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ABSTRACT 
 
 
 
 

DESIGNING ACTIVE SMART FEATURES TO PROVIDE NESTING FORCES 

IN EXACTLY CONSTRAINED ASSEMBLIES 

 

 

 
 

Eric L. Pearce 
 

Department of Mechanical Engineering 
 

Master of Science 
 
 
 

Ever since the design and manufacture of products moved from the craftsman era 

where individual craftsman designed and manufactured the entire product, to the mass 

production era, where skilled laborers were crafting interchangeable parts or in some 

cases single features on interchangeable parts, variation in assemblies has been a major 

concern to designers, manufacturers, and in a more subtle way, customers.  Variation, in 

the end, affects quality, performance and the cost of products.  One particular type of 

design that is particularly robust to variation is an exactly constrained design. 

Several researchers have recently explored the topic of exact constraint design.  

An exactly constrained design is one in which each degree of freedom is constrained by a 

single constraint until the desired degrees of freedom for the design is attained.  One 

attractive advantage of exactly constrained designs is that they are robust to variation. 





 

However, exactly constrained designs often require nesting forces to maintain the 

configuration of the design.  This research develops a method for designing features that 

will supply robust nesting forces such that the advantages of the exactly constrained 

design are preserved. 

The method developed in this work takes advantage of a proven method for 

tolerance analysis and enhances this method to include the analysis of these features that 

supply nesting forces.  Along with the enhancement, principles are developed that aid this 

analysis.  All the examples provided in this work are verified using comparisons to 

Monte Carlo simulations.  The comparisons show good results, typically less than 2% 

difference from the Monte Carlo simulations, verifying that this method accurately 

predicts variation and allows for the robust design of features that supply the nesting 

forces in exactly constrained assemblies.





 

ACKNOWLEDGMENTS 

I would first like to thank my lovely wife, Harmony.  Without her faith in me and 

her unwavering support in returning to school full-time, I would have never made it.  Our 

children, Rachel, Rebecca, and Nathan also deserve my thanks, as they have always 

believed their Dad could do it.  I also owe very much to my advisor, Dr. Alan Parkinson.  

He has supported me with intellect, guidance, and the occasional shove and obviously 

without him, this work would have never been accomplished.  Other professors that 

deserve my thanks for the advice, mentorship and counsel they gave me have been Dr. 

Ken W. Chase, Dr. Paul F. Eastman, and Dr. Robert H. Todd.  I would like to express 

thanks to my parents and my in-laws who have also supported and believed in my dreams 

and me.  I would like to thank the National Science Foundation who has supported this 

research with grant DMI 0084880.  And finally, I must express my greatest thanks to my 

Heavenly Father, for the inspiration, skills and talents that have brought me to this point. 





xv 

TABLE OF CONTENTS 

TABLE OF CONTENTS.................................................................................................. xv 

LIST OF FIGURES ......................................................................................................... xxi 

LIST OF TABLES.......................................................................................................... xxv 

Chapter 1 Introduction..................................................................................................... 1 

1.1 Motivation for Research ....................................................................................... 1 

1.1.1 Smart Assemblies........................................................................................ 2 

1.1.2 Exact Constraint and Nesting Forces.......................................................... 3 

1.2 Thesis Objectives.................................................................................................. 5 

1.3 Delimitations ........................................................................................................ 5 

1.4 Significance of Research ...................................................................................... 6 

Chapter 2 Background and Literature Review ................................................................ 7 

2.1 Introduction .......................................................................................................... 7 

2.2 Variation in Assemblies ....................................................................................... 7 

2.3 Robust Design ...................................................................................................... 8 

2.4 Smart Assemblies and Features............................................................................ 9 

2.5 Exact Constraint and Nesting Forces ................................................................. 10 

2.6 DLM -- Direct Linearization Method................................................................. 15 

2.6.1 DLM Example – Exactly Constrained Pinned Block ............................... 15 

2.7 Conclusion.......................................................................................................... 29 

Chapter 3 General Method for Analysis and Design of Features that Supply Nesting 
Forces ....................................................................................................................... 31 

3.1 Introduction ........................................................................................................ 31 

3.2 Assembly Model Setup....................................................................................... 31 

3.2.1 STEP 1 – Perform Assembly Design Synthesis ....................................... 32 

3.2.2 STEP 2 – Determine Placement and Configuration of Nesting Force...... 32





xvii 

3.2.3 STEP 3 – Apply Part DRFs and Kinematic Joints.................................... 34 

3.2.4 STEP 4 – Form Kinematic Assembly Vector Loops ................................ 34 

3.2.4.1 Principles for Nesting Force Loops..................................................... 35 

3.2.5 STEP 5 – Write Kinematic Equations ...................................................... 35 

3.3 Assembly Model Analysis.................................................................................. 36 

3.3.1 STEP 6 – Perform Analysis of the Closed and Open Loop Equations..... 36 

3.3.2 STEP 7 – Perform Analysis of the Nesting Force Loop Equations.......... 36 

3.3.3 STEP 8 – Perform Force Analysis ............................................................ 38 

3.4 Example:  Pinned Block Assembly with Applied Nesting Force....................... 40 

3.5 Summary of Method for Designing Nesting Forces........................................... 49 

3.6 Summary............................................................................................................. 50 

Chapter 4 Case Studies .................................................................................................. 51 

4.1 Example 1 -- 1D Latch ....................................................................................... 51 

4.2 Exactly Constrained Block ................................................................................. 57 

4.3 Wedge and Cylinder Example............................................................................ 73 

Chapter 5 Conclusions and Recommendations ............................................................. 91 

5.1 Contributions and Conclusions........................................................................... 91 

5.2 Recommendations .............................................................................................. 92 

Bibliography ..................................................................................................................... 93 

Appendix A....................................................................................................................... 97 

Maple© Worksheets for Pinned Block Assembly ....................................................... 97 

A.1 Explicit Equation Development.................................................................... 97 

A.2 DLM Model Setup and Analysis ................................................................ 100 

Appendix B ..................................................................................................................... 107 

Maple© Worksheets for Exactly Constrained Block Assembly................................ 107 

B.1 Explicit Equation Development.................................................................. 107 

B.2 DLM Model Setup and Analysis ................................................................ 111 

Appendix C ..................................................................................................................... 119 

Maple© Worksheet for Wedge Assembly ................................................................. 119 

C.1 DLM Model Setup, Analysis & Explicit Equation Development .............. 119





xix 

Appendix D..................................................................................................................... 133 

Using Monte Carlo for Worst-Case Comparisons ..................................................... 133





xxi 

LIST OF FIGURES 

Figure 1.1:  Exactly Constrained block assembly............................................................... 4 

Figure 1.2:  Exactly Constrained block assembly with an applied Nesting 
Force. .......................................................................................................................... 4 

Figure 2.1:  Initial design of example assembly. .............................................................. 10 

Figure 2.2:  Two smart feature implementations to meet dimension 'd'. .......................... 10 

Figure 2.3 - Exactly constrained, pinned block assembly. ............................................... 11 

Figure 2.4:  Examples of and exactly constrained block and different types of 
nesting forces. ........................................................................................................... 13 

Figure 2.5:  Stability of nesting force.  FA and FC are unstable.  FB is stable. .................. 14 

Figure 2.6:  Exactly Constrained Pinned Block with DLM DRFs shown. ....................... 16 

Figure 2.7 - Dimensioned Pinned Block Assembly.......................................................... 16 

Figure 2.8:  Joints applied to the Pinned Block Assembly. .............................................. 18 

Figure 2.9 –Vector Loops for Pinned Block DLM model. ............................................... 20 

Figure 3.1 - Exactly constrained design using two forces to provide a single, 
resultant nesting force. .............................................................................................. 33 

Figure 3.2 - Actual assembly showing the use of a cantilevered spring molded 
into a part.  The spring supplies a vertical nesting force. ......................................... 34 

Figure 3.3 - The Pinned Block Assembly with a stable nesting force applied. ................ 41 

Figure 3.4 - Nesting force loop and associated variables for the Pinned Block 
Assembly................................................................................................................... 42 

Figure 3.5 – Relationship of dependent nesting force loop dependent 
variables to assembly. ............................................................................................... 43 

Figure 4.1 - 1D Latch Assembly....................................................................................... 51 

Figure 4.2 - Basic assembly for the exactly constrained block......................................... 57 

Figure 4.3 - Exactly constrained block with applied nesting force................................... 58





xxiii 

Figure 4.4 - Placement of cantilevered beams used to provide the required 
nesting force resultant. .............................................................................................. 59 

Figure 4.5 - Exactly constrained block with dimension labels applied. ........................... 60 

Figure 4.6 - Closed loops and their associated dimensions for the exactly 
constrained block. ..................................................................................................... 62 

Figure 4.7 - Nesting force loops for the exactly constrained block. ................................. 63 

Figure 4.8 - Wedge and Cylinder assembly...................................................................... 73 

Figure 4.9 – Nesting forces applied to the Wedge assembly to obtain the 
desired resultant nesting force. ................................................................................. 74 

Figure 4.10 - Wedge assembly with cantilevered beams providing the 
required nesting forces. ............................................................................................. 75 

Figure 4.11 - Wedge assembly with dimensions and their respective labels.................... 75 

Figure 4.12 - Part DRFs and kinematic joints applied to the Wedge 
Assembly................................................................................................................... 77 

Figure 4.13 - Closed loops 1 and 2 for the Wedge Assembly. ......................................... 78 

Figure 4.14 - Closed loop 3 for the Wedge Assembly...................................................... 79 

Figure 4.15 - Nesting force loops 1 and 2 for the Wedge Assembly................................ 80 

Figure D.1 – Histogram of the uniformly distributed independent variable, x1. ............ 133 

Figure D.2 – Histogram of the normally distributed independent variable, x1. .............. 134 

Figure D.3 – Histfit() plot of the data for the dependent variable, u1. ............................ 135 

Figure D.4 – Zoomed in on right-hand tail of the Histfit() plot for the 
dependent variable, u1. ............................................................................................ 136 

Figure D.5 – Histogram of the data for the dependent variable, u1 when the 
independent variables were allowed to follow a uniform distribution.................... 137 

Figure D.6 – Histogram of the data for the dependent variable, u1 when the 
independent variables were allowed to follow a uniform distribution.................... 137 





xxv 

LIST OF TABLES 

Table 2.1 - Nominal values, tolerances, standard deviations, and tolerance 
percent of nominal values for Pinned Block Assembly............................................ 17 

Table 2.2:  2D Datum Reference Frames.......................................................................... 17 

Table 2.3:  2D Kinematic joints and associated degrees of freedom and 
capacity to transmit forces. ....................................................................................... 19 

Table 2.4:  DLM matrices for the One-way Clutch. ......................................................... 24 

Table 2.5 - GAP sensitivity matrix for the Pinned Block Assembly. ............................... 25 

Table 2.6 - Percent Difference comparison between standard deviation 
returned by the DLM and a 100,000 run Monte Carlo simulation. .......................... 28 

Table 2.7 - Difference value comparison between the worst-case values 
returned by DLM and Monte Carlo simulation. ....................................................... 28 

Table 3.1 - Nesting force independent variables and their nominal values, 
tolerances, standard deviations, and tolerance percent of nominal........................... 42 

Table 3.2 - Matrices for nesting force loop tolerances analysis for the Pinned 
Block Assembly. ....................................................................................................... 45 

Table 3.3 - Results from both traditional DLM analysis and the new nesting 
force loop analysis. ................................................................................................... 45 

Table 3.4 - DLM and nesting force loop analysis standard deviations 
compared with a 100,000 run Monte Carlo simulation. ........................................... 46 

Table 3.5 - Cantilevered Beam dimensions.  Values for nominal sizes, 
tolerances, standard deviations, and tolerance percent variation of 
nominal are shown. ................................................................................................... 47 

Table 3.6 - Nesting force statistical analysis with respect to the standard 
deviation compared with a 100,000 run Monte Carlo simulation............................. 48 

Table 3.7 - Comparison of Worse Case analysis for the nesting force using a 
500,000 run Monte Carlo Simulation ....................................................................... 48





xxvii 

Table 4.1 - Nominal part dimensions and associated tolerances for the 1D 
Latch example. .......................................................................................................... 53 

Table 4.2 - Comparison of the predicted standard deviation to a 100,000 run 
Monte Carlo Simulation............................................................................................ 54 

Table 4.3 - Comparison of the predicted worst-case to a 500,000 run Monte 
Carlo Simulation. ...................................................................................................... 54 

Table 4.4 - Revised tolerances for the independent variables in the Latch. ..................... 55 

Table 4.5:  Limits of the force as returned by the worst-case analysis. ............................ 56 

Table 4.6 - Statistical comparison of DLM results with 100,000 run Monte 
Carlo Simulation. ...................................................................................................... 56 

Table 4.7 - Worst case analysis comparison with 500,000 run Monte Carlo 
simulation.................................................................................................................. 57 

Table 4.8 - Nominal values for independent dimensions and their respective 
tolerances and standard deviations............................................................................ 61 

Table 4.9 - Sensitivities for the closed loop dependent variables..................................... 65 

Table 4.10 - Sensitivity matrix for the nesting force loop dependent variables. .............. 65 

Table 4.11 - Results of the DLM closed loop and nesting force loop analysis 
for the exactly constrained block assembly. ............................................................. 66 

Table 4.12 - Comparison of the predicted standard deviation against a 
100,000 run Monte Carlo simulation for the exactly constrained block................... 67 

Table 4.13 - Comparison of the predicted worst-case limits to a 500,000 run 
Monte Carlo Simulation for the exactly constrained block. ..................................... 67 

Table 4.14 - The set of all independent variables and associated tolerances.  
The revised tolerances are highlighted...................................................................... 68 

Table 4.15 - The revised variations for the dependent variables for the exactly 
constrained block. ..................................................................................................... 69 

Table 4.16 - Values for the independent variables and their respective 
tolerances and standard deviations for the cantilevered beams in the 
exactly constrained block assembly.......................................................................... 70 

Table 4.17 - Results of the DLM force analysis, including estimates for the 
resultant force, Fr and the angle of the resultant force, θ F. ...................................... 71 

Table 4.18 - Comparison of DLM to 100,000 run Monte Carlo simulation for 
the standard  deviation (σ) for all the dependent variables for the Exactly 
Constrained Block..................................................................................................... 72





xxix 

Table 4.19 - Comparison of DLM to 500,000 run Monte Carlo simulation for 
the worst-case conditions for all the dependent variables for the exactly 
constrained block. ..................................................................................................... 72 

Table 4.20 - Nominal values and the associated worst-case tolerances and 
standard deviations for the Wedge Assembly........................................................... 76 

Table 4.21 - Closed loop sensitivity matrix for the Wedge Assembly. ............................ 81 

Table 4.22 - Nesting force loop sensitivities for the Wedge Assembly............................ 82 

Table 4.23 - Results of the DLM closed loop and nesting force loop analysis 
for the Wedge Assembly........................................................................................... 83 

Table 4.24 - Comparison of the predicted standard deviation to a 100,000 run 
Monte Carlo simulation for the Wedge assembly..................................................... 84 

Table 4.25 – Comparison of predicted worst-case values with 500,000 run 
Monte Carlo simulation for the Wedge assembly..................................................... 85 

Table 4.26 – Revised results of the DLM nesting force loop analysis for the 
Wedge Assembly. ..................................................................................................... 85 

Table 4.27 – Revised tolerances and standard deviations for the Wedge 
Assembly................................................................................................................... 86 

Table 4.28 - Values for the independent variables and their respective 
tolerances and standard deviations for the cantilevered beams in the 
Wedge assembly. ...................................................................................................... 87 

Table 4.29 - Results of the DLM force analysis for the Wedge Assembly, 
including estimates for the resultant force, Fr and the angle of the 
resultant force, Fθ...................................................................................................... 87 

Table 4.30 - Comparison of DLM to 100,000 run Monte Carlo simulation for 
the standard deviation for all the dependent variables for the Wedge 
Assembly................................................................................................................... 88 

Table 4.31 - Comparison of DLM to 500,000 run Monte Carlo simulation for 
the worst-case conditions for all the dependent variables for the Wedge 
Assembly................................................................................................................... 89





1 

Chapter 1 Introduction 

1.1 Motivation for Research    

Ever since the design and manufacture of products moved from the craftsman era 

where individual craftsman designed and manufactured the entire product, to the mass 

production era, where skilled laborers were crafting interchangeable parts or in some 

cases single features on interchangeable parts, variation in assemblies has been a major 

concern to designers, manufacturers, and in a more subtle way, customers.  Variation, in 

the end, affects quality, performance and the cost of products. 

All assemblies have key features or key characteristics (KCs) that must be 

satisfied for the assembly to meet its design intent.  Due to variation in the parts that 

make up an assembly, individual part variation typically propagates to these key 

characteristics.  A number of methodologies and tools have been developed that allow the 

designer to predict how part variation propagates to the key characteristics.  Long viewed 

as a tolerancing problem, out-of-control variation in key characteristics is traditionally 

solved by controlling part tolerances.  Even today it is common practice to control 

variation in the overall assembly by simply controlling the part tolerances.  This often 

leads to tighter tolerances and higher part costs due to the limits of the chosen or required 

manufacturing processes.   

Taguchi proposed another means of satisfying KCs[Taguchi et. al., 1999].  He 

indicates that instead of changing the manufacturing processes, or tightening part 

tolerances, assemblies can be designed such that they are insensitive to the variation in 

the individual parts. 
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Taguchi initially conceptualized the idea of a robust design.   A robust design is 

one that meets key characteristics regardless of the variation in the parts.  By design, the 

assemblies are able to absorb the part variation.  Though the concept seems 

straightforward at the outset, the design of robust assemblies has only recently been 

studied to the extent where methodologies are now being developed.  One such 

methodology upon which this work intends to build is the concept of a ‘smart assembly.’ 

1.1.1 Smart Assemblies 

A smart assembly, by definition, is an assembly that has a feature or features, not 

otherwise required, that allow the assembly to absorb the variation in the individual parts 

that make up that assembly.  Thus, in theory, a designer could design an assembly that 

will be a perfect assembly built out of imperfect parts [Downey, et. al. 2001].  Work on 

smart assemblies has thus far been limited.  Parkinson and Chase, 2002 present the 

overall general concept, and [Downey, 2001] and [Downey et. al., 2002] developed a 

general design methodology.  The smart assembly design methodology establishes two 

types of features that can be designed into an assembly to make it ‘smart.’  The two types 

of smart features are “passive” and “active”.   

A passive smart feature will allow for the absorption of assembly variation once, 

at assembly time, but is then fixed and can no longer absorb variation without external 

adjustment.  A Passive Smart Feature will add an additional rigid constraint to the 

assembly. Examples of passive smart features are slotted holes, adjustment screws, and 

shims.   

An active smart feature will allow for the absorption of manufacturing, 

operational, and environmental variation throughout the life of the assembly. Examples 

of active smart features are springs and other parts that have the capacity to adjust and 

absorb variation continuously in order to accommodate wear or other changes over time.  

Active smart features essentially provide a Degree of Freedom (DoF) in the direction of 

variation absorption.  This DoF will typically only be for small kinematic adjustments 
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and often a force will be transmitted in the direction of the DoF as well.  For example, 

springs are often implemented as active smart features.  Springs will typically allow a 

DoF, but provide a force in that DoF as well.   One type of design that can require forces 

to keep the assembly properly assembled is an exactly constrained design. 

1.1.2 Exact Constraint and Nesting Forces 

Blanding [Blanding, 1999] states that an exactly constrained design is one where 

“each and every one of the body’s degrees of freedom has been individually accounted 

for and constrained, one constraint at a time.”  Exactly constrained assemblies have each 

DoF constrained by exactly one constraint. 

In two-dimensional space, a rigid body has three degrees of freedom.  For an 

exactly constrained, static assembly of two parts in 2D space, one part in the assembly 

must properly apply three constraints to the second part in the assembly.  Figure 1.1 

shows a block assembly as an example of an exactly constrained design.  The block is 

restricted in the x, y and θ degrees of freedom, where C3 and C2 constrain the x and the y 

DoFs respectively and C1 constrains the rotation, θ. 

Because of the one-to-one relationship of constraints to DoFs in exactly 

constrained designs, exact constraint (EC) design relies heavily on nesting forces.  In 

fact, [Hale, 1999] states that preload, or the nesting force,  “is a central concept to the 

design of kinematic couplings.”  Essentially, nesting forces help exactly constrained 

designs by keeping parts seated in their exactly constrained positions.  Clearly in Figure 

1.1 a nesting force will be required to keep the block seated against its constraints.  In 

Figure 1.2, a nesting force is applied to the exactly constrained block assembly. 
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Figure 1.1:  Exactly Constrained block 
assembly. 

 
 

Figure 1.2:  Exactly Constrained block 
assembly with an applied Nesting Force. 
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Nesting forces can themselves be seen as constraints.  As seen in Figure 1.2, if a 

rigid device supplies the nesting force, the nesting force becomes an additional hard 

constraint and the design becomes an over-constrained design.  If, however, the nesting 

force is supplied by a flexible part such as a cantilevered beam or a compression spring, 

the constraint is considered a soft constraint and can actively adjust to the variation in the 

parts and operating conditions. 

For a nesting force to be effective, it must provide the required force over the 

range of variation an assembly may experience.  This is true whether the variation is due 

to manufacturing variation at assembly time or because of operational and/or 

environmental conditions throughout the life of the assembly.  Active Smart Features are 

particularly well suited to provide these nesting forces because active smart features are 

able to absorb variation while continuously providing the required nesting force.  In fact, 

[Downey, 2001]states that smart features should be used to provide the nesting forces in 

an assembly.  However, to this point, no method exists that specifies how to design the 

features that supply these nesting forces in exactly constrained assemblies. 

1.2 Thesis Objectives  

The purpose of this research is to develop a method for the analysis and design of 

the active smart features that will be used to supply nesting forces in exactly constrained 

assemblies.  Because of the use of active smart features, these nesting forces will be 

robust to the variation inherent in the assemblies.  Finally, this work will also illustrate 

the need for multiple active smart features used as nesting forces in a single assembly. 

1.3 Delimitations 

No mechanism synthesis will be performed in this work.  It will be assumed that 

all the designs presented in this work have been previously synthesized to meet design 

requirements. 
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All parts will be assumed to be rigid, with the exception of the active smart 

feature(s). 

In addition, this work will be restricted to 2D space. 

Because part variations and the subsequent variations in the assembly are 

typically small, the deflections of the active smart features will be considered small and 

linear.  Therefore only small deflection analysis will be used. 

1.4 Significance of Research 

Exact constraint is a valuable machine design tool, so much so that [Kriegel, 

1994] argues that exact constraint design should be taught as part of the standard 

engineering curriculum.  The advantages of exact constraint can be summed up in the 

following statements: 

• Exactly Constrained designs can assemble over a wide variety of conditions. 
• Exactly Constrained designs do not have any play. 
• Exactly Constrained designs will not bind. 
• Exactly Constrained designs do not have any internal stresses or strains caused by 

over-constraint. 
• Exactly Constrained designs can tolerate wear of parts, minor damage and 

deformations caused by creep or overload. 
• Exactly Constrained designs are easier to assemble and maintain than over-

constrained designs. 

Many exactly constrained designs rely on nesting forces.  Because of this 

dependence on nesting forces, this work proposes to develop a method for the analysis 

and design of the active smart features that will supply the nesting forces in exactly 

constrained assemblies.  It will provide yet another robust design tool to be placed in the 

“designer’s toolbox.”  It will also enhance the current literature by further extending the 

understanding of how to design these features that will supply nesting forces as part of 

Exact Constraint Design.
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Chapter 2 Background and Literature Review 

2.1 Introduction 

This chapter will explain the necessary background information and related 

literature that will be used throughout the remainder of this work.  It begins with the 

topics of variation in assemblies and robust assemblies.  The chapter will then provide 

more information about one means of achieving a robust assembly called smart assembly 

design.  Then, exact constraint and nesting forces and their associated benefits as related 

to robust design will be discussed.  The chapter will end with a presentation of a 

tolerance analysis tool called the Direct Linearization Method or DLM.  The DLM will 

allow the variation in the assembly to be characterized in terms of the part variation.  

2.2 Variation in Assemblies 

Variation arises in assemblies as a result of the variation in the parts that make up 

the assemblies.  Part variation usually occurs due to the manufacturing processes that 

were used to make the parts.  For instance, when a lathe is used to form a part, the 

machine may be set up to cut the dimension perfectly, but due to deflection in the cutter, 

wear in the cutting tool or other causes, the formed parts are no longer true to the exact 

dimension. As a result, designers assign tolerances to dimensioned parts to indicate limits 

on how far features can deviate from the nominal dimension.   

Designers have been applying several different methods to analyze how assigned 

part tolerances stack-up in a design.  These various methods of analysis allow designers 

to adjust dimensions such that the parts, when assembled, form an assembly that meets all 
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customer requirements.  A survey of these methods is given in [Parkinson and Chase, 

2002].     

2.3 Robust Design 

In light of the variation that exists in assemblies, a designer should be concerned 

with how robust his design will be with respect to this variation.  Taguchi defines 

robustness as “the state where the technology, product, or process performance is 

minimally sensitive to factors causing variability (either in the manufacturing or user’s 

environment) and aging at the lowest unit manufacturing cost” [Taguchi  et. al, 1999]. 

According to Taguchi’s definition of robustness, a robust design or assembly is 

one that will meet all assembly requirements regardless of the variation in the parts that 

make up the assembly.  This type of a robust assembly results in a high level of customer 

satisfaction due to a higher quality product and lower consumer cost because fewer parts 

are scrapped.  It also results in increased profit due to increase market share, less scrap, 

and greater efficiency in the manufacturing process. 

