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abstract

Zeros of a Family of Complex Harmonic Polynomials

Samantha Sandberg
Department of Mathematics, BYU

Master of Science

In this thesis we study complex harmonic functions of the form f = h+ ḡ where h, g are
analytic, nonconstant functions of one variable. The Fundamental Theorem of Algebra does
not apply to such functions, so we ask how many zeros a complex harmonic function can
have and where those zeros are located. This thesis focuses on the complex harmonic family
of polynomials pc(z) = z + c

2
z2 + c

n−1
z̄n−1 + 1

n
z̄n. We first establish properties of the critical

curve, which separates orientation preserving and reversing regions. These properties are
then used to show the sum of the orders of the zeros of pc is −n. In turn, we use this to
show pc has n+ 2 zeros when 0 < c < 1, n ≥ 5 and n+ 4 zeros when c ≥ 4, n ≥ 6. The total
number of zeros of pc changes when zeros interact with the critical curve, so we investigate
where zeros occur on the critical curve to understand how the number of zeros of pc changes
for 1 ≤ c ≤ 4.

Keywords: complex analysis, harmonic polynomials
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Chapter 1. Motivation

The Fundamental Theorem of Algebra states that every polynomial f(z) ∈ C[z] of degree

n has precisely n zeros in C, counted with multiplicity. As a simple illustration, consider

f1(z) = z+z3. As a degree 3 polynomial, it has 3 zeros; because f1(z) = z+z3 = z(z+i)(z−i),

z = 0,±i are the three zeros. These zeros are depicted in Figure 1.1.

The Fundamental Theorem of Algebra applies to polynomials in z, that is, to analytic

polynomials of a single complex variable. What happens with polynomials in z and z̄? As

an example, consider f2(z) = z + z̄3. To find the zeros of f2, let z = x+ iy. Then

f2(x+ iy) = (x+ iy) + (x− iy)3 = x+ x3 − 3xy2 + i
(
y + y3 − 3xy2

)
. (1.1)

Setting the real and imaginary parts equal to zero, we find

x(1 + x2 − 3y2) = 0 and y(1 + y2 − 3x2) = 0. (1.2)

From (1.2), x = 0 or x2 = 3y2 − 1. If x = 0, then y = 0 or y2 = −1. Because y is a real

number, y = 0. If x2 = 3y2 − 1, then substituting into the second equation of (1.2) gives

0 = y + y3 − 3x2y = −4y(2y2 − 1), (1.3)

so y = ± 1√
2

or y = 0. Notice that y = 0 leads to x2 = −1 which is not possible because x is

real. Thus x2 = 3y2 − 1 implies x = ± 1√
2
, and there are five zeros of f2(z): 0,± 1√

2
± i 1√

2
.

They are shown in Figure 1.1.

This example shows how the Fundamental Theorem of Algebra does not extend directly to

polynomials of the form f = h+ ḡ where h, g are nonzero polynomials in z; such polynomials

are called complex-valued harmonic polynomials and are the subject of this thesis. We ask

Question: What can be said about the zeros of complex harmonic polynomials?

1



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(a) f1(z) = z + z3

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

(b) f2(z) = z + z̄3

Figure 1.1: Zeros of an analytic and a complex harmonic polynomial.

In response to the above question, mathematicians began investigating a bound on the

total number of zeros. Sheil-Small [8] conjectured that for complex harmonic polynomials

f = h + ḡ where deg(h) = n, deg(g) = m, and m ≤ n, the maximum number of zeros

of f is n2. Peretz and Schmid [7] and Wilmshurst [10] independently proved this conjec-

ture. Wilmshurst also constructed a polynomial with n2 zeros to show this bound is sharp,

and Bshouty et al. [2] constructed another example illustrating that the bound is sharp.

Wilmshurst then conjectured that in the particular case where 1 ≤ m ≤ n−1, f has at most

m(m− 1) + 3n− 2 zeros; however, Lee et al. [6] constructed counterexamples that show the

conjecture does not hold in general.

Other mathematicians considered particular families of polynomials. Khavinson and

Swiatek [5] looked at complex harmonic polynomials of the form f(z) = h(z) − z̄. They

showed that for n = deg(h) > 1, the number of zeros is bounded by 3n− 2. Brilleslyper et

al. [1] investigated the family of complex harmonic trinomials pc(z) = zn + cz̄k − 1 where

1 ≤ k ≤ n − 1, n ≥ 3, c ∈ R+, and gcd(n, k) = 1. They discovered that as c increases, the

number of zeros increases from n to n+ 2k.

In this thesis we investigate the complex harmonic family pc(z) = z+ c
2
z2 + c

n−1
z̄n−1 + 1

n
z̄n

for c > 0 and integers n ≥ 3. In Figure 1.2, we graph the zeros and critical curve for n = 8

at several c values. The critical curve separates sense-preserving and sense-reversing regions;

2
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Figure 1.2: The zeros and critical curve of the eighth degree polynomial pc(z) when c = 0.8,
c = 1.1, c = 1.4, and c = 1.7.

for a detailed discussion of these ideas see Chapter 2. In the case of p0.8, the region inside

the circle is sense-preserving and the region outside is sense-reversing. In the other graphs,

the regions inside the shapes are sense-preserving except where they overlap; then they are

sense-reversing. As shown in Figure 1.2, the unit circle is always part of the critical curve of

pc; we prove this in Chapter 3.

Proposition 3.3. The unit circle |z| = 1 is always part of the critical curve of pc(z).

For analytic functions, there is a notion of order of a zero which can be defined as the

minimum degree of a term in the Taylor expansion of the function about that point. For

complex harmonic functions, there is a similar notion, but now the order of a zero can

be positive or negative depending on whether the zero lies in a sense-preserving or sense-

reversing region. The order is undefined if the zero lies on the critical curve. We will show

in Chapter 4 that all the zeros of pc are simple. Thus the sum of the order of the zeros in

3
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Figure 1.3: The eighth degree polynomial pc(z) when c = 2.3, c = 2.45, and c = 2.6.

Figure 1.3 is −8; in Chapter 4 we prove that for pc the sum of the orders of the zeros is −n.

In general, it is the sum of the orders of the zeros that is preserved in complex harmonic

polynomials, not the total number of zeros; this gives a generalization of the Fundamental

Theorem of Algebra that includes complex harmonic polynomials.

While the sum of the orders of the zeros is preserved, the total number of zeros may

change. In Figure 1.3, we see that p2.3 has ten zeros: one at 0, one on the negative real axis,

and one near each of the numbers 81/7ei
π+2πk

9 where k = 0, 1, 2, 3, 5, 6, 7, 8. (Note: k = 4

is not included in this list.) In the case of p2.45, there are eleven zeros: approximately the

same ten as p2.3 as well as an additional one at z = −1 on the critical curve. The complex

harmonic polynomial p2.6 has twelve zeros. Again, ten of the zeros are similar in location to

those of p2.3, but there are two new zeros on the negative real axis to the left and right of

the critical curve. This illustrates how the number of zeros changes as c changes and as the

zeros interact with the critical curve. In Chapter 4, we prove the following two theorems:

Theorem 4.3. For n ≥ 5 and 0 < c < 1, the complex harmonic polynomial pc(z) has n+ 2

distinct zeros.

4



Theorem 4.4. For n ≥ 6 and c ≥ 4, pc(z) has n+ 4 distinct zeros.

We now investigate what happens for values of c between 1 and 4. The number of zeros

can change when a zero interacts with the critical curve and as mentioned previously the

unit circle is always part of the critical curve; hence, we investigate when zeros of pc occur

on the unit circle. In Chapter 4, we prove

Theorem 4.11. For even n ≥ 8, the complex harmonic function pc(z) has no zeros on the

unit circle except possibly at the point −1.

The outline for the remainder of this thesis is as follows:

In Chapter 2 we introduce general results for complex harmonic functions of the form

f = h+ ḡ where h, g are analytic. We will discuss properties of complex harmonic functions

including orientation, orders of zeros, and a harmonic analog of Rouché’s Theorem.

We use these results to analyze pc in the following chapters. In Chapter 3, we analyze

the critical curve for pc. We show that the unit circle is always part of the critical curve;

this is illustrated in Figure 1.3. For 0 < c < 1, we show that the unit circle is the entire

critical curve. For sufficiently large c, we show that the parts of the critical curve sans the

unit circle are bounded away from any zeros of pc.

In Chapter 4, we use Rouché’s Theorem to establish that the sum of the orders of zeros of

pc is −n. We then prove Theorems 4.3 and 4.4. We even go a step further and use Rouché’s

Theorem to localize the zeros of pc in annuli or sectors of annuli.

The above theorems treat the cases for sufficiently small and sufficiently large values of c;

it remains to determine what happens for intermediate values of c. As illustrated in Figure

1.3, the number of zeros changes when zeros interact with the critical curve. We begin by

analyzing when zeros occur on the unit circle. In Chapter 4, we prove Theorem 4.11.

5



Chapter 2. Background

Here we review the relevant complex analysis. The results in this chapter are developed from

Duren [3] with details added but no original results.

2.1 Analytic and Complex Harmonic Functions

Let u(x, y) and v(x, y) be real-valued functions. A complex-valued function f = u + iv is

analytic at the point z0 ∈ C if the limit

lim
h→0

f(z0 + h)− f(z0)

h
,

exists. We call this the derivative of f at z0 and label it f ′(z0). A function f is analytic on

D ⊆ C if f is analytic at every point in D. An analytic function f satisfies the Cauchy-

Riemann equations :

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Moreover, a function f satisfying the Cauchy-Riemann equations and having continuous first

partial derivatives is analytic. In addition to the usual partial derivatives in x, y, we have

the differential operators ∂
∂z

= 1
2

(
∂
∂x
− i ∂

∂y

)
and ∂

∂z̄
= 1

2

(
∂
∂x

+ i ∂
∂y

)
. It is common practice

to use a subscript notation where fz = ∂f
∂z

and fz̄ = ∂f
∂z̄

. These operations relate to the

Cauchy-Riemann equations:

Lemma 2.1. The Cauchy-Riemann equations are equivalent to ∂f
∂z̄

= 0.

Proof. Let f = u+ iv be a complex function. Then the definition of ∂f
∂z̄

yields

∂f

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=
1

2

((
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

))
.

6



Thus ∂f
∂z̄

= 0 if and only if ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

.

The focus of this thesis is complex harmonic polynomials, so we begin developing re-

sults for complex functions that are harmonic. Recall that a real-valued function φ(x, y) is

harmonic if it is C2 and satisfies Laplace’s equation φxx + φyy = 0. A complex-valued har-

monic function f has the form f = u+ iv for real harmonic functions u, v. Complex-valued

harmonic functions have the following useful properties:

Lemma 2.2. If f is harmonic with continuous second partial derivatives then fz is analytic.

Proof. Let f be harmonic, so ∂2f
∂x2

+ ∂2f
∂y2

= 0. By definition fz = 1
2

(
∂f
∂x
− i∂f

∂y

)
. Applying the

differential operator ∂
∂z̄

yields

fzz̄ =
1

4

(
∂2f

∂x2
− i ∂

2f

∂x∂y
+ i

∂2f

∂y∂x
+
∂2f

∂y2

)
.

Because partial derivatives commute, we have

fzz̄ =
1

4

(
∂2f

∂x2
+
∂2f

∂y2

)
.

Therefore fzz̄ = 0 because f is harmonic. Then by Lemma 2.1 we know fz is analytic.

Using the above lemma, we now show every complex harmonic function can be written

in the form f = h+ ḡ.

Proposition 2.3. Complex-valued harmonic functions defined on a simply-connected domain

can be written in the form f = h + ḡ for analytic functions h and g. This representation is

unique up to an additive constant.

Proof. Let f be harmonic, so fz is analytic by Lemma 2.2. Let h′ = fz and g = f̄ − h̄. Then

gz̄ =
d

dz̄

(
f̄ − h̄

)
= f̄z̄ − h̄z̄ = f̄z − h̄z = f̄z − f̄z = 0

7



Therefore gz̄ = 0. Then g is analytic because g has continuous first partial derivatives and

satisfies Lemma 2.1. Re-arranging gz̄ = f̄z − h̄z gives

fz = hz + ḡz.

Using the fact that analytic functions have analytic antiderivatives,

f = h+ ḡ + c.

Thus, f = h + ḡ + c for some constant c. Because constants are the only analytic and

anti-analytic function, h and g are therefore only determined up to a constant.

For a moment we return to considering analytic functions. Recall that the Jacobian of a

function f = u+ iv viewed as a mapping from R2 to R2 is

Jf (z) =

∣∣∣∣∣∣∣
ux vx

uy vy

∣∣∣∣∣∣∣ = uxvy − uyvx.

