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abstract

An Iterative Numerical Method for Multiple Scattering Using High Order Local Absorbing 
Boundary Conditions

Jonathan Harriman Hale
Department of Mathematics, BYU

Master of Science

This thesis outlines an iterative approach for determining the scattered wave for two 
dimensional multiple acoustic scattering problems using high order local absorbing bound-ary 
conditions and second order finite difference. We seek to approximate the total wave as it 
is scattered off of multiple arbitrarily shaped obstacles. This is done by decomposing the 
scattered wave into the superposition of single scattered waves. We then repeatedly solve 
the single scattering system for each obstacle, while updating the boundary conditions based 
off the incident wave and the scattered wave off the other obstacles. We solve each single 
scattering by enclosing the obstacle in a circular artificial boundary and generating a 
curvilinear coordinate system for the computational region between the obstacle and the 
artificial boundary. We impose an absorbing boundary condition, specifically Karp’s Farfield 
Expansion ABC, on the artificial boundary. We use a finite difference method to discretize 
the governing equations and to discretize the absorbing boundary conditions. This will cre-ate 
a linear system whose solution will approximate the single scattered wave. The forcing vector 
of the linear system is determined from the total influence on the obstacle boundary from the 
incident wave and the scattered waves from the other obstacles. In each iteration, we solve 
the singular acoustic scattering problem for each obstacle by using the scattered wave 
approximations from the other obstacles obtained from the previous iteration. The 
iterations continue until the solutions converge.

This iterative method scales well to multiple scattering configurations with many ob-stacles, 
and achieves errors on the order of 10−5 in less than five minutes. This is due to using LU 
factorization to solve the linear systems, paired with parallelization. I will include numerical 
results which demonstrate the accuracy and advantages of this iterative technique.

Keywords: multiple scattering, iterative multiple scattering, finite difference method, Helmholtz 
equation, high order absorbing boundary conditions, curvilinear coordinates, acoustic scat-
tering, farfield pattern
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Chapter 1. Introduction

The multiple scattering of waves is an important physical problem and has relevant appli-

cations in acoustic, elastic and electromagnetic waves, among others. In this work, we focus

in the two-dimensional Helmholtz equation, which models the time-harmonic solution to the

wave equation. We suppose that an acoustic sound plane wave, denoted by uinc, bounces off

of multiple objects and creates a scattered wave u. For uinc with wavenumber k coming in

at angle ϕ measured from the positive x-axis, we have

uinc(x, y) = eik(x cos(ϕ)+y sin(ϕ)). (1.1)

Given M obstacles, we denote the boundary of obstacle m by Γm, and the unbounded

region in the exterior of Γm by Ωm. The boundary condition on Γm can either be Dirich-

let, Neumann or Robin, which correspond to acoustic softness, hardness, or intermediate

hardness, respectively. Let Γ =
⋃M

m=1 Γm and Ω =
⋂M

m=1Ωm. The boundary value problem

(BVP) we are solving can be strongly formulated as

△u+k2u = 0, in Ω (1.2)

Z
∂u

∂ν
+(1−Z)u = −

(
Z
∂uinc

∂ν
+(1−Z)uinc

)
, in Γ (1.3)

lim
r→∞

r1/2(∂ru−iku) = 0 (1.4)

where we denote the acoustic hardness of an obstacle by Z ∈ [0, 1], with Z = 0 being

Dirichlet, Z = 1 being Neumann, and 0 < Z < 1 being a Robin condition. Also k > 0

is the wavenumber, the △ symbol represents the Laplacian operator and ∂
∂ν

is the normal

derivative operator relative to the boundary Γ. Condition (1.4) is known as the Sommerfeld

radiation condition, and the limit is assumed to hold uniformly for all directions x/|x| with

r = |x|, for all x ∈ Ω. Essentially, our solution u must satisfy:

(i) The Helmoltz equation (1.2) in Ω .

(ii) The Dirichlet, Neumann or Robin boundary condition (1.3) on Γ .
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(iii) The Sommerfeld radiation condition (1.4) when r →∞.

Under reasonable boundary conditions, this BVP has been shown to have a unique solution

[1, 2]. There are also available analytical solutions for the scattering from several circular

cylindrical obstacles based on eigenfunction expansion techniques combined with appropriate

addition theorems, which are also called multipole methods [2]. In particular, if we have

M circular cylinders of radius Rm centered at (bmx , b
m
y ), the multipole method leads to a

representation of the exact solution given by

u(r, θ) =
M∑

m=1

∞∑
j=−∞

cmj Hj(kr
m)ei(jθ

m), (1.5)

where the pair (rm, θm) represents a local polar coordinate system for each circular cylinder

centered at (bmx , b
m
y ). The coefficients cmj are the solution to an infinite system of linear

equations [2]. For practical purposes, the infinite summation in (1.5) is truncated by limiting

j to go from j = −N to j = N . Therefore, the representation (1.5) is no longer exact.

However, the value of N can be increased to achieve greater accuracy in the approximation

of the truncated series to the exact solution. We have found that N = 125−150 works very

well for our purposes, and we will often refer to this approximation as the “true” solution,

even though the true solution is reached in the limit as N →∞.

In [2], Martin also gives an analytical solution for what is called the “farfield pattern”, or

the scattered wave pattern. This is given by the angular function present in the dominant

term in the asymptotic expansion of the scattered wave (1.5) when r →∞. It can be shown

that

lim
r→∞

u(r, θ) =
eikr

(kr)1/2
u∞(θ)+O(1/(kr)3/2),

where

u∞(θ) =
1−i√
π

N∑
j=−N

(−i)jeijθ
[

M∑
m=1

cmj e
−ik(bmx cos(θ)+bmy sin(θ))

]
. (1.6)
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The farfield pattern is an important physical property of the scatterers. It also allows

to measure the accuracy of any numerical method for wave scattering. In Chapter 4, we

will compare our numerical results to both the analytical scattered wave and the analytical

farfield pattern.

Chapter 2. Formulation of the Itera-

tive Multiple Scattering Problem

Combined with Karp’s Farfield

Expansion ABC

The BVP defined by (1.2)-(1.4) has an unbounded domain. This is of common occurrence

in many real problems in acoustics, electromagnetics, and elasticity. Numerical methods

to solve problems in unbounded domains have been the subject of intensive work since the

1970s [3]. The general approach is to truncate the infinite domain Ω with an artificial

boundary C, separating it into the two regions Ω− and Ω+, where Ω− is the bounded domain

enclosed by the obstacle boundary Γ and the artificial boundary C, while Ω+ is the remaining

unbounded region in the exterior of the artificial boundary. All computation is then done in

Ω−, and special boundary conditions are imposed on the artificial boundary C to minimize

reflections or to absorb the outgoing waves. These boundary conditions are rightfully called

Non Reflecting Boundary Conditions (NRBC) or Absorbing Boundary Conditions (ABC)

[4].

2.1 Brief history of absorbing boundary conditions (ABC)

Starting in the 1970s, the first attempt at imposing a special boundary condition on the

artificial boundary was to impose a condition much like the Sommerfeld radiation condition

(1.4). Essentially, ∂ru−iku = 0 was imposed on the artificial boundary C, which looks much

like (1.4) with the limit and r1/2 removed [3]. This boundary condition is not very accurate,
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and leads to poor approximations of the scattered field at the artificial boundary.

In the mid 1980s, the next attempt was to create linear operators that would anni-

hilate terms in an asymptotic expansion of the outgoing waves due to Karp [5], u ≈√
2

πkr
ei(kr−π/2)

∑∞
j=0

fj(θ)

rj
, where fj is an asymptotic family of farfield functions. We will

discuss more in depth this representation in the next Sections. Bayliss and Turkel did this

successfully, and created a family of operators Bm that, when applied to the Karp’s asymp-

totic expansion at the artificial boundary, would annihilate the first m terms of it [6]. These

conditions became very popular, but they are very difficult to implement in practice for

m ≥ 3, since the linear operators require higher derivatives of u in their definition. But,

even just annihilating the first and second terms of the asymptotic expansion gives fair re-

sults, and this method is still used today when high accuracy and computational efficiency

is not a priority.

In the late 1980s to mid 1990s, some exact absorbing boundary conditions were developed.

The most prominent of the exact absorbing boundary conditions is based on the Dirichlet-to-

Neumann map [7]. This condition can absorb the scattered wave to an arbitrary order and

can be easily implemented. However, this boundary condition is based off of integrating over

the absorbing boundary, so its finite difference approximation involves all points along the

artificial boundary, resulting in dense sub-matrices [4]. Boundary conditions that require the

computation of all points along the boundary for each boundary point are called non-local

conditions.

The absorbing boundary condition we will be using is called Karp’s farfield expansion

ABC [8], and it is an exact local condition. It is exact because it represents the outgoing

wave exactly in the exterior of circular artificial boundaries, and it is local in that the

approximation of this boundary condition for a point on the boundary relies only on it’s

immediate neighboring points. This leads to sparse matrices, while still being an exact

absorbing boundary condition. This ABC will be spoken of more in Section (2.3.1).
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2.2 Reformulation of the multiple scattering BVP as single

scattering BVPs for each scatterer

Decomposition of the scattered wave is crucial to the iterative method presented in this

thesis. The BVP (1.2) - (1.4) has an alternate formulation proposed by Guizane et al. [9].

In this formulation, the total scattered wave is decomposed to be the sum of each obstacle

scattered wave, so u =
∑M

m=1 um. Each um can be viewed as the solution of a single scattering

problem with a boundary condition on Γm not only dependent on the original incident wave,

but the outgoing waves um′ (m′ ̸= m) from all other scatterers. We also adopt a local polar

coordinate system, (rm, θm), for each obstacle. The new formulation is as follows:

For all m ∈ {1, ...,M}

△um+k2um = 0, in Ωm (2.1)

Bum = −B(uinc+
∑
m′ ̸=m

um′), in Γm (2.2)

lim
rm→∞

(rm)1/2(∂rmum−ikum) = 0, (2.3)

where Ωm is the exterior region to the obstacle boundary Γm, and the boundary operator B is

defined as Bu = Z ∂u
∂ν
+(1−Z)u. Balabane [10] showed that this M coupled single scattering

problems for um (m = 1 . . .M) has a unique solution. Once the solution of (2.1)-(2.3) is

obtained, the total scattered wave u, can be recovered by

u =
M∑

m=1

um, in Ω. (2.4)

2.3 Reformulation of (2.1)-(2.3) using Karp’s Farfield Expan-

sion

There is one last reformulation to perform before we are ready to decouple our BVP and solve

it using the novel numerical iterative method. We will reformulate our BVP by encircling

an artificial boundary around each scatterer and imposing an absorbing boundary condition

(ABC) on that artificial boundary, as done in [11, 12]. We will first discuss the absorbing
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boundary condition used in the single scattering, and then describe its extension to the

multiple scattering problem (2.1) - (2.3).

2.3.1 Single Scattering Karp’s farfield expansion ABC. The single scattering prob-

lem consists of only one obstacle. The symbol Γ is no longer representing the union of obstacle

boundaries, but simply the single obstacle boundary. Likewise, Ω is just the exterior region

outside of the single obstacle boundary. Villamizar, Acosta, and Dastrup [8] constructed an

absorbing boundary condition for single scattering that they called Karp’s farfield expansion

ABC (KFE). This is based on Karp’s theorem:

Theorem 1 (Karp [5]). Let u be an outgoing solution of the two–dimensional Helmholtz

equation in the exterior region to a circle r = R. Then, u can be represented by a convergent

expansion

u(r, θ) = H0(kr)
∞∑
l=0

Fl(θ)

(kr)l
+H1(kr)

∞∑
l=0

Gl(θ)

(kr)l
, for r > R. (2.5)

This series is uniformly and absolutely convergent for r > R and can be differentiated term

by term with respect to r and θ any number of times.

