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ABSTRACT

A Permutation-Based Confidence Distribution for Rare-Event Meta-Analysis

Travis Andersen
Department of Statistics, BYU

Master of Science

Confidence distributions (CDs), which provide evidence across all levels of signifi-
cance, are receiving increasing attention, especially in meta-analysis. Meta-analyses allow
independent study results to be combined to produce one overall conclusion and are partic-
ularly useful in public health and medicine. For studies with binary outcomes that are rare,
many traditional meta-analysis methods often fail (Sutton et al. 2002; Efthimiou 2018; Liu
et al. 2018; Liu 2019; Hunter and Schmidt 2000; Kontopantelis et al. 2013). Zabriskie et al.
(2021b) develop a permutation-based method to analyze such data when study treatment
effects vary beyond what is expected by chance. In this work, we prove that this method
can be considered a CD. Additionally, we develop two new metrics to assess a CD’s relative
performance.
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chapter 1

INTRODUCTION

Meta-analyses, statistical procedures used to combine information from independent studies,

have become very popular to conduct, especially in public health and medicine (Sutton and

Higgins 2008). Meta-analyses are often considered the gold standard for systematic reviews,

and they can be especially useful when individual studies provide evidence about binary

events that are rare or adverse. In these cases, or when sample sizes are small, traditional

meta-analysis methods can perform poorly (Sutton et al. 2002; Efthimiou 2018; Liu et al.

2018; Liu 2019; Hunter and Schmidt 2000; Kontopantelis et al. 2013). The parameter of

interest is generally the log odds ratio, which is assumed to follow a normal distribution due

to its asymptotic distribution. This can be a faulty assumption, especially when combining

information from studies with small samples sizes, rare events, or meta-analyses with few

studies (Sutton et al. 2002; Efthimiou 2018). Rare events can also result in zero observed

events in one or both treatment arms. Many traditional methods require the use of a

continuity correction, a small numerical adjustment made to the data, in order for zero-

event studies to be included in the analysis. However, this is an arbitrary stopgap, and

many have argued against its use (Liu et al. 2018; Efthimiou 2018; Liu 2019).

Further complicating rare-event meta-analyses is the possibility of non-negligible het-

erogeneity, differences in the study treatment effects beyond that which is due to chance.

There are two general frameworks for performing a meta-analysis: fixed-effect and random-

effects. Under a fixed-effect framework, the study-specific effects are assumed to be esti-

mating one common treatment effect. Under a random-effects framework, the study-specific

effects are assumed to come from a common distribution of treatment effects. The vari-

ance of this distribution of treatment effects is known as the heterogeneity variance, often
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denoted as τ 2, and is an additional source of variability that must be incorporated into a

meta-analysis for accurate results. In practice, heterogeneity is often introduced by the dif-

ferent conditions across studies, such as variation in treatment administration. Fixed-effect

models do not account for this additional source of variability, so unless homogeneity is a

reasonable assumption, random-effects models should be used.

In summary, both rare events and non-negligible heterogeneity can cause traditional

meta-analysis methods to fail (Sutton et al. 2002; Efthimiou 2018; Liu et al. 2018; Liu 2019;

Hunter and Schmidt 2000; Kontopantelis et al. 2013). Importantly, these types of datasets

occur often in public health and medicine, making it critical to develop methods that can

better combine this type of data (Hunter and Schmidt 2000; Kontopantelis et al. 2013). One

method developed to better analyze meta-analysis data with rare events and heterogeneity

is a method by Zabriskie et al. (2021b). They develop a permutation-based approach that

performs well in heterogeneous, rare-event settings. Instead of assuming an asymptotic

normal assumption, this method uses the exact, permutation-based distribution of the data.

It also allows for studies with zero observed events to be included in the analysis without

relying on an artificial continuity correction. They illustrate how this method outperforms

other methods in preserving the nominal level of significance.

