Sandwich Theorem and Calculation of the Theta Function for Several Graphs

Marcia Ling Riddle
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Mathematics Commons

BYU ScholarsArchive Citation
Riddle, Marcia Ling, "Sandwich Theorem and Calculation of the Theta Function for Several Graphs" (2003). All Theses and Dissertations, 57.
https://scholarsarchive.byu.edu/etd/57

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
SANDWICH THEOREM AND CALCULATION OF THE
THETA FUNCTION FOR SEVERAL GRAPHS

by

Marcia Riddle

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics
Brigham Young University
April 2003
of a thesis submitted by

Marcia Riddle

This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

Date ___________________________ __

Wayne W. Barrett, Chair

Date ___________________________ __

Rodney W. Forcade

Date ___________________________ __

R. Vencil Skarda
As chair of the candidate’s graduate committee, I have read the thesis of Marcia Riddle in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

Wayne W. Barrett
Chair, Graduate Committee

Accepted for the Department

Tyler J. Jarvis
Graduate Coordinator

Accepted for the College

G. Rex Bryce, Associate Dean
College of Physical and Mathematical Sciences
ABSTRACT

SANDWICH THEOREM AND CALCULATION OF THE THETA FUNCTION FOR SEVERAL GRAPHS

Marcia Riddle
Department of Mathematics
Master of Science

This paper includes some basic ideas about the computation of a function \(\vartheta(G) \), the theta number of a graph \(G \), which is known as the Lovász number of \(G \). \(\vartheta(G^c) \) lies between two hard-to-compute graph numbers \(\omega(G) \), the size of the largest clique in a graph \(G \), and \(\chi(G) \), the minimum number of colors need to properly color the vertices of \(G \). Lovász and Grötschel called this the “Sandwich Theorem”. Donald E. Knuth gives four additional definitions of \(\vartheta, \vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4 \) and proves that they are all equal.

First I am going to describe the proof of the equality of \(\vartheta, \vartheta_1 \) and \(\vartheta_2 \) and then I will show the calculation of the \(\vartheta \) function for some specific graphs: \(K_n \), graphs related to \(K_n \), and \(C_n \). This will help us understand the \(\vartheta \) function, an important function for graph theory. Some of the results are calculated in different ways. This will benefit students who have a basic knowledge of graph theory and want to learn more about the theta function.
ACKNOWLEDGEMENTS

The author of this thesis would like to express appreciation for the tremendous help given by Dr. Wayne Barrett in the preparation and presentation for the key ideas contained in this thesis.

The author would also like to express appreciation to her graduate committee and to the Mathematics Department.

Also, she expresses appreciation for Steven Butler who prepared the pictures and cleaned up the formatting of the final form of the thesis.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>STAB(G), TH(G) and QSTAB(G)</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>The Theta Function</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Two Additional Functions $\vartheta_1(G)$ and $\vartheta_2(G)$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1 The $\vartheta_1(G)$ function</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 The $\vartheta_2(G)$ function</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>$\vartheta_2(G)$ and K_n</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3.1 $\vartheta_2(K_n)$ and $\vartheta_2(K_n^c)$</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3.2 $\vartheta_2(G)$ for complete multipartite graphs</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.3 $\vartheta_2(G)$ for the union of two complete graphs</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>$\vartheta_2(G)$ and C_n</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>
Terminology

Graph: Given a nonempty finite set V, let $V^{(2)}$ be the set of all 2-element subsets of V. A graph $G = (V, E)$ consists of two things, a nonempty finite set V called the vertices of G and a (possibly empty) subset E of $V^{(2)}$ called the edges of G. Let $n = |V|$ be the number of vertices of G.

When more than one graph is under consideration, it may be useful to write $V(G)$ and $E(G)$ for the vertex and edge sets of G, respectively. We will use the notation of ab instead of $\{a, b\}$ to represent an edge. For example, let C_4 be the graph with 4 vertices, $V = \{1, 2, 3, 4\}$ and $E = \{12, 13, 24, 34\}$, shown in Figure 1.

![Figure 1: Graph of C_4](image)

Subgraph: A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Induced subgraph: An induced subgraph of G is a subgraph H such that every edge of G whose vertices are contained in $V(H)$ belongs to $E(H)$.

Complement G^c of G: the graph which has $V(G)$ as its vertex set, and in which two vertices are adjacent if and only if they are not adjacent in G. If G has n vertices, then G^c can be constructed by removing from K_n all the edges of G. Note that the complement of a complete graph is a empty graph. An example of a graph and its complement is seen in Figure 2.

Positive definite (positive semidefinite) matrix: a real $n \times n$ symmetric matrix A which satisfies $x^T A x > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$ $(x^T A x \geq 0$ for all $x \in \mathbb{R}^n$).

Negative definite (negative semidefinite) matrix: a real $n \times n$ symmetric matrix A
is negative definite if $-A$ is positive definite and is negative semidefinite if $-A$ is positive demidefinite.

Clique: a nonempty set of pairwise adjacent vertices. Some cliques in the graph G in Figure 3 are $\{1, 2\}$, $\{3, 4, 5\}$, and $\{6, 7\}$.

Clique number: the maximum number of vertices of a clique in a graph. It is denoted by $\omega(G)$. The clique number of G in Figure 3 is 3.

Independent set: a set of pairwise nonadjacent vertices of G. This is also called a *stable set*. Some independent sets of the graph G in Figure 3 are: $V_1 = \{1, 3, 7\}$, $V_2 = \{2, 5, 6\}$, $V_3 = \{1, 4, 6\}$. So, $S \subset V(G)$ is an independent set if and only if no two of its vertices are adjacent, or if and only if S is a clique in G^c.

Independence number, $\alpha(G) = \omega(G^c)$: the maximum number of vertices in an independent set of G.

Chromatic number $\chi(G)$: the minimum number of independent sets that partition $V(G)$. A graph G is m-partite if $V(G)$ can be partitioned into m or fewer independent sets. The independent sets in a specified partition are partite sets. The graph G in Figure 3 has chromatic number 3 and is 3-partite.

Clique cover number: the smallest number of cliques that cover the vertices of G.
It is denoted by $\chi(G)$. For example, $\chi(G) = 3$ for G in Figure 3. We can also think of it as the minimum number of independent sets that partition $V(G^c)$. It is clear that $\overline{\chi}(G) = \chi(G^c)$.

Perfect graph: a graph G such that each induced subgraph G' of G satisfies $\omega(G') = \chi(G')$. The graph G in Figure 3 is perfect.

Imperfect graph: a graph that is not perfect. The graph C_5 (shown in Figure 4) is an imperfect graph because the clique number is $\omega(G) = 2$ but the chromatic number is $\chi(G) = 3$. It is the only imperfect graph for $n \leq 5$ vertices.

![Figure 4: C_5](image)

Dot product: The dot product of (column) vectors a and b is $a \cdot b = a^T b$.

Orthogonal vectors: the vectors $a, b \in \mathbb{R}^n$ are orthogonal if $a \cdot b = 0$.

Orthogonal matrix: a square matrix Q such that $Q^T Q$ is the identity matrix I. In other words, Q is orthogonal if and only if its columns are unit vectors perpendicular to each other.

Symmetric matrix: A matrix A is symmetric if $A = A^T$. For any symmetric matrix A we have that $A = QDQ^T$ where Q is orthogonal and D is a diagonal matrix.

Orthogonal labeling: an assignment of vectors $a_v \in \mathbb{R}^d$ to each vertex v of a graph G such that $a_u \cdot a_v = 0$ for each pair of nonadjacent vertices u and v. In other words, whenever a_u is not perpendicular to a_v in the labeling, we will have u and v adjacent in the graph G.

Convex set: A set in Euclidean space \mathbb{R}^d is a convex set if it contains all the line segments connecting any pair of its points.