For f analytic, this simplifies to

Jf (x) = (ux)
2 + (vx)

2 =
∣∣f ′(z)

∣∣2 .
Notice that this quantity is always non-negative. When Jf (z) is positive, f is univalent and

hence conformal, meaning f is orientation preserving (or sense-preserving) and f preserves

angles between curves. Similarly, f̄ will be an anti-analytic function satisfying Jf̄ (z) ≤ 0

that is orientation reversing (or sense-reversing) when Jf̄ (z) < 0. Because complex harmonic

polynomials are the sum of an analytic and an anti-analytic function, some portions of the

complex plane will be sense-preserving and some will be sense-reversing. We give the details

of these ideas below.

We claim that for f : C→ C, Jf (z) can be written as |fz|2−|fz̄|2. First, we compute |fz|2

8



and |fz̄|2:

|fz|2 =

∣∣∣∣∣12
(
∂

∂x
− i ∂

∂y

)
(u+ iv)

∣∣∣∣∣
2

=
1

4

∣∣∣∣∂u∂x − i∂u∂y + i
∂v

∂x
+
∂v

∂y

∣∣∣∣2
=

1

4

((
∂u

∂x

)2

+ 2
∂u

∂x

∂v

∂y
+

(
∂u

∂y

)2

− 2
∂u

∂y

∂v

∂x
+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)
,

and

|fz̄|2 =

∣∣∣∣∣12
(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

∣∣∣∣∣
2

=
1

4

∣∣∣∣∂u∂x + i
∂u

∂y
+ i

∂v

∂x
− ∂v

∂y

∣∣∣∣2
=

1

4

((
∂u

∂x

)2

− 2
∂u

∂x

∂v

∂y
+

(
∂u

∂y

)2

+ 2
∂u

∂y

∂v

∂x
+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)
.

Taking their difference yields

|fz|2 −|fz̄|2 =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

Therefore, Jf (z) = |fz|2 − |fz̄|2 for any f : C → C. As before, we are interested in know-

ing when Jf (z) is positive or negative. To this end, we write Jf (z) = |fz|2 − |fz̄|2 =(
|fz| −|fz̄|

) (
|fz|+|fz̄|

)
. Because |fz|+|fz̄| ≥ 0, the sign of Jf (z) is determined by |fz| −|fz̄|;

i.e., Jf (z) > 0 if and only if |fz| > |fz̄|, which occurs if and only if |fz̄| /|fz| < 1. Similarly,

Jf (z) < 0 if and only if |fz̄| /|fz| > 1. We use this to define a function ω(z) = fz̄/fz and call

it the complex dilatation.

Definition 2.4. The complex dilatation of a complex function f is ω(z) = fz̄/fz.

We have thus proved the following proposition:

Proposition 2.5. A complex function f is sense-preserving when
∣∣ω(z)

∣∣ < 1 and sense-

reversing when
∣∣ω(z)

∣∣ > 1.

We call the curve separating the sense-preserving and sense-reversing regions of a function

f the critical curve, and it is the set of all points in the complex plane such that
∣∣ω(z)

∣∣ = 1.

9



Definition 2.6. The critical curve of a complex function f is the set of all points z ∈ C

such that
∣∣ω(z)

∣∣ = 1.

Because complex harmonic functions have the form f = h+ ḡ, we can re-write the function

ω(z) for complex harmonic functions as follows:

ω(z) =
fz̄
fz

=
d
dz̄

(h+ ḡ)
d
dz

(h+ ḡ)
=
ḡz̄(z)

hz(z)
=
g′(z)

h′(z)
.

2.2 Order of a Zero

We also need to understand the definition for the order of a zero of a complex harmonic

function. Recall that for an analytic function F a point z0 is called a zero of order m if its

first m − 1 derivatives vanish at z0 but F (m)(z0) 6= 0; equivalently, the Taylor series for F

around z0 takes the form F (z) =
∑∞

k=m ak(z − z0)k where am 6= 0. Now consider a complex

harmonic function in the form f = h + ḡ where h, g are analytic. Suppose f has a zero at

some z0 ∈ C. As we did above, write h and g as Taylor series centered at z0:

h(z) = a0 +
∞∑
j=r

aj(z − z0)j, g(z) = b0 +
∞∑
j=s

bj(z − z0)j

where r > 0, s > 0, ar 6= 0, and bs 6= 0. Because f(z0) = 0, b0 = −ā0. Then we consider

the order of z0 to be r if z0 is in a sense-preserving region or −s if z0 is in a sense-reversing

region; i.e., the notion of order for a zero of a complex harmonic function is analogous to

the definition of order for a zero of an analytic function but now we include the added

information about the region in which it lies. We comment that zeros in a sense-preserving

or sense-reversing region are called nonsingular zeros. Zeros that lie on the critical curve are

called singular zeros, and their order is not defined.

More rigorously, we consider cases to determine whether the zero z0 is in a sense-

preserving or sense-reversing region. We then know the order of the zero from the Taylor

series. Let z0 be a zero of the complex harmonic function f = h+ ḡ.

10



Case 1: Suppose s > r. Then

ω(z0) = lim
z→z0

g′(z)

h′(z)

= lim
z→z0

∑∞
j=s jbj(z − z0)j−1∑∞
j=r jaj(z − z0)j−1

= lim
z→z0

∑∞
j=s jbj(z − z0)j−r∑∞
j=r jaj(z − z0)j−r

= 0

Thus z0 is always in a sense-preserving region when s > r and z0 has order r.

Case 2: Suppose s < r. Then

ω(z0) = lim
z→z0

g′(z)

h′(z)

= lim
z→z0

∑∞
j=s jbj(z − z0)j−1∑∞
j=r jaj(z − z0)j−1

= lim
z→z0

∑∞
j=s jbj(z − z0)j−s∑∞
j=r jaj(z − z0)j−s

=∞

Therefore, z0 is always in a sense-reversing region when s < r and z0 has order −s.

Case 3: Lastly, suppose s = r. Then

ω(z0) = lim
z→z0

g′(z)

h′(z)

= lim
z→z0

∑∞
j=s bjj(z − z0)j−1∑∞
j=s ajj(z − z0)j−1

= lim
z→z0

∑∞
j=s bjj(z − z0)j−s∑∞
j=s ajj(z − z0)j−s

=
bs
as

Then z0 is in a sense-preserving region if |bs| < |as|; in this case, z0 has order s. If |bs| > |as|

11



then z0 is a zero of order −s in a sense-reversing region.

2.3 The Argument Principle for Complex Harmonic Functions

Lastly, we consider the Argument Principle for analytic functions and its analog for complex

harmonic functions. First recall the Argument Principle for analytic functions. Let f be

an analytic function defined on a domain D bounded by a Jordan curve C oriented in the

positive direction. Suppose that f is analytic in D, continuous in D̄, and f(z) 6= 0 on C. The

index or winding number of the curve f(C) about the origin is the total change in argument

of f(z) as z goes once around C divided by 2π. We write it as I = (1/2π)∆C arg f(z). Let

N be the total number of zeros of f in D counted according to multiplicity. The Argument

Principle states that N = I, and the proof of it utilizes the observation that f ′/f has a

simple pole with residue n when f has a zero of order n; written symbolically,

N =
1

2πi

∫
C

f ′(z)

f(z)
dz =

1

2πi
∆C log f(z) = I.

We develop an analogous Argument Principle for complex harmonic functions, but first

we need the following lemma:

Lemma 2.7. Nonsingular zeros of harmonic functions are isolated.

Proof. Let f be a harmonic polynomial and let z0 be a nonsingular zero. Without loss of

generality, suppose that z0 is in a sense-preserving region. Then as before, we write f = h+ ḡ

where

h(z) = a0 +
∞∑
j=r

aj(z − z0)j, g(z) = b0 +
∞∑
j=s

bj(z − z0)j,

are the Taylor series of h, g centered at z0. Because f(z0) = 0, we have b0 = −ā0. Since z0

is in a sense-preserving region, we know r < s. Let bj = 0 for r ≤ j < s, so

h(z) = a0 +
∞∑
j=r

aj(z − z0)j, g(z) = b0 +
∞∑
j=r

bj(z − z0)j.

12



f(z) = h(z) + g(z) = ar(z − z0)r
(
1 + ψ(z)

)
,

where

ψ(z) = (b̄r/ar)(z̄ − z̄0)r(z − z0)−r +O(z − z0).

Because
∣∣b̄r/ar∣∣ < 1, there exists a δ > 0 such that

∣∣ψ(z)
∣∣ < 1 for all z satisfying 0 <

|z − z0| < δ. Therefore, f(z) 6= 0 near z0.

A similar argument applies for zeros in sense-reversing regions, so we conclude that

nonsingular zeros are isolated.

We now prove the analog of the Argument Principle for harmonic functions. This result,

and its proof, are due to Duren et al. [4].

Theorem 2.8. (Argument Principle for Harmonic Functions) Let f be a harmonic function

in a Jordan domain D with boundary C. Suppose f is continuous in D̄ and f(z) 6= 0 on C.

Suppose f has no singular zeros, and let N be the sum of the orders of the zeros of f in D.

Then ∆C arg f(z) = 2πN .

Proof. First, suppose f has no zeros in D; consequently, N = 0. We then need to show

∆C arg f(z) = 0. Let φ be a homeomorphism from the closed unit square S onto D ∪ C

where φ : ∂S → C is a homeomorphism. Then F = f ◦ φ is a continuous map of S into the

complex plane with no zeros. We wish to show ∆∂S argF (z) = 0. To this end, subdivide S

into finitely many squares Sj. Choose them to be sufficiently small such that the argument

of F (z) varies by at most π/2. Consequently, ∆∂Sj argF (z) = 0 and

∆∂S argF (z) =
∑
j

∆∂Sj argF (z) = 0.

Because φ is a homeomorphism of the boundary, we also get ∆Cf(z) = 0.

Now suppose that f does have zeros in D. By Lemma 2.7, the zeros are isolated. Because

the zeros are isolated and f does not vanish on C, there can only be a finite number of

distinct zeros in D; call them zj for j = 1, 2, · · · , ν. At each zero zj, take a circle γj of radius
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δ centered at zj. Because there are a finite number of zeros, take δ small enough so that

the γj all lie in D and do not intersect. Because there are finitely many γj, we can take a

curve λj connecting γj to C such that each λj does not intersect any other λk or γ`. We

now consider the closed contour Γ formed by traveling along C in the positive direction and

making detours along each λj to γj back along λj. Notice that Γ contains no zeros of f , so

∆Γf(z) = 0 by the above paragraph. We also have the contributions of the λj cancelling out

because we traverse them in both directions. We are then left with

∆C arg f(z) =
ν∑
j=1

∆γj arg f(z),

where the circles γj are now traversed in the positive direction. We now only need to consider

what happens at each zj.

Suppose that f has a zero of order nj > 0 at zj. Then by Lemma 2.7 we know f(z) =

anj(z− zj)nj
(
1 + ψ(z)

)
where anj 6= 0 and

∣∣ψ(z)
∣∣ < 1 on a sufficiently small circle γj defined

by
∣∣z − zj∣∣ = δ. This gives us

∆γj arg f(z) = nj∆γj arg(z − zj) + ∆γj arg(1 + ψ(z)) = 2πnj.

Similarly, ∆γjf(z) = 2πnj for a zero of order nj < 0. Therefore,

∆C arg f(z) =
ν∑
j=1

∆γj arg f(z) = 2π
ν∑
j=1

nj = 2πN,

where N is the sum of the orders of the zeros of f in D.

As in the analytic case, we get a version of Rouché’s Theorem for harmonic functions as

a corollary:

Corollary 2.9. (Rouché’s Theorem for Complex Harmonic Functions) Let p and p + q be

harmonic functions in D, continuous in D̄, with no singular zeros in D̄. If
∣∣q(z)

∣∣ < ∣∣p(z)
∣∣
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on C, then the sum of the orders of zeros of p and the sum of the orders of zeros of p + q

are the same in D.

We comment that the above results are proved in generality, and in the following chapters

we apply it to complex harmonic functions.

Chapter 3. Critical Curve

It is well known that analytic functions are conformal when they have non-zero derivative

which means in particular they are sense (or orientation) preserving. Because complex

harmonic polynomials are the sum of an analytic function and the conjugate of an analytic

function, they have regions of the plane in which they are sense-preserving and regions in

which they are sense-reversing. The critical curve is the curve separating these regions. In

this chapter, we explore the critical curve for the polynomial pc(z) = z+ c
2
z2 + c

n−1
z̄n−1 + 1

n
z̄n

for c > 0.

