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abstract

Network Specialization: A Topological Mechanism for the Emergence of Cluster
Synchronization

Ethan Walker
Department of Mathematics, BYU

Master of Science

Real-world networks are dynamic in that both the state of the network components
and the structure of the network (topology) change over time. Most studies regarding net-
work evolution consider either one or the other of these types of network processes. Here we
consider the interplay of the two, specifically, we consider how changes in network structure
effect the dynamics of the network components. To model the growth of a network we use
the specialization model known to produce many of the well-known features observed in real-
world networks. We show that specialization results in a nontrivial equitable partition of the
network where the elements of the partition form clusters that have synchronous dynamics.
In particular, we show that these synchronizing clusters inherit their ability to either locally
or globally synchronize from the subnetwork from which they are specialized. Thus, network
specialization allows us to model how dynamics and structure can co-evolve in real-world
systems.

Keywords: networks, network science, synchronization, dynamical systems, dynamical net-
works
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The specialized graph Ḡ has the equitable partition consisting of the two

yellow, two purple, two green, and two orange vertices, where each of the

other vertices, shown in blue, are in their own partition element consisting of

a single vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



3.2 The graph G, shown left, has the equitable partition consisting of the four sets

of red, yellow, green, and brown vertices. Specializing G over the red vertex
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Chapter 1. Introduction

Networks studied in the biological, social and technological sciences are inherently dynamic.

Periodic dynamics related to circadian rhythms and life cycles are a hallmark of biological

networks [12]. Synchronizing patterns of dynamics are found in the heart and brain [17] and

synchronization is used in telecommunication networks to measure service quality [10, 29].

Stable and multistable dynamics are observed in cellular differentiation, metabolic, and other

networks [2, 6].

Aside from the changing state of network components, over longer time-scales networks

are also dynamic in terms of their topology [22]. Individuals move in and out of social

networks, websites and the hyperlinks between them are updated, and the neural connec-

tions in the brain are rewired presumably to allow for improved processing and storage of

information.

This first type of dynamics is referred to as the dynamics on the network or the changing

state of the network components. The latter, which is the evolving topology or structure of

interactions, is referred to as the dynamics of the network. With few exceptions, most studies

consider either dynamics on the network or dynamics of the network. Here we consider the

interplay of these two types of dynamics, in particular the change in network dynamics

caused by changes in network structure.

To link the study of the dynamics on and the dynamics of real-world networks we consider

a model of network growth that is known to produce many of the most widely observed

features found in real-world networks. This includes right-skewed degree distributions, high

clustering coefficients, the small-world property, modular and hierarchical structure, etc. (see

[23] for more details on these properties). This model is the specialization model recently

developed by the authors et al. [15, 16].

The specialization model is based on the observation that as the topology of a network

evolves so does the network’s ability to perform increasingly complex functions. This hap-
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pens, for instance, in neural and in cellular networks, which become increasingly modular as

parts of the network become more specialized in function [26, 28]. Similarly, gene regulatory

networks can specialize the activity of existing genes to create new types of gene behavior [4].

In technological and information networks such as the World-Wide Web, this differentiation

of function is also observed and is driven by the need to handle and more efficiently process

an increasing amount of information.

In this work we consider how specialization effects the dynamics on a network. Specifically

we show how specialization results in clusters of network components that spontaneously

synchronize. This is caused by the creation of nontrivial equitable partitions (see Theorems

3.4 and 3.7), structures which are associated with cluster synchronization in networks [19, 1,

21], where the clusters are the elements of the equitable partition. We also show that these

synchronizing clusters inherit their ability to either locally or globally synchronize from the

subnetwork from which they are specialized (see Theorem 4.6).

From a structural point of view these synchronizing clusters are not communities in

the standard sense of being highly modular subsets of the network (see, for instance, [23]).

Rather, the network components in these clusters are interspersed throughout the new com-

munities that are created by the process of specialization. The fact that these components

synchronize and also occupy the same relative position in their respective communities sug-

gests that these components play a similar role within their different communities. Under-

standing these network roles is an ongoing area of research [13, 3, 18] and our results suggest

that network specialization is a potential mechanism for modeling their creation.

This work is organized as follows. In Chapter 2 we introduce the specialization model for

both static and dynamical networks, i.e. graphs and dynamical systems with an underlying

graph structure, respectively. In Chapter 3 we describe how equitable partitions are created

and preserved by network specializations for graphs (see Theorems 3.4 and 3.7, respectively).

In Chapter 4 we extend the results of Chapter 3 to dynamical networks. We show that if

a dynamical network has an equitable partition then it is possible for the elements of this
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partition to synchronize (see Theorem 4.4). We also show that these clusters synchronize

asymptotically depending on whether the subnetwork from which they are specialized has

an attracting fixed point (see Theorem 4.6). In Chapter 5 we examine a possible route for

further research. Finally, in Chapter 6, we conclude with some remarks and open questions.

Chapter 2. Network Specialization

2.1 Graph Structure of a Network

The topology of a network, which is the network’s structure of interactions, is typically

represented by a graph. A graph G = (V,E) is composed of a vertex set V and edge set E.

The vertex set V represents the network components, while the edges E represent the links or

interactions between these components. For the graph G = (V,E) we let V = {1, 2, . . . , n},

where i represents the ith network component. An edge between vertices i and j can be

either directed or undirected. Undirected edges represent reciprocal relationships, such as

friendships in a social network, but directed edges may not be a reciprocal, like predator-

prey interactions in a food web. We let eij denote an edge between vertex i and vertex j. If

the edge is directed then it starts at i and terminates at j. In terms of the network, if the

edge eij ∈ E this indicates that the ith network component has some direct influence on or

is linked to the jth network component. We note that one can consider an undirected edge

to be two directed edges: one edge pointing from the first to the second vertex, the other

pointing from the second to the first vertex. Thus, any graph can then be considered to be

a directed graph, i.e. a graph with directed edges, which will be our convention throughout

this work.

The adjacency matrix of the graph G = (V,E) is the zero-one matrix A ∈ {0, 1}n×n with

entries given by

Aij =

 1 if eji ∈ E

0 otherwise.
(2.1)
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This we write as A = A(G). As there is a one-to-one relation between graphs and adjacency

matrices we will use the two interchangeably depending on which is more convenient.

2.2 Dynamical Networks

Real-world networks perform specific functions and the underlying graph structure of a

network is thought to be fundamental in carrying out this function [14]. The network’s

structure of interactions describes how information, traffic, disease, and other quantities

move through the network. These dynamic processes are referred to as the dynamics on the

network which can be formalized as follows.