Convex hull: Given a set of vectors $S \in \mathbb{R}^n$, the convex hull of S is the smallest
convex set containing \(S \).

STAB(\(G \)), TH(\(G \)) and QSTAB(\(G \))

Definition 1. The incidence vector \(X^S \) of a set \(S \) of vertices of a graph \(G \) is defined by

\[
X^S_i = \begin{cases}
1 & \text{if } i \in S \\
0 & \text{if } i \notin S
\end{cases}
\]

Typically, \(S \) will be a clique or independent set.

Definition 2. Given a graph \(G \), \(STAB(\(G \)) \) is the convex hull of incidence vectors of all stable sets of \(G \).

Example 1. Consider \(K_3 \) (a clique with 3 vertices): the independent sets are \(\emptyset \), \{1\}, \{2\}, \{3\} and the corresponding incidence vectors are

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.
\]

![Figure 5: \(K_3 \) and STAB(\(K_3 \))]({})

Definition 3. \(QSTAB(\(G \)) \) is the set in \(\mathbb{R}^n \) defined by

\[
x_i \geq 0 \text{ for each } i \in V, \quad \sum_{i \in K} x_i \leq 1 \text{ for each clique } K \text{ of } G.
\]

It suffices to consider the maximal cliques of \(G \). In the example of \(K_3 \), these become \(x_1 \geq 0, x_2 \geq 0 \) and \(x_3 \geq 0, x_1 + x_2 + x_3 \leq 1 \). It is clear that the last inequality implies \(x_1 + x_2 \leq 1 \), corresponding to the nonmaximal clique \{1, 2\}. For \(K_3 \), \(STAB(\(K_3 \)) = QSTAB(\(K_3 \)) \). These can be seen in Figure 5.
Definition 4. The cost $c(u_i)$ of a vector u_i in an orthogonal labeling of G is defined to be 0 if $u_i = 0$, otherwise

$$c(u_i) = \frac{u_{1i}^2}{\|u_i\|^2} = \frac{u_{1i}^2}{u_{1i}^2 + \ldots + u_{di}^2}.$$

Because $c(u)$ is a homogenous function, we may whenever convenient take all nonzero vectors in an orthogonal labeling to be unit vectors.

Definition 5. Given a graph $G = (V, E)$ on n vertices,

$$\text{TH}(G) = \{x \geq 0 \mid \sum_{i \in V} c(u_i) x_i \leq 1 \text{ for all orthogonal labelings } u \text{ of } G\}.$$

Notice that $\text{TH}(G)$ is the intersection of infinitely many halfspaces, so $\text{TH}(G)$ is a convex set.

Lemma 1. If S is a stable set in G and u is an orthogonal labeling of G, then $\sum_{i \in S} c(u_i) \leq 1$.

Proof. Let $S = \{i_1, i_2, \ldots, i_k\}$. It suffices to consider the case when $\{u_{i_1}, u_{i_2}, \ldots, u_{i_k}\}$ is a set of k orthonormal vectors. There exists a $d \times d$ orthogonal matrix Q such that the first k columns are $u_{i_1}, u_{i_2}, \ldots, u_{i_k}$. Since the length of the first row of Q is 1,

$$1 \geq u_{1i_1}^2 + u_{1i_2}^2 + \ldots + u_{1i_k}^2 = c(u_{i_1}) + c(u_{i_2}) + \ldots + c(u_{i_k}) = \sum_{i \in S} c(u_i).$$

Hence, $\sum_{i \in S} c(u_i) \leq 1$. \hfill \qed

Lemma 2. $\text{STAB}(G) \subseteq \text{TH}(G) \subseteq \text{QSTAB}(G)$.

Proof. If S is a stable set, X^S is its incidence vector and $\{u_1, u_2, \ldots, u_n\}$ is an orthogonal labeling of G, by the previous lemma,

$$\sum_{i \in V} c(u_i) \cdot X_i^S = \sum_{i \in S} c(u_i) \cdot 1 + \sum_{i \notin S} c(u_i) \cdot 0 \leq 1.$$

Since $\text{TH}(G)$ contains each incidence vector, $\text{TH}(G)$ contains the convex hull of incidence vectors of stable sets. Therefore, $\text{TH}(G) \supseteq \text{STAB}(G)$.

5
For each clique K of G, define the map from V to \mathbb{R}^1 by $i \rightarrow X^K_i$. If $ij \notin E$, either $i \notin K$ or $j \notin K$. So we know that $X^K_i X^K_j = 0$. So this map is an orthogonal labeling. Therefore, if $x \in TH(G),

1 \geq \sum_{i \in V} c(X^K_i) x_i = \sum_{i \in V} X^K_i \cdot x_i = \sum_{i \in K} 1 \cdot x_i + \sum_{i \notin K} 0 \cdot x_i = \sum_{i \in K} x_i,

so $x \in QSTAB(G).$ Hence $TH(G) \subseteq QSTAB(G).$ \hfill \Box

1 The Theta Function

Definition 6. Given a graph G, we define

$$\vartheta(G) = \max \{ \sum_{i \in V} x_i \mid x \in TH(G) \}.$$

Similar definitions can be given for $STAB$ and $QSTAB$:

$$\alpha(G) = \max \{ \sum_{i \in V} x_i \mid x \in STAB(G) \},$$

$$\kappa(G) = \max \{ \sum_{i \in V} x_i \mid x \in QSTAB(G) \}.$$

First, we need to show that this definition of $\alpha(G)$ is in fact the size of the largest stable set in G.

Let G be a graph with $\alpha(G) = m$. Let S be an independent set of size m and let $X^S = [x_1, x_2, \ldots, x_n]$ be the incidence vector of S. Then,

$$\sum_{i=1}^{n} x_i = m.$$

So,

$$\alpha(G) = m \leq \max \{ \sum_{i \in V} x_i \mid x \in STAB(G) \}.$$

For example consider the graph G' shown in Figure 6. For this graph we have, $\alpha(G') = 2$. The incidence vector of the stable set $\{1, 4\}$ is $x = [1, 0, 0, 1]^T \in STAB(G')$, so we have $\sum_{i=1}^{4} x_i = 2$. It is clear that $2 \leq \max \{ \sum_{i \in V} x_i \mid x \in STAB(G') \}$. So

$$\alpha(G') \leq \max \{ \sum_{i \in V} x_i \mid x \in STAB(G') \}.$$
We now prove the reverse inequality.

We know that $\text{STAB}(G)$ is convex set. Let $\{X^{S_1}, X^{S_2}, \ldots, X^{S_m}\}$ be the set of incidence vectors of the stable sets of G. Then any vector $x \in \text{STAB}(G)$ is a convex combination of $X^{S_1}, X^{S_2}, \ldots, X^{S_m}$, so

$$x = \sum_{i=1}^{m} a_i X^{S_i}, \text{ where } \sum_{i=1}^{m} a_i = 1 \text{ and } a_i \geq 0 \text{ for } i = 1, 2, \ldots, m.$$

Since $\alpha(G)$ is the maximum number of vertices in an independent set of G, for each vector $X^{S_i}, \alpha(G) \geq \sum_{j=1}^{n} X^{S_i}_j$, so we have,

$$\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} (\sum_{i=1}^{m} a_i X^{S_i}_j) = \sum_{i=1}^{m} a_i \sum_{j=1}^{n} X^{S_i}_j \leq \sum_{i=1}^{m} a_i \cdot \alpha(G) = \alpha(G) \cdot \sum_{i=1}^{m} a_i = \alpha(G),$$

so

$$\alpha(G) \geq \max\{\sum_{i \in V} x_i | x \in \text{STAB}(G)\}.$$

Therefore,

$$\alpha(G) = \max\{\sum_{i \in V} x_i | x \in \text{STAB}(G)\}.$$

This shows that our two different definitions of $\alpha(G)$ are consistent.