3.1 Properties of the Critical Curve

Using the notation of Chapter 2, pc = h+ ḡ where h(z) = z+ c
2
z2 and g(z) = c

n−1
zn−1 + 1

n
zn.

The polynomial pc is constructed so that the dilatation function is the product of Möbius

transformations. In particular, the complex dilatation function for pc is

ω(z) =
g′(z)

h′(z)
= zn−2 z + c

cz + 1
. (3.1)

There are advantages to this construction, and we begin by analyzing properties of the

Möbius transformation ψ(z) = z+c
cz+1

.

Lemma 3.1. Let ψ(z) = z+c
cz+1

for c 6= ±1. Then
∣∣ψ(z)

∣∣ = 1 if and only if |z| = 1.

Proof. This is a standard fact about Möbius transformations, and we include its proof for

completeness.
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Suppose
∣∣ψ(z)

∣∣ = 1. Then

1 =

∣∣∣∣ z + c

cz + 1

∣∣∣∣2 =
(z + c)(z̄ + c)

(cz + 1)(cz̄ + 1)
.

This equation is equivalent to

c2|z|2 + cz + cz̄ + 1 = |z|2 + cz + cz̄ + c2.

Simplifying yields

(c2 − 1)|z|2 = c2 − 1.

Because c 6= ±1, this is equivalent to |z| = 1. Thus
∣∣ψ(z)

∣∣ = 1 implies |z| = 1. Assuming

|z| = 1, the above set of equivalent equalities similarly gives
∣∣ψ(z)

∣∣ = 1; therefore,
∣∣ψ(z)

∣∣ = 1

if and only if |z| = 1.

Lemma 3.2. When 0 < c < 1, the function ψ(z) = z+c
cz+1

is an automorphism of the unit

disc with inverse ψ−1(z) = z−c
−cz+1

.

Proof. This is a standard fact about Möbius transformations, and we include its proof for

completeness.

First, notice that ψ is holomorphic in the unit disc because 0 < c < 1 gives 1 < 1/c.

By Lemma 3.1, we know
∣∣ψ(z)

∣∣ = 1 if and only if |z| = 1. Therefore, if |z| = 1 we have∣∣ψ(z)
∣∣ = 1 which means

∣∣ψ(z)
∣∣ < 1 for |z| < 1 by the Maximum Modulus Principle. Thus

ψ maps the unit disc into the unit disc. Because ψ−1 is the same form as ψ, the above

argument also gives that ψ−1 maps the unit disc into the unit disc.

Now observe that ψ−1 is in fact the inverse to ψ:

ψ(ψ−1(z)) =
z−c
−cz+1

+ c

c z−c
−cz+1

+ 1
=

z − c− c2z + c

cz − c2 − cz + 1
=

(1− c2)z

1− c2
= z.

A similar computation gives that ψ−1(ψ(z)) = z for all z. Therefore, ψ and ψ−1 are inverses

and ψ is an automorphism of the unit disc.
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Figure 3.1: The critical curve of the eighth degree polynomial pc(z) when c = 1.35, c = 1.4,
and c = 1.45.

We can now utilize the properties of ψ to prove properties of our critical curve. Recall

from Chapter 2 that the critical curve is the set of all points z ∈ C such that
∣∣ω(z)

∣∣ = 1; we

call this collection of points Ω. The set Ω changes as c changes, as illustrated in Figure 3.1.

Moreover, for sufficiently large values of c (i.e., c > n−1
n−3

), the critical curve splits into three

distinct curves: the unit circle, a curve outside the unit circle, and a curve inside the unit

circle. For these large values of c, we call the curve outside the unit circle Ω1 and the curve

inside the unit circle Ω2. These figures suggest, however, that the unit circle is part of the

critical curve Ω for any value of c.

Proposition 3.3. The unit circle |z| = 1 is always part of the critical curve of pc.

Proof. If |z| = 1, then |z|n−2 = 1 and
∣∣ψ(z)

∣∣ = 1 by Lemma 3.1. Consequently,
∣∣ω(z)

∣∣ =

|z|n−2
∣∣ψ(z)

∣∣ = 1 when |z| = 1. Thus the unit circle |z| = 1 is always part of pc’s critical

curve.

While the above proof is sufficient, it will be convenient to have an equation describing

the critical curve Ω, so we also provide an algebraic proof of Proposition 3.3.

Proof. Let
∣∣ω(z)

∣∣ = 1. Then

1 =
∣∣zn−2

∣∣ |z + c|
|1 + cz|

.

17



Squaring both sides of the equation yields

1 =
∣∣zn−2

∣∣2 |z + c|2

|1 + cz|2
= |z|2n−4 (z + c)(z + c)

(1 + cz)(1 + cz)
.

Multiplying and simplifying then gives

1 = |z|2n−4 zz̄ + c(z + z̄) + c2

1 + c(z + z̄) + c2zz̄
.

Letting z = reiθ for some r ≥ 0 and θ ∈ [0, 2π), the above equation becomes

1 = r2n−4 r
2 + 2crcos θ + c2

1 + 2crcos θ + c2r2
.

A simple calculation then yields

0 = r2n−2 + 2cr2n−3 cos θ + c2r2n−4 − c2r2 − 2crcos θ − 1. (3.2)

Rearranging and factoring out r2 − 1 leaves us with

0 = (r2 − 1)

n−2∑
k=0

r2k + 2crcos θ
n−3∑
k=0

r2k + c2r2

n−4∑
k=0

r2k

 . (3.3)

Thus the above equation is satisfied when r = 1, i.e., when z is on the unit circle.

While the unit circle is always part of the critical curve, for sufficiently small c the critical

curve consists only of the unit circle.

Proposition 3.4. For 0 < c < 1, the critical curve of pc consists only of the unit circle.

Again, we will provide two proofs. The first proof utilizes the properties of the Möbius

function ψ. The second is an algebraic proof utilizing the equation from the algebraic proof

of Proposition 3.3.
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Proof. Let 0 < c < 1. If |z| < 1, then |z|n−2 < 1 and |ψ| (z) < 1 by the proof of Lemma

3.1, so
∣∣ω(z)

∣∣ = |z|n−2
∣∣ψ(z)

∣∣ < 1 when |z| < 1. If |z| = 1, |z|n−2 = 1 and
∣∣ψ(z)

∣∣ = 1;

consequently,
∣∣ω(z)

∣∣ = 1 when |z| = 1. If |z| > 1, then |z|n−2 > 1 and
∣∣ψ(z)

∣∣ > 1 because

ψ is an automorphism of the unit disc when 0 < c < 1 by Lemma 3.2. Then for |z| > 1,∣∣ω(z)
∣∣ > 1. Therefore,

∣∣ω(z)
∣∣ = 1 if and only if |z| = 1.

We now give the algebraic proof.

Proof. Let 0 < c < 1. Recall Equation 3.3 which gives a formulation of the critical curve:

0 = (r2 − 1)

n−2∑
k=0

r2k + 2crcos θ
n−3∑
k=0

r2k + c2r2

n−4∑
k=0

r2k

 ,
so either r2−1 = 0 or

∑n−2
k=0 r

2k+2cr cos θ
∑n−3

k=0 r
2k+c2r2

∑n−4
k=0 r

2k = 0. The former equation

is satisfied by r = ±1; we show that the latter equation cannot be satisfied when 0 < c < 1.

First, notice that the following are equivalent:

n−2∑
k=0

r2k + 2crcos θ
n−3∑
k=0

r2k + c2r2

n−4∑
k=0

r2k

=
n−4∑
k=0

r2k + r2n−6 + r2n−4 + 2crcos θ
n−4∑
k=0

r2k + 2crcos θ r2n−6 + c2r2

n−4∑
k=0

r2k

= (1 + 2crcos θ + c2r2)
n−4∑
k=0

r2k + r2n−6 + r2n−4 + 2ccos θr2n−5

= (1 + 2crcos θ + c2r2)
n−4∑
k=0

r2k + (1 + r2 + 2crcos θ)r2n−6

By assumption 0 < c < 1, so 0 < c2 < 1. Then

(1 + 2crcos θ + c2r2)
n−4∑
k=0

r2k + (1 + r2 + 2crcos θ)r2n−6

> (1 + 2crcos θ + c2r2)
n−4∑
k=0

r2k + (1 + c2r2 + 2crcos θ)r2n−6
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Factoring out c2r2 + 2crcos θ + 1 yields

(c2r2 + 2crcos θ + 1)

n−3∑
k=0

r2k

 ≥ (c2r2 − 2cr + 1)

n−3∑
k=0

r2k


= (cr − 1)2

n−3∑
k=0

r2k


≥ 0.

Thus when 0 < c < 1

n−2∑
k=0

r2k + 2crcos θ
n−3∑
k=0

r2k + c2r2

n−4∑
k=0

r2k > 0.

Consequently, Equation 3.3 is only satisfied when r2 − 1 = 0; therefore, the critical curve of

pc consists only of the unit circle when 0 < c < 1.

3.2 Annuli for the Critical Curve

The results that follow in this section are due to South and Woodall [9].

For sufficiently small c, the critical curve Ω is the unit circle and determining sense-

preserving and sense-reversing regions is simple. For sufficiently large c, the critical curve

Ω is composed of the unit circle, Ω1, and Ω2, so determining sense-preserving and sense-

reversing regions will naturally become more difficult. However, recall that we only use the

orientation of a region to determine the order of a zero. If we can show that there are no

zeros contained in Ω1 or Ω2, then we only need to consider the location of a zero relative to

the unit circle in order to determine its order. The rest of this section provides the details

of such an argument.

Recall that the set of points satisfying Equation 3.2,

0 = r2n−2 + 2cr2n−3 cos θ + c2r2n−4 − c2r2 − 2cr cos θ − 1,
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is the critical curve. Consider the function

G(reiθ) = c2r2(r2n−6 − 1) + 2crcos(θ)(r2n−4 − 1) + r2n−2 − 1. (3.4)

The critical curve is the set of points satisfying G(reiθ) = 0, the sense-preserving region(s)

are the sets of points satisfying G(reiθ) < 0, and the sense-reversing region(s) are the sets of

points satisfying G(reiθ) > 0. We show that Ω1 and Ω2 are contained inside the respective

annuli

A1 =

{
z ∈ C | 2 ≤|z| ≤ c

(
n+ 1

n

)}
and A2 =

{
z ∈ C | 0 < |z| ≤ 3

2c

}
,

by showing that G is strictly positive (respectively negative) along the inner and outer

circles bounding the annuli A1 (respectively A2) and by showing that G attains a negative

(respectively positive) value inside the annuli. Because G is a continuous function equaling

zero if and only if reiθ is part of the critical curve, this shows Ω1 ⊆ A1 and Ω2 ⊆ A2.

To show G is strictly positive or negative along the inner and outer circles of our annuli,

we create the following equivalencies for r < 1 and r > 1:

Case 1: Fix r < 1. Then rk − 1 < 0 for any positive integer k; consequently, G has a

maximum value when θ = π. Then to prove G < 0 on a given circle of radius r < 1, it

suffices to show

G(reiπ) = c2r2n−4 − c2r2 − 2cr2n−3 + 2cr + r2n−2 − 1

= (crn−2 − rn−1)2 − (cr − 1)2

< 0.

This is equivalent to ∣∣crn−2 − rn−1
∣∣ < |cr − 1| . (3.5)

Case 2: A similar result holds for r > 1: For fixed r > 1, rk − 1 > 0; consequently, the
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minimum occurs at θ = π. To prove G > 0 on a given circle of radius r > 1, it suffices to

show

G(reiπ) = (crn−2 − rn−1)2 − (cr − 1)2 > 0.

Equivalently,

|cr − 1| <
∣∣crn−2 − rn−1

∣∣ . (3.6)

Lemma 3.5. For n ≥ 4 and c ≥ 4, the curve Ω1 is contained in A1.

Proof. Let n ≥ 4 and c ≥ 4. First, notice that −c is contained in Ω1 because

G(ceiπ) = −(c2 − 1)2 < 0.

Therefore, −c is in a sense-preserving region outside the unit circle; hence, −c is inside Ω1.

Because 2 < c < c
(
n+1
n

)
, we also have −c ∈ A1. It remains to show G is strictly positive on

the inner and outer circles bounding A1.

Let r = 2. Because 2 > 1, we know G > 0 on the circle of radius 2 if and only if Equation

3.6 is satisfied for r = 2; i.e.,

|2c− 1| <
∣∣2n−2c− 2n−1

∣∣
2c− 1 < 2n−2c− 2n−1.

Solving for c, the above is equivalent to c > 2n−1−1
2n−2−2

. Because c ≥ 4 by assumption and

2n−1 − 1

2n−2 − 2
≤ 2n−1

2n−2 − 2n−3
= 4 ≤ c,

Equation 3.6 is satisfied. Therefore, G > 0 on the circle of radius 2.