Definition 2.1. (Dynamical Network) Let F : Rn → Rn be a function with ith compo-

nent Fi : Rn → R given by

Fi(x) =
n∑
j=1

AijHij(xj) for i ∈ {1, 2, . . . , n} (2.2)

where A ∈ {0, 1}n×n and each Hij : R → R. The discrete-time dynamical system (F,Rn)

given by xk+1 = F (xk) is the dynamical network whose topology is described by the graph G

with adjacency matrix A = A(G). We refer to G as the graph of interactions of (F,Rn). For

an initial condition x0 ∈ Rn the kth iterate of x0 is xk = F k(x0) with orbit {F k(x0)}∞k=0 =

{x0,x1,x2, . . .}. Here xk = [xk1, x
k
2, . . . , x

k
n]T is the state of the network at time k ≥ 0 where

the component xki is the state of the ith network element at time k ≥ 0.

Example 2.2. Let F : R2 → R2 be defined as the following

F (x) =

−x2
2

|x1|

 .
Here if we start with x0 = [1, 1]T we have that x1 = F (x0) =

[
−1

2
, 1
]T

, and x2 = F (x1) =

F (F (x0)) =
[
−1

2
, 1

2

]T
.

Notice that we place no conditions on the functions we allow for Hij. While many of

our examples will have Hij ∈ C∞(R), this is not necessary for our analysis. In fact, as will
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be explored later, our analysis only relies on the fact that whatever properties the functions

have are inherited after network growth.

Examples of network models that have the form given in Definition 2.1 include Cohen-

Grossberg neural networks [20] and the network models used in [1, 11, 30].

2.3 Graph Specialization

Out[3110]=

Transportation Network Specialized Transportation Network

Figure 2.1: Left: A transportation network with a bottleneck indicated by the two red
vertices. Right: The specialization of this network in which new copies of the bottleneck
form unique paths between specific parts of the network. This is in contrast to the many
paths the bottleneck is used for in the original network, shown left.

Understanding the dynamics on a network is important in many areas including epi-

demiology, social sciences, population biology, etc. as disease dynamics, information flow,

and population spread can be and often are modeled on networks [25]. However, networks

are not only dynamic in this sense but over longer time-scales they are also dynamic in terms

of their topology.

As the structure of a network evolves so does the network’s ability to route different

quantities through its components. That is, the dynamics on the network are affected by the

dynamics of the network. Addressing this interplay of structural evolution and how it affects

5



the dynamics on a network is a major focus of this work. As mentioned in the introduction,

an issue in addressing this phenomenon is that there are many ways in which a network

can grow and therefore not surprisingly there are many models of network growth (see, for

instance, [23]). The one we consider here is the relatively new model first described in [15]

and later rigorously analyzed in [16]. This is the specialization model of network growth.

The motivation behind the specialization model is the observation that networks tend

to increase their ability to perform their functions through the diversification of their com-

ponents. This process is carried out by specializing certain subsets of the network into a

number of new copies each performing a more specialized function than that of the original

subnetwork. In Figure 2.1 we can see a general example of what specialization is and some

of the motivation behind using specialization to grow a network. Suppose the network’s

function in Figure 2.1 (left) is to transport some quantity between the network’s elements.

In this network the two red vertices form a bottleneck. To more efficiently move traffic

through the network this subnetwork can be specialized into a number of new routes. These

specialized routes move traffic from the bottom left to the top left, bottom left to the top

right, etc. in the new specialized network (see Figure 2.1 (right)). In this way the network

maintains its ability to route traffic, etc. as it did before but can now perform this task in

a presumably more efficient way

Here the specialization of a traffic bottleneck is an example of the more general notion of

network specialization. This type of specialization occurs in real-world networks including

disambiguation in Wikipedia pages (see e.g., [16]), specialization of cells in biological net-

works [26, 9, 24], cognitive specialization in human evolution [7], and specialization of social

networks [27].

In the model of network specialization, specialization is carried out by finding all of the

unique paths that pass through a certain subgraph, then copying those paths and placing

them in place of the original subgraph to create the new specialized network. By way of

notation, if S ⊆ V is a vertex subset of the graph G = (V,E) we let GS denote the subgraph
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which is the restriction of G to S. That is, GS = (S,ES) where ES = {eij ∈ E : i, j ∈ S}.

We let Sc denote the complement of S in V and define Ein
S = {eij ∈ E : i ∈ Sc, j ∈ S} to be

the edges that arrive at S and Eout
S = {eij ∈ E : i ∈ S, j ∈ Sc} to be the edges that exit S.

This allows us to define the branches of a graph with respect to its subgraph GS.

Definition 2.3. (Specialized Branches) For a graph G = (V,E) suppose S ⊆ V . A

branch β of S consists of an edge eik ∈ Ein
S , GS, and an edge e`j ∈ Eout

S together with i and

j which are in Sc. We write the branch β as the ordered set

β = {i, eik, GS, e`j, j}.

We let BS(G) denote all branches of S.

In creating the branch set BS(G) we are effectively collecting all the unique ways to enter

then exit GS starting and ending in GSc . This idea is motivated by thinking of a subgraph of

a network as performing multiple functions depending on the type of incoming and outgoing

edges that connect it with the rest of the network. Identifying these branches is akin to

identifying the different tasks a given subgraph is performing.

After identifying these branches we can specialize the network by replacing the original

subgraph GS by its set of branches. Specifically, if β 6= γ where

β = {i, eik, GS, e`j, j} and γ = {p, epr, GS, esq, q}

we let

β̄ = {i, eik̄, GS(β), e¯̀j, j} and γ̄ = {p, epr̄, GS(γ), es̄q, q}

be the corresponding branches in the specialized graph where GS(β) 6= GS(γ) are copies of

GS and the vertices k̄, ¯̀, r̄, s̄ are copies of vertices k, `, r, s ∈ S, respectively. This allows us

to define a graph specialization.

Definition 2.4. (Graph Specialization) Suppose G = (V,E) and S ⊆ V . Let Ḡ = Ḡ(S)

7
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G Ḡ

Figure 2.2: The graph G, shown left, is specialized over the vertex set S shown in red. The
result is the graph Ḡ = Ḡ(S), shown right.

be the graph G in which we replace the subgraph GS by the branches BS(G) such that

Ḡ = GSc ∪

 ⋃
β∈BS(G)

β̄

 .

We refer to Ḡ as the specialization of G over S.

The specialization of a graph G = (V,E) over a specialized vertex set S is a two step

process. The first step is the construction of the graph’s branches BS(G). The second step

is the merging of these branches into a single graph, which is used to replace the subgraph

GS.

Example 2.5. Consider the graph G in Figure 2.2 (left) with S being the two red vertices.

As there are two edges in Ein
S and two edges in Eout

S there are four branches in BS(G). These

are the branches that enter and exit GS from the top left to the top right, from the top left

to the bottom left, from the bottom right to the top right, and from the bottom right to the

bottom left respectively. Removing the graph GS and replacing it with the four branches

results in the specialized graph Ḡ = Ḡ(S) shown in Figure 2.2 (right).