Other methods that have been developed, in part to address these issues, are methods

that take advantage of all available information from each study by using confidence distri-

butions (CDs). While traditional meta-analysis methods combine point estimates from each

study to produce one overall p-value and confidence interval (CI) at a certain level of signif-

icance, CDs provide this information, and more, for all levels of significance. Recently, there

has been an important discussion on the use of p-values and CIs to determine whether to

accept or reject the null hypothesis (Wasserstein and Lazar 2016, Ioannidis 2019). p-values

and CIs can be used to dichotomize results, which is likely undesireable as the conclusion

generated by these approaches depends on the chosen level of significance. CDs can bypass
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these issues by providing a comprehensive overview of the available inference for a parameter

across all levels of significance.

Two functions often used in conjunction with CDs are confidence densities and con-

fidence curves (CVs), see Figure 1.1 (Infanger and Schmidt-Trucksäss 2019). Confidence

densities and CVs are both functions of the CD and can be used as alternative ways to dis-

play information contained in the CD. As seen in Figure 1.1, a CD is a cumulative density

function and a confidence density is a probability density function. A CV is used to easily

visualize CIs and extract p-values and it is generally used as the medium for displaying

results instead of the CD itself. As illustrated in Figure 1.1, to obtain a 100(1 − α)% CI,

one could simply draw a horizontal line at α on the y-axis of the CV and then take the

two values where the curve intersects that line as the lower and upper bounds of the CI. A

CV readily provides a visual of the CIs at all levels of significance. Further, the two-sided

p-value is easily seen as the height of the curve at the null value. Another useful metric pro-

vided in CV plots is the counternull, displayed on the plot by the open circle, which is the

non-null parameter value that is supported by the data just as much as the null value. The

counternull can help researchers evaluate practical significance in addition to the statistical

significance of results. The CV also displays the statistical power conditional on the true

value of the parameter. This can be found by finding the height of the CV at any null value

of the parameter, and subtracting it from one.

In meta-analyses, CDs are often created for each individual study and then combined

to create one overall CD (Singh et al. 2005). Zabriskie et al. (2021a) summarize and com-

pare various CD approaches in meta-analysis, and we focus on two of those approaches here:

one developed by Liu et al. (2014), the other by Cunen and Hjort (2021). The approach

by Liu et al. (2014) was developed for binary outcome meta-analyses under the fixed-effect

framework with the log odds ratio as the parameter of interest. First, the mid-p adaptation

of Fisher’s exact test is used to compute a CV for each individual study. The inverse cumu-

lative distribution function of the standard normal distribution is then used to combine the
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Figure 1.1: CV, CD, and confidence density for an example dataset. The vertical line at
0 indicates the null value of the parameter. The open circle on the CV is the counternull
and the dashed horizontal line drawn at 0.05 marks the 95% CI, where the lower and upper
bounds are determined by the two points on the x-axis where the dashed line intersects the
curve.

individual CVs into one CV, where each study is weighted according to its size and proba-

bilities of an event. This process produces a final combined CD that is only approximately

exact since the combined CD may not be exactly normal when the weights are estimated

from the data.

The approach developed by Cunen and Hjort (2021) uses a framework denoted by

II-CC-FF. This framework has a wide range of varied uses, which extend beyond the meta-

analysis settings. Even within the realm of meta-analysis, there are various strategies under

this framework for combining the individual studies. The general approach is to start by

creating a CD and then obtaining the log-likelihood function for each study. The log-

likelihood functions can then be combined under either the fixed-effect or random-effects

framework, typically using profiling and the Wilks chi-squared approximation. Under the

fixed-effect framework, the log-likelihood functions are summed, and a combined CV is

formed. Under the random-effects framework, a function of the log likelihood functions is

integrated, from which the combined CV is formed. This function can take on many forms;

see Cunen and Hjort (2021) for more details on the function they chose, which incorporates

the standard normal probability density function.
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When comparing these CD methods via a simulation study, Zabriskie et al. (2021a),

and others up until this point, consider traditional metrics, such as the average coverage of

95% CIs. Having to choose a significance level in order to evaluate the performance of a CD,

where a main benefit is not having to select a significance level, is less than ideal. How does

performance change for 90% or 99% CIs, for example? Clearly, better metrics are needed to

summarize a CD’s performance without the need to pre-specify a significance level.