The functions H0 and H1 are Hankel functions of the first kind of order 0 and 1, respectively.

The terms Fl and Gl (l = 1, 2, . . . ) can be computed recursively from F0 and G0. To

accomplish this, we substituted the expansion (2.5) into the Helmholtz equation in polar

coordinates and use the identities: H0(z)
′ = −H1(z) and H1(z)

′ = H0(z)− 1
z
H1(z). In fact,

by doing this and requiring the coefficients of H0 and H1 to vanish, we derived a recurrence

formula for the coefficients Fl and Gl of the expansion (2.5). This result is stated in the

following corollary.

Corollary 1. The coefficients Fl(θ) and Gl(θ) (l > 1) of the expansion (2.5), can be deter-

mined from F0(θ) and G0(θ) by the recursion formulas

2lGl(θ) = (l−1)2Fl−1(θ)+d2θFl−1(θ), for l = 1, 2, . . . (2.6)

2lFl(θ) = −l2Gl−1(θ)−d2θGl−1(θ), for l = 1, 2, . . . . (2.7)

6



Using Theorem 1 and Corollary 1, Villamizar et. al. constructed their novel absorbing

boundary condition KFE, which we now state in the following BVP formulation. First, the

obstacle is surrounded with an artificial boundary C of radius R. This separates Ω into the

two regions Ω− and Ω+, as we have discussed before. Then, the single scattering BVP is

formulated as

△u+k2u = 0, in Ω− (2.8)

Bu = −Buinc in Γ (2.9)

with the KFE as an absorbing bounday condition given by:

u(R, θ) = KL(R, θ)) in C, (2.10)

∂u

∂r
(R, θ) =

∂KL

∂r
(R, θ) in C, (2.11)

H0(kR)[(L−1)2FL−1+d2θFL−1]+H1(kR)[L2GL−1+d2θGL−1] = 0, (2.12)

2lGl = (l−1)2Fl−1+d2θFl−1 for l = 1, ..., L−1, (2.13)

2lFl = −l2Gl−1−d2θGl−1 for l = 1, ..., L−1. (2.14)

The coordinates (r, θ) are the local polar coordinates for the region Ω+. The symbol KL is

used to denote the truncated version of Karp’s farfield expansion using L terms,

KL(r, θ) = H0(kr)
L−1∑
l=0

Fl(θ)

(kr)l
+H1(kr)

L−1∑
l=0

Gl(θ)

(kr)l
, when r > R. (2.15)

We describe now some important facts about the KFE:

(i) The Sommerfeld radiation condition has been replaced by the set of equations (2.10)-

(2.14).

(ii) In representing the outgoing wave as Karp’s farfield expansion, 2L new unknown an-

gular functions are introduced. They are the F and G families of angular functions.

(iii) To account for the unknown values of the scattered field u at the boundary, continuity

of the scattered wave is imposed at C.

(iv) If Karp’s expansion were using only the first two angular functions F0 and G0, two

7



more conditions are needed in order to determine them. They are the continuity of

the first radial derivative of the scattered wave across the artificial boundary, which

are represented by condition (2.11) and condition (2.12), which imposes that KL must

satisfy the Helmholtz equation on C [13].

(v) Finally, anytime two new Fl and Gl angular functions are added to Karp’s expansion,

two more equations are needed. These two equations are supplied by the recurrence

relations (2.6) and (2.7).

Also notice that when r > R, the scattered field u(r, θ) ≈ KL(r, θ). Specifically, u(r, θ) =

KL(r, θ)+O(r−(L+ 1
2
)). Thus, by numerically solving the single scattering problem with KFE,

which is defined by (2.8)-(2.14), not only the scattered field inside the computational domain

is obtained, but also the scattered field u anywhere in Ω+. This is possible by simple

evaluation of the Karp’s expansion at every point outside the computational region Ω−.

2.3.2 Extension of the local high order absorbing boundary condition KFE to

Multiple Scattering. Our first step toward the formulation of the multiple scattering

problem in terms of the KFE is to replace the Sommerfeld condition (2.3) by the KFE for

each of the m scatterers. This is done by enclosing each obstacle by a circular artificial

boundary Cm of radius Rm that separates each Ωm into the bounded region Ω−
m and the

unbounded region Ω+
m. We then apply a particular KFE absorbing boundary condition at

each Cm, which leads to the following family of BVPs (m = 1 . . .M), which are all coupled

8



through the boundary condition at the obstacle boundaries Γm:

∆um+k2um = 0, in Ω−
m, (2.16)

Bum = −B
(
uinc+

∑
m′ ̸=m

Km′,L

)
, in Γm (2.17)

um(R
m, θm) = Km,L(R

m, θm), in Cm, (2.18)

∂um

∂rm
(Rm, θm) =

∂Km,L

∂rm
(Rm, θm) in Cm, (2.19)

H0(kR
m)

[
(L−1)2Fm,L−1+d2θm Fm,L−1

]
+

H1(kR
m)

[
L2Gm,L−1+d2θm Gm,L−1

]
= 0, (2.20)

2l Gm,l = (l−1)2Fm,l−1+d2θmFm,l−1 (2.21)

2l Fm,l = −l2Gm,l−1(θ)−d2θ Gm,l−1, (2.22)

on Cm, for m = 1, . . .M and l = 1 . . . L−1,

At this point, we adopt an idea presented by Geuzaine et al. [9] to reformulate the BVP

(2.16)-(2.22) as an iterative problem, which allows us to uncouple the BVP for one scatterer

from the others. More precisely, by assuming that the outgoing waves from other scatterers

are known from a previous iteration, it is possible to reduce the multiple scattering problem

(2.17)-(2.22) to a family of single scattering problems. These can be solved individually

in their respective local coordinate systems and then added together to obtain the total

scattered field from all scatterers. Any iterative approach may serve our decoupling purposes,

but we choose Jacobi and Gauss-Seidel for this end.

9



Gauss-Seidel iterative form:

∆u(n)
m +k2u(n)

m = 0, in Ω−
m, (2.23)

Bu(n)
m = −Buinc+


−

m−1∑
m′=1

BK(n)
m′,L, n = 1,

−
m−1∑
m′=1

BK(n)
m′,L−

M∑
m′=m+1

BK(n−1)
m′,L , n > 1,

onΓm, (2.24)

u(n)
m (Rm, θm) = K(n)

m,L(R
m, θm)), in Cm, (2.25)

∂u
(n)
m

∂rm
(Rm, θm) =

∂K(n)
m,L

∂rm
(Rm, θm) in Cm, (2.26)

H0(kR
m)

[
(L−1)2F (n)

m,L−1+d2θm F
(n)
m,L−1

]
+

H1(kR
m)

[
L2G

(n)
m,L−1+d2θm G

(n)
m,L−1

]
= 0, (2.27)

2l G
(n)
m,l = (l−1)2F (n)

m,l−1+d2θmF
(n)
m,l−1 (2.28)

2l F
(n)
m,l = −l

2G
(n)
m,l−1−d

2
θ G

(n)
m,l−1, (2.29)

on Cm, for m = 1, . . .M and l = 1 . . . L−1, n = 1, . . .

For the Jacobi iterative form, the only change with respect to the Guass-Seidel form occurs

at the scatterer boundary condition, as shown next.

Jacobi iterative form:

Bu(n)
m = −Buinc+


0, n = 1,

−
M∑

m′=1

BK(n−1)
m′,L , n > 1,

onΓm. (2.30)

These iterative forms will continue until certain stopping criteria are met. If the iterations

stop after N iterations, then we define um = u
(N)
m and Km,L = K(N)

m,L. We can then reconstruct

the scattered wave

u =


um+

∑
m′ ̸=mKm′,L, in Ω−

m∑M
m=1Km,L, in Ω+

(2.31)

where Ω+ =
⋂M

m=1Ω
+
m.

10



Chapter 3. Numerical Method

3.1 Elliptic-Polar Local Curvilinear Coordinates

As mentioned in equations (1.5) and (1.6), we have an analytical solution for the scattered

wave off multiple cylinders. Thus, the purpose of numerically solving this BVP is to get an

approximation for the scattered wave off of any obstacle shape, not just cylinders. In this

section, we discuss two-dimensional generalized curvilinear coordinates, which are sufficiently

smooth grids that conform to the obstacle boundary shape. I will follow closely with the

development of this coordinate system found in Acosta-Villamizar [13].

We begin with a set of rectangular coordinates (ξm, ηm) defining a rectangular domain

Rm ⊂ R2, where 1 ≤ ξm ≤ Nm
1 , 1 ≤ ηm ≤ Nm

2 for m = 1, . . . ,M . Rm represents

the computational domain for each object m. Our local boundary conforming curvilinear

coordinate system for each bounded subdomain Ω−
m (m = 1, . . . ,M) is given by an invertible

and smooth transformation

Tm : Rm −→ Ω−
m

(ξm, ηm) 7→ x(ξm, ηm)

where

x(ξm, ηm) = (x(ξm, ηm), y(ξm, ηm)) and 1 ≤ ξm ≤ Nm
1 , 1 ≤ ηm ≤ Nm

2 .

The coordinates (x, y) and (r, θ) denote the global cartesian and polar coordinates with

respect to the fixed origin O.

The transformation Tm is defined in [13] and is given as the solution to a BVP that is

governed by the system of partial differential equations

11



αxξξ−2βxξη+γxηη+
1

2
αξxξ+

1

2
γηxη = 0, on Rm (3.1)

αyξξ−2βyξη+γyηη+
1

2
αξyξ+

1

2
γηyη = 0, on Rm (3.2)

α = x2
η+y2η, β = xξxη+yξyη, γ = x2

ξ+y2ξ . (3.3)

The boundary conditions the above PDE are the parametric curves (x(ξm, 1), y(ξm, 1))

and (x(ξm, Nm
n ), y(ξm, Nm

2 )), which describe the obstacle boundary and artificial boundary

of obstacle m. The superscript m in (3.1) and (3.2) has been neglected for clarity.

3.1.1 Helmholtz Equation in Elliptic Polar Coordinates. The Helmholtz Equation

in Cartesian coordinates is ∆f+k2f = 0. The representation of the Helmholtz operator in

generalized curvilinear coordinates is

∆f+k2f =
1

J2
(αfξξ−2βfξη+γfηη)

+
1

J3
(αyξξ−2βyξη+γyηη)(xηfξ−xξfη)

+
1

J3
(αxξξ−2βxξη+γxηη)(yξfη−yηfξ)+k2f = 0 (3.4)

α = x2
η+y2η, β = xξxη+yξyη, γ = x2

ξ+y2ξ , J = xξyη−xηyξ. (3.5)

We can simplify the Helmholtz equation in Elliptic Polar coordinates by substituting (3.1)

and (3.2) into (3.4), with which we get

∆f+k2f =
1

J2
(αfξξ−2βfηη+γfηη+

1

2
(αξfξ+γηfη))+k2f = 0. (3.6)

So, our scattered wave um must satisfy the Helmholtz equation in elliptic polar curvilinear

coordinates in each Ω−
m, and this is given by equation (3.6).