We want to prove the sandwich theorem that we have mentioned at the beginning of the paper which is that for any graph G, $\vartheta(G^c)$ lies between the clique number $\omega(G)$ and the chromatic number $\chi(G)$.

Theorem 1 (Sandwich Theorem). $\omega(G) \leq \vartheta(G^c) \leq \chi(G).$

Proof. Since $\alpha(G^c) = \omega(G)$ and $\bar{\chi}(G^c) = \chi(G)$, this is equivalent to proving that $\alpha(G^c) \leq \vartheta(G^c) \leq \bar{\chi}(G^c)$ or $\alpha(G) \leq \vartheta(G) \leq \bar{\chi}(G)$.
Since \(\vartheta(G) = \max\{\sum_{i \in V} x_i \mid x \in \text{TH}(G)\} \), \(\alpha(G) = \max\{\sum_{x \in V} x_i \mid x \in \text{STAB}(G)\} \), and \(\text{STAB}(G) \subseteq \text{TH}(G) \), we have \(\alpha(G) \leq \vartheta(G) \).

Similarly, since \(\text{TH}(G) \subseteq \text{QSTAB}(G) \), we have \(\vartheta(G) \leq \kappa(G) \).

Now, we need to show that \(\kappa(G) \leq \chi(G) \).

Suppose \(K_1, \cdots, K_p \) is a smallest set of cliques that cover the vertices of \(G \), and let \(x \in \text{QSTAB}(G) \). Then

\[
\sum_{i=1}^{n} x_i = \sum_{j=1}^{p} \sum_{i \in K_j} x_i \leq \sum_{j=1}^{p} 1 = p = \chi(G).
\]

Therefore,

\[
\kappa(G) = \max\{\sum_{i \in V} x_i \mid x \in \text{QSTAB}(G)\} \leq \chi(G).
\]

Combining, we have \(\alpha(G) \leq \vartheta(G) \leq \kappa(G) \leq \chi(G) \), which completes the proof.

For example, consider the cyclic graph \(C_5 \) in Figure 4 with vertices \(\{1, 2, 3, 4, 5\} \). For \(x \in \text{QSTAB}(G) \), \(x_1 + x_2 \leq 1, x_2 + x_3 \leq 1, x_3 + x_4 \leq 1, x_4 + x_5 \leq 1, x_5 + x_1 \leq 1 \). Then \(2(x_1 + x_2 + x_3 + x_4 + x_5) \leq 5 \). Hence \(\kappa(C_5) \leq \frac{5}{2} \). Since \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \in \text{QSTAB}(C_5) \), \(\kappa(C_5) = \frac{5}{2} \). But \(\chi(C_5) = 3 > \kappa(C_5) \).

Corollary 1. If \(G \) is a perfect graph, then \(\vartheta(G) = \alpha(G) \).

Proof. By the Perfect Graph Theorem, \(G^c \) is a perfect graph. Therefore, we have \(\omega(G^c) = \chi(G^c) \).

By the Sandwich Theorem, \(\omega(G^c) \leq \vartheta(G) \leq \chi(G^c) \), so \(\vartheta(G) = \omega(G^c) \). Since \(\omega(G^c) = \omega(G^c) \), therefore \(\vartheta(G) = \alpha(G) \).

2 Two Additional Functions \(\vartheta_1(G) \) and \(\vartheta_2(G) \)

We have just shown that \(\vartheta(G) \) lies between \(\chi(G) \) and \(\alpha(G) \). In this part, we are going to introduce the other two functions \(\vartheta_1(G) \) and \(\vartheta_2(G) \). They are different ways of defining \(\vartheta(G) \). This will not only help us to understand \(\vartheta(G) \) but also help us to compute \(\vartheta(G) \). We will prove that \(\vartheta(G) \leq \vartheta_1(G) \leq \vartheta_2(G) \). In [3], Donald Knuth introduced two additional functions \(\vartheta_3, \vartheta_4 \) in order to prove \(\vartheta_2 \leq \vartheta \). Therefore \(\vartheta, \vartheta_1, \vartheta_2 \) are all equivalent.
2.1 The $\vartheta_1(G)$ function

If G is a graph,

$$\vartheta_1(G) = \min_{a} \left(\max_{v} \left(\frac{1}{c(a_v)} \right) \right),$$

over all orthogonal labelings a.

The max is ∞ if there is some v such that $c(a_v) = 0$.

Lemma 3. $\vartheta(G) \leq \vartheta_1(G)$.

Proof. If G is a graph, suppose $x \in \text{TH}(G)$ and a is an orthogonal labeling of G. Then

$$\vartheta(G) = \max \left\{ \sum_v x_v \mid x \in \text{TH}(G) \right\}$$

$$= \max \left\{ \sum_v \frac{1}{c(a_v)} \cdot c(a_v) \cdot x_v \mid x \in \text{TH}(G) \right\}$$

$$\leq \max_v \frac{1}{c(a_v)} \max \left\{ \sum_v c(a_v) \cdot x_v \mid x \in \text{TH}(G) \right\}.$$

By the definition of $\text{TH}(G)$, $\sum_v c(a_v)x_v \leq 1$. Therefore,

$$\vartheta(G) \leq \max_v \frac{1}{c(a_v)} \cdot 1.$$

Since this inequality holds for each orthogonal labeling,

$$\vartheta(G) \leq \min_{a} \left(\max_{v} \frac{1}{c(a_v)} \right) = \vartheta_1(G).$$

\[\Box \]

2.2 The $\vartheta_2(G)$ function

Definition 7. Matrix A is a feasible matrix for the graph G if A is indexed by the vertices of G and

(i) A is real and symmetric,

(ii) $a_{ii} = 1$, for all $i \in V$,

(iii) $a_{ij} = 1$, whenever i and j are nonadjacent in G.

The rank 1 matrix

\[A_0 = [1, 1, \cdots, 1]^T[1, 1, \cdots, 1] \]

is feasible for any graph \(G \) and has one nonzero eigenvalue

\[\lambda_1(A_0) = \text{tr}(A) = \sum_{i=1}^{n} 1 = n. \]

If \(A \) is any real symmetric matrix which has eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \), by the Spectral Theorem, \(A = QDQ^T \) for some orthogonal matrix \(Q \) and diagonal matrix \(D \) where \(D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n) \). Since all the eigenvalues of \(A \) are real, by the Rayleigh-Ritz Theorem, \(A \) has the maximum eigenvalue,

\[\lambda_1(A) = \max \{ x^T Ax \mid \|x\|_2 = 1, \ x \in \mathbb{R}^n \} \]

Lemma 4. The set of feasible \(A \) with \(\lambda_1(A) \leq n \) is compact.

Proof. Starting with

\[\lambda_1(A) + \lambda_2(A) + \cdots + \lambda_n(A) = n, \]

we use what we know about the ordering to get

\[(n - 1)\lambda_1(A) + \lambda_n(A) \geq n \quad \text{so} \quad (n - 1)n + \lambda_n(A) \geq n. \]

In particular, we have that

\[\lambda_n(A) \geq -(n - 2)n \quad \text{so that} \quad -(n - 2)n \leq \lambda_i(A) \leq n \quad \text{for} \quad i = 1, \cdots, n. \]

This shows that \(\lambda_i^2(A) \leq n^2(n - 2)^2 \) and so

\[\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} \lambda_i^2(A) \leq n^3(n - 2)^2. \]

Therefore, the set is bounded. The set is clearly closed, so it is compact.

From Lemma 4 and the fact that \(\lambda_1(A) \) is a continuous function of the entries of \(A \), we know that the minimum value of \(\lambda_1(A) \) exists.
Definition 8. Given a graph G, then

$$\vartheta_2(G) = \min \{ \lambda_1(A) \mid A \text{ is a feasible matrix for } G \}.$$

Lemma 5. $\vartheta_1(G) \leq \vartheta_2(G)$.