Though the idea for robust designs initially came from Taguchi [Taguchi et all., 

1989], [Peace, 1993], others have looked at applying nonlinear programming methods to 

include design constraints and the effects of correlation among the independent variables 

[Parkinson, 1995], [Yu and Ishii, 1994], [Otto and Antonsson, 1993], and [Chen et al., 

1996].  These design tools are focused on either allowing the design to function properly 

regardless of variation, or reducing the sensitivity of the design to variation.  However, in 

some cases, there is still sufficient variation in the design to cause problems.  Two design 

tools that can be used to achieve robust assemblies are smart assembly features and 

exactly constrained designs.  They are discussed in the following sections. 
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2.4 Smart Assemblies and Features 

Smart assemblies have features, not required by the function of the design, which 

allow the design to absorb, or cancel out the effects of part variation so that the assembly 

always meets the design requirements [Parkinson and Chase, 2002], [Downey, 2001], and 

[Downey et. al, 2002].   

The smart features that are used in the design of smart assemblies come in two 

variants, passive and active smart features.  A passive smart feature is one that absorbs 

variation once, such that one or more design requirements are met, and statically 

maintains that requirement for the life of the assembly.  Several examples of passive 

smart features include, but are not limited to, slotted holes, shims, adjustment screws, and 

welded slip joints.  An active smart feature is one that actively absorbs variation for the 

life of the assembly.  Some examples of active smart features are linear bearings, springs, 

and part flexure or compliance.   

Smart features can be implemented in assemblies as described in an example from 

[Downey, 2001].  In this example a passive smart feature is used to cancel out the effects 

of variation in a simple assembly.  The initial assembly is shown in Figure 2.1.  The 

design requirement for this assembly is dimension ‘d’; however, due to variations in parts 

A, B, and C, the design requirement will not be met for all assemblies.  Two 

implementations of passive smart features can be seen in Figure 2.2.  In Figure 2.2a, 

shims are added to the assembly as a passive smart feature.  At assembly time an 

indicator gage would be used to stack shims to meet dimension ‘d’.  In Figure 2.2b, an 

adjustable screw would be used in conjunction with a gage to ensure dimension ‘d’ is 

met. 
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Figure 2.1:  Initial design of example assembly. 

 

  

 

 

a)  Shims to meet dimension ‘d’ b)  Adjustable screw and gage to meet dimension ‘d’ 

Figure 2.2:  Two smart feature implementations to meet dimension 'd'. 

 
Smart assemblies provide a powerful tool to the designer who is trying to mitigate 

the effects of variation in a design.  One type of design in which smart features have a 

great advantage is an exactly constrained design.  The following section will explain the 

idea of an exactly constrained design. 

2.5 Exact Constraint and Nesting Forces 

One type of design that is particularly robust to variation is an exactly constrained 

design.  Exactly constrained designs are discussed by [Blanding, 1999], [Skakoon, 2000], 

[Kriegel, 1994], and [Kamm, 1993].  Additional discussion of exact constraint design can 

A

B CSHIMS
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also be found in [Hale, 1999].  Hale indicates exact constraint design involves applying 

constraints to a body to eliminate DoFs in a one-to-one fashion.  Hale goes on to say “It 

is the objective of exact-constraint design to achieve some desired freedom of motion or 

perhaps no motion by applying the minimum number of constraints required.”  Blanding 

states an exactly constrained design is one where “each and every one of the body’s 

degrees of freedom has been individually accounted for and constrained, one constraint at 

a time.”  An example of the type of two dimensional, exactly constrained assemblies used 

in this work can be seen in the pinned block assembly shown in Figure 2.3.  Notice the 

one-to-one nature of the constraints to DoFs in that the pin constrains the block in both 

the x and the y translations and the second constraint only constrains the rotation θ. 

 

Figure 2.3 - Exactly constrained, pinned block assembly. 
 

When analyzing an exactly constrained assembly, such as the Pinned Block in 

Figure 2.3, the advantages of exact constraint become apparent.  In fact, [Kamm, 1993] 

writes that by employing EC design, 

“you will achieve zero looseness and zero binding of moving parts; you 
will achieve assembly of fixed parts without strains or rework; and you 
will do so despite loose manufacturing tolerances and semiskilled 
assembly labor. You will minimize the manufacturing cost of your 
mechanism, you will make it more reliable, you will make it easier to 
disassemble and reassemble, and you will make it easier to maintain.” 
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Hale indicates that in an exact constraint design “parts will fit together precisely 

and without backlash.”   Blanding states that exactly constrained designs achieve an 

extraordinary level of precision automatically using ordinary, low-cost, and inaccurate 

parts.   Skakoon states that when over-constrained designs do not work as intended, the 

problems are hard to identify, whereas, in exactly constrained designs, the problems are 

easily identified and resolved.  

Due to the one-to-one nature of DoFs to constraints in exactly constrained 

designs, there often arises a need for nesting forces in these designs.  [Hale, 1999], 

[Blanding, 1999], and [Skakoon, 2000], all mention the need for nesting forces in exactly 

constrained designs.  Consider the block being constrained by the two pins found in 

Figure 2.4a.  It can be observed that the block could likely be unseated from the 

constraints if the assembly were subjected to external loads or accelerations.  Therefore, 

in Figure 2.4b, c, and d three different types of nesting forces are shown being applied to 

the block to keep it seated against the pins.  The first two, b and c, show passive smart 

features applying nesting forces, in which the force is applied by rigid parts and then 

fixed in that position.  The third example in d illustrates an active smart feature, in the 

form of a compression spring, applying the nesting force.  This active nesting force can 

provide a force throughout a range of variation.   

Several issues exist with nesting forces in exact constraint design.  First, 

placement of the nesting force must be done such that the nesting force maintains the 

stability of the design.  Second, nesting forces must be applied as ‘soft constraints’.  

Applying nesting forces using rigid features imposes over-constraints on exactly 

constrained designs.  Finally, part variation in rigid features used as nesting forces can 

result in the failure of the nesting force.   Each of these issues will now be discussed in 

detail. 
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a)  Exactly Constrained block 
on two pins. 

b)  Cam being used as a 
nesting force. 

c)  Set screw being used as a 
nesting force  

d)  Compression Spring being 
used as a nesting force. 

 
Figure 2.4:  Examples of and exactly constrained block and different 

types of nesting forces. 
 

First, placement of nesting forces must be done with respect to the stability of the 

design.  This is clearly illustrated by revisiting the exactly constrained block on two pins.   

A nesting force is applied to the block in Figure 2.5 at three different positions.  Because 

of moments generated about the constraints, forces FA and FC would be unstable and 

likely unseat the block from one or more constraint.  By observation, FB would keep the 

block properly seated against the constraints while maintaining the stability of the design.  

Second, as with the examples in Figure 2.4b and c, when hard constraints are used 

to provide the nesting forces, even if using passive smart features, the design becomes 

over-constrained.  In fact, it is reasoned that by adding nesting forces, one sacrifices the 

benefits of exactly constrained designs [Hale, 1999].   However, if the designer only 

desires to absorb manufacturing variation, and the design will not experience any 
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significant environmental or operational variation, then passive smart features can 

effectively be used to supply nesting forces. 

Figure 2.5:  Stability of nesting force.  FA and FC are unstable.  
FB is stable. 

 

Finally, variation in rigid features being used as nesting forces can result in the 

failure of the nesting force.  An example of this is illustrated in the nesting forces being 

supplied by rigid features in Figure 2.4b and c.  If variation arises in the life of the 

assembly due to wear or thermal effects it can clearly be seen that either these rigid 

features will either impose unwanted stresses or strains, or gaps will form leaving the 

assembly without the required nesting force.   

Because of variation in assemblies, Downey states that smart features should 

always supply the nesting forces in exactly constrained designs [Downey, 2001].  

However, Downey does not indicate the type of smart feature to be used as a nesting 

force.  As stated previously, failure can result when passive smart features are used to 

provide nesting forces.  This can be overcome by always using active smart features to 

supply the nesting forces in exactly constrained designs.  Some active smart features have 

the unique quality of providing a force, while maintaining an active DoF in the direction 

of the force.  This implies a need to know how the variation in the parts of an assembly 

will affect the design of the active smart features being used as nesting forces.  This 

knowledge can be obtained by performing a tolerance analysis on the design.  This work 

will rely on the Direct Linearization Method for tolerance analysis. 

FA FB FC
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2.6 DLM -- Direct Linearization Method 

The Direct Linearization Method (DLM) can be used to analyze tolerance 

stackups in both 2D and 3D assemblies.  The DLM is preferred because it does not 

require explicit assembly functions [Chase, 1999], [Chase et. al, 1995] as do other 

tolerance analysis methods.  It linearizes non-linear equation sets so they can be used in 

algebraic matrix manipulations to calculate the dependent variable sensitivities.  These 

sensitivities can then be used to predict the variation in the dependent variables.   

As this work will rely heavily on the DLM and its results, Section 2.6.1 will 

explain the process of applying the DLM.   

2.6.1 DLM Example – Exactly Constrained Pinned Block 

The Pinned Block Assembly can be seen in Figure 2.6.  In this exactly constrained 

assembly, it is assumed that the pin will always exactly fit in the hole.  The Base consists 

of a rigidly fixed pin that locates the Block in the x and y DoFs and a locator pin that 

eliminates the Block’s θ  DoF.   The design objective for this assembly is that the points 

A and B in Figure 2.7 are spaced 0.67” in the GAPy dimension and always less than .03” 

in the GAPx dimension.  Nominal values for the independent and dependent variables are 

shown with their respective labels in Figure 2.7.  The nominal values, tolerances, 

standard deviations, and percent variation from nominal of the respective independent 

variables can be seen in Table 2.1.        

The process for applying the DLM to this assembly model proceeds as follows. 
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Figure 2.6:  Exactly Constrained Pinned Block with DLM 
DRFs shown. 
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Figure 2.7 – Dimensioned Pinned Block Assembly.  
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Table 2.1 - Nominal values, tolerances, standard deviations, and 
tolerance percent of nominal values for Pinned Block Assembly. 

Inputs Nominal   WC Std. Dev. % of Nom. 
x1 0.625 δx1 0.019 0.006 3.0% 
x2 3.500 δx2 0.105 0.035 3.0% 
x3 4.500 δx3 0.135 0.045 3.0% 
x4 1.625 δx4 0.049 0.016 3.0% 
x5 0.500 δx5 0.015 0.005 3.0% 
x6 1.125 δx6 0.034 0.011 3.0% 
x7 1.250 δx7 0.038 0.013 3.0% 
x8 0.625 δx8 0.019 0.006 3.0% 
x9 3.875 δx9 0.117 0.039 3.0%  

 

 

STEP 1 – Assign a Datum Reference Frame to each part 
Each part in the assembly must have its own local coordinate system.  Individual 

local coordinate systems are called Datum Reference Frames (DRF) and are specific to 

each part in the assembly.  For 2D analysis, the only two applicable DRFs can be seen in 

Table 2.2.  The DRFs for the Pinned Block Assembly example can be seen in Figure 2.7.   

Table 2.2:  2D Datum Reference Frames. 

  
Center Datum Rectangular Datum 

 

STEP 2 – Specify Kinematic Joints between Parts 
All parts in the assembly must be linked together by kinematic joints.  Kinematic 

joints allow for the kinematic adjustments that are necessary when variation is present.  

Kinematic joints indicate how the parts can move relative to each other.  For 2D 

assemblies there are only 6 different joints that are of concern.  These six joints can be 

seen in Table 2.3.  For the purposes of this thesis, additional information on how each 

joint transfers forces or moments has also been included.  
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It can be see in Table 2.3 that the set of DoFs and the set of transmitted force 

directions are mutually exclusive.  The unconstrained directions allow kinematic motion.  

The constrained directions transmit forces.  When active smart features are applied as 

nesting forces, the joint’s force transmittal direction is the direction in which the nesting 

force will be applied. 

For the Pinned Block Assembly, there are two joints.  There is one Revolute joint 

between the pin on the Base and the hole in the Block, and there is one Edge Slider joint 

between the Block and the Base.  The joints for the Pinned Block Assembly can be seen 

in Figure 2.8. 

 
Figure 2.8:  Joints applied to the Pinned Block Assembly. 
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Table 2.3:  2D Kinematic joints and associated degrees of 
freedom and capacity to transmit forces. 

Joint 
DoF 

Forces 
Transmitted

Joint 
DoF 

Forces 
Transmitted 

    

Revolute Cylinder Slider 

    

Edge Slider Parallel Cylinders 

    
Planar Rigid  

 

 

STEP 3 – Form Vector Loops for the Assembly 
With the joints attached, the final step in developing the tolerance analysis model 

requires the formation of a set of vector loops that completely describes the assembly.   

There are several rules that aid and govern the creation of these vector loops.  The rules 

[Chase, 1999] for forming vectors loops are: 

• Enter through a joint 
• Follow the independent or dependent dimensions to a DRF 
• Follow the independent or dependent dimensions leading to another joint 
• Exit to the next adjacent part in the assembly 
• No loop can pass through the same part or same joint twice. 
• Loops must pass through each part and each joint in the assembly, but a 

single loop does not necessarily pass through every part or every joint. 
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• If a vector loop includes the same dimension twice, with vectors passing that 
dimension in opposite directions, then that dimension will be omitted due to 
redundancy. 

• There must be enough closed loops to solve for all kinematic variables.  The 
number of closed loops L required in an assembly is given by 1+−= PJL  
where J is the number of joints and P is the number of parts. 

• There can be as many open loops as there are design requirements on the 
assembly. 

 

 

Figure 2.9 –Vector Loops for Pinned Block DLM model. 
 
 

When the loops are established, the assembly variation model is defined.  For the 

Pinned Block Assembly, there are two loops: one closed loop to identify the relative 
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location of parts and one open loop to identify the relative location of the points A and B.   

These loops can be seen in Figure 2.9. 

STEP 4 – Write Kinematic Equations from Vector Loops 
Step 4 begins by forming the kinematic equations that will allow for the variation 

analysis of the Vector Assembly Model.  Using the vector loop(s) created in Step 3, 

kinematic equations are written in the form of 0),(,, =uxh yx θ for each closed vector loop 

and ( ) GAPuxp yx =,,, θ  for each open vector loop.  Each vector is broken into x, y and θ 

components forming three equations for each loop.  For the Pinned Block Assembly, the 

loop starts at the DRF of the Base and proceeds around the vector loop from vector x2 to 

vector x1.  The hx and hy equations, given in equation 2.1 are simply the sum of the x and 

y components, respectively.   

For the formulation of hθ, the process involves starting at 0° and summing vector 

rotations around the loop.  For instance, for the Pinned Block Assembly, start at 0° for x2, 

then rotating 90° for x6, rotate another +90°+ u2 for u1, -90° for x8, then +180°- u2 for x4, 

then -90° for x6, then add -180° to return alignment to the positive x axis and to sum the 

equation to zero.  The resulting set of hi equations can be seen in equation 2.1.  

Evaluating these equations in terms of known angles results in equation set 2.2. 

0180901809090900
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Three items of note can be seen in equation set 2.2.  First, there are two non-linear 

implicit equations in the two desired assembly dimensions.  Second, for assemblies like 

the Pinned Block where there is only one dependent angular dimension, the hθ equation 

will equal zero and drop out of the set.  Also, obtaining explicit functions for the 

dependent variables can be very difficult.  Even for this simple example the explicit 

solution for the dependent angle, u2 is extremely complicated, and without either a 

numerical non-linear equation solver, or a symbolic math package such as Maple©, 

finding the explicit equations for these variables can be very difficult. 

STEP 5 – Linearize the Vector Loop Equations for the Closed Loops  
The variables in the assembly equations are only perturbed by small amounts, i.e. 

the tolerances, therefore it is reasonable to employ a first-order Taylor Expansion to 

linearize the equations.  This linearization process converts a set of complex, non-linear 

equations to a set of linear equations, which can be manipulated with linear algebra.  A 

summary of the process is to convert equation set [ ] [ ] [ ]0)( == XFH  to 

[ ] [ ] [ ]0)( == XdFdH .  This is illustrated in detail for the Pinned Block in equation 2.3, 

where δxi represents the tolerances on the respective variables.  The set of h(xi) equations 

are differentiated against all of the independent and dependent variables for the Pinned 

Block. 
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It can be seen in equation 2.3 that the set of linearized assembly equations can be 

written in matrix form as follows:  

{ } { } 0=




∂
∂

+




∂
∂ u

u
hx

x
h δδ  

Where: 

 




∂
∂

x
h is the matrix of partial derivatives with respect to independent variables, 

 




∂
∂
u
h is the matrix of partial derivatives with respect to dependent variables, 

 { }xδ  is a vector of tolerances on the independent variables, and 
 { }uδ  is a vector of unknown tolerances on dependent variables. 
 

The values of the 




∂
∂

x
h  and 




∂
∂
u
h  matrices can be obtained by evaluating all 

partial derivatives at the nominal values of the independent and dependent dimensions.  

The nominal values for the dependent dimensions can be obtained from the CAD 

package that is being used to model the assembly.  It is desired to solve for the unknown 

variations of the dependent variables.  Algebraic manipulation of the matrix equation 

results in equation 2.4. 

{ } { }x
x
h

u
hu δδ 




∂
∂






∂
∂

−=
−1

 ( 2.4 ) 

 

Equation 2.4 is the essence of the DLM.  The matrix 




∂
∂






∂
∂

−
−

x
h

u
h 1

 contains the 

sensitivities indicating how variation of the independent variables propagates to produce 

variation in the dependent variables.  For the Pinned Block the 




∂
∂

x
h , 




∂
∂
u
h , 

1−






∂
∂
u
h  and 






∂
∂






∂
∂

−
−

x
h

u
h 1

 matrices are given in Table 2.4. 
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Table 2.4:  DLM matrices for the One-way Clutch. 






∂
∂

x
h  Matrix: 

        

 x1 x2 x3 x4 x5 x6 x7 x8 x9 

hx -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0436 0.0000 

hy 0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 0.9990 0.0000 

          






∂
∂
u
h  Matrix: 

  

1−






∂
∂
u
h Matrix:

    

 u1 u2       

hx -0.9990 -0.5000  u1 1.0086 -0.1754    

hy -0.0436 -2.8750  u2 -0.0153 0.3505    

          






∂
∂






∂
∂

−
−

x
h

u
h 1

 Matrix: 
       

 x1 x2 x3 x4 x5 x6 x7 x8 x9 

u1 -1.0086 1.0086 0.0000 0.1754 0.0000 -0.1754 0.0000 -0.2193 0.0000 

u2 0.0153 -0.0153 0.0000 -0.3505 0.0000 0.3505 0.0000 0.3508 0.0000  
 

Open Loops 

The procedure is similar for the open loop pictured in Figure 2.9.  The equations 

evaluated in terms of known angles for the open loop are found in equation set 2.5. 

( ) ( )
( ) ( ) yy

xx

GAPxuxuuxp
GAPxuxuuxp

=−⋅+⋅−=
=−⋅−⋅−=

428216

128212

cossin
sincos

 ( 2.5 ) 

 

When linearized, this set of open loop equations results in an equation in the form 

of equation 2.6.    To obtain the sensitivities for the variation in the GAP variables a 

substitution is required.  By substituting δu from equation 2.4, the true sensitivities of the 

GAP variables to the independent variables can be found.  This substitution results in 
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equation 2.7.  The sensitivity matrix for the GAP variables for the Pinned Block is found 

in Table 2.5.   

u
u
px

x
pdGAP δδ 




∂
∂

+

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∂
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Table 2.5 - GAP sensitivity matrix for the Pinned Block 
Assembly. 

 x1 x2 x3 x4 x5 
GAPx 1.0070 -0.0070 -1.0000 -0.1596 0.0000 
GAPy 0.0597 -0.0597 0.0000 -0.3664 -1.0000 
      
  x6 x7 x8 x9 
 GAPx 0.1596 0.0000 0.2034 0.9990 
 GAPy 1.3664 0.0000 0.3687 0.0436  

 

STEP 6 – Estimate Variation in Dependent Variables  
The 6th and final step in the DLM is to estimate the variation of the dependent 

variables.  Two common estimates of the variation are Worst Case (WC) and Root Sum 

Squares (RSS).  Given that sij represents the sensitivity elements of the 




∂
∂






∂
∂

−
−

x
h

u
h 1

 

and the 

















∂
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⋅
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⋅
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+
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


∂
∂ −

x
h

u
h

u
p

x
p 1

 matrices, WC can be calculated by equation 2.8.  

Using a RSS estimation, the standard deviation can be obtained by equation 2.9 for both 

the U and GAP sets of dependent variables, respectively.  



26 

∑
=

=
N

j
jijU xs

i
1

|| δδ:CaseWorst  ( 2.8 ) 

( )∑
=

=
N

j
xijU ji

s
1

2σσ:RSS  ( 2.9 ) 
 
 

The WC and RSS calculations for the Pinned Block are illustrated below for both 

GAPx and GAPy as they were specified as the requirements for this design. 
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Performing two separate Monte Carlo simulations will validate the worst-case 

variations and the standard deviations predicted by equations 2.8 and 2.9. Thus, the 

standard deviations that were previously calculated were compared to a 100,000 run 

Monte Carlo simulation, where the independent variables were allowed to vary according 

to normal distributions with their respective standard deviations.  This comparison is 

given in Table 2.6.  The number 100,000 runs was chosen based on running the same 

simulation for 30k runs, 50k runs, 100k runs, 500k runs and finally, 1,000k runs.  The 

difference between the standard deviations produced by the 30k and 50k was significant, 

but from 50k to 1,000k runs, there was virtually no change in the standard deviation; 

therefore, for this work all standard deviations will be compared to Monte Carlo 

simulations of 100k runs. 

The worst-case values calculated previously were compared against a 500,000 run 

Monte Carlo simulation assuming a uniform distribution for the independent variables.  

The Monte Carlo simulation using a uniform distribution allows the independent 

variables to be at their maximums and minimums more often; this coupled with the 

increased number of simulation runs allowed the dependent variables to be pushed to 
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their respective limits.  More details on using a Monte Carlo simulation for worst-case 

comparisons can be seen in Appendix D.  The worst-case comparison is given in Table 

2.7.  Because a worst-case analysis is focused on the limits of the problem, the 

comparison in Table 2.7 is given as “Good” if the limits returned by the Monte Carlo 

simulation fall within the limits predicted by the DLM and as “Low/High” if the Monte 

Carlo limits fall outside the respective “High/Low” limits returned by the DLM.  For both 

the statistical and worst case calculations, the predictions from the DLM analysis are 

shown as generally conservative and good estimators of how the design will perform 

under typical manufacturing conditions. 

As can be seen in these comparisons, the DLM is an effective means of predicting 

how variation in the features and parts will propagate to cause variation in the assemblies.  

The DLM can also be easily automated and used in CAD packages to analyze assemblies 

directly within the CAD model [Chase, 1999].   

Table 2.6 - Percent Difference comparison between standard 
deviation returned by the DLM and a 100,000 run Monte Carlo 

simulation. 

 
DLM 

σ 
MC 

σ 
Percent 
Error 

σGAPx 0.059923 0.060106 0.304%
σGAPy 0.017250 0.017257 0.039% 

 

Table 2.7 - Difference value comparison between the worst-case 
values returned by DLM and Monte Carlo simulation. 

 
DLM 
High 

MC 
High 

Compare 
High 

DLM 
Low 

MC 
Low 

Compare 
Low 

GAPx 0.4874 0.4711 Good -0.4403 -0.4325 Good 
GAPy 0.7639 0.7670 Low 0.5756 0.5949 Good  
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2.7 Conclusion 

This chapter has introduced several topics as background to the remainder of this 

work.  Variation in parts will propagate to assemblies and can lead to the failure of a 

design in satisfying the design’s key requirements.  Robust design methodologies are an 

attempt to manipulate the design such that it will be less sensitive to the variation in the 

parts.   

Exact constraint design is one approach for designing mechanical assemblies as it 

provides robustness of design and many other advantages not found in over or under 

constrained designs.  Exactly constrained designs will often rely on nesting forces to keep 

the assembly properly seated against its constraints.  The best way to supply nesting 

forces is with flexible features that actively adjust to the variations that result from 

manufacturing processes and environmental and operating conditions throughout the life 

of the assembly. 

The DLM is an effective tool for analyzing tolerance models.  It can provide both 

worst case and statistical tolerance predictions of how the assembly will propagate part 

and feature variation to the assembly’s key requirements.  The DLM will be the means of 

analysis for the design of the active smart features that will be used to supply the nesting 

forces in exactly constrained designs.
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Chapter 3 General Method for Analysis and Design of 
Features that Supply Nesting Forces 

3.1 Introduction 

This chapter will explain the method developed in this research for the analysis 

and design of active smart features that will supply nesting forces for exactly constrained 

designs.  For this method it is assumed that all parts are rigid except the active smart 

feature.  The following sections will explain the steps for the assembly model setup and 

how subsequent analysis of the assembly model is to be performed.  An example of the 

process will be provided which will be a continuation of the Pinned Block example in 

Section 2.6.1.  A summary of the method will then be provided. 

3.2 Assembly Model Setup 

The method that has been developed in this work for the assembly model setup 

closely parallels the first steps in the DLM but with new principles associated with 

nesting forces.  This method consists of 5 steps:  1) perform the design synthesis, 2) 

determine the placement and configuration of nesting forces, 3) apply part DRFs and 

kinematic joints, 4) form kinematic vector loops, and finally, 5) write the kinematic 

equations from the respective vector loops.  The sections that follow will explain, in 

detail, each step of the assembly model setup. 
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3.2.1 STEP 1 – Perform Assembly Design Synthesis 

The first step in setting up the model is generating the design for the assembly.  

However, because mechanism synthesis will not be covered in this work, the assembly 

designs will be assumed as given. 

3.2.2 STEP 2 – Determine Placement and Configuration of Nesting Force 

This step requires the designer to determine the placement of nesting force(s) in 

the assembly.  This can be done by observation using a logical placement for the nesting 

force(s) or, in more complicated assemblies, the position of the nesting force can be 

determined by performing an appropriate force analysis.  There are several ways to 

perform this force analysis; however, these methods are beyond the scope of this work.  

The most important issue for this placement of the nesting force(s) is it needs to result in 

a stable, robust design that will meet the design requirements.  In this work the placement 

of all nesting forces will be done by inspection. 

In some cases, the nesting force required will be in a resultant direction similar to 

the nesting force shown in Figure 1.2.  It is preferable to use one feature to supply the 

nesting force to ease analysis.  However, in some cases, the geometry may not easily 

allow the desired nesting force configuration.  In these cases, multiple nesting forces can 

be combined to supply a resultant force that acts in the desired direction and magnitude.  