3.1.2 Boundary Conditions in Elliptic Polar Coordinates. The boundary condi-

tion on Γm in our Cartesian coordinate system is given by Bum = −B(um+
∑

m′ ̸=m um′),

where Bu = Z ∂u
∂ν
+(1−Z)u. All that needs to be done is to find the elliptic-polar representa-

tion of B. This is done by replacing ∂u
∂ν

with it’s elliptic polar counterpart. We first note that

the partial derivative with respect to the normal direction can be written as ∂u
∂ν

= ν ·∇u. The

12



normal vector at the obstacle boundary in curvilinear coordinates is given by 1
γ
[−yξ, xξ]

T ,

and the gradient of u is given by 1
J
[uξyη−uηyξ, uηxξ−uηxη]

T in Ω−
m. At the artificial bound-

ary at radius Rm, the normal vector is simply given by ν = 1
Rm [x, y]T . These quantaties can

be summed up as

∂u

∂ν
= ν ·∇u =



1
γ

−yξ
xξ

· 1J
 uξyη−uηyξ

uηxξ−uηxη

 in Γm

1
Rm

x

y

· 1J
 uξyη−uηyξ

uηxξ−uηxη

 in Cm

. (3.7)

The partial derivative in the operator B can be replaced by (3.7) to get the elliptic-polar

representation.

3.2 Grids and Finite Difference Numerical Scheme

In this section, we will generate our grids and then set up our finite difference scheme.

3.2.1 Generating the Elliptic Polar Grids. We will have a global coordinate system

with global origin (0, 0). Each obstacle will be centered at local origin b⃗m = (x̄m, ȳm). For

each obstacle, we will generate a grid to do computation on. The grid will be generated using

obstacle m’s local Cartesian coordinate system (xm, ym). In this subsection, we assume we

will be working in the local Cartesian coordinate system of obstacle m, so we will drop many

of the superscripts.

In the local Cartesian coordinate system, the boundary conditions for the grid generating

ODE are determined by the parametric functions that define the boundary of the obstacle,

Bm
in(θ

m) = [Bm
x (θm), Bm

y (θm)]T where θm is the local polar coordinate system. The outer

boundary parametric equation is Bm
out(θ

m) = [Rm cos(θm), Rm sin(θm)]T , where Rm is the

radius of the outer boundary.

We select the values of Nm
1 and Nm

2 based on a desired amounts of points per wave-
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length (PPW ). Points per wavelength is a good measure of refinement for wave scatter-

ing problems, and is how many grid points are contained in a wavelength of the incom-

ing wave. Let rm0 denote the average radius of the inner boundary of obstacle m, that is

rm0 = 1
2π

∫ 2π

0

√
(Bm

x (θm))2+(Bm
y (θm))2dθm. Then

Nm
1 =

⌈
PPW (2π

Rm+rm0
2

)
k

2π

⌉
and Nm

2 =

⌈
PPW (Rm−rm0 )

k

2π

⌉
(3.8)

where ⌈ ⌉ represents the ceiling function.

We will now descritize our rectangular computational domain Rm defined by 1 ≤ ξm ≤

Nm
1 , 1 ≤ ηm ≤ Nm

2 . Our discrete steps will be integer steps starting at 1, so ∆ξm = 1 and

∆ηm = 1. Essentially, ξmi = i and ηmj = j for 1 ≤ i ≤ Nm
1 , 1 ≤ j ≤ Nm

2 . To map this to

the region Ω−
m, we first make a branch cut along the positive x-axis. This branch cut will

turn our multiply connected region into a simply connected region. We discretize θm from

2π to 0 into Nm
1 equally spaced points, so θmi = 2π− (i−1)∗2π

Nm
1 −1

. We then can set our boundary

conditions for our grid generating PDE:

(x(ξmi , 1), y(ξmi , 1)) = (Bm
x (θ

m
i ),Bm

y (θ
m
i )) for i ∈ {1, . . . , Nm

1 } (3.9)

(x(ξmi , Nm
n ), y(ξmi , Nm

2 )) = (Rm cos(θmi ), R
m sin(θmi )) for i ∈ {1, . . . , Nm

1 }. (3.10)

Now that we have our boundary conditions for our grid generating PDE set, what is left

is to solve for the interior points x(ξmi , ηmj ) for i ∈ {2, . . . , Nm
1 −1} and j ∈ {1, . . . , Nm

2 }.

Once we solve for these, we will then have a sufficiently smooth grid to do finite difference

computation on, as well as a discrete mapping from Rm to Ω−
m. This is done by using SOR

iteration on an initial grid. The initial grid we have used is a polar-like grid, where we have

created a polar grid with the same θm discretization as before, and a linear discretization

of the interval [rmmin, R
m], with rmmin = supθm∈[0,2π]

√
(Bm

x (θ
m))2+(Bm

y (θ
m))2, excluding the

ηm = 1 grid-points. So, the radius at ηm = j for our initial grid is rmmin+
(j−1)(Rm−rmmin)

Nm
2 −1

for
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j ∈ {2, . . . , Nm
2 }. Putting this together, the initial grid is

(x(ξmi , 1), y(ξmi , 1)) = (Bm
x (θ

m
i ),Bm

y (θ
m
i )) for i ∈ {1, . . . , Nm

1 } (3.11)

(x(ξmi , ηmj ), y(ξ
m
i , ηmj )) = (rmmin+

(j−1)(Rm−rmmin)

Nm
2 −1

)(cos θmi , sin θ
m
i ), (3.12)

for i ∈ {1, . . . , Nm
1 }, j ∈ {2, . . . , Nm

2 }.

We then perform SOR iteration on this initial grid until it converges to a grid that satisfies

(3.1) and (3.2). This SOR iteration will begin with the points (x
(0)
i,j , y

(0)
i,j ) that are given by

(3.11) and (3.12). The update equation for x
(k+1)
i,j is given by

x
(k+1)
i,j =

1

2(α+γ)i,j
[αi,j(x

(k)
i+1,j+x

(k+1)
i−1,j )+γi,j(x

(k)
i,j+1+x

(k+1)
i,j−1 )

+(2xξxηxξη+yξη(xξyη+xηyξ))i,j−2βi,j(xξη)i,j] (3.13)

where

αi,j = (xη)
2
i,j+(yη)

2
i,j, βi,j = (xξ)i,j(xη)i,j+(yξ)i,j(yη)i,j, γi,j = (xξ)

2
i,j+(yξ)

2
i,j

and

(xξ)i,j = (x
(k)
i+1,j−x

(k+1)
i−1,j )/2, (xη)i,j = (x

(k)
i,j+1−x

(k+1)
i,j−1 )/2

(yξ)i,j = (y
(k)
i+1,j−y

(k+1)
i−1,j )/2, (yη)i,j = (y

(k)
i,j+1−y

(k+1)
i,j−1 )/2

(xξη)i,j = (x
(k)
i+1,j+1−x

(k)
i+1,j−1−x

(k+1)
i−1,j+1+x

(k+1)
i−1,j−1)/4

(yξη)i,j = (y
(k)
i+1,j+1−y

(k)
i+1,j−1−y

(k+1)
i−1,j+1+y

(k+1)
i−1,j−1)/4.

The update formula for y(k+1) is the same as (3.13) but with the x’s and y’s switched. The

SOR iteration uses a relaxation parameter ω to update x
(k+1)
i,j as x

(k+1)
i,j = ωx

(k+1)
i,j +(1−ω)x(k)

i,j .

We will define the maximum pointwise error as

εk+1 = max
1≤i≤Nm

1
1≤j≤Nm

2

{|x(k+1)
i,j −x(k)

i,j |, |y
(k+1)
i,j −y(k)i,j |}.

We will then iterate our grid update step until our maximum pointwise error falls below a

specified tolerance, εk+1 < Tol. We have then generated a sufficiently smooth computational

grid for obstacle m. This is repeated for every obstacle.

At this point we have an Elliptic-Polar grid that represents the computational domain
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Ω−
m in each local Cartesian coordinate system. For the local discretized grid, let us call X̄m

the Nm
1 ×Nm

2 sized array where X̄m
i,j = xm(ξi, ηj), and likewise Ȳ m

i,j = ym(ξi, ηj).

For an example, let us use M = 2 obstacles with complexly shaped inner boundaries.

For this example, let

B1
in =

 (1+ 1
3
cos(3 cos(1.75 cos(1.5θ1)))) cos(θ1)

(1+ 1
3
cos(3 cos(1.75 cos(1.5θ1)))) sin(θ1)

 and

B2
in =

 (2−cos(sin(3θ2))) cos(θ2)

(2−cos(sin(3θ2))) sin(θ2)

 .

Also, let the outer radii for the absorbing boundary be Rm = 2.5 for both obstacles. Figure

3.1 gives a possible grid that can be generated for these obstacles.

Figure 3.1: Computed computational domains for two example boundaries.

(a) Local Ω̄−
1 (b) Local Ω̄−

2

3.2.2 Grid representation in Global Cartesian and Local Polar. In our finite dif-

ference numerical scheme, we will be switching many times from global Cartesian coordinates

to local Cartesian coordinates to local polar coordinates. In this section, we show how to

calculate the various representations of our computational domain.

The center of obstacle m is located at b⃗m = (x̄m, ȳm). This point serves as the origin

for the local coordinate system (xm, ym), which X̄m and Ȳ m are given in. Let Xm and Y m
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denote the global representation of the local grid X̄m and Ȳ m, respectfully.

Xm = X̄m+x̄m (3.14)

Y m = Ȳ m+ȳm. (3.15)

Continuing the example given in Figure 3.1, let’s say b⃗1 = [0,−2]T and b⃗2 = [5, 0]T . Then

the global grid representation of the local grids in Figure 3.1 are given in Figure 3.2.

Figure 3.2: Global Ω̄−
1 and Ω̄−

2 for our example grids.

There are also interactions between obstacle m and obstacle m′. These interactions occur

in the local polar coordinate system of obstaclem′, so it is necessary to get a representation of

our grid (Xm, Y m) in terms of the local polar coordinate system (rm
′
, θm

′
), which is centered

at (x̄m′
, ȳm

′
). Let us define X̃(m,m′) and Ỹ (m,m′) to be the representation of Xm and Y m in
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the local Cartesian coordinate system (xm′
, ym

′
). These are given by

X̃(m,m′) = Xm−x̄m′
,

Ỹ (m,m′) = Y m−ȳm′
.

We then can get the local polar representation

R(m,m′) =

√
(X̃(m,m′))2+(Ỹ (m,m′))2 (3.16)

Θ(m,m′) = arctan
Ỹ (m,m′)

X̃(m,m′)
. (3.17)

The local polar representations for our example grids are found in Figure 3.3. The grid

shapes in Figures 3.3a and 3.3b are identical to the grids in Figures 3.1a and 3.1b. However,

the grids in 3.3 are represented by arrays of radii and arrays of angle values, instead of arrays

of x values and y values.

Figure 3.3: Polar grid representations for our example grids.

(a) Polar representation of Ω̄−
1 in (r2, θ2). (b) Polar representation of Ω̄−

2 in (r1, θ1).

These grid representations (Xm, Y m), (X̄m, Ȳ m), and (R(m,m′),Θ(m,m′)) are all representa-

tions of Ω−
m in various coordinate systems, and will all come in handy in our finite difference

numerical scheme.