Once a graph has been specialized it can again be specialized by choosing another set

of vertices and specializing the already specialized graph over this second set of vertices. In

Figure 2.3 the graph on the far left is sequentially specialized by randomly choosing twenty

percent of its vertices (shown in red), separating these vertices into connected components,

specializing over these components, then repeating. The result of sequentially specializing a

8
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Figure 2.3: A sequence of specializations is shown where at each step the graph is specialized
over a random subset consisting of twenty percent of its vertices shown in red. The result
is a graph that has many real-world like features; a right-skewed degree distribution, is
disassociative by degree, has a modular and hierarchical topology, and has the small world
property.

graph in this way is a graph that has many features consistent with real-world networks. For

example, it has a right-skewed degree distribution, is disassociative with respect to degree,

has the small world property, is sparse, and its topology is both modular and hierarchical

[15]. The reason this is important to us is that we are interested in how this real-world like

growth effects the dynamics on the network (see Chapter 4).

It is worth mentioning that the specialization model presented here is a simplified version

of the model introduced in [15] in that we limit the sets we specialize to connected subgraphs.

However, the statistical features as well as spectral and dynamic results established in [15, 16]

still hold, as the method of specialization described here can be adapted to the method

described in [15, 16]. In that sense, this method is more general.

2.4 Dynamical Network Specialization

To understand how specialization affects the dynamics of a network we need a way to spe-

cialize a dynamical network (F,X). We do this by specializing the network’s adjacency

matrix A (see Definition 2.1). Here we rely on the fact that the matrix A describes the

underlying graph structure of the network. To specialize the matrix A we simply specialize

the associated graph of interactions G where A = A(G).

Definition 2.6. (Matrix Specialization) Let A ∈ {0, 1}n×n be the adjacency matrix of

9



the graph G = (V,E) and suppose S ⊆ V . We define the adjacency matrix of the specialized

graph Ḡ = Ḡ(S) to be the matrix Ā = Ā(S) ∈ {0, 1}m×m, which we call the specialization

of the matrix A over S. For Ḡ = (V̄ , Ē), if the vertex j ∈ V̄ is a copy of the vertex i ∈ V

then we say the index j ∈ {1, 2, . . . ,m} is a copy of the index i ∈ {1, 2, . . . , n}.

In order to examine network dynamics after specialization, we must establish how the

specialized dynamical network inherits the functions Hij : R→ R. These functions describe

the influence element j has on element i in the original network. To define this process of

inheritance we will use the notion of an origination function.

Definition 2.7. (Origination Function) Suppose Ā = Ā(S) ∈ {0, 1}m×m is a specializa-

tion of the matrix A ∈ {0, 1}n×n. Let

τ : {1, 2, . . . ,m} → {1, 2, . . . , n}

be the function where τ(j) = i if the index j is a copy of the index i. If j is not a copy of

any index i then τ(j) = j. We refer to τ as the origination function of the specialization.

The origination function describes where an index (vertex) j in a specialized matrix

(graph) originated. If j is a copy of i then τ(j) = i or the index (vertex) j was originally

the index (vertex) i before the matrix (graph) was specialized. This gives us an equivalence

relation where indices (vertices) are in the same class if they are copies of the same index

(vertex). Specifically, two indices (vertices) i and j are copies of the same index (vertex) if

τ(i) = τ(j).

The origination function allows us to define the specialization of the dynamical network

(F,Rn).

Definition 2.8. (Specialization of Dynamical Networks) Suppose (F,Rn) is a dynam-

ical network given by Equation (2.2). If S ⊆ {1, 2, . . . , n} then the specialization of (F,Rn)

over S is the dynamical network (F̄ ,Rm) where the function F̄ : Rm → Rm has components

F̄i(y) =
m∑
j=1

ĀijHτ(i)τ(j)(yj) for i ∈ {1, 2, . . . ,m}.

10
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(a) Original Dynamical Network (b) Specialized Dynamical Network
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(c) Dynamics of the Original Network
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(d) Dynamics of the Specialized Network

Figure 2.4: The graph of interactions of the dynamical network (F,R4) from Example 2.9 is
shown in (a). The graph of interactions of the specialized network (F̄ ,R10) of (F,R4) over
S = {2, 3} is shown in (b). Copies of vertex 2 from (a) are indicated by 2.1, 2.2, etc. in
(b) and the same convention is used for vertex 3. In both graphs self-loops are omitted, i.e.
edges that begin and end at the same vertex. The dynamics of (F,R4) is shown in (c). The
dynamics of the specialized network (F̄ ,R10) is shown in (d).
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Example 2.9. Consider the dynamical network (F,R4) given by

F





x1

x2

x3

x4




=



3
5
x1 + t(x4) + 2

9
10
x2 + s(x1) + s(x3) + 5

4

9
10
x3 − 2t(x1) + s(x2) + 7

4

9
10
x4 − 2t(x2) + s(x3) + 1

4


,

where t(x) = tanh(x) and s(x) = (1 + e−x)−1. The graph of interactions of this dynamical

network is shown in Figure 2.4(a). Choosing S = {2, 3} results in the specialized dynamical

network (F̄ ,R10) given by

F̄





x1

x2.1

x2.2

x2.3

x2.4

x3.1

x3.2

x3.3

x3.4

x4





=



3
5
x1 + t(x4) + 2

9
10
x2.1 + s(x1) + s(x3.1) + 5

4

9
10
x2.2 + s(x1) + s(x3.2) + 5

4

9
10
x2.3 + s(x3.3) + 5

4

9
10
x2.4 + s(x3.4) + 5

4

9
10
x3.1 + s(x2.1) + 7

4

9
10
x3.2 + s(x2.2) + 7

4

9
10
x3.3 − 2t(x1) + s(x2.3) + 7

4

9
10
x3.4 − 2t(x1) + s(x2.4) + 7

4

9
10
x4 − 2t(x2.2)− 2t(x2.4) + s(x3.1) + s(x3.3) + 1

4



.

The specialized network’s graph of interactions is shown in Figure 2.4(b) where the vertices

2.1, 2.2, 2.3, and 2.4 are copies of vertex 2 shown in (a). The same convention is used for

vertex 3.

In this example the original unspecialized network (F,R4) has a globally attracting fixed

point x∗ ∈ R4 shown in Figure 2.4(c). The specialized network (F̄ ,R10) also has a globally

attracting fixed point x̄∗ ∈ R10 shown in Figure 2.4(d). The difference between the two fixed

points is that each component of x∗ is unique whereas in x̄∗ the components x̄∗2.1 = x̄∗2.2,

x̄∗2.3 = x̄∗2.4, x̄∗3.1 = x̄∗3.2, and x̄∗3.3 = x̄∗3.4. That is, the dynamics of these pairs of network

elements synchronize asymptotically.
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Here we note that this synchronization phenomenon occurs between components that

are copies of the same vertex. However, not all copies of the same component synchronize.