This is illustrated in Figure 3.1 where two nesting forces, Fx and Fy, are being used to 

supply a single, resultant nesting force, FR. 

In this work, cantilevered beams will be used as the springs that supply the 

nesting forces.  This choice of this type of active smart feature is reasonable due to the 

fact that cantilevered beams can easily be molded into injection-molded parts and not 

increase part count or complexity in assemblies.  An example of this can be seen in 

Figure 3.2.  Here a small, poly-acrylic view window is being held in a larger plastic 

housing via a cantilevered spring.  The spring keeps the part firmly seated in the 
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assembly while also acting as a retainer.  The Slot in the bottom keeps the part from 

moving side-to-side. 

Figure 3.1 - Exactly constrained design using two forces to 
provide a single, resultant nesting force. 

 

Fy

Fx

C2

C3

C1

FR
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Figure 3.2 - Actual assembly showing the use of a cantilevered 
spring molded into a part.  The spring supplies a vertical nesting 

force. 

3.2.3 STEP 3 – Apply Part DRFs and Kinematic Joints 

Now that the type of feature(s) that supply the nesting force(s) have been chosen 

and located, the DLM will be set up.  The first step in this process is applying the 

appropriate DRFs to each part.  Then, kinematic joints are applied to the appropriate 

contacts in the assembly.   

3.2.4 STEP 4 – Form Kinematic Assembly Vector Loops 

With part DRFs located and the kinematic joints identified, vector loops are now 

applied to the model.  All features, including the nesting forces, are to be included in their 

appropriate loops.  The closed and open loops are formed as explained in Section 2.6.1.  

As the closed and open loops are identified, it will be seen that the features that supply 

the nesting forces and their associated independent and dependent variables are not found 

in the traditional closed or open loops.  Therefore, nesting force loops must be created.   

Cantilevered spring keeps 
window nested against 

constraint below. 

Tab constrains vertical 
and horizontal movement.
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These nesting force loops do not contain any forces.  They simply characterize the 

dimensional variation in the deflections that will produce the nesting forces.  Most of the 

principles that govern the creation of closed and open loops apply to nesting force loops.  

However, there are two principles that require some revision. 

3.2.4.1 Principles for Nesting Force Loops 

First, each nesting force will have one complete, closed loop associated with it.   

Second, the nesting force loop must include all independent locator dimensions 

for the feature that applies the respective nesting force.  In 2D, two independent 

dimensions will position the active smart feature that applies the nesting force.   

These two principles, used in conjunction with the principles established in the 

DLM, will allow for the creation of nesting force loops. 

3.2.5 STEP 5 – Write Kinematic Equations 

The kinematic equations must now be written from the vector loops.  Extract the 

x, y, and θ equations in the form as shown in Equation 3.10, where h(x,u) are the standard 

DLM closed loop equations and g(x,u,v) are the equations for the new nesting force 

loops.  Notice the addition of the v variables in g.  These are the assembly or dependent 

variables associated with the nesting forces and their relative location with respect to 

other parts in the assembly.  One of the dependent vi variables will represent the 

deflection of the active smart feature.  The other vi will typically represent the location of 

the nesting force with respect to the DRF of the part to which the nesting force is applied.  

0),,(
0),(

,,

,,

=

=

vuxg
uxh

YX

YX

θ

θ  ( 3.10 ) 
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With the creation of the equations for the nesting force loops, the assembly model 

setup is complete and ready for analysis. 

3.3 Assembly Model Analysis 

It is important to note here that forming nesting force loops is a slight deviation 

from the DLM as contained in [Chase, 1999].  In [Chase, 1999], the open loops identify 

the ‘gap’ dimensions.  All locating dimensions for the gap(s) are given by independent 

variables and the open loop equations can be written explicitly for the gaps in terms of 

known independent variables.   

The nature of nesting forces requires a different treatment.  Typically, two 

dependent variables will help to locate each of the nesting force features.  These 

dependent variables do not appear in the closed loops or the open loops of the DLM.  

Therefore, these loops are an addition to the DLM and must be analyzed differently. 

This analysis of the nesting forces loops requires two additional steps in the 

analysis of the assembly model.  After the traditional DLM closed and open loop 

analysis, these two additional steps consist of the analysis of the nesting force loops, and 

finally analysis of the force equation using the results of the previous steps.  These steps 

will be explained in the following sections. 

3.3.1 STEP 6 – Perform Analysis of the Closed and Open Loop Equations 

The analysis of the closed and open loops is performed as explained in Section 

2.6.1.  Information from this analysis is also required in the nesting force loop analysis. 

3.3.2 STEP 7 – Perform Analysis of the Nesting Force Loop Equations 

Nesting force loop analysis builds on the closed loop sensitivities as shown in 

equation 2.4 which is repeated here as Equation 3.11. 
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The nesting force loop equations contain the new set of dependent variables, v.  

The variation in these variables can be obtained by linearizing the nesting force loop 

equations just as was done for the closed loop equations using a first order Taylor series 

as seen in Equation 3.12. 

[ ] [ ] [ ] [ ] 0=⋅





∂
∂

+⋅




∂
∂

+⋅





∂
∂

=∂ v
v
gu

u
gx

x
gg δδδ  ( 3.12 ) 

 

This equation can be rearranged in preparation to solve for [δv] as in Equation 

3.13. 
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Inverting and left multiplying by 
1−
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v
g will provide the variation in the nesting 

force loop dependent variables.  Also, by substituting [δu] from Equation 3.11 into 

Equation 3.13  [δv] can now be expressed explicitly in terms of the variation in the 

independent variables.  This final expression for the variations in [δv] can be seen in 

Equation 3.14. 
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The sensitivities for how the variations in vi change with respect to variations in xi 

are contained in the sensitivity matrix, S.  The sensitivity matrices for the closed, open 

and nesting force loops are given in Equation 3.15. 
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Worst case and statistical variations in [δv] can be calculated using the same 

equations as used for the DLM, namely equations 2.8 and 2.9.   

3.3.3 STEP 8 – Perform Force Analysis 

The deflections and their associated variation have now been identified.  The 

nesting forces can be analyzed using the data from the previous section.  The general 

form of the force equation when dealing with springs is found in equation 3.16 where K 

is the spring constant in force/unit length and δ is the deflection in length. 

iii KF δ⋅=    where i = max, min ( 3.16 ) 
 

This work will be using cantilevered beams to provide the nesting forces; 

therefore, the force analysis requires the equation of K for a cantilevered beam.  K for a 

cantilevered beam can be obtained by recalling that the deflection for a cantilevered beam 
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is given by 
EI

FL3

3
1

⋅=δ , where E is the Modulus of Elasticity and L is the length of the 

beam from ground to the point of application of the deflecting force F.  If the 

cantilevered beam is a simple rectangular cross section, then I is given as 
12

3wtI = , where 

w is the width of the beam into the page and t is the thickness of the beam.  Substituting 

these equations into equation 3.16 and then rearranging and simplifying results in 

equation 3.17.  However, because the examples in this work all assume that the 

dimensional variables in K also have manufacturing variation, the worst-case equation for 

K is given in equation 3.18 where all subscripted variables have variation in them. 
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4 j

ii
i L

Etw
K

⋅

⋅⋅
=   where i =  max, min  and  j = min, max ( 3.18 ) 

 

The process for analyzing the nesting force now follows two different paths.  For 

worst-case analysis, the results of the variation in the deflection can be applied directly to 

equations 3.16 and 3.18.  For a statistical analysis, a new equation is required.  For 

statistical calculations a first order uncertainty analysis as described in [Figliola and 

Beasley, 1995] and [Drake, 1999] will provide the desired data.  The standard deviation 

of the force can be calculated, where all the nominal values of the independent variables 

and their associated standard deviations are known via equation 3.19. 
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This analysis will provide the information needed to refine the design of the 

assembly as well as the features that provide the nesting force by adjusting the nominal 

values of the dimensions as well as the associated tolerances to achieve a robust design.  

In the following section, this method is applied to the Pinned Block example from 

Section 2.6.1 

3.4 Example:  Pinned Block Assembly with Applied Nesting Force 

To illustrate the method presented previously in sections 3.2 and 3.3, the Pinned 

Block Assembly example will be continued from Section 2.6.1.   

STEP 1 – Perform Assembly Design Synthesis  

The assembly is shown again in Figure 3.3. 

STEP 2 – Determine Placement and Configuration of Nesting Force 
Due to a design requirement that the Block always remain exactly constrained 

relative to the Base, a nesting force will be applied to the Pinned Block Assembly to keep 

it appropriately seated against the constraints.  Therefore, a single active smart feature 

will be used to apply a vertical nesting force in the position and orientation shown in 

Figure 3.3. 

The nesting force for the Pinned Block can be seen along with the new 

independent variables that locate the feature that applies the nesting force and the 

dependent variables, vi the nesting force loop introduces in Figure 3.4.  Table 3.1 shows 

the values for the two new independent variables for the nesting force and their 

associated tolerances, standard deviations, and percentage variation for the tolerance from 

the nominal value for the dimension.  The active smart feature that supplies the nesting 

force is connected to the Base.  This feature is located by the dimensions x10 horizontally 

and x11 vertically.  To clarify the relationship of the dependent variables to the parts in the 

assembly, as well as to clarify how and where the nesting force is applied, Figure 3.5 

shows the Pinned Block perturbed by two instances of manufacturing variation.  The new 
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independent variables associated with the nesting force remain at the values listed in 

Table 3.1.  However, the dependent nesting force variables, v1 and v2, change to 

accommodate the two changes shown in x6, where x6 is set to 0.9375” and 1.250” 

respectively. 

 

Figure 3.3 - The Pinned Block Assembly with a stable nesting 
force applied.  

 

BLOCK
DRF

BASE
DRF

Fy
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Figure 3.4 - Nesting force loop and associated variables for 
the Pinned Block Assembly. 

 

Table 3.1 - Nesting force independent variables and their 
nominal values, tolerances, standard deviations, and 

tolerance percent of nominal. 

Inputs Nominal  WC Std. Dev.
Percent of 
Nominal 

x10 2.250 δx10 0.068 0.023 3.0% 
x11 2.125 δx11 0.064 0.021 3.0%  

 

STEP 3 – Apply Part DRFs and Kinematic Joints 

This step was discussed in Section 2.6.1 and is shown in Figure 2.8. 

STEP 4 – Form Kinematic Assembly Vector Loops 

The nesting force loop for the Pinned Block can be seen in Figure 3.4.  Notice that 

the loop includes the two locators for the nesting force feature.  The loop also includes 

the two dependent location dimensions, v1 and v2, with v2 representing the deflection of 

the active smart feature and v1 representing the location of the nesting force with respect 

to the Block’s DRF.   
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a)  x6 perturbed by -0.1875”. 

b)  x6 perturbed by +0.125”. 

Figure 3.5 – Relationship of dependent nesting force loop 
dependent variables to assembly.  

 

STEP 5 – Write Kinematic Equations 

Kinematic equations are now derived for the nesting force loop.  These equations 

for the Pinned Block in terms of known angles are given in equation 3.20.  Notice that 

there are two equations and two unknowns. 
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STEP 6 – Perform Analysis of Closed and Open Loops 

The analysis of the closed and open loops can be seen in Section 2.6.1. 

STEP 7 – Perform Analysis of Nesting Force Loop 
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 matrices are evaluated in terms of 

known values and are given in Table 3.2.  A complete symbolic and numerical analysis 

off the Pinned Block assembly can be found in Appendix A. 

Using equations 2.8 and 2.9, the worst case and the statistical variations in the v 

set of dependent variables are calculated.  These calculations are performed using the 

appropriate values from Table 2.1 and Table 3.1.  These calculations are performed in a 

manner similar to the GAP equations as shown at the end of Section 2.6.1.  The results of 

these calculations as well as the results from the Section 2.6.1 calculations are given in 

Table 3.3. 
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Table 3.2 - Matrices for nesting force loop tolerances analysis for 
the Pinned Block Assembly. 

 






∂
∂

x
g  Matrix: 

        
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
gx -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0436 -0.0436 0.0000 1.0000 0.0000
gy 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.9990 0.9990 0.0000 0.0000 1.0000
            

 





∂
∂
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g  Matrix: 
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g  Matrix: 

  

1−
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


∂
∂

v
g  Matrix: 

 
 u1 u2  v1 v2       

gx 0.0000 0.6966  -0.9990 0.0000  v1 -1.0010 0.0000   
gy 0.0000 -1.6250  -0.0436 1.0000  v2 -0.0437 1.0000   
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 Matrix: 
    

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
v1 -0.9903 -0.0107 0.0000 -0.2444 0.0000 0.2444 0.0437 0.2009 0.0000 1.0010 0.0000
v2 -0.0183 -0.0253 0.0000 0.4198 0.0000 0.5802 1.0010 -0.4202 0.0000 0.0437 -1.0000 

 

  Table 3.3 - Results from both traditional DLM analysis and the 
new nesting force loop analysis. 

  
 

Worst 
Case 

Standard 
Deviation 

Closed Loop Analysis 

δu1 0.1438 0.0360 

δu2 0.0377 0.0071 
Open Loop Analysis 

δGAPx 0.2889 0.0599 

δGAPy 0.0989 0.0173 
Nesting Force Loop Analysis 

δv1 0.1138 0.0243 

δv2 0.1563 0.0265 
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The design of a robust nesting force requires that there always be a deflection, v2 

in the active smart feature.  In the worst-case analysis it can be seen that the predicted 

variation in v2 is less than the nominal value, i.e. 022 >− vv δ .  This will result in all of 

the assemblies having a positive nesting force.   

To validate the results from the nesting force loop analysis, a 100,000 run Monte 

Carlo simulation was performed under the assumption that all independent variables 

follow a normal distribution with the respective standard deviation given in Table 2.1 and 

Table 3.1.  The data were then analyzed statistically and these results were compared to 

the predicated results from the nesting force loop analysis.  The results for this 

comparison can be seen in Table 3.4.  These results show less than 1% error between the 

Monte Carlo and the DLM with the nesting force loop analysis. 

Table 3.4 - DLM and nesting force loop analysis standard 
deviations compared with a 100,000 run Monte Carlo simulation. 

 DLM Monte Carlo Percent 
Difference 

Closed Loop:     

δu1 0.036002 0.036062 0.1659% 

δu2 0.007144 0.007152 0.1135% 

Open Loop:     

δGAPx 0.059923 0.060106 0.3040% 

δGAPy 0.017250 0.017257 0.0393% 

Nesting Force Loop:   

δv1 0.024285 0.024334 0.2040% 

δv2 0.026539 0.026540 0.0022% 
 

 
 

STEP 8 – Force Analysis 

The nominal dimensions of the cantilevered beam for the Pinned Block Assembly 

along with their associated tolerances and standard deviations are shown in Table 3.5. 



47 

Table 3.5 - Cantilevered Beam dimensions.  Values for nominal 
sizes, tolerances, standard deviations, and tolerance percent 

variation of nominal are shown. 

Variable Nominal  Worst 
Case 

Standard 
Deviation

Percent 
Variation 

Ly 2.530 δLy 0.0760 0.0260 3.00% 

wy 1.000 δwy 0.0300 0.0100 3.00% 

ty 0.030 δty 0.0009 0.0003 3.00% 

Ey 3.E+07 δEy 0.0000 0.0000 0.00% 
 
 

Statistical analysis of the force equation requires equation 3.19.  The results of the 

statistical analysis of the nesting force for the Pinned Block and the associated 

comparison to a 100,000 run Monte Carlo simulation can be seen Table 3.6.  The 100,000 

run Monte Carlo simulation was run with the independent variables varying according to 

a normal distribution and their respective standard deviations.   

The worst-case analysis was performed using equations 3.16 and 3.18.  The 

results for this analysis of the force can be found in Table 3.7.  These results were 

compared against a 500,000 run Monte Carlo simulation assuming a uniform distribution 

for the independent variables.  As stated previously, only the limits are considered, and if 

the Monte Carlo limits are within the DLM predictions, then the comparison is 

considered ‘Good’, if the DLM value under-predicts the value from the Monte Carlo then 

the comparison is stated as ‘Low/High’ respectively for the High/Low limits. 

The results given in Table 3.6 and Table 3.7 show the nesting force loop analysis 

provides good predictions of both the standard deviation and the worst-case limits of the 

nesting force. 
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Table 3.6 - Nesting force statistical analysis with respect to the 
standard deviation compared with a 100,000 run Monte Carlo 

simulation. 

 Predicted 
σ 

Monte 
Carlo σ 

Percent 
Difference

σFy 0.35563 0.3596 1.103%  
  

Table 3.7 - Comparison of Worse Case analysis for the nesting 
force using a 500,000 run Monte Carlo Simulation 

 
DLM 
High 

MC 
High 

Compare 
High 

DLM 
Low 

MC 
Low 

Compare 
Low 

Fy 4.4860 4.8373 Low 0.4303 0.6150 Good 
Good = DLM is provides a conservative estimate of the worst-case 
condition. 
Low/High = DLM under estimates the extent of the worst-case 
condition.  

 

A summary of the method now follows. 
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3.5 Summary of Method for Designing Nesting Forces 

The method for the design of nesting forces using active smart features can be 
summarized as follows: 
 

1. Perform assembly design synthesis for the exactly constrained design. 

2. Determine the placement and configuration of active smart features that 
will provide the nesting force based on the mechanical stability of the 
design. 

3. Apply part DRFs and kinematic joints in the model representing the 
contacts between parts including the nesting force feature(s). 

4. Form kinematic loops according to the principles in the DLM.  Also: 

i. There must be one nesting force loop for each feature that 
applies a nesting force. 

ii. Nesting force loops must contain all of the independent 
variables that locate the nesting force features. 

5. Write the kinematic equations from the respective loops.  These equations 
will exist in the forms ( ) 0,,, =uxh yx θ  for closed loops, ( ) GAPuxp yx =,,, θ  
for open loops, and for the nesting forces loops, 0),,(,, =vuxg yx θ . 

6. Analyze the closed and open loops by performing the DLM on the 
( ) 0,,, =uxh yx θ  and ( ) GAPuxp yx =,,, θ  equations according to the process 

outlined in the DLM to find the respective sensitivities. 

7. Analyze the nesting force loops by performing the DLM nesting force 
loop analysis according to equation 3.14 on the ),,(,, vuxg yx θ  equations. 

8. Analyze the forces according to statistical and/or worst case analysis to 
determine the best tolerances for the independent variables that will 
achieve design requirements and supply a robust design. 
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3.6 Summary 

This chapter has explained an effective method for the analysis and design of 

nesting forces in exactly constrained designs using active smart features.  The method has 

been illustrated using the Pinned Block Assembly.  The method has also been compared 

to a Monte Carlo simulation with good results.  The following chapter will present case 

studies that will further illustrate the method and verify its validity.
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Chapter 4 Case Studies 

4.1 Example 1 -- 1D Latch 

The 1D Latch will be the first example used to illustrate the design of nesting 

forces using active smart features.  The graphical representation of this 1D Latch is 

illustrated in Figure 4.1. 

NESTING
FORCE

Y

X

PART S

PART T

PART U

PART V

x1

v1

x3

x2

Lx

 
Figure 4.1 - 1D Latch Assembly. 

 
 

 

STEPS 1 & 2 – Perform Assembly Design Synthesis & nesting Force Placement 
This example consists of a simple latch mechanism consisting of four parts.  Part 

S is the upper latch, Part T is the lower latch, Part U is a rigid connector between Parts T 

and V, and finally Part V is a cantilevered beam acting as the active smart feature that 
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will provide a robust nesting force while absorbing the unwanted variation in the only 

assembly dimension v1.  The assembly dimension v1 represents the deflection the active 

smart feature will experience to produce a nesting force to maintain the assembly as a 

solid stack-up.   This problem requires that Parts T & U are always in compression 

between Parts S and V.   

STEPS 3 & 4 – Apply Part DRFs and Kinematic Joints & Form Kinematic 
Assembly Vector Loops 

With the definition of the assembly complete and the location of the nesting force 

determined, a vector loop is now required to indicate the geometric relationships between 

parts and how forces are transmitted through the assembly.  Since this is a 1D problem, 

application of part DRFs and kinematic joints to the assembly will be skipped because it 

strictly involves the one-dimensional lengths of the indicated features.  

STEP 5 – Write Kinematic Equations 
  The vector loop for the Latch is simple and results in a simple linear equation for 

v1.  This simple linear equation for the latch assembly is shown in equation 4.21.  

Equation 4.22 represents the nesting force supplied by the cantilevered beam, Part V.   

3211 xxxv −−=  (4.21) 

3

3

1 4 y

yy

L

Etw
vNF

⋅

⋅⋅
⋅=  (4.22) 

 

This Latch is a 1D problem; therefore the only dimensions and variations that are 

of interest are along the x-axis.  A one-dimensional problem also means that all matrix 

equations are reduced to simple scalar equations.  The nominal dimension values and 

their associated tolerances for this example are given in Table 4.1. 
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Table 4.1 - Nominal part dimensions and associated tolerances 
for the 1D Latch example. 

Inputs Nominal  WC σ 
Percent of 
Nominal 

x1 (mm) 29.50 δx1 0.885 0.295 3.000% 
x2 (mm) 10.00 δx2 0.300 0.100 3.000% 
x3 (mm) 20.00 δx3 0.600 0.200 3.000% 
ty (mm) 1.00 δty 0.030 0.010 3.000% 

wy (mm) 10.00 δwy 0.300 0.100 3.000% 
Ly (mm) 50.00 δLy 1.500 0.500 3.000%  

 

STEP 6 & 7 – Perform Analysis of the Loop Equation  

Before the DLM is applied to equation 4.21, equation 4.21 must be rewritten in 

the form Σ = 0.  This is done and the DLM is applied to the result, as given in equation 

4.23.  Because this is a linear equation, the predicted results from the DLM will be exact. 

1
1

3
3

2
2

1
1

v
v
h

x
x
h

x
x
h

x
x
h

h xxxx
x δδδδδ

∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

=  (4.23) 

 

The result of this process can be rearranged for dv1 so there will now be an 

explicit expression for dv1.  This is found in equation 4.24. 

3211v xxx δδδδ −−=  ( 4.24 ) 
 

For worst-case analysis, the absolute values of the sensitivities are taken, as 

shown in equation 4.25.   

 

785.1600.0300.0885.0
|1||1||1|

1

3211

=++=
⋅−+⋅−+⋅=

v
xxxv

δ
δδδδ

 (4.25) 
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The standard deviation can be predicted in a similar manner using equation 2.9.  

This computation is given in equation 4.26. 

( ) ( ) ( ) 0877.0034.01017.1079.01 222

2

3
3

2

2
2

2

1
1
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1
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The result of equation 4.26 was compared to a 100,000 run Monte Carlo 

simulation where the independent variables were allowed to follow normal distributions 

with their respective standard deviations.  The result of equation 4.25 was compared to a 

500,000 run Monte Carlo simulation where the independent variables were allow to 

follow uniform distributions.  The results of these comparisons can be seen in Table 4.2 

and Table 4.3. 

Table 4.2 - Comparison of the predicted standard deviation to a 
100,000 run Monte Carlo Simulation. 

 Nominal DLM σ MC σ 
Percent 

Difference
v1 -0.5000 0.3702 0.3725 0.6236%  

 

Table 4.3 - Comparison of the predicted worst-case to a 500,000 
run Monte Carlo Simulation. 

 Nominal 
DLM 
High 

MC 
High Compare

DLM 
Low 

MC 
Low Compare 

v1 0.5000 2.2850 2.2624 Good -1.2850 -1.2522 Good 
Good = DLM is provides a conservative estimate of the worst-case condition. 
Low/High = DLM under estimates the extent of the worst-case condition.  
 

The comparisons found in Table 4.2 and Table 4.3 show good agreement between 

the predicted results and those returned from the Monte Carlo simulations.  However, the 
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result of equation 4.25 shows that there will be a problem with the nesting force.  

Nominally, v1 equals 0.500 mm.  The predicted worst-case Low for v1 equals 

285.1785.15.6 −=−  mm.  This result indicates a potential for some assemblies to have a 

nesting force of zero.  A design requirement states there must always be a nesting force.  

Therefore the tolerances of x1, x2, and x3 are reduced; the revised tolerances are shown in 

Table 4.4.  These new values result in a predicted Low of 0.1140 mm.  This new Low 

indicates there will always be a nesting force for the Latch. 

Table 4.4 - Revised tolerances for the independent variables in 
the Latch. 

Inputs Nominal  WC σ 
Percent of 
Nominal 

x1 (mm) 29.50 δx1 0.236 0.079 0.800% 
x2 (mm) 10.00 δx2 0.050 0.017 0.500% 
x3 (mm) 20.00 δx3 0.100 0.034 0.500%  

 

STEP 8 – Perform Force Analysis 
The results from the DLM analysis can now be used to calculate both the worst-

case values and standard deviation for the nesting force from the values calculated for the 

deflection, v1.  This is done by applying the nominal values and the associated variations 

in independent variables Ly, ty and wy to equations 3.16 and 3.18.  The equations and 

resulting values are given in Table 4.5.  Also, in order to predict the standard deviation of 

the force, the first order uncertainty analysis was performed by applying equation 3.19 to 

equation 4.22.  The computed values are summarized in Table 4.6.  
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Table 4.5:  Limits of the force as returned by the worst-case 
analysis. 

Application of Equations 3.16 and 3.17 Equation Results 

( ) ( )
3

3

max )(4
)(

LL
EtthhvvF

δ
δδ

δ
−⋅

⋅+⋅+
⋅+=  4.4251 N 

( ) ( )
3

3

min )(4
)(

LL
EtthhvvF

δ
δδ

δ
+⋅

⋅−⋅−
⋅−=  0.3741 N 

 
 

Comparisons were done against a Monte Carlo simulation for both the worst case 

and the statistical analysis.  For the comparison of the standard deviation, a 100,000 run 

Monte Carlo simulation was performed.  This simulation applied normal distributions to 

the independent variables.  The results are shown in Table 4.6. 