We now show G > 0 on the circle of radius c
(
n+1
n

)
. By assumption, c ≥ 4. Because we
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also assume n ≥ 4,

n
1

n−3

(
n

n+ 1

)
≤ n

1
n−3 ≤ 4

1
n−3 ≤ 4.

Therefore c > n
1

n−3

(
n
n+1

)
. We now work backwards to show Equation 3.6 is satisfied. First,

notice c > n
1

n−3

(
n
n+1

)
is equivalent to the following:

n
1

n−3
n

n+ 1
< c

n

(
n

n+ 1

)n−3

< cn−3

c2

(
n+ 1

n

)
< cn−1

(
n+ 1

n

)n−2(
1

n

)
.

Because c2
(
n+1
n

)
− 1 < c2

(
n+1
n

)
, we have c2

(
n+1
n

)
− 1 < cn−1

(
n+1
n

)n−2 ( 1
n

)
. This gives the

following equivalent statements:

c2

(
n+ 1

n

)
− 1 < cn−1

(
n+ 1

n

)n−2(
1

n

)
c2

(
n+ 1

n

)
− 1 < cn−1

(
n+ 1

n

)n−2(
n+ 1

n
− 1

)
c2

(
n+ 1

n

)
− 1 < cn−1

(
n+ 1

n

)n−1

− cn−1

(
n+ 1

n

)n−2

∣∣∣∣∣c2

(
n+ 1

n

)
− 1

∣∣∣∣∣ <
∣∣∣∣∣cn−1

(
n+ 1

n

)n−2

− cn−1

(
n+ 1

n

)n−1
∣∣∣∣∣

|cr − 1| <
∣∣crn−2 − rn−1

∣∣ .
Therefore, Equation 3.6 is satisfied by r = c

(
n+1
n

)
and all c > n

1
n−3 n

n+1
; hence, it is satisfied

by c ≥ 4. Therefore, G
(
cn+1

n
eiθ
)
> 0 for all θ.

Because −c is contained in Ω1 and G is strictly positive on the circles of radius 2 and

radius c
(
n+1
n

)
, we know Ω1 is contained inside the annulus A1.

We now show there are no zeros of pc inside A1. This then allows us to conclude that

there are no zeros of pc inside Ω1.
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Lemma 3.6. Let n ≥ 6 and c ≥ 4. Then there are no zeros of pc inside A1.

Proof. Let n ≥ 6 and c ≥ 4. We wish to show pc(z) 6= 0 for any z ∈ A1. This claim will

follow if we can show

∣∣pc(z)
∣∣ ≥ ∣∣∣∣ c

n− 1
z̄n−1

∣∣∣∣−∣∣∣∣z +
c

2
z2 +

1

n
z̄n
∣∣∣∣ ≥ c

n− 1
|z|n−1 −|z| − c

2
|z|2 − 1

n
|z|n > 0

for all z ∈ A1. Thus we will show p(x) = c
n−1

xn−1 − x − c
2
x2 − 1

n
xn is positive on the

interval
[
2, c
(
n+1
n

)]
. Notice that dividing by x does not impact the sign for positive x, so

without loss of generality consider q(x) = c
n−1

xn−2 − 1 − c
2
x − 1

n
xn−1. By Descartes’ Rule

of Signs, q(x) = − 1
n
xn−1 + c

n−1
xn−2 − c

2
x − 1 has at most two positive real roots. We use

the Intermediate Value Theorem to show the zeros of q happen in the intervals (0, 2) and(
c
(
n+1
n

)
,∞
)

. We first show q(2) > 0 and q
(
c
(
n+1
n

))
> 0. Observe the following:

q(2) = − 1

n
2n−1 +

c

n− 1
2n−2 − c

2
2− 1 = 2n−1

(
c

2(n− 1)
− 1

n

)
− c− 1

>
2n−1

n

(
c

2
− 1

)
− c− 1 ≥ 16

3

(
c

2
− 1

)
− c− 1 =

5

3
c− 19

3
.

Because c ≥ 4, q(2) > 5
3
c− 19

3
≥ 1

3
> 0.

We now show q
(
c
(
n+1
n

))
> 0. Evaluating q at c

(
n+1
n

)
yields

q

(
c

(
n+ 1

n

))
=

1

n− 1
cn−1

(
n+ 1

n

)n−2

− 1

n
cn−1

(
n+ 1

n

)n−1

− 1

2
c2

(
n+ 1

n

)
− 1

= cn−1

(
n+ 1

n

)n−2(
1

n2(n− 1)

)
− 1

2

(
n+ 1

n

)
c2 − 1

= c2

(
n+ 1

n

)(
cn−3

(
n+ 1

n

)n−3(
1

n2(n− 1)

)
− 1

2

)
− 1

> c2

(
n+ 1

n

)(
4n−3

(
n+ 1

n

)n−3(
1

n2(n− 1)

)
− 1

2

)
− 1

= c2

(
n+ 1

n

)(
λ(n)− 1

2

)
− 1, (3.7)
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where λ(n) = 4n−3
(
n+1
n

)n−3
(

1
n2(n−1)

)
; we will show λ(n+ 1) > λ(n). Equivalently, we show

λ(n+ 1)/λ(n) > 1:

λ(n+ 1)

λ(n)
=

2 · 4n−2
(
n+2
n+1

)n−2
1

(n+1)2n

2 · 4n−3
(
n+1
n

)n−3 1
n2(n−1)

= 4

(
n+ 2

n+ 1

)n−2(
n

n+ 1

)n−3
n(n− 1)

(n+ 1)2

= 4

(
n2 + 2n

n2 + 2n+ 1

)n−3
(n+ 2)n(n− 1)

(n+ 1)3

= 4

(
1− 1

n2 + 2n+ 1

)n−3
n3 + n2 − 2n

(n+ 1)3

≥ 4

(
1− 1

2n

)n
n3 + n2 − 2n

(n+ 1)3
.

Let A(n) =
(
1− 1

2n

)n
and B(n) = n3+n2−2n

(n+1)3
. We will show that A and B are both

increasing functions by taking their derivatives. First,

A′(n) =

(
1− 1

2n

)n(
ln

(
1− 1

2n

)
+

1

2n− 1

)
.

Then A(n) will be increasing whenever ln
(
1− 1

2n

)
+ 1

2n−1
> 0. Notice 1 + x < ex for all

x 6= 0. Then 1 + 1
2n−1

≤ e
1

2n−1 , so 2n
2n−1

≤ e
1

2n−1 . Taking the natural log of both sides,

ln
(

2n
2n−1

)
≤ 1

2n−1
which simplifies to − ln

(
1− 1

2n

)
< 1

2n−1
, and we conclude that A(n) is

increasing. For B(n),

B′(n) = 2
n2 + 3n− 1

(n+ 1)4

which is clearly positive for n ≥ 1. Therefore B(n) is increasing for n ≥ 1. Because A and

B are both increasing,

λ(n+ 1)

λ(n)
≥ 4

(
1− 1

2n

)n
n3 + n2 − 2n

(n+ 1)3
≥ 1.66 > 1.

Therefore λ(n + 1) > λ(n) for n ≥ 6; consequently, λ(n) ≥ λ(6) for all n. Calculating λ(6)
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yields

λ(6) = 43

(
7

6

)3(
1

180

)
≥ 0.564.

We now show q
(
c
(
n+1
n

))
> 0. Equation 3.7 becomes

q

(
c

(
n+ 1

n

))
> c2

(
n+ 1

n

)(
λ(n)− 1

2

)
− 1 ≥ c2

(
n+ 1

n

)(
0.564− 1

2

)
− 1

> 42 (0.064)− 1 = 0.024 > 0.

We now return to our IVT argument. Observe that q(0) = −1 and q(2) > 0; therefore, q

has a zero in the interval (0, 2). Similarly q
(
c
(
n+1
n

))
> 0 and limx→∞ q(x) = −∞; therefore,

q has a zero in the interval
(
c
(
n+1
n

)
,∞
)

. Because all the positive zeros of q are accounted

for, we know q(x) > 0 in the interval
(

2, c
(
n+1
n

))
; consequently, p(x) > 0 for all such x and

pc cannot have a zero in the annulus A1.

Our desired result then follows as a corollary.

Corollary 3.7. Let n ≥ 6 and c ≥ 4. There are no zeros of pc inside Ω1.

Proof. There are no zeros of pc in A1 by Lemma 3.6 and Ω1 is contained in A1 by Lemma

3.6; therefore, there are no zeros of pc inside Ω1.

We now make a similar argument to show Ω2 ⊆ A2.

Lemma 3.8. For n ≥ 4 and c ≥ 2
(

3
2

)n−2
n−3 , the curve Ω2 is contained inside A2.

Proof. Let n ≥ 4 and c ≥ 2
(

3
2

)n−2
n−3 . First, we show −1/c is in Ω2. Notice that

G

(
1

c
eiπ
)

=
1

c2n−2
(c2 − 1)2 > 0,

so −1/c is in a sense-reversing region inside the unit circle; therefore, −1/c is inside Ω1.

Because 0 < 1/c < 3/(2c), −1/c ∈ A2. It remains to show no part of the critical curve lies

on the boundary of A2; i.e., G is strictly negative on the outer circle of A2.

26



We now work backwards to show Equation 3.5 is satisfied on the circle of radius 3
2c

. By

assumption, c ≥ 2
(

3
2

)n−2
n−3 . This is equivalent to

2

(
3

2

)n−2

≤ cn−3

(
3

2

)n−2
c

cn−2
≤ 1

2(
3

2c

)n−2

c ≤ 1

2
.

Then
(

3
2c

)n−2 (
c− 3

2c

)
<
(

3
2c

)n−2
c ≤ 1

2
, which gives us the following set of equivalences:

(
3

2c

)n−2(
c− 3

2c

)
<

1

2(
3

2c

)n−2∣∣∣∣c− 3

2c

∣∣∣∣ < 1

2∣∣∣∣∣c
(

3

2c

)n−2

−
(

3

2c

)n−1
∣∣∣∣∣ <
∣∣∣∣c 3

2c
− 1

∣∣∣∣∣∣crn−2 − rn−1
∣∣ < |cr − 1| .

where r = 3
2c

. Therefore, Equation 3.5 is satisfied and G < 0 on the circle of radius r = 3
2c

.

Additionally, note that G(0) = −1 < 0. We then conclude that Ω2 is contained inside

the punctured disc A2.

Similar to Ω1 and A1, we have Ω2 ⊆ A2 and we now show there are no zeros of pc inside

the punctured disc A2. We then conclude there are no zeros of pc inside Ω2.

Lemma 3.9. Let n ≥ 6 and c ≥ 4. Then there are no zeros of pc inside A2.

Proof. Let n ≥ 6 and c ≥ 4. We want to show pc(z) 6= 0 for any z ∈ A2. This claim will

follow if we can show

∣∣pc(z)
∣∣ ≥|z| −∣∣∣∣ c2z2 +

c

n− 1
z̄n−1 +

1

n
z̄n
∣∣∣∣ ≥|z| − c

2
|z|2 − c

n− 1
|z|n−1 − 1

n
|z|n > 0.
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for all z ∈ A2. This simplifies to showing p(x) = x − c
2
x2 − c

n−1
xn−1 − 1

n
xn is positive for

all x satisfying 0 < x < 3
2c

. Notice that dividing by x does not impact the sign for such x

values, so without loss of generality consider q(x) = 1− c
2
x− c

n−1
xn−2 − 1

n
xn−1. Notice that

q(x) ≥ 1− c

2

(
3

2c

)
− c

n− 1

(
3

2c

)n−2

− 1

n

(
3

2c

)n−1

=
1

4
− c

n− 1

(
3

2c

)n−2

− 1

n

(
3

2c

)n−1

(3.8)

=
1

4
− 3n−2

(n− 1)2n−2 · cn−2
− 3n−1

n2n−1 · cn−1
. (3.9)

Because 3
2c
< 1, Equation 3.8 illustrates that for fixed c the latter terms are decreasing as n

increases. Thus the expression 1
4
− c

n−1

(
3
2c

)n−2 − 1
n

(
3
2c

)n−1
increases as n increases. Equa-

tion 3.9 shows how for fixed n the latter terms are decreasing as c increases; consequently,

the expression 1
4
− c

n−1

(
3
2c

)n−2 − 1
n

(
3
2c

)n−1
is increasing as c increases. Because the above

expression is increasing in n, c and n ≥ 6, c ≥ 4, we know it attains a minimum when n = 6

and c = 4. This yields

q(x) ≥ 1

4
− c

n− 1

(
3

2c

)n−2

− 1

n

(
3

2c

)n−1

≥ 1

4
− 4

6− 1

(
3

2 · 4

)6−2

− 1

6

(
3

2 · 4

)6−1

≥ 0.23

> 0.