Nonetheless, Zabriskie et al. (2021a) show that, when α = 0.05, the Liu et al.

(2014) method, developed under the fixed-effect framework, predictably performs poorly

when meta-analysis data is heterogeneous and events are rare. The Cunen and Hjort (2021)

random-effects method, on the other hand, performs well in these settings. While both meth-

ods utilize CDs, they were not designed to specifically handle rare events. Other methods

have been developed that are designed to analyze rare-event data, but that do not utilize

CDs. One of these methods, which we will focus on in this paper, is the permutation-based

method of Zabriskie et al. (2021b), introduced previously. Along with evaluating how well

these methods preserve the nominal level of significance, we are also interested in how well

these methods avoid type II error. We will evaluate the power of these three methods in the

simulation study.

There are two main goals of this paper. Our first goal is to develop a CD for the

Zabriskie et al. (2021b) method. This will allow us to benefit from a method specifically

designed for heterogeneous, rare-event data and one in which a CD is used to provide a

wealth of evidence across all levels of significance (and not just at α = 0.05, for instance).

Our second goal is to propose two new metrics for evaluating the performance of CDs that

do not require pre-specifying a significance level.

In Chapter 2, we achieve our first goal by proving the Zabriskie et al. (2021b) method

can be considered a CD, enabling researchers to view the permutation-based method results

at any level of significance. In this chapter, we also outline how we achieve our second goal

of creating new ways of assessing a CD’s overall performance across all levels of significance
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simultaneously. To illustrate the use of these new metrics to assess a CD’s relative per-

formance, we apply them in a simulation study in Chapter 3. To highlight the benefits of

extending the Zabriskie et al. (2021b) method to become a CD, we present a case study in

Chapter 4. Lastly, we end with a discussion in Chapter 5.
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chapter 2

METHODS

In this chapter, we begin by providing definitions of a CD. A brief overview of the Zabriskie

et al. (2021b) method will then be provided. Next, for the first goal of this work, we prove

that this method can be considered a CD. Finally, we present two new metrics for evaluating

the overall performance of CDs for the second goal of this work.

2.1 Definition of a CD

Generally when performing statistical inference, a sample of data z of size n is drawn from

a sample set Z to learn more about some unknown parameter θ with parameter space Θ.

Singh et al. (2005) define a CD for θ as a function of the data φ(θ) = φ(z, θ) on Z×Θ→ [0, 1]

such that,

1. for each z in the sample set space Z, φ(θ) is a continuous cumulative distribution

function in the parameter space Θ; and

2. at the true parameter value θ = θ0, φ(θ0) = φ(z, θ0), as a function of the sample set z,

has a uniform distribution U(0, 1).

Singh et al. (2005) also provide an alternative method for proving a function is a CD.

Let (θ−,∞) be a one-sided 100(1− α)% CI for θ, where the lower confidence bound θ− is a

function of the level of significance, α. If, for every α ∈ (0, 1) and θ ∈ Θ, θ−(α) is continuous

and increasing in α for each sample z, then θ−1
− (·) = φ(θ) is a CD.

2.2 The Permutation-Based Method

Zabriskie et al. (2021b) propose a permutation-based method, founded on conditional logistic

regression, that preserves the Type I error rate more effectively than other methods for
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heterogeneous meta-analyses. Here, we present a high-level overview of their method and

focus on inference once the permutational distribution is obtained. As with traditional

conditional logistic regression, nuisance parameters are eliminated via conditioning on their

sufficient statistics; we denote the sufficient statistics of the nuisance parameters with a dot

symbol, ·, for simplicity. After conditioning, the treatment effect θ is the only remaining

unknown parameter, and the distribution of θ’s sufficient statistic, t(z) (the total number

of observed events in the treatment group across all studies), is obtained via permutations.