Table 4.6 - Statistical comparison of DLM results with 100,000 
run Monte Carlo Simulation. 

 Nominal 
Value 

DLM  
σ 

Monte Carlo 
σ 

Percent 
Difference 

v1 -0.5000 0.087670 0.087433 0.2712% 

Fx 2.0250 0.365870 0.365878 0.0023% 
 
 

The worst case analysis was compared to a 500,000 run Monte Carlo simulation 

where the independent variables were assumed to have a uniform distribution.  The 

results of this comparison are given in Table 4.7.  These results for a one-dimensional 

tolerance analysis show that the method accurately predicts both the worst case and 

statistical variation in the deflection and the force.  
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Table 4.7 - Worst case analysis comparison with 500,000 run 
Monte Carlo simulation. 

 Nominal DLM 
High 

MC 
High 

Compare 
High 

DLM 
Low 

MC 
Low 

Compare 
Low 

v1 0.5000 0.8860 0.8823 Good 0.1140 0.1178 Good 

Fx 2.0250 4.42509 4.2452 Good 0.37405 0.4408 Good 

Good = DLM is provides a conservative estimate of the worst-case condition. 
Low/High = DLM under estimates the extent of the worst-case condition.  

 

 This example has illustrated the method for a 1D problem that requires a nesting 

force.  The design used a single cantilevered beam as an active smart feature.  The 

following example, an Exactly Constrained Block, will illustrate the method in two 

dimensions, as well as explain the application of multiple nesting forces. 

4.2 Exactly Constrained Block 

STEP 1 – Perform Assembly Design Synthesis 
The exactly constrained block assembly consists of a base that constrains a block 

with three simple constraints.  The assembly is illustrated in Figure 4.2.  For this design, 

each constraint can be considered part of the rigid base. 

Figure 4.2 - Basic assembly for the exactly constrained block. 

C2

C3

C1
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STEP 2 – Determine Placement and Configuration of Nesting Force 
It is clear for the exactly constrained block that a nesting force will be required to 

keep the block seated against the constraints of the base.  After a careful observation, the 

location of the nesting force is determined to be in the location shown in Figure 4.3.  

However, cantilevered beams have been chosen as the active smart features to provide 

the nesting force, and they can only provide a force that is normal to the surface.  

Therefore, two active smart features will be used to obtain the required nesting force 

resultant.  The placement of the cantilevered beams is illustrated in Figure 4.4. 

Figure 4.3 - Exactly constrained block with applied nesting 
force. 
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Figure 4.4 - Placement of cantilevered beams used to provide the 
required nesting force resultant. 

 
 

With the general design done and the placement of the active smart features 

determined, dimensions are applied to the exactly constrained block.  The dimensions are 

displayed in Figure 4.5.  The dependent dimension u4 represents the rotation of the block 

caused when the independent dimensions vary in size.  The block is shown at its nominal 

angle of 0°.  The values of all independent variables and their associated worst-case 

tolerances and standard deviations are given in Table 4.8. 
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Figure 4.5 - Exactly constrained block with dimension labels 
applied. 

 

STEP 3 – Apply Part DRFs and Kinematic Joints 
Now that the assembly is designed and dimensioned, the DLM model can be 

developed.  Model setup starts with establishment of Datum Reference Frames for each 

part and the application of kinematic joints for the contacts between parts.  For the 

Exactly Constrained Block, the joints will be represented by the constraints.  Both the 

part DRFs and the kinematic joints are shown in Figure 4.5. 
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Table 4.8 - Nominal values for independent dimensions and their 
respective tolerances and standard deviations. 

 Nominal 
Value  ± δX σX 

Percent 
Variation 

x1 2.625  δx1 0.079 0.027 3.00% 

x2 10.000  δx2 0.3 0.1 3.00% 

x3 13.000  δx3 0.39 0.13 3.00% 

x4 9.750  δx4 0.293 0.098 3.00% 

x5 9.000  δx5 0.27 0.09 3.00% 

x6 3.000  δx6 0.09 0.03 3.00% 

x7 1.000  δx7 0.03 0.01 3.00% 

x8 5.250  δx8 0.158 0.053 3.00% 

x9 8.000  δx9 0.24 0.08 3.00% 

x10 12.000  δx10 0.36 0.12 3.00% 

x11 1.290  δx11 0.039 0.013 3.00% 

x12 1.200  δx12 0.036 0.012 3.00%  
 

STEP 4 – Form Kinematic Assembly Vector Loops 
Kinematic loops are established using the principles outlined in Sections 2.6 and 

3.2.4.1.  For the Block there are 3 joints and 2 parts; thus 1231 +−=+−= PJL  = 2 

loops; therefore, two closed kinematic vector loops are needed to establish the relative 

position of the parts in the assembly.  Since there are two nesting forces; according to the 

principles outlined in Section 3.2.4.1, two nesting force loops are required.  There are no 

open loops for the Exactly Constrained Block assembly.  The two closed vector loops are 

illustrated in Figure 4.6 and the two nesting force loops can be seen in Figure 4.7. 
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Figure 4.6 - Closed loops and their associated dimensions for the 
exactly constrained block. 
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Figure 4.7 - Nesting force loops for the exactly constrained 
block. 

 

Note that there are four vi dependent variables for the two nesting force loops.  

For each loop, one vi represents the deflection of the cantilevered beam.  The vertical 
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nesting force, Fy, is the result of the deflection, v4.  The horizontal nesting force, or Fx, is 

the result of the deflection, v3. 

STEP 5 – Write Kinematic Equations 

Now that the kinematic vector loops have been formed, the equations for the 

respective loops can be written.  The equations for the Closed Loop 1 and the Nesting 

Force Loop 1, evaluated in terms of known angles, can be seen in equations 4.27 and 

4.28.  The development of all vector loops and subsequent symbolic and numerical 

analysis were performed using Maple© and can be found in Appendix B. 

( ) ( ) ( )
( ) ( ) ( ) 0sincossin

0cossincos

543494171

443494111

=−⋅+⋅+⋅−=
=−⋅+⋅−⋅−=

xuuuxuuxh
xuuuxuuxh

y

x  ( 4.27 ) 

( ) ( )
( ) ( ) 0cossin

0sincos

4141671

414131111

=⋅+⋅−−=
=⋅−⋅−−−=

uvuuxxg
uvuuvxxg

y

x  ( 4.28 ) 

 

STEP 6 – Perform Analysis of the Closed and Open Loop Equations 
The setup of the DLM model is now finished and the model can now be analyzed.  

The 

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1−
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



∂
∂
u
h  matrices are created and each of these matrices is 

given in both its symbolic and numerical representations in Appendix B.  The values for 

the closed loop sensitivity matrix, equal to 
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
∂
∂

⋅

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, are given in Table 4.9. 

STEP 7 – Perform Analysis of the Nesting Force Loop Equations 
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 matrix formed, the DLM is applied to the nesting force 

loop equations.  This requires the formation of the 
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matrices.  As with the closed loop matrices, these can be found in Appendix B.  The 
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sensitivities for the dependent variables in the nesting force loop analysis are shown in 

Table 4.10.  

Table 4.9 - Sensitivities for the closed loop dependent variables. 
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∂
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
∂
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−
−

x
h

u
h 1

Matrix: 
    

 x1 x2 x3 x4 x5 x6  
u1 -1.0000 0.0000 1.0000 0.0000 0.5965 0.0000  
u2 0.0000 0.0000 0.0000 0.0000 1.4561 0.0000  
u3 0.0000 0.0000 1.0000 -1.0000 -0.5263 0.0000  
u4 0.0000 0.0000 0.0000 0.0000 -0.1404 0.0000  

        
  x7 x8 x9 x10 x11 x12 
  -0.5965 0.0000 -0.5965 -1.0000 0.0000 0.0000 
  -0.4561 -1.0000 -1.4561 0.0000 0.0000 0.0000 
  0.5263 0.0000 0.5263 -1.0000 0.0000 0.0000 
  0.1404 0.0000 0.1404 0.0000 0.0000 0.0000  
 

Table 4.10 - Sensitivity matrix for the nesting force loop 
dependent variables. 
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 Matrix: 
   

 x1 x2 x3 x4 x5 x6  
v1 0.000 0.000 0.000 0.000 0.228 1.000  
v2 0.000 1.000 -1.000 0.000 -0.596 0.000  
v3 0.000 0.000 1.000 0.000 0.316 0.000  
v4 0.000 0.000 0.000 0.000 1.035 0.000  

        
  x7 x8 x9 x10 x11 x12 
  -1.228 0.000 -0.228 0.000 0.000 0.000
  0.596 0.000 0.596 1.000 0.000 0.000
  -0.316 0.000 -0.316 -1.000 -1.000 0.000
  -0.035 0.000 -1.035 0.000 0.000 -1.000 
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The results of the both the worst-case and statistical analysis for dependent 

variables ui and vi using equations 2.8 and 2.9 are given in Table 4.11. 

Table 4.11 - Results of the DLM closed loop and nesting force 
loop analysis for the exactly constrained block assembly. 

 
Nominal 

Value  
DLM 
WC 

DLM 
σ 

u1 1.625 δu1 1.151 0.1929 
u2 4.250 δu2 0.914 0.1832 
u3 8.750 δu3 1.327 0.2120 
u4 0.000 δu4 0.076 0.0170 
v1 2.000 δv1 0.243 0.0425 
v2 9.000 δv2 1.372 0.2156 
v3 0.290 δv3 0.960 0.1815 
v4 0.200 δv4 0.565 0.1252  

 

The results of both the closed and nesting force loop analysis can now be 

compared against Monte Carlo simulations.  The standard deviations are compared 

against a 100,000 run simulation where the independent variables were allowed to 

randomly follow their respective normal distributions.  The worst-case limits were 

compared to a 500,000 run simulation where the independent variables followed uniform 

distributions.  The results of these comparisons are seen in Table 4.12 and Table 4.13, 

respectively. 
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Table 4.12 - Comparison of the predicted standard deviation 
against a 100,000 run Monte Carlo simulation for the exactly 

constrained block. 

 DLM σ MC σ 
Percent 

Difference 

u1 0.1929 0.1927 0.1120% 

u2 0.1832 0.1825 0.3999% 

u3 0.2120 0.2118 0.1109% 

u4 0.0170 0.0169 0.2579% 

v1 0.0425 0.0426 0.3721% 

v2 0.2156 0.2158 0.0661% 

v3 0.1815 0.1812 0.1307% 

v4 0.1252 0.1249 0.2621%  
 

Table 4.13 - Comparison of the predicted worst-case limits to a 
500,000 run Monte Carlo Simulation for the exactly constrained 

block. 

 
DLM 
High 

MC 
High Compare 

DLM 
Low 

MC 
Low Compare 

u1 2.7761 1.6308 Good 0.4739 0.6111 Good 
u2 5.1643 4.2537 Good 3.3357 3.3482 Good 
u3 10.0772 8.7518 Good 7.4228 7.5190 Good 
u4 0.0758 0.0744 Good -0.0758 -0.0817 High 
v1 2.2432 1.9964 Good 1.7568 1.7021 High 
v2 10.3721 9.0089 Good 7.6279 7.7570 Good 
v3 1.2495 0.2954 Good -1.2495 -1.2552 High 
v4 0.7649 0.2039 Good -0.7649 -0.8040 High 
Good = DLM is provides a conservative estimate of the worst-case 
condition. 
Low/High = DLM under estimates the extent of the worst-case condition.  
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The results in Table 4.12 and Table 4.13 show overall good results with the 

percent difference in the predicted standard deviation an average of 0.214%.  The worst 

case conservatively estimates the High values well, but falls slightly high on several of 

the Low values.  Even with the slight under-estimation of the low values for worst-case, 

the results are still adequate for design purposes.  However, there is a noticeable problem 

with the predicted worst-case conditions where the possibility exists that some assemblies 

will not have a nesting force because of a gap instead of a deflection.  Therefore, 

tolerances of some independent variables were adjusted.  The revised tolerances on the 

independent variables are given in Table 4.14.  The new variations in the dependent 

variables are given in Table 4.15. 

Table 4.14 - The set of all independent variables 
and associated tolerances.  The revised tolerances 

are highlighted. 

 Nominal 
Value   ± δX σX 

Percent 
Variation 

x1 2.625  δx1 0.079 0.027 3.00% 

x2 10.000  δx2 0.300 0.100 3.00% 

x3 13.000  δx3 0.065 0.022 0.50% 

x4 9.750  δx4 0.293 0.098 3.00% 

x5 9.000  δx5 0.045 0.015 0.50% 

x6 3.000  δx6 0.090 0.030 3.00% 

x7 1.000  δx7 0.010 0.004 1.00% 

x8 5.250  δx8 0.158 0.053 3.00% 

x9 8.000  δx9 0.080 0.027 1.00% 

x10 12.000  δx10 0.060 0.020 0.50% 

x11 1.290  δx11 0.007 0.003 0.50% 

x12 1.200  δx12 0.012 0.004 1.00%  
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Table 4.15 - The revised variations for the 
dependent variables for the exactly constrained 

block. 

 
Nominal 

Value  
DLM 
WC 

DLM 
σ 

u1 1.625 δu1 0.285 0.0443 
u2 4.250 δu2 0.345 0.0695 
u3 8.750 δu3 0.489 0.1037 
u4 0.000 δu4 0.019 0.0044 
v1 2.000 δv1 0.131 0.0312 
v2 9.000 δv2 0.506 0.1060 
v3 0.290 δv3 0.175 0.0315 
v4 0.200 δv4 0.142 0.0322  

 

STEP 8 – Perform Force Analysis 

The results from the DLM show that the revised variations in the two deflections, 

v3 and v4 are now less than the nominal value; therefore there will always be a force at the 

desired locations.  The force analysis can now be performed using these results.  

Cantilevered beams are being used as active smart features to supply the required nesting 

forces and their respective force output is given in equations 3.16 and 3.17.  The 

independent variables that describe these beams along with their worst-case tolerances 

and standard deviations are given in Table 4.16. 
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Table 4.16 - Values for the independent variables and their 
respective tolerances and standard deviations for the cantilevered 

beams in the exactly constrained block assembly. 

X-axis 
Nominal 

Value   

Worst 
Case 
Value 

Standard 
Deviation 

Values 
Percent 

Variation 
Lx 1.980  δLx 0.0600 0.0200 3.00% 
wx 1.000  δwx 0.0300 0.0100 3.00% 
tx 0.025  δtx 0.0008 0.0003 3.00% 
Ex 3.0E+07  δEx 0.0000 0.0000 0.00% 

Y-axis       
Ly 2.530  δLy 0.0760 0.0260 3.00% 
wy 1.000  δwy 0.0300 0.0100 3.00% 
ty 0.030  δty 0.0009 0.0003 3.00% 
Ey 3.0E+07  δEy 0.0000 0.0000 0.00%  

 

Calculation of the worst-case and statistical variations in the nesting forces can be 

performed by applying the values from Table 4.11 for v3 and v4, and the respective x and 

y values from Table 4.16, to equations 3.16, 3.18, and 3.19. The results of these 

calculations are shown in Table 4.17.  Also included in Table 4.17 are estimates for the 

worst-case variation in the resultant force, Fr and the angle at which the resultant acts, θF.  

These values are provided for design purposes, to verify the resultant force is as desired.  

No statistical analysis was done for the resultant force. 
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Table 4.17 - Results of the DLM force analysis, including 
estimates for the resultant force, Fr and the angle of the resultant 

force, θ F. 
 Nominal Maximum Minimum σ 

Fx 4.3781 8.7089 1.4011 0.5196 
Fy 2.5009 5.2704 0.5902 0.4178 
Fr 5.0420 10.1795 1.5203 N.A. 

θ F (r) 0.5190 0.5442 0.3987 N.A. 
θ F (°) 29.74 31.18 22.84 N.A.  

 

Again, two Monte Carlo simulations were performed to validate the results.  For 

the statistical analysis, a 100,000 run Monte Carlo simulation was performed; the results 

are given in Table 4.18.   For the worst-case analysis, a 500,000 run simulation was 

performed.  The worst-case values are compared in Table 4.19.  The results show that the 

DLM accurately estimates the standard deviations, with an average percent difference of 

only 0.255% for all the dependent variables.  The worst-case comparison shows some 

error but for the DLM part of the analysis the under-estimation is small and could reliably 

be used for the purposes of design. 
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Table 4.18 - Comparison of DLM to 100,000 run 
Monte Carlo simulation for the standard  deviation (σ) 

for all the dependent variables for the Exactly 
Constrained Block. 

 
DLM  

σ 

Monte 
Carlo  

σ 
Percent 

Difference

u1 0.0443 0.0443 0.1819% 
u2 0.0695 0.0696 0.1600% 
u3 0.1037 0.1035 0.1688% 
u4 0.0044 0.0044 0.1485% 
v1 0.0312 0.0311 0.2853% 
v2 0.1060 0.1064 0.3814% 
v3 0.0315 0.0316 0.3533% 
v4 0.0322 0.0322 0.0616% 
Fx 0.5196 0.5224 0.5494% 
Fy 0.4178 0.4188 0.2564%  

 

Table 4.19 - Comparison of DLM to 500,000 run Monte 
Carlo simulation for the worst-case conditions for all the 

dependent variables for the exactly constrained block. 

 
DLM 
High 

MC 
High Compare 

DLM 
Low 

MC 
Low Compare 

u1 1.9095 1.6254 Good 1.3405 1.3717 Good 
u2 4.5946 4.2503 Good 3.9054 3.9072 Good 
u3 9.2391 8.7500 Good 8.2609 8.2843 Good 
u4 0.0189 0.0192 Low -0.0189 -0.0196 High 
v1 2.1308 1.9997 Good 1.8692 1.8699 Good 
v2 9.5055 9.0006 Good 8.4945 8.5225 Good 
v3 0.4646 0.4570 Good 0.1154 0.1287 Good 
v4 0.3417 0.3477 Low 0.0583 0.0556 High 
Fx 8.7089 4.3958 Good 1.4011 1.7623 Good 
Fy 5.2704 2.5118 Good 0.5902 0.6398 Good 
Good = DLM is provides a conservative estimate of the worst-case 
condition. 
Low/High = DLM under estimates the extent of the worst-case 
condition.  
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4.3 Wedge and Cylinder Example 

STEP 1 – Perform Assembly Design Synthesis 
The Wedge and Cylinder assembly consists of a Base, Cylinder and a Wedge as 

shown below.  The Wedge is intended to keep the cylinder firmly nested in the corner of 

the base as illustrated in Figure 4.8. 

Figure 4.8 - Wedge and Cylinder assembly. 
 

STEP 2 – Determine Placement and Configuration of Nesting Force 
The placement of the nesting force in the assembly is given in Figure 4.9.  It 

should be noted that if just a horizontal force is applied, the moment created by the 

Cylinder on the Wedge could un-seat the Wedge from the rear constraint.  Therefore, this 

assembly will also require a downward nesting force that will resist the moment 

BASE

WEDGE

CYLINDER
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generated by the cylinder.  The desired resultant nesting force as well as the two nesting 

forces that will be used to generate the resultant are displayed in Figure 4.9. 

Figure 4.9 – Nesting forces applied to the Wedge assembly to 
obtain the desired resultant nesting force. 

 

One possible configuration of the base, with the cantilevered beams molded into 

it, is shown in Figure 4.10.  With the active features positioned, the assembly is now 

dimensioned and labeled for the DLM setup.  This can be seen in Figure 4.11.  The 

dimension, u6, represents the rotation the block may experience due to variations in x2 

and x4.  Nominally, u6 is 0 radians.  The dependent dimensions, v1 and v4, represent the 

deflections of the active smart features in the x and y directions, respectively. The values 

for all the independent dimensions are shown in Table 4.20. 
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Figure 4.10 - Wedge assembly with cantilevered beams 
providing the required nesting forces. 

 

Figure 4.11 - Wedge assembly with dimensions and their 
respective labels. 
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Table 4.20 - Nominal values and the associated worst-case 
tolerances and standard deviations for the Wedge Assembly. 

 Nominal 
Value   ± δX σX 

Percent 
Variation 

x1 2.500  δx1 0.075 0.025 3.00% 

x2 0.500  δx2 0.015 0.005 3.00% 

x3 5.000  δx3 0.150 0.050 3.00% 

x4 0.500  δx4 0.015 0.005 3.00% 

x5 1.750  δx5 0.053 0.018 3.00% 

x6 2.400  δx6 0.072 0.024 3.00% 

x7 4.000  δx7 0.120 0.040 3.00% 

x8 3.800  δx8 0.114 0.038 3.00% 

x9 5.620  δx9 0.169 0.057 3.00% 

x10 1.000  δx10 0.030 0.010 3.00% 

x11 5.100  δx11 0.153 0.051 3.00% 

x12 2.000  δx12 0.060 0.020 3.00% 

x13 1.125  δx13 0.034 0.012 3.00% 

x14 0.349  δx14 0.011 0.004 3.00%  
 

STEP 3 – Apply Part DRFs and Kinematic Joints 
Part DRFs and kinematic joints are now applied to the model and can be seen in 

Figure 4.12. 
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Figure 4.12 - Part DRFs and kinematic joints applied to the 
Wedge Assembly. 

 

STEP 4 – Form Kinematic Assembly Vector Loops 
Kinematic loops are now applied to the model.  This assembly has two parts, five 

joints, and two nesting forces; therefore there will be 3 closed loops and two nesting force 

loops.  The first two closed loops are illustrated in Figure 4.13.  The third closed loop can 

be seen in Figure 4.14.  The two nesting force loops are displayed in Figure 4.15.  The 

nesting force Fx is the result of the deflection v1, and the nesting force Fy is the result of 

the deflection v4.   
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Figure 4.13 - Closed loops 1 and 2 for the Wedge Assembly. 
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Figure 4.14 - Closed loop 3 for the Wedge Assembly. 
 

STEP 5 – Write Kinematic Equations 
Now that the kinematic vector loops have been formed, the equations for the 

respective loops can be written.  The equations for the Closed Loop 1 and the Nesting 

Force Loop 1, evaluated in terms of known angles, are given in equations 4.29 and 4.30.  

The development of all vector loops and subsequent symbolic and numerical analysis can 

be found in Appendix C. 
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Figure 4.15 - Nesting force loops 1 and 2 for the Wedge 
Assembly. 
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STEP 6 – Perform Analysis of the Closed and Open Loop Equations 

The setup of the DLM model is now finished, and the DLM is now performed on 

the closed loop equations that have been formed.  The 




∂
∂

x
h ,  




∂
∂
u
h  and the 

1−
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
∂
∂
u
h  are 

created and each of these matrices can be seen in both their symbolic and numerical 

representations in Appendix C.  The values for the closed loop sensitivity matrix or 
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 matrix are given in Table 4.21. 

Table 4.21 - Closed loop sensitivity matrix for the Wedge 
Assembly. 






∂
∂

⋅




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x
h
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Matrix: 
    

 x1 x2 x3 x4 x5 x6 x7  
u1 1.0000 -3.3086 0.0000 0.5611 0.0000 0.0000 2.7475  
u2 0.0000 -3.3086 1.0000 0.5611 0.0000 0.0000 2.7475  
u3 0.0000 -4.5319 0.0000 1.6081 0.0000 0.0000 2.9238  
u4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000  
u5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
u6 0.0000 -0.4000 0.0000 0.4000 0.0000 0.0000 0.0000  
         
  x8 x9 x10 x11 x12 x13 x14 
  0.0000 0.0000 -2.7475 0.0000 0.0000 -6.6713 -2.7171
  0.0000 0.0000 -2.7475 0.0000 0.0000 -6.6713 -2.7171
  0.0000 0.0000 -2.9238 0.0000 0.0000 -5.6713 -1.4283
  0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 
  0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 
  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
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STEP 7 – Perform Analysis of the Nesting Force Loop Equations 

With the 
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 matrix formed, the DLM is applied to the nesting force 

loop equations.  This requires the formation of the 
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matrices.  As with the closed loop matrices, these are shown in Appendix C.  The 

sensitivities for the dependent variables in the nesting force loop analysis are given in 

Table 4.22. 

Table 4.22 - Nesting force loop sensitivities for the Wedge 
Assembly. 
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 Matrix: 
   

 x1 x2 x3 x4 x5 x6 x7  
v1 0.0000 3.8086 0.0000 -1.0611 0.0000 0.0000 -2.7475  
v2 0.0000 0.2946 0.0000 -1.2946 1.0000 0.0000 0.0000  
v3 0.0000 4.1086 0.0000 -1.3611 0.0000 0.0000 -2.7475  
v4 0.0000 -0.4800 0.0000 -0.5200 0.0000 1.0000 0.0000  
         
  x8 x9 x10 x11 x12 x13 x14 
  0.0000 -1.0000 2.7475 1.0000 0.0000 6.6713 2.7171 
  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  -1.0000 0.0000 2.7475 1.0000 0.0000 6.6713 2.7171 
  0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000  

 

The results of the both the worst-case and statistical analysis using equations 2.8 

and 2.9 are given in Table 4.23. 
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Table 4.23 - Results of the DLM closed loop and nesting force 
loop analysis for the Wedge Assembly. 

 
Nominal 

Value  
DLM 
WC 

DLM 
σ 

u1 1.8635 δu1 0.8019 0.1424 
u2 4.3635 δu2 0.8769 0.1488 
u3 0.9293 δu3 0.7392 0.1406 
u4 2.8750 δu4 0.1540 0.0418 
u5 1.1250 δu5 0.0340 0.0120 
u6 0.0000 δu6 0.0120 0.0028 
v1 0.1165 δv1 1.0639 0.1600 
v2 1.2500 δv2 0.0768 0.0192 
v3 1.9365 δv3 1.0179 0.1545 
v4 0.1000 δv4 0.1470 0.0314  

 

The results of both the closed and nesting force loop analysis for the Wedge 

assembly can now be validated against Monte Carlo simulations.  As with the previous 

examples in this work, the standard deviations are compared against a 100,000 run 

simulation where the independent variables were allowed to randomly follow their 

respective normal distributions.  The worst-case limits were compared to a 500,000 run 

simulation where the independent variables followed uniform distributions.  The results 

of these comparisons are seen in Table 4.24 and Table 4.25, respectively. 
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Table 4.24 - Comparison of the predicted standard 
deviation to a 100,000 run Monte Carlo simulation for 

the Wedge assembly. 