Proof. Let A be a feasible matrix such that $\vartheta_2(G) = \lambda_1 \geq 0$ and let $B = \lambda_1 I - A$. Let $\lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n$ be the remaining eigenvalues of A.

The eigenvalues of B are $\lambda_1 - \lambda_i$. It is clear that all the eigenvalues of B are nonnegative, so B is positive semidefinite.

If

$$A = Q \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} Q^T$$

then

$$B = Q \begin{bmatrix} \lambda_1 - \lambda_1 & & & \\ & \lambda_1 - \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_1 - \lambda_n \end{bmatrix} Q^T = Q \begin{bmatrix} (\sqrt{\lambda_1 - \lambda_1})^2 & & & \\ & (\sqrt{\lambda_1 - \lambda_2})^2 & & \\ & & \ddots & \\ & & & (\sqrt{\lambda_1 - \lambda_n})^2 \end{bmatrix} Q^T = X^T X,$$

where

$$X = Q \begin{bmatrix} \sqrt{\lambda_1 - \lambda_1} & & & \\ & \sqrt{\lambda_1 - \lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_1 - \lambda_n} \end{bmatrix} Q^T.$$

Let $X = [x_1, x_2, \cdots, x_n]$ (i.e., the x_i are the columns of X), so that we have $b_{ij} = x_i^T x_j$.

Let $u_i = \begin{bmatrix} 1 \\ x_i \end{bmatrix} \in \mathbb{R}^{n+1}$, $x_i \in \mathbb{R}^n$.

11
If $i \neq j$ and ij is not in E,

$$u_i \cdot u_j = 1 + x_i^T x_j = 1 + b_{ij} = a_{ij} + b_{ij}.$$

Since $B = \lambda_1 I - A$, we have $b_{ij} = -a_{ij}$, so $u_i \cdot u_j = a_{ij} - a_{ij} = 0$.

Therefore,

$$u_1, u_2, \cdots, u_n$$

is an orthogonal labeling of G.

Note that appealing to the definition of cost that

$$c(u_i) = \frac{1}{1 + \|x_i\|^2}.$$

So for each $i = 1, 2, \cdots, n$,

$$\frac{1}{c(u_i)} = 1 + \|x_i\|^2 = 1 + x_i \cdot x_i = 1 + b_{ii} = a_{ii} + \lambda_1 - a_{ii} = \lambda_1.$$

This implies

$$\lambda_1 = \max_{i \in V} \frac{1}{c(u_i)}.$$

Hence,

$$\vartheta_1(G) = \min_{a} \max_{i} \left(\frac{1}{c(a_i)} \right) \leq \max_{i} \frac{1}{c(u_i)} = \lambda_1 = \vartheta_2(G).$$

This completes the proof.

In [3], Donald E. Knuth has proved that \(\vartheta_2(G) \leq \vartheta(G) \) by proving \(\vartheta_2(G) \leq \vartheta_3(G) \leq \vartheta_4(G) \leq \vartheta(G) \). So, we can conclude that \(\vartheta(G) = \vartheta_2(G) \).

3 \quad \vartheta_2(G) \text{ and } K_n

Now we are going to use \(\vartheta_2(G) \) to calculate \(\vartheta(G) \) for the two simplest graphs, \(K_n \) and \(K_n^c \).

3.1 \quad \vartheta_2(K_n) \text{ and } \vartheta_2(K_n^c)

Lemma 6. \(\vartheta(K_n) = \vartheta_2(K_n) = 1. \)
Consider the graph K_n. We know that K_n is a perfect graph. By the Sandwich Theorem, $\vartheta(K_n) = \alpha(K_n) = 1$.

We also obtain this conclusion in two different ways.

There are no missing edges in the graph K_n, so any set of n vectors is an orthogonal labeling. Let $u_i = [\sqrt{a}, \sqrt{b}]^T$ for $i = 1, 2, \ldots, n$, then $c(u_i) = a/(a + b)$. Now consider the following,

$$\sum c(u_i) \cdot x_i = \sum \frac{a}{a + b} \cdot x_i \leq 1,$$

rearranging we get $\sum x_i \leq 1 + \frac{b}{a}$.

From this last statement, it is clear that if we let $b = 0$ then $\sum x_i \leq 1$. It follows that

$$\text{TH}(K_n) = \{ x \geq 0 | \sum x_i \leq 1 \}.$$

Therefore,

$$\vartheta(K_n) = \max \{ \sum x_i | x \in \text{TH}(K_n) \} = \max \{ \sum x_i | \sum x_i \leq 1, \forall x \geq 0 \} = 1.$$

We should get the same result if we look at $\vartheta_2(K_n)$.

Let A_n be the feasible matrix of K_n, and let λ_1 be the maximum eigenvalue of A_n, then the matrix A_n has the form

$$A_n = \begin{bmatrix}
1 & x_{12} & \cdots & x_{1(n-1)} & x_{1n} \\
x_{12} & 1 & \cdots & x_{2(n-1)} & x_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{1(n-1)} & x_{2(n-1)} & \cdots & 1 & x_{(n-1)n} \\
x_{1n} & x_{2n} & \cdots & x_{(n-1)n} & 1
\end{bmatrix}.$$

Since for any graph G

$$n\lambda_1 = \lambda_1 + \lambda_1 + \cdots + \lambda_1 \geq \lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{tr} A_n = n,$$

we have that $\lambda_1 \geq 1$. On the other hand, A_n becomes I when $x_{ij} = 0$ for any $i \neq j$, and in that case $\lambda_1 = 1$.

So $\vartheta_2(K_n) = \min \lambda_1 = 1$.

Lemma 7. $\vartheta_2(K_n^c) = n$.

13
The graph of K^c_n is very simple. It just contains n vertices without any edges, which means there are no pairwise adjacent vertices. Since K^c_n is a perfect graph, by the Sandwich Theorem, $\vartheta(K^c_n) = \alpha(K^c_n) = n$.

We can also see this result very easily from the definition of the ϑ_2 function. Since the feasible matrix A_n of K^c_n is a $n \times n$ matrix with all the entries equal to 1, the rank of A_n is 1. Therefore, there is only one nonzero eigenvalue and it equals $\text{tr}(A_n)$ which is n. Hence $\vartheta(K^c_n) = \vartheta_2(K^c_n) = n$.

3.2 $\vartheta_2(G)$ for complete multipartite graphs

Definition 9. The union of graphs G and H with $V(G) \cap V(H) = \emptyset$, written $G \cup H$, has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

Similarly, the join of graphs G and H with $V(G) \cap V(H) = \emptyset$, written $G \vee H$, is obtained from $G \cup H$ by adding the edges $\{xy : x \in V(G), y \in V(H)\}$.

Let $G = K_{n_1,n_2,\ldots,n_k}$ be a complete multipartite graph, then

$$K_{n_1,n_2,\ldots,n_k} = (K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k})^c$$

$$= K^c_{n_1} \vee K^c_{n_2} \vee \cdots \vee K^c_{n_k}.$$

For example, in Figure 7 we have the union and the join of the two graphs P_3 and K_3. The bold edge in the join indicates that we join all vertices between these two sets.

![Figure 7:](image)

Lemma 8. $\vartheta(K_{n_1,n_2,\ldots,n_k}) = \max\{n_1, n_2, \ldots, n_k\}$.

We will prove this lemma in two different ways.
Proof. For our first proof, consider the following.