To understand how and when specialization leads to synchronization we need to understand

the specific graph structures that occur via specialization. This is the main focus of the

following chapter.

Chapter 3. Equitable Partitions on Graphs

and Specialized Graphs

3.1 Equitable Partitions

To understand what causes the synchronization found in Example 2.9, we need to understand

the structures that are created by network specialization. The structures we consider are

known as equitable partitions, which have been shown to be a necessary condition for network

synchronization [1]. While equitable partitions are typically defined for undirected graphs,

we extend the standard definition of an equitable partition to be applicable to the directed

graphs we consider in this work [5].

Definition 3.1. (Equitable Partition) Let G = (V,E) with adjacency matrix A = A(G).

A partition π = {V1, V2, . . . , Vk} of the vertices V is an equitable partition if the sum∑
j∈Vb

Aij = Dab (3.1)

is constant for any i ∈ Va. The matrix D ∈ Nk×k is called the divisor matrix of A associated

with π.

For undirected graphs, a partition π = {V1, V2, . . . , Vk} is a partition in which every

vertex in Vi is adjacent to the same number of vertices in Vj for all i and j. In Definition 3.1

the notion of an equitable partition is generalized to directed graphs. By definition 3.1 every

vertex in Vi had the same number of incoming edges from vertices in Vj for all i and j.

This is an extension of the notion of an equitable partition to directed graphs since any

13
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G Ḡ

Figure 3.1: The graph G, shown left, is specialized as in Figure 2.2. The result is the graph
Ḡ, shown right. The graph G has only the trivial equitable partition. The specialized graph
Ḡ has the equitable partition consisting of the two yellow, two purple, two green, and two
orange vertices, where each of the other vertices, shown in blue, are in their own partition
element consisting of a single vertex.

undirected graph that satisfies Definition 3.1 satisfies the original definition of an equitable

partition. It is equivalent to the notion of an equitable receiving partition in [8]. We define

the equitable partition in this way because we ultimately care about network dynamics, and

a component’s dynamics depends on the components that have an influence on it, i.e. on

the incoming edges.

Example 3.2. Consider the graph G in Figure 3.1 (left). This graph has only the trivial

equitable partition in which each vertex is in its own partition element. If the graph is

specialized over the two central vertices as in Figure 2.2 the result is the graph Ḡ shown

on the right. This graph has the nontrivial equitable partition consisting of two yellow, two

purple, two green, and two orange vertices, where each of the other vertices are in their own

partition element.

To understand why the synchronization that appears in specialized networks is not just

the synchronization of copies of the same vertex we need to consider the notion of an in-

branch, which is defined as follows.

Definition 3.3. (In-Branches) Let G = (V,E) be a graph and S ⊆ V . For the branch

14



β = {i, eik, GS, e`j, j} let βin = {i, eik, GS} be the in-branch of β. The in-branches

γ̄in = {i, eip̄, GS(γ)} and δ̄in = {i, eiq̄, GS(δ)}

of the specialized graph Ḡ = Ḡ(S) are copies of the in-branch βin of G if the vertices p̄ and

q̄ are copies of the same vertex k. Two vertices v ∈ γ̄in and w ∈ δ̄in are said to have the

same in-branch if γ̄in and δ̄in are copies of the same in-branch.

While no two branches γ̄, β̄ in Ḡ are copies of the same branch in the sense of Defini-

tion 3.3, there are potentially many in-branches that are copies of the same in-branch. For

instance, in the specialized graph Ḡ in Figure 3.1 (right) the two top branches with yellow

and purple vertices have in-branches that are copies of the same in-branch. The bottom two

branches with orange and green vertices also have in-branches that are copies of the same

in-branch.

3.2 Creation and Preservation of Equitable Partitons

The notion of two vertices being from the same in-branch allows us to give the following

result regarding the way specialization creates equitable partitions.

Theorem 3.4. (Emergence of Equitable Partitions via Specialization) Let Ḡ =

(V̄ , Ē) be a specialization of the graph G. Then Ḡ has an equitable partition π̄ where vertices

that are

(i) copies of the same vertex; and

(ii) have the same in-branch;

belong to the same element of π̄.

Proof. Let A be the adjacency matrix of G = (V,E) and Ā the adjacency matrix of the

specialized graph Ḡ = (V̄ , Ē). Suppose all vertices that satisfy conditions (i) and (ii) are

in the same element of π̄ = {V̄1, V̄2, . . . , V̄k} and all other vertices are in their own element

of π̄. Then each element V̄a ∈ π̄ is either a single vertex in the complement Sc of S or is

comprised of copies of the same vertex, each with the same in-branch.
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If V̄a ∈ π̄ consist of single vertex in Sc then Equation (3.1) holds trivially. Suppose then

that the partition element V̄a has the property that (i) each of its vertices are copies of the

same vertex and (ii) each vertex has the same in-branch. If V̄b = {b} is a single vertex in Sc

then for any i, j ∈ V̄a∑
`∈V̄b

Āi` = Āib = Aτ(i)τ(b) = Aτ(j)τ(b) = Ājb =
∑
`∈V̄b

Āj`

where the third equality follows from the fact that all vertices in V̄a are copies of the same

vertex, i.e. τ(i) = τ(j). Since i, j ∈ V̄a are arbitrary Equation (3.1) holds in this case.

If V̄b is not a single vertex in Sc then all vertices in V̄b are copies of the same vertex with

the same in-branch. In this case, if α ∈ V̄a there is a branch βα such that α ∈ GS(βα) is

in Ḡ in which there is exactly one element bα ∈ V̄b. The reason is that there is exactly one

copy of each vertex of GS in each copy of GS implying
∑

b`∈V̄b Āαb` = Āαbα . Thus, for any

i, j ∈ V̄a where i ∈ β̄ini and j ∈ β̄inj we have∑
b`∈V̄b

Āib` = Āibi = Aτ(i)τ(bi) = Aτ(j)τ(bj) = Ājbj =
∑
b`∈V̄b

Ājb` .

where the third equality holds as all vertices in V̄a and V̄b are copies of the same vertices,

respectively. Again as i, j ∈ V̄a are arbitrary Equation (3.1) holds in this case.

It, therefore, follows that π̄ is an equitable partition of Ḡ.

Example 3.5. Consider the specialized graph Ḡ shown in Figure 3.1 (right). The two yellow

vertices in Ḡ are (i) copies of the left vertex that is specialized in G and (ii) have the same in-

branch. Therefore these vertices can be put into the same element of the equitable partition

π̄. Similarly, the purple, green, and orange vertices can be put in the same partition element,

respectively. We note that the green and yellow (orange and purple) vertices cannot be put

into the same element of π̄ although these are copies of the same vertex.