 DLM σ MC σ 
Percent 

Difference 

u1 0.1424 0.1419 0.3082% 

u2 0.1488 0.1484 0.2374% 

u3 0.1406 0.1400 0.4748% 

u4 0.0418 0.0415 0.5962% 

u5 0.0120 0.0120 0.0933% 

u6 0.0028 0.0028 0.3387% 

v1 0.1600 0.1601 0.0834% 

v2 0.0192 0.0192 0.0365% 

v3 0.1545 0.1543 0.1164% 

v4 0.0314 0.0315 0.1407%  
 

The comparisons contained in Table 4.24 and Table 4.25 both show good 

agreement between the predicted values and the values returned by the Monte Carlo 

simulations.  There are a couple of dependent variables that are slightly under-predicted 

but the results are close and should be acceptable for design purposes.  Again, because of 

the relatively large 3.0% variation in the worst-case tolerances, the resulting variation in 

both the deflections can result in gaps in at the nesting force features.  Therefore, the 

variations in the independent variables are again adjusted with respect to the sensitivity 

matrix for the nesting force loop variables.  The resulting changes to the set can be seen 

in Table 4.27. 
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Table 4.25 – Comparison of predicted worst-case values with 
500,000 run Monte Carlo simulation for the Wedge assembly. 

 
DLM 
High 

MC 
High Compare 

DLM 
Low 

MC 
Low Compare 

u1 2.6654 2.6099 Good 1.0616 1.1375 Good 

u2 5.2404 5.1715 Good 3.4866 3.5624 Good 

u3 1.6685 1.6460 Good 0.1901 0.2336 Good 

u4 3.0290 3.0285 Good 2.7210 2.7212 Good 

u5 1.1590 1.1590 Good 1.0910 1.0910 Good 

u6 0.0120 0.0128 Low -0.0120 -0.0127 High 

v1 1.1804 1.0766 Good -0.9474 -0.8664 Good 

v2 1.3268 1.3332 Low 1.1732 1.1687 High 

v3 2.9544 2.8333 Good 0.9186 1.0338 Good 

v4 0.2470 0.2420 Good -0.0470 -0.0419 Good  
 

The revised tolerances result in changes to the variations in the dependent 

variables for the Wedge assembly.  For brevity, only the changes in the nesting force loop 

variables are given in Table 4.26.  These results can now be used for the force analysis. 

Table 4.26 – Revised results of the DLM nesting force loop 
analysis for the Wedge Assembly. 

 
Nominal 

Value  
DLM 
WC 

DLM 
σ 

v1 0.1165 δv1 0.0923 0.0127 
v2 1.2500 δv2 0.0578 0.0180 
v3 1.9365 δv3 0.1991 0.0400 
v4 0.1000 δv4 0.0670 0.0161  
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Table 4.27 – Revised tolerances and standard deviations for the 
Wedge Assembly. 

 Nominal 
Value   ± δX σX 

Percent 
Variation 

x1 2.500  δx1 0.075 0.025 3.00% 

x2 0.500  δx2 0.003 0.001 0.50% 

x3 5.000  δx3 0.150 0.050 3.00% 

x4 0.500  δx4 0.003 0.001 0.50% 

x5 1.750  δx5 0.053 0.018 3.00% 

x6 2.400  δx6 0.024 0.008 1.00% 

x7 4.000  δx7 0.006 0.002 0.15% 

x8 3.800  δx8 0.114 0.038 3.00% 

x9 5.620  δx9 0.009 0.003 0.15% 

x10 1.000  δx10 0.005 0.002 0.50% 

x11 5.100  δx11 0.013 0.005 0.25% 

x12 2.000  δx12 0.040 0.014 2.00% 

x13 1.125  δx13 0.003 0.001 0.25% 

x14 0.349  δx14 0.002 0.001 0.50%  
 

STEP 8 – Force Analysis 

With the revised results from the DLM, it can be seen that the variations in the 

two deflections, v1 and v4 are less than the nominal value; therefore there will always be a 

force at the desired locations.   Now the force analysis can be performed using these 

results.  The independent variables for each cantilevered beam along with their worst-

case tolerances and respective standard deviations are presented in Table 4.16. 
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Table 4.28 - Values for the independent variables and their 
respective tolerances and standard deviations for the cantilevered 

beams in the Wedge assembly. 

X-axis 
Nominal 

Value   

Worst 
Case 
Value 

Standard 
Deviation 

Values 
Percent 

Variation
Lx 2.000  δLx 0.0600 0.0200 3.0% 
wx 1.000  δwx 0.0300 0.0100 3.0% 
tx 0.025  δtx 0.0008 0.0003 3.0% 
Ex 3E+07  δEx 0.0000 0.0000 0.0% 

Y-axis       
Ly 2.500  δLy 0.0750 0.0250 3.0% 
wy 1.000  δwy 0.0300 0.0100 3.0% 
ty 0.030  δty 0.0009 0.0003 3.0% 
Ey 3E+07  δEy 0.0000 0.0000 0.0%  

 

Calculating both the worst-case and statistical variations in the nesting forces 

requires the use of equations 3.16, 3.18, and 3.19.  Applying the values from Table 4.26 

for v1 and v4, and the respective x and y values from Table 4.28 to these equations results 

in the values given in Table 4.29.  Also included in these results are estimates for the 

worst-case variation in the resultant force, Fr and the angle at which the resultant acts, θ 

F.  These values are provided to verify the resultant force is as desired.  No statistical 

analysis was done for the resultant force or resultant angle. 

Table 4.29 - Results of the DLM force analysis for the Wedge 
Assembly, including estimates for the resultant force, Fr and the 

angle of the resultant force, Fθ. 
 Nominal Maximum Minimum σ 

Fx 1.7065 5.7340 0.2856 0.2035 
Fy 1.2960 2.6690 0.3465 0.2167 
Fr 2.1429 6.3248 0.4491 0.2084 

θ F (r) 3.791 4.606 3.202 N.A. 
θ F (°) 217.2 263.9 183.5 N.A.  
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Two Monte Carlo simulations were performed to validate the results.  For the 

statistical analysis, a 100,000 run Monte Carlo simulation was performed and the results 

were compared against those returned by the DLM.  This comparison is given in Table 

4.30.   For the worst-case analysis, a 500,000 run Monte Carlo was performed and the 

worst-case values are compared in Table 4.31.  The results found in Table 4.30 and in 

Table 4.31 show that the DLM accurately estimates both the worst-case conditions as 

well as the standard deviations for all the dependent variables. 

Table 4.30 - Comparison of DLM to 100,000 run Monte Carlo 
simulation for the standard deviation for all the dependent 

variables for the Wedge Assembly. 

 
DLM 

σ 

Monte 
Carlo  

σ 
Percent 

Difference
u1 0.0274 0.0275 0.4093% 
u2 0.0512 0.0513 0.1033% 
u3 0.0112 0.0112 0.0700% 
u4 0.0022 0.0022 0.2221% 
u5 0.0010 0.0010 0.2647% 
u6 0.0006 0.0006 0.2276% 
v1 0.0127 0.0127 0.0230% 
v2 0.0180 0.0181 0.0215% 
v3 0.0400 0.0401 0.1842% 
v4 0.0161 0.0162 0.1261% 
Fx 0.2035 0.2034 0.0673% 
Fy 0.2167 0.2173 0.2930%  
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Table 4.31 - Comparison of DLM to 500,000 run Monte Carlo 
simulation for the worst-case conditions for all the dependent 

variables for the Wedge Assembly. 

 
DLM  
High 

Monte 
Carlo  
High Compare

DLM 
Low 

Monte 
Carlo  
Low Compare 

u1 2.0058 1.9957 Good 1.7212 1.7296 Good 
u2 4.5808 4.5633 Good 4.1462 4.1599 Good 
u3 0.9998 0.9929 Good 0.8589 0.8642 Good 
u4 2.8840 2.8840 Good 2.8660 2.8660 Good 
u5 1.1280 1.1280 Good 1.1220 1.1220 Good 
u6 0.0024 0.0026 Low -0.0024 -0.0026 High 
v1 0.2088 0.1939 Good 0.0242 0.0385 Good 
v2 1.30777 1.30785 Low 1.19223 1.19216 High 
v3 2.1356 2.1144 Good 1.7374 1.7571 Good 
v4 0.1670 0.1662 Good 0.0330 0.0340 Good 
Fx 5.7340 3.2791 Good 0.2856 0.5159 Good 
Fy 2.6690 2.5766 Good 0.3465 0.3886 Good 
Good = DLM provides a conservative estimate of the worst-case 
condition. 
Low/High = DLM under estimates the extent of the worst-case 
condition.  

 





91 

Chapter 5 Conclusions and Recommendations 

5.1 Contributions and Conclusions 

The research presented in this work provides a method that will aid the design of 

exactly constrained assemblies.  Specifically, this work has presented a method for the 

analysis and design of nesting forces.  The method has specifically addressed the 

advantages of using active smart features to provide nesting forces.  Due to the nature of 

the analysis, the resulting nesting forces will be robust to variations in the assembly 

arising from manufacturing, operational, and environmental conditions. 

The method presented has illustrated the use of nesting force loops in the DLM 

analysis.  Previous to this work, the only loops required in DLM analysis were the 

traditional closed and open loops.  The closed loops allowed for the solution of the 

variation in the dependent dimensions that position the parts of the assembly with respect 

to each other.  The open loops were used for characterizing the variation in other features 

of the assembly not contained in the closed loops.  This method has shown that there are 

times when an assembly may need additional closed loops that can characterize the 

variation in features not otherwise located by either the traditional closed or open loops.  

These new closed loops have been labeled nesting force loops. 

Four examples have been presented as a means of illustrating the process for 

designing robust nesting forces and for validating the method.  Each example was 

presented in a step-by-step manner so the reader can understand the process of applying 

the method to assemblies.  The results obtained for each of these examples have been 

verified by comparing both statistical and worst-case results to their respective Monte 

Carlo simulations.  These comparisons have shown that though a linearized estimation is 
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used, the method accurately predicts how the variation of independent variables 

propagates to the variation in the dependent variables.  Using this information designers 

can now refine their designs to provide robust nesting forces where needed. 

This research has also further validated the effectiveness of smart assemblies and 

their correlation to exact constraint design.  Specifically, active smart features have been 

shown to be very effective in providing nesting forces in exactly constrained assemblies.  

A key element comes in the form of providing a nesting force while maintaining an 

active DoF in the direction of the force so that the advantages of the exactly constrained 

design are preserved. 

5.2 Recommendations 

This work has identified a method that allows for the design of robust nesting 

forces for exactly constrained assemblies.  There are several areas that could be explored 

to further the work in exactly constrained assemblies and nesting forces.  The 

recommendations that have arisen from this research are as follows: 

• The assumption that all parts in the assembly are rigid simplified the 
analysis and made the development of this method possible.  However, 
this assumption limits the applicability of the method to all assemblies.  It 
is therefore recommended that further work explore assemblies made up 
of combinations of rigid and flexible parts. 

• This work, as well as the preceding work in smart assemblies, is limited to 
two-dimensional analysis.  Further work is needed to extend both methods 
into three dimensions for greater application in real assemblies. 

• This work relied on observation and intuition for the placement of nesting 
forces.  It is recognized that placement of nesting forces by observation is 
an over-simplification of a potentially complicated process.  It is 
recommended that a mathematical method be developed for identifying 
the location of nesting forces with respect to the robust stability of the 
design.  
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Appendix A 
Maple© Worksheets for Pinned Block Assembly 

Maple© was used to form both the explicit equations and to perform the DLM on 

the Pinned Block Assembly.  The following two sections contain the applicable Maple© 

worksheets that were used for this task. 

A.1 Explicit Equation Development  

Formation of the explicit functions for the dependent variables for the 
Pinned Block Assembly: 
> restart; 
Use the codegen package for exporting C code for  the Monte Carlo simulation program. 
> with(codegen): 
Warning, the protected name MathML has been redefined and unprotected 
 
Kinematic equations for Closed Loop 1 
> 
CL1[x]:=xx2*cos(0)+xx6*cos(pi/2)+uu1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*
cos(3*pi/2)+xx1*cos(pi); 
CL1[y]:=xx2*sin(0)+xx6*sin(pi/2)+uu1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*
sin(3*pi/2)+xx1*sin(pi); 

 := CL1x  +  +  +  +  + xx2 xx6 





cos π

2 uu1 ( )cos  + π uu2 xx8 





cos  + 

π
2 uu2 xx4 






cos 3 π

2 xx1 ( )cos π
 

 := CL1y  +  +  +  + xx6 





sin π

2 uu1 ( )sin  + π uu2 xx8 





sin  + 

π
2 uu2 xx4 






sin 3 π

2 xx1 ( )sin π
 

Kinematic equations for Open Loop 1 
> OL1[x]:=xx5*cos(-
pi/2)+xx3*cos(pi)+xx1*cos(0)+xx4*cos(pi/2)+xx8*cos(3*pi/2+uu2)+xx9*cos(
uu2); 
OL1[y]:=xx5*sin(-
pi/2)+xx3*sin(pi)+xx1*sin(0)+xx4*sin(pi/2)+xx8*sin(3*pi/2+uu2)+xx9*sin(
uu2); 

 := OL1 x  +  +  +  +  + xx5 





cos π

2 xx3 ( )cos π xx1 xx4 





cos π

2 xx8 





cos  + 

3 π
2 uu2 xx9 ( )cos uu2

 

 := OL1 y −  +  +  +  + xx5 





sin π

2 xx3 ( )sin π xx4 





sin π

2 xx8 





sin  + 

3 π
2 uu2 xx9 ( )sin uu2

 

Kinematic equations for Nesting Force Loop 1: 
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> 
NFL1[x]:=xx10*cos(0)+xx11*cos(pi/2)+vv2*cos(pi/2)+xx7*cos(3*pi/2+uu2)+v
v1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*cos(3*pi/2)+xx1*cos(pi); 
NFL1[y]:=xx10*sin(0)+xx11*sin(pi/2)+vv2*sin(pi/2)+xx7*sin(3*pi/2+uu2)+v
v1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*sin(3*pi/2)+xx1*sin(pi); 
NFL1 x xx10 xx11 






cos π

2 vv2 





cos π

2 xx7 





cos  + 

3 π
2 uu2 vv1 ( )cos  + π uu2 +  +  +  +  := 

xx8 





cos  + 

π
2 uu2 xx4 






cos 3 π

2 xx1 ( )cos π +  +  + 

 

NFL1 y xx11 





sin π

2 vv2 





sin π

2 xx7 





sin  + 

3 π
2 uu2 vv1 ( )sin  + π uu2 xx8 






sin  + 

π
2 uu2 +  +  +  +  := 

xx4 





sin 3 π

2 xx1 ( )sin π +  + 

 

Evaluate loop equations in terms of known angles: 
Also export the GAP equations for use in Monte Carlo simulation. 
> CL1[x]:=eval(subs(pi=Pi,CL1[x])); 
CL1[y]:=eval(subs(pi=Pi,CL1[y])); 
GAPx:=eval(subs(pi=Pi,OL1[x])); 
C(GAPx); 
GAPy:=eval(subs(pi=Pi,OL1[y])); 
C(GAPy); 
NFL1[x]:=eval(subs(pi=Pi,NFL1[x])); 
NFL1[y]:=eval(subs(pi=Pi,NFL1[y])); 

 := CL1 x  −  −  − xx2 uu1 ( )cos uu2 xx8 ( )sin uu2 xx1  

 := CL1 y  −  +  − xx6 uu1 ( )sin uu2 xx8 ( )cos uu2 xx4  

 := GAPx −  +  +  + xx3 xx1 xx8 ( )sin uu2 xx9 ( )cos uu2  

      t0 = -xx3+xx1+xx8*sin(uu2)+xx9*cos(uu2); 
 := GAPy −  +  −  + xx5 xx4 xx8 ( )cos uu2 xx9 ( )sin uu2  

      t0 = -xx5+xx4-xx8*cos(uu2)+xx9*sin(uu2); 
 := NFL1 x  +  −  −  − xx10 xx7 ( )sin uu2 vv1 ( )cos uu2 xx8 ( )sin uu2 xx1

 

 := NFL1 y  +  −  −  +  − xx11 vv2 xx7 ( )cos uu2 vv1 ( )sin uu2 xx8 ( )cos uu2 xx4
 

Solve equations for explicit functions for each dependent variable.  Keep each expression 
in terms of the dependent angle as it will be solved for explicitly in terms of independent 
variables and can be evaluated first.  Also export C code for use in Monte Carlo 
simulation: 
> uu1:=solve(CL1[y]=0,uu1);C(uu1); 

 := uu1  +  − xx6 xx8 ( )cos uu2 xx4
( )sin uu2  

      t0 = (xx6+xx8*cos(uu2)-xx4)/sin(uu2); 
> vv1:=solve(NFL1[x]=0,vv1);C(vv1); 

 := vv1 −
−  −  +  + xx10 xx7 ( )sin uu2 xx8 ( )sin uu2 xx1

( )cos uu2  

      t0 = -(-xx10-xx7*sin(uu2)+xx8*sin(uu2)+xx1)/cos(uu2); 
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> vv2:=collect(solve(NFL1[y]=0,vv2),{cos(uu2),sin(uu2)});C(vv2); 
 := vv2  −  +  + ( ) − xx7 xx8 ( )cos uu2 xx11 xx4  + ( ) − xx7 xx8 ( )sin uu2 2 ( ) − xx10 xx1 ( )sin uu2

( )cos uu2

 

      t0 = (xx7-xx8)*cos(uu2)-xx11+xx4+((xx7-
xx8)*pow(sin(uu2),2.0)+(xx10-xx1)* 
sin(uu2))/cos(uu2); 
> uu2:=solve(CL1[x]=0,uu2): uu2a:=simplify(uu2[1]); C(uu2a); 
uu2b:=simplify(uu2[2]): 
uu2a arctan xx4 ( )−  + xx1 xx2 2 ( ) −  +  +  +  −  − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4 xx6 xx8 2−(




 := 

xx6 ( )−  + xx1 xx2 2 ( ) −  +  +  +  −  − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4 xx6 xx8 2 xx1 2 xx8 +  + 

2 xx1 xx2 xx8 xx2 2 xx8 −  + ( ) −  +  +  −  + xx6 2 2 xx4 xx6 xx4 2 xx1 2 2 xx1 xx2 xx2 2) (

( )−  + xx1 xx2 ) −  +  + xx6 xx8 xx4 xx8 ( )−  + xx1 xx2 2 (  −  +  +  +  − xx2 2 2 xx1 xx2 xx4 2 xx6 2 xx1 2 2 xx4
 −  +  +  −  + xx6 2 2 xx4 xx6 xx4 2 xx1 2 2 xx1 xx2 xx2 2,

 

      t0 = atan2((-xx4*sqrt(pow(-xx1+xx2,2.0)*(xx2*xx2-
2.0*xx1*xx2+xx4*xx4+xx6* 
xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8))+xx6*sqrt(pow(-
xx1+xx2,2.0)*(xx2*xx2-2.0*xx1* 
xx2+xx4*xx4+xx6*xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8))+xx1*xx1*xx8-
2.0*xx1*xx2*xx8+ 
xx2*xx2*xx8)/(xx6*xx6-2.0*xx4*xx6+xx4*xx4+xx1*xx1-
2.0*xx1*xx2+xx2*xx2)/(-xx1+ 
xx2),(-xx6*xx8+xx4*xx8+sqrt(pow(-xx1+xx2,2.0)*(xx2*xx2-
2.0*xx1*xx2+xx4*xx4+xx6* 
xx6+xx1*xx1-2.0*xx4*xx6-xx8*xx8)))/(xx6*xx6-
2.0*xx4*xx6+xx4*xx4+xx1*xx1-2.0*xx1 
*xx2+xx2*xx2)); 
Input known values for independent variables for verification of dependent variable 
explicit functions. 
> xx1:=0.625: 
xx2:=3.5: 
xx3:=4.5: 
xx4:=1.625: 
xx5:=0.5: 
xx6:=1.125: 
xx7:=1.25: 
xx8:=0.625: 
xx9:=3.875: 
xx10:=2.25: 
xx11:=2.125: 
Evaluate each dependent variable for verification: 
> uu2:=evalf(uu2a);'uu1'=evalf(uu1); 

 := uu2 0.04365784167  

 = uu1 2.850438554  

> 'GAPx'=evalf(GAPx);'GAPy'=evalf(GAPy); 
 = GAPx 0.023585182  
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 = GAPy 0.6697159330  

> 'vv1'=evalf(vv1);'vv2'=evalf(vv2); 
 = vv1 1.653853362  

 = vv2 0.1965852006   
 

A.2 DLM Model Setup and Analysis 

DLM Process applied to the Pinned Block example 
Variable are declared in such a way as to facilitate insertion into a 
Microsoft Excel worksheet. 
> restart; 
Include the linalg package for matrix and vector functions. 
> with(linalg): 
Warning, the protected names norm and trace have been redefined and 
unprotected 
 
Kinematic equations for Closed Loop 1 
> 
CL1[x]:=xx2*cos(0)+xx6*cos(pi/2)+uu1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*
cos(3*pi/2)+xx1*cos(pi); 
CL1[y]:=xx2*sin(0)+xx6*sin(pi/2)+uu1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*
sin(3*pi/2)+xx1*sin(pi); 

 := CL1x  +  +  +  +  + xx2 xx6 





cos π

2 uu1 ( )cos  + π uu2 xx8 





cos  + 

π
2 uu2 xx4 






cos 3 π

2 xx1 ( )cos π
 

 := CL1y  +  +  +  + xx6 





sin π

2 uu1 ( )sin  + π uu2 xx8 





sin  + 

π
2 uu2 xx4 






sin 3 π

2 xx1 ( )sin π
 

Kinematic equations for Open Loop 1 
> OL1[x]:=xx5*cos(-
pi/2)+xx3*cos(pi)+xx1*cos(0)+xx4*cos(pi/2)+xx8*cos(3*pi/2+uu2)+xx9*cos(
uu2); 
OL1[y]:=xx5*sin(-
pi/2)+xx3*sin(pi)+xx1*sin(0)+xx4*sin(pi/2)+xx8*sin(3*pi/2+uu2)+xx9*sin(
uu2); 

 := OL1 x  +  +  +  +  + xx5 





cos π

2 xx3 ( )cos π xx1 xx4 





cos π

2 xx8 





cos  + 

3 π
2 uu2 xx9 ( )cos uu2

 

 := OL1 y −  +  +  +  + xx5 





sin π

2 xx3 ( )sin π xx4 





sin π

2 xx8 





sin  + 

3 π
2 uu2 xx9 ( )sin uu2

 

Kinematic equations for Nesting Force Loop 1: 
> 
NFL1[x]:=xx10*cos(0)+xx11*cos(pi/2)+vv2*cos(pi/2)+xx7*cos(3*pi/2+uu2)+v
v1*cos(pi+uu2)+xx8*cos(pi/2+uu2)+xx4*cos(3*pi/2)+xx1*cos(pi); 
NFL1[y]:=xx10*sin(0)+xx11*sin(pi/2)+vv2*sin(pi/2)+xx7*sin(3*pi/2+uu2)+v
v1*sin(pi+uu2)+xx8*sin(pi/2+uu2)+xx4*sin(3*pi/2)+xx1*sin(pi); 
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NFL1 x xx10 xx11 





cos π

2 vv2 





cos π

2 xx7 





cos  + 

3 π
2 uu2 vv1 ( )cos  + π uu2 +  +  +  +  := 

xx8 





cos  + 

π
2 uu2 xx4 






cos 3 π

2 xx1 ( )cos π +  +  + 

 

NFL1 y xx11 





sin π

2 vv2 





sin π

2 xx7 





sin  + 

3 π
2 uu2 vv1 ( )sin  + π uu2 xx8 






sin  + 

π
2 uu2 +  +  +  +  := 

xx4 





sin 3 π

2 xx1 ( )sin π +  + 

 

Kinematic equations evaluated in terms of known angles: 
> CL1[x]:=eval(subs(pi=Pi,CL1[x])); 
CL1[y]:=eval(subs(pi=Pi,CL1[y])); 
GAPx:=eval(subs(pi=Pi,OL1[x])); 
GAPy:=eval(subs(pi=Pi,OL1[y])); 
OL1[x]:=eval(subs(pi=Pi,OL1[x])): 
OL1[y]:=eval(subs(pi=Pi,OL1[y])): 
NFL1[x]:=eval(subs(pi=Pi,NFL1[x])); 
NFL1[y]:=eval(subs(pi=Pi,NFL1[y])); 

 := CL1 x  −  −  − xx2 uu1 ( )cos uu2 xx8 ( )sin uu2 xx1  

 := CL1 y  −  +  − xx6 uu1 ( )sin uu2 xx8 ( )cos uu2 xx4  

 := GAPx −  +  +  + xx3 xx1 xx8 ( )sin uu2 xx9 ( )cos uu2  

 := GAPy −  +  −  + xx5 xx4 xx8 ( )cos uu2 xx9 ( )sin uu2  

 := NFL1 x  +  −  −  − xx10 xx7 ( )sin uu2 vv1 ( )cos uu2 xx8 ( )sin uu2 xx1
 

 := NFL1 y  +  −  −  +  − xx11 vv2 xx7 ( )cos uu2 vv1 ( )sin uu2 xx8 ( )cos uu2 xx4
 

Form vectors of independent and dependent variables. 
Vectors formed for use in the grad() function. 
> X:=vector([xx1,xx2,xx3,xx4,xx5,xx6,xx7,xx8,xx9,xx10,xx11]); 
#X1:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10]); 
#X2:=vector([x11,x12,x13]); 
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11]); 
U:=vector([uu1,uu2]); 
dU:=vector([du1,du2]); 
GAP:=vector(['GAPx','GAPy']); 
dGAP:=vector([dGAPx,dGAPy]); 
V:=vector([vv1,vv2]); 
dV:=vector([dv1,dv2]); 