First, let $G = K_{n_1, n_2, \ldots, n_k}$. We show that G is a perfect graph. This follows since,

$$\omega(K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k}) = \max\{n_1, n_2, \ldots, n_k\} = \chi(K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k}),$$

with a similar equality for each induced subgraph. So $K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k}$ is a perfect graph. By the Perfect Graph Theorem, a graph is perfect if and only if its complement is perfect. Therefore, $K_{n_1, n_2, \ldots, n_k} = (K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k})^c$ is perfect. So by Corollary 1,

$$\vartheta(K_{n_1, n_2, \ldots, n_k}) = \alpha(K_{n_1, n_2, \ldots, n_k}) = \omega(K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k}) = \max\{n_1, n_2, \ldots, n_k\}.$$

Before we use the second method of proving the lemma, we need to state a useful result.

Theorem 2 (Interlacing Inequalities). Let $A \in M_n$ be Hermitian and for any $i \in N$, let $A(i)$ be the principal submatrix obtained from A by deleting the i^{th} row and column. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of A and $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1}$ be the eigenvalues of $A(i)$, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n.$$

Corollary 2. Let $A \in M_n$ be a Hermitian matrix and $B \in M_m$ be any principal submatrix of A, then $\lambda_k(A) \geq \lambda_k(B), \ k = 1, 2, \cdots, m$.

Now we are ready prove Lemma 8 by using the definition of the ϑ_2 function. First, consider an example, namely let $G = K_{3,2,1} = (K_3 \cup K_2 \cup K_1)^c$. This graph is shown in Figure 8.

Let A be a feasible matrix of $K_{3,2,1}$. Then A has the form

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
Figure 8:

where the remaining entries are any real numbers for which A is symmetric. There are three blocks in A, they are A_3, A_2, A_1, the feasible matrices for K_3^c, K_2^c and K_1^c. The eigenvalues for these matrices are:

$$
\lambda(A_3) = 3, 0, 0; \quad \lambda(A_2) = 2, 0; \quad \lambda(A_1) = 1.
$$

Let λ_1 be the maximum eigenvalue of A. Then by Corollary 2,

$$
\vartheta_2(K_{3,2,1}) = \lambda_1 \geq \max\{\lambda_1(A_3), \lambda_1(A_2), \lambda_1(A_1)\} = 3.
$$

However if we set all remaining entries in A equal to 0, $A = A_3 \oplus A_2 \oplus A_1$ which has eigenvalues $3, 0, 0, 2, 0, 1$ and so $\lambda_1 = 3$. Therefore $\vartheta_2(K_{3,2,1}) = 3$.

We are now ready to generalize this for the proof of Lemma 8.

Proof. For our second proof, consider the following.

Consider the feasible matrix A_n of the graph $G = K_{n_1, n_2, \ldots, n_k}$. Then

$$
A_n = \begin{bmatrix}
J_{n_1} & \cdots & \\
\vdots & \ddots & \\
& & J_{n_k}
\end{bmatrix},
$$

where all the off diagonal entries are some real numbers which preserve symmetry and J_{n_i} are the feasible matrices for $K^n_{n_i}$, so all the entries equal 1. Let λ_1 be the maximum eigenvalue. By Corollary 2, $\lambda_1(A_n) \geq \lambda_1(J_{n_i})$ for $i = 1, 2, \ldots, k$. Since the eigenvalues of the matrix J_{n_i} are n_i and 0, $\lambda_1(J_{n_i}) = n_i$. Therefore $\lambda_1(K_{n_1, n_2, \ldots, n_k}) \geq \max\{n_1, n_2, \ldots, n_k\}$. Equality holds when all the off diagonal entries of A_n equal 0 which reaches the minimum value of λ_1. Hence $\vartheta_2(K_{n_1, n_2, \ldots, n_k}) = \max\{n_1, n_2, \ldots, n_k\}$. \qed
3.3 $\vartheta_2(G)$ for the union of two complete graphs

We have proved earlier that $\vartheta(K_n) = 1$ (Lemma 6). Now we want to show the calculation of the ϑ function for the union of two complete graphs.

Lemma 9. $\vartheta(K_n \cup K_m) = 2$.

Proof. Let $G = K_m \cup K_n$, and A, A_m and A_n be feasible matrices of G, K_m, and K_n respectively. Let $\lambda_1(A)$, $\lambda_1(A_m)$, $\lambda_1(A_n)$ represent the maximum eigenvalues of each matrix. Then A_m is a $m \times m$ symmetric matrix with all the diagonal entries equal 1 and all the off diagonal entries are real numbers. Similarly, A_n is a $n \times n$ symmetric matrix with all the diagonal entries equal 1 and all the off diagonal entries are real numbers. So A has the form

$$A = \begin{bmatrix} A_n & 1 \\ 1 & A_m \end{bmatrix}.$$

Now suppose each off diagonal entry in A_n and A_m equals x and define

$$B = A + (x - 1)I.$$

Then we will obtain an $(m + n) \times (m + n)$ symmetric matrix

$$\begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix}. $$

Since the rank of B is at most two, we have at most two nonzero eigenvalues. So, at least $(m + n - 2)$ eigenvalues are zero. The characteristic polynomial for B is

$$t^{m+n} - (m + n)xt^{m+n-1} + mn(x^2 - 1)t^{m+n-2}.$$

Using the quadratic formula to solve for the possible nonzero eigenvalues we find they are

$$t = \frac{(m + n)x \pm \sqrt{(m - n)^2x^2 + 4mn}}{2}.$$

Hence the eigenvalues of B are:

$$\frac{(m + n)x \pm \sqrt{(m - n)^2x^2 + 4mn}}{2},$$

and 0 with multiplicity $m + n - 2$.

17
It follows that the eigenvalues of A are $\lambda(B) - (x - 1)$:

$$
\frac{(m + n)x \pm \sqrt{(m - n)^2x^2 + 4mn}}{2} - (x - 1), \quad \text{and} \quad -(x - 1) \text{ with multiplicity } m + n - 2.
$$

When $x = -1$ the eigenvalues are 0, $-(m+n)$ and 2. We have the largest eigenvalue $\lambda_1 = 2$. This shows $\vartheta_2(K_n \cup K_m) \leq 2$. By the Sandwich Theorem, $\vartheta(K_n \cup K_m) \geq \alpha(K_n \cup K_m) = 2$, therefore, $\vartheta(K_n \cup K_m) = 2$.

\section{4 $\vartheta_2(G)$ and C_n}

In this part, we are going to utilize the $\vartheta_2(G)$ function to find $\vartheta(G)$ for the n-cycle, C_n, which is an imperfect graph for each odd integer greater than three.

First we will illustrate how to use ϑ_2 to calculate $\vartheta(C_5)$.

We first need to prove one important fact. Given a symmetric matrix A, let $\lambda_1(A)$ denote the maximum eigenvalue of A.

\textbf{Lemma 10.} Let $A_i, i = 1, 2, \cdots, k$ be symmetric matrices. Then

$$
\lambda_1 \left(\sum_{i=1}^{k} A_i \right) \leq \sum_{i=1}^{k} \lambda_1(A_i).
$$

\textbf{Proof.} Let A and B be symmetric matrices.

By the Rayleigh-Ritz theorem

$$
\lambda_1(A) = \max_{x \neq 0} \frac{x^T A x}{x^T x}, \quad \lambda_1(B) = \max_{x \neq 0} \frac{x^T B x}{x^T x}.
$$

Since

$$
\frac{x^T (A + B) x}{x^T x} = \frac{x^T A x}{x^T x} + \frac{x^T B x}{x^T x} \leq \max_{x \neq 0} \frac{x^T A x}{x^T x} + \max_{x \neq 0} \frac{x^T B x}{x^T x} = \lambda_1(A) + \lambda_1(B),
$$

we have

$$
\lambda_1(A + B) = \max_{x \neq 0} \frac{x^T (A + B) x}{x^T x} \leq \lambda_1(A) + \lambda_1(B).
$$

The result follows by mathematical induction. \hfill \Box
Notice that the Lemma is false if A is not a symmetric matrix. For example, if $A = \begin{bmatrix} 0 & \frac{1}{m} \\ m & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & m \\ \frac{1}{m} & 0 \end{bmatrix}$, then the eigenvalues of A and B are 1 and -1. Then $\lambda_1(A) + \lambda_1(B) = 2$, but $A + B = \begin{bmatrix} 0 & m + \frac{1}{m} \\ m + \frac{1}{m} & 0 \end{bmatrix}$, and the eigenvalues of $A + B$ are $m + \frac{1}{m}, -(m + \frac{1}{m})$. It is clear that $m + \frac{1}{m} > 2$ for any $m > 0$ but $m \neq 1$.