Therefore q(x) > 0 for all 0 < x ≤ 3
2c

; hence p(x) > 0 for all 0 < x ≤ 3
2c

. We conclude

pc(z) 6= 0 for any z ∈ A2.

Again, our desired result follows as a corollary.

Corollary 3.10. Let c ≥ 4 and n ≥ 6. Then there are no zeros of pc inside Ω2.

Proof. There are no zeros of pc in A2 by Lemma 3.9 and Ω2 is contained in A2 by Lemma

3.8; therefore, there are no zeros of pc inside Ω2.
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We now combine Corollaries 3.7 and 3.10 into one theorem.

Theorem 3.11. For n ≥ 6 and c ≥ 4, pc has no zeros inside Ω1 or Ω2.

This theorem allows us to state that for sufficiently large c, the critical curve is composed

of the unit circle, Ω1, and Ω2, but we only need to consider the unit circle when determining

the order of a zero. We will use this theorem extensively in Chapter 4.

Chapter 4. Zeros

With Rouché’s Theorem for Complex Harmonic Functions from Chapter 2 and the results

about the critical curve of pc from Chapter 3, we are now able to prove results about the

total number of zeros of pc and their locations. We first prove that the nonsingular zeros of pc

are simple. We then go into Section 4.1 to prove results for sufficiently small and sufficiently

large values of c. In Section 4.2, we begin investigating what happens for intermediate values

of c.

Proposition 4.1. Let z0 ∈ C be a nonsingular zero of pc. Then z0 has order 1 if it is in a

sense-preserving region and order −1 if it is in a sense-reversing region.

Proof. Let z0 ∈ C be a nonsingular zero of pc. First, suppose that z0 is in a sense-preserving

region, so
∣∣ω(z0)

∣∣ < 1 and the order of z0 can be determined by considering the order of

vanishing of h at z0. Notice that h′(z0) = 1 + cz0. Therefore, h′(z0) 6= 0 whenever z0 6= −1/c

and z0 is a simple zero. If z0 = −1/c,
∣∣ω(−1/c)

∣∣ =∞ > 1, a contradiction. Therefore every

nonsingular zero of pc in a sense-preserving region has order 1.

Now let z0 ∈ C\{0} be a nonsingular zero of pc in a sense-reversing region, so
∣∣ω(z0)

∣∣ > 1.

Then the order of z0 is determined by considering the order of vanishing of g at z0. We have

g′(z0) = zn−2
0 (c + z0). Therefore z0 has order −1 unless z0 = 0 or −c. If z0 = 0, then∣∣ω(0)

∣∣ = 0 < 1, a contradiction. Similarly if z0 = −c then
∣∣ω(−c)

∣∣ = 0 < 1, a contradiction.

Therefore every zero in a sense-reversing region has order −1.
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4.1 Rouché Theorem Arguments

We begin with a standard result to find the sum of the orders of the zeros of pc.

Proposition 4.2. For n ≥ 3 and any c ∈ C, the sum of the orders of the nonsingular zeros

of pc(z) = z + c
2
z2 + c

n−1
z̄n−1 + 1

n
z̄n is −n.

Proof. Let R be sufficiently large so that R + |c|
2
R2 + |c|

n−1
Rn−1 < 1

n
Rn, and let f(z) = 1

n
z̄n.

Then on the circle |z| = R,

∣∣pc(z)− f(z)
∣∣ =

∣∣∣∣z +
c

2
z2 +

c

n− 1
z̄n−1

∣∣∣∣ ≤|z|+ |c|2 |z|2 +
|c|
n− 1

|z̄|n−1

= R +
|c|
2
R2 +

|c|
n− 1

Rn−1 <
1

n
Rn =

∣∣f(z)
∣∣ .

Because |pc − f | < |f | where |z| = R, Rouché’s Theorem for Complex Harmonic Functions

gives that pc(z) and f(z) have the same sum of orders of zeros. Notice that f has one zero

at z = 0 of order −n; hence, the orders of the zeros of pc sum to −n.

Now that we know the sum of the orders of zeros of pc is −n, we can prove how many

distinct zeros pc must have for certain values of c. First, we consider sufficiently small values

of c.

Theorem 4.3. For n ≥ 5 and 0 < c < 1, the complex harmonic polynomial pc(z) has n+ 2

distinct zeros.

Proof. Let f(z) = z. We apply Rouché’s Theorem for Complex Harmonic Functions to pc−f

on the unit circle |z| = 1:

∣∣pc(z)− f(z)
∣∣ =

∣∣∣∣ c2z2 +
c

n− 1
z̄n−1 +

1

n
z̄n
∣∣∣∣ ≤ c

2
+

c

n− 1
+

1

n

<
1

2
+

1

n− 1
+

1

n
≤ 1

2
+

1

4
+

1

5
< 1 =

∣∣f(z)
∣∣ .

Thus
∣∣pc(z)− f(z)

∣∣ < ∣∣f(z)
∣∣ on |z| = 1. Because f(z) = z has one zero at z = 0 of order 1 in

the unit circle, the sum of the orders of zeros of pc in the unit circle is 1.
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Recall that for 0 < c < 1 the critical curve of pc consists only of the unit circle and∣∣ω(z)
∣∣ < 1 if and only if |z| < 1 by Proposition 3.4. Therefore the zeros of pc in the unit

circle must have positive order, so pc has one zero of order 1 inside the unit circle. Since

all our zeros are simple, there must be n + 1 distinct zeros in the sense-reversing region by

Proposition 4.2. Therefore, pc(z) has n+ 2 distinct zeros when 0 < c < 1.

Now, we consider sufficiently large values of c.

Theorem 4.4. For n ≥ 6 and c ≥ 4, pc(z) has n+ 4 distinct zeros.

Proof. Let f(z) = c
2
z2. We apply Rouché’s Theorem for Complex Harmonic Functions to

pc − f on the unit circle |z| = 1:

∣∣pc(z)− f(z)
∣∣ =

∣∣∣∣z +
c

n− 1
z̄n−1 +

1

n
z̄n
∣∣∣∣ ≤ 1 +

c

n− 1
+

1

n

≤ 1 +
c

5
+

1

6
=

7

6
+
c

5
<
c

2
=
∣∣f(z)

∣∣ .
Thus

∣∣pc(z)− f(z)
∣∣ < ∣∣f(z)

∣∣ on |z| = 1. Because f only has one zero of order 2 in |z| = 1,

we know by Rouché’s Theorem for Complex Harmonic Functions that the sum of the orders

of zeros of pc inside |z| = 1 is 2. Because pc is sense-preserving inside the unit circle and Ω2

is bounded away from any zeros inside the unit circle by Theorem 3.11, all the zeros of pc

inside the unit circle must have positive order. Therefore, pc has two simple zeros of positive

order inside the unit circle. Because there are no zeros in Ω1 by Theorem 3.11, there must

be n + 2 zeros in the sense-reversing region by Proposition 4.2. Because all these zeros are

simple, pc has n+ 4 distinct zeros when c ≥ 4.

4.1.1 Location of Zeros for Small Values of c. By Theorem 4.3, pc has n+2 distinct

zeros for 0 < c < 1. As shown in Figure 4.1, n + 1 of those zeros are arranged in a

circle about the origin. It then makes sense to use Rouché’s Theorem for Complex Harmonic

Functions to pin down the locations of these zeros to annuli and to sectors of annuli. Because

Rouché’s Theorem compares functions, we first construct a candidate function by taking
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Figure 4.1: The zeros of the eighth degree polynomial p0.4(z).

f0(z) = limc→0 pc(z). We locate the zeros and sense-preserving and sense-reversing regions

of f0. Then we compare pc to f0 in order to determine where the zeros of pc are for sufficiently

small values of c.

Lemma 4.5. Let f0(z) = limc→0 pc(z) = z+ 1
n
z̄n for any n ≥ 2. Then f0(z) has n+ 2 zeros:

z = 0 and n+ 1 of the form z = n
1

n−1 ei
π+2πk
n+1 for 0 ≤ k ≤ n.

Proof. The dilatation function of f0 is ωf0(z) = zn−1. Then the critical curve is
∣∣ωf0(z)

∣∣ = 1,

which trivially simplifies to the unit circle |z| = 1, and the sense-preserving region of f0 is

the set of all z such that |z| < 1 and the sense-reversing region is the set of all z such that

|z| > 1. By Proposition 4.2, the sum of the orders of the zeros of f0 is −n.

We explicitly calculate the zeros of f0. Clearly, f0(0) = 0. Moreover, the dilatation curve

of f0 is ωf0(z) = zn−1, so ωf0(0) = 0 < 1 which means 0 is in the sense-preserving region of

f0. Because d
dz

(z) = 1, 0 is a zero of order 1.

Now let z = reit such that f(z) = 0 and z 6= 0. Then f0(z) = 0 becomes reit+ 1
n
rne−int =

0. This simplifies to ei(n+1)t = − 1
n
rn−1. Because

∣∣∣ei(n+1)t
∣∣∣ = 1,

∣∣− 1
n
rn−1

∣∣ = 1, so 1
n
rn−1 = 1

which means r = n
1

n−1 . Then ei(n+1)t = −1, so t = π+2πk
n+1

for integers k satisfying 0 ≤ k ≤ n.

Then f0(zk) = 0 where zk = n
1

n−1 ei
π+2πk
n+1 for 0 ≤ k ≤ n. Notice that each zk is in a sense-

reversing region. Moreover, d
dz

(
1
n
zn
)

= zn−1 but zn−1
k 6= 0. Therefore, each zk is a zero of f0

of order −1.

Thus f0 has n+ 1 zeros.
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Now that we have our candidate function f0, we can compare f0 and pc using Rouché’s

Theorem for Complex Harmonic Functions. Let arg0(z) be the branch of arg(z) taking values

in [0, 2π).

Proposition 4.6. Let n ≥ 5. For r1, r2 chosen such that 0 < r1 < n
1

n−1 < r2 there exists

a 0 < c0 < 1 such that for all 0 < c ≤ c0 there are n + 1 zeros of pc in the annulus

A0 = {z ∈ C : r1 < |z| < r2}. Moreover, for these same r1, r2, there exists a cS > 0 such

that for all 0 < c ≤ cS each sector Sk = {z ∈ C : r1 < |z| < r2,
π(1+4k)
2(n−1)

< arg0(z) < π(3+4k)
2(n+1)

}

contains one zero of pc.

Proof. Let r1, r2 ∈ R such that 0 < r1 < n
1

n−1 < r2. Let |z| = r be arbitrary. Then∣∣f0(z)
∣∣ =

∣∣z + 1
n
z̄n
∣∣ ≥ ∣∣r − 1

n
rn
∣∣. We will use Rouché’s Theorem for Complex Harmonic

Functions to compare pc − f0 to f0 on Cr1 = {z ∈ C : |z| = r1}, Cr2 = {z ∈ C : |z| = r2},

and line segments connecting these two circles.

Case 1: Let r = r1 < n
1

n−1 . Then r1− 1
n
rn1 > 0, so (r1− 1

n
rn1 )/(1

2
r2

1 + 1
n−1

rn−1
1 ) > 0. There

exists a 0 < c1 < 1 such that (r1− 1
n
rn1 )/(1

2
r2

1 + 1
n−1

rn−1
1 ) > c1 > 0; thus, c1(1

2
r2

1 + 1
n−1

rn−1
1 ) <

r1 − 1
n
rn1 . Then on the circle of radius r1 and all 0 < c ≤ c1,

∣∣pc(z)− f0(z)
∣∣ =

∣∣∣∣ c2z2 +
c

n− 1
z̄n−1

∣∣∣∣ ≤ c1

2
r2

1 +
c1

n− 1
rn−1

1

= c1

(
1

2
r2

1 +
1

n− 1
rn−1

1

)
< r1 −

1

n
rn1 ≤

∣∣f0(z)
∣∣ .

Case 2: Let r = r2 > n
1

n−1 . Then 1
n
rn2 − r2 > 0, so ( 1

n
rn2 − r2)/(1

2
r2

2 + 1
n−1

rn−1
2 ) > 0. There

exists a 0 < c2 < 1 such that ( 1
n
rn2 − r2)/(1

2
r2

2 + 1
n−1

rn−1
2 ) > c2 > 0; thus c2(1

2
r2

2 + 1
n−1

rn−1
2 ) <

1
n
rn2 − r2. Then when |z| = r2 and 0 < c ≤ c2,

∣∣pc(z)− f0(z)
∣∣ =

∣∣∣∣ c2z2 +
c

n− 1
z̄n−1

∣∣∣∣ ≤ c2

2
r2

2 +
c2

n− 1
rn−1

2

= c2

(
1

2
r2

2 +
1

n− 1
rn−1

2

)
<

1

n
rn2 − r2 ≤

∣∣f0(z)
∣∣ .