 := X [ ], , , , , , , , , ,xx1 xx2 xx3 xx4 xx5 xx6 xx7 xx8 xx9 xx10 xx11  

 := dX [ ], , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11
 

 := U [ ],uu1 uu2  

 := dU [ ],du1 du2  

 := GAP [ ],GAPx GAPy  

 := dGAP [ ],dGAPx dGAPy  
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 := V [ ],vv1 vv2  

 := dV [ ],dv1 dv2  

Matrices hx, hu, gx, gu and gv formed: 
Matrices are formed by using the grad(), or gradient function. 
> hx:=transpose(augment( 
grad(eval(CL1[x]),X), 
grad(eval(CL1[y]),X))); 
 
hu:=transpose(augment( 
grad(eval(CL1[x]),U), 
grad(eval(CL1[y]),U))); 
 
ogx:=transpose(augment( 
grad(eval(OL1[x]),X), 
grad(eval(OL1[y]),X))); 
 
ogu:=transpose(augment( 
grad(eval(OL1[x]),U), 
grad(eval(OL1[y]),U))); 
 
gx:=transpose(augment( 
grad(eval(NFL1[x]),X), 
grad(eval(NFL1[y]),X))); 
 
gu:=transpose(augment( 
grad(eval(NFL1[x]),U), 
grad(eval(NFL1[y]),U))); 
 
gv:=transpose(augment( 
grad(eval(NFL1[x]),V), 
grad(eval(NFL1[y]),V))); 

 := hx 







-1 1 0 0 0 0 0 − ( )sin uu2 0 0 0
0 0 0 -1 0 1 0 ( )cos uu2 0 0 0

 

 := hu 







− ( )cos uu2  − uu1 ( )sin uu2 xx8 ( )cos uu2
− ( )sin uu2 −  − uu1 ( )cos uu2 xx8 ( )sin uu2

 

 := ogx 







1 0 -1 0 0 0 0 ( )sin uu2 ( )cos uu2 0 0
0 0 0 1 -1 0 0 − ( )cos uu2 ( )sin uu2 0 0

 

 := ogu 







0  − xx8 ( )cos uu2 xx9 ( )sin uu2
0  + xx8 ( )sin uu2 xx9 ( )cos uu2

 

 := gx 







-1 0 0 0 0 0 ( )sin uu2 − ( )sin uu2 0 1 0
0 0 0 -1 0 0 − ( )cos uu2 ( )cos uu2 0 0 1

 

 := gu 







0  +  − xx7 ( )cos uu2 vv1 ( )sin uu2 xx8 ( )cos uu2
0  −  − xx7 ( )sin uu2 vv1 ( )cos uu2 xx8 ( )sin uu2

 

 := gv 







− ( )cos uu2 0
− ( )sin uu2 1
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Input nominal values for all applicable variables: 
This can be done by copying the appropriate cells from 
the Excel file. 
> xx1:=0.625:  dx1:=0.032: 
xx2:=3.5:  dx2:=0.175: 
xx3:=4.5:  dx3:=0.225: 
xx4:=1.625:  dx4:=0.082: 
xx5:=0.5:  dx5:=0.025: 
xx6:=1.125:  dx6:=0.057: 
xx7:=1.25:  dx7:=0.063: 
xx8:=0.625:  dx8:=0.032: 
xx9:=3.875:  dx9:=0.194: 
xx10:=2.25:  dx10:=0.113: 
xx11:=2.125:  dx11:=0.107: 
   
uu2:=0.0436578416687264:   
uu1:=2.85043856274785:   
   
vv1:=1.65385336176647:   
vv2:=0.196585200981373:   
Double Check Loop Equations to verify they are equal to zero or appropriate gap size. 
> 'CL1[x]'=evalf(CL1[x]);'CL1[y]'=evalf(CL1[y]); 
GAPx:=evalf(GAPx);GAPy:=evalf(GAPy); 
'NFL1[x]'=evalf(NFL1[x]);'NFL1[y]'=evalf(NFL1[y]); 

 = CL1 x 0.1000 10 -9  

 = CL1 y 0.0000  

 := GAPx 0.0236  

 := GAPy 0.6697  

 = NFL1 x 0.1000 10 -9  

 = NFL1 y -0.1000 10 -8  

Matrices are now evaluated according to known inputs: 
> 
hx:=evalf[4](multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity)))
; 
hu:=evalf[4](multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity)))
; 
ogx:=evalf[4](multiply(ogx,Matrix(coldim(ogx),coldim(ogx),shape=identit
y))); 
ogu:=evalf[4](multiply(ogu,Matrix(coldim(ogu),coldim(ogu),shape=identit
y))); 
gx:=evalf[4](multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity)))
; 
gu:=evalf[4](multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity)))
; 
gv:=evalf[4](multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity)))
;  
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huinv:=eval(inverse(hu)): 
huinv=evalf[4](evalm(huinv)); 
gvinv:=eval(inverse(gv)): 
gvinv=evalf[4](evalm(gvinv)); 
  :=  hx  

 
  





, , , , , , , , , , -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0436 0.0000 0.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 0.9990 0.0000 0.0000 0.0000

 

 := hu 







-0.9990 -0.5000
-0.0436 -2.8740

 

  :=  ogx  
 
  






, , , , , , , , , , 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0436 0.9990 0.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 1.0000 -1.0000 0.0000 0.0000 -0.9990 0.0436 0.0000 0.0000

 

 := ogu 







0.0000 0.4553
0.0000 3.8980

 

  :=  gx  
 
  





, , , , , , , , , , -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0436 -0.0436 0.0000 1.0000 0.0000
, , , , , , , , , , 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.9990 0.9990 0.0000 0.0000 1.0000

 

 := gu 







0.0000 0.6966
0.0000 -1.6240

 

 := gv 







-0.9990 0.0000
-0.0436 1.0000

 

 = huinv 







-1.0090 0.1755
0.0153 -0.3506

 

 = gvinv 







-1.0010 0.0000
-0.0437 1.0000

 

Form the closed loop sensitivities matrix: 
> huinvhx:=evalf[4]((multiply(-huinv,hx))): 
'huinvhx'=evalm(evalf[4](huinvhx)); 
  =  huinvhx  

 
  






, , , , , , , , , , -1.0090 1.0090 0.0000 0.1755 0.0000 -0.1755 0.0000 -0.2193 0.0000 0.0000 0.0000
, , , , , , , , , , 0.0153 -0.0153 0.0000 -0.3506 0.0000 0.3506 0.0000 0.3509 0.0000 0.0000 0.0000

 

Calculate the sensitivities for the GAPs in the open loop: 
> Sog:=evalf[4](evalm(ogx + ogu &* huinvhx));  
## The + sign is due to huinvhx = -huinv*hx 
  :=  Sog  

 
  






, , , , , , , , , , 1.0070 -0.0070 -1.0000 -0.1596 0.0000 0.1596 0.0000 0.2034 0.9990 0.0000 0.0000
, , , , , , , , , , 0.0597 -0.0597 0.0000 -0.3670 -1.0000 1.3670 0.0000 0.3690 0.0436 0.0000 0.0000

 

Intermediate step in calculating the nesting force loop sensitivities: 
> Sg:=evalf[4](evalm(gx + gu &* huinvhx));  
  :=  Sg  

 
  






, , , , , , , , , , -0.9893 -0.0107 0.0000 -0.2442 0.0000 0.2442 0.0436 0.2008 0.0000 1.0000 0.0000
, , , , , , , , , , -0.0249 0.0249 0.0000 -0.4306 0.0000 -0.5694 -0.9990 0.4291 0.0000 0.0000 1.0000

 

Calculate the nesting force loop sensitivities: 
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> Sv:=evalf[4](evalm(-gvinv &* Sg)); 
Sv  := 

-0.9903 -0.0107 -0.0000 -0.2444 -0.0000 0.2444 0.0437 0.2010 -0.0000 1.0010[ , , , , , , , , , ,
-0.0000 ]

-0.0183 -0.0254 -0.0000 0.4199 -0.0000 0.5801 1.0010 -0.4203 -0.0000 0.0437[ , , , , , , , , , ,
-1.0000 ]

 

Calculate the worst-case variations in all the dependent variables for the Pinned Block 
Assembly. 
> ddU:=evalf[4](augment((multiply(abs(huinvhx),dX)))): 
ddV:=evalf[4](augment((multiply(abs(Sv),dX)))): 
ddG:=evalf[4](augment((multiply(abs(Sog),dX)))): 
augment(evalm(dU))=evalm(ddU); 
augment(evalm(dGAP))=evalm(ddG); 
augment(evalm(dV))=evalm(ddV); 

 = 







du1
du2









0.2403
0.0631

 

 = 







dGAPx
dGAPy









0.4809
0.1657

 

 = 







dv1
dv2









0.1898
0.2609

 

Calculate the standard deviation for all the dependent variables for the Pinned Block 
Assembly: 
> sigma_u[1]:=sqrt(Sum('huinvhx[1,i]^2*(dX[i]/3)^2','i'=1..n)); 
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=11;for j from 1 to 2 do sigma_u[j]:=evalf[4](sigma_u[j]) od; 

 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2  

 := n 11  

 := sigma_u 1 0.0602  

 := sigma_u 2 0.0123  

> sigma_gap[1]:=sqrt(Sum('Sog[1,i]^2*(dX[i]/3)^2','i'=1..n)); 
sigma_gap[2]:=sqrt(sum(Sog[2,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=11;for j from 1 to 2 do sigma_gap[j]:=evalf[4](sigma_gap[j]) od; 

 := sigma_gap 1 ∑
 = i 1

11








1
9 Sog ,1 i

2
dXi

2  

 := n 11  

 := sigma_gap 1 0.0997  

 := sigma_gap 2 0.0297  

> sigma_v[1]:=sqrt(Sum('Sv[1,i]^2*(dX[i]/3)^2','i'=1..n)); 
sigma_v[2]:=sqrt(sum(Sv[2,i]^2*(dX[i]/3)^2,i=1..n)): 
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n:=11;for j from 1 to 2 do sigma_v[j]:=evalf[4](sigma_v[j]) od; 

 := sigma_v 1 ∑
 = i 1

11








1
9 Sv ,1 i

2
dXi

2  

 := n 11  

 := sigma_v 1 0.0401  

 := sigma_v 2 0.0446
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Appendix B 
Maple© Worksheets for Exactly Constrained Block Assembly  

Maple© was used to form both the explicit equations and to perform the DLM on 

the Exactly Constrained Block Assembly.  The following two sections contain the 

applicable Maple© worksheets that were used for this task. 

B.1 Explicit Equation Development  

Formation of the explicit functions for the dependent variables for the 
Exactly Constrained Block Assembly: 
> restart; 
Use the codegen package for exporting C code for  the Monte Carlo simulation program. 
> with(codegen,C): 
Kinematic equations for Closed Loop 1 
> 
h1[x]:=x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+
x4*cos(pi)+x5*cos(-pi/2); 
h1[y]:=x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+
x4*sin(pi)+x5*sin(-pi/2); 
h1[u4]:=+90+90+u4-90-90-u4-180+90+90; 

 := h1x  +  +  +  +  +  + x1 x7 





cos π

2 u1 ( )cos  + π u4 x9 





cos  + 

π
2 u4 u3 ( )cos u4 x4 ( )cos π x5 






cos π

2

 

 := h1y  +  +  +  +  − x7 





sin π

2 u1 ( )sin  + π u4 x9 





sin  + 

π
2 u4 u3 ( )sin u4 x4 ( )sin π x5 






sin π

2

 

 := h1u4 0  

Kinematic equations for Closed Loop 2 
> h2[x]:=x3*cos(0)+x8*cos(pi/2)+u2*cos(-
pi/2+u4)+x10*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+x4*cos(pi)+x5*cos(-
pi/2); 
h2[y]:=x3*sin(0)+x8*sin(pi/2)+u2*sin(-
pi/2+u4)+x10*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+x4*sin(pi)+x5*sin(-
pi/2); 
h2[u4]:=+90+180+u4-90-90-90-u4-180+90+90; 
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h2x x3 x8 





cos π

2 u2 





cos  − 

π
2 u4 x10 ( )cos  + π u4 x9 






cos  + 

π
2 u4 u3 ( )cos u4 +  +  +  +  +  := 

x4 ( )cos π x5 





cos π

2 +  + 

 

h2y x8 





sin π

2 u2 





sin  − 

π
2 u4 x10 ( )sin  + π u4 x9 






sin  + 

π
2 u4 u3 ( )sin u4 x4 ( )sin π −  +  +  +  +  := 

x5 





sin π

2 − 

 

 := h2u4 0  

Kinematic equations for Nesting Force Loop 1 
> g1[x]:=x11*cos(pi)+x6*cos(-
pi/2)+x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+v1*cos(pi/2+u4)-v3;## = v3 
but rearranged. 
g1[y]:=x11*sin(pi)+x6*sin(-
pi/2)+x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+v1*sin(pi/2+u4);## = 0 
g1[u4]:=0=0; 

 := g1x  +  +  +  +  +  − x11 ( )cos π x6 





cos π

2 x1 x7 





cos π

2 u1 ( )cos  + π u4 v1 





cos  + 

π
2 u4 v3

 

 := g1y  −  +  +  + x11 ( )sin π x6 





sin π

2 x7 





sin π

2 u1 ( )sin  + π u4 v1 





sin  + 

π
2 u4

 

 := g1u4  = 0 0  

Kinematic equations for Nesting Force Loop 2 
> g2[x]:=x12*cos(-
pi/2)+x2*cos(pi)+x5*cos(pi/2)+x4*cos(0)+u3*cos(pi+u4)+x9*cos(-
pi/2+u4)+v2*cos(u4);## = 0 
g2[y]:=x12*sin(-
pi/2)+x2*sin(pi)+x5*sin(pi/2)+x4*sin(0)+u3*sin(pi+u4)+x9*sin(-
pi/2+u4)+v2*sin(u4)-v4;## = v4 
g2[u4]:=0=0; 

 := g2x  +  +  +  +  +  + x12 





cos π

2 x2 ( )cos π x5 





cos π

2 x4 u3 ( )cos  + π u4 x9 





cos  − 

π
2 u4 v2 ( )cos u4

 

 := g2y −  +  +  +  −  +  − x12 





sin π

2 x2 ( )sin π x5 





sin π

2 u3 ( )sin  + π u4 x9 





sin  − 

π
2 u4 v2 ( )sin u4 v4

 

 := g2u4  = 0 0  

Evaluate loop equations in terms of known angles: 
> h1[x]:=eval(subs(pi=Pi,h1[x])); 
h1[y]:=eval(subs(pi=Pi,h1[y])); 
h2[x]:=eval(subs(pi=Pi,h2[x])); 
h2[y]:=eval(subs(pi=Pi,h2[y])); 
g1[x]:=eval(subs(pi=Pi,g1[x])); 
g1[y]:=eval(subs(pi=Pi,g1[y])); 
g2[x]:=eval(subs(pi=Pi,g2[x])); 
g2[y]:=eval(subs(pi=Pi,g2[y])); 

 := h1x  −  −  +  − x1 u1 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4 x4  
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 := h1 y  −  +  +  − x7 u1 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4 x5  

 := h2 x  +  −  −  +  − x3 u2 ( )sin u4 x10 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4 x4
 

 := h2 y  −  −  +  +  − x8 u2 ( )cos u4 x10 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4 x5
 

 := g1x −  +  −  −  − x11 x1 u1 ( )cos u4 v1 ( )sin u4 v3  

 := g1 y −  +  −  + x6 x7 u1 ( )sin u4 v1 ( )cos u4  

 := g2 x −  +  −  +  + x2 x4 u3 ( )cos u4 x9 ( )sin u4 v2 ( )cos u4  

 := g2y −  +  −  −  +  − x12 x5 u3 ( )sin u4 x9 ( )cos u4 v2 ( )sin u4 v4  

> u2:=collect(simplify(solve(h2[y]=0,u2)),{cos(u4),sin(u4)}): 
u3:=collect(simplify(solve(h2[x]=0,u3)),{cos(u4),sin(u4)}): 
u1:=collect(simplify(solve(h1[x]=0,u1)),{cos(u4),sin(u4)}): 
v1:=collect(simplify(solve(g1[y]=0,v1)),{cos(u4),sin(u4)}): 
v2:=collect(simplify(solve(g2[x]=0,v2)),{cos(u4),sin(u4)}): 
v3:=collect(simplify(solve(g1[x]=0,v3)),{cos(u4),sin(u4)}): 
v4:=collect(simplify(solve(g2[y]=0,v4)),{cos(u4),sin(u4)}): 
Display explicit functions and export for C code for use in Monte Carlo simulation 
program: 
> 'u1'=u1; 
C(u1); 
'u2'=u2; 
C(u2); 
'u3'=u3; 
C(u3); 
'v1'=v1; 
C(v1); 
'v2'=v2; 
C(v2); 
'v3'=v3; 
C(v3); 
'v4'=v4; 
C(v4); 

 = u1  +  +  + ( )−  + x3 x4 ( )cos u4 ( )−  + x8 x5 ( )sin u4 x10  −  − x1 x9 ( )sin u4 x4
( )cos u4

 

      t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10+(x1-x9*sin(u4)-
x4)/cos(u4); 

 = u2  + x9  +  − ( ) + ( )−  + x3 x4 ( )cos u4 ( )−  + x8 x5 ( )sin u4 ( )sin u4 x8 x5
( )cos u4

 

      t0 = x9+(((-x3+x4)*cos(u4)+(-x8+x5)*sin(u4))*sin(u4)+x8-
x5)/cos(u4); 

 = u3  +  + ( )−  + x3 x4 ( )cos u4 ( )−  + x8 x5 ( )sin u4 x10  

      t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10; 
v1 ( ) − x8 x5 ( )cos u4 ( )−  + x3 x4 ( )sin u4 x9 −  +  −  +  + x7 x6 x8 x5 x10 ( )sin u4

( )cos u4 +  +  +  = 

 − ( ) − x1 x4 ( )sin u4 x9
( )cos u4 2 + 
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      t0 = (x8-x5)*cos(u4)+(-x3+x4)*sin(u4)+x9+(-x7+x6-
x8+x5+x10*sin(u4))/cos( 
u4)+((x1-x4)*sin(u4)-x9)/pow(cos(u4),2.0); 

 = v2  +  +  + ( )−  + x3 x4 ( )cos u4 ( )−  + x8 x5 ( )sin u4 x10  −  − x2 x4 x9 ( )sin u4
( )cos u4

 

      t0 = (-x3+x4)*cos(u4)+(-x8+x5)*sin(u4)+x10+(x2-x4-
x9*sin(u4))/cos(u4); 

 = v3 −  −  +  +  +  + x4 x11 x1 x3  − ( ) −  +  − x8 x6 x7 x5 ( )sin u4 x10
( )cos u4

−  +  + x1 x9 ( )sin u4 x4
( )cos u4 2

 

      t0 = -x4-x11+x1+x3+((x8-x6+x7-x5)*sin(u4)-x10)/cos(u4)+(-
x1+x9*sin(u4)+x4 
)/pow(cos(u4),2.0); 

 = v4 −  +  + x12 x5  − ( ) − x2 x4 ( )sin u4 x9
( )cos u4  

      t0 = -x12+x5+((x2-x4)*sin(u4)-x9)/cos(u4); 
Form geometric solution for angle u4 in terms of independent variables and export C 
code: 
> u4:=(arcsin((x5-x7)/sqrt(((x5-x7)^2+(x4-x1)^2)))-arcsin(x9/sqrt((x5-
x7)^2+(x4-x1)^2))): 
'u4'=simplify(u4); 
C(u4); 
 
u4 









arcsin −  + x5 x7
 −  +  +  −  + x5 2 2 x5 x7 x7 2 x1 2 2 x1 x4 x4 2

− = 











arcsin x9
 −  +  +  −  + x5 2 2 x5 x7 x7 2 x1 2 2 x1 x4 x4 2

 − 

 

      t0 = asin((x5-x7)/sqrt(x5*x5-2.0*x5*x7+x7*x7+x1*x1-
2.0*x1*x4+x4*x4))-asin 
(x9/sqrt(x5*x5-2.0*x5*x7+x7*x7+x1*x1-2.0*x1*x4+x4*x4)); 
 
Input known values for independent variables for verification of dependent variable 
explicit functions. 
> x1:=2.625:    dx1:=.01: 
x2:=9.875:    dx2:=.05: 
x3:=13:       dx3:=.02: 
x4:=9.75:     dx4:=.01: 
x5:=9:        dx5:=.02: 
x6:=5.125:    dx6:=.05:  
x7:=1:        dx7:=.02: 
x8:=5.25:     dx8:=.01: 
x9:=8:        dx9:=.02: 
x10:=12:       dx10:=.02: 
x11:=1.29:    dx11:=.05: 
x12:=1.29:    dx12:=.05: 
Evaluate each dependent variable for verification: 
> 'u1'=u1; 
'u2'=u2; 
'u3'=u3; 
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'u4'=u4; 
'v1'=v1; 
'v2'=v2; 
'v3'=v3; 
'v4'=v4; 

 = u1 1.6250  

 = u2 4.2500  

 = u3 8.7500  

 = u4 0.0000  

 = v1 4.1250  

 = v2 8.8750  

 = v3 -0.2900  

 = v4 -0.2900  
  

B.2 DLM Model Setup and Analysis 

DLM Process applied to the Exactly Constrained Block example 
> restart; 
Include the linalg package for matrix and vector functions. 
> with(linalg): 
Warning, the protected names norm and trace have been redefined and 
unprotected 
 
Kinematic equations for Closed Loop 1 
> 
h1[x]:=x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+
x4*cos(pi)+x5*cos(-pi/2); 
h1[y]:=x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+
x4*sin(pi)+x5*sin(-pi/2); 
h1[u4]:=+90+90+u4-90-90-u4-180+90+90; 
 

 := h1x  +  +  +  +  +  + x1 x7 





cos π

2 u1 ( )cos  + π u4 x9 





cos  + 

π
2 u4 u3 ( )cos u4 x4 ( )cos π x5 






cos π

2

 

 := h1y  +  +  +  +  − x7 





sin π

2 u1 ( )sin  + π u4 x9 





sin  + 

π
2 u4 u3 ( )sin u4 x4 ( )sin π x5 






sin π

2

 

 := h1u4 0  

Kinematic equations for Closed Loop 2 
> h2[x]:=x3*cos(0)+x8*cos(pi/2)+u2*cos(-
pi/2+u4)+x10*cos(pi+u4)+x9*cos(pi/2+u4)+u3*cos(u4)+x4*cos(pi)+x5*cos(-
pi/2); 
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h2[y]:=x3*sin(0)+x8*sin(pi/2)+u2*sin(-
pi/2+u4)+x10*sin(pi+u4)+x9*sin(pi/2+u4)+u3*sin(u4)+x4*sin(pi)+x5*sin(-
pi/2); 
h2[u4]:=+90+180+u4-90-90-90-u4-180+90+90; 
h2x x3 x8 






cos π

2 u2 





cos  − 

π
2 u4 x10 ( )cos  + π u4 x9 






cos  + 

π
2 u4 u3 ( )cos u4 +  +  +  +  +  := 

x4 ( )cos π x5 





cos π

2 +  + 

 

h2y x8 





sin π

2 u2 





sin  − 

π
2 u4 x10 ( )sin  + π u4 x9 






sin  + 

π
2 u4 u3 ( )sin u4 x4 ( )sin π −  +  +  +  +  := 

x5 





sin π

2 − 

 

 := h2u4 0  

Kinematic equations for Nesting Force Loop 1 
> g1[x]:=x11*cos(pi)+x6*cos(-
pi/2)+x1*cos(0)+x7*cos(pi/2)+u1*cos(pi+u4)+v1*cos(pi/2+u4)-v3; 
g1[y]:=x11*sin(pi)+x6*sin(-
pi/2)+x1*sin(0)+x7*sin(pi/2)+u1*sin(pi+u4)+v1*sin(pi/2+u4); 
g1[u4]:=0=0; 

 := g1x  +  +  +  +  +  − x11 ( )cos π x6 





cos π

2 x1 x7 





cos π

2 u1 ( )cos  + π u4 v1 





cos  + 

π
2 u4 v3

 

 := g1y  −  +  +  + x11 ( )sin π x6 





sin π

2 x7 





sin π

2 u1 ( )sin  + π u4 v1 





sin  + 

π
2 u4

 

 := g1u4  = 0 0  

Kinematic equations for Nesting Force Loop 2 
> g2[x]:=x12*cos(-
pi/2)+x2*cos(pi)+x5*cos(pi/2)+x4*cos(0)+u3*cos(pi+u4)+x9*cos(-
pi/2+u4)+v2*cos(u4); 
g2[y]:=x12*sin(-
pi/2)+x2*sin(pi)+x5*sin(pi/2)+x4*sin(0)+u3*sin(pi+u4)+x9*sin(-
pi/2+u4)+v2*sin(u4)-v4; 
g2[u4]:=0=0; 

 := g2x  +  +  +  +  +  + x12 





cos π

2 x2 ( )cos π x5 





cos π

2 x4 u3 ( )cos  + π u4 x9 





cos  − 

π
2 u4 v2 ( )cos u4

 

 := g2y −  +  +  +  −  +  − x12 





sin π

2 x2 ( )sin π x5 





sin π

2 u3 ( )sin  + π u4 x9 





sin  − 

π
2 u4 v2 ( )sin u4 v4

 

 := g2u4  = 0 0  

Kinematic equations evaluated in terms of known angles: 
> h1[x]:=eval(subs(pi=Pi,h1[x])); 
h1[y]:=eval(subs(pi=Pi,h1[y])); 
h2[x]:=eval(subs(pi=Pi,h2[x])); 
h2[y]:=eval(subs(pi=Pi,h2[y])); 
g1[x]:=eval(subs(pi=Pi,g1[x])); 
g1[y]:=eval(subs(pi=Pi,g1[y])); 
g2[x]:=eval(subs(pi=Pi,g2[x])); 
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g2[y]:=eval(subs(pi=Pi,g2[y])); 
 := h1x  −  −  +  − x1 u1 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4 x4  

 := h1 y  −  +  +  − x7 u1 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4 x5  