Now we compute $\vartheta_2(C_5)$. Consider the graph $G = C_5$ with $V = \{1, 2, 3, 4, 5\}$, $E = \{x_1, x_2, x_3, x_4, x_5\}$. The relationship of the vertices with the edges is shown in Figure 9.

![Figure 9](image)

The feasible matrix for C_5 is:

$$A_1 = \begin{bmatrix} 1 & x_1 & 1 & 1 & x_5 \\ x_1 & 1 & x_2 & 1 & 1 \\ 1 & x_2 & 1 & x_3 & 1 \\ 1 & 1 & x_3 & 1 & x_4 \\ x_5 & 1 & 1 & x_4 & 1 \end{bmatrix}$$

where now x_1, x_2, x_3, x_4, x_5 represent real numbers. We want to show that the minimum value of λ_1 occurs when $x_1 = x_2 = x_3 = x_4 = x_5$. To do this consider the matrix P where,

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix},$$

i.e., P is a permutation matrix. Now define

$$A_2 = P^T A P = \begin{bmatrix} 1 & x_5 & 1 & 1 & x_4 \\ x_5 & 1 & x_1 & 1 & 1 \\ 1 & x_1 & 1 & x_2 & 1 \\ 1 & 1 & x_2 & 1 & x_3 \\ x_4 & 1 & 1 & x_3 & 1 \end{bmatrix}. $$

We may view the action of P as rotating each vertex of the graph C_5 one position counterclockwise, or equivalently, each edge one position clockwise. This is seen in Figure 10.
We similarly define $A_3 = (P^2)^T AP^2$, $A_4 = (P^3)^T AP^3$ and $A_5 = (P^5)^T AP^5$,

$$
A_3 = \begin{bmatrix} 1 & x_4 & 1 & 1 & x_3 \\ x_4 & 1 & x_5 & 1 & 1 \\ 1 & x_5 & 1 & x_1 & 1 \\ 1 & 1 & x_1 & 1 & x_2 \\ x_3 & 1 & 1 & x_2 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & x_3 & 1 & 1 & x_2 \\ x_3 & 1 & x_4 & 1 & 1 \\ 1 & x_4 & 1 & x_5 & 1 \\ 1 & 1 & x_5 & 1 & x_1 \\ x_2 & 1 & 1 & x_1 & 1 \end{bmatrix},
$$

$$
A_5 = \begin{bmatrix} 1 & x_2 & 1 & 1 & x_1 \\ x_2 & 1 & x_3 & 1 & 1 \\ 1 & x_3 & 1 & x_4 & 1 \\ 1 & 1 & x_4 & 1 & x_5 \\ x_1 & 1 & 1 & x_5 & 1 \end{bmatrix}.
$$

Since A_1, A_2, A_3, A_4 and A_5 are similar, they have the same eigenvalues. Now let

$$
A_0 = \frac{1}{5}(A_1 + A_2 + A_3 + A_4 + A_5) = \begin{bmatrix} 1 & x & 1 & 1 & x \\ x & 1 & x & 1 & 1 \\ 1 & x & 1 & x & 1 \\ 1 & 1 & x & 1 & x \\ x & 1 & 1 & x & 1 \end{bmatrix}
$$

where $x = \frac{1}{5}(x_1 + x_2 + x_3 + x_4 + x_5)$. By Lemma 10 we have

$$
\lambda_1(A_0) = \lambda_1\left[\frac{1}{5}(A_1 + A_2 + A_3 + A_4 + A_5)\right]
\leq \lambda_1\left(\frac{1}{5}A_1\right) + \lambda_1\left(\frac{1}{5}A_2\right) + \lambda_1\left(\frac{1}{5}A_3\right) + \lambda_1\left(\frac{1}{5}A_4\right) + \lambda_1\left(\frac{1}{5}A_5\right)
= \frac{1}{5}[\lambda_1(A_1) + \lambda_1(A_2) + \lambda_1(A_3) + \lambda_1(A_4) + \lambda_1(A_5)]
= \lambda_1(A_1).
$$

Therefore, the minimum eigenvalue λ_1 occurs at A_0, which means when $x_1 = x_2 = x_3 = x_4 = x_5$.

I used Maple to compute the eigenvalues of A_0 as follows:

$$
3 + 2x, \quad (-\frac{1}{2} + \frac{1}{2}\sqrt{5})(-1 + x), \quad (-\frac{1}{2} - \frac{1}{2}\sqrt{5})(-1 + x),
(-\frac{1}{2} + \frac{1}{2}\sqrt{5})(-1 + x), \quad (-\frac{1}{2} - \frac{1}{2}\sqrt{5})(-1 + x).
$$
Notice that there are only three distinct eigenvalues, namely,

$$\lambda_{11} = 3 + 2x, \quad \lambda_{12} = (-\frac{1}{2} + \frac{1}{2}\sqrt{5})(-1 + x), \quad \lambda_{13} = (-\frac{1}{2} - \frac{1}{2}\sqrt{5})(-1 + x).$$

We know that $\vartheta_2(C_5) = \min \lambda_1$ over all feasible matrices. Figure 11 shows plots of the lines λ_{11}, λ_{12}, λ_{13} as functions of x.

![Graph showing plots of λ_{11}, λ_{12}, λ_{13} as functions of x.]

From the graph (Figure 11) we see that the minimum λ_1 occurs at the intersection of λ_{11} and λ_{13}, which occurs at $x = (-3 + \sqrt{5})/2$, and gives $\lambda_1 = \sqrt{5}$.

Therefore, $\vartheta_2(C_5) = \min \lambda_1(A) = \sqrt{5}$. Since $C_5^c = C_5$, the Sandwich Theorem says that $\omega(C_5) \leq \vartheta(C_5) \leq \chi(C_5)$ which is $2 < \sqrt{5} < 3$. This is our first example of the sandwich theorem in which the inequalities are strict.

Now, we will look at another important property of the ϑ_2 function which enables us to compute $\vartheta_2(C_n)$.

First, we need to introduce some related definitions and prove one lemma.

Definition 10. Let $G = (V, E)$ be a graph with vertex set $V = \{1, 2, 3, \cdots, n\}$. The n-by-n adjacency matrix $A_n(G) = (a_{ij})$ is defined by

$$a_{ij} = \begin{cases} 1 & \text{if } ij \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 11. The eigenvalues of a graph are the eigenvalues of its adjacency matrix.
Lemma 11. Let A_n be the adjacency matrix of C_n. Then the eigenvalues for A_n are
\[\lambda_j = 2 \cos \frac{2\pi j}{n}, \quad j = 0, 1, \ldots, n - 1. \]

Proof. Assume the vertices of C_n are labeled 1 through n. Then the adjacency matrix A_n of C_n is
\[
A_n = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 1 \\
1 & 0 & 1 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix}.
\]
Assume λ is an eigenvalue of A_n and $x = [x_1, x_2, \ldots, x_n]^T$ is a corresponding eigenvector. The equation $Ax = \lambda x$ written in components is
\[
x_n + x_2 = \lambda x_1 \\
x_1 + x_3 = \lambda x_2 \\
x_2 + x_4 = \lambda x_3 \\
\vdots \\
x_{n-1} + x_1 = \lambda x_n
\]
We can rewrite this as a single equation
\[x_{k-1} + x_{k+1} = \lambda x_k \quad (1) \]
with boundary conditions $x_1 = x_{n+1}$ and $x_0 = x_n$.