With this permutational distribution, traditional p-values and CIs can be obtained. Here,

we focus on datasets where the conditional maximum likelihood estimate of θ can be used

for inference; this happens when the observed value of θ’s sufficient statistic t(zobs) satisfies

min(t(z)) < t(zobs) < max(t(z)).

The permutational distribution consists of possible values of t(z) and their associated

probabilities denoted by C(t(z)|·). Let

R(θ) =

∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θu∗}∑max(t(z))
u=min(t(z)) C(u|·) exp{θu}

, (2.1)

which denotes the total probability on the right of the observed value of the test statistic

t(zobs) as a function of θ. Then, if (θ−, θ+) is a typical two-sided 100(1−α)% CI for θ, letting

R(θ−) = α−, R(θ+) = 1 − α+, and α− + α+ = α results in a 100(1 − α)% CI for θ for the

permutation-based method of (R−1(α−), R−1(1 − α+)). One-sided 100(1 − α)% CIs can be

given by (R−1(α),∞) and (−∞, R−1(1− α)).

2.3 The Permutation-Based Method as a CD

The first contribution of this paper is to prove the permutation-based method can be con-

sidered a CD. Based on Equation 2.1, we let the lower confidence bound of a one-sided

100(1 − α)% CI for θ for the permutation-based method be R−1(α). To prove this lower

bound, inverted, is a CD, we need to show that this lower bound is (1) a function of α, (2)

continuous, and (3) increasing in α for each sample z, where α ∈ (0, 1) and θ ∈ Θ, thus

making the inverted lower bound a CD: (R−1(α))−1 = R(θ) = φ(θ).
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1. Clearly R−1(α) is a function of α for α ∈ (0, 1).

2. We will start by showing R(θ) is continuous. Note that the numerator and denomina-

tor both contain the exponential function, which is a continuous function. Since the

quotient of two continuous functions is also continuous, R(θ) is continuous. We now

must show that R−1(α) is continuous. Since R(θ) is increasing in α, it is a bijective

function. The inverse of a continuous, bijective function is also continuous. Therefore,

R−1(α) is continuous.

3. To show R−1(α) is increasing in α, we will first show that R(θ) being an increasing

function in θ implies that R−1(α) is increasing in α. Since the inverse function ex-

ists, R−1(α) is bijective. If a bijective function is increasing, then its inverse is also

increasing. Therefore, we only need show that R(θ) is increasing to show that R−1(α)

is increasing. We will now show that R(θ) is increasing in θ.

R(θ) =

∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θu∗}∑max(t(z))
u=min(t(z)) C(u|·) exp{θu}

=

∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θu∗}∑max(t(z))
u=min(t(z)) C(u|·) exp{θu}

× exp{−θt(zobs)}
exp{−θt(zobs)}

=

∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θ(u∗ − t(zobs))}∑max(t(z))
u=min(t(z)) C(u|·) exp{θ(u− t(zobs))}

=

(∑t(zobs)−1
u=min(t(z)) C(u|·) exp{θ(u− t(zobs))}+

∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θ(u∗ − t(zobs))}∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θ(u∗ − t(zobs))}

)−1

=

(
1 +

∑t(zobs)−1
u=min(t(z)) C(u|·) exp{θ(u− t(zobs))}∑max(t(z))
u∗=t(zobs)

C(u∗|·) exp{θ(u∗ − t(zobs))}

)−1

=

(
1 +

f(θ)

g(θ)

)−1

, where

f(θ) =

t(zobs)−1∑
u=min(t(z))

C(u|·) exp{θ(u− t(zobs))} and

g(θ) =

max(t(z))∑
u∗=t(zobs)

C(u∗|·) exp{θ(u∗ − t(zobs))}.
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Since f(θ) is a decreasing function in θ and g(θ) is a non-decreasing function in θ, R(θ)

is increasing in θ.