3.2.3 Finite Difference Discretizations. Thus far, we have discretized our computa-

tional domains Ω−
m for all obstacles m ∈ {1, . . . ,M}, and now have representations of that

discretized domain in local Cartesian (xm, ym), global Cartesian (x, y), and every local polar
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(rm
′
, θm

′
). It is now time to discretize our governing equations (2.23) - (2.29). We will use

second order finite difference. Throughout this subsection, we will derive everything for one

obstacle and one iteration, and thus we will drop the sub- and super-scripts that denote the

obstacle and iteration. We will assume we are working with obstacle m. Thus, u
(n)
m ,K(n)

m,L,

F
(n)
m,l and G

(n)
m,l will be called u, KL, Fl and Gl, respectfully. We will add a sub- or superscript

of m′ where appropriate.

At this point, we will discretize our solution u to have function values at each of the

points (Xm, Y m). We will call this discretization Um or just U for most cases, where U

is an (N1−1)×(N2+1) array where Ui,j represents our function value of u at the point

(Xm
i,j, Y

m
i,j ). We eliminate the N1 row from U because U1,η = UN1,η for all η ∈ {1, . . . , N2+1}.

Thus, in many of our discretized formulas, we assume U−1,η = UN1−1,η and UN1,η = U1,η

for all η ∈ {1, . . . , N2+1}. We also add a column of ghost points at the η = N2+1 level

to simplify some calculations. We also will discretize the family of farfield functions Fm
l

and Gm
l to be F̄m

l and Ḡm
l , which are vectors of length N1−1 such that (F̄m

l )i represents

Fm
l (θmi ) and (Ḡm)i represents G

m
l (θ

m
i ) for all i ∈ {1, . . . , N1−1} and all m ∈ {1, . . . ,M}. As

a reminder, each θm is discretized with θmi = 2π− (i−1)∗2π
N1−1

for all m ∈ {1, . . . ,M}. We also

will introduce discretized boundaries and computational domains. Let (Ω̄−
m)i,j = (Xm

i,j, Y
m
i,j ),

and (Γ̄m)i = (Xm
i,1, Y

m
i,1).

3.2.4 Finding Km′,L on Γ̄m and in Ω̄m. Given discretized F̄m′,l and Ḡm′,l, which are

discretized as equally spaced intervals in θm
′
for l ∈ {0, . . . , L−1}, we will oftentimes need to

find the value of Km′,L on the discretized domains Γ̄m and in the region Ω̄−
m. As a reminder,

(R(m,m′),Θ(m,m′)) is the representation of Ω̄−
m in the local polar coordinates of obstacle m′.

This means (R
(m,m′)
i,1 ,Θ

(m,m′)
i,1 ) represents (Γ̄m)i. Since F̄m′,l and Ḡm′,l are at equally spaced

intervals θmi , we will need to create an interpolating function to approximate the values of

Fm′,l and Gm′,l at intermediate angles θm. Let F̃m′,l and G̃m′,l be the interpolating function

based off the arrays F̄m′,l and Ḡm′,l, respectfully. This interpolating function can be any

interpolating scheme for equally spaced intervals that is at least second order accurate, so
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that our overall scheme stays second order. We’ve had success with third order Lagrangian

Interpolation. When evaluating Km′,L at a point (Ω̄−
m)i,j, we will use the representation of

Ω̄−
m in the local polar coordinate system of m′, so Ω̄−

m is represented by (R(m′,m),Θ(m′,m)).

Once you have the interpolating functions F̃m′,l and G̃m′,l, then

(Km′,L(Ω̄
−
m))i,j = Km′,L(R

(m′,m)
i,j ,Θ

(m′,m)
i,j )

= H0(kR
(m′,m)
i,j )

L−1∑
l=0

F̃m′,l(Θ
(m′,m)
i,j )

(kR
(m′,m)
i,j )l

+H1(kR
(m′,m)
i,j )

L−1∑
l=0

G̃m′,l(Θ
(m′,m)
i,j )

(kR
(m′,m)
i,j )l

(3.18)

and

(Km′,L(Γ̄m))i = (Km′,L(Ω̄
−
m))i,1. (3.19)

3.2.5 Discretizing the Helmholtz Operator and (2.23). Equation (2.23) shows that

the single scattering solution u
(n)
m satisfies the Helmholtz equation in the region Ω−

m. Since

(Xm, Y m) is an elliptic-polar grid, then we will discretize the elliptic-polar Helmholtz equa-

tion given by (3.6). As a recap, the scaling factors are

α = x2
η+y2η, β = xξxη+yξyη, γ = x2

ξ+y2ξ , J = xξyη−xηyξ

and the Helmholtz operator in elliptic-polar coordinates, which we will call Hep applied to

u is

Hepu =
1

J2
(αuξξ−2βuξη+γuηη+

1

2
(αξuξ+γηuη))+k2u. (3.20)

We will use second order finite difference to discretize xξ, yξ, xη, and yη:

(Xξ)i,j = (Xi+1,j−Xi−1,j)/2, (Xη)i,j = (Xi,j+1−Xi,j−1)/2

(Yξ)i,j = (Yi+1,j−Yi−1,j)/2, (Yη)i,j = (Yi,j+1−Yi,j−1)/2

(Xξη)i,j = (Xi+1,j+1−Xi+1,j−1−Xi−1,j+1+Xi−1,j−1)/4

(Yξη)i,j = (Yi+1,j+1−Yi+1,j−1−Yi−1,j+1+Yi−1,j−1)/4.
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The discretized scaling factors and specific scaling factor derivatives are

αi,j = (Xη)
2
i,j+(Yη)

2
i,j, βi,j = (Xξ)i,j(Xη)i,j+(Yξ)i,j(Yη)i,j,

γi,j = (Xξ)
2
i,j+(Yξ)

2
i,j, Ji,j = (Xξ)i,j(Yη)i,j−(Xη)i,j(Yξ)i,j

(αξ)i,j = 2(XηXξη+YηYξη)i,j, (γη)i,j = 2(XξXξη+YξYξη)i,j.

We also discretize the derivatives of Ui,j as such:

(Uξ)i,j = (Ui+1,j−Ui−1,j)/2, (Uξξ)i,j = (Ui+1,j−2Ui,j+Ui−1,j)

(Uη)i,j = (Ui,j+1−Ui,j−1)/2, (Uηη)i,j = (Ui,j+1−2Ui,j+Ui,j−1)

(Uξη)i,j = (Ui+1,j+1−Ui+1,j−1−Ui−1,j+1+Ui−1,j−1)/4.

When we substitute the finite difference approximations into (3.20), we arrive at the dis-

cretized Helmholtz operator, which we will call Ĥep, in elliptic polar coordinates

ĤepUi,j = (k2− 2

J2
i,j

(αi,j+γi,j))Ui,j+(
1

J2
i,j

(αi,j−
1

4
(αξ)i,j))Ui−1,j

+(
1

J2
i,j

(αi,j+
1

4
(αξ)i,j))Ui+1,j+(

1

J2
i,j

(γi,j−
1

4
(γη)i,j))Ui,j−1

+(
1

J2
i,j

(γi,j+
1

4
(γη)i,j))Ui,j+1−

βi,j

2J2
i,j

(Ui+1,j+1−Ui+1,j−1−Ui−1,j+1+Ui−1,j−1)

for 1 ≤ i ≤ Nm
1 −1 and 2 ≤ j ≤ Nm

2 −1. (3.21)

Then the full discretization of (2.23) is

ĤepUi,j = 0 for 1 ≤ i ≤ Nm
1 −1 and 2 ≤ j ≤ Nm

2 (3.22)

⇐⇒ J2
i,jĤepUi,j = 0 for 1 ≤ i ≤ Nm

1 −1 and 2 ≤ j ≤ Nm
2 (3.23)

(3.22) is the discretization of (2.23), but we often get scaling issues if we use this formulation.

In practice, we use the equivalent discretization (3.23).

3.2.6 Discretizing the Inner Boundary Condition (2.24). To discretize (2.24), we

need to discretize the boundary operator B defined by Bu = Z ∂u
∂ν
+(1−Z)u. As given in
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(3.7), we have that

∂u

∂ν
= ν ·∇u =

1

γ

−yξ
xξ

· 1
J

 uξyη−uηyξ

uηxξ−uηxη

 .

Expanding the dot product out and substituting the scaling factors where appropriate, we

have

∂u

∂ν
=

1

Jγ
(−βuξ+γuη). (3.24)

We can then discretize the operator ∂
∂ν

by substituting the proper second order finite differ-

ence approximations. However, we are at the η = 1 level at the obstacle boundary, so we

cannot use centered difference in η. We then use second order one-sided difference,

(Uη)i,1 = (−3Ui,1+4Ui,2−Ui,3)/2

(Xξη)i,1 = (−3Xi+1,1+4xi+1,2−Xi+1,3+3Xi−1,1−4Xi−1,2+Xi−1,3)/4

with (Xη)i,1, (Yη)i,1 and (Yξη)i,1 defined similarly. Then B̂Ui,1 = Z ∂̂
∂ν
Ui,1+(1−Z)Ui,1 =

Z 1
(Jγ)i,1

(−βi,1(Uξ)i,1+γi,1(Uη)i,1)+(1−Z)Ui,1.

Substituting in the discretizations, we arrive at

B̂Ui,1 = (
Zβi,1

2(Jγ)i,1
)Ui−1,1+(− 3Z

2Ji,1
+1−Z)Ui,1

+(− Zβi,1

2(Jγ)i,1
)Ui+1,1+(

2Z

Ji,1
)Ui,2+(− Z

2Ji,1
)Ui,3. (3.25)

The discretized inner boundary condition is then given by

B̂Ui,1 = −B̂Uinc,i,1+


−

m−1∑
m′=1

B̂(K(n)
m′,L((Γ̄m))i, n = 1,

−
m−1∑
m′=1

B̂(K(n)
m′,L(Γ̄m))i−

M∑
m′=m+1

B̂(K(n−1)
m′,L (Γ̄m))i, n > 1,

for i ∈ {1, . . . , N1−1} (3.26)

where (K(n)
m′,L((Γ̄m))i is given by (3.19).
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3.2.7 Discretizing the Continuity Condition at the Artificial Boundary, (2.25).

This condition states that u(R, θ) = KL(R, θ). Discretized, this condition is

Ui,N2−H0(kR)
L−1∑
l=0

Fl,i

(kR)l
−H1(kR)

L−1∑
l=0

Gl,i

(kR)l
= 0. (3.27)

3.2.8 Discretizing the Continuity of the First Derivative Condition at the Ar-

tificial Boundary, (2.26). Condition (2.26) states that ∂u
∂r
(R, θ) = ∂KL

∂r
(R, θ). We can

analytically take the derivative of KL with respect to r, and then evaluate at r = R and

θ = θi to get

∂

∂r
KL(R, θi) =

L−1∑
l=0

Al(kR)Fl,i+
L−1∑
l=0

Bl(kR)Gl,i

Al(kR) =
kH1(kR)

(kR)l
+
klH0(kR)

(kR)l+1
and Bl(kR) =

k(l+1)H1(kR)

(kR)l+1
− kH0(kR)

(kR)l
. (3.28)

The derivative ∂
∂r

is actually the normal derivative on the artificial boundary, so

∂

∂r
u =

∂

∂ν
u = ν ·∇u =

1

R

x

y

· 1
J

 uξyη−uηyξ

uηxξ−uηxη

 =
1

RJ
(µuξ+λuη)

where µ = xyη−yxη and λ = yxξ−xyξ. (3.29)

We then substitute the second order finite difference approximations for uη and uξ into

(3.29). We use centered finite difference for uξ. The ghost points we have introduced, Ui,N2+1,

allows us to use centered finite difference for uη as well.