This is a second degree linear difference equation with constant coefficients. For a difference equation, the fundamental solutions have the form r^k, $r \neq 0$.

Let $x_k = r^k$ in equation (1). Then we have $r^{k-1} + r^{k+1} = \lambda r^k$. Dividing by r^{k-1}, we have $r^2 - \lambda r + 1 = 0$. Let r_1, r_2 be the two roots of this equation. Then
\[r_1 + r_2 = \lambda, \quad r_1 \cdot r_2 = 1. \]
First assume that $r_1 = r_2$. So $r_1 = r_2 = 1$ or $r_1 = r_2 = -1$.

Consider $r_1 = r_2 = 1$, then $\lambda = 2$. The solution for equation (1) is $x_k = 1^k = 1$. Also $x_k = k \cdot 1^k = k$ is a solution since

$$x_{k-1} + x_{k+1} - \lambda x_k = (k-1) + (k+1) - 2k = 0.$$

So if $r_1 = r_2 = 1$, the general solution for equation (1) is $x_k = c_1 + c_2 \cdot k$. From the boundary conditions we have

$$c_1 = c_1 + nc_2 \quad \text{and} \quad c_1 + c_2 = c_1 + (n+1)c_2.$$

Therefore $c_2 = 0$. Hence $x_1 = x_2 = \cdots = x_n = c_1$, i.e., $c_1[1,1,\ldots,1]^T$ is an eigenvector corresponding to $\lambda = 2$.

Similarly, if $r_1 = r_2 = -1$, $\lambda = -2$, the solutions for the equation (1) are $x_k = (-1)^k$ and $x_k = k \cdot (-1)^k$. The general solution for equation (1) is also

$$x_k = c_1(-1)^k + c_2 \cdot k(-1)^k.$$

From the boundary conditions we have

$$x = c_1[-1,1,-1,1,\cdots,1]^T \text{ if } n \text{ is even, and } x = 0 \text{ if } n \text{ is odd.}$$

So $\lambda = -2$ is an eigenvalue if n is even.

Now we assume that $r_1 \neq r_2$. Then the general solution for equation (1) is

$$x_k = c_1 r_1^k + c_2 r_2^k.$$

From the boundary conditions we have

$$c_1 + c_2 = c_1 r_1^n + c_2 r_2^n \quad \text{and} \quad c_1 r_1 + c_2 r_2 = c_1 r_1^{n+1} + c_2 r_2^{n+1}.$$

Equivalently,

$$c_1(1 - r_1^n) + c_2(1 - r_2^n) = 0 \quad \text{and} \quad c_1 r_1(1 - r_1^n) + c_2 r_2(1 - r_2^n) = 0. \quad (2)$$
From equation (2) we have
\[
\begin{bmatrix}
1 - r_1^n & 1 - r_2^n \\
1 & r_2(1 - r_2^n)
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = 0.
\]

Since \([c_1, c_2]^T\) is nonzero, therefore \(B = \begin{bmatrix}
1 - r_1^n & 1 - r_2^n \\
1 & r_2(1 - r_2^n)
\end{bmatrix}\) is a singular matrix, which means \(\det(B) = 0\). That is,
\[
(1 - r_1^n)r_2(1 - r_2^n) - (1 - r_2^n)r_1(1 - r_1^n) = 0,
\]
so,
\[
(1 - r_1^n)(1 - r_2^n)(r_2 - r_1) = 0.
\]
For \(r_1^n = 1\), \(r_1 = e^{2\pi ij/n} , j = 0, 1, \ldots, n - 1\). Then \(r_2 = \frac{1}{r_1} = e^{-2\pi ij/n}\) which gives possible eigenvalues
\[
\lambda_j = r_1 + r_2
= e^{2\pi ij/n} + e^{-2\pi ij/n}
= 2 \cos \frac{2\pi j}{n} , j = 0, 1, \ldots, n - 1.
\]
For \(r_2^n = 1\), we obtain the same result.

Now we see the only solutions are
\[
\lambda_j = 2 \cos \frac{2\pi j}{n}, \text{ for } j = 0, 1, \ldots, n - 1.
\]
Note that \(j = 0\) gives the solution for the case \(r_1 = r_2 = 1\) and when \(n\) is even, \(j = n/2\) gives the solution for \(r_1 = r_2 = -1\), Therefore, these two previous cases can be combined with this case.

Next, we need to show that the eigenvalues of \(A\) and the \(\lambda_j\) are in one-to-one correspondence.

Consider the matrix
\[
B = A - \lambda I = \begin{bmatrix}
-\lambda & 1 & 0 & \cdots & 0 & 1 \\
1 & -\lambda & 1 & \cdots & 0 & 0 \\
0 & 1 & -\lambda & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & -\lambda & 1 \\
1 & 0 & 0 & \cdots & 1 & -\lambda
\end{bmatrix}
\]
If we delete the first and last rows and first two columns, we obtain an upper triangular matrix, which is invertible. Therefore \(\text{rank}(B) \geq n - 2 \), so nullity\((B) \leq 2 \). So

\[
\text{geometric multiplicity}(\lambda) \leq 2,
\]

\[
\text{algebraic multiplicity}(\lambda) \leq 2.
\]

For \(\lambda_0 = 2 \), we consider the matrix \(B_1 = A - 2I \),

\[
B_1 = \begin{bmatrix}
-2 & 1 & 1 \\
1 & -2 & 1 \\
& & \ddots & 1 \\
1 & & & -2
\end{bmatrix}.
\]

If we delete the first row and first column, we obtain the matrix

\[
B_{11} = \begin{bmatrix}
-2 & 1 \\
1 & -2 \\
& & \ddots & 1 \\
1 & & & -2
\end{bmatrix}.
\]

For any \(x \in \mathbb{R}^{n-1} \),

\[
x^T B_{11} x = -2x_1^2 + 2x_1x_2 - 2x_2^2 + 2x_2x_3 - 2x_3^2 + \cdots + 2x_{n-2}x_{n-1} - 2x_{n-1}^2
\]

\[
= -x_1^2 - (x_1 - x_2)^2 - (x_2 - x_3)^2 - \cdots - (x_{n-2} - x_{n-1})^2 - x_{n-1}^2 \leq 0.
\]

So, \(B_{11} \) is negative semidefinite.

If \(x^T B_{11} x = 0 \), then \(x_1 = 0, x_1 - x_2 = 0, x_2 - x_3 = 0, \ldots, x_{n-2} - x_{n-1} = 0 \). Therefore \(x_1 = x_2 = \cdots = x_{n-1} = 0 \). So if \(x \neq 0 \), then \(x^T B_{11} x < 0 \) and \(B_{11} \) is negative definite. We know that \(-B_{11}\) is invertible because it is positive definite. Therefore \(B_{11} \) is also invertible.

So the rank of \(B_1 \) is at least \(n - 1 \). Also, since \(B_1 \) is a singular matrix, we have

\[
n - 1 \geq \text{rank}(B_1) \geq n - 1.
\]

Therefore \(\text{rank}(B_1) = n - 1 \) and nullity\((B_1) = 1 \). Therefore,

\[
\text{geometric multiplicity}(2) = 1, \quad \text{and} \quad \text{algebraic multiplicity}(2) = 1.
\]
If \(n \) is an odd number there are \((n + 1)/2\) distinct values in \(\lambda_j = 2 \cos(2\pi j/n) \). We let \(\lambda^{(2)} \) be the number of eigenvalues with algebraic multiplicity equal 2, and \(\lambda^{(1)} \) be the number of eigenvalues with algebraic multiplicity equal 1. Since \(B \) has \(n \) eigenvalues

\[
n = \lambda^{(2)} + \lambda^{(1)} \\
\leq 2 \left(\frac{n+1}{2} - 1 \right) + 1 \\
= n.
\]

So each eigenvalue \(2 \cos(2\pi j/n) \), \(j = 1, \ldots, \frac{n-1}{2} \) has multiplicity 2.