 := h2 x  +  −  −  +  − x3 u2 ( )sin u4 x10 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4 x4
 

 := h2 y  −  −  +  +  − x8 u2 ( )cos u4 x10 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4 x5
 

 := g1x −  +  −  −  − x11 x1 u1 ( )cos u4 v1 ( )sin u4 v3  

 := g1 y −  +  −  + x6 x7 u1 ( )sin u4 v1 ( )cos u4  

 := g2 x −  +  −  +  + x2 x4 u3 ( )cos u4 x9 ( )sin u4 v2 ( )cos u4  

 := g2y −  +  −  −  +  − x12 x5 u3 ( )sin u4 x9 ( )cos u4 v2 ( )sin u4 v4  

Form vectors of independent and dependent variables. 
Vectors formed for use in the grad() function. 
> X:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12]); 
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11,dx12]); 
U:=vector([u1,u2,u3,u4]); 
dU:=vector([du1,du2,du3,du4]); 
V:=vector([v1,v2,v3,v4]); 
dV:=vector([dv1,dv2,dv3,dv4]); 

 := X [ ], , , , , , , , , , ,x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12  

 := dX [ ], , , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11 dx12
 

 := U [ ], , ,u1 u2 u3 u4  

 := dU [ ], , ,du1 du2 du3 du4  

 := V [ ], , ,v1 v2 v3 v4  

 := dV [ ], , ,dv1 dv2 dv3 dv4  

Matrices hx, hu, gx, gu and gv formed: 
Matrices are formed by using the grad(), or gradient function. 
> hx:=transpose(augment( 
grad(eval(h1[x]),X), 
grad(eval(h1[y]),X), 
grad(eval(h2[x]),X), 
grad(eval(h2[y]),X))); 
 
hu:=transpose(augment( 
grad(eval(h1[x]),U), 
grad(eval(h1[y]),U), 
grad(eval(h2[x]),U), 
grad(eval(h2[y]),U))); 
 
gx:=transpose(augment( 
grad(eval(g1[x]),X), 
grad(eval(g1[y]),X), 
grad(eval(g2[x]),X), 
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grad(eval(g2[y]),X))); 
 
gu:=transpose(augment( 
grad(eval(g1[x]),U), 
grad(eval(g1[y]),U), 
grad(eval(g2[x]),U), 
grad(eval(g2[y]),U))); 
 
gv:=transpose(augment( 
grad(eval(g1[x]),V), 
grad(eval(g1[y]),V), 
grad(eval(g2[x]),V), 
grad(eval(g2[y]),V))); 
 
 
 

 := hx













1 0 0 -1 0 0 0 0 − ( )sin u4 0 0 0
0 0 0 0 -1 0 1 0 ( )cos u4 0 0 0
0 0 1 -1 0 0 0 0 − ( )sin u4 − ( )cos u4 0 0
0 0 0 0 -1 0 0 1 ( )cos u4 − ( )sin u4 0 0

 

 := hu













− ( )cos u4 0 ( )cos u4  −  − u1 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4
− ( )sin u4 0 ( )sin u4 −  −  + u1 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4

0 ( )sin u4 ( )cos u4  +  −  − u2 ( )cos u4 x10 ( )sin u4 x9 ( )cos u4 u3 ( )sin u4
0 − ( )cos u4 ( )sin u4  −  −  + u2 ( )sin u4 x10 ( )cos u4 x9 ( )sin u4 u3 ( )cos u4

 

 := gx













1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 1 0 0 0 0 0
0 -1 0 1 0 0 0 0 ( )sin u4 0 0 0
0 0 0 0 1 0 0 0 − ( )cos u4 0 0 -1

 

 := gu













− ( )cos u4 0 0  − u1 ( )sin u4 v1 ( )cos u4
− ( )sin u4 0 0 −  − u1 ( )cos u4 v1 ( )sin u4

0 0 − ( )cos u4  +  − u3 ( )sin u4 x9 ( )cos u4 v2 ( )sin u4
0 0 − ( )sin u4 −  +  + u3 ( )cos u4 x9 ( )sin u4 v2 ( )cos u4

 

 := gv













− ( )sin u4 0 -1 0
( )cos u4 0 0 0
0 ( )cos u4 0 0
0 ( )sin u4 0 -1

 

Input nominal values for all applicable variables: 
This can be done by copying the appropriate cells from 
the Excel file. 
> x1:=2.625:  dx1:=0.01: 
x2:=10:  dx2:=0.05: 
x3:=13:  dx3:=0.02: 
x4:=9.75:  dx4:=0.01: 
x5:=9:  dx5:=0.02: 
x6:=3:  dx6:=0.05: 
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x7:=1:  dx7:=0.02: 
x8:=5.25:  dx8:=0.01: 
x9:=8:  dx9:=0.02: 
x10:=12:  dx10:=0.02: 
x11:=1.29:  dx11:=0.05: 
x12:=1.2:  dx12:=0.05: 
   
u1:=1.625:   
u2:=4.25:   
u3:=8.75:   
u4:=0:   
v1:=2:   
v2:=9:   
v3:=-0.289999999999999:   
v4:=-0.2:   
 
 
Double Check Loop Equations to verify they are equal to zero or appropriate gap size. 
> 'h1[x]'=evalf(h1[x]);'h1[y]'=evalf(h1[y]); 
'h2[x]'=evalf(h2[x]);'h2[y]'=evalf(h2[y]); 
'g1[x]'=evalf(g1[x]);'g1[y]'=evalf(g1[y]); 
'g2[x]'=evalf(g2[x]);'g2[y]'=evalf(g2[y]); 

 = h1 x 0.0000  

 = h1 y 0.0000  

 = h2 x 0.0000  

 = h2 y 0.0000  

 = g1 x 0.0000  

 = g1 y 0.0000  

 = g2 x 0.0000  

 = g2 y 0.0000  

Matrices are evaluated according to known inputs: 
> hx:=multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity)); 
hu:=multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity)); 
gx:=multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity)); 
gu:=multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity)); 
gv:=multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity));  
huinv:=eval(inverse(hu)): 
huinv=evalf[4](evalm(huinv)); 
gvinv:=eval(inverse(gv)): 
gvinv=evalf[4](evalm(gvinv)); 

 := hx













1 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 1 0 1 0 0 0
0 0 1 -1 0 0 0 0 0 -1 0 0
0 0 0 0 -1 0 0 1 1 0 0 0
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 := hu













-1.0000 0.0000 1.0000 -8.0000
0.0000 0.0000 0.0000 7.1250
0.0000 0.0000 1.0000 -3.7500
0.0000 -1.0000 0.0000 -3.2500

 

 := gx













1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 1 0 0 0 0 0
0 -1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 0 -1

 

 := gu













-1.0000 0.0000 0.0000 -2.0000
0.0000 0.0000 0.0000 -1.6250
0.0000 0.0000 -1.0000 8.0000
0.0000 0.0000 0.0000 0.2500

 

 := gv













0 0 -1 0
1 0 0 0
0 1 0 0
0 0 0 -1

 

 = huinv













-1.0000 -0.5965 1.0000 -0.0000
-0.0000 -0.4561 0.0000 -1.0000
-0.0000 0.5263 1.0000 0.0000
-0.0000 0.1404 0.0000 -0.0000

 

 = gvinv













0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
-1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -1.0000

 

Form the closed loop sensitivities matrix. 
huinvhx:=eval((multiply(-huinv,hx))): 
'huinvhx'=evalf[4](evalm(huinvhx)); 
huinvhx  = 

1.0000 0.0000 -1.0000 0.0000 -0.5965 0.0000 0.5965 0.0000 0.5965 1.0000[ , , , , , , , , , ,
0.0000 0.0000, ]

0.0000 0.0000 0.0000 0.0000 -1.4560 0.0000 0.4561 1.0000 1.4560 0.0000 0.0000[ , , , , , , , , , ,
0.0000, ]
0.0000 0.0000 -1.0000 1.0000 0.5263 0.0000 -0.5263 0.0000 -0.5263 1.0000[ , , , , , , , , , ,

0.0000 0.0000, ]
0.0000 0.0000 0.0000 0.0000 0.1404 0.0000 -0.1404 0.0000 -0.1404 0.0000[ , , , , , , , , , ,

0.0000 0.0000, ]

 

Intermediate step in calculating the nesting force loop sensitivities: 
> Sg:=evalf[4](evalm(gx + gu &* huinvhx));  
## The + sign is due to huinvhx = -huinv*hx 
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Sg  := 
0.0000 0.0000 1.0000 0.0000 0.3157 0.0000 -0.3157 0.0000 -0.3157 -1.0000[ , , , , , , , , , ,

-1.0000 0.0000, ]
0.0000 0.0000 0.0000 0.0000 -0.2282 -1.0000 1.2280 0.0000 0.2282 0.0000[ , , , , , , , , , ,

0.0000 0.0000, ]
0.0000 -1.0000 1.0000 0.0000 0.5967 0.0000 -0.5967 0.0000 -0.5967 -1.0000[ , , , , , , , , , ,

0.0000 0.0000, ]
0.0000 0.0000 0.0000 0.0000 1.0350 0.0000 -0.0351 0.0000 -1.0350 0.0000[ , , , , , , , , , ,

0.0000 -1.0000, ]

 

Calculate the nesting force loop sensitivities: 
> sV:=evalf[4](evalm(-gvinv &* Sg)); 
sV := 

-0.0000 -0.0000 -0.0000 -0.0000 0.2282 1.0000 -1.2280 -0.0000 -0.2282 -0.0000[ , , , , , , , , , ,
-0.0000 -0.0000, ]

-0.0000 1.0000 -1.0000 -0.0000 -0.5967 -0.0000 0.5967 -0.0000 0.5967 1.0000[ , , , , , , , , , ,
-0.0000 -0.0000, ]

-0.0000 -0.0000 1.0000 -0.0000 0.3157 -0.0000 -0.3157 -0.0000 -0.3157 -1.0000[ , , , , , , , , , ,
-1.0000 -0.0000, ]

-0.0000 -0.0000 -0.0000 -0.0000 1.0350 -0.0000 -0.0351 -0.0000 -1.0350 -0.0000[ , , , , , , , , , ,
-0.0000 -1.0000, ]

 

Calculate the worst-case variations in all the dependent variables for the Exactly 
Constrained  Block Assembly: 
> ddU:=evalf[4](augment((multiply(abs(huinvhx),dX)))): 
ddV:=evalf[4](augment((multiply(abs(sV),dX)))): 
augment(evalm(dU))=evalm(ddU); 
augment(evalm(dV))=evalm(ddV); 

 = 













du1
du2
du3
du4













0.0858
0.0774
0.0816
0.0084

 

 = 













dv1
dv2
dv3
dv4













0.0837
0.1258
0.1089
0.0921

 

Calculate the standard deviation for all the dependent variables for the Exactly 
Constrained  Block Assembly: 
> sigma_u[1]:=sqrt(Sum(huinvhx[1,i]^2*(dX[i]/3)^2,i=1..n)); 
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[3]:=sqrt(Sum(huinvhx[3,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[4]:=sqrt(sum(huinvhx[4,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=12;for j from 1 to 4 do sigma_u[j]:=evalf[4](sigma_u[j]) od; 
n:='n': 
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 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2  

 := n 12  

 := sigma_u 1 0.0121  

 := sigma_u 2 0.0145  

 := sigma_u 3 0.0117  

 := sigma_u 4 0.0016  

> sigma_v[1]:=sqrt(Sum(sV[1,i]^2*(dX[i]/3)^2,i=1..n)); 
sigma_v[2]:=sqrt(sum(sV[2,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_v[3]:=sqrt(Sum(sV[3,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_v[4]:=sqrt(sum(sV[4,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=12;for j from 1 to 4 do sigma_v[j]:=evalf[4](sigma_v[j]) od; 

 := sigma_v 1 ∑
 = i 1

n








1
9 sV ,1 i

2
dXi

2  

 := sigma_v 1 0.0187  

 := sigma_v 2 0.0204  

 := sigma_v 3 0.0195  

 := sigma_v 4 0.0193
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Appendix C 
Maple© Worksheet for Wedge Assembly  

Maple© was used to form both the explicit equations and to perform the DLM on 

the Wedge Assembly.  The following section contains the Maple© worksheet that was 

used for this task. 

C.1 DLM Model Setup, Analysis & Explicit Equation Development 

 
DLM Process applied to the Wedge Assembly: 
> restart: 
Include the linalg package for matrix and vector functions.  Include codegen package for 
generating dependent variable functions: 
> with(linalg):with(codegen): 
Warning, the protected names norm and trace have been redefined and 
unprotected 
 
Warning, the protected name MathML has been redefined and unprotected 
 
Kinematic equations for Closed Loop 1 
> h1[x]:=x3*cos(2*pi)+x4*cos(pi/2)+u2*cos(pi+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi); 
h1[y]:=x3*sin(2*pi)+x4*sin(pi/2)+u2*sin(pi+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi); 

 := h1x  +  +  +  +  + x3 ( )cos 2 π x4 





cos π

2 u2 ( )cos  + π u6 u1 ( )cos u6 x2 





cos π

2 x1 ( )cos π
 

 := h1y  +  +  +  −  + x3 ( )sin 2 π x4 





sin π

2 u2 ( )sin  + π u6 u1 ( )sin u6 x2 





sin π

2 x1 ( )sin π
 

Kinematic equations for Closed Loop 2 
> h2[x]:=u4*cos(pi/2)+x13*cos(2*pi)+x13*cos(-
pi/2+x14+u6)+u3*cos(pi+x14+u6)+x10*cos(-pi/2+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi); 
h2[y]:=u4*sin(pi/2)+x13*sin(2*pi)+x13*sin(-
pi/2+x14+u6)+u3*sin(pi+x14+u6)+x10*sin(-pi/2+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi); 
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h2x u4 





cos π

2 x13 ( )cos 2 π x13 





cos −  +  + 

π
2 x14 u6 u3 ( )cos  +  + π x14 u6 +  +  +  := 

x10 





cos  − 

π
2 u6 u1 ( )cos u6 x2 






cos π

2 x1 ( )cos π +  +  +  + 

 

h2y u4 





sin π

2 x13 ( )sin 2 π x13 





sin −  +  + 

π
2 x14 u6 u3 ( )sin  +  + π x14 u6 +  +  +  := 

x10 





sin  − 

π
2 u6 u1 ( )sin u6 x2 






sin π

2 x1 ( )sin π −  +  −  + 

 

Kinematic equations for Closed Loop 3 
> h3[x]:=x7*cos(pi/2)+u5*cos(2*pi)+x13*cos(-pi/2)+x13*cos(-
pi/2+x14+u6)+u3*cos(pi+x14+u6)+x10*cos(-pi/2+u6)+u2*cos(u6)+x4*cos(-
pi/2)+x3*cos(pi); 
h3[y]:=x7*sin(pi/2)+u5*sin(2*pi)+x13*sin(-pi/2)+x13*sin(-
pi/2+x14+u6)+u3*sin(pi+x14+u6)+x10*sin(-pi/2+u6)+u2*sin(u6)+x4*sin(-
pi/2)+x3*sin(pi); 
h3x x7 






cos π

2 u5 ( )cos 2 π x13 





cos π

2 x13 





cos −  +  + 

π
2 x14 u6 u3 ( )cos  +  + π x14 u6 +  +  +  +  := 

x10 





cos  − 

π
2 u6 u2 ( )cos u6 x4 






cos π

2 x3 ( )cos π +  +  +  + 

 

h3y x7 





sin π

2 u5 ( )sin 2 π x13 





sin π

2 x13 





sin −  +  + 

π
2 x14 u6 u3 ( )sin  +  + π x14 u6 +  −  +  +  := 

x10 





sin  − 

π
2 u6 u2 ( )sin u6 x4 






sin π

2 x3 ( )sin π −  +  −  + 

 

Kinematic equations for Nesting Force Loop 1 
> g1[x]:=v2*cos(-pi/2+u6)+x11*cos(pi+u6)+u1*cos(u6)+x2*cos(-
pi/2)+x1*cos(pi)+x9*cos(2*pi)+x5*cos(pi/2)+v1*cos(2*pi); 
g1[y]:=v2*sin(-pi/2+u6)+x11*sin(pi+u6)+u1*sin(u6)+x2*sin(-
pi/2)+x1*sin(pi)+x9*sin(2*pi)+x5*sin(pi/2)+v1*sin(2*pi); 
g1x v2 






cos  − 

π
2 u6 x11 ( )cos  + π u6 u1 ( )cos u6 x2 






cos π

2 x1 ( )cos π x9 ( )cos 2 π +  +  +  +  +  := 

x5 





cos π

2 v1 ( )cos 2 π +  + 

 

g1y v2 





sin  − 

π
2 u6 x11 ( )sin  + π u6 u1 ( )sin u6 x2 






sin π

2 x1 ( )sin π x9 ( )sin 2 π−  +  +  −  +  +  := 

x5 





sin π

2 v1 ( )sin 2 π +  + 

 

Kinematic equations for Nesting Force Loop 2 
> g2[x]:=x6*cos(-
pi/2)+x8*cos(pi)+x1*cos(2*pi)+x2*cos(pi/2)+u1*cos(pi+u6)+x11*cos(u6)+x1
2*cos(pi/2+u6)+v3*cos(pi+u6)+v4*cos(pi/2); 
g2[y]:=x6*sin(-
pi/2)+x8*sin(pi)+x1*sin(2*pi)+x2*sin(pi/2)+u1*sin(pi+u6)+x11*sin(u6)+x1
2*sin(pi/2+u6)+v3*sin(pi+u6)+v4*sin(pi/2); 



121 

g2x x6 





cos π

2 x8 ( )cos π x1 ( )cos 2 π x2 





cos π

2 u1 ( )cos  + π u6 x11 ( )cos u6 +  +  +  +  +  := 

x12 





cos  + 

π
2 u6 v3 ( )cos  + π u6 v4 






cos π

2 +  +  + 

 

g2y x6 





sin π

2 x8 ( )sin π x1 ( )sin 2 π x2 





sin π

2 u1 ( )sin  + π u6 x11 ( )sin u6−  +  +  +  +  +  := 

x12 





sin  + 

π
2 u6 v3 ( )sin  + π u6 v4 






sin π

2 +  +  + 

 

Kinematic equations evaluated in terms of known angles: 
> h1[x]:=eval(subs(pi=Pi,h1[x])); 
h1[y]:=eval(subs(pi=Pi,h1[y])); 
h2[x]:=eval(subs(pi=Pi,h2[x])); 
h2[y]:=eval(subs(pi=Pi,h2[y])); 
h3[x]:=eval(subs(pi=Pi,h3[x])); 
h3[y]:=eval(subs(pi=Pi,h3[y])); 
g1[x]:=eval(subs(pi=Pi,g1[x])); 
g1[y]:=eval(subs(pi=Pi,g1[y])); 
g2[x]:=eval(subs(pi=Pi,g2[x])); 
g2[y]:=eval(subs(pi=Pi,g2[y])); 
 

 := h1x  −  +  − x3 u2 ( )cos u6 u1 ( )cos u6 x1  

 := h1 y  −  +  − x4 u2 ( )sin u6 u1 ( )sin u6 x2  

 := h2 x  +  −  +  +  − x13 x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 x10 ( )sin u6 u1 ( )cos u6 x1
 

 := h2y  −  −  −  +  − u4 x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 x10 ( )cos u6 u1 ( )sin u6 x2
 

 := h3x  +  −  +  +  − u5 x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 x10 ( )sin u6 u2 ( )cos u6 x3
 

 := h3y  −  −  −  −  +  − x7 x13 x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 x10 ( )cos u6 u2 ( )sin u6 x4
 

 := g1 x  −  +  −  +  + v2 ( )sin u6 x11 ( )cos u6 u1 ( )cos u6 x1 x9 v1
 

 := g1 y −  −  +  −  + v2 ( )cos u6 x11 ( )sin u6 u1 ( )sin u6 x2 x5  

 := g2x −  +  −  +  −  − x8 x1 u1 ( )cos u6 x11 ( )cos u6 x12 ( )sin u6 v3 ( )cos u6
 

 := g2y −  +  −  +  +  −  + x6 x2 u1 ( )sin u6 x11 ( )sin u6 x12 ( )cos u6 v3 ( )sin u6 v4
 

Form vectors of independent and dependent variables. 
Vectors formed for use in the grad() function. 
> X:=vector([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14]); 
dX:=vector([dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10,dx11,dx12,dx13,dx1
4]); 
U:=vector([u1,u2,u3,u4,u5,u6]); 
dUU:=vector([du1,du2,du3,du4,du5,du6]); 
V:=vector([v1,v2,v3,v4]); 
dVV:=vector([dv1,dv2,dv3,dv4]); 

 := X [ ], , , , , , , , , , , , ,x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14
 

 := dX [ ], , , , , , , , , , , , ,dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10 dx11 dx12 dx13 dx14
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 := U [ ], , , , ,u1 u2 u3 u4 u5 u6  

 := dUU [ ], , , , ,du1 du2 du3 du4 du5 du6  

 := V [ ], , ,v1 v2 v3 v4  

 := dVV [ ], , ,dv1 dv2 dv3 dv4  

Matrices hx, hu, gx, gu and gv formed: 
Matrices are formed by using the grad(), or gradient function. 
> hx:=transpose(augment( 
grad(eval(h1[x]),X), 
grad(eval(h1[y]),X), 
grad(eval(h2[x]),X), 
grad(eval(h2[y]),X), 
grad(eval(h3[x]),X), 
grad(eval(h3[y]),X))); 
 
hu:=transpose(augment( 
grad(eval(h1[x]),U), 
grad(eval(h1[y]),U), 
grad(eval(h2[x]),U), 
grad(eval(h2[y]),U), 
grad(eval(h3[x]),U), 
grad(eval(h3[y]),U))); 
 
gx:=transpose(augment( 
grad(eval(g1[x]),X), 
grad(eval(g1[y]),X), 
grad(eval(g2[x]),X), 
grad(eval(g2[y]),X))); 
 
gu:=transpose(augment( 
grad(eval(g1[x]),U), 
grad(eval(g1[y]),U), 
grad(eval(g2[x]),U), 
grad(eval(g2[y]),U))); 
 
gv:=transpose(augment( 
grad(eval(g1[x]),V), 
grad(eval(g1[y]),V), 
grad(eval(g2[x]),V), 
grad(eval(g2[y]),V))); 
>  
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hx  := 
[ , , , , , , , , , , , , , ]-1 0 1 0 0 0 0 0 0 0 0 0 0 0
[ , , , , , , , , , , , , , ]0 -1 0 1 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 ( )sin u6 0 0  + 1 ( )sin  + x14 u6[ , , , , , , , , , , , , ,
 + x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 ]

0 -1 0 0 0 0 0 0 0 − ( )cos u6 0 0 − ( )cos  + x14 u6[ , , , , , , , , , , , , ,
 − x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 ]

0 0 -1 0 0 0 0 0 0 ( )sin u6 0 0 ( )sin  + x14 u6[ , , , , , , , , , , , , ,
 + x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 ]

0 0 0 -1 0 0 1 0 0 − ( )cos u6 0 0 −  − 1 ( )cos  + x14 u6[ , , , , , , , , , , , , ,
 − x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 ]

 

hu  := 
[ , , , , , ]( )cos u6 − ( )cos u6 0 0 0  − u2 ( )sin u6 u1 ( )sin u6
[ , , , , , ]( )sin u6 − ( )sin u6 0 0 0 −  + u2 ( )cos u6 u1 ( )cos u6

( )cos u6 0 − ( )cos  + x14 u6 0 0[ , , , , ,
 +  +  − x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 x10 ( )cos u6 u1 ( )sin u6 ]

( )sin u6 0 − ( )sin  + x14 u6 1 0[ , , , , ,
 −  +  + x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 x10 ( )sin u6 u1 ( )cos u6 ]

0 ( )cos u6 − ( )cos  + x14 u6 0 1[ , , , , ,
 +  +  − x13 ( )cos  + x14 u6 u3 ( )sin  + x14 u6 x10 ( )cos u6 u2 ( )sin u6 ]

0 ( )sin u6 − ( )sin  + x14 u6 0 0[ , , , , ,
 −  +  + x13 ( )sin  + x14 u6 u3 ( )cos  + x14 u6 x10 ( )sin u6 u2 ( )cos u6 ]

 

 := gx













-1 0 0 0 0 0 0 0 1 0 − ( )cos u6 0 0 0
0 -1 0 0 1 0 0 0 0 0 − ( )sin u6 0 0 0
1 0 0 0 0 0 0 -1 0 0 ( )cos u6 − ( )sin u6 0 0
0 1 0 0 0 -1 0 0 0 0 ( )sin u6 ( )cos u6 0 0

 

 := gu













( )cos u6 0 0 0 0  +  − v2 ( )cos u6 x11 ( )sin u6 u1 ( )sin u6
( )sin u6 0 0 0 0  −  + v2 ( )sin u6 x11 ( )cos u6 u1 ( )cos u6

− ( )cos u6 0 0 0 0  −  −  + u1 ( )sin u6 x11 ( )sin u6 x12 ( )cos u6 v3 ( )sin u6
− ( )sin u6 0 0 0 0 −  +  −  − u1 ( )cos u6 x11 ( )cos u6 x12 ( )sin u6 v3 ( )cos u6

 

 := gv













1 ( )sin u6 0 0
0 − ( )cos u6 0 0
0 0 − ( )cos u6 0
0 0 − ( )sin u6 1

 