∂̂

∂r
Ui,N2 = (

µi

2RJi,N2

)Ui+1,N2+(
−µi

2RJi,N2

)Ui−1,N2+

(
λi

2RJi,N2

)Ui,N2+1+(
−λi

2RJi,N2

)Ui,N2−1. (3.30)

Our final discretized condition is

∂̂

∂r
Ui,N2 =

∂

∂r
KL(R, θi)⇐⇒

∂̂

∂r
Ui,N2−

∂

∂r
KL(R, θi) = 0

for all i ∈ {1, . . . , N1−1}. (3.31)

We gather all of the unknowns we are trying to solve onto one side, so we use the

equivalent formulation in (3.31).
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3.2.9 The Final Three Conditions. The discretized conditions we have done thus far

are the more difficult discretizations. The final 3 conditions, (2.27)-(2.29), are relatively

simple since the only variable we are discretizing with respect to is θ. The operator we are

working with the most is the operator d2θ. We can discretize this operator with second order

finite difference, and we get

d̂2θFl,i = (Fl,i−1−2Fl,i+Fl,i+1)/(∆θ)2 (3.32)

where ∆θ = − 2π
N1−1

.

For (2.27), we insert (3.32) where appropriate and evaluate the functions at θi. We arrive at

H0(kR)[((L−1)2− 2

(∆θ)2
)FL−1,i+(

1

(∆θ)2
)FL−1,i−1+(

1

(∆θ)2
)FL−1,i+1]

+H1(KR)[(L2− 2

(∆θ)2
)GL−1,i+(

1

(∆θ)2
)GL−1,i−1+(

1

(∆θ)2
)GL−1,i+1] = 0

for all i ∈ {1, . . . , N1−1}. (3.33)

For (2.28), we substitute (3.32) where appropriate and evaluate the functions at θ = θi. We

then get

2lGl,i = (l−1)2Fl−1,i+
1

(∆θ)2
(Fl−1,i−1−2Fl−1,i+Fl−1,i+1)

⇐⇒ 2lGl,i+(−(l−1)2+ 2

(∆θ)2
)Fl−1,i−(

1

(∆θ)2
)Fl−1,i−1−(

1

(∆θ)2
)Fl−1,i+1 = 0

for all i ∈ {1, . . . , N1−1}, l ∈ {1, . . . , L−1}. (3.34)

For (2.29), we again substitute (3.32) where appropriate and evaluate the functions at θ = θi.

We then get

2lFl,i = −l2Gl−1,i−
1

(∆θ)2
(Gl−1,i−1−2Gl−1,i+Gl−1,i+1)

⇐⇒ 2lFl,i+(l2− 2

(∆θ)2
)Gl−1,i+(

1

(∆θ)2
)Gl−1,i−1+(

1

(∆θ)2
)Gl−1,i+1 = 0

for all i ∈ {1, . . . , N1−1}, l ∈ {1, . . . , L−1}. (3.35)
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3.3 Finite Difference Matrix Form

We have discretized all of our conditions (2.23)-(2.29). Each of these conditions are lin-

ear combinations of the discretized points Ui,j, Fl,i and Gl,i for i ∈ {1, . . . , N1−1}, j ∈

{1, . . . , N2+1} and l ∈ {0, . . . , L−1}. Let Uj be the vector [U1,j, U2,j, . . . , UN1−1,j]
T for

j ∈ {1, . . . , N2+1}. Also let Fl = [Fl,1, . . . , Fl,N1−1]
T and Gl = [Gl,1, . . . , Gl,N1−1]

T for

l ∈ {1, . . . , L−1}. We will create a vector of unknowns

V = [U1,U2, . . . ,UN2+1,F0,G0,F1,G1, . . . ,FL−1,GL−1]
T . (3.36)

This unknowns vector corresponds to (N1−1)(N2+1+2L) values. To have our system be

determined, we need (N1−1)(N2+1+2L) equations. We will now build a linear system of

equations such that AV = b is equivalent to our discretized system given by (3.23), (3.26),

(3.27), (3.31), (3.33) - (3.35).

We will represent A as an (N2+1+2L)×(N2+1+2L) block matrix, where each block is

(N1−1)×(N1−1). Each block will be indexed Aj,index where j will be the row of the block

matrix A. The index index will indicate which portion of the unknowns vector the block

will be applied to.

index =


j if block is applied to Uj

fl if block is applied to Fl

gl if block is applied to Gl

.

3.3.1 Block Matrix Form for (3.26). The first N1−1 equations will come from (3.26).

All the unknowns in (3.26) are on the left side, and on the right side are our known values.

Define Û
(n)
inc,i,j to be

Û
(n)
inc,i,j = Uinc,i,j+


m−1∑
m′=1

(K(n)
m′,L((Ω̄m))i,j, n = 1,

m−1∑
m′=1

(K(n)
m′,L(Ω̄m))i,j+

M∑
m′=m+1

(K(n−1)
m′,L (Ω̄m))i,j

.

Essentially, Û
(n)
inc,i,j is the sum of the incident wave, uinc, and the other M−1 scattered waves

approximated by K(n)
m′,L or K(n−1)

m′,L on the point (Ω̄m)i,j. Equation (3.26) can thus be written
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as

B̂Ui,1 = −B̂Û (n)
inc,i,1 for all i ∈ {1, . . . , N1−1}.

If we expand this out, we get

(
Zβi,1

2(Jγ)i,1
)Ui−1,1+(− 3Z

2Ji,1
+1−Z)Ui,1+(− Zβi,1

2(Jγ)i,1
)Ui+1,1+(

2Z

Ji,1
)Ui,2+(− Z

2Ji,1
)Ui,3

= −B̂Û (n)
inc,i,1 for all i ∈ {1, . . . , N1−1}. (3.37)

We know the quantity B̂U (n)
inc,i,1, so this becomes the ith element of b. In the matrix A, we

place non-zero terms where appropriate so that the dot product of the ith row of A and the

unknowns vector V results in (3.37). The unknowns that are affected by these equations are

[U1,U2,U3]
T , so there will be three (N1−1)×(N1−1) matrices in a row for this condition.

The first matrix of the three will be A1,1.

A1,1 =



−3Z
2J1,1

+1−Z −Zβ1,1

2(Jγ)1,1
. . . . . . Zβ1,1

2(Jγ)1,1

Zβ2,1

2(Jγ)2,1
−3Z
2J2,1

+1−Z −Zβ2,1

2(Jγ)2,1

. . . . . . . . .

ZβN1−2,1

2(Jγ)N1−2,1

−3Z
2JN1−2,1

+1−Z −ZβN1−2,1

2(Jγ)N1−2,1

−ZβN1−1,1

2(Jγ)N1−1,1

ZβN1−1,1

2(Jγ)N1−1,1

−3Z
2JN1−1,1

+1−Z



.

The next block, A1,2, will be a diagonal matrix where the ith diagonal element is 2Z
Ji,1

. The

last block will be A1,3 and will also be a diagonal matrix whose ith diagonal element is −Z
2Ji,1

.

The condition (3.37) can then we written in matrix form as

[
A1,1 A1,2 A1,3

]
U1

U2

U3

 = −B̂Û(n)
inc (3.38)

where (B̂Û(n)
inc)i = B̂Û

(n)
inc,i,1 for all i ∈ {1, . . . , N1−1}.
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3.3.2 Block Matrix Form for (3.23). The next set of linear equations we will cover

is (3.23), which is that

Ji,jĤepUi,j = 0 for 1 ≤ i ≤ Nm
1 −1 and 2 ≤ j ≤ Nm

2 .

For the η = j level, this set of equations can be rewritten using block matrix multiplication

with the vector [Uj−1,Uj,Uj+1]
T . There will be three blocks of size (N1−1)×(N1−1). We

will call them Aj,j−1,Aj,j and Aj,j+1 for j ∈ {2, . . . , N2}.

Aj,j−1 =

γ1,j− (γη)1,j
4

β1,j

2

−β1,j

2

−β2,j

2
γ2,j− (γη)2,j

4

β2,j

2

. . . . . . . . .

−βN1−2,j

2
γN1−2,j−

(γη)N1−2,j

4

βN1−2,j

2

βN1−1,j

2

−βN1−1,j

2
γN1−1,j−

(γη)N1−1,j

4



.
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Aj,j =

J2
1,jk

2

−2(α1,j+γ1,j)
α1,j+

(αξ)1,j
4

α1,j− (αξ)1,j
4

α2,j− (αξ)2,j
4

J2
2,jk

2

−2(α2,j+γ2,j)
α2,j+

(αξ)2,j
4

. . . . . . . . .

αN1−2,j−
(αξ)N1−2,j

4

J2
N1−2,jk

2

−2(αN1−2,j+γN1−2,j)
αN1−2,j+

(αξ)N1−2,j

4

αN1−1,j+
(αξ)N1−1,j

4
αN1−1,j−

(αξ)N1−1,j

4

J2
N1−1,jk

2

−2(αN1−1,j+γN1−1,j)



.

Aj,j+1 =

γ1,j+
(γη)1,j

4

−β1,j

2

β1,j

2

β2,j

2
γ2,j+

(γη)2,j
4

−β2,j

2

. . . . . . . . .

βN1−2,j

2
γN1−2,j+

(γη)N1−2,j

4

−βN1−2,j

2

−βN1−1,j

2

+βN1−1,j

2
γN1−1,j+

(γη)N1−1,j

4



.

Then, for a fixed η = j level, the system (3.23) is

[
Aj,j−1 Aj,j Aj,j+1

]
Uj−1

Uj

Uj+1

 =


0

0

0

 .
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This is true for all j ∈ {2, . . . , N2}, so the full system of equations representing (3.23) is

A2,1 A2,2 A2,3

A3,2 A3,3 A3,4

. . . . . . . . .

AN2,N2−1 AN2,N2 AN2,N2+1





U1

U2

U3

...

...

...

UN2+1



=



0

0

0

...

...

...

0



, (3.39)

which represents (N1−1)(N2−1) equations.

3.3.3 Block Matrix Form for (3.27). The next set of equations we will put in matrix

form is (3.27), which is that

Ui,N2−H0(kR)
L−1∑
l=0

Fl,i

(kR)l
−H1(kR)

L−1∑
l=0

Gl,i

(kR)l
= 0

for all {1, . . . , N1−1}. Let AN2+1,N2 = I, AN2+1,fl =
−H0(kR)
(kR)l

I and AN2+1,gl
= −H1(kR)

(kR)l
I for

l ∈ {0, . . . , L−1}. Then

[
AN2+1,N2 AN2+1,f0 AN2+1,g0 . . . AN2+1,fL−1

AN2+1,gL−1

]



UN2

F0

G0

...

FL−1

GL−1


= 0. (3.40)

3.3.4 Block Matrix Form for (3.31). Now, for (3.31), which is

∂̂

∂r
Ui,N2−

∂

∂r
KL(R, θi) = 0 for all i ∈ {1, . . . , N1−1},

we will create blocks at the j = N2+2 level. Recall that

∂̂

∂r
Ui,N2 = (

µi

2RJi,N2

)Ui+1,N2+(
−µi

2RJi,N2

)Ui−1,N2+(
λi

2RJi,N2

)Ui,N2+1+(
−λi

2RJi,N2

)Ui,N2−1
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and

∂

∂r
KL(R, θi) =

L−1∑
l=0

Al(kR)Fl,i+
L−1∑
l=0

Bl(kR)Gl,i

where µ, λ,Al(kR) and Bl(kR) are defined in (3.29) and (3.28).

When putting these linear equations into block matrix multiplication form, there ends up

being a lot of diagonal matrices. I will cover those first.