If \(n \) is an even number, \(\lambda = -2 \) is also one of the eigenvalues of matrix \(A \) since for eigenvector \(x = [-1, 1, -1, 1, \ldots, 1]^{T} \)

\[
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 1 \\
1 & 0 & 1 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 1 \\
1 & 0 & \cdots & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
-1 \\
1 \\
-1 \\
\vdots \\
1 \\
1
\end{bmatrix}
= (-2)
\begin{bmatrix}
-1 \\
1 \\
-1 \\
\vdots \\
1 \\
1
\end{bmatrix}.
\]

Consider the matrix \(B_{2} = A - \lambda I \)

\[
B_{2} = \begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2 \\
\vdots & \vdots & \vdots \\
1 & 1 & 2
\end{bmatrix}.
\]

If we delete the first row and the first column, we obtain the matrix

\[
B_{21} = \begin{bmatrix}
2 & 1 \\
1 & 2 \\
\vdots & \vdots \\
1 & 1 \\
1 & 2
\end{bmatrix}.
\]

For any \(x \in \mathbb{R}^{n-1} \), by an argument similar to the case when \(\lambda_0 = 2 \), \(B_{21} \) is positive definite. Therefore \(B_{21} \) is invertible.

So the rank of \(B_{2} \) is at least \(n - 1 \). On the other hand, \(B_{2} \) is a singular matrix because \(-2\) is an eigenvalue. So

\[
n - 1 \geq \text{rank}(B_{2}) \geq n - 1.
\]
Therefore \(\text{rank}(B_2) = n - 1 \) and \(\text{nullity}(B_2) = 1 \). So we have

\[
\text{geometric multiplicity}(-2) = 1, \quad \text{and} \quad \text{algebraic multiplicity}(-2) = 1.
\]

So the dimension of the eigenspace of \(B_2 \) corresponding to the eigenvalue \(-2\) is one. By a similar argument as for when \(n \) is odd, we see that 2 and \(-2\) are eigenvalues of multiplicity one and \(2 \cos(2\pi j/n), j = 1, 2 \cdots, (n/2) - 1 \) are eigenvalues of multiplicity two.

Equivalently, the eigenvalues of \(A \) in all cases are

\[
\lambda_j = 2 \cos \frac{2\pi j}{n}, \quad j = 0, 1, \ldots, n - 1.
\]

\[\square\]

Theorem 3. For any odd number \(n \)

\[
\vartheta(C_n) = \begin{cases}
\frac{n \cos(\pi/n)}{1 + \cos(\pi/n)} & \text{if } n \text{ is odd}, \\
\frac{n}{2} & \text{if } n \text{ is even}.
\end{cases}
\]

Proof. Let \(A_n \) be the adjacency matrix of \(C_n \) and \(J_n \) be a \(n \)-by-\(n \) matrix with all entries equal to 1. As in the case \(n = 5 \), it is sufficient to consider a feasible matrix for \(C_n \) to be \(J_n - (1 - x)A_n \). We have just proved that the eigenvalues of the graph \(C_n \) are

\[
2 \cos \frac{2\pi j}{n}, \text{ for } j = 0, 1, \ldots, n - 1.
\]

Let \(u_j \) be the corresponding eigenvector. Note that \(u_0 = [1, 1, \ldots, 1]^T \) is an eigenvector corresponding to \(\lambda_0 = 2 \). Then we have

\[
[J_n - (1 - x)A_n]u_0 = [n - (1 - x)2]u_0 = (n - 2 + 2x)u_0.
\]

Since all the eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal, then for \(j > 0 \) we have,

\[
J_n u_j = \begin{bmatrix} u_0^T \\
\vdots \\
u_j^T \\
\vdots \\
u_0^T \end{bmatrix} u_j = \begin{bmatrix} u_0^T u_j \\
\vdots \\
u_j^T u_j \\
\vdots \\
u_0^T u_j \end{bmatrix} = 0.
\]

27
so then,

$$[J_n - (1 - x)A_n]u_j = 0u_j - (1 - x)A_n u_j$$

$$= -(1 - x)2\cos \frac{2\pi j}{n} u_j.$$

So the eigenvalues of $J_n - (1 - x)A_n$ are

$$\mu_0 = n - 2 + 2x$$

$$\mu_j = -2(1 - x)\cos \frac{2\pi j}{n}, \quad j = 1, 2, \ldots, n - 1.$$

Let λ_1 be the maximum eigenvalue.

If n is even, we consider the graph of μ_0 and μ_i, and consider the intersection of these lines. We know that all the lines of the form $\mu_i = -2(1 - x)\cos(2\pi j/n)$ for $j = 1, 2, \ldots, n - 1$ pass through the point $(1, 0)$. Since line $\mu_0 = n - 2 + 2x$ has biggest positive slope and biggest y intercept, it crosses each of the lines $\mu_1, \mu_2, \ldots, \mu_{n-1}$ to the left of the vertical axis. The line $\mu_{n/2} = -2(1 - x)\cos(\pi) = 2 - 2x$ has the most negative slope so is the first to meet μ_0.

It is easy to see this result if we consider the example of $n = 6$, which is illustrated in Figure 12. The distinct eigenvalues are

$$\mu_0 = 4 + 2x$$

$$\mu_1 = -2(1 - x)\cos \frac{\pi}{3}$$

$$\mu_2 = -2(1 - x)\cos \frac{2\pi}{3}$$

$$\mu_3 = -2(1 - x)\cos \pi.$$

By graphing these eigenvalues, we can see that the maximum eigenvalue occurs at the intersection of μ_0 and μ_3 which occurs at $(-1/2, 3)$ and gives $\lambda_1 = 3 = n/2$.

28
So, for any even n, we consider the intersection of the lines $2 - 2x$ and $n - 2 + 2x$, which occurs when $x = 1 - (n/4)$. Then

$$\lambda_1 = n - 2 + 2\left(1 - \frac{n}{4}\right) = \frac{n}{2} = \alpha(C_n).$$

If n is odd and $j = (n - 1)/2$,

$$\mu_j = -2(1 - x) \cos\left(\frac{2\pi(n-1)}{n}\right) = -2(1 - x) \cos\left(\pi - \frac{\pi}{n}\right) = 2(1 - x) \cos\frac{\pi}{n}.$$

Similarly, we can find the maximum eigenvalue λ_1 by finding the intersection of μ_0 and μ_j. This occurs when

$$n - 2 + 2x = 2\cos\frac{\pi}{n} - 2x \cos\frac{\pi}{n}.$$

Rearranging we get,

$$2\left(1 + \cos\frac{\pi}{n}\right)x = 2\cos\frac{\pi}{n} - n + 2,$$

so that the intersection will occur when

$$x = \frac{2\cos(\pi/n) + 2 - n}{2(1 + \cos(\pi/n))} = 1 - \frac{n}{2(1 + \cos(\pi/n))}.$$
Therefore

\[
\lambda_1 = n - 2 + 2x = n - 2 + 2 \left(1 - \frac{n}{2(1 + \cos(\pi/n))}\right) \\
= n - 2 + 2 - \frac{2n}{2(1 + \cos(\pi/n))} = n - \frac{n}{1 + \cos(\pi/n)} \\
= \frac{n \cos(\pi/n)}{1 + \cos(\pi/n)}.
\]

Hence

\[
\varphi_2(C_n) = \frac{n \cos(\pi/n)}{1 + \cos(\pi/n)}, \text{ for any odd } n.
\]
References