2.4 Evaluating the Overall Performance of CDs

The second contribution of this paper is to supply metrics for comparing CDs, computed

using any method. There are no metrics currently available for evaluating the results of

CDs from simulation studies aside from comparing their information at a single significance

level (universally chosen to be 0.05) using traditional metrics (e.g. average CI coverage).

Generally, when evaluating the performance of CIs, the interval coverage and width are

reported. When evaluating the performance of CDs, researchers typically report the interval

coverage and width at a certain level of significance, typically α = 0.05. We find this

approach lacking as the key benefit of using a CD is ignored when a set level of significance

is chosen from which to evaluate performance. This, in effect, results in evaluating the

performance of a 100(1−α)% CI instead of evaluating the performance of the entire CD. To

better characterize a CD’s overall performance, we develop two metrics which are roughly

parallel to measuring the coverage and width of a CI. We utilize the CV for these two metrics.

First, to get an overall measure of the width of a CV, across all levels of α, we

calculate the area under the CV (AUCV). Wider CVs with a relatively larger AUCV result

in CIs being wider, on average, compared with narrower CVs, which equate to narrower CIs,

on average. All else being equal, namely for CVs that maintain proper coverage, we prefer

CVs that result in a smaller AUCV since these CVs reflect more precise estimates of the

parameter of interest.

Second, to get an overall measure of the coverage of a CV, across all levels of α,

we compute the height of the confidence curve at the true value of the parameter θ. This

is equivalent to computing the proportion of all CIs from 0% to 100% that cover the true

parameter since every CI with a level of significance smaller than the height will include

the true parameter, and every CI with a level of significance larger than the height will not

10



include the true parameter. Therefore, a bigger height indicates that the confidence curve

has a higher measure of coverage overall. In theory, this height metric should follow a Unif(0,

1) distribution. Therefore, we would expect the mean height taken across many CVs to be

close to 0.5.
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chapter 3

SIMULATION STUDY

We now present a simulation study in order to illustrate the use of the two new metrics

developed in Chapter 2.4 to assess a CD’s relative performance. For illustration, we will

use the Liu et al. (2014) CD method, Cunen and Hjort (2021) CD method, and the newly

created Zabriskie et al. (2021b) CD method for comparison. We generate meta-analysis data

based on a method reviewed by Pateras et al. (2018), denoted by pRandom, which allows

the baseline probability of an event to be set directly and assumes equal variances for both

treatment arms. We use this data generating method since it was used in Zabriskie et al.

(2021a), but we note that many other data generating methods are available, and research

shows that the choice of data generating method can impact the results of meta-analyses

when events are rare (Kulinskaya et al. 2021; Pateras et al. 2018).

Let nij and yij represent the total number of participants and the total number of

participants with an observed event, respectively, in the ith study (i = 1, 2, . . . , k) with the

jth treatment (j = 0 for the control group, j = 1 for the treatment group). We set the true

log odds ratio to be θ = −1,−0.5, 0, 0.5, and 1, with corresponding average treatment event

rates of 0.02, 0.03, 0.05, 0.08, and 0.13. Note that as θ increases, the probability of an event

in the treatment arm also increases. We set the heterogeneity variance to be τ 2 = 0, 0.2, 0.4,

and 0.8. When τ 2 = 0, datasets are homogeneous, and a fixed-effect framework could be

appropriately used; whereas, when τ 2 > 0, datasets are heterogeneous, and a random-effects

framework is more appropriate. Additionally, we let the baseline probability of an event in

the control group be pc = 0.05, and the number of studies in each meta-analysis dataset be

k = 10. Then, we use the following procedure to generate the meta-analysis datasets, based

on the pRandom data generating method:
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1. Calculate the baseline probability of an event in the treatment group: pt = pc exp(θ)
1−pc+pc exp(θ) .