An equitable partition divides up a network into what could be considered communities.

However, communities are typically defined to be highly interconnected subgroups of vertices

with relatively few connections to other communities [23]. In contrast, equitable partitions

cut across highly connected subsets of a network so that members of the same partition
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element belong to what can be considered different communities (cf. Figure 3.1 (right)).

However, members of the same cluster have a similar role in their respective communities

both in terms of their position in their community and dynamics (see Theorem 4.4).

As members of the same element of an equitable partition often are influenced by and

influence the same type and number of other components, each member has what could be

considered the same role within their own community.

We note that not only do we have the creation of non-trivial equitable partitions within

specialized graphs, specialization can also preserve equitable partitions. To describe this we

require the following definition.

Definition 3.6. (Partition Respecting Maps) Let G = (V,E) be a graph with an

equitable partition π = {V1, . . . , Vk}. For A,B ⊆ V the function f : A → B respects the

partition π if it is bijective and for each a ∈ A with a ∈ Vi we have f(a) ∈ Vi.

This allows us to prove the following result describing how a graph’s equitable partition

can be preserved under specialization.

Theorem 3.7. (Partition Conservation Under Specialization) Suppose G = (V,E)

has the equitable partition π = {V1, V2, . . . , Vk}. If G is specialized over the set S = ∪i∈IVi for

some subset I ⊆ {1, 2, . . . , k} then Ḡ = (V̄ , Ē) has an equitable partition π̄ = {V̄1, V̄2, . . . , V̄`}

where any partition element V̄j ∈ π̄ is either:

(1) a set of specialized vertices such that for any a, b ∈ V̄j the vertices τ(a), τ(b) are elements

of some Vi ∈ π for i ∈ I and there exists a function from the in-branch of τ(a) to the

in-branch of τ(b) that respects π; or

(2) V̄j = Vi ∈ π where i /∈ I.

Before proving Theorem 3.7 we note that the equitable partition π̄ described in this

theorem contains two kinds of elements. The first kind are those that contain specialized

vertices. The second kind are elements that consist of the unspecialized elements found in π.

The fact that these elements survive the specialization process means that we can, at least
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partially, preserve the equitable partition π by specializing over subsets of its elements (see

Example 3.8). We now give a proof of Theorem 3.7.

Proof. Let a, b ∈ Vi ⊂ S. We first show inductively that there exists a π respecting map

between an in-branch of a and an in-branch of b. Suppose that a has a neighbor that is

not in S. By the construction of S, vertex b must also have a neighbor not in S that is in

the same element of π. If a has no such neighbor then we may simply choose a neighbor

and repeat the procedure, eventually arriving at a vertex that is not in S via some path pa.

Because a and b are in the same element of π, we can similarly find a path pb analogous to

pa starting at b, which allows us to define a π respecting map for a and b.

With this in place, consider an element V̄i ∈ π̄ of the first kind, described by (1) in

Theorem 3.7, and let a, b ∈ V̄i. If V̄j is another element of π̄ we have two cases. If V̄j is of the

first kind then it contains only vertices specialized from the original graph G. Therefore, for

any element ` ∈ V̄j with e`a ∈ Ē there must be an edge eτ(`)τ(a) ∈ E. Because τ(a) and τ(b)

are in the same element of π it must be the case that there is some other vertex c ∈ V in the

same element of π as τ(`) with ecτ(b) ∈ Ē. Since τ(`) and c are both in the same element of

π there must then exist a π respecting map between an in-branch of τ(`) and c. Therefore

there is a copy c̄ of c that is in V̄j, and it follows that∑
`∈V̄j

Āa` =
∑
`∈V̄j

Āb`,

where Ā is the adjacency matrix of Ḡ.

If instead V̄j is of the second kind, described by (2) in Theorem 3.7, then we rely on the

π respecting map. For every k ∈ V̄j with an edge eka there exists an ` ∈ V̄j with an edge e`a.

Therefore we have ∑
`∈V̄j

Āa` =
∑
`∈V̄j

Āb`,

in this case as well.

The last case to consider is if V̄i ∈ π̄ is of the second kind, i.e. V̄i = Vm ∈ π for some

m /∈ I. As before let a, b ∈ V̄i and suppose V̄j is another element of π̄ for j /∈ I. Then for
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a
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u

v

τ(a) τ(b)

Figure 3.2: The graph G, shown left, has the equitable partition consisting of the four sets
of red, yellow, green, and brown vertices. Specializing G over the red vertex set S results
in the graph Ḡ = Ḡ(S), shown right. The graph Ḡ has the equitable partition consisting of
the fives vertex sets colored yellow, green, brown, orange, and purple, respectively. As S is
a subset of the partition elements of G then the other partition elements of G are preserved
under this specialization (see Theorem 3.7.)

any c ∈ V̄j with an edge eca ∈ Ē there must also be an edge edb ∈ Ē for d ∈ V̄j since none of

the vertices in V̄j have changed when G was specialized.

If V̄j ∈ π̄ is of the first kind then c ∈ V̄j is a specialized vertex. Then, if there is an edge

eca ∈ Ē it follows that as c is a copy of τ(c) ∈ Vk ∈ π there is an edge eτ(c)a ∈ E. Since

a, b are both in Vm ∈ π there is a vertex d ∈ Vk with edb ∈ E. Since d and τ(c) are both in

Vk there must be some in-branch of d that satisfies the π respecting map criterion. There

is then a copy d̄ ∈ V̄ of d that is in the same element of π̄ as c, and therefore we have the

existence of an edge ed̄b where c, d̄ ∈ V̄` ∈ π̄. It then follows that π̄ is an equitable partition

of the specialized graph Ḡ.

Example 3.8. Consider the graph G and its specialization Ḡ over the red vertices of G

shown in Figure 3.2, which is a slight modification of the graph in Figure 3.1. The graph G

has the equitable partition π = {V1, V2, V3, V4} consisting of the red, yellow, green, and brown

vertices, respectively. When G is specialized over the red vertices S = V1 the resulting graph

Ḡ has the same equitable partition as G when we restrict our attention to the complement

Sc = ∪4
i=2Vi of S. That is, each of V2, V3, and V4 is an element of the equitable partition

shown in 3.2 (right) that is preserved under specialization.
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Moreover, for any vertices a and b in the same element of π̄ we can find a partition

respecting function from the branch of τ(a) to the branch of τ(b). For instance, for a and

b shown in Ḡ the in-branch of τ(a) is mapped to the in-branch of τ(b) in this manner via

f(u)=v, f(τ(a)) = τ(b), and f(τ(b)) = τ(a).

