemblies,” Research in Engineering
Design 3(1), 23-27, 1991.

Chase, K. W.; Gao, J.; Magleby, S. P. “General 2-D tolerance analysis of mechanical
assemblies with small kinematic adjustments,” Journal of Design and
Manufacturing, Volume 5, 1995, pp. 263-274.

Chase, K. W. and Law, M. J. “Chapter 1 – One-Way Clutch” In AUTOCATS –
Computer-Aided Tolerancing System Verification Manual PC Ver 1.1, Brigham
Young University, 1994.

Chen, W., J. K. Allen, K. L. Tsui, and F. Mistree, “A Procedure for Robust Design:
Minimizing Variations Caused by Noise Factors and Control Factors,” J. of
Mechanical Design, 118:478-485, Dec. 1996.

Craig, M., “Using Dimensional Management,” Mechanical Engineering, September 1995

Cvetko, R. “Characterization of Assembly Variation Analysis Methods,” M.S. Thesis,
Brigham Young University, Provo, Utah, 1997.

Drake, P. “Chapter 9--Traditional Approaches to Analyzing Mechanical Tolerance
Stacks” In Dimensioning & Tolerancing Handbook, McGraw-Hill, 1999.

Downey, K. D. “A Formal Methodology for Smart Assembly Design,” M.S. Thesis,
Brigham Young University, Provo, Utah, 2001.

Downey, K. D.; Parkinson, A. R.; Chase, K. W. “Smart Assemblies for Robust Design:
A Progress Report” Proceeding of the ASME Design Engineering Technical
Conferences, DET2002/DAC-34135, September 29-October 2, Montreal Canada,
2002

94

Fog, A. “Pseudo random number generators - uniform and non-uniform distributions,”
World Wide Web Address http://www.agner.org/

Figliola, R. S.; Beasley, D. E. “Theory and Design for Mechanical Measurements,” John
Wiley & Sons, Inc, 1995, 7th ed.

Gao, J.; Chase, K. W.; Magleby, S. P. “Comparison of Assembly Tolerance Analysis by
the Direct Linearization and Modified Monte Carlo Simulation Methods,”
Proceeding of the ASME Design Engineering Technical Conferences, September
17-20, Boston MA, pp. 353-360, 1995

Gentle, J. E. “Random Number Generation and Monte Carlo Methods,” Springer-Verlag,
1998

Hale, L. C. “Principles and Techniques for Designing Precision Machines,” Ph.D.
Thesis, Massachusetts Institute of Technology, 1999

Kamm, L. J., Designing Cost-Efficient Mechanisms: Minimum Constraint Design,
Design with Commercial Components, and Topics in Design Engineering,
McGraw-Hill, 1990, reprinted by Society of Automotive Engineers, 1993.

Kriegel, J. M., “Exact Constraint Design,” In ASME International ME Congress and
Exhibition (Winter Annual Meeting) Paper 94-WA/DE-18, November 1994.

Lapin, L. L., ”Modern Engineering Statistics,” Wadsworth Publishing Company, 1997

Lee, D. J., and A. C. Thornton. “Key Characteristics for Agile Product development and
Manufacturing.” Agility Forum 4th Annual Conference Proceedings, 1995

Lee, D. J., and A. C. Thornton. “The Identification and Use of Key Characteristics in the
Product Development Process,” Proceedings of the 1996 ASME Design Theory
and Methodology Conf., August 18-22, Irivine CA, 1996

Otto, K. N. and E. K. Antonsson, “Extensions to the Taguchi Method of Product Design,”
Journal of Mechanical Design, Vol. 115: 5, Mar. 1993

Parkinson, A. R. and Chase, K. W. “An Introduction to Adaptive Robust Design for
Mechanical Assemblies,” Proceeding of the 2002 ASME Design Engineering
Technical Conf., September 10-13, 2000

Parkinson, A. R., “Robust Mechanical Design Using Engineering Models,” Journal of
Mechanical Design, 117: 48-54, June 1995

Peace, G., Taguchi Methods: A Hands On Approach, Addison Wesley, 1993.

http://www.agner.org/

95

Randall, R. “Chapter 10—Statistical Background and Concepts” In Dimensioning &
Tolerancing Handbook, McGraw-Hill, 1999.

Skakoon, J. G., “Detailed Mechanical Design: A Practical Guide,” ASME Press, New
York, 2000

Taguchi, G; Chowdhury, S.; Taguchi, S. “Robust Engineering”, Mcgraw-Hill, 1999

Taguchi, G., E. Elsaed, and T. Hsiang, Quality Engineering in Production Systems,
McGraw-Hill, 1989.

Thornton, A. C. “Using Key Characteristics to Balance Cost and Quality During Product
Development.” Proceedings of the 1997 ASME Design Theory and Methodology
Conference, Sacramento, CA, Sep 14-17, 1997

Yu, J. C. and K. Ishii, “Robust Design by Matching the Design with Manufacturing
Variation Patterns,” Proceedings 20th ASME Design Automation Conf., DE-Vol.
69-2, p.7, Minneapolis, MN, 1994

97

Appendix A
Maple© Worksheets for Pinned Block Assembly

Maple© was used to form both the explicit equations and to perform the DLM on

the Pinned Block Assembly. The following two sections contain the applicable Maple©

worksheets that were used for this task.

A.1 Explicit Equation Development

Formation of the explicit functions for the dependent variables for the
Pinned Block Assembly:
> restart;
Use the codegen package for exporting C code for the Monte Carlo simulation program.
> with(codegen):
Warning, the protected name MathML has been redefined and unprotected

Kinematic equations for Closed Loop 1
>
CL1[x]:=xx2*cos(0)+xx6*cos(pi/2)+uu1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*
cos(3*pi/2)+xx1*cos(pi);
CL1[y]:=xx2*sin(0)+xx6*sin(pi/2)+uu1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*
sin(3*pi/2)+xx1*sin(pi);

 := CL1x + + + + + xx2 xx6 





cos π

2 uu1 ()cos + π uu2 xx8 





cos +

π
2 uu2 xx4 






cos 3 π

2 xx1 ()cos π

 := CL1y + + + + xx6 





sin π

2 uu1 ()sin + π uu2 xx8 





sin +

π
2 uu2 xx4 






sin 3 π

2 xx1 ()sin π

Kinematic equations for Open Loop 1
> OL1[x]:=xx5*cos(-
pi/2)+xx3*cos(pi)+xx1*cos(0)+xx4*cos(pi/2)+xx8*cos(3*pi/2+uu2)+xx9*cos(
uu2);
OL1[y]:=xx5*sin(-
pi/2)+xx3*sin(pi)+xx1*sin(0)+xx4*sin(pi/2)+xx8*sin(3*pi/2+uu2)+xx9*sin(
uu2);

 := OL1 x + + + + + xx5 





cos π

2 xx3 ()cos π xx1 xx4 





cos π

2 xx8 





cos +

3 π
2 uu2 xx9 ()cos uu2

 := OL1 y − + + + + xx5 





sin π

2 xx3 ()sin π xx4 





sin π

2 xx8 





sin +

3 π
2 uu2 xx9 ()sin uu2

Kinematic equations for Nesting Force Loop 1:

98

>
NFL1[x]:=xx10*cos(0)+xx11*cos(pi/2)+vv2*cos(pi/2)+xx7*cos(3*pi/2+uu2)+v
v1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*cos(3*pi/2)+xx1*cos(pi);
NFL1[y]:=xx10*sin(0)+xx11*sin(pi/2)+vv2*sin(pi/2)+xx7*sin(3*pi/2+uu2)+v
v1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*sin(3*pi/2)+xx1*sin(pi);
NFL1 x xx10 xx11 






cos π

2 vv2 





cos π

2 xx7 





cos +

3 π
2 uu2 vv1 ()cos + π uu2 + + + + :=

xx8 





cos +

π
2 uu2 xx4 






cos 3 π

2 xx1 ()cos π + + +

NFL1 y xx11 





sin π

2 vv2 





sin π

2 xx7 





sin +

3 π
2 uu2 vv1 ()sin + π uu2 xx8 






sin +

π
2 uu2 + + + + :=

xx4 





sin 3 π

2 xx1 ()sin π + +

Evaluate loop equations in terms of known angles:
Also export the GAP equations for use in Monte Carlo simulation.
> CL1[x]:=eval(subs(pi=Pi,CL1[x]));
CL1[y]:=eval(subs(pi=Pi,CL1[y]));
GAPx:=eval(subs(pi=Pi,OL1[x]));
C(GAPx);
GAPy:=eval(subs(pi=Pi,OL1[y]));
C(GAPy);
NFL1[x]:=eval(subs(pi=Pi,NFL1[x]));
NFL1[y]:=eval(subs(pi=Pi,NFL1[y]));

 := CL1 x − − − xx2 uu1 ()cos uu2 xx8 ()sin uu2 xx1

 := CL1 y − + − xx6 uu1 ()sin uu2 xx8 ()cos uu2 xx4

 := GAPx − + + + xx3 xx1 xx8 ()sin uu2 xx9 ()cos uu2

 t0 = -xx3+xx1+xx8*sin(uu2)+xx9*cos(uu2);
 := GAPy − + − + xx5 xx4 xx8 ()cos uu2 xx9 ()sin uu2

 t0 = -xx5+xx4-xx8*cos(uu2)+xx9*sin(uu2);
 := NFL1 x + − − − xx10 xx7 ()sin uu2 vv1 ()cos uu2 xx8 ()sin uu2 xx1

 := NFL1 y + − − + − xx11 vv2 xx7 ()cos uu2 vv1 ()sin uu2 xx8 ()cos uu2 xx4

Solve equations for explicit functions for each dependent variable. Keep each expression
in terms of the dependent angle as it will be solved for explicitly in terms of independent
variables and can be evaluated first. Also export C code for use in Monte Carlo
simulation:
> uu1:=solve(CL1[y]=0,uu1);C(uu1);

 := uu1 + − xx6 xx8 ()cos uu2 xx4
()sin uu2

 t0 = (xx6+xx8*cos(uu2)-xx4)/sin(uu2);
> vv1:=solve(NFL1[x]=0,vv1);C(vv1);

 := vv1 −
− − + + xx10 xx7 ()sin uu2 xx8 ()sin uu2 xx1

()cos uu2

 t0 = -(-xx10-xx7*sin(uu2)+xx8*sin(uu2)+xx1)/cos(uu2);

99

> vv2:=collect(solve(NFL1[y]=0,vv2),{cos(uu2),sin(uu2)});C(vv2);
 := vv2 − + + () − xx7 xx8 ()cos uu2 xx11 xx4 + () − xx7 xx8 ()sin uu2 2 () − xx10 xx1 ()sin uu2

()cos uu2

 t0 = (xx7-xx8)*cos(uu2)-xx11+xx4+((xx7-
xx8)*pow(sin(uu2),2.0)+(xx10-xx1)*
sin(uu2))/cos(uu2);
> uu2:=solve(CL1[x]=0,uu2): uu2a:=simplify(uu2[1]); C(uu2a);
uu2b:=simplify(uu2[2]):
uu2a arctan xx4 ()− + xx1 xx2 2 () − + + + − − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4 xx6 xx8 2−(




 :=

xx6 ()− + xx1 xx2 2 () − + + + − − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4 xx6 xx8 2 xx1 2 xx8 + +

2 xx1 xx2 xx8 xx2 2 xx8 − + () − + + − + xx6 2 2 xx4 xx6 xx4 2 xx1 2 2 xx1 xx2 xx2 2) (