AN2+2,N2−1 is a diagonal matrix with the ith diagonal element equal to −λi

2RJi,N2
.

AN2+2,N2+1 is a diagonal matrix with the ith diagonal element equal to λi

2RJi,N2
.

AN2+2,fl = Al(kR)I for l ∈ {0, . . . , L−1}.

AN2+2,gl
= Bl(kR)I for l ∈ {0, . . . , L−1}.

The only block matrix that isn’t diagonal is AN2+2,N2 , given by

AN2+2,N2 =



0 µ1

2RJ1,N2

−µ1

2RJ1,N2

−µ2

2RJ2,N2
0 µ2

2RJ2,N2

. . . . . . . . .

−µN2−2

2RJN2−2,N2
0

µN2−2

2RJN2−2,N2

µN2−1

2RJN2−1,N2

−µN2−1

2RJN2−1,N2
0


. (3.41)

The full matrix form for (3.31) is then

[
AN2+2,N2−1 AN2+2,N2 AN2+2,N2+1 AN2+2,f0 . . . AN2+2,gL−1

]



UN2−1

UN2

UN2+1

F0

. . .

GL−1


= 0. (3.42)
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3.3.5 Block Matrix From for (3.33). We will now get the matrix form for (3.33). We

get

AN2+3,fL−1
=

H0(kR)



(L−1)2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

(L−1)2− 2
(∆θ)2

1
(∆θ)2

. . . . . . . . .

1
(∆θ)2

(L−1)2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

(L−1)2− 2
(∆θ)2



. (3.43)

and

AN2+3,gL−1
= H1(kR)



L2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

L2− 2
(∆θ)2

1
(∆θ)2

. . . . . . . . .

1
(∆θ)2

L2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

L2− 2
(∆θ)2



. (3.44)

Thus the matrix form of (3.33) is[
AN2+3,fL−1

AN2+3,gL−1

] FL−1

GL−1

 = 0. (3.45)
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3.3.6 Block Matrix Form for (3.34) and (3.35). We will first do the block matrix

form for (3.34). For a given l ∈ {1, . . . , L−1} and a given i ∈ {1, . . . , N1−1}, we have that

2lGl,i+(−(l−1)2+ 2

(∆θ)2
)Fl−1,i−(

1

(∆θ)2
)Fl−1,i−1−(

1

(∆θ)2
)Fl−1,i+1 = 0.

The blocks that will make this condition will be at the j = N2+3+2l level in the block

matrix A.

The matrix AN2+3+2l,gl
= 2lI. We also have the matrix AN2+3+2l,fl−1

. This is more

complicated, and is given by

AN2+3+2l,fl−1
= (3.46)

2
(∆θ)2
−(l−1)2 −1

(∆θ)2
−1

(∆θ)2

−1
(∆θ)2

2
(∆θ)2
−(l−1)2 −1

(∆θ)2

. . . . . . . . .

−1
(∆θ)2

2
(∆θ)2
−(l−1)2 −1

(∆θ)2

−1
(∆θ)2

−1
(∆θ)2

2
(∆θ)2
−(l−1)2



. (3.47)

The system of equations (3.34) is then given by

[
AN2+3+2l,fl−1

0 0 AN2+3+2l,gl

]


Fl−1

Gl−1

Fl

Gl


= 0. (3.48)

We will now do the block matrix form for (3.35) For a given l ∈ {1, . . . , L−1} and a

given i ∈ {1, . . . , N1−1}, we have that

2lFl,i+(l2− 2

(∆θ)2
)Gl−1,i+(

1

(∆θ)2
)Gl−1,i−1+(

1

(∆θ)2
)Gl−1,i+1 = 0.

The blocks that will represent this condition will be at the j = N2+2+2l level in the block
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matrix A.

The matrix AN2+2+2l,fl = 2lI. We also have the matrix AN2+2+2l,gl−1
. This is more

complicated, and is given by

AN2+2+2l,gl−1
=

l2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

l2− 2
(∆θ)2

1
(∆θ)2

. . . . . . . . .

1
(∆θ)2

l2− 2
(∆θ)2

1
(∆θ)2

1
(∆θ)2

1
(∆θ)2

l2− 2
(∆θ)2



.

The system of equations (3.34) is then given by[
AN2+2+2l,gl−1

AN2+2+2l,fl

]Gl−1

Fl

 = 0.

A full implementation of (3.34) and (3.35) for all i ∈ {1, . . . , N1−1} and l ∈ {1, . . . , L−1}

is then
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

0 AN2+4,g0 AN2+4,f1 0

AN2+5,f0 0 0 AN2+5,g1

. . . . . . . . . . . .

0 AN2+2L,gL−2
AN2+2L,fL−1

0

AN2+1+2L,fL−2
0 0 AN2+1+2L,gL−1





F0

G0

F1

G1

...

FL−2

GL−2

FL−1

GL−1


= 0.

(3.49)

3.3.7 The Full IBVP Representation. We have gone through each of the second

order discretized equations for our iterative BVP for a given obstacle m and iteration (n)

and have written each of the systems of equations in block matrix form. A is a (N2+1+

2L)×(N2+1+2L) block matrix where each block is a (N1−1)×(N1−1) matrix. We have

described each block in the previous sections using indexing. We have also described the

forcing vector b. In summary, the vector b is a vector of all zeros, except for the first N1−1

values which contain the vector −B̂Û(n)
inc All that we would need to do is then solve AV = b

using a linear solver of choice.

We will go back to using notation to represent the obstacle m and iteration (n). We will

denote the matrix for obstacle m as Am, the unknowns vector for obstacle m and iteration

(n) as V
(n)
m , and the forcing vector as b

(n)
m . The entire iterative process can be summed up

by

Solve AmV(n)
m = b(n)

m for V(n)
m

for n = 1, . . . and m = 1, . . . ,M. (3.50)
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Note that Am doesn’t have a superscript (n). This is because Am is independent of the

iteration process. The moving parts of the iteration are the unknowns vector V
(n)
m and the

forcing vector b
(n)
m . This means that the matrix Am needs to be generated only once at the

beginning of the iteration process.

3.4 Numerical Implementation

For our algorithm, the following are parameters that are needed to start the process.

• centers, a list of 2-D vectors b⃗m which contain the centers of our M obstacles.

• IntxFun, a cell array of functions that define Bm
x (θm).

• IntyFun, a cell array of functions that define Bm
y (θm).

• ϕ, the angle of the incident wave.

• k, the wavenumber of the incident wave.

• Z, the acoustic hardness of the M obstacles.

• PPW , points per wavelength, a measure of how refined the grids are.

• L, how many terms to use in KFE.

• Rs, a vector of outer radii Rm, where we place the absorbing boundary condition.

• Tol, part of our stopping criteria.

• maxiter, part of our stopping criteria.

With these variables initialized, we then are ready to begin the algorithm.

(i) Calculate Nm
1 and Nm

2 using (3.8). Using Nm
1 and Nm

2 and the interior boundary func-

tions Bm
x and Bm

y and the outer radii Rs(m) = Rm, generate the computational grid

Ω̄−
m using the methods described in section (3.2.1), and then get the various represen-

tations of Ω̄−
m using section (3.2.2).
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(ii) Build Am for each obstacle using section (3.3). While generating the matrix Am, also

save the values of γ, β and J on the obstacle boundary. We can call these γb,m, βb,m,

and Jb,m.

(iii) Create cell arrays F , G, newF , newG, and initialize F{m, l} to be a zero (Nm
1 −1)×1

vector for all m ∈ {1, . . . ,M} and l ∈ {0, . . . , L−1}. Repeat for G, newF and newG.

(iv) Create a cell array U and newU , and initialize U{m} and newU{m} to be a (N1−1)×

N2 zero array for all m ∈ {1, . . . ,M}.

With these definitions of variables, I will now present the iterative process in Algorithm

1.

3.4.1 Speeding Up The Iterative Process. Now that the iterative process is outlined

in Algorithm 1, there are a few things that can be done to speed up the iteration process

and make it so the algorithm can compete with other algorithms out there.

Parallelization. There are a few processes that can be done in parallel that can really

speed up the algorithm. The first few things that can be done in parallel are items (1) -

(4) from the list in the previous section. What is significant to note is that each grid Ω−
m

and each matrix Am can be created in parallel. This is a huge time saver. There is also

parallelization that can be done within the iteration process outlined in Algorithm 1, which

will save a lot of time. For Gauss-Seidel iteration (the iteration outlined in Algorithm 1), we

can replace the for-loop on line 9 with a parallelized for-loop. For a given obstacle m, the

parallelized for-loop will sum up the scattered waves of the other M−1 obstacles in parallel.

If we are doing Jacobi iteration, then we can instead parallelize the for-loop on line 7. In

this case, we are doing each obstacle in parallel.

Initializing The Scattered Waves. In item (3) from the list at the beginning of the

section, we initialize all of the F{m, l} and G{m, l} to be a zero vector. Since the scattered

wave from obstaclem outside Ω−
m is given by (3.18), this is essentially initializing the iteration

with no scattered wave from any of the obstacles.
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Algorithm 1 The Gauss-Seidel Iterative Process

1: n← 0
2: do
3: n← n+1
4: F ← newF
5: G← newG
6: U ← newU
7: for m = 1 : M do
8: Ûinc ← 0((Nm

1 −1)×3) ▷ This is a zero matrix with Nm
1 −1 rows and 3 columns

9: for m′ ̸= m do
10: for l = 0 : L−1 do
11: F̃m′,l ← Interpolating function based on newF{m, l}
12: G̃m′,l ← Interpolating function based on newG{m, l} ▷

To change to Jacobi iteration, base the interpolating functions off of F and G instead of
newF and newG

13: f interps← F̃m′,l(Θ
(m′,m)[:, 1 : 3])

14: g interps← G̃m′,l(Θ
(m′,m)[:, 1 : 3])

▷ We interpolate the scattered wave at the first 3 η levels of Ω−
m. We do the first 3

levels so that we can do one-sided second order finite difference(line 20).
15: Ûinc ← Ûinc+H0(kR

(m,m′)) f interps

(kR(m,m′))l
+H1(kR

(m,m′)) g interps

(kR(m,m′))l

16: end for
17: end for
18: Ûinc ← Ûinc+uinc((Ω̄

−
m)[:, 1 : 3])

19: b← 0((Nm
1 −1)(Nm

2 +1+2L)×1)
20: b[1 : Nm

1 −1]← B̂Ûinc[1 : Nm
1 −1, 1]

21: V ← LinearSolve(Am, b)
22: V ← reshape(V,Nm

1 −1, Nm
2 +1+2L)

23: newU{m} ← (V [:, 1 : Nm
2 ])

24: for l = 0 : L−1 do
25: newF{m, l} ← V [:, Nm

2 +2+2l]
26: newG{m, l} ← V [:, Nm

2 +3+2l]
27: end for
28: end for
29: while maxm |newUm−Um|∞ > Tol & n < maxiter

37



We can instead initialize the scattered wave for each obstacle to be a decent approximation

of the scattered wave. This means we would be starting the iteration process at a point that

is closer to the true solution. This would be like skipping a few iterations in the iteration

process.

We could first run the algorithm for a small PPW that won’t take much time to complete.