2. Sample nij from a discrete Uniform(10, 50) distribution, resulting in unbalanced treat-

ment arms.

3. Generate the study-specific log odds θij by sampling from a Normal
(

log
(

pj
1−pj

)
, τ

2

2

)
distribution.

4. Calculate the number of observed events yij by sampling from a Binomial
(
nij,

1
1+exp(−θij)

)
distribution.

We exclude datasets which do not satisfy the following conditions:

1. There are at least two studies in the meta-analysis dataset that have observed events

in at least one arm.

2. There is at least one event across all studies in the treatment group in the meta-analysis

dataset.

3. There is at least one event across all studies in the control group in the meta-analysis

dataset.

4. Based on results from the Zabriskie et al. (2021b) method, the observed value of θ’s

sufficient statistic is not on the extreme of its distribution.

5. The derivative of the CV changes sign only at the point estimate, or cusp of the CV.

The first three requirements ensure the meta-analysis dataset contains enough information

to provide meaningful results, especially in the random-effects framework where at least two

studies are needed to estimate the heterogeneity variance parameter. Requirement four is

needed so that conditional maximum likelihood estimation can be used for inference, and

since the Zabriskie et al. (2021b) method would produce one-sided CIs, instead of the desired

two-sided intervals, if this requirement was not enforced. This requirement resulted in 18.7%
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of the simulated datasets being discarded. The last condition is needed since 0.6% of the

CVs produced by the Cunen and Hjort (2021) method had a bump in the CV, making them

invalid CVs since this signifies having multiple CIs at the same level of significance. After

simulating datasets and excluding those that did not meet these criteria, we obtained 1000

meta-analysis datasets for each combination of θ and τ 2.

For each meta-analysis dataset, we calculate the CV for the Zabriskie et al. (2021b)

method, the method of Liu et al. (2014), and the random-effects version of the Cunen and

Hjort (2021) method. The Zabriskie et al. (2021b) method is implemented using information

provided by the rema R package (Zabriskie et al. 2021c). The CV for their method is not

implemented in the package, but we provide code in Appendix A, which shows how to use the

provided information to then obtain the CV. We implement the Liu et al. (2014) method

with the gmeta R package (Yang et al. 2021), and we implement the Cunen and Hjort

(2021) method using code kindly provided by the authors. We create the CVs over values of

θ ranging from −15 to 15 in increments of 0.01. For 1.28% of the datasets, the endpoints of

the CV (at θ values of -15 and 15) for the Cunen and Hjort (2021) method summed up to

be greater than 0.05. This indicates that the CV was not fully captured within the specified

θ grid. Without the full curve, the true AUCV will be underestimated. Expanding the grid

to contain more values of θ is too computationally expensive, especially since the Cunen and

Hjort (2021) method takes markedly longer to run than the other two methods. Thus, to

get an approximate AUCV in these situations, we need to evaluate the area outside of the

grid, and so we apply an approximation to the CV using the numerical first derivative at

each ends of the curve to draw a straight line outward until the CV intersects the x-axis.

This is a conservative approximation method since CVs are a convex function on either side

of the point estimate. This approximation is applied to both tails of all such curves before

calculating the AUCV. Code for these procedures is provided in Appendix A.
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3.1 Simulation Results

We now present the results of the simulation in order to demonstrate the utility of the

two new metrics of Chapter 2.4 and to compare the Zabriskie et al. (2021b) CD method

of Chapter 2.3 with other CD methods. While we will use these metrics to compare the

performance of the Zabriskie et al. (2021b), Cunen and Hjort (2021), and Liu et al. (2014)

methods, we emphasize that these metrics can be used to evaluate any CD.