()− + xx1 xx2) − + + xx6 xx8 xx4 xx8 ()− + xx1 xx2 2 (− + + + − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4
 − + + − + xx6 2 2 xx4 xx6 xx4 2 xx1 2 2 xx1 xx2 xx2 2,

 t0 = atan2((-xx4*sqrt(pow(-xx1+xx2,2.0)*(xx2*xx2-
2.0*xx1*xx2+xx4*xx4+xx6*
xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8))+xx6*sqrt(pow(-
xx1+xx2,2.0)*(xx2*xx2-2.0*xx1*
xx2+xx4*xx4+xx6*xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8))+xx1*xx1*xx8-
2.0*xx1*xx2*xx8+
xx2*xx2*xx8)/(xx6*xx6-2.0*xx4*xx6+xx4*xx4+xx1*xx1-
2.0*xx1*xx2+xx2*xx2)/(-xx1+
xx2),(-xx6*xx8+xx4*xx8+sqrt(pow(-xx1+xx2,2.0)*(xx2*xx2-
2.0*xx1*xx2+xx4*xx4+xx6*
xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8)))/(xx6*xx6-
2.0*xx4*xx6+xx4*xx4+xx1*xx1-2.0*xx1
*xx2+xx2*xx2));
Input known values for independent variables for verification of dependent variable
explicit functions.
> xx1:=0.625:
xx2:=3.5:
xx3:=4.5:
xx4:=1.625:
xx5:=0.5:
xx6:=1.125:
xx7:=1.25:
xx8:=0.625:
xx9:=3.875:
xx10:=2.25:
xx11:=2.125:
Evaluate each dependent variable for verification:
> uu2:=evalf(uu2a);'uu1'=evalf(uu1);

 := uu2 0.04365784167

 = uu1 2.850438554

> 'GAPx'=evalf(GAPx);'GAPy'=evalf(GAPy);
 = GAPx 0.023585182

100

 = GAPy 0.6697159330

> 'vv1'=evalf(vv1);'vv2'=evalf(vv2);
 = vv1 1.653853362

 = vv2 0.1965852006

A.2 DLM Model Setup and Analysis

DLM Process applied to the Pinned Block example
Variable are declared in such a way as to facilitate insertion into a
Microsoft Excel worksheet.
> restart;
Include the linalg package for matrix and vector functions.
> with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected

Kinematic equations for Closed Loop 1
>
CL1[x]:=xx2*cos(0)+xx6*cos(pi/2)+uu1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*
cos(3*pi/2)+xx1*cos(pi);
CL1[y]:=xx2*sin(0)+xx6*sin(pi/2)+uu1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*
sin(3*pi/2)+xx1*sin(pi);

 := CL1x + + + + + xx2 xx6 





cos π

2 uu1 ()cos + π uu2 xx8 





cos +

π
2 uu2 xx4 






cos 3 π

2 xx1 ()cos π

 := CL1y + + + + xx6 





sin π

2 uu1 ()sin + π uu2 xx8 





sin +

π
2 uu2 xx4 






sin 3 π

2 xx1 ()sin π

Kinematic equations for Open Loop 1
> OL1[x]:=xx5*cos(-
pi/2)+xx3*cos(pi)+xx1*cos(0)+xx4*cos(pi/2)+xx8*cos(3*pi/2+uu2)+xx9*cos(
uu2);
OL1[y]:=xx5*sin(-
pi/2)+xx3*sin(pi)+xx1*sin(0)+xx4*sin(pi/2)+xx8*sin(3*pi/2+uu2)+xx9*sin(
uu2);

 := OL1 x + + + + + xx5 





cos π

2 xx3 ()cos π xx1 xx4 





cos π

2 xx8 





cos +

3 π
2 uu2 xx9 ()cos uu2

 := OL1 y − + + + + xx5 





sin π

2 xx3 ()sin π xx4 





sin π

2 xx8 





sin +

3 π
2 uu2 xx9 ()sin uu2

Kinematic equations for Nesting Force Loop 1:
>
NFL1[x]:=xx10*cos(0)+xx11*cos(pi/2)+vv2*cos(pi/2)+xx7*cos(3*pi/2+uu2)+v
v1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*cos(3*pi/2)+xx1*cos(pi);
NFL1[y]:=xx10*sin(0)+xx11*sin(pi/2)+vv2*sin(pi/2)+xx7*sin(3*pi/2+uu2)+v
v1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*sin(3*pi/2)+xx1*sin(pi);

101

NFL1 x xx10 xx11 





cos π

2 vv2 





cos π

2 xx7 





cos +

3 π
2 uu2 vv1 ()cos + π uu2 + + + + :=

xx8 





cos +

π
2 uu2 xx4 






cos 3 π

2 xx1 ()cos π + + +

NFL1 y xx11 





sin π

2 vv2 





sin π

2 xx7 





sin +

3 π
2 uu2 vv1 ()sin + π uu2 xx8 






sin +

π
2 uu2 + + + + :=

xx4 





sin 3 π

2 xx1 ()sin π + +

Kinematic equations evaluated in terms of known angles:
> CL1[x]:=eval(subs(pi=Pi,CL1[x]));
CL1[y]:=eval(subs(pi=Pi,CL1[y]));
GAPx:=eval(subs(pi=Pi,OL1[x]));
GAPy:=eval(subs(pi=Pi,OL1[y]));
OL1[x]:=eval(subs(pi=Pi,OL1[x])):
OL1[y]:=eval(subs(pi=Pi,OL1[y])):
NFL1[x]:=eval(subs(pi=Pi,NFL1[x]));
NFL1[y]:=eval(subs(pi=Pi,NFL1[y]));

 := CL1 x − − − xx2 uu1 ()cos uu2 xx8 ()sin uu2 xx1

 := CL1 y − + − xx6 uu1 ()sin uu2 xx8 ()cos uu2 xx4

 := GAPx − + + + xx3 xx1 xx8 ()sin uu2 xx9 ()cos uu2

 := GAPy − + − + xx5 xx4 xx8 ()cos uu2 xx9 ()sin uu2

 := NFL1 x + − − − xx10 xx7 ()sin uu2 vv1 ()cos uu2 xx8 ()sin uu2 xx1

 := NFL1 y + − − + − xx11 vv2 xx7 ()cos uu2 vv1 ()sin uu2 xx8 ()cos uu2 xx4

Form vectors of independent and dependent variables.
Vectors formed for use in the grad() function.
> X:=vector([xx1,xx2,xx3,xx4,xx5,xx6,xx7,xx8,xx9,xx10,xx11]);
#X1:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10]);
#X2:=vector([x11,x12,x13]);
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11]);
U:=vector([uu1,uu2]);
dU:=vector([du1,du2]);
GAP:=vector(['GAPx','GAPy']);
dGAP:=vector([dGAPx,dGAPy]);
V:=vector([vv1,vv2]);
dV:=vector([dv1,dv2]);

 := X [], , , , , , , , , ,xx1 xx2 xx3 xx4 xx5 xx6 xx7 xx8 xx9 xx10 xx11

 := dX [], , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11

 := U [],uu1 uu2

 := dU [],du1 du2

 := GAP [],GAPx GAPy

 := dGAP [],dGAPx dGAPy

102

 := V [],vv1 vv2

 := dV [],dv1 dv2

Matrices hx, hu, gx, gu and gv formed:
Matrices are formed by using the grad(), or gradient function.
> hx:=transpose(augment(
grad(eval(CL1[x]),X),
grad(eval(CL1[y]),X)));

hu:=transpose(augment(
grad(eval(CL1[x]),U),
grad(eval(CL1[y]),U)));

ogx:=transpose(augment(
grad(eval(OL1[x]),X),
grad(eval(OL1[y]),X)));

ogu:=transpose(augment(
grad(eval(OL1[x]),U),
grad(eval(OL1[y]),U)));

gx:=transpose(augment(
grad(eval(NFL1[x]),X),
grad(eval(NFL1[y]),X)));

gu:=transpose(augment(
grad(eval(NFL1[x]),U),
grad(eval(NFL1[y]),U)));

gv:=transpose(augment(
grad(eval(NFL1[x]),V),
grad(eval(NFL1[y]),V)));

 := hx 







-1 1 0 0 0 0 0 − ()sin uu2 0 0 0
0 0 0 -1 0 1 0 ()cos uu2 0 0 0

 := hu 







− ()cos uu2 − uu1 ()sin uu2 xx8 ()cos uu2
− ()sin uu2 − − uu1 ()cos uu2 xx8 ()sin uu2

 := ogx 







1 0 -1 0 0 0 0 ()sin uu2 ()cos uu2 0 0
0 0 0 1 -1 0 0 − ()cos uu2 ()sin uu2 0 0

 := ogu 







0 − xx8 ()cos uu2 xx9 ()sin uu2
0 + xx8 ()sin uu2 xx9 ()cos uu2

 := gx 







-1 0 0 0 0 0 ()sin uu2 − ()sin uu2 0 1 0
0 0 0 -1 0 0 − ()cos uu2 ()cos uu2 0 0 1

 := gu 







0 + − xx7 ()cos uu2 vv1 ()sin uu2 xx8 ()cos uu2
0 − − xx7 ()sin uu2 vv1 ()cos uu2 xx8 ()sin uu2

 := gv 







− ()cos uu2 0
− ()sin uu2 1

103

Input nominal values for all applicable variables:
This can be done by copying the appropriate cells from
the Excel file.
> xx1:=0.625: dx1:=0.032:
xx2:=3.5: dx2:=0.175:
xx3:=4.5: dx3:=0.225:
xx4:=1.625: dx4:=0.082:
xx5:=0.5: dx5:=0.025:
xx6:=1.125: dx6:=0.057:
xx7:=1.25: dx7:=0.063:
xx8:=0.625: dx8:=0.032:
xx9:=3.875: dx9:=0.194:
xx10:=2.25: dx10:=0.113:
xx11:=2.125: dx11:=0.107:

uu2:=0.0436578416687264:
uu1:=2.85043856274785:

vv1:=1.65385336176647:
vv2:=0.196585200981373:
Double Check Loop Equations to verify they are equal to zero or appropriate gap size.
> 'CL1[x]'=evalf(CL1[x]);'CL1[y]'=evalf(CL1[y]);
GAPx:=evalf(GAPx);GAPy:=evalf(GAPy);
'NFL1[x]'=evalf(NFL1[x]);'NFL1[y]'=evalf(NFL1[y]);

 = CL1 x 0.1000 10 -9

 = CL1 y 0.0000

 := GAPx 0.0236

 := GAPy 0.6697

 = NFL1 x 0.1000 10 -9

 = NFL1 y -0.1000 10 -8

Matrices are now evaluated according to known inputs:
>
hx:=evalf[4](multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity)))
;
hu:=evalf[4](multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity)))
;
ogx:=evalf[4](multiply(ogx,Matrix(coldim(ogx),coldim(ogx),shape=identit
y)));
ogu:=evalf[4](multiply(ogu,Matrix(coldim(ogu),coldim(ogu),shape=identit
y)));
gx:=evalf[4](multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity)))
;
gu:=evalf[4](multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity)))
;
gv:=evalf[4](multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity)))
;

104

huinv:=eval(inverse(hu)):
huinv=evalf[4](evalm(huinv));
gvinv:=eval(inverse(gv)):
gvinv=evalf[4](evalm(gvinv));
 := hx 


 





, , , , , , , , , , -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0436 0.0000 0.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 0.9990 0.0000 0.0000 0.0000

 := hu 







-0.9990 -0.5000
-0.0436 -2.8740

 := ogx 

 






, , , , , , , , , , 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0436 0.9990 0.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.9990 0.0436 0.0000 0.0000

 := ogu 







0.0000 0.4553
0.0000 3.8980

 := gx 

 





, , , , , , , , , , -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0436 -0.0436 0.0000 1.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.9990 0.9990 0.0000 0.0000 1.0000