If the specialized set S does not divide an element of a graph’s equitable partition the

nonspecialized elements of the partition are preserved by Theorem 3.7. (We note that the way

equitable partitions evolve inside the specialized part of the graph is described by Theorem

3.4.)

The main question we consider in the following chapter is how specialization as a form

of network growth effects the dynamics of a network, specifically how equitable partitions

form in dynamical networks and how these structures effect the network’s dynamics.

Chapter 4. Specialization and the Emer-

gence of Cluster Synchronization

In the previous chapter we related network specialization to the formation of nontrivial

equitable partitions. The question we consider here is can we extend our results from the

previous chapter to dynamical networks, and to what extent equitable partitions result in

synchronous behavior in dynamical networks.

4.1 Equitable Partitions on Dynamical Networks

As we consider the effects of specialization on dynamical networks we first need a notion of

an equitable partition of a dynamical network.

Definition 4.1. (Equitable Partition of a Dynamical Network) Let (F,Rn) be a

dynamical network given by Equation (2.2), so that each component Fi : Rn → R has the
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form

Fi(x) =
n∑
j=1

AijHij(xj) for i ∈ {1, 2, . . . , n}. (4.1)

The partition π = {V1, V2, . . . , Vk} of the network elements {1, 2, . . . , n} is an equitable

partition if the function

fi(x) =
∑
j∈Vb

AijHij(xj) (4.2)

is the same for every i ∈ Va and any partition element Vb.

Note that if Hij(xj) = H(xj) for all i and j then the dynamical network (F,Rn) has an

equitable partition π if and only if π is an equitable partition of the network’s graph of inter-

actions. This is the type of equitable partition considered, for instance, in [1]. The definition

given above is more general as it allows for potentially different functions to combine into

the same function fi(x) for all indices i in some partition element of π.

In Chapter 3 we considered how specialization creates both a community and a role

structure. The natural communities formed by specialization are the specialized subnetworks

themselves (see [15]) and the roles within these communities correspond to the elements of

the equitable partition that are a result of specialization (cf. Theorem 3.4). Here we use the

notion of an equitable partition of a dynamical network to show that network components in

the same partition element have the potential to have the same dynamics, i.e. the potential to

synchronize (see Theorem 4.4). This similarity in dynamics reinforces the idea that equitable

partitions are related to role structure within communities. This type of synchronization is

referred to as cluster synchronization as vertices in the same partition element, i.e. cluster,

synchronize.

To describe the dynamic consequences of network specialization we will use the concepts

of an attracting fixed point and, more generally, attracting sets. A point x∗ ∈ Rn is a fixed

point of a dynamical network (F,Rn) if F (x∗) = x∗. The point x∗ is attracting if there

is an open set U containing x∗ such that F (U) ⊂ U and ∩k≥0F
k(U) = {x∗}. The point

x∗ is globally attracting if U = Rn. If x∗ is attracting then limk→∞ F
k(x0) = x∗ for any
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x0 ∈ U . This idea of an attracting fixed point can be extended to a network’s synchronization

manifold.

Definition 4.2. (Cluster Synchronization in Dynamical Networks) Let (F,Rn) be a

dynamical network and π = {V1, . . . , Vk} a partition of the network elements {1, . . . , n}. We

define the synchronizing manifold of (F,Rn) with respect to π to be the set

M(π) = {x ∈ Rn : xi = xj for all i, j ∈ Va and a = 1, . . . , k} .

The dynamical network (F,Rn) synchronizes with respect to π if M(π) is forward invariant,

i.e. F (M(π)) ⊆ M(π). A subset N(π) ⊆ M(π) is attracting if there is an open set U

containing N(π) such that F (Ū) ⊂ U and ∩k≥0F
k(U) = N(π). The set is globally attracting

if U = Rn.

Example 4.3. By the definition given in 4.2, we con observe that for any partition π,

M(π) is an intersection of hyperplanes. As a simple example, consider the partition π =

{{1}, {2, 3, 4}, {5, 6}}. M(π) may be defined as the intersection of hyperplanes as follows

M(π) = {x ∈ R5 : x2 = x3} ∩ {x ∈ R5 : x3 = x4} ∩ {x ∈ R5 : x5 = x6}.

Hence, since M(π) is an intersection of hyperplanes, we have that M(π) is isomorphic to Rk

where k = |π|.

The points on the manifold M(π) are those points at which the individual elements of π

have the same state, i.e. are synchronized. The dynamical network synchronizes with respect

to π if it remains on M(π) once it enters M(π), which is always the case if π is an equitable

partition.

Theorem 4.4. (Cluster Synchronization and Equitable Partitions) Suppose the

dynamical network (F,Rn) has the equitable partition π = {V1, . . . , Vk}. Then (F,Rn) syn-

chronizes with respect to π.

Proof. Suppose π is an equitable partition of (F,Rn) and x ∈ M(π) where, by way of
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notation, we let x` = xb if ` ∈ Vb. Then for i, j ∈ Va we have

Fi(x) =
k∑
b=1

(∑
`∈Vb

Ai`Hi`(xb)

)
=

k∑
b=1

(∑
`∈Vb

Aj`Hj`(xb)

)
= Fj(x)

where the second equality holds by Equation (4.2). Hence, if x ∈ M(π) then F (x) ∈ M(π)

implying M(π) is forward invariant.

In Example 2.9 the specialized dynamical network (F̄ ,R10) has the equitable partition

π = {{1}, {2.1, 2.2}, {3.1, 3.2}, {2.3, 2.4}, {3.3, 3.4}, {4}} .

By Theorem 4.4, if x0 ∈ M(π) then any iterate F k(x0) ∈ M(π). The initial condition x0

shown in Figure 2.4 (bottom right), however, is not on this manifold, yet its trajectory is

asymptotic to this set. The reason is that M(π) is globally attracting in this example.

4.2 Synchronization as a Result of Specialization

To determine when specialization results in a (globally) attracting synchronization manifold

we need to consider the dynamics of the subnetworks specialized in this process.

Definition 4.5. (Dynamical Subnetworks) For a dynamical network (F,Rn) with com-

ponents given by Equation (4.1) suppose S ⊂ {1, . . . , n}. We define the subnetwork (FS,R|S|)

to be the dynamical network with components

Fi(xS) =
∑
j∈S

AijHij(xj) for all i ∈ S

where xS is the restriction of x to its components indexed by the elements of S.

A subnetwork of a dynamical network is effectively a restriction of a network to a subset of

its components and the interactions between them.

We note that the notions of specialized vertices of a graph G, vertices with the same

in-branches, and copies of the subgraph GS can each be extended to the specialization of

dynamical networks. This allows us to state the following theorem.