Solve equations to obtain explicit functions for all dependent variables in terms of 
independent variables and generate C code for Monte Carlo simulation program: 
> u1:=solve(h1[x]=0,u1): 
u2:=solve(h3[y]=0,u2): 
u3:=solve(h2[x]=0,u3): 
u4:=solve(h2[y],u4): 
u5:=solve(h3[x],u5): 
v3:=solve(g2[x],v3): 
v2:=solve(g1[y],v2): 
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v1:=solve(g1[x],v1): 
v4:=solve(g2[y],v4): 
u1:=collect(simplify(u1),{cos(x14),sin(x14)});C(u1); 
u2:=collect(simplify(u2),{cos(x14),sin(x14)});C(u2); 
u3:=collect(simplify(u3),{cos(x14),sin(x14)});C(u3); 
u4:=collect(simplify(u4),{cos(x14),sin(x14)});C(u4); 
u5:=collect(simplify(u5),{cos(x14),sin(x14)});C(u5); 
v3:=collect(simplify(v3),{cos(x14),sin(x14)});C(v3); 
v2:=collect(simplify(v2),{cos(x14),sin(x14)});C(v2); 
v1:=collect(simplify(v1),{cos(x14),sin(x14)});C(v1); 
v4:=collect(simplify(v4),{cos(x14),sin(x14)});C(v4); 
 
u1 x3 ( )cos  + x14 u6 ( )sin u6 ( )cos u6 x7 ( )cos  + x14 u6 ( )cos u6 x13 ( )cos  + x14 u6 +  − ( := 

x13 ( )cos u6 ( )sin  + x14 u6 ( )cos u6 x13 ( )cos u6 ( )sin  + x14 u6 x10 ( )sin u6 −  −  − 

x10 ( )cos u6 2 ( )cos  + x14 u6 ( )cos u6 x4 ( )cos  + x14 u6 x1 ( )cos  + x14 u6 ( )sin u6 −  −  − 
x1 ( )cos u6 ( )sin  + x14 u6 + ( )cos u6 ( )−  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6)/( )

 

      t0 = (x3*cos(x14+u6)*sin(u6)+cos(u6)*x7*cos(x14+u6)-
cos(u6)*x13*cos(x14+ 
u6)-x13*cos(u6)*sin(x14+u6)-cos(u6)*x13-
cos(u6)*sin(x14+u6)*x10*sin(u6)-x10*pow 
(cos(u6),2.0)*cos(x14+u6)-cos(u6)*x4*cos(x14+u6)-
x1*cos(x14+u6)*sin(u6)+x1*cos( 
u6)*sin(x14+u6))/cos(u6)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6)); 
u2 x7 ( )cos  + x14 u6 x13 ( )cos  + x14 u6 x13 ( )sin  + x14 u6 x13 ( )sin  + x14 u6 x10 ( )sin u6 −  −  −  − ( := 

( )sin  + x14 u6 x3 x10 ( )cos u6 ( )cos  + x14 u6 x4 ( )cos  + x14 u6 +  −  − )/(
−  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6 )

 

      t0 = (x7*cos(x14+u6)-x13*cos(x14+u6)-x13*sin(x14+u6)-x13-
sin(x14+u6)*x10* 
sin(u6)+sin(x14+u6)*x3-x10*cos(u6)*cos(x14+u6)-x4*cos(x14+u6))/(-
cos(x14+u6)* 
sin(u6)+cos(u6)*sin(x14+u6)); 
u3 x13 ( )sin u6 x13 ( )sin  + x14 u6 ( )sin u6 x10 x3 ( )sin u6 ( )cos u6 x7 ( )cos u6 x13−  −  −  +  +  − ( := 

( )cos u6 x13 ( )cos  + x14 u6 ( )cos u6 x4 −  − −  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6)/(
)

 

      t0 = (-x13*sin(u6)-x13*sin(x14+u6)*sin(u6)-
x10+x3*sin(u6)+cos(u6)*x7-cos( 
u6)*x13-cos(u6)*x13*cos(x14+u6)-cos(u6)*x4)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin( 
x14+u6)); 

 := u4  −  −  +  +  − ( )cos u6 x7 ( )cos u6 x13 ( )cos u6 x4 x2 ( )cos u6 x3 ( )sin u6 ( )sin u6 x1
( )cos u6

 

      t0 = (cos(u6)*x7-cos(u6)*x13-
cos(u6)*x4+x2*cos(u6)+x3*sin(u6)-sin(u6)*x1) 
/cos(u6); 

 := u5 x13  

      t0 = x13; 
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v3 x8 ( )cos  + x14 u6 ( )sin u6 x8 ( )cos u6 ( )sin  + x14 u6 x3 ( )cos  + x14 u6 ( )sin u6−  +  + (− := 
( )cos u6 x7 ( )cos  + x14 u6 ( )cos u6 x13 ( )cos  + x14 u6 x13 ( )cos u6 ( )sin  + x14 u6 +  −  − 

( )cos u6 x13 ( )cos u6 ( )sin  + x14 u6 x10 ( )sin u6 x10 ( )cos u6 2 ( )cos  + x14 u6 −  −  − 
( )cos u6 x4 ( )cos  + x14 u6 x11 ( )cos u6 ( )cos  + x14 u6 ( )sin u6 −  + 

x11 ( )cos u6 2 ( )sin  + x14 u6 x12 ( )cos  + x14 u6 x12 ( )cos  + x14 u6 ( )cos u6 2 −  −  + 
x12 ( )sin u6 ( )cos u6 ( )sin  + x14 u6 + ( )cos u6)/(

( )−  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6 )

 

      t0 = -(-
x8*cos(x14+u6)*sin(u6)+x8*cos(u6)*sin(x14+u6)+x3*cos(x14+u6)*sin( 
u6)+cos(u6)*x7*cos(x14+u6)-cos(u6)*x13*cos(x14+u6)-
x13*cos(u6)*sin(x14+u6)-cos( 
u6)*x13-cos(u6)*sin(x14+u6)*x10*sin(u6)-
x10*pow(cos(u6),2.0)*cos(x14+u6)-cos(u6 
)*x4*cos(x14+u6)+x11*cos(u6)*cos(x14+u6)*sin(u6)-
x11*pow(cos(u6),2.0)*sin(x14+ 
u6)-
x12*cos(x14+u6)+x12*cos(x14+u6)*pow(cos(u6),2.0)+x12*sin(u6)*cos(u6
)*sin( 
x14+u6))/cos(u6)/(-cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6)); 
v2 x11 ( )cos u6 ( )cos  + x14 u6 x11 ( )cos u6 3 ( )cos  + x14 u6 − ( := 

x11 ( )cos u6 2 ( )sin u6 ( )sin  + x14 u6 x3 ( )cos  + x14 u6 x3 ( )cos  + x14 u6 ( )cos u6 2 −  +  − 
( )sin u6 ( )cos u6 x7 ( )cos  + x14 u6 ( )sin u6 ( )cos u6 x13 ( )cos  + x14 u6 +  − 
( )cos u6 ( )sin  + x14 u6 x13 ( )sin u6 ( )cos u6 x13 ( )sin u6 x10 ( )cos u6 ( )sin  + x14 u6 −  −  − 

x10 ( )cos u6 3 ( )sin  + x14 u6 x10 ( )cos u6 2 ( )cos  + x14 u6 ( )sin u6 +  − 
( )sin u6 ( )cos u6 x4 ( )cos  + x14 u6 x1 ( )cos  + x14 u6 x1 ( )cos  + x14 u6 ( )cos u6 2 −  −  + 
( )sin u6 x1 ( )cos u6 ( )sin  + x14 u6 x2 ( )cos u6 ( )cos  + x14 u6 ( )sin u6 +  + 

x2 ( )cos u6 2 ( )sin  + x14 u6 x5 ( )cos u6 ( )cos  + x14 u6 ( )sin u6 x5 ( )cos u6 2 ( )sin  + x14 u6 −  −  + )

( )cos u6 2 ( )−  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6( )

 

      MapleGenVar2 = x11*cos(u6)*cos(x14+u6)-
x11*pow(cos(u6),3.0)*cos(x14+u6)- 
x11*pow(cos(u6),2.0)*sin(u6)*sin(x14+u6)+x3*cos(x14+u6)-
x3*cos(x14+u6)*pow(cos( 
u6),2.0)+sin(u6)*cos(u6)*x7*cos(x14+u6)-
sin(u6)*cos(u6)*x13*cos(x14+u6)-cos(u6) 
*sin(x14+u6)*x13*sin(u6)-cos(u6)*x13*sin(u6)-
x10*cos(u6)*sin(x14+u6); 
      MapleGenVar1 = MapleGenVar2+x10*pow(cos(u6),3.0)*sin(x14+u6)-
x10*pow(cos( 
u6),2.0)*cos(x14+u6)*sin(u6)-sin(u6)*cos(u6)*x4*cos(x14+u6)-
x1*cos(x14+u6)+x1* 
cos(x14+u6)*pow(cos(u6),2.0)+sin(u6)*x1*cos(u6)*sin(x14+u6)+x2*cos(
u6)*cos(x14+ 
u6)*sin(u6)-x2*pow(cos(u6),2.0)*sin(x14+u6)-
x5*cos(u6)*cos(x14+u6)*sin(u6)+x5* 
pow(cos(u6),2.0)*sin(x14+u6); 
      MapleGenVar2 = 1/pow(cos(u6),2.0)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+ 
u6)); 
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      t0 = MapleGenVar1*MapleGenVar2; 
v1 x2 ( )cos u6 3 ( )cos  + x14 u6 x13 ( )cos u6 ( )sin  + x14 u6−  − (− := 

x11 ( )cos u6 ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6 x10 ( )sin u6 +  − 

x10 ( )cos u6 2 ( )cos  + x14 u6 x11 ( )cos u6 2 ( )sin  + x14 u6 ( )cos u6 x13 −  −  − 

x1 ( )cos u6 3 ( )sin  + x14 u6 ( )sin u6 x5 ( )cos u6 2 ( )sin  + x14 u6 −  + 

( )sin u6 x2 ( )cos u6 2 ( )sin  + x14 u6 x9 ( )cos u6 2 ( )cos  + x14 u6 ( )sin u6 −  − 
x9 ( )cos u6 3 ( )sin  + x14 u6 ( )cos u6 x13 ( )cos  + x14 u6 ( )cos u6 x4 ( )cos  + x14 u6 +  −  − 

x3 ( )cos  + x14 u6 ( )sin u6 ( )cos u6 x7 ( )cos  + x14 u6 x5 ( )cos u6 3 ( )cos  + x14 u6 +  +  + 

x1 ( )cos  + x14 u6 ( )sin u6 x1 ( )cos  + x14 u6 ( )sin u6 ( )cos u6 2 x5 ( )cos u6 ( )cos  + x14 u6 −  +  − 

x1 ( )cos u6 ( )sin  + x14 u6 x2 ( )cos u6 ( )cos  + x14 u6 +  + ( )cos u6 2) (
( )−  + ( )cos  + x14 u6 ( )sin u6 ( )cos u6 ( )sin  + x14 u6 )

 

      MapleGenVar2 = 
x2*pow(cos(u6),3.0)*cos(x14+u6)+x13*cos(u6)*sin(x14+u6)- 
x11*cos(u6)*cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+u6)*x10*sin(u6)+x10
*pow(cos(u6) 
,2.0)*cos(x14+u6)+x11*pow(cos(u6),2.0)*sin(x14+u6)+cos(u6)*x13+x1*p
ow(cos(u6), 
3.0)*sin(x14+u6)-
sin(u6)*x5*pow(cos(u6),2.0)*sin(x14+u6)+sin(u6)*x2*pow(cos(u6) 
,2.0)*sin(x14+u6)+x9*pow(cos(u6),2.0)*cos(x14+u6)*sin(u6); 
      MapleGenVar1 = MapleGenVar2-
x9*pow(cos(u6),3.0)*sin(x14+u6)+cos(u6)*x13* 
cos(x14+u6)+cos(u6)*x4*cos(x14+u6)-x3*cos(x14+u6)*sin(u6)-
cos(u6)*x7*cos(x14+u6 
)-x5*pow(cos(u6),3.0)*cos(x14+u6)+x1*cos(x14+u6)*sin(u6)-
x1*cos(x14+u6)*sin(u6) 
*pow(cos(u6),2.0)+x5*cos(u6)*cos(x14+u6)-x1*cos(u6)*sin(x14+u6)-
x2*cos(u6)*cos( 
x14+u6); 
      MapleGenVar2 = 1/pow(cos(u6),2.0)/(-
cos(x14+u6)*sin(u6)+cos(u6)*sin(x14+ 
u6)); 
      t0 = MapleGenVar1*MapleGenVar2; 

 := v4  −  +  −  − x6 ( )cos u6 x2 ( )cos u6 ( )sin u6 x1 x12 ( )sin u6 x8
( )cos u6

 

      t0 = (x6*cos(u6)-x2*cos(u6)+sin(u6)*x1-x12-
sin(u6)*x8)/cos(u6); 
> u6:=arctan((x4-x2),(x3-x1));C(u6); 

 := u6 ( )arctan , − x4 x2  − x3 x1  

      t0 = atan2(x4-x2,x3-x1); 
Input nominal values for all applicable variables: 
This can be done by copying the appropriate cells from 
the Excel file. 
> x1:=2.5:  dx1:=0.01: 
x2:=0.5:  dx2:=0.005: 
x3:=5:  dx3:=0.02: 
x4:=0.5:  dx4:=0.005: 
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x5:=1.75:  dx5:=0.02: 
x6:=2.4:  dx6:=0.02: 
x7:=4:  dx7:=0.005: 
x8:=3.8:  dx8:=0.01: 
x9:=5.62:  dx9:=0.01: 
x10:=1:  dx10:=0.005: 
x11:=5.1:  dx11:=0.01: 
x12:=2:  dx12:=0.01: 
x13:=1.125:  dx13:=0.001: 
x14:=0.349065850398866:  dx14:=0.00872664625997165: 
Evaluate all dependent variables for known independent variable values: 
> 'u1'=evalf[4](u1); 
'u2'=evalf[4](u2); 
'u3'=evalf[4](u3); 
'u4'=evalf[4](u4); 
'u5'=evalf[4](u5); 
'u6'=evalf[4](u6); 
'v1'=evalf[4](v1); 
'v2'=evalf[4](v2); 
'v3'=evalf[4](v3); 
'v4'=evalf[4](v4); 

 = u1 1.8640  

 = u2 4.3610  

 = u3 0.9296  

 = u4 2.8750  

 = u5 1.1250  

 = u6 0.0000  

 = v1 0.1140  

 = v2 1.2500  

 = v3 1.9380  

 = v4 -0.1000  

Double Check Loop Equations to verify they are equal to zero: 
> 'h1[x]'=evalf(h1[x]);'h1[y]'=evalf(h1[y]); 
'h2[x]'=evalf(h2[x]);'h2[y]'=evalf(h2[y]); 
'h3[x]'=evalf(h3[x]);'h3[y]'=evalf(h3[y]); 
'g1[x]'=evalf(g1[x]);'g1[y]'=evalf(g1[y]); 
'g2[x]'=evalf(g2[x]);'g2[y]'=evalf(g2[y]); 

 = h1 x 0.1000 10 -8  

 = h1 y 0.0000  

 = h2 x 0.0000  

 = h2 y 0.0000  
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 = h3 x -0.1000 10 -8  

 = h3 y 0.0000  

 = g1 x -0.7000 10 -9  

 = g1 y 0.0000  

 = g2 x 0.1000 10 -8  

 = g2 y 0.0000  

Matrices are now evaluated according to know inputs: 
> hx:=multiply(hx,Matrix(coldim(hx),coldim(hx),shape=identity)); 
hu:=multiply(hu,Matrix(coldim(hu),coldim(hu),shape=identity)); 
gx:=multiply(gx,Matrix(coldim(gx),coldim(gx),shape=identity)); 
gu:=multiply(gu,Matrix(coldim(gu),coldim(gu),shape=identity)); 
gv:=multiply(gv,Matrix(coldim(gv),coldim(gv),shape=identity));  
huinv:=eval(inverse(hu)): 
huinv=evalf[4](evalm(huinv)); 
gvinv:=eval(inverse(gv)): 
gvinv=evalf[4](evalm(gvinv)); 
hx  := 

[ , , , , , , , , , , , , , ]-1 0 1 0 0 0 0 0 0 0 0 0 0 0
[ , , , , , , , , , , , , , ]0 -1 0 1 0 0 0 0 0 0 0 0 0 0

-1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 1.3420 1.3750, , , ]
0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000[ , , , , , , , , , ,

0.0000 0.0000 -0.9397 -0.4885, , , ]
0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 0.3420 1.3750, , , ]
0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 -1.0000[ , , , , , , , , , ,

0.0000 0.0000 -1.9397 -0.4885, , , ]

 

 := hu













1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -2.5000
1.0000 0.0000 -0.9397 0.0000 0.0000 2.3750
0.0000 0.0000 -0.3420 1.0000 0.0000 1.3750
0.0000 1.0000 -0.9397 0.0000 1.0000 2.3750
0.0000 0.0000 -0.3420 0.0000 0.0000 3.8750
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gx  := 
-1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000[ , , , , , , , , , ,

-1.0000 0.0000 0.0000 0.0000, , , ]
0.0000 -1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 0.0000 0.0000, , , ]
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 1.0000[ , , , , , , , , , ,
0.0000 0.0000 0.0000, , , ]
0.0000 1.0000 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
1.0000 0.0000 0.0000, , , ]

 

 := gu













1.0000 0.0000 0.0000 0.0000 0.0000 1.2500
0.0000 0.0000 0.0000 0.0000 0.0000 -3.2365
-1.0000 0.0000 0.0000 0.0000 0.0000 -2.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.3000

 

 := gv













1.0000 0.0000 0.0000 0.0000
0.0000 -1.0000 0.0000 0.0000
0.0000 0.0000 -1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

 

 = huinv













0.0000 -3.3090 1.0000 0.0000 0.0000 -2.7470
-1.0000 -3.3090 1.0000 0.0000 0.0000 -2.7470
0.0000 -4.5320 0.0000 0.0000 0.0000 -2.9240
0.0000 -1.0000 0.0000 1.0000 0.0000 -1.0000
1.0000 0.0000 -1.0000 0.0000 1.0000 0.0000
0.0000 -0.4000 0.0000 0.0000 0.0000 0.0000

 

 = gvinv













1.0000 0.0000 0.0000 -0.0000
0.0000 -1.0000 -0.0000 0.0000
0.0000 -0.0000 -1.0000 -0.0000
0.0000 0.0000 -0.0000 1.0000

 

Form the closed loop sensitivities matrix: 
> huinvhx:=eval((multiply(-huinv,hx))): 
'huinvhx'=evalf[4](evalm(huinvhx)); 
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huinvhx  = 
1.0000 -3.3090 0.0000 0.5611 0.0000 0.0000 2.7470 0.0000 0.0000 -2.7470[ , , , , , , , , , ,

0.0000 0.0000 -6.6710 -2.7170, , , ]
0.0000 -3.3090 1.0000 0.5611 0.0000 0.0000 2.7470 0.0000 0.0000 -2.7470[ , , , , , , , , , ,

0.0000 0.0000 -6.6710 -2.7170, , , ]
0.0000 -4.5320 0.0000 1.6080 0.0000 0.0000 2.9240 0.0000 0.0000 -2.9240[ , , , , , , , , , ,

0.0000 0.0000 -5.6710 -1.4280, , , ]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 -1.0000 0.0000, , , ]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 1.0000 0.0000, , , ]
0.0000 -0.4000 0.0000 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 0.0000 0.0000, , , ]

 

> eta:=evalf[4](evalm(gx + gu &* huinvhx));  
## The + sign is due to huinvhx = -huinv*hx 
η := 

0.0000 -3.8090 0.0000 1.0610 0.0000 0.0000 2.7470 0.0000 1.0000 -2.7470[ , , , , , , , , , ,
-1.0000 0.0000 -6.6710 -2.7170, , , ]

0.0000 0.2940 0.0000 -1.2940 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
0.0000 0.0000 0.0000, , , ]
0.0000 4.1090 0.0000 -1.3610 0.0000 0.0000 -2.7470 -1.0000 0.0000 2.7470[ , , , , , , , , , ,

1.0000 0.0000 6.6710 2.7170, , , ]
0.0000 0.4800 0.0000 0.5200 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000[ , , , , , , , , , ,
1.0000 0.0000 0.0000, , , ]

 

> sV:=evalf[4](evalm(-gvinv &* eta)); 
sV := 

-0.0000 3.8090 -0.0000 -1.0610 -0.0000 -0.0000 -2.7470 -0.0000 -1.0000 2.7470[ , , , , , , , , , ,
1.0000 -0.0000 6.6710 2.7170, , , ]

-0.0000 0.2940 -0.0000 -1.2940 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000[ , , , , , , , , , ,
0.0000 -0.0000 0.0000 0.0000, , , ]

-0.0000 4.1090 -0.0000 -1.3610 -0.0000 -0.0000 -2.7470 -1.0000 -0.0000 2.7470[ , , , , , , , , , ,
1.0000 -0.0000 6.6710 2.7170, , , ]

-0.0000 -0.4800 -0.0000 -0.5200 -0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000[ , , , , , , , , , ,
-0.0000 -1.0000 -0.0000 -0.0000, , , ]

 

> dU:=evalf[4](augment((multiply(abs(huinvhx),dX)))): 
augment(evalm(dUU))=evalm(dU); 
dV:=evalf[4](augment((multiply(abs(sV),dX)))): 
augment(evalm(dVV))=evalm(dV); 
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 = 













du1
du2
du3
du4
du5
du6













0.0872
0.0972
0.0781
0.0060
0.0010
0.0040

 

 = 













dv1
dv2
dv3
dv4













0.1022
0.0279
0.1052
0.0350

 

Calculate the standard deviation for all the dependent variables for the Pinned Block 
Assembly: 
> sigma_u[1]:=sqrt(Sum(huinvhx[1,i]^2*(dX[i]/3)^2,i=1..n)); 
sigma_u[2]:=sqrt(sum(huinvhx[2,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[3]:=sqrt(Sum(huinvhx[3,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[4]:=sqrt(sum(huinvhx[4,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[5]:=sqrt(Sum(huinvhx[5,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_u[6]:=sqrt(sum(huinvhx[6,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=14;for j from 1 to 6 do sigma_u[j]:=evalf[4](sigma_u[j]) od; 
n:='n': 

 := sigma_u 1 ∑
 = i 1

n








1
9 huinvhx ,1 i

2
dXi

2  

 := n 14  

 := sigma_u 1 0.0123  

 := sigma_u 2 0.0136  

 := sigma_u 3 0.0115  

 := sigma_u 4 0.0017  

 := sigma_u 5 0.0003  

 := sigma_u 6 0.0009  

> sigma_v[1]:=sqrt(Sum(sV[1,i]^2*(dX[i]/3)^2,i=1..n)); 
sigma_v[2]:=sqrt(sum(sV[2,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_v[3]:=sqrt(Sum(sV[3,i]^2*(dX[i]/3)^2,i=1..n)): 
sigma_v[4]:=sqrt(sum(sV[4,i]^2*(dX[i]/3)^2,i=1..n)): 
n:=14;for j from 1 to 4 do sigma_v[j]:=evalf[4](sigma_v[j]) od; 

 := sigma_v 1 ∑
 = i 1

n








1
9 sV ,1 i

2
dXi

2  

 := n 14  

 := sigma_v 1 0.0132  

 := sigma_v 2 0.0070  
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 := sigma_v 3 0.0136  

 := sigma_v 4 0.0075
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Appendix D 
 Using Monte Carlo for Worst-Case Comparisons  

This appendix will reference the Pinned Block assembly explained in both 

sections 2.6.1 and 3.4. 

A uniform distribution will allow independent variables to have an equal 

probability of being at their maximum or minimum values.  Also, a uniform distribution 

will never exceed the set limits for a variable.  A histogram for the independent variable, 

x1 can be seen in Figure D.1.  As can be seen in the histogram, x1 is at its limits just as 

frequently as it is any other value.  Also, Figure D.1 shows that x1 never exceeds its 

limits.  

Figure D.1 – Histogram of the uniformly distributed independent 
variable, x1. 
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In contrast, a normal distribution is based on a standard deviation and has some 

probability that it will exceed the dimensional limits for the variable.  This indicates that, 

though the probability is small, there is a chance that if enough independent variables 

exceed their chosen tolerance limits because of their normal distributions, the dependent 

variables will continuously be pushed to greater and greater limits.  A histogram or the 

independent variable, x1 is illustrated in Figure D.2. 

Figure D.2 – Histogram of the normally distributed independent 
variable, x1. 

 

When the dependent variables are considered, allowing all the independent 

variables to vary according to a normal distribution cannot be used for worst-case 

analysis.  This is best illustrated with a comparison between the same dependent variable, 

in this case, u1, and two Monte Carlo distributions, one with independent variables that 

were allowed to follow a normal distribution, and one where the independent variables 

were allowed to follow uniform distributions.  Both these simulations were run with 

500,000 runs.  Figure D.3 was generated from data acquired from the normally 

distributed inputs using the histfit(variable,numbins) function associated with the 
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statistical package in MatLab©.  It plots a normal curve over a similarly scaled histogram 

of the data found in variable and with the number of histogram bins, numbins.  It can be 

seen that there are values that extend further into the tail.  Again, because independent 

variables are described by a normal distribution with tails that extend to ±∞, the 

dependent variable will vary likewise.  Zooming in on right-hand tail shows how these 

random values begin to populate the tail.  This is illustrated in Figure D.4. 

Figure D.3 – Histfit() plot of the data for the dependent 
variable, u1. 

 

In contrast, Figure D.5 shows a histogram of data generated for u1 using a Monte 

Carlo simulation where the independent variables had uniform distributions.  Notice how 

both end of the histogram fall off rapidly and there are little to no tails as there were with 

the normally distributed independent variables.  Again, zooming in on the right-hand 

limits of the histogram, as shown in Figure D.6, further shows fact that there is a finite 

limit to the extents of values for u1. 
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Figure D.4 – Zoomed in on right-hand tail of the Histfit() 
plot for the dependent variable, u1. 

 

In conclusion, it was determined from the knowledge that a uniform distribution 

has finite limits that are the same as the manufacturing limits, and by analyzing 

histograms for the dependent variables, as shown in Figure D.3 thru Figure D.6 that a 

500,000 run Monte Carlo simulation where the independent variables were uniformly 

distributed would be sufficient for estimating the worst-case conditions on dependent 

variables. 
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Figure D.5 – Histogram of the data for the dependent variable, u1 
when the independent variables were allowed to follow a uniform 

distribution. 
 

Figure D.6 – Histogram of the data for the dependent variable, u1 
when the independent variables were allowed to follow a uniform 

distribution. 
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