 := gu 







0.0000 0.6966
0.0000 -1.6240

 := gv 







-0.9990 0.0000
-0.0436 1.0000

 = huinv 







-1.0090 0.1755
0.0153 -0.3506

 = gvinv 







-1.0010 0.0000
-0.0437 1.0000

Form the closed loop sensitivities matrix:
> huinvhx:=evalf[4]((multiply(-huinv,hx))):
'huinvhx'=evalm(evalf[4](huinvhx));
 = huinvhx 


 






, , , , , , , , , , -1.0090 1.0090 0.0000 0.1755 0.0000 -0.1755 0.0000 -0.2193 0.0000 0.0000 0.0000
, , , , , , , , , , 0.0153 -0.0153 0.0000 -0.3506 0.0000 0.3506 0.0000 0.3509 0.0000 0.0000 0.0000

Calculate the sensitivities for the GAPs in the open loop:
> Sog:=evalf[4](evalm(ogx + ogu &* huinvhx));
The + sign is due to huinvhx = -huinv*hx
 := Sog 


 






, , , , , , , , , , 1.0070 -0.0070 -1.0000 -0.1596 0.0000 0.1596 0.0000 0.2034 0.9990 0.0000 0.0000
, , , , , , , , , , 0.0597 -0.0597 0.0000 -0.3670 -1.0000 1.3670 0.0000 0.3690 0.0436 0.0000 0.0000

Intermediate step in calculating the nesting force loop sensitivities:
> Sg:=evalf[4](evalm(gx + gu &* huinvhx));
 := Sg 


 






, , , , , , , , , , -0.9893 -0.0107 0.0000 -0.2442 0.0000 0.2442 0.0436 0.2008 0.0000 1.0000 0.0000
, , , , , , , , , , -0.0249 0.0249 0.0000 -0.4306 0.0000 -0.5694 -0.9990 0.4291 0.0000 0.0000 1.0000

Calculate the nesting force loop sensitivities:

105

> Sv:=evalf[4](evalm(-gvinv &* Sg));
Sv :=

-0.9903 -0.0107 -0.0000 -0.2444 -0.0000 0.2444 0.0437 0.2010 -0.0000 1.0010[, , , , , , , , , ,
-0.0000]

-0.0183 -0.0254 -0.0000 0.4199 -0.0000 0.5801 1.0010 -0.4203 -0.0000 0.0437[, , , , , , , , , ,
-1.0000]

Calculate the worst-case variations in all the dependent variables for the Pinned Block
Assembly.
> ddU:=evalf[4](augment((multiply(abs(huinvhx),dX)))):
ddV:=evalf[4](augment((multiply(abs(Sv),dX)))):
ddG:=evalf[4](augment((multiply(abs(Sog),dX)))):
augment(evalm(dU))=evalm(ddU);
augment(evalm(dGAP))=evalm(ddG);
augment(evalm(dV))=evalm(ddV);

 = 







du1
du2









0.2403
0.0631

 = 







dGAPx
dGAPy









0.4809
0.1657

 = 







dv1
dv2









0.1898
0.2609

Calculate the standard deviation for all the dependent variables for the Pinned Block
Assembly:
> sigma_u[1]:=sqrt(Sum('huinvhx[1,i]^2*(dX[i]/3)^2','i'=1..n));
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)):
n:=11;for j from 1 to 2 do sigma_u[j]:=evalf[4](sigma_u[j]) od;

 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2

 := n 11

 := sigma_u 1 0.0602

 := sigma_u 2 0.0123

> sigma_gap[1]:=sqrt(Sum('Sog[1,i]^2*(dX[i]/3)^2','i'=1..n));
sigma_gap[2]:=sqrt(sum(Sog[2,i]^2*(dX[i]/3)^2,i=1..n)):
n:=11;for j from 1 to 2 do sigma_gap[j]:=evalf[4](sigma_gap[j]) od;

 := sigma_gap 1 ∑
 = i 1

11








1
9 Sog ,1 i

2
dXi

2

 := n 11

 := sigma_gap 1 0.0997

 := sigma_gap 2 0.0297

> sigma_v[1]:=sqrt(Sum('Sv[1,i]^2*(dX[i]/3)^2','i'=1..n));
sigma_v[2]:=sqrt(sum(Sv[2,i]^2*(dX[i]/3)^2,i=1..n)):

106

n:=11;for j from 1 to 2 do sigma_v[j]:=evalf[4](sigma_v[j]) od;

 := sigma_v 1 ∑
 = i 1

11








1
9 Sv ,1 i

2
dXi

2

 := n 11

 := sigma_v 1 0.0401

 := sigma_v 2 0.0446

107

Appendix B
Maple© Worksheets for Exactly Constrained Block Assembly

Maple© was used to form both the explicit equations and to perform the DLM on

the Exactly Constrained Block Assembly. The following two sections contain the

applicable Maple© worksheets that were used for this task.

B.1 Explicit Equation Development

Formation of the explicit functions for the dependent variables for the
Exactly Constrained Block Assembly:
> restart;
Use the codegen package for exporting C code for the Monte Carlo simulation program.
> with(codegen,C):
Kinematic equations for Closed Loop 1
>
h1[x]:=x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+
x4*cos(pi)+x5*cos(-pi/2);
h1[y]:=x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+
x4*sin(pi)+x5*sin(-pi/2);
h1[u4]:=+90+90+u4-90-90-u4-180+90+90;

 := h1x + + + + + + x1 x7 





cos π

2 u1 ()cos + π u4 x9 





cos +

π
2 u4 u3 ()cos u4 x4 ()cos π x5 






cos π

2

 := h1y + + + + − x7 





sin π

2 u1 ()sin + π u4 x9 





sin +

π
2 u4 u3 ()sin u4 x4 ()sin π x5 






sin π

2

 := h1u4 0

Kinematic equations for Closed Loop 2
> h2[x]:=x3*cos(0)+x8*cos(pi/2)+u2*cos(-
pi/2+u4)+x10*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+x4*cos(pi)+x5*cos(-
pi/2);
h2[y]:=x3*sin(0)+x8*sin(pi/2)+u2*sin(-
pi/2+u4)+x10*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+x4*sin(pi)+x5*sin(-
pi/2);
h2[u4]:=+90+180+u4-90-90-90-u4-180+90+90;

108

h2x x3 x8 





cos π

2 u2 





cos −

π
2 u4 x10 ()cos + π u4 x9 






cos +

π
2 u4 u3 ()cos u4 + + + + + :=

x4 ()cos π x5 





cos π

2 + +

h2y x8 





sin π

2 u2 





sin −

π
2 u4 x10 ()sin + π u4 x9 






sin +

π
2 u4 u3 ()sin u4 x4 ()sin π − + + + + :=

x5 





sin π

2 −

 := h2u4 0

Kinematic equations for Nesting Force Loop 1
> g1[x]:=x11*cos(pi)+x6*cos(-
pi/2)+x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+v1*cos(pi/2+u4)-v3;## = v3
but rearranged.
g1[y]:=x11*sin(pi)+x6*sin(-
pi/2)+x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+v1*sin(pi/2+u4);## = 0
g1[u4]:=0=0;

 := g1x + + + + + − x11 ()cos π x6 





cos π

2 x1 x7 





cos π

2 u1 ()cos + π u4 v1 





cos +

π
2 u4 v3

 := g1y − + + + x11 ()sin π x6 





sin π

2 x7 





sin π

2 u1 ()sin + π u4 v1 





sin +

π
2 u4

 := g1u4 = 0 0

Kinematic equations for Nesting Force Loop 2
> g2[x]:=x12*cos(-
pi/2)+x2*cos(pi)+x5*cos(pi/2)+x4*cos(0)+u3*cos(pi+u4)+x9*cos(-
pi/2+u4)+v2*cos(u4);## = 0
g2[y]:=x12*sin(-
pi/2)+x2*sin(pi)+x5*sin(pi/2)+x4*sin(0)+u3*sin(pi+u4)+x9*sin(-
pi/2+u4)+v2*sin(u4)-v4;## = v4
g2[u4]:=0=0;

 := g2x + + + + + + x12 





cos π

2 x2 ()cos π x5 





cos π

2 x4 u3 ()cos + π u4 x9 





cos −

π
2 u4 v2 ()cos u4

 := g2y − + + + − + − x12 





sin π

2 x2 ()sin π x5 





sin π

2 u3 ()sin + π u4 x9 





sin −

π
2 u4 v2 ()sin u4 v4

 := g2u4 = 0 0

Evaluate loop equations in terms of known angles:
> h1[x]:=eval(subs(pi=Pi,h1[x]));
h1[y]:=eval(subs(pi=Pi,h1[y]));
h2[x]:=eval(subs(pi=Pi,h2[x]));
h2[y]:=eval(subs(pi=Pi,h2[y]));
g1[x]:=eval(subs(pi=Pi,g1[x]));
g1[y]:=eval(subs(pi=Pi,g1[y]));
g2[x]:=eval(subs(pi=Pi,g2[x]));
g2[y]:=eval(subs(pi=Pi,g2[y]));

 := h1x − − + − x1 u1 ()cos u4 x9 ()sin u4 u3 ()cos u4 x4

109

 := h1 y − + + − x7 u1 ()sin u4 x9 ()cos u4 u3 ()sin u4 x5

 := h2 x + − − + − x3 u2 ()sin u4 x10 ()cos u4 x9 ()sin u4 u3 ()cos u4 x4

 := h2 y − − + + − x8 u2 ()cos u4 x10 ()sin u4 x9 ()cos u4 u3 ()sin u4 x5

 := g1x − + − − − x11 x1 u1 ()cos u4 v1 ()sin u4 v3

 := g1 y − + − + x6 x7 u1 ()sin u4 v1 ()cos u4

 := g2 x − + − + + x2 x4 u3 ()cos u4 x9 ()sin u4 v2 ()cos u4

 := g2y − + − − + − x12 x5 u3 ()sin u4 x9 ()cos u4 v2 ()sin u4 v4

> u2:=collect(simplify(solve(h2[y]=0,u2)),{cos(u4),sin(u4)}):
u3:=collect(simplify(solve(h2[x]=0,u3)),{cos(u4),sin(u4)}):
u1:=collect(simplify(solve(h1[x]=0,u1)),{cos(u4),sin(u4)}):
v1:=collect(simplify(solve(g1[y]=0,v1)),{cos(u4),sin(u4)}):
v2:=collect(simplify(solve(g2[x]=0,v2)),{cos(u4),sin(u4)}):
v3:=collect(simplify(solve(g1[x]=0,v3)),{cos(u4),sin(u4)}):
v4:=collect(simplify(solve(g2[y]=0,v4)),{cos(u4),sin(u4)}):
Display explicit functions and export for C code for use in Monte Carlo simulation
program:
> 'u1'=u1;
C(u1);
'u2'=u2;
C(u2);
'u3'=u3;
C(u3);
'v1'=v1;
C(v1);
'v2'=v2;
C(v2);
'v3'=v3;
C(v3);
'v4'=v4;
C(v4);

 = u1 + + + ()− + x3 x4 ()cos u4 ()− + x8 x5 ()sin u4 x10 − − x1 x9 ()sin u4 x4
()cos u4

 t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10+(x1-x9*sin(u4)-
x4)/cos(u4);

 = u2 + x9 + − () + ()− + x3 x4 ()cos u4 ()− + x8 x5 ()sin u4 ()sin u4 x8 x5
()cos u4

 t0 = x9+(((-x3+x4)*cos(u4)+(-x8+x5)*sin(u4))*sin(u4)+x8-
x5)/cos(u4);

 = u3 + + ()− + x3 x4 ()cos u4 ()− + x8 x5 ()sin u4 x10

 t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10;
v1 () − x8 x5 ()cos u4 ()− + x3 x4 ()sin u4 x9 − + − + + x7 x6 x8 x5 x10 ()sin u4

()cos u4 + + + =

 − () − x1 x4 ()sin u4 x9
()cos u4 2 +

110

 t0 = (x8-x5)*cos(u4)+(-x3+x4)*sin(u4)+x9+(-x7+x6-
x8+x5+x10*sin(u4))/cos(
u4)+((x1-x4)*sin(u4)-x9)/pow(cos(u4),2.0);