Figure 3.1 shows the average AUCV plotted against the true value of θ on the x-axis

and the true value τ 2 divided by facets. Note that the variability of these estimates is very

small, with the largest standard error being 0.05. The Zabriskie et al. (2021b) method results

in the largest average AUCV, regardless of the true underlying parameters, indicating wider

overall CVs than the other methods, on average. This is expected, as the main advantage

of this method is not in producing narrow intervals but in preserving the nominal level of

significance. Thus, we expect rather conservative results. The Liu et al. (2014) and Cunen

and Hjort (2021) methods result in similar AUCVs, with the Cunen and Hjort (2021) method

resulting in slightly wider CVs overall, on average.

Figure 3.1: Average AUCV for the three considered methods for each combination of the
true log odds ratio θ and the true heterogeneity variance τ 2.
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Figure 3.2 shows the mean height of the CV at the true value of θ, with the true θ

value on the x-axis, and true τ 2 values broken up by facets. Again, the variability of these

estimates is small, with the largest standard error being 0.01. The mean height is equivalent

to the proportion of CIs that cover the true parameter value. We expect the mean height to

be close to 0.5, indicated by the dashed, black line. Since the methods generally have heights

above 0.5, especially for smaller values of τ 2, the methods tend to be overly conservative.

The Cunen and Hjort (2021) method generally results in the average height being the closest

to 0.5. The Zabriskie et al. (2021b) method has slightly higher height at most parameter

values. This indicates that there is a higher proportion of CIs that cover the true parameter.

This reinforces the idea that the permutation-based method provides conservative results.

Figure 3.2: Mean height of the CV at the true parameter value for the three considered
methods for each combination of the true log odds ratio θ and the true heterogeneity variance
τ 2. The height is equivalent to computing the proportion of CIs that cover θ. The dashed,
black line marks the expected proportion of 0.50.

Interestingly, the proportion of CIs covering θ decreases as θ increases. This is because

of the impact of θ on the underlying probability of an event in the treatment arm. Smaller

values of θ produce datasets with very rare events. Due to the presence of very rare events,

there is little information available in these datasets for estimating θ, which results in wider
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CIs when θ is small. However, when θ is larger, the treatment event rate is also larger, and

there is more information for estimation, which results in more narrow CIs.

Additionally, we see that the proportion of CIs covering θ tends to decrease as τ 2 or θ

increases. For the Cunen and Hjort (2021) method, particularly, it is interesting to note that

as τ 2 increases, the AUCV increases, but the proportion of CIs covering the true parameter

value decreases. The decrease in θ is due to the same reasons described above for the AUCV

metric.

The height metric can also be used to calculate coverage as a function of α, rather

than averaging over α. This can be done by finding the proportion of the heights of all

datasets that are greater than some α. These results, where each function is transformed

to be the difference between empirical coverage and expected coverage, are displayed in

Figure 3.3. This transformation was done to make the distinctions between the methods

more easily discernible visually. We can see that all three methods tend to have greater

coverage than expected for most values of α, except when τ 2 and θ are large. Figure 3.2

tells a similar story as these plots, but summarizes across all values of α. We can see that

even after summarizing over α, the two figures give similar results.

To further compare the three methods, we can utilize the height metric concept by

finding the average power across all levels of α. This can be calculated as one minus the

CV evaluated at the null value of the parameter. These results are presented in Figure 3.4.

We see that the Liu et al. (2014) and Cunen and Hjort (2021) methods achieve their lowest

average power at θ = 0 (the Type I error rate), which then increases as θ moves away from

zero. The Zabriskie et al. (2021b) method has lower average power than these two methods

for all θ values, with lower power for θ < 0 than θ = 0. This is due to the greater uncertainty

at low θ values. This is also the reason why power is not symmetric around θ = 0.