Case 3: Let r1 and r2 be positive real numbers such that 0 < r1 < n
1

n−1 < r2. Consider
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the pair of line segments `k,1 = {z = reiθ | 0 < r1 ≤ r ≤ r2, θ = π
2(n+1)

(1 + 4k)} and

`k,2 = {z = reiθ | 0 < r1 ≤ r ≤ r2, θ = π
2(n+1)

(3 + 4k)} for some integer k. For z on `k,1 and

`k,2,

∣∣f0(z)
∣∣2 =

∣∣∣∣z +
1

n
z̄n
∣∣∣∣2 = (z +

1

n
z̄n)(z̄ +

1

n
zn) = zz̄ +

1

n
(zn+1 + z̄n+1) +

1

n2
znz̄n

= r2 +
2rn+1

n
cos

(
π ± π

2
+ 2πk

)
+

1

n2
r2n = r2 +

1

n2
r2n.

Then for 0 < c3 <

√
r2+ 1

n2
r2n

1
4
r4+ 1

(n−1)2
r2n−2 , along the pair of line segments `k,1 and `k,2 and all

0 < c ≤ c3,

∣∣pc(z)− f0(z)
∣∣2 =

∣∣∣∣ c2z2 +
c

n− 1
z̄n−1

∣∣∣∣2 =

(
c

2
z2 +

c

n− 1
z̄n−1

)(
c

2
z̄2 +

c

n− 1
zn−1

)
=
c2

4
z2z̄2 +

c2

2(n− 1)
(zn+1 + z̄n+1) +

(
c

n− 1

)2

zn−1z̄n−1

=
c2

4
r4 +

c2

n− 1
rn+1 cos(π ± π

2
+ 2πk) +

(
c

n− 1

)2

r2n−2

=
c2

4
r4 +

(
c

n− 1

)2

r2n−2 = c2

(
1

4
r4 +

(
1

n− 1

)2

r2n−2

)

< r2 +
1

n2
r2n =

∣∣f0(z)
∣∣2 .

Therefore,
∣∣pc(z)− f0(z)

∣∣ < ∣∣f0(z)
∣∣.

Applying Rouché’s Theorem for Complex Harmonic Functions to Case 1, the sum of the

orders of the zeros of f0 and the sum of the orders of the zeros of pc are the same inside the

circle |z| = r1. By Lemma 4.5, f0 has one zero of order 1 inside any circle of radius r1 < n
1

n−1 .

Therefore, the sum of the orders of the zeros of pc is 1 inside the circle of radius r1 for all c

satisfying 0 < c ≤ c1.

Now recall that when 0 < c < 1, pc is sense-preserving if and only if |z| < 1. Also recall

that all the zeros of pc have order 1 or −1. First, suppose r1 ≤ 1. Because the sum of the

orders of zeros of pc is 1 in a sense-preserving region, pc has one zero of order 1 inside Cr1 .

Second, suppose r1 > 1. The sum of the orders of the zeros of pc in Cr1 is still 1 and pc still
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Figure 4.2: The zeros of the eighth degree polynomial p0.4(z) with 9 of the zeros inside the
annulus defined by all z such that 1 < |z| < 1.5.

has one zero of order 1 inside the unit circle by Theorem 4.3. Moreover, any zeros outside

the unit circle have order −1 which would cause the sum of the orders of the zeros of pc

inside Cr1 to be less than 1, a contradiction. Therefore, pc has one zero of order 1 inside the

circle of radius r1 for any r1 < n
1

n−1 and 0 < c ≤ c1.

Applying Rouché’s Theorem for Complex Harmonic Functions to Case 2, the sum of the

orders of the zeros of f0 and the sum of the orders of the zeros of pc are the same inside the

circle of radius r2. By Lemma 4.5, f0 has one zero of order 1 and n + 1 zeros of order −1

inside Cr2 ; thus, the sum of the orders of the zeros of f0, and consequently pc, is −n. By the

above work, pc has one zero of order 1 inside Cr1 . Extending the radius of this circle extends

it into a sense-reversing region; consequently, pc has n + 1 zeros of order −1 in the annulus

A0 = {z ∈ C : r1 < |z| < r2} for all c such that 0 < c ≤ c0 where c0 = min{c1, c2}.

Let c be a value such that 0 < c ≤ cS where cS = min{c1, c2, c3}. Then Cases 1, 2, and

3 give the sum of the orders of the zeros of f0 and the sum of the orders of the zeros of pc

are equal in each sector Sk = {z ∈ C : r1 < |z| < r2,
π(1+4k)
2(n−1)

< arg0(z) < π(3+4k)
2(n+1)

}. By Lemma

4.5 f0 has one zero of order −1 inside each Sk, so the sum of the orders of the zeros of pc in

each Sk is −1. Because there are no zeros of positive order in A0, each Sk contains one zero

of pc of order −1.

The above proposition states that there is a range of c values such that n + 1 zeros of
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pc are located in an annulus or a zero of pc is located in a sector of an annulus; Figure 4.2

illustrates this for the n = 8 case. It is natural to ask what those ranges of c values are.

As expected, the closer r1 and r2 are to n
1

n−1 , the smaller c must be in order to guarantee

the zeros are inside the annulus. Due to the decreasing nature of n
1

n−1 , we do not provide a

range of c values for Cases 1 and 2 of Proposition 4.6 (though we comment that for n ≥ 9,

r1 = 1 and r2 = 3/2 allow for all values 0 < c < 1/2). However, the range of valid c values

for Case 3 can be considered quite nicely:

Lemma 4.7. For any r > 0 and any n ≥ 4,

r2 + 1
n2 r

2n

1
4
r4 +

(
1

n−1

)2

r2n−2

>
9

32
.

Proof. First, notice that

r2 + 1
n2 r

2n

1
4
r4 +

(
1

n−1

)2

r2n−2

=
4r2 1

n2 (n2 + r2n−2)

r4 1
(n−1)2

((n− 1)2 + 4r2n−6)
=

4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
.

From here we consider two cases.

Case 1: Suppose that (n − 1)2 ≤ 4r2n−6; hence, r ≥
(
n−1

2

) 1
n−3 , so r > 1 for all n ≥ 4.

Then

4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
≥ 4

r2

(
n− 1

n

)2
n2 + r2n−2

8r2n−6

=

(
n− 1

n

)2
n2

2r2n−4
+

(
n− 1

n

)2
r2

2

>

(
n− 1

n

)2
r2

2

>

(
3

4

)2
1

2

=
9

32
.

36



Case 2: Suppose that (n− 1)2 ≥ 4r2n−6; equivalently, r ≤
(
n−1

2

) 1
n−3 . Then

4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
≥ 4

r2

(
n− 1

n

)2
n2 + r2n−2

2(n− 1)2

=
2

r2

(
n− 1

n

)2
n2

(n− 1)2
+

2

r2

(
n− 1

n

)2
r2n−2

(n− 1)2

>
2

r2

≥ 2(
n−1

2

) 2
n−3

Now notice that
(
n−1

2

) 2
n−3 ≤

(
3
2

)2
if and only if n−1

2
≤
(

3
2

)n−3
. This latter inequality is an

equality at n = 4, and clearly
(

3
2

)n−3
increases at a faster rate than n−1

2
. Therefore, the

latter inequality holds and we also get
(
n−1

2

) 2
n−3 ≤

(
3
2

)2
. Applying this to the above set of

inequalities yields

4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
≥ 2(

n−1
2

) 2
n−3

≥ 2(
3
2

)2 =
8

9
.

Thus for any r > 0 and n ≥ 4,

r2 + 1
n2 r

2n

1
4
r4 +

(
1

n−1

)2

r2n−2

> min

{
9

32
,
8

9

}
=

9

32
.

Therefore, Case 3 of Proposition 4.6 is always satisfied by 0 < c ≤ 3
4
√

2
≈ 0.53033.

4.1.2 Locations of Zeros for Large Values of c. This section closely follows Section

4.1.1 except we now consider sufficiently large values of c. In particular, recall that pc has

n + 4 distinct zeros for c ≥ 4, n ≥ 6 by Theorem 4.4. As shown in Figure 4.1, n + 1

of those zeros are arranged in a circle about the origin, so we can use Rouché’s Theorem

for Complex Harmonic Functions to localize these zeros to annuli and sectors of annuli.

Rouché’s Theorem compares functions, so we first construct a candidate function by taking

f∞(z) = limc→∞ pc(z)/c. Then we locate the zeros and sense-preserving and sense-reversing
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Figure 4.3: The zeros of the eighth degree polynomial p4(z).

regions of f∞. Lastly, we compare pc/c to f∞ to determine where the zeros of pc/c are located

for sufficiently large values of c.

Lemma 4.8. Let f∞(z) = limc→∞ pc(z)/c = 1
2
z2 + 1

n−1
z̄n−1 for n > 3. Then f∞(z) has n+3

zeros: n+ 1 of the form z =
(
n−1

2

) 1
n−3 ei

π+2πk
n+1 for 0 ≤ k ≤ n and a zero at z = 0 of order 2.

Proof. The dilatation of f∞ is ωf∞(z) = zn−3. Then the critical curve is the set of points

such that
∣∣ωf∞(z)

∣∣ = 1, which trivially simplifies to the unit circle |z| = 1. Then the sense-

preserving region of f∞ is the set of all z such that |z| < 1 and the sense-reversing region is

the set of all z such that |z| > 1.

We now explicitly calculate the zeros not at the origin: Let z = reit. Then f∞(z) = 0 gives

1
2
r2ei2t + 1

n−1
rn−1e−i(n−1)t = 0 which simplifies to ei(n+1)t = − 2

n−1
rn−3. Because

∣∣∣ei(n+1)t
∣∣∣ = 1,∣∣∣− 2

n−1
rn−3

∣∣∣ = 1. Thus 2
n−1

rn−3 = 1 which means r =
(
n−1

2

) 1
n−3 . Then ei(n+1)t = −1, so t =

π+2πk
n+1

for integers k satisfying 0 ≤ k ≤ n. Therefore, f∞(zk) = 0 where zk =
(
n−1

2

) 1
n−3 ei

π+2πk
n+1

for 0 ≤ k ≤ n. Notice that all zk are in sense-reversing regions and d
dz

(
1

n−1
zn−1

)
= zn−2 but

zn−2
k 6= 0. Therefore, each zk is a zero of order −1 and there are n+ 1 nonzero zeros.

We will now consider z = 0. Because d
dz

(z2) = 2z, d
dz

(2z) = 2, we know that 0 is a zero

of order 2.

Therefore, f∞ has n+ 3 zeros.

We now have our candidate function f∞, and we compare f∞ and pc/c using Rouché’s

Theorem for Complex Harmonic Functions to locate the zeros of pc.

Proposition 4.9. Let n ≥ 6. For r1, r2 chosen such that 0 < r1 <
(
n−1

2

) 1
n−3 < r2 there

exists a c∞ ≥ 4 such that for all c ≥ c∞ there are n + 1 zeros of pc in the annulus A∞ =
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{z ∈ C : r1 < |z| < r2}. Moreover, for these same r1, r2, there exists a cS ≥ 4 such that for

all c ≥ cS each sector Sk = {z ∈ C | r1 < |z| < r2,
π(1+4k)
2(n−1)

< arg0(z)π(3+4k)
2(n+1)

} contains one

zero of pc.

Proof. Let r1, r2 ∈ R such that 0 < r1 <
(
n−1

2

) 1
n−3 < r2. Let |z| = r be arbitrary. Then∣∣f∞(z)

∣∣ =
∣∣∣12z2 + 1

n−1
z̄n−1

∣∣∣ ≥ ∣∣∣12r2 − 1
n−1

rn−1
∣∣∣. We will use Rouché’s Theorem for Complex

Harmonic Functions to compare pc − f∞ to f∞ on Cr1 = {z ∈ C : |z| = r1}, Cr2 = {z ∈

C : |z| = r2}, and line segments connecting these two circles. For clarity, we write these as

three separate cases.