 = v2 + + + ()− + x3 x4 ()cos u4 ()− + x8 x5 ()sin u4 x10 − − x2 x4 x9 ()sin u4
()cos u4

 t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10+(x2-x4-
x9*sin(u4))/cos(u4);

 = v3 − − + + + + x4 x11 x1 x3 − () − + − x8 x6 x7 x5 ()sin u4 x10
()cos u4

− + + x1 x9 ()sin u4 x4
()cos u4 2

 t0 = -x4-x11+x1+x3+((x8-x6+x7-x5)*sin(u4)-x10)/cos(u4)+(-
x1+x9*sin(u4)+x4
)/pow(cos(u4),2.0);

 = v4 − + + x12 x5 − () − x2 x4 ()sin u4 x9
()cos u4

 t0 = -x12+x5+((x2-x4)*sin(u4)-x9)/cos(u4);
Form geometric solution for angle u4 in terms of independent variables and export C
code:
> u4:=(arcsin((x5-x7)/sqrt(((x5-x7)^2+(x4-x1)^2)))-arcsin(x9/sqrt((x5-
x7)^2+(x4-x1)^2))):
'u4'=simplify(u4);
C(u4);

u4 









arcsin − + x5 x7
 − + + − + x5 2 2 x5 x7 x7 2 x1 2 2 x1 x4 x4 2

− =











arcsin x9
 − + + − + x5 2 2 x5 x7 x7 2 x1 2 2 x1 x4 x4 2

 −

 t0 = asin((x5-x7)/sqrt(x5*x5-2.0*x5*x7+x7*x7+x1*x1-
2.0*x1*x4+x4*x4))-asin
(x9/sqrt(x5*x5-2.0*x5*x7+x7*x7+x1*x1-2.0*x1*x4+x4*x4));

Input known values for independent variables for verification of dependent variable
explicit functions.
> x1:=2.625: dx1:=.01:
x2:=9.875: dx2:=.05:
x3:=13: dx3:=.02:
x4:=9.75: dx4:=.01:
x5:=9: dx5:=.02:
x6:=5.125: dx6:=.05:
x7:=1: dx7:=.02:
x8:=5.25: dx8:=.01:
x9:=8: dx9:=.02:
x10:=12: dx10:=.02:
x11:=1.29: dx11:=.05:
x12:=1.29: dx12:=.05:
Evaluate each dependent variable for verification:
> 'u1'=u1;
'u2'=u2;
'u3'=u3;

111

'u4'=u4;
'v1'=v1;
'v2'=v2;
'v3'=v3;
'v4'=v4;

 = u1 1.6250

 = u2 4.2500

 = u3 8.7500

 = u4 0.0000

 = v1 4.1250

 = v2 8.8750

 = v3 -0.2900

 = v4 -0.2900

B.2 DLM Model Setup and Analysis

DLM Process applied to the Exactly Constrained Block example
> restart;
Include the linalg package for matrix and vector functions.
> with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected

Kinematic equations for Closed Loop 1
>
h1[x]:=x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+
x4*cos(pi)+x5*cos(-pi/2);
h1[y]:=x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+
x4*sin(pi)+x5*sin(-pi/2);
h1[u4]:=+90+90+u4-90-90-u4-180+90+90;

 := h1x + + + + + + x1 x7 





cos π

2 u1 ()cos + π u4 x9 





cos +

π
2 u4 u3 ()cos u4 x4 ()cos π x5 






cos π

2

 := h1y + + + + − x7 





sin π

2 u1 ()sin + π u4 x9 





sin +

π
2 u4 u3 ()sin u4 x4 ()sin π x5 






sin π

2

 := h1u4 0

Kinematic equations for Closed Loop 2
> h2[x]:=x3*cos(0)+x8*cos(pi/2)+u2*cos(-
pi/2+u4)+x10*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+x4*cos(pi)+x5*cos(-
pi/2);

112

h2[y]:=x3*sin(0)+x8*sin(pi/2)+u2*sin(-
pi/2+u4)+x10*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+x4*sin(pi)+x5*sin(-
pi/2);
h2[u4]:=+90+180+u4-90-90-90-u4-180+90+90;
h2x x3 x8 






cos π

2 u2 





cos −

π
2 u4 x10 ()cos + π u4 x9 






cos +

π
2 u4 u3 ()cos u4 + + + + + :=

x4 ()cos π x5 





cos π

2 + +

h2y x8 





sin π

2 u2 





sin −

π
2 u4 x10 ()sin + π u4 x9 






sin +

π
2 u4 u3 ()sin u4 x4 ()sin π − + + + + :=

x5 





sin π

2 −

 := h2u4 0

Kinematic equations for Nesting Force Loop 1
> g1[x]:=x11*cos(pi)+x6*cos(-
pi/2)+x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+v1*cos(pi/2+u4)-v3;
g1[y]:=x11*sin(pi)+x6*sin(-
pi/2)+x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+v1*sin(pi/2+u4);
g1[u4]:=0=0;

 := g1x + + + + + − x11 ()cos π x6 





cos π

2 x1 x7 





cos π

2 u1 ()cos + π u4 v1 





cos +

π
2 u4 v3

 := g1y − + + + x11 ()sin π x6 





sin π

2 x7 





sin π

2 u1 ()sin + π u4 v1 





sin +

π
2 u4

 := g1u4 = 0 0

Kinematic equations for Nesting Force Loop 2
> g2[x]:=x12*cos(-
pi/2)+x2*cos(pi)+x5*cos(pi/2)+x4*cos(0)+u3*cos(pi+u4)+x9*cos(-
pi/2+u4)+v2*cos(u4);
g2[y]:=x12*sin(-
pi/2)+x2*sin(pi)+x5*sin(pi/2)+x4*sin(0)+u3*sin(pi+u4)+x9*sin(-
pi/2+u4)+v2*sin(u4)-v4;
g2[u4]:=0=0;

 := g2x + + + + + + x12 





cos π

2 x2 ()cos π x5 





cos π

2 x4 u3 ()cos + π u4 x9 





cos −

π
2 u4 v2 ()cos u4

 := g2y − + + + − + − x12 





sin π

2 x2 ()sin π x5 





sin π

2 u3 ()sin + π u4 x9 





sin −

π
2 u4 v2 ()sin u4 v4

 := g2u4 = 0 0

Kinematic equations evaluated in terms of known angles:
> h1[x]:=eval(subs(pi=Pi,h1[x]));
h1[y]:=eval(subs(pi=Pi,h1[y]));
h2[x]:=eval(subs(pi=Pi,h2[x]));
h2[y]:=eval(subs(pi=Pi,h2[y]));
g1[x]:=eval(subs(pi=Pi,g1[x]));
g1[y]:=eval(subs(pi=Pi,g1[y]));
g2[x]:=eval(subs(pi=Pi,g2[x]));

113

g2[y]:=eval(subs(pi=Pi,g2[y]));
 := h1x − − + − x1 u1 ()cos u4 x9 ()sin u4 u3 ()cos u4 x4

 := h1 y − + + − x7 u1 ()sin u4 x9 ()cos u4 u3 ()sin u4 x5

 := h2 x + − − + − x3 u2 ()sin u4 x10 ()cos u4 x9 ()sin u4 u3 ()cos u4 x4

 := h2 y − − + + − x8 u2 ()cos u4 x10 ()sin u4 x9 ()cos u4 u3 ()sin u4 x5

 := g1x − + − − − x11 x1 u1 ()cos u4 v1 ()sin u4 v3

 := g1 y − + − + x6 x7 u1 ()sin u4 v1 ()cos u4

 := g2 x − + − + + x2 x4 u3 ()cos u4 x9 ()sin u4 v2 ()cos u4

 := g2y − + − − + − x12 x5 u3 ()sin u4 x9 ()cos u4 v2 ()sin u4 v4

Form vectors of independent and dependent variables.
Vectors formed for use in the grad() function.
> X:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12]);
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11,dx12]);
U:=vector([u1,u2,u3,u4]);
dU:=vector([du1,du2,du3,du4]);
V:=vector([v1,v2,v3,v4]);
dV:=vector([dv1,dv2,dv3,dv4]);

 := X [], , , , , , , , , , ,x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

 := dX [], , , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11 dx12

 := U [], , ,u1 u2 u3 u4

 := dU [], , ,du1 du2 du3 du4

 := V [], , ,v1 v2 v3 v4

 := dV [], , ,dv1 dv2 dv3 dv4

Matrices hx, hu, gx, gu and gv formed:
Matrices are formed by using the grad(), or gradient function.
> hx:=transpose(augment(
grad(eval(h1[x]),X),
grad(eval(h1[y]),X),
grad(eval(h2[x]),X),
grad(eval(h2[y]),X)));

hu:=transpose(augment(
grad(eval(h1[x]),U),
grad(eval(h1[y]),U),
grad(eval(h2[x]),U),
grad(eval(h2[y]),U)));

gx:=transpose(augment(
grad(eval(g1[x]),X),
grad(eval(g1[y]),X),
grad(eval(g2[x]),X),

114

grad(eval(g2[y]),X)));

gu:=transpose(augment(
grad(eval(g1[x]),U),
grad(eval(g1[y]),U),
grad(eval(g2[x]),U),
grad(eval(g2[y]),U)));

gv:=transpose(augment(
grad(eval(g1[x]),V),
grad(eval(g1[y]),V),
grad(eval(g2[x]),V),
grad(eval(g2[y]),V)));

 := hx













1 0 0 -1 0 0 0 0 − ()sin u4 0 0 0
0 0 0 0 -1 0 1 0 ()cos u4 0 0 0
0 0 1 -1 0 0 0 0 − ()sin u4 − ()cos u4 0 0
0 0 0 0 -1 0 0 1 ()cos u4 − ()sin u4 0 0

 := hu













− ()cos u4 0 ()cos u4 − − u1 ()sin u4 x9 ()cos u4 u3 ()sin u4
− ()sin u4 0 ()sin u4 − − + u1 ()cos u4 x9 ()sin u4 u3 ()cos u4

0 ()sin u4 ()cos u4 + − − u2 ()cos u4 x10 ()sin u4 x9 ()cos u4 u3 ()sin u4
0 − ()cos u4 ()sin u4 − − + u2 ()sin u4 x10 ()cos u4 x9 ()sin u4 u3 ()cos u4

 := gx













1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 1 0 0 0 0 0
0 -1 0 1 0 0 0 0 ()sin u4 0 0 0
0 0 0 0 1 0 0 0 − ()cos u4 0 0 -1

 := gu













− ()cos u4 0 0 − u1 ()sin u4 v1 ()cos u4
− ()sin u4 0 0 − − u1 ()cos u4 v1 ()sin u4

0 0 − ()cos u4 + − u3 ()sin u4 x9 ()cos u4 v2 ()sin u4
0 0 − ()sin u4 − + + u3 ()cos u4 x9 ()sin u4 v2 ()cos u4

 := gv













− ()sin u4 0 -1 0
()cos u4 0 0 0
0 ()cos u4 0 0
0 ()sin u4 0 -1

Input nominal values for all applicable variables:
This can be done by copying the appropriate cells from
the Excel file.
> x1:=2.625: dx1:=0.01:
x2:=10: dx2:=0.05:
x3:=13: dx3:=0.02:
x4:=9.75: dx4:=0.01:
x5:=9: dx5:=0.02:
x6:=3: dx6:=0.05:

115

x7:=1: dx7:=0.02:
x8:=5.25: dx8:=0.01:
x9:=8: dx9:=0.02:
x10:=12: dx10:=0.02:
x11:=1.29: dx11:=0.05:
x12:=1.2: dx12:=0.05:

u1:=1.625:
u2:=4.25:
u3:=8.75:
u4:=0:
v1:=2:
v2:=9:
v3:=-0.289999999999999:
v4:=-0.2:

Double Check Loop Equations to verify they are equal to zero or appropriate gap size.
> 'h1[x]'=evalf(h1[x]);'h1[y]'=evalf(h1[y]);
'h2[x]'=evalf(h2[x]);'h2[y]'=evalf(h2[y]);
'g1[x]'=evalf(g1[x]);'g1[y]'=evalf(g1[y]);
'g2[x]'=evalf(g2[x]);'g2[y]'=evalf(g2[y]);

 = h1 x 0.0000

 = h1 y 0.0000

 = h2 x 0.0000

 = h2 y 0.0000

 = g1 x 0.0000

 = g1 y 0.0000

 = g2 x 0.0000

 = g2 y 0.0000

Matrices are evaluated according to known inputs:
> hx:=multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity));
hu:=multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity));
gx:=multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity));
gu:=multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity));
gv:=multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity));
huinv:=eval(inverse(hu)):
huinv=evalf[4](evalm(huinv));
gvinv:=eval(inverse(gv)):
gvinv=evalf[4](evalm(gvinv));

 := hx













1 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 1 0 1 0 0 0
0 0 1 -1 0 0 0 0 0 -1 0 0
0 0 0 0 -1 0 0 1 1 0 0 0

116

 := hu













-1.0000 0.0000 1.0000 -8.0000
0.0000 0.0000 0.0000 7.1250
0.0000 0.0000 1.0000 -3.7500
0.0000 -1.0000 0.0000 -3.2500

 := gx













1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 1 0 0 0 0 0
0 -1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 0 -1

 := gu













-1.0000 0.0000 0.0000 -2.0000
0.0000 0.0000 0.0000 -1.6250
0.0000 0.0000 -1.0000 8.0000
0.0000 0.0000 0.0000 0.2500

 := gv













0 0 -1 0
1 0 0 0
0 1 0 0
0 0 0 -1

 = huinv













-1.0000 -0.5965 1.0000 -0.0000
-0.0000 -0.4561 0.0000 -1.0000
-0.0000 0.5263 1.0000 0.0000
-0.0000 0.1404 0.0000 -0.0000

 = gvinv













0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
-1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -1.0000

Form the closed loop sensitivities matrix.
huinvhx:=eval((multiply(-huinv,hx))):
'huinvhx'=evalf[4](evalm(huinvhx));
huinvhx =

1.0000 0.0000 -1.0000 0.0000 -0.5965 0.0000 0.5965 0.0000 0.5965 1.0000[, , , , , , , , , ,
0.0000 0.0000,]

0.0000 0.0000 0.0000 0.0000 -1.4560 0.0000 0.4561 1.0000 1.4560 0.0000 0.0000[, , , , , , , , , ,
0.0000,]
0.0000 0.0000 -1.0000 1.0000 0.5263 0.0000 -0.5263 0.0000 -0.5263 1.0000[, , , , , , , , , ,

0.0000 0.0000,]
0.0000 0.0000 0.0000 0.0000 0.1404 0.0000 -0.1404 0.0000 -0.1404 0.0000[, , , , , , , , , ,

0.0000 0.0000,]

Intermediate step in calculating the nesting force loop sensitivities:
> Sg:=evalf[4](evalm(gx + gu &* huinvhx));
The + sign is due to huinvhx = -huinv*hx

117

Sg :=
0.0000 0.0000 1.0000 0.0000 0.3157 0.0000 -0.3157 0.0000 -0.3157 -1.0000[, , , , , , , , , ,

-1.0000 0.0000,]
0.0000 0.0000 0.0000 0.0000 -0.2282 -1.0000 1.2280 0.0000 0.2282 0.0000[, , , , , , , , , ,

0.0000 0.0000,]
0.0000 -1.0000 1.0000 0.0000 0.5967 0.0000 -0.5967 0.0000 -0.5967 -1.0000[, , , , , , , , , ,

0.0000 0.0000,]
0.0000 0.0000 0.0000 0.0000 1.0350 0.0000 -0.0351 0.0000 -1.0350 0.0000[, , , , , , , , , ,

0.0000 -1.0000,]

Calculate the nesting force loop sensitivities:
> sV:=evalf[4](evalm(-gvinv &* Sg));
sV :=

-0.0000 -0.0000 -0.0000 -0.0000 0.2282 1.0000 -1.2280 -0.0000 -0.2282 -0.0000[, , , , , , , , , ,
-0.0000 -0.0000,]

-0.0000 1.0000 -1.0000 -0.0000 -0.5967 -0.0000 0.5967 -0.0000 0.5967 1.0000[, , , , , , , , , ,
-0.0000 -0.0000,]

-0.0000 -0.0000 1.0000 -0.0000 0.3157 -0.0000 -0.3157 -0.0000 -0.3157 -1.0000[, , , , , , , , , ,
-1.0000 -0.0000,]

-0.0000 -0.0000 -0.0000 -0.0000 1.0350 -0.0000 -0.0351 -0.0000 -1.0350 -0.0000[, , , , , , , , , ,
-0.0000 -1.0000,]

Calculate the worst-case variations in all the dependent variables for the Exactly
Constrained Block Assembly:
> ddU:=evalf[4](augment((multiply(abs(huinvhx),dX)))):
ddV:=evalf[4](augment((multiply(abs(sV),dX)))):
augment(evalm(dU))=evalm(ddU);
augment(evalm(dV))=evalm(ddV);

 =













du1
du2
du3
du4













0.0858
0.0774
0.0816
0.0084

 =













dv1
dv2
dv3
dv4













0.0837
0.1258
0.1089
0.0921

Calculate the standard deviation for all the dependent variables for the Exactly
Constrained Block Assembly:
> sigma_u[1]:=sqrt(Sum(huinvhx[1,i]^2*(dX[i]/3)^2,i=1..n));
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[3]:=sqrt(Sum(huinvhx[3,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[4]:=sqrt(sum(huinvhx[4,i]^2*(dX[i]/3)^2,i=1..n)):
n:=12;for j from 1 to 4 do sigma_u[j]:=evalf[4](sigma_u[j]) od;
n:='n':

118

 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2

 := n 12

 := sigma_u 1 0.0121

 := sigma_u 2 0.0145

 := sigma_u 3 0.0117

 := sigma_u 4 0.0016

> sigma_v[1]:=sqrt(Sum(sV[1,i]^2*(dX[i]/3)^2,i=1..n));
sigma_v[2]:=sqrt(sum(sV[2,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_v[3]:=sqrt(Sum(sV[3,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_v[4]:=sqrt(sum(sV[4,i]^2*(dX[i]/3)^2,i=1..n)):
n:=12;for j from 1 to 4 do sigma_v[j]:=evalf[4](sigma_v[j]) od;

 := sigma_v 1 ∑
 = i 1

n








1
9 sV ,1 i

2
dXi

2

 := sigma_v 1 0.0187

 := sigma_v 2 0.0204

 := sigma_v 3 0.0195

 := sigma_v 4 0.0193

119

Appendix C
Maple© Worksheet for Wedge Assembly

Maple© was used to form both the explicit equations and to perform the DLM on

the Wedge Assembly. The following section contains the Maple© worksheet that was

used for this task.

C.1 DLM Model Setup, Analysis & Explicit Equation Development

DLM Process applied to the Wedge Assembly:
> restart:
Include the linalg package for matrix and vector functions. Include codegen package for
generating dependent variable functions:
> with(linalg):with(codegen):
Warning, the protected names norm and trace have been redefined and
unprotected

Warning, the protected name MathML has been redefined and unprotected

Kinematic equations for Closed Loop 1
> h1[x]:=x3*cos(2*pi)+x4*cos(pi/2)+u2*cos(pi+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi);
h1[y]:=x3*sin(2*pi)+x4*sin(pi/2)+u2*sin(pi+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi);

 := h1x + + + + + x3 ()cos 2 π x4 





cos π

2 u2 ()cos + π u6 u1 ()cos u6 x2 





cos π

2 x1 ()cos π

 := h1y + + + − + x3 ()sin 2 π x4 





sin π

2 u2 ()sin + π u6 u1 ()sin u6 x2 





sin π

2 x1 ()sin π

Kinematic equations for Closed Loop 2
> h2[x]:=u4*cos(pi/2)+x13*cos(2*pi)+x13*cos(-
pi/2+x14+u6)+u3*cos(pi+x14+u6)+x10*cos(-pi/2+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi);
h2[y]:=u4*sin(pi/2)+x13*sin(2*pi)+x13*sin(-
pi/2+x14+u6)+u3*sin(pi+x14+u6)+x10*sin(-pi/2+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi);

120

h2x u4 





cos π

2 x13 ()cos 2 π x13 





cos − + +

π
2 x14 u6 u3 ()cos + + π x14 u6 + + + :=

x10 





cos −

π
2 u6 u1 ()cos u6 x2 






cos π

2 x1 ()cos π + + + +

h2y u4 





sin π

2 x13 ()sin 2 π x13 





sin − + +

π
2 x14 u6 u3 ()sin + + π x14 u6 + + + :=

x10 





sin −

π
2 u6 u1 ()sin u6 x2 






sin π

2 x1 ()sin π − + − +

Kinematic equations for Closed Loop 3
> h3[x]:=x7*cos(pi/2)+u5*cos(2*pi)+x13*cos(-pi/2)+x13*cos(-
pi/2+x14+u6)+u3*cos(pi+x14+u6)+x10*cos(-pi/2+u6)+u2*cos(u6)+x4*cos(-
pi/2)+x3*cos(pi);
h3[y]:=x7*sin(pi/2)+u5*sin(2*pi)+x13*sin(-pi/2)+x13*sin(-
pi/2+x14+u6)+u3*sin(pi+x14+u6)+x10*sin(-pi/2+u6)+u2*sin(u6)+x4*sin(-
pi/2)+x3*sin(pi);
h3x x7 






cos π

2 u5 ()cos 2 π x13 





cos π

2 x13 





cos − + +

π
2 x14 u6 u3 ()cos + + π x14 u6 + + + + :=

x10 





cos −

π
2 u6 u2 ()cos u6 x4 






cos π

2 x3 ()cos π + + + +

h3y x7 





sin π

2 u5 ()sin 2 π x13 





sin π

2 x13 





sin − + +

π
2 x14 u6 u3 ()sin + + π x14 u6 + − + + :=

x10 





sin −

π
2 u6 u2 ()sin u6 x4 






sin π

2 x3 ()sin π − + − +

Kinematic equations for Nesting Force Loop 1
> g1[x]:=v2*cos(-pi/2+u6)+x11*cos(pi+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi)+x9*cos(2*pi)+x5*cos(pi/2)+v1*cos(2*pi);
g1[y]:=v2*sin(-pi/2+u6)+x11*sin(pi+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi)+x9*sin(2*pi)+x5*sin(pi/2)+v1*sin(2*pi);
g1x v2 






cos −

π
2 u6 x11 ()cos + π u6 u1 ()cos u6 x2 






cos π

2 x1 ()cos π x9 ()cos 2 π + + + + + :=

x5 





cos π

2 v1 ()cos 2 π + +

g1y v2 





sin −

π
2 u6 x11 ()sin + π u6 u1 ()sin u6 x2 






sin π

2 x1 ()sin π x9 ()sin 2 π− + + − + + :=

x5 





sin π

2 v1 ()sin 2 π + +

Kinematic equations for Nesting Force Loop 2
> g2[x]:=x6*cos(-
pi/2)+x8*cos(pi)+x1*cos(2*pi)+x2*cos(pi/2)+u1*cos(pi+u6)+x11*cos(u6)+x1
2*cos(pi/2+u6)+v3*cos(pi+u6)+v4*cos(pi/2);
g2[y]:=x6*sin(-
pi/2)+x8*sin(pi)+x1*sin(2*pi)+x2*sin(pi/2)+u1*sin(pi+u6)+x11*sin(u6)+x1
2*sin(pi/2+u6)+v3*sin(pi+u6)+v4*sin(pi/2);