For the BYU configuration, using k = 2π, Tol = 1E-8 and PPW = 25, the entire algorithm

takes less than 10 seconds to converge. Once the algorithm is finished, we have a decent

approximation for the scattered waves of each obstacle with a typical L2 error on the order

of 10E-3. This means that we have the vectors F{m, l} and G{m, l} for all m ∈ {1, . . . ,M}

and l ∈ {0, . . . , L−1} for this less-refined grid. We can base interpolating functions off these

less-refined vectors from the PPW = 25 solution, and then initialize the vectors F{m, l} and

G{m, l} by evaluating the interpolating function at the discretized θ values for PPW = 200.

For the BYU configuration (see Figure 4.2a), the algorithm took a total of 29 iterations

to converge under a 1E-8 tolerance. However, if I initialize it with the PPW = 25 solution,

then it only took 17 iterations.

Factoring The Matrices. The most computationally costly part of the iteration pro-

cess is solving the matrix system AmV
(n)
m = b

(n)
m . This is done on line 21 in Algorithm

1. The matrix Am is a (Nm
1 −1)(Nm

2 +1+2L)×(Nm
1 −1)(Nm

2 +1+2L) sparse matrix with

(Nm
1 −1)(9Nm

2 +12L−1) non-zero terms. A typical sparse linear solver should theoreti-

cally have a time complexity of O(nnz) where nnz is the number of non-zero terms in

the sparse matrix. We then should expect the time complexity to solve our system to be

proportional to nnz = (Nm
1 −1)(9Nm

2 +12L−1). Substituting the definitions (3.8) and iso-

lating the leading order term, we have that the number of non-zero terms is asymptotic to

9k2PPW 2((Rm)2−(rmmin)
2)/(4π). Thus, for a fixed Rm and rmmin, nnz ∈ O(PPW 2). We then

expect the temporal complexity of solving AmV
(n)
m = b

(n)
m to grow proportional to PPW 2.

Looking at Figure 3.4, this does seem to be the case, at least for the range of points per

wavelength we are dealing with.
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Figure 3.4: Times to run backslash and LU decomposition for a matrix A, averaged over 6
trials. We used R = 2 and r0 = 1. The quadratic fit gives t = 0.0007769∗PPW 2 as the best
fit.

When I first began coding this algorithm, I was using Matlab’s backslash operator to

solve the systems. Looking at figure 3.4, we can see that solving this system gets more and

more time consuming as we increase the points per wavelength. Fitting the data I got for

time to a quadratic function, the leading order term is 0.0007769PPW 2. It can easily get to

a point where solving this single system can take around 5 minutes. If the configuration takes

N iterations to converge within a specified tolerance, and there are M obstacles, then the

algorithm will have to solve N ∗M of these systems sequentially. If solving a single system

takes 5 minutes, then we expect convergence after more than N∗M
12

hours of computational

time. For 7 obstacles and 30 iterations, as an example, convergence would take over 17

hours. Luckily, we have devised a way to get around this.
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The way I have solved this is to do an LU factorization for each of the matrices Am with

full column and row pivoting before I enter into the do-while loop on line 2 of Algorithm 1.

So, before anything else, we will find the matrices [L̄m, Ūm, P̄m, Q̄m, D̄m] such that

P̄m((D̄m)−1Am)Q̄m = L̄mŪm (3.51)

where P̄m and Q̄m are row and column permutation matrices, respectfully, and D̄m is a

diagonal scaling matrix. This decomposition is very efficiently found for sparse matrices

using Matlab’s “lu” function.

Once we have the decomposition of each matrix Am, we can then efficiently solve the

system (3.50) like so:

Solve L̄my1 = P̄m(D̄m)−1b(n)
m ) for y1 using forward substitution

Solve Ūmy2 = y1 for y2 using backward substitution

V(n)
m = Qmy2. (3.52)

What allows us to take advantage of this factorization is that the solution to the system

(3.50) is only dependent on the forcing vector b
(n)
m . So, for the obstacle m, we end up solving

AmV(1)
m = b(1)

m ,AmV(2)
m = b(2)

m ,AmV(3)
m = b(3)

m , . . .

until convergence is reached. Since the matrix Am doesn’t change, then substituting the LU

factorization of Am doesn’t change the linear system, but it makes it easier to solve using

forward and backward substitution.

Notice from Figure 3.4 that the times for an LU decomposition are extremely close to the

times for a backslash solution. This is because Matlab calls the LU decomposition within

backslash, and then does a similar forward and backward substitution like the one I’ve

described in (3.52). The times are so close because the time it takes to do the forward and

backward substitution is very small compared to the time it takes to decompose the matrix

into it’s LU factors. To see some numerical results on forward and backward substitution

times, look at Figure 3.5. Up near the high points per wavelength value of PPW = 320, it

still takes less than a second to do the forward and backward substitution. The average ratio
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of time to forward-backward solve to time to LU factor is 0.0135, with standard deviation

0.0049. So, a decent upper bound for our ratio is 0.02. This means that we can forward-

backward solve in 2% of the time it takes to do an LU factorization.

Figure 3.5: Times for forward and backward substitution solving the system (3.50) using
the LU factors, averaged over 6 trials. We used R = 2 and r0 = 1. The quadratic fit gives
t = 7.451∗10−6∗PPW 2 as the best fit.

When solving the systems repeatedly using Matlab’s backslash operator on our sparse

matrix, the operator automatically chooses the LU solver to solve the system. So, every

time we call backslash on the system AmV
(n)
m = b

(n)
m , Matlab does an LU decomposition

on Am anyway and then does forward and backward substitution to solve the system. If

we look at it that way, then when we iterate using the backslash operator, we are doing

N ∗M sequential LU factorizations and N ∗M forward and backward substitutions. If we
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instead do the LU decomposition ourselves before the do-while loop, then we only do M

sequential LU factorizations and N ∗M sequential forward and backward substitutions. We

then have successfully eliminated (N−1)∗M costly LU factorizations from our iteration

process. What’s even more amazing, is that we can do the M LU factorizations in parallel

before the do-while loop, so we could potentially do all M LU factorizations in the time it

takes to do one LU factorization, if you have enough processors. So, we’ve gone from doing

N ∗M LU factorizations and forward and backward substitutions sequentially, to doingM LU

factorizations in parallel and then N ∗M forward and backward substitutions sequentially.

The example we used before was 5 minutes per backslash, over N = 30 iterations and

M = 7 obstacles. Our estimate for the time to converge was N∗M
12

= 17.5 hours. If instead

we do M LU factorizations in parallel, and then N ∗M forward and backward substitutions

sequentially, our estimate would be 1
12
+ 30∗7

12
∗0.02 = 0.433 hours. Thus, we have reduced our

estimated 17 hours of computational time to less than 30 minutes.

For the 3 cylinders configuration, here are the times where we use backslash vs. LU

factorization. The ratio row shows the LU method is around 10% of the backslash method.

This is a significant time saver (3.1).

Table 3.1: Comparison of convergence times for the 3 cylinders configuration. Entries are in
seconds.

PPW 80 100 150 180 250
LU Factoring 10.1 17.0 33.0 48.8 262.4
Backslash 105.9 214.5 403.6 652.6 2410.6
Ratio 0.095 0.0792 0.082 0.0748 0.109

One downside to the LU decomposition is that the memory requirements grow rapidly.

Though the factors L̄m and Ūm are sparse themselves, they are much less sparse than the

matrix Am, as seen in Figure 3.6. We know that the number of non-zero terms of Am is

asymptotic to 9k2PPW 2((Rm)2−(rmmin)
2)/(4π). What we don’t know is how this reflects

in the non-zero terms of the LU factors. Plotted in Figure 3.7 are the number of non-zero

elements in various matrices as a function of PPW. We can see that the number of non-zero
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terms of the LU factors grows much faster than the number of non-zero factors of A. An LU

decomposition of a PPW = 600, L = 9, R = 2, rmin = 1 matrix A exceeds 32 gigabytes of

memory, so a normal laptop with 16-32 gigabytes of memory doesn’t have enough resources

to run this algorithm for such high PPW . This algorithm will run for higher PPW , it just

needs to be run on a computer that has access to more memory.

Figure 3.6: Sparse Matrix Plots for PPW = 150, L = 9, R = 2, rmin = 1, k = 2π.

(a) The matrix A . (b) The L factor of A. (c) The U factor of A.

Chapter 4. Numerical Results

We have chosen a few configurations to run experiments on to show the convergence of our

algorithm. The first configuration is 3 cylinders of radius 1 lined up on the x-axis. The

second is 6 cylinders of various sizes aligned in a “Y” shape. The last is 3 non-cylindrical

obstacles arranged off-axis.

When the algorithm is run for a certain PPW , we get as output the scattered wave

approximation Um on each of the points in Ω̄−
m for each obstacle m. For our analysis in this

chapter, we will use the exact solution given by (1.5) to obtain the true values of u on the

discretized points on each obstacle’s artificial boundaries, and we will store these true values

in a vector um
b , where (um

b )i = u(Rm, θmi ) for i ∈ {1, . . . , Nm
1 −1}. We can then take the

L2-norm error for each artificial boundary, Em
b = ||Um[:, Nm

2 ]−um
b ||2. We then define the L2

43



Figure 3.7: Plot of number of non-zero elements for the matrix A and it’s LU factors, with
L = 9, R = 2, rmin = 1, k = 2π.

boundary error to be

Eb = max
m∈{1,...,M}

Em
b . (4.1)

We also get as output the approximations of the farfield family of functions Fm,l and

Gm,l at the discretized θmi values. We can numerically approximate the farfield pattern of

the system at a global angle θ as such:

û∞(θ) =
1−i√
π

M∑
m=1

(F̃m
0 (θ)−iG̃m

0 (θ))e
ik(bmx cos θ+bmy sin θ) (4.2)

where F̃m
0 and G̃m

0 are the interpolating functions based off of the discretized value approxi-

mations of Fm,0 and Gm,0. We then choose a number of points Nfar to sample û∞ at Nfar
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equally spaced points between [0, 2π]. Call the resulting vector of values U∞. We also get

the exact solution of the farfield pattern using (1.6) at those same equally spaced points,

and we will call this vector u∞,true. We can then take the L2-norm error between the two.

Effp = ||U∞−u∞,true||2. (4.3)

The two measures of error we will then use in our analysis of convergence is the artificial

boundary error Eb and the farfield pattern error Effp.

4.1 3 Cylinders on the x-axis

An example computational grid of PPW = 6 is given for this configuration in Figure 4.1a.

For this configuration, we will set ϕ = −π/2, k = 2π, L = 10 and Tol = 10−10. The

cylinders are all of radius 1 and artificial boundary of radius 2, and they are centered at

[−4.25, 0]T , [0, 0] and [4.25, 0]T . We will show that the algorithm converges with order 2 for

Z ∈ {0, 0.5, 1}, which correspond to a Dirichlet, Robin, and Neumann problem. The PPW

chosen for this problem were PPW ∈ {100, 200, 300, 400, 500}. The convergence analysis for

the errors Eb and Effp are found in tables 4.1 - 4.3.