Case 1: Let r = r1 <
(
n−1

2

) 1
n−3 . Then r2

1 − 2
n−1

rn−1
1 > 0, so 1

2
r2

1 − 1
n−1

rn−1
1 > 0, and we

choose c1 > (r1 + 1
n
rn1 )/(1

2
r2

1 − 1
n−1

rn−1
1 ) > 0. Thus, 1

c1
(r1 + 1

n
rn1 ) < 1

2
r2

1 − 1
n−1

rn−1
1 . Then for

all c ≥ c1 on |z| = r1 yields

∣∣pc(z)/c− f∞(z)
∣∣ =

∣∣∣∣1c z +
1

cn
z̄n
∣∣∣∣ ≤ 1

c1

(
r1 +

1

n
rn1

)
<

1

2
r2

1 −
1

n− 1
rn−1

1 ≤
∣∣f∞(z)

∣∣ .
Case 2: Let r = r2 >

(
n−1

2

) 1
n−3 . Then 2

n−1
rn−1

2 −r2
2 > 0, so 1

n−1
rn−1

2 − 1
2
r2

2 > 0. We choose

c2 > (r2 + 1
n
rn2 )/( 1

n−1
rn−1

2 − 1
2
r2

2) > 0; consequently, 1
c2

(r2 + 1
n
rn2 ) < 1

n−1
rn−1

2 − 1
2
r2

2. Then for

all c ≥ c2 on the circle |z| = r2,

∣∣pc(z)/c− f∞(z)
∣∣ =

∣∣∣∣1c z +
1

cn
z̄n
∣∣∣∣ ≤ 1

c2

r2 +
1

c2n
rn2 =

1

c2

(
r2 +

1

n
rn2

)
<

1

n− 1
rn−1

2 − 1

2
r2

2 ≤
∣∣f∞(z)

∣∣ .
Case 3: Let r1 and r2 be positive real numbers such that 0 < r1 <

(
n−1

2

) 1
n−3 < r2.

Consider the pair of line segments `k,1 = {z = reiθ | 0 < r1 ≤ r ≤ r2, θ = π
2(n+1)

(1 + 4k)}

and `k,2 = {z = reiθ | 0 < r1 ≤ r ≤ r2, θ = π
2(n+1)

(3 + 4k)} for some integer k. For z on `k,1
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or `k,2,

∣∣f∞(z)
∣∣2 =

∣∣∣∣12z2 +
1

n− 1
z̄n−1

∣∣∣∣2 =

(
1

2
z2 +

1

n− 1
z̄n−1

)(
1

2
z̄2 +

1

n− 1
zn−1

)
=

1

4
z2z̄2 +

1

2(n− 1)
(zn+1 + z̄n+1) +

(
1

n− 1

)2

zn−1z̄n−1

=
1

4
r4 +

rn+1

n− 1
cos(π ± π

2
+ 2πk) +

(
1

n− 1

)2

r2n−2

=
1

4
r4 +

(
1

n− 1

)2

r2n−2.

Then for c3 >

√
r2+ 1

n2
r2n

1
4
r4+( 1

n−1)
2
r2n−2

along the pair of line segments `k,1 and `k,2 and all c ≥ c3,

∣∣pc(z)/c− f∞(z)
∣∣2 =

∣∣∣∣1c z +
1

cn
z̄n
∣∣∣∣2 =

1

c2
zz̄ +

1

c2n
zn+1 +

1

c2n
z̄n+1 +

1

c2n2
znz̄n

=
1

c2
r2 +

1

c2n
rn+12 cos

(
π ± π

2
+ 2πk

)
+

1

c2n2
r2n

≤ 1

c2
3

(r2 +
1

n2
r2n) <

1

4
r4 +

(
1

n− 1

)2

r2n−2 =
∣∣f∞(z)

∣∣2 .
Therefore,

∣∣pc(z)/c− f∞(z)
∣∣ < ∣∣f∞(z)

∣∣.
Applying Rouché’s Theorem for Complex Harmonic Functions to Case 1, the sum of the

orders of the zeros of f∞ and the sum of the orders of the zeros of pc are the same inside

the circle of radius r1. By Lemma 4.8, f∞ has one zero of order 2 inside any circle of radius

r1 <
(
n−1

2

) 1
n−3 . Therefore, the sum of the orders of the zeros of pc/c is 2 inside the circle of

radius r1 for all c satisfying c ≥ c1.

Now recall Theorem 3.11: for c ≥ 4 and n ≥ 6, the portions of the critical curve distinct

from the unit circle (i.e., Ω1 and Ω2) do not contain any zeros of pc; consequently, they do

not contain any zeros of pc/c. Then a zero of pc/c is in a sense-preserving region if and only

|z| < 1. Recall also that every zero of pc, and consequently pc/c, has order 1 or −1.

Now suppose r1 ≤ 1. Because the sum of the orders of zeros of pc/c is 2 in a sense-

preserving region, pc/c has two zeros of order 1 inside Cr1 . Now suppose r1 > 1. The sum of
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Figure 4.4: The zeros of the eighth degree polynomial p4(z) with 9 of the zeros inside the
annulus defined by all z such that 1 < |z| < 1.5.

the orders of zeros of pc/c in Cr1 is still 2, and pc/c still has two zeros of order 1 inside the

unit circle. Moreover, any zeros outside the unit circle have order −1 which would cause the

sum of the orders of the zeros of pc/c inside Cr1 to be less than 2, a contradiction. Therefore,

pc/c has two zeros of order 1 inside the circle of radius r1 for any r1 <
(
n−1

2

) 1
n−3 and c ≥ c1.

Applying Rouché’s Theorem for Complex Harmonic Functions to Case 2, the sum of the

orders of the zeros of f∞ and the sum of the orders of the zeros of pc are the same inside the

circle of Radius r2. By Lemma 4.8, f∞ has one zero of order 2 and n + 1 zeros of order −1

inside Cr2 . Hence, the sum of the orders of the zeros of f∞ is −n+ 1; consequently the sum

of the orders of the zeros of pc/c is also −n + 1. By the above work, pc/c has two zeros of

order 1 inside Cr1 . Extending the radius of this circle extends it into a sense-reversing region;

consequently, pc has n+ 1 zeros of order −1 in the annulus A∞ = {z ∈ C : r1 < |z| < r2} for

all c such that c ≥ c∞ where c∞ = max{c1, c2}.

Now let c be a value such that c ≥ cS where cS = max{c1, c2, c3}. Then Cases 1, 2, and

3 give the sum of the orders of the zeros of f∞ and the sum of the orders of pc/c are equal

in each sector Sk = {z ∈ C | r1 < |z| < r2,
π(1+4k)
2(n−1)

< arg0(z)π(3+4k)
2(n+1)

}. By Lemma 4.8, f∞ has

one zero of order −1 in each Sk; hence, the sum of the orders of the zeros of pc/c in each Sk

is −1. Because there are no zeros of positive order in A∞, each Sk contains one zero of pc/c.

Because pc/c and pc have the same zeros, our desired result(s) hold.

Proposition 4.9 states that for given r1, r2, there exists a range of c values such that n+1

zeros of pc are located in an annulus and a zero of pc is located in a sector of an annulus;
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Figure 4.4 illustrates this for the n = 8 case. We ask what range of c values give these

results. As before, the closer r1 and r2 are to
(
n−1

2

) 1
n−3 , the larger c must become in order to

guarantee the zeros stay inside the annulus. Due to the decreasing nature of
(
n−1

2

) 1
n−3 , we

do not provide a range of c values for Cases 1 and 2 of Proposition 4.9 (though we comment

that for n ≥ 8, r1 = 1 and r2 = 3/2 allow for all c ≥ 4). However, the range of valid c values

for Case 3 is simple to determine:

Lemma 4.10. For 1
2
≤ r ≤ 2 and n ≥ 4,

r2 + 1
n2 r

2n

1
4
r4 +

(
1

n−1

)2

r2n−2

< 20.

Proof. First, recall that

r2 + 1
n2 r

2n

1
4
r4 +

(
1

n−1

)2

r2n−2

=
4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
.

Then

4

r2

(
n− 1

n

)2
n2 + r2n−2

(n− 1)2 + 4r2n−6
=

4

r2

(
n− 1

n

)2
[

n2

(n− 1)2 + 4r2n−6
+

r2n−2

(n− 1)2 + 4r2n−6

]

<
4

r2

(
n− 1

n

)2
[

n2

(n− 1)2
+

r2n−2

4r2n−6

]

=
4

r2
+

(
n− 1

n

)2

r2

<
4

r2
+ r2

≤ 20.

Therefore, Case 3 of Proposition 4.9 is always satisfied by c ≥ 2
√

5 ≈ 4.472136.
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4.2 Zeros on the Unit Circle

Extensive numerical experimentation leads us to conjecture that the only zeros on the critical

curve are real. Because the critical curve always contains the unit circle, we first show:

Theorem 4.11. For even n ≥ 8, the complex harmonic function pc(z) has no zeros on the

unit circle except possibly at the point −1.

To prove this, we need several lemmas. First, we will show that the real part of any such

zero must lie between −1 and −
√

(n−1)(n−3)

n−2
. Equivalently, the angle θ of our zero must lie

on or between π − sin−1
(

1
n−2

)
and π + sin−1

(
1

n−2

)
. Second, we will show that the only

valid angle in that interval is π.

Lemma 4.12. If z ∈ C such that pc(z) = 0,
∣∣ω(z)

∣∣ = 1, and |z| = 1 then −1 ≤ Re(z) ≤

−
√

(n−1)(n−3)

n−2
.

Proof. Let z be such that
∣∣ω(z)

∣∣ = 1 and pc(z) = 0. Then
∣∣∣zn−2 c+z

1+cz

∣∣∣ = 1, so∣∣zn−2
∣∣ · |c+ z| = |1 + cz|. Then for some α ∈ C, |α| = 1, z̄n−2(c + z) = α(1 + cz); thus,

z̄n−2 = α 1+cz
c+z

. Substituting into pc(z) = 0 gives

0 = pc(z)

= z +
c

2
z2 +

c

n− 1
z̄n−1 +

1

n
z̄n

= z +
c

2
z2 + α

c

n− 1
· 1 + cz

c+ z
z̄ + α

1

n
· 1 + cz

c+ z
z̄2.

Thus,

−z − c

2
z2 = α

1 + cz

c+ z

(
c

n− 1
z̄ +

1

n
z̄2

)
.

Taking the squared modulus of both sides yields

(
z +

c

2
z2

)(
z̄ +

c

2
z̄2

)
=

1 + cz

c+ z
· 1 + cz̄

c+ z̄

(
c

n− 1
z̄ +

1

n
z̄2

)(
c

n− 1
z +

1

n
z2

)
.
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which simplifies to

(
zz̄ +

c

2
(zz̄2 + z2z̄) +

c2

4
z2z̄2

)
(c2 + c(z + z̄) + zz̄)

= (1 + c(z + z̄) + c2zz̄)

(
c2

(n− 1)2
zz̄ +

c

n(n− 1)
(zz̄2 + z2z̄) +

1

n2
z2z̄2

)
.

If we let z = reiθ, then

(
r2 + cr3 cos(θ) +

c2

4
r4

)
(c2 + 2cr cos(θ) + r2)

= (1 + 2cr cos(θ) + c2r2)

(
c2

(n− 1)2
r2 + 2

c

n(n− 1)
r3 cos(θ) +

1

n2
r4

)
.

Then in the case where r = 1,

(
1 + c cos(θ) +

c2

4

)
(c2 + 2c cos(θ) + 1)

= (1 + 2c cos(θ) + c2)

(
c2

(n− 1)2
+ 2

c

n(n− 1)
cos(θ) +

1

n2

)
.

If c2 +2c cos(θ)+1 = 0, then cos(θ) = − c2+1
2c

. By the Arithmetic-Geometric Mean Inequality,

2c ≤ c2 + 1; hence, c2+1
2c
≥ 1 with equality if and only if c = 1. Hence, cos(θ) = − c2+1

2c
≤ −1

with equality if and only if c = 1, and hence θ = π. Assuming c 6= 1 and θ 6= π, we can

divide both sides by c2 + 2c cos(θ) + 1. This results in

1 + c cos(θ) +
c2

4
=

c2

(n− 1)2
+

2c

n(n− 1)
cos(θ) +

1

n2
.

Solving the above for cos(θ) yields

cos(θ) = −

(
1

c
·

1− 1
n2

1− 2
n(n−1)

+ c ·
1
4
− 1

(n−1)2

1− 2
n(n−1)

)
,
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which simplifies to

cos(θ) = −

(
1

c
· (n− 1)2

n(n− 2)
+ c · n(n− 3)

4(n− 1)(n− 2)

)
.

The AGM inequality then gives

cos(θ) ≤ −
√

(n− 1)(n− 3)

n− 2
,

with equality if and only if c = ±2(n−1)
n

√
n−1
n−3

. Since we are only concerned about c > 0,

we have c = 2(n−1)
n

√
n−1
n−3

. Thus we see that the real part of any zero on the unit circle lies

between −1 and −
√

(n−1)(n−3)

n−2
.