121

g2x x6 





cos π

2 x8 ()cos π x1 ()cos 2 π x2 





cos π

2 u1 ()cos + π u6 x11 ()cos u6 + + + + + :=

x12 





cos +

π
2 u6 v3 ()cos + π u6 v4 






cos π

2 + + +

g2y x6 





sin π

2 x8 ()sin π x1 ()sin 2 π x2 





sin π

2 u1 ()sin + π u6 x11 ()sin u6− + + + + + :=

x12 





sin +

π
2 u6 v3 ()sin + π u6 v4 






sin π

2 + + +

Kinematic equations evaluated in terms of known angles:
> h1[x]:=eval(subs(pi=Pi,h1[x]));
h1[y]:=eval(subs(pi=Pi,h1[y]));
h2[x]:=eval(subs(pi=Pi,h2[x]));
h2[y]:=eval(subs(pi=Pi,h2[y]));
h3[x]:=eval(subs(pi=Pi,h3[x]));
h3[y]:=eval(subs(pi=Pi,h3[y]));
g1[x]:=eval(subs(pi=Pi,g1[x]));
g1[y]:=eval(subs(pi=Pi,g1[y]));
g2[x]:=eval(subs(pi=Pi,g2[x]));
g2[y]:=eval(subs(pi=Pi,g2[y]));

 := h1x − + − x3 u2 ()cos u6 u1 ()cos u6 x1

 := h1 y − + − x4 u2 ()sin u6 u1 ()sin u6 x2

 := h2 x + − + + − x13 x13 ()sin + x14 u6 u3 ()cos + x14 u6 x10 ()sin u6 u1 ()cos u6 x1

 := h2y − − − + − u4 x13 ()cos + x14 u6 u3 ()sin + x14 u6 x10 ()cos u6 u1 ()sin u6 x2

 := h3x + − + + − u5 x13 ()sin + x14 u6 u3 ()cos + x14 u6 x10 ()sin u6 u2 ()cos u6 x3

 := h3y − − − − + − x7 x13 x13 ()cos + x14 u6 u3 ()sin + x14 u6 x10 ()cos u6 u2 ()sin u6 x4

 := g1 x − + − + + v2 ()sin u6 x11 ()cos u6 u1 ()cos u6 x1 x9 v1

 := g1 y − − + − + v2 ()cos u6 x11 ()sin u6 u1 ()sin u6 x2 x5

 := g2x − + − + − − x8 x1 u1 ()cos u6 x11 ()cos u6 x12 ()sin u6 v3 ()cos u6

 := g2y − + − + + − + x6 x2 u1 ()sin u6 x11 ()sin u6 x12 ()cos u6 v3 ()sin u6 v4

Form vectors of independent and dependent variables.
Vectors formed for use in the grad() function.
> X:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14]);
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11,dx12,dx13,dx1
4]);
U:=vector([u1,u2,u3,u4,u5,u6]);
dUU:=vector([du1,du2,du3,du4,du5,du6]);
V:=vector([v1,v2,v3,v4]);
dVV:=vector([dv1,dv2,dv3,dv4]);

 := X [], , , , , , , , , , , , ,x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

 := dX [], , , , , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11 dx12 dx13 dx14

122

 := U [], , , , ,u1 u2 u3 u4 u5 u6

 := dUU [], , , , ,du1 du2 du3 du4 du5 du6

 := V [], , ,v1 v2 v3 v4

 := dVV [], , ,dv1 dv2 dv3 dv4

Matrices hx, hu, gx, gu and gv formed:
Matrices are formed by using the grad(), or gradient function.
> hx:=transpose(augment(
grad(eval(h1[x]),X),
grad(eval(h1[y]),X),
grad(eval(h2[x]),X),
grad(eval(h2[y]),X),
grad(eval(h3[x]),X),
grad(eval(h3[y]),X)));

hu:=transpose(augment(
grad(eval(h1[x]),U),
grad(eval(h1[y]),U),
grad(eval(h2[x]),U),
grad(eval(h2[y]),U),
grad(eval(h3[x]),U),
grad(eval(h3[y]),U)));

gx:=transpose(augment(
grad(eval(g1[x]),X),
grad(eval(g1[y]),X),
grad(eval(g2[x]),X),
grad(eval(g2[y]),X)));

gu:=transpose(augment(
grad(eval(g1[x]),U),
grad(eval(g1[y]),U),
grad(eval(g2[x]),U),
grad(eval(g2[y]),U)));

gv:=transpose(augment(
grad(eval(g1[x]),V),
grad(eval(g1[y]),V),
grad(eval(g2[x]),V),
grad(eval(g2[y]),V)));
>

123

hx :=
[, , , , , , , , , , , , ,]-1 0 1 0 0 0 0 0 0 0 0 0 0 0
[, , , , , , , , , , , , ,]0 -1 0 1 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 ()sin u6 0 0 + 1 ()sin + x14 u6[, , , , , , , , , , , , ,
 + x13 ()cos + x14 u6 u3 ()sin + x14 u6]

0 -1 0 0 0 0 0 0 0 − ()cos u6 0 0 − ()cos + x14 u6[, , , , , , , , , , , , ,
 − x13 ()sin + x14 u6 u3 ()cos + x14 u6]

0 0 -1 0 0 0 0 0 0 ()sin u6 0 0 ()sin + x14 u6[, , , , , , , , , , , , ,
 + x13 ()cos + x14 u6 u3 ()sin + x14 u6]

0 0 0 -1 0 0 1 0 0 − ()cos u6 0 0 − − 1 ()cos + x14 u6[, , , , , , , , , , , , ,
 − x13 ()sin + x14 u6 u3 ()cos + x14 u6]

hu :=
[, , , , ,]()cos u6 − ()cos u6 0 0 0 − u2 ()sin u6 u1 ()sin u6
[, , , , ,]()sin u6 − ()sin u6 0 0 0 − + u2 ()cos u6 u1 ()cos u6

()cos u6 0 − ()cos + x14 u6 0 0[, , , , ,
 + + − x13 ()cos + x14 u6 u3 ()sin + x14 u6 x10 ()cos u6 u1 ()sin u6]

()sin u6 0 − ()sin + x14 u6 1 0[, , , , ,
 − + + x13 ()sin + x14 u6 u3 ()cos + x14 u6 x10 ()sin u6 u1 ()cos u6]

0 ()cos u6 − ()cos + x14 u6 0 1[, , , , ,
 + + − x13 ()cos + x14 u6 u3 ()sin + x14 u6 x10 ()cos u6 u2 ()sin u6]

0 ()sin u6 − ()sin + x14 u6 0 0[, , , , ,
 − + + x13 ()sin + x14 u6 u3 ()cos + x14 u6 x10 ()sin u6 u2 ()cos u6]

 := gx













-1 0 0 0 0 0 0 0 1 0 − ()cos u6 0 0 0
0 -1 0 0 1 0 0 0 0 0 − ()sin u6 0 0 0
1 0 0 0 0 0 0 -1 0 0 ()cos u6 − ()sin u6 0 0
0 1 0 0 0 -1 0 0 0 0 ()sin u6 ()cos u6 0 0

 := gu













()cos u6 0 0 0 0 + − v2 ()cos u6 x11 ()sin u6 u1 ()sin u6
()sin u6 0 0 0 0 − + v2 ()sin u6 x11 ()cos u6 u1 ()cos u6

− ()cos u6 0 0 0 0 − − + u1 ()sin u6 x11 ()sin u6 x12 ()cos u6 v3 ()sin u6
− ()sin u6 0 0 0 0 − + − − u1 ()cos u6 x11 ()cos u6 x12 ()sin u6 v3 ()cos u6

 := gv













1 ()sin u6 0 0
0 − ()cos u6 0 0
0 0 − ()cos u6 0
0 0 − ()sin u6 1

Solve equations to obtain explicit functions for all dependent variables in terms of
independent variables and generate C code for Monte Carlo simulation program:
> u1:=solve(h1[x]=0,u1):
u2:=solve(h3[y]=0,u2):
u3:=solve(h2[x]=0,u3):
u4:=solve(h2[y],u4):
u5:=solve(h3[x],u5):
v3:=solve(g2[x],v3):
v2:=solve(g1[y],v2):

124

v1:=solve(g1[x],v1):
v4:=solve(g2[y],v4):
u1:=collect(simplify(u1),{cos(x14),sin(x14)});C(u1);
u2:=collect(simplify(u2),{cos(x14),sin(x14)});C(u2);
u3:=collect(simplify(u3),{cos(x14),sin(x14)});C(u3);
u4:=collect(simplify(u4),{cos(x14),sin(x14)});C(u4);
u5:=collect(simplify(u5),{cos(x14),sin(x14)});C(u5);
v3:=collect(simplify(v3),{cos(x14),sin(x14)});C(v3);
v2:=collect(simplify(v2),{cos(x14),sin(x14)});C(v2);
v1:=collect(simplify(v1),{cos(x14),sin(x14)});C(v1);
v4:=collect(simplify(v4),{cos(x14),sin(x14)});C(v4);

u1 x3 ()cos + x14 u6 ()sin u6 ()cos u6 x7 ()cos + x14 u6 ()cos u6 x13 ()cos + x14 u6 + − (:=

x13 ()cos u6 ()sin + x14 u6 ()cos u6 x13 ()cos u6 ()sin + x14 u6 x10 ()sin u6 − − −

x10 ()cos u6 2 ()cos + x14 u6 ()cos u6 x4 ()cos + x14 u6 x1 ()cos + x14 u6 ()sin u6 − − −
x1 ()cos u6 ()sin + x14 u6 + ()cos u6 ()− + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6)/()

 t0 = (x3*cos(x14+u6)*sin(u6)+cos(u6)*x7*cos(x14+u6)-
cos(u6)*x13*cos(x14+
u6)-x13*cos(u6)*sin(x14+u6)-cos(u6)*x13-
cos(u6)*sin(x14+u6)*x10*sin(u6)-x10*pow
(cos(u6),2.0)*cos(x14+u6)-cos(u6)*x4*cos(x14+u6)-
x1*cos(x14+u6)*sin(u6)+x1*cos(
u6)*sin(x14+u6))/cos(u6)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6));
u2 x7 ()cos + x14 u6 x13 ()cos + x14 u6 x13 ()sin + x14 u6 x13 ()sin + x14 u6 x10 ()sin u6 − − − − (:=

()sin + x14 u6 x3 x10 ()cos u6 ()cos + x14 u6 x4 ()cos + x14 u6 + − −)/(
− + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6)

 t0 = (x7*cos(x14+u6)-x13*cos(x14+u6)-x13*sin(x14+u6)-x13-
sin(x14+u6)*x10*
sin(u6)+sin(x14+u6)*x3-x10*cos(u6)*cos(x14+u6)-x4*cos(x14+u6))/(-
cos(x14+u6)*
sin(u6)+cos(u6)*sin(x14+u6));
u3 x13 ()sin u6 x13 ()sin + x14 u6 ()sin u6 x10 x3 ()sin u6 ()cos u6 x7 ()cos u6 x13− − − + + − (:=

()cos u6 x13 ()cos + x14 u6 ()cos u6 x4 − − − + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6)/(
)

 t0 = (-x13*sin(u6)-x13*sin(x14+u6)*sin(u6)-
x10+x3*sin(u6)+cos(u6)*x7-cos(
u6)*x13-cos(u6)*x13*cos(x14+u6)-cos(u6)*x4)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(
x14+u6));