Table 4.1: Relative L2 Error Table for 3 Cylinders Configuration, Z = 0

PPW h Farfield Pattern Error Order Boundary Error Order
100 0.01000 2.68E-4 - 2.87E-4 -
200 0.00500 6.65E-5 2.01001 7.12E-5 2.01188
300 0.00333 2.95E-5 2.00699 3.15E-5 2.00848
400 0.00250 1.66E-5 2.00537 1.77E-5 2.00596
500 0.00200 1.06E-5 2.00633 1.13E-5 2.00510

Looking at the results, it is evident that the solutions are converging with order 2 for

all values of Z ∈ {0, 0.5, 1}. The accuracy, however, is different for the 3 Z values. The

Dirichlet problem has the best accuracy, with both the farfield pattern and boundary L2

errors getting 5 decimals of accuracy past PPW = 200. The next best accuracy is given

by the Neumann problem, with 5 decimals of accuracy past PPW = 300. For the Robin
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Table 4.2: Relative L2 Error Table for 3 Cylinders Configuration, Z = 0.5

PPW h Farfield Pattern Error Order Boundary Error Order
100 0.01000 7.36E-4 - 8.74E-4 -
200 0.00500 1.85E-4 1.99300 2.19E-4 1.99413
300 0.00333 8.23E-5 1.99435 9.76E-5 1.99687
400 0.00250 4.64E-5 1.99336 5.50E-5 1.99750
500 0.00200 2.97E-5 1.99219 3.52E-5 1.99862

Table 4.3: Relative L2 Error Table for 3 Cylinders Configuration, Z = 1

PPW h Farfield Pattern Error Order Boundary Error Order
100 0.01000 4.96E-4 - 6.61E-4 -
200 0.00500 1.23E-4 2.00827 1.65E-4 2.00299
300 0.00333 5.48E-5 2.00236 7.33E-5 2.00067
400 0.00250 3.08E-5 2.00032 4.12E-5 1.99974
500 0.00200 1.97E-5 1.99865 2.64E-5 1.99903

condition, we also get 5 decimals of accuracy after PPW = 300. Even though the Robin and

Neumann problems don’t achieve as much accuracy as quickly as the Dirichlet problem, the

fact that we can still get 5 decimals of accuracy for any of these problems is quite amazing.

It is extremely difficult in general for a second order finite difference scheme to get error

below 1E-3. The finite difference algorithm presented in this thesis achieves error around

the order of 1E-5. It is significant to note that running PPW = 500 for this configuration

took less than 10 minutes on my home computer. I would have tried larger values of PPW ,

but the memory requirements for the LU factorization got too large.

The absolute value of the scattered wave and incident wave are plotted in Figure 4.1.

The artificial boundaries are plotted in black, and the scattered wave is reconstructed in the

region Ω+ using (2.31).

4.2 “Y”

We have shown in the previous experiment that the accuracy of our algorithm is incredibly

good for a second order finite difference scheme. The purpose of this “Y” experiment is

to show that we can vary the shape of the obstacles and the number of obstacles and still
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Figure 4.1: 3 Cylinders Mesh and Total Waves.

(a) 3 Cylinders Mesh, PPW = 6. (b) Z = 0.

(c) Z = 0.5. (d) Z = 1.

achieve great precision.

For this configuration, we have ϕ = −π/2, L = 10, k = 2π and Tol = 1E-10. There are 2

cylinders of radius 1.25 and artificial boundary of radius 2.5 located at [−4, 8]T and [4, 8]T .

Another 2 cylinders are of radius 0.7 and artificial boundary of radius 1.7 located at [−2, 4]T

and [2, 4]T . The last 2 cylinders are of radius 0.5 and artificial boundary radius of 1.7, and

are located at [0, 0]T and [0,−4]T . An example computational grid of PPW = 6 is given for

this configuration in Figure 4.2a.

This configuration has 6 obstacles, which represents a very difficult problem for most
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algorithms. For PPW = 300, the coupled solver given in [13] doesn’t complete within 3 days

because the system built is so large. The iterative method given in this thesis completed the

PPW = 300 configuration in around 12 minutes, and gives accuracy on the order of 1E-5.

We can also see that the errors for both the farfield pattern and the boundary converge with

order 2, as shown in table 4.4.

Table 4.4: Relative L2 Error Table for the “Y” Configuration

PPW h Farfield Pattern Error Order Boundary Error Order
50 0.02000 2.30E-3 - 2.51E-3 -
100 0.01000 5.73E-4 2.00628 6.24E-4 2.00616
150 0.00667 2.54E-4 2.01069 2.76E-4 2.01440
200 0.00500 1.43E-4 1.99489 1.56E-4 1.99294
250 0.00400 9.12E-5 2.01095 9.93E-5 2.01145
300 0.00333 6.35E-5 1.99002 6.91E-5 1.98759

Figure 4.2: “Y” configuration

(a) “Y” mesh for PPW = 6. (b) Total Wave, PPW = 300.

4.3 3 Non-Cylindrical Obstacles

An example computational grid of PPW = 6 is given for this configuration in Figure 4.3a.

The algorithm is intended to work for arbitrary geometry. In fact, arbitrary geometry is

the whole purpose for creating a numerical method! We have an analytical solution for the
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scattered waves off of cylinders, so the real challenge is solving the BVP where the obstacles

are non-cylindrical.

For our non-cylindrical configuration, we have

B1
in =

 (1+ 1
3
cos(3 cos(1.75 cos(1.5θ1)))) cos(θ1)

(1+ 1
3
cos(3 cos(1.75 cos(1.5θ1)))) sin(θ1)


B2
in =

 (2−cos(sin(3θ2))) cos(θ2)

(2−cos(sin(3θ2))) sin(θ2)


B3
in =

 (1+ 1
3
cos(3 cos(1.75 cos(1.5 cos(2θ3))))) cos(θ3)

(1+ 1
3
cos(3 cos(1.75 cos(1.5 cos(2θ3))))) sin(θ3)

 .

These three obstacles will all have an artificial boundary of radius 2.5, and are located at

[0,−2]T ,[5, 0]T and [0.5, 3.5]T , respectfully.

Since there is no analytical solution to this configuration, we can’t compare the numerical

result to an analytical solution. We can still, however, get a gauge on it’s convergence. We

can compare the numerical results we get for smaller PPW to a reference solution generated

from an extremely refined grid. We can then gauge how well the numerical results converge

to the reference solution. For this experiment, the reference solution used is the solution

given from running the algorithm at PPW = 500.

We also have for this configuration that ϕ = −π/4, k = 2π, Z = 0, and Tol=1E-10.

Table 4.5: Relative L2 Error Table for 3 Obstacles

PPW h Farfield Pattern Error Order Boundary Error Order
20 0.02000 3.21E-2 - 3.50E-2 -
60 0.01000 4.12E-3 2.11377 3.54E-3 2.08490
100 0.00667 1.07E-3 2.12095 1.21E-3 2.09655
140 0.00500 5.15E-4 2.15454 5.83E-4 2.17642
180 0.00400 2.30E-4 1.89549 3.43E-4 2.11199

The table does show that the algorithm is converging as we refine our grid, and we even

get down to the 1E-4 range in the errors starting at PPW = 140. The order of convergence

for both the farfield pattern and the artificial boundary error are slightly more than 2, which
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happens frequently when comparing to a reference solution.

Figure 4.3: 3 Obstacles Mesh and Total Wave

(a) 3 Obstacles Mesh, PPW = 6.
(b) 3 Obstacles Total Wave, PPW =
180.

Chapter 5. Conclusion

In this work, we have reduced the complex multiple scattering problem from M obstacles,

which is given by the original BVP (1.2)-(1.4) for the total scattered wave u, to a system

of M single scattering problems for the scattered waves um (m = 1 . . .M), given by (2.1)-

(2.3). This reduction is based on a decomposition of the total scattered field u as the sum of

individual scattered fields um from each obstacle [14]. The novelty of our approach is that

we complete the formulation of each of the scattered problems for um with a high order local

absorbing boundary condition, which is based on Karp’s farfield expansion representation of

the outgoing wave from each obstacle. This novel ABC was introduced by Villamizar et al.

[8] for a single scattering problem. The new system of BVPs is given by (2.16)-(2.22).

A numerical solution of this last formulation would require us to consider all the scattered

field um as unknowns. As a result, a large system of equations coupling all of the um discrete

values would need to be solved for each scatterer. To avoid this inconvenience, we adopt an
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iterative formulation introduced by Geuzaine et al. [9] that allows us to uncouple the BVPs

(2.16)-(2.22) into single scattering problems for each um given by (2.23)-(2.29). They are

numerically solved in an iterative fashion. We have adopted both Jacobi and Gauss-Seidel

iterative techniques in our formulations.

The iterative BVPs just described can be solved by any numerical method. In this work,

we have adopted second order finite difference to approximate the scattered waves um inside

their computational domains coupled with second order finite difference discretizations of

the KFE at the artificial boundaries. As a result, we have derived an overall second order

technique based on finite difference for the acoustic multiple scattering problems modeled by

Helmholtz equations and KFE absorbing boundary conditions at the artificial boundaries of

each scatterer.

The iterative formulation requires us to solve a BVP for each scatterer several times

until the convergence is reached. This may be seen as a disadvantage compared with a

coupled formulation approach, as the one recently introduced by Villamizar, Badger and

Acosta [13]. The truth is that the iterative approach is computationally more efficient than

the coupled one. First, the linear systems that result after discretization are much smaller

than the coupled one, especially when we have many scatterers. Therefore, the condition

number of these matrices is much smaller than the larger matrix of the coupled approach.

As a consequence, the coupled method is limited to a few scatterers, while the iterative

method, in principle, can handle any number of obstacles. Secondly, the solution of several

linear systems until convergence is reached can be made relatively fast by using an LU

decomposition, as shown in Section 3.4.1. In fact, the matrix defining the linear system at

each iteration remains the same during the iteration process. If a certain configuration of M

obstacles converges after N iterations, we can eliminate (N−1)∗M costly LU factorizations

by doing M LU factorizations before the iteration process even begins. We can further save

time by doing these M LU factorizations in parallel. Once we have the LU factorizations,

solving the single scattering problem for each obstacle is as simple as a backward and forward
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substitution, which can be done in less than a second for even high points per wavelength

(see figure 3.5). In practice, the LU factorization applied to the 3 cylinders configuration in

Figure 4.1a reduced the convergence time by over 90% (see table 3.1).

In Section 3.2, we reformulated the BVP for each scatterer in generalized curvilinear

coordinates. This allows us to deal with obstacles of arbitrary shape by using a sufficiently

smooth grid generator for the various scatterers. In this work, we have considered scattering

from circular cylindrical scatterers and also from scatterers of more complex geometries. For

the circular cylindrical scatterers, we compared our numerical results against the available

exact solutions. For complex geometries, we generate reference solutions using a very refined

grid and gauged convergence with respect to that reference solution. For our complex geom-

etry example in Section 4.3, we used a reference solution based off a PPW = 500 grid and

L = 14 terms in the Karp’s Farfield Expansion ABC. Comparing to this reference solution,

we achieved second order convergence for PPW ∈ {20, 60, 100, 140, 180} (see table 4.5).

As mentioned in the body of this thesis, the iterative nature of our numerical method

allowed us to pair it with parallelization and LU factorization. As a result our method ended

being relatively fast compared with previous formulations [13, 11]. Our numerical results

show the robustness and accuracy of our numerical method for Dirichlet (soft obstacles),

Neumann (hard obstacles) and intermediate hardness (0 < Z < 1) BVPs. As seen in Tables

4.1-4.3, we could use the amazing quantity up to 500 points per wavelength for the three

circular cylinders without issues relating to matrix conditioning numbers. This allowed us to

obtain an L2-error on the order of 1E-5, which is a true accomplishment for a second order

technique. The “Y” configuration of Section (4.2) represents a challenge for any numerical

approach. We were able to obtain the results presented in Figure 4.2 with PPW=300 in

12 minutes. Even more amazing is the fact that we could still get an error on the order of

10−5 for this configuration in only 4 minutes using PPW = 250. These times were achieved

with 32 Gigabytes of ram and an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz quad-core

processor.
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