Theorem 4.6. (Specialization and the Emergence of Synchronization) Let (F̄ ,Rm)

be the specialization of the dynamical network (F,Rn) over S ⊂ {1, . . . , n}. Then the follow-
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ing hold:

(a) The network (F̄ ,Rm) has the equitable partition π̄ where the specialized components that

are (i) copies of the same component and (ii) have the same in-branch are in the same par-

tition element of π̄. All other components are in their own partition element.

(b) If (F,Rn) has the equitable partition π = {V1, V2, . . . , Vk} and S = ∪i∈IVi for I some

subset of {1, 2, . . . , n} then Vi is an element of some equitable partition of (F̄ ,Rm) for all

i /∈ I.

(c) If the subnetwork (FS,R|S|) has a (globally) attracting fixed point then the synchronization

manifold M(π̄) of the equitable partition π̄ in (a) is (globally) attracting.

Proof. Let π̄ be the partition of (F̄ ,Rm) satisfying the conditions in (a). Then by the proof

of Theorem 3.4 it follows that π̄ is an equitable partition of (F̄ ,Rm) if we replace each Aij

by AijHij(xj) and Āij by ĀijHij(xj). Similarly, we can modify the proof for Theorem 3.7 to

prove part (b) by taking the partition described in the proof of this theorem and replacing

Āij by ĀijHij(xj).

To prove part (c), let (F̄Si ,R|Si|) denote the restriction of (F̄ ,Rm) to the ith copy of the

subnetwork (FS,R|S|) of (F,Rn). If (F̄Si ,R|Si|) and (F̄Sj ,R|Sj |) have the same in-branch then

for θ ∈ Si and ϑ ∈ Sj where θ and ϑ index copies of the same component∣∣xk+1
θ − xk+1

ϑ

∣∣ =
∣∣F̄θ(xk)− F̄ k

ϑ (xk)
∣∣ =

∣∣∣∣∣
m∑
h=1

ĀθhHτ(θ)τ(h)(x
k
h)−

m∑
h=1

ĀϑhHτ(ϑ)τ(h)(x
k
h)

∣∣∣∣∣ .
Since the restrictions have the same in-branch then there is a single ` ∈ Sc such that

∣∣xk+1
θ − xk+1

ϑ

∣∣ =

∣∣∣∣∣∣Āθ`Hτ(θ)`(x
k
` ) +

∑
h∈Si

ĀθhHτ(θ)τ(h)(x
k
h)− Āϑ`Hτ(ϑ)`(x

k
` ) +

∑
h∈Sj

ĀϑhHτ(ϑ)τ(h)(x
k
h)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
h∈Si

ĀθhHτ(θ)τ(h)(x
k
h)−

∑
h∈Sj

ĀϑhHτ(ϑ)τ(h)(x
k
h)

∣∣∣∣∣∣
=
∣∣∣(F̄Si(xkSi))θ − (F̄Sj(xkSj))ϑ∣∣∣ .

As this holds for all θ ∈ Si, ϑ ∈ Sj, and both (F̄Si ,R|Si|) and (F̄Sj ,R|Sj |) are copies of

24



(FS,R|S|) then ∣∣∣xk+1
Si
− xk+1

Sj

∣∣∣ =
∣∣∣F̄Si(xkSi)− F̄Sj(xkSj)∣∣∣ =

∣∣FS(yk)− FS(zk)
∣∣

where y = xkSi and z = xkSj .

Suppose (FS,R|S|) has an attracting fixed point. That is, there exists an x∗ and an open

set U ⊆ R|S| with F̄S(Ū) ⊂ U such that for all x ∈ U the limk→∞ F
k
S (x) = x∗. Then for all

y, z ∈ U we have

lim
k→∞

∣∣∣xk+1
Si
− xk+1

Sj

∣∣∣ = lim
k→∞

∣∣FS(yk)− FS(zk)
∣∣ = |x∗ − x∗| = 0. (4.3)

Since this is true for every pair of restrictions (F̄Si ,R|Si|) and (F̄Sj ,R|Sj |) that have the

same in-branch, the open set W = (⊕Ni=1U)⊕RM ⊆ Rm contains a subset L(π̄) ⊆M(π̄) and

F̄ (W̄ ) ⊂ W where N is the number of branches in the specialized network and M the number

of unspecialized components. It follows from Equation (4.3) that ∩k→∞F k(W̄ ) ⊆ L(π). If the

fixed point x∗ is globally attracting then U = R|S| implying W = Rm so that the equitable

partition π̄ is globally attracting, completing the proof.

Parts (a) and (b) of Theorem 4.6 are analogous to Theorem 3.4 and Theorem 3.7 of Chap-

ter 3, respectively. Part (c) of Theorem 4.6 states that if a subnetwork with an attracting

fixed point is specialized the resulting copies of this subnetwork will synchronize asymptot-

ically if the network’s initial condition is close enough to the synchronization manifold, i.e.

within the associated basin of attraction.

We note that this analysis does not rely on any properties of the functions Hij, only that

whatever properties Hij does have, they are inherited in the specialized network. Indeed, the

functions of the network may be any real functions, and the analysis remains. We only rely

on properties of the functions of the network in part (c), where we assume the subnetwork

is stable.
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Figure 4.1: The graph of interactions of the dynamical network (F,R4) from Example 4.7 is
shown in (a). The graph of interactions of the specialized network (F̄ ,R10) of (F,R4) over
S = {2, 3} is shown in (b). Copies of vertex 2 from (a) are indicated by 2.1, 2.2, etc. in (b)
and the same convention is used for vertex 3. In both graphs self-loops are omitted. Orange
and brown arrows indicate two different interactions in (a) and the associated copies of these
interactions in (b). The vertex colors in (b) indicate the equitable partition π̄ described
in Theorem 4.6(a) where blue vertices are in their own individual partition elements. The
chaotic dynamcis of the first component F1 = F1(x1, x4) of the specialized dynamical network
(F̄ ,R10) in example 4.7 is shown in (c). The dynamics of the specialized components of
(F̄ ,R10) are shown in (d) and (e). Because the unspecialized subnetwork corresponding to
these components has a globally attracting fixed point Theorem 4.6(c) guarantees that no
matter the network’s initial condition the component pairs x̄2.1, x̄2.2; x̄2.3, x̄2.4; x̄3.1, x̄3.2; and
x̄3.3, x̄3.4 synchronize asymptotically, in this case chaotically. However, as can be seen, the
pairs x̄3.3, x̄3.4; x̄2.1, x̄2.2 also synchronize.
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Example 4.7. Consider the dynamical network (F,R4) given by

F





x1

x2

x3

x4




=



(1− 8ε)(4x1(1− x1)) + ε(4 + x4)

αx1 + γx2 + δx3

αx1 + γx3 − δx2

t(x2) + t(x3)


where t(x) = tanh(x) and ε > 0 is small. Note that this network has the same graph

of interactions as the dynamical network in Example 2.9 (cf. Figures 2.4(a) and 4.1(a)).