 := u4 − − + + − ()cos u6 x7 ()cos u6 x13 ()cos u6 x4 x2 ()cos u6 x3 ()sin u6 ()sin u6 x1
()cos u6

 t0 = (cos(u6)*x7-cos(u6)*x13-
cos(u6)*x4+x2*cos(u6)+x3*sin(u6)-sin(u6)*x1)
/cos(u6);

 := u5 x13

 t0 = x13;

125

v3 x8 ()cos + x14 u6 ()sin u6 x8 ()cos u6 ()sin + x14 u6 x3 ()cos + x14 u6 ()sin u6− + + (− :=
()cos u6 x7 ()cos + x14 u6 ()cos u6 x13 ()cos + x14 u6 x13 ()cos u6 ()sin + x14 u6 + − −

()cos u6 x13 ()cos u6 ()sin + x14 u6 x10 ()sin u6 x10 ()cos u6 2 ()cos + x14 u6 − − −
()cos u6 x4 ()cos + x14 u6 x11 ()cos u6 ()cos + x14 u6 ()sin u6 − +

x11 ()cos u6 2 ()sin + x14 u6 x12 ()cos + x14 u6 x12 ()cos + x14 u6 ()cos u6 2 − − +
x12 ()sin u6 ()cos u6 ()sin + x14 u6 + ()cos u6)/(

()− + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6)

 t0 = -(-
x8*cos(x14+u6)*sin(u6)+x8*cos(u6)*sin(x14+u6)+x3*cos(x14+u6)*sin(
u6)+cos(u6)*x7*cos(x14+u6)-cos(u6)*x13*cos(x14+u6)-
x13*cos(u6)*sin(x14+u6)-cos(
u6)*x13-cos(u6)*sin(x14+u6)*x10*sin(u6)-
x10*pow(cos(u6),2.0)*cos(x14+u6)-cos(u6
)*x4*cos(x14+u6)+x11*cos(u6)*cos(x14+u6)*sin(u6)-
x11*pow(cos(u6),2.0)*sin(x14+
u6)-
x12*cos(x14+u6)+x12*cos(x14+u6)*pow(cos(u6),2.0)+x12*sin(u6)*cos(u6
)*sin(
x14+u6))/cos(u6)/(-cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6));
v2 x11 ()cos u6 ()cos + x14 u6 x11 ()cos u6 3 ()cos + x14 u6 − (:=

x11 ()cos u6 2 ()sin u6 ()sin + x14 u6 x3 ()cos + x14 u6 x3 ()cos + x14 u6 ()cos u6 2 − + −
()sin u6 ()cos u6 x7 ()cos + x14 u6 ()sin u6 ()cos u6 x13 ()cos + x14 u6 + −
()cos u6 ()sin + x14 u6 x13 ()sin u6 ()cos u6 x13 ()sin u6 x10 ()cos u6 ()sin + x14 u6 − − −

x10 ()cos u6 3 ()sin + x14 u6 x10 ()cos u6 2 ()cos + x14 u6 ()sin u6 + −
()sin u6 ()cos u6 x4 ()cos + x14 u6 x1 ()cos + x14 u6 x1 ()cos + x14 u6 ()cos u6 2 − − +
()sin u6 x1 ()cos u6 ()sin + x14 u6 x2 ()cos u6 ()cos + x14 u6 ()sin u6 + +

x2 ()cos u6 2 ()sin + x14 u6 x5 ()cos u6 ()cos + x14 u6 ()sin u6 x5 ()cos u6 2 ()sin + x14 u6 − − +)

()cos u6 2 ()− + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6()

 MapleGenVar2 = x11*cos(u6)*cos(x14+u6)-
x11*pow(cos(u6),3.0)*cos(x14+u6)-
x11*pow(cos(u6),2.0)*sin(u6)*sin(x14+u6)+x3*cos(x14+u6)-
x3*cos(x14+u6)*pow(cos(
u6),2.0)+sin(u6)*cos(u6)*x7*cos(x14+u6)-
sin(u6)*cos(u6)*x13*cos(x14+u6)-cos(u6)
*sin(x14+u6)*x13*sin(u6)-cos(u6)*x13*sin(u6)-
x10*cos(u6)*sin(x14+u6);
 MapleGenVar1 = MapleGenVar2+x10*pow(cos(u6),3.0)*sin(x14+u6)-
x10*pow(cos(
u6),2.0)*cos(x14+u6)*sin(u6)-sin(u6)*cos(u6)*x4*cos(x14+u6)-
x1*cos(x14+u6)+x1*
cos(x14+u6)*pow(cos(u6),2.0)+sin(u6)*x1*cos(u6)*sin(x14+u6)+x2*cos(
u6)*cos(x14+
u6)*sin(u6)-x2*pow(cos(u6),2.0)*sin(x14+u6)-
x5*cos(u6)*cos(x14+u6)*sin(u6)+x5*
pow(cos(u6),2.0)*sin(x14+u6);
 MapleGenVar2 = 1/pow(cos(u6),2.0)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+
u6));

126

 t0 = MapleGenVar1*MapleGenVar2;
v1 x2 ()cos u6 3 ()cos + x14 u6 x13 ()cos u6 ()sin + x14 u6− − (− :=

x11 ()cos u6 ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6 x10 ()sin u6 + −

x10 ()cos u6 2 ()cos + x14 u6 x11 ()cos u6 2 ()sin + x14 u6 ()cos u6 x13 − − −

x1 ()cos u6 3 ()sin + x14 u6 ()sin u6 x5 ()cos u6 2 ()sin + x14 u6 − +

()sin u6 x2 ()cos u6 2 ()sin + x14 u6 x9 ()cos u6 2 ()cos + x14 u6 ()sin u6 − −
x9 ()cos u6 3 ()sin + x14 u6 ()cos u6 x13 ()cos + x14 u6 ()cos u6 x4 ()cos + x14 u6 + − −

x3 ()cos + x14 u6 ()sin u6 ()cos u6 x7 ()cos + x14 u6 x5 ()cos u6 3 ()cos + x14 u6 + + +

x1 ()cos + x14 u6 ()sin u6 x1 ()cos + x14 u6 ()sin u6 ()cos u6 2 x5 ()cos u6 ()cos + x14 u6 − + −

x1 ()cos u6 ()sin + x14 u6 x2 ()cos u6 ()cos + x14 u6 + + ()cos u6 2) (
()− + ()cos + x14 u6 ()sin u6 ()cos u6 ()sin + x14 u6)

 MapleGenVar2 =
x2*pow(cos(u6),3.0)*cos(x14+u6)+x13*cos(u6)*sin(x14+u6)-
x11*cos(u6)*cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6)*x10*sin(u6)+x10
*pow(cos(u6)
,2.0)*cos(x14+u6)+x11*pow(cos(u6),2.0)*sin(x14+u6)+cos(u6)*x13+x1*p
ow(cos(u6),
3.0)*sin(x14+u6)-
sin(u6)*x5*pow(cos(u6),2.0)*sin(x14+u6)+sin(u6)*x2*pow(cos(u6)
,2.0)*sin(x14+u6)+x9*pow(cos(u6),2.0)*cos(x14+u6)*sin(u6);
 MapleGenVar1 = MapleGenVar2-
x9*pow(cos(u6),3.0)*sin(x14+u6)+cos(u6)*x13*
cos(x14+u6)+cos(u6)*x4*cos(x14+u6)-x3*cos(x14+u6)*sin(u6)-
cos(u6)*x7*cos(x14+u6
)-x5*pow(cos(u6),3.0)*cos(x14+u6)+x1*cos(x14+u6)*sin(u6)-
x1*cos(x14+u6)*sin(u6)
*pow(cos(u6),2.0)+x5*cos(u6)*cos(x14+u6)-x1*cos(u6)*sin(x14+u6)-
x2*cos(u6)*cos(
x14+u6);
 MapleGenVar2 = 1/pow(cos(u6),2.0)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+
u6));
 t0 = MapleGenVar1*MapleGenVar2;

 := v4 − + − − x6 ()cos u6 x2 ()cos u6 ()sin u6 x1 x12 ()sin u6 x8
()cos u6

 t0 = (x6*cos(u6)-x2*cos(u6)+sin(u6)*x1-x12-
sin(u6)*x8)/cos(u6);
> u6:=arctan((x4-x2),(x3-x1));C(u6);

 := u6 ()arctan , − x4 x2 − x3 x1

 t0 = atan2(x4-x2,x3-x1);
Input nominal values for all applicable variables:
This can be done by copying the appropriate cells from
the Excel file.
> x1:=2.5: dx1:=0.01:
x2:=0.5: dx2:=0.005:
x3:=5: dx3:=0.02:
x4:=0.5: dx4:=0.005:

127

x5:=1.75: dx5:=0.02:
x6:=2.4: dx6:=0.02:
x7:=4: dx7:=0.005:
x8:=3.8: dx8:=0.01:
x9:=5.62: dx9:=0.01:
x10:=1: dx10:=0.005:
x11:=5.1: dx11:=0.01:
x12:=2: dx12:=0.01:
x13:=1.125: dx13:=0.001:
x14:=0.349065850398866: dx14:=0.00872664625997165:
Evaluate all dependent variables for known independent variable values:
> 'u1'=evalf[4](u1);
'u2'=evalf[4](u2);
'u3'=evalf[4](u3);
'u4'=evalf[4](u4);
'u5'=evalf[4](u5);
'u6'=evalf[4](u6);
'v1'=evalf[4](v1);
'v2'=evalf[4](v2);
'v3'=evalf[4](v3);
'v4'=evalf[4](v4);

 = u1 1.8640

 = u2 4.3610

 = u3 0.9296

 = u4 2.8750

 = u5 1.1250

 = u6 0.0000

 = v1 0.1140

 = v2 1.2500

 = v3 1.9380

 = v4 -0.1000

Double Check Loop Equations to verify they are equal to zero:
> 'h1[x]'=evalf(h1[x]);'h1[y]'=evalf(h1[y]);
'h2[x]'=evalf(h2[x]);'h2[y]'=evalf(h2[y]);
'h3[x]'=evalf(h3[x]);'h3[y]'=evalf(h3[y]);
'g1[x]'=evalf(g1[x]);'g1[y]'=evalf(g1[y]);
'g2[x]'=evalf(g2[x]);'g2[y]'=evalf(g2[y]);

 = h1 x 0.1000 10 -8

 = h1 y 0.0000

 = h2 x 0.0000

 = h2 y 0.0000

128

 = h3 x -0.1000 10 -8

 = h3 y 0.0000

 = g1 x -0.7000 10 -9

 = g1 y 0.0000

 = g2 x 0.1000 10 -8

 = g2 y 0.0000

Matrices are now evaluated according to know inputs:
> hx:=multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity));
hu:=multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity));
gx:=multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity));
gu:=multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity));
gv:=multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity));
huinv:=eval(inverse(hu)):
huinv=evalf[4](evalm(huinv));
gvinv:=eval(inverse(gv)):
gvinv=evalf[4](evalm(gvinv));
hx :=

[, , , , , , , , , , , , ,]-1 0 1 0 0 0 0 0 0 0 0 0 0 0
[, , , , , , , , , , , , ,]0 -1 0 1 0 0 0 0 0 0 0 0 0 0

-1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 1.3420 1.3750, , ,]
0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000[, , , , , , , , , ,

0.0000 0.0000 -0.9397 -0.4885, , ,]
0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 0.3420 1.3750, , ,]
0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 -1.0000[, , , , , , , , , ,

0.0000 0.0000 -1.9397 -0.4885, , ,]

 := hu













1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -2.5000
1.0000 0.0000 -0.9397 0.0000 0.0000 2.3750
0.0000 0.0000 -0.3420 1.0000 0.0000 1.3750
0.0000 1.0000 -0.9397 0.0000 1.0000 2.3750
0.0000 0.0000 -0.3420 0.0000 0.0000 3.8750

129

gx :=
-1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000[, , , , , , , , , ,