Now that we have a restriction on the real part of any zero on the unit circle, when we

view z in polar coordinates eiθ, we have a restriction on the value of θ. This gives us the

following corollary:

Corollary 4.13. Let z = eiθ be a zero of pc. Then π − sin−1
(

1
n−2

)
≤ θ ≤ π + sin−1

(
1

n−2

)
for all n > 2.

Proof. To find the interval of possible θ’s that give zeros on the unit circle, we can solve the

equation cos2(θ) + sin2(θ) = 1 with cos(θ) = −
√

(n−1)(n−3)

n−2
. This gives us that

θ = π ± sin−1

√1− (n− 1)(n− 3)

(n− 2)2

 = π ± sin−1

(
1

n− 2

)
. (4.1)

Thus θ = π± sin−1
(

1
n−2

)
; consequently, the only places where a zero of pc could happen on

the unit circle are for values of θ satisfying π − sin−1
(

1
n−2

)
≤ θ ≤ π + sin−1

(
1

n−2

)
.

To handle the case where π − sin−1
(

1
n−2

)
≤ θ ≤ π + sin−1

(
1

n−2

)
, we will set the real

and imaginary parts of pc(z) equal to zero and let z = eiθ. We obtain an equation that must

be satisfied for any zero on the unit circle. This equation will be derived in Lemma 4.14.

We will then show that the only θ that satisfies the equation is θ = π.
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Lemma 4.14. Let z ∈ C and let 0 ≤ θ < 2π such that z = eiθ. If pc(z) = 0, then

1

2n
sin((n+ 2)θ) +

(
1

2
+

1

n(n− 1)

)
sin(θ)− 1

n− 1
sin(nθ) = 0.

Proof. Suppose pc(z) = 0. Then the real and imaginary parts of pc(z) also equal zero.

Observe,

Re(pn(z)) = r cos(θ) +
c

2
r2 cos(2θ) +

c

n− 1
rn−1 cos((n− 1)θ) +

1

n
rn cos(nθ),

and

Im(pn(z)) = r sin(θ) +
c

2
r2 sin(2θ)− c

n− 1
rn−1 sin((n− 1)θ)− 1

n
rn sin(nθ).

Solving these equations for c yields

c =
1
n
rn sin(nθ)− r sin(θ)

1
2
r2 sin(2θ)− 1

n−1
rn−1 sin((n− 1)θ)

=
− 1
n
rn cos(nθ)− r cos(θ)

1
2
r2 cos(2θ) + 1

n−1
rn−1 cos((n− 1)θ)

.

Eliminating the denominators gives

(
1

2
r2 cos(2θ) +

1

n− 1
rn−1 cos((n− 1)θ)

)(
1

n
rn sin(nθ)− r sin(θ)

)
=

(
− 1

n
rn cos(nθ)− r cos(θ)

)(
1

2
r2 sin(2θ)− 1

n− 1
rn−1 sin((n− 1)θ)

)
.

Simplifying the LHS gives

(
1

2
r2 cos(2θ) +

1

n− 1
rn−1 cos((n− 1)θ)

)(
1

n
rn sin(nθ)− r sin(θ)

)
=

1

2n
rn+2 cos(2θ) sin(nθ)− 1

2
r3 cos(2θ) sin(θ) +

1

n(n− 1)
r2n−1 cos((n− 1)θ) sin(nθ)

− 1

n− 1
rn cos((n− 1)θ) sin(θ).
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Similarly, for the RHS we have

(
− 1

n
rn cos(nθ)− r cos(θ)

)(
1

2
r2 sin(2θ)− 1

n− 1
rn−1 sin((n− 1)θ)

)
= −1

2
r3 cos(θ) sin(2θ) +

1

n− 1
rn cos(θ) sin((n− 1)θ)− 1

2n
rn+2 cos(nθ) sin(2θ)

+
1

n(n− 1)
r2n−1 cos(nθ) sin((n− 1)θ).

Subtracting the RHS, we are left with

1

2n
rn+2

(
cos(2θ) sin(nθ) + cos(nθ) sin(2θ)

)
+

1

2
r3
(
− cos(2θ) sin(θ) + cos(θ) sin(2θ)

)
+

1

n(n− 1)
r2n−1

(
cos((n− 1)θ) sin(nθ)− cos(nθ) sin((n− 1)θ)

)
− 1

n− 1
rn
(
cos((n− 1)θ) sin(θ) + cos(nθ) sin((n− 1)θ)

)
= 0,

which simplifies to

sn,r(θ) =
1

2n
rn+2 sin((n+ 2)θ) +

(
1

2
r3 +

1

n(n− 1)
r2n−1

)
sin(θ)− 1

n− 1
rn sin(nθ) = 0.

Then on the unit circle r = 1,

sn,1(θ) =
1

2n
sin((n+ 2)θ) +

(
1

2
+

1

n(n− 1)

)
sin(θ)− 1

n− 1
sin(nθ) = 0,

must be satisfied.

Thus to prove Theorem 4.11, it suffices to show that sn,1(θ) is strictly decreasing on(
π − sin−1

(
1

n−2

)
, π + sin−1

(
1

n−2

))
and hence is only 0 at π. To prove this, we need the

following lemma:

Lemma 4.15. Let 0 < a ≤ 8π. If x ≥ 8, then I(x) = x
a

sin
(
a
x

)
is increasing.

Proof. Let I(x) = x
a

sin
(
a
x

)
=
∫ 1

0
cos
(
a
x
t
)
dt where a > 0, so I ′(x) = a

x2

∫ 1

0
t sin

(
a
x
t
)
dt.

Because sin
(
a
x
t
)

has period 2πx
a

, sin
(
a
x
t
)

is positive on
(
0, πx

a

)
. If πx

a
≥ 1, then sin

(
a
x
t
)

will
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be positive on (0, 1). Notice that πx
a
≥ 8π

a
holds because x ≥ 8. Then assume 8π

a
≥ 1, so

8π ≥ a. Then for all 0 < a < 8π we have πx
a
≥ 8π

a
≥ 1. Therefore, sin

(
a
x
t
)

will be positive on

(0, 1) for all x ≥ 8, 0 < a ≤ 8π. Since t is also positive on (0, 1), we have that
∫ 1

0
t sin

(
x
a
t
)
dt

will be positive. As a
x2
> 0 for x ≥ 8, we have that I ′(x) > 0 for x ≥ 8.

Utilizing the above lemma, we now prove that sn,1(θ) has only t = π as a zero on the

interval

[
π − sin−1

(
1

n−2

)
, π + sin−1

(
1

n−2

)]
.

Proposition 4.16. The function sn,1(θ) has only one zero, θ = π, on the interval[
π − sin−1

(
1

n−2

)
, π + sin−1

(
1

n−2

)]
for even n ≥ 8.

Proof. Let S = sin−1
(

1
n−2

)
. We will shift sn,1(θ) by π so that we can consider the interval

[−S,S]. Since n is even,

sn,1(θ − π) =
1

2n
sin((n+ 2)(θ − π)) +

(
1

2
+

1

n(n− 1)

)
sin(θ − π)− 1

n− 1
sin(n(θ − π))

=
1

2n
sin
(
(n+ 2)θ

)
−
(

1

2
+

1

n(n− 1)

)
sin(θ)− 1

n− 1
sin(nθ).

Thus,

s′n,1(θ − π) =
n+ 2

2n
cos
(
(n+ 2)θ

)
−
(

1

2
+

1

n(n− 1)

)
cos(θ)− n

n− 1
cos(nθ).

Notice that sn,1(θ− π) is odd because sin(θ) is odd, so we only need to consider the interval

[0,S]. We will show that the derivative s′n,1(θ−π) is strictly negative on [0,S] by finding an

upper bound for each summand.

The first summand is simple:

n+ 2

2n
cos
(
(n+ 2)θ

)
≤ n+ 2

2n
=

1

2
+

1

n
≤ 5

8
.

For the second summand, notice that − cos(θ) is increasing on (0, π) and S ≤ π
2
< π;
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consequently, the maximum value of −
(

1
2

+ 1
n(n−1)

)
cos(θ) is

−
(

1

2
+

1

n(n− 1)

)
cos(S) = −

(
1

2
+

1

n(n− 1)

) √
(n− 3)(n− 1)

n− 2
.

Because

(√
(x−3)(x−1)

x−2

)′
= 1

(x−2)2
√
x2−4x+3

> 0 for x ≥ 8, for n ≥ 8 we have

−
(

1

2
+

1

n(n− 1)

) √
(n− 3)(n− 1)

n− 2
≤ −1

2

√
(n− 3)(n− 1)

n− 2
≤ −1

2

√
35

6
= −
√

35

12
.

The last summand will take some work. First, notice that − n
n−1

cos(nθ) increases on

(0, π/n). If we can show that S ≤ π
n
, then we know that − n

n−1
cos(nθ) ≤ − n

n−1
cos(nS) on

[0,S]. This statement is equivalent to each of the following:

sin−1

(
1

n− 2

)
≤ π

n

1

n− 2
≤ sin

(
π

n

)
1 ≤ (n− 2) sin

(
π

n

)
.

Equivalently, we want to prove

1 ≤ π ·
sin
(
π
n

)
π
n

· n− 2

n
.

Because 0 < π ≤ 8π,
sin(πn)

π
n

is increasing by Lemma 4.15. We also have that n−2
n

= 1− 2
n

is

increasing. Then for n ≥ 8,

π ·
sin
(
π
n

)
π
n

· n− 2

n
≥ π ·

sin
(
π
8

)
π
8

· 8− 2

8
≥ 2.2961 > 1,

and our inequality holds. Therefore S ≤ π
n
.

As desired we have that − n
n−1

cos(nθ) ≤ − n
n−1

cos(nS) for θ ∈ [0,S], and we now need
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to find an upper bound for − n
n−1

cos(nS). We start by finding a bound for (nS): For x ≥ 8,

we claim that x sin−1
(

1
x−2

)
≤ 1.34. This statement is equivalent to

sin−1

(
1

x− 2

)
≤ 1.34

x

1

x− 2
≤ sin

(
1.34

x

)
1 ≤ (x− 2) sin

(
1.34

x

)
.

Similar to the above, we equivalently want to prove

1 ≤ 1.34 ·
sin
(

1.34
x

)
1.34
x

· x− 2

x
.

Because 0 < 1.34 ≤ 8π,
sin( 1.34

x )
1.34
x

is increasing by Lemma 4.15. Also, x−2
x

= 1− 2
x

is increasing,

so for x ≥ 8,

1 < 1.000307 · · · ≤ 1.34 ·
sin
(

1.34
8

)
1.34

8

· 6

8
≤ 1.34 ·

sin
(

1.34
x

)
1.34
x

· x− 2

x
.

Thus, 0 ≤ n sin−1
(

1
n−2

)
≤ 1.34 for n ≥ 8. Then we have cos

(
n sin−1

(
1

n−2

))
≥ cos(1.34);

hence, − cos

(
n sin−1

(
1

n−2

))
≤ − cos(1.34) so− n

n−1
cos

(
n sin−1

(
1

n−2

))
≤ − n

n−1
cos(1.34).

Because x
x−1

decreases to 1,

− n

n− 1
cos

(
n sin−1

(
1

n− 2

))
≤ − n

n− 1
cos(1.34) ≤ − cos(1.34),

for n ≥ 8.

Combining the results for each of the summands yields

s′n,1(θ − π) ≤ 5

8
−
√

35

12
− cos(1.34) = −0.09675945 · · · < 0.
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Therefore, sn,1(θ − π) is strictly decreasing on [0,S]. Because sn,1(θ − π) is odd, we also

know that sn,1(θ − π) is strictly decreasing on [−S, 0]. Moreover, since sn,1(0) = 0 we see

that π is the only root of sn,1(θ − π) in [−S,S].

We now prove Theorem 4.11:

Proof. (Theorem 4.11.) Let n ≥ 8 be even. Let z be a zero of pc(z) on the unit circle;

hence, z = eiθ for θ ∈ [0, 2π]. By Corollary 4.13, θ must lie between π − sin−1
(

1
n−2

)
and

π + sin−1
(

1
n−2

)
. By Proposition 4.16, the only θ in

[
π − sin−1

(
1

n−2

)
, π + sin−1

(
1

n−2

)]
that satisfies p(eiθ) = 0 is θ = π. Therefore, the only zero of pc(z) on the unit circle is

z = eiπ = −1.

Chapter 5. Directions for Future Research

(1) In this thesis, we showed there are no zeros of pc on the unit circle except at z = −1.

What can be said about the other portions of the critical curve?

(2) What can be proved about the total number of zeros of the family pc?

(3) What can be proved about the number and location of zeros of other families of har-

monic polynomials?
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