Moreover, for small ε the component F1 = F1(x1, x4) is effectively the logistic map,

F1(x1, x4) ≈ 4x1(1− x1)

which has chaotic dynamics. Specializing (F,R4) over the set S = {2, 3}, as in Example 2.9,

results in the dynamical network (F̄ ,R10)) given by

F̄





x1

x2.1

x3.1

x2.2

x3.2

x2.3

x3.3

x2.4

x3.4

x4





=



(1− 8ε)(4x1(1− x1)) + 4ε+ εx4

αx1 + γx2.1 + δx3.1

−δx2.1 + γx3.1

αx1 + γx2.2 + δx3.2

−δx2.2 + γx3.2

γx2.3 + δx3.3

αx1 − δx2.3 + γx3.3

δx3.4 + γx2.4

αx1 − δx2.2 + γx3.2

t(x2.1) + t(x3.2) + t(x2.3) + t(x3.4)



,

which has the graph of interactions shown in Figure 2.4(b). Setting ε = .01 α = .12, γ = .9

and δ = −.4 gives the time series shown in Figure 4.1(d) for the given initial condition.

Note that the restriction (FS,R2) given by

FS


x2

x3


 =

 .9x2 + .4x3

−.4x2 + .9x3

 =

 .9 .4

−.4 .9


x2

x3


has a globally attracting fixed point as the matrix in this equation has a spectral radius
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strictly less than one. Thus, part (c) of Theorem 4.6 implies that all copies of this subnet-

work with the same in-branch will synchronize asymptotically no matter the initial condition.

These are the pairs x̄2.1, x̄2.2; x̄2.3, x̄2.4; x̄3.1, x̄3.2; and x̄3.3, x̄3.4, which synchronize asymp-

totically irrespective of the system’s initial condition, as can be seen in Figure 4.1 (right).

In fact, two of those pairs, x̄3.3, x̄3.4; and x̄2.1, x̄2.2, also synchronize although this is not

guaranteed by the theorem. (This same analysis can be done for Example 2.9 with similar

results.)

Chapter 5. Further Work

In this work, we have examined how changing network topology can impact network dynam-

ics. To extend this model, we can examine how network dynamics may impact or inform

changes to network topology. To illustrate how this might be accomplished we will examine a

model of a traffic network. Given a traffic network, we will choose what vertices to specialize

by examining the network dynamics. Specifically, in this example we will specialize the most

active vertex in the network.

The network we have constructed is fairly simple, shown in Figure 5.1a. In a Jackson

traffic network, the traffic at each vertex is described by the following equation xi = γi +∑
j Pijxj, where Pij is the probability of transition from vertex j to vertex i, and γi is the

external input to vertex i. Because Pij describes a probability of transitioning from state j to

state i, the column sums of P must be less than or equal to 1, so P is column substochastic.

In our example model we have

P =



0 .9 .9 .1

0 0 0 .4

0 0 0 .4

1 0 0 0


, γ =



50

30

40

30


.

Supposing that this network models traffic, we can see from Figure 5.2a that vertex 4 sees
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Figure 5.1: A simple Jackson traffic network model

the most traffic, so we can specialize the network on vertex 4. This specialization leads to

the following P̄ matrix and γ̄

P̄ =



0 0.9 0.9 0.1 0 0

0 0 0 0 0.4 0

0 0 0 0 0 0.4

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0


γ̄ =



50

30

40

30

30

30


.

The resulting network topology is found in Figure 5.1b, where the red vertices are the copies

of vertex 4. We can also see the resulting network dynamics in Figure 5.2b.

Applying specialization to our network according to the rules outlined in this work, we

can see that the network is no longer a Jackson network as the columns of P̄ are occasionally

greater than 1, so it is no longer column substochastic.

Because of this issue, we propose an addition to the specialization algorithm. We examine

one branch of the specialization process. We have a specialized branch β = {i, eik̄, GS, e¯̀j, j},

upon specialization, we set P̄k̄i = PkiPj`/
∑

est∈Eout
S
Pst and Pj ¯̀ = P`j. We will also set

γ̄k̄ = γk/|BS(G)|. Applying this extended process, specializing on the same set results in the
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(b) Dynamics on the specialized network

Figure 5.2: Dynamics on the Jackson traffic network example

following network

P̄ =



0 0.9 0.9 0.1 0 0

0 0 0 0 0.4 0

0 0 0 0 0 0.4

0.1 0 0 0 0 0

0.4 0 0 0 0 0

0.4 0 0 0 0 0


γ̄ =



50

30

40

10

10

10


and we can see the resulting dynamics in Figure 5.3.

Note that each of the column sums are less than or equal to 1, so the properties of the

Jackson network are preserved. This method further extends how we allow network dynamics

to influence specialization by altering the functions in our dynamical system. Other similar

extensions may be examined, adapting the method to the type of network being considered.

In the case of Jackson networks, this product described is natural because of the properties

of probabilities, another model may lead to another method natural to that model.

In real world networks there is a complex interplay between network dynamics and net-

work growth. The alterations and extensions to the specialization model we have explored

in this chapter may allow the model to capture more real world phenomena. It may also

empower the model with more explanatory power. Because it links network growth to dy-

namics, analysis of networks after specialization may provide more insight to the dynamics
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Figure 5.3: After we extend the specialization algorithm to allow network dynamics to affect
it, we see what can be interpreted as significantly decreased congestion on our model traffic
network.

of the network and make specialization more applicable to real world modeling.

Chapter 6. Conclusion

In this work we consider the interplay of the dynamics of and the dynamics on a network.

We describe how the specialization model, which is used to evolve the structure of a network,

leads to the formation of nontrivial equitable partitions. As the elements of these partitions

form clusters that can synchronize, this structural growth has a direct impact on the dy-

namics on the network. That is, as opposed to mechanical, gravitational, or other natural

forces; specialization is a topological mechanism that induces spontaneous synchronization

in dynamical networks.

Our original motivation for considering network specialization is that it results in a num-

ber of features consistent with those observed in real-world networks. Specifically, if a net-

work is sequentially specialized it becomes increasingly real-world like so long as the sets

over which it is specialized are chosen at random [15]. Although we only formally describe
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how a single network specialization creates or maintains equitable partitions the results in

this work can also be used to describe how an equitable partition evolves over a sequence of

specializations (see Theorems 3.4 and 3.7).

Last, we note that the model described in this work is not a fully integrated model of the

dynamics on and the dynamics of a network. As shown, specializing a dynamical network

causes changes in the dynamics on the network but these dynamics are not the cause of

network specialization. Currently, it is an open question as to whether a model can be

devised where the set S to be specialized is chosen using the dynamics of the network and

specifically whether such a model could result in both a structure and dynamic consistent

with observations of real-world networks.
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