-1.0000 0.0000 0.0000 0.0000, , ,]
0.0000 -1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 0.0000 0.0000, , ,]
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 1.0000[, , , , , , , , , ,
0.0000 0.0000 0.0000, , ,]
0.0000 1.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
1.0000 0.0000 0.0000, , ,]

 := gu













1.0000 0.0000 0.0000 0.0000 0.0000 1.2500
0.0000 0.0000 0.0000 0.0000 0.0000 -3.2365
-1.0000 0.0000 0.0000 0.0000 0.0000 -2.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.3000

 := gv













1.0000 0.0000 0.0000 0.0000
0.0000 -1.0000 0.0000 0.0000
0.0000 0.0000 -1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

 = huinv













0.0000 -3.3090 1.0000 0.0000 0.0000 -2.7470
-1.0000 -3.3090 1.0000 0.0000 0.0000 -2.7470
0.0000 -4.5320 0.0000 0.0000 0.0000 -2.9240
0.0000 -1.0000 0.0000 1.0000 0.0000 -1.0000
1.0000 0.0000 -1.0000 0.0000 1.0000 0.0000
0.0000 -0.4000 0.0000 0.0000 0.0000 0.0000

 = gvinv













1.0000 0.0000 0.0000 -0.0000
0.0000 -1.0000 -0.0000 0.0000
0.0000 -0.0000 -1.0000 -0.0000
0.0000 0.0000 -0.0000 1.0000

Form the closed loop sensitivities matrix:
> huinvhx:=eval((multiply(-huinv,hx))):
'huinvhx'=evalf[4](evalm(huinvhx));

130

huinvhx =
1.0000 -3.3090 0.0000 0.5611 0.0000 0.0000 2.7470 0.0000 0.0000 -2.7470[, , , , , , , , , ,

0.0000 0.0000 -6.6710 -2.7170, , ,]
0.0000 -3.3090 1.0000 0.5611 0.0000 0.0000 2.7470 0.0000 0.0000 -2.7470[, , , , , , , , , ,

0.0000 0.0000 -6.6710 -2.7170, , ,]
0.0000 -4.5320 0.0000 1.6080 0.0000 0.0000 2.9240 0.0000 0.0000 -2.9240[, , , , , , , , , ,

0.0000 0.0000 -5.6710 -1.4280, , ,]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 -1.0000 0.0000, , ,]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 1.0000 0.0000, , ,]
0.0000 -0.4000 0.0000 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 0.0000 0.0000, , ,]

> eta:=evalf[4](evalm(gx + gu &* huinvhx));
The + sign is due to huinvhx = -huinv*hx
η :=

0.0000 -3.8090 0.0000 1.0610 0.0000 0.0000 2.7470 0.0000 1.0000 -2.7470[, , , , , , , , , ,
-1.0000 0.0000 -6.6710 -2.7170, , ,]

0.0000 0.2940 0.0000 -1.2940 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
0.0000 0.0000 0.0000, , ,]
0.0000 4.1090 0.0000 -1.3610 0.0000 0.0000 -2.7470 -1.0000 0.0000 2.7470[, , , , , , , , , ,

1.0000 0.0000 6.6710 2.7170, , ,]
0.0000 0.4800 0.0000 0.5200 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000[, , , , , , , , , ,
1.0000 0.0000 0.0000, , ,]

> sV:=evalf[4](evalm(-gvinv &* eta));
sV :=

-0.0000 3.8090 -0.0000 -1.0610 -0.0000 -0.0000 -2.7470 -0.0000 -1.0000 2.7470[, , , , , , , , , ,
1.0000 -0.0000 6.6710 2.7170, , ,]

-0.0000 0.2940 -0.0000 -1.2940 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000[, , , , , , , , , ,
0.0000 -0.0000 0.0000 0.0000, , ,]

-0.0000 4.1090 -0.0000 -1.3610 -0.0000 -0.0000 -2.7470 -1.0000 -0.0000 2.7470[, , , , , , , , , ,
1.0000 -0.0000 6.6710 2.7170, , ,]

-0.0000 -0.4800 -0.0000 -0.5200 -0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000[, , , , , , , , , ,
-0.0000 -1.0000 -0.0000 -0.0000, , ,]

> dU:=evalf[4](augment((multiply(abs(huinvhx),dX)))):
augment(evalm(dUU))=evalm(dU);
dV:=evalf[4](augment((multiply(abs(sV),dX)))):
augment(evalm(dVV))=evalm(dV);

131

 =













du1
du2
du3
du4
du5
du6













0.0872
0.0972
0.0781
0.0060
0.0010
0.0040

 =













dv1
dv2
dv3
dv4













0.1022
0.0279
0.1052
0.0350

Calculate the standard deviation for all the dependent variables for the Pinned Block
Assembly:
> sigma_u[1]:=sqrt(Sum(huinvhx[1,i]^2*(dX[i]/3)^2,i=1..n));
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[3]:=sqrt(Sum(huinvhx[3,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[4]:=sqrt(sum(huinvhx[4,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[5]:=sqrt(Sum(huinvhx[5,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_u[6]:=sqrt(sum(huinvhx[6,i]^2*(dX[i]/3)^2,i=1..n)):
n:=14;for j from 1 to 6 do sigma_u[j]:=evalf[4](sigma_u[j]) od;
n:='n':

 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2

 := n 14

 := sigma_u 1 0.0123

 := sigma_u 2 0.0136

 := sigma_u 3 0.0115

 := sigma_u 4 0.0017

 := sigma_u 5 0.0003

 := sigma_u 6 0.0009

> sigma_v[1]:=sqrt(Sum(sV[1,i]^2*(dX[i]/3)^2,i=1..n));
sigma_v[2]:=sqrt(sum(sV[2,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_v[3]:=sqrt(Sum(sV[3,i]^2*(dX[i]/3)^2,i=1..n)):
sigma_v[4]:=sqrt(sum(sV[4,i]^2*(dX[i]/3)^2,i=1..n)):
n:=14;for j from 1 to 4 do sigma_v[j]:=evalf[4](sigma_v[j]) od;

 := sigma_v 1 ∑
 = i 1

n








1
9 sV ,1 i

2
dXi

2

 := n 14

 := sigma_v 1 0.0132

 := sigma_v 2 0.0070

132

 := sigma_v 3 0.0136

 := sigma_v 4 0.0075

133

Appendix D
 Using Monte Carlo for Worst-Case Comparisons

This appendix will reference the Pinned Block assembly explained in both

sections 2.6.1 and 3.4.

A uniform distribution will allow independent variables to have an equal

probability of being at their maximum or minimum values. Also, a uniform distribution

will never exceed the set limits for a variable. A histogram for the independent variable,

x1 can be seen in Figure D.1. As can be seen in the histogram, x1 is at its limits just as

frequently as it is any other value. Also, Figure D.1 shows that x1 never exceeds its

limits.

Figure D.1 – Histogram of the uniformly distributed independent
variable, x1.

0.6 0.605 0.61 0.615 0.62 0.625 0.63 0.635 0.64 0.645 0.65 0

1000

2000

3000

4000

5000

6000

134

In contrast, a normal distribution is based on a standard deviation and has some

probability that it will exceed the dimensional limits for the variable. This indicates that,

though the probability is small, there is a chance that if enough independent variables

exceed their chosen tolerance limits because of their normal distributions, the dependent

variables will continuously be pushed to greater and greater limits. A histogram or the

independent variable, x1 is illustrated in Figure D.2.

Figure D.2 – Histogram of the normally distributed independent
variable, x1.

When the dependent variables are considered, allowing all the independent

variables to vary according to a normal distribution cannot be used for worst-case

analysis. This is best illustrated with a comparison between the same dependent variable,

in this case, u1, and two Monte Carlo distributions, one with independent variables that

were allowed to follow a normal distribution, and one where the independent variables

were allowed to follow uniform distributions. Both these simulations were run with

500,000 runs. Figure D.3 was generated from data acquired from the normally

distributed inputs using the histfit(variable,numbins) function associated with the

0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10 4

135

statistical package in MatLab©. It plots a normal curve over a similarly scaled histogram

of the data found in variable and with the number of histogram bins, numbins. It can be

seen that there are values that extend further into the tail. Again, because independent

variables are described by a normal distribution with tails that extend to ±∞, the

dependent variable will vary likewise. Zooming in on right-hand tail shows how these

random values begin to populate the tail. This is illustrated in Figure D.4.

Figure D.3 – Histfit() plot of the data for the dependent
variable, u1.

In contrast, Figure D.5 shows a histogram of data generated for u1 using a Monte

Carlo simulation where the independent variables had uniform distributions. Notice how

both end of the histogram fall off rapidly and there are little to no tails as there were with

the normally distributed independent variables. Again, zooming in on the right-hand

limits of the histogram, as shown in Figure D.6, further shows fact that there is a finite

limit to the extents of values for u1.

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

136

Figure D.4 – Zoomed in on right-hand tail of the Histfit()
plot for the dependent variable, u1.

In conclusion, it was determined from the knowledge that a uniform distribution

has finite limits that are the same as the manufacturing limits, and by analyzing

histograms for the dependent variables, as shown in Figure D.3 thru Figure D.6 that a

500,000 run Monte Carlo simulation where the independent variables were uniformly

distributed would be sufficient for estimating the worst-case conditions on dependent

variables.

2.95 2.96 2.97 2.98 2.99 3 3.01 3.02 3.03 3.04 3.05
0

20

40

60

80

100

120

140

160

180

200

137

Figure D.5 – Histogram of the data for the dependent variable, u1
when the independent variables were allowed to follow a uniform

distribution.

Figure D.6 – Histogram of the data for the dependent variable, u1
when the independent variables were allowed to follow a uniform

distribution.

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2.95 2.96 2.97 2.98 2.99 3 3.01 3.02
0

20

40

60

80

100

120

140

160

180

200

	Designing Active Smart Features to Provide Nesting Forces in Exactly Constrained Assemblies
	BYU ScholarsArchive Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation for Research
	Smart Assemblies
	Exact Constraint and Nesting Forces

	Thesis Objectives
	Delimitations
	Significance of Research

	Background and Literature Review
	Introduction
	Variation in Assemblies
	Robust Design
	Smart Assemblies and Features
	Exact Constraint and Nesting Forces
	DLM -- Direct Linearization Method
	DLM Example – Exactly Constrained Pinned Block

	Conclusion

	General Method for Analysis and Design of Features that Supply Nesting Forces
	Introduction
	Assembly Model Setup
	STEP 1 – Perform Assembly Design Synthesis
	STEP 2 – Determine Placement and Configuration of
	STEP 3 – Apply Part DRFs and Kinematic Joints
	STEP 4 – Form Kinematic Assembly Vector Loops
	Principles for Nesting Force Loops

	STEP 5 – Write Kinematic Equations

	Assembly Model Analysis
	STEP 6 – Perform Analysis of the Closed and Open
	STEP 7 – Perform Analysis of the Nesting Force Lo
	STEP 8 – Perform Force Analysis

	Example: Pinned Block Assembly with Applied Nesting Force
	Summary of Method for Designing Nesting Forces
	Summary

	Case Studies
	Example 1 -- 1D Latch
	Exactly Constrained Block
	Wedge and Cylinder Example

	Conclusions and Recommendations
	Contributions and Conclusions
	Recommendations

	Appendix A
	Maple© Worksheets for Pinned Block Assembly
	A.1Explicit Equation Development
	A.2DLM Model Setup and Analysis

	Appendix B
	Maple© Worksheets for Exactly Constrained Block �
	B.1Explicit Equation Development
	B.2DLM Model Setup and Analysis

	Appendix C
	Maple© Worksheet for Wedge Assembly
	C.1DLM Model Setup, Analysis & Explicit Equation Development

	Appendix D
	Using Monte Carlo for Worst-Case Comparisons