To provide context for the average power plot, we provide the results of relative power

for when α is 0.05 in Figure 3.5. As we can see, the same general trends appear in both

Figure 3.5 and Figure 3.4. This demonstrates how averaging over α values retains enough
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Figure 3.3: The difference between empirical coverage and expected coverage for all levels
of α.

information to still portray the important general, relative trends of the methods being

compared.
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Figure 3.4: Average relative power across all levels of α. The trends of this plot are similar
to those in Figure 3.5.

Figure 3.5: Relative power for α = 0.05.

20



chapter 4

CASE STUDY

In order to highlight the benefits of extending the Zabriskie et al. (2021b) method to become

a CD, we present a case study using a meta-analysis performed by Tsivgoulis and Georgios

(2016) to determine the association of cerebral microbleeds (CMBs) with the risk of symp-

tomatic intracerebral hemorrhage (sICH) in patients with acute ischemic stroke treated

with intravenous thrombolysis. This has an important application because CMBs have been

found to be an independent predictor of cerebral bleeding (Tsivgoulis and Georgios 2016).

Table 4.1 shows the results from the eight studies we consider for this meta-analysis. Note

that for our analysis we removed a ninth study by Turc et al. due to its large sample size so

that the data set would reflect meta-analyses that consist only of small studies. Additionally,

Tsivgoulis and Georgios (2016) use the risk ratio as the effect size, while we apply the same

methods they did (DerSimonian and Laird random-effects) but use the log odds ratio as the

effect size for ease of comparison. Note that with rare events, the risk ratio and the odds

ratio are often comparable.

The observed average event rates are 0.065 for the treatment group and 0.044 for the

control group. The estimate for the heterogeneity parameter (τ 2), measuring the variation of

the treatment effect, is 0.42. These characteristics roughly parallel the simulation setting in

Chapter 3, where datasets were simulated with ten studies and an average event rate of 0.05.

Table 4.2 provides the results from the methods used in the original analysis by Tsivgoulis

and Georgios (2016) along with the results from the three CD methods for α = 0.05. The

estimates are roughly comparable, with all indicating greater odds of sICH for patients with

CMBs compared to patients without CMBs. However, the Zabriskie et al. (2021b) method

results in a wider CI and a non-significant p-value. Prior to this work, the interpretation
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Table 4.1: This table contains the hemorrhage meta-analysis dataset: author of each study,
the number of patients who had CMBs with sICH, the total number of patients with CMBs,
the number of patients who did not have CMBs with siCH, and the total number of patients
without CMBs. Estimates of the log odds ratio and corresponding 95% CI and p-value are
also provided for each study.

Study
CMB
Event

CMB
Total

CTRL
Event

CTRL
Total

Log Odds
Ratio

95% CI p-value

Dannenberg et al. 7 81 3 245 2.03 (0.65, 3.41) 0.004
Derex et al. 1 8 2 36 0.89 (-1.65, 3.42) 0.493
Fiehler et al. 5 86 13 484 0.80 (-0.25, 1.86) 0.136
Goyal et al. 1 3 0 18 3.10 (-0.36, 6.56) 0.079
Gratz et al. 2 38 4 136 0.61 (-1.13, 2.34) 0.494

Kakuda et al. 0 11 5 59 -0.84 (-3.81, 2.12) 0.578
Kimura et al. 4 72 2 152 1.48 (-0.24, 3.21) 0.091

Yan et al. 6 132 2 201 1.56 (-0.06, 3.17) 0.059

of these results would stop here. However, now that we have extended the Zabriskie et al.

(2021b) to be a CD, we can further analyze this dataset by considering the evidence provided

across all levels of α, as seen in Figure 4.1.

Table 4.2: This table contains meta-analysis results of the hemorrhage dataset at the α =
0.05 level. Results from the original analysis (using the DerSimonian and Laird random-
effects method) are provided along with conclusions from the three CD methods when α =
0.05.

Method Estimate 95% CI p-value
Original Method from Tsivgoulis and Georgios (2016) 1.20 (0.60, 1.79) 0.00008

Liu et al. (2014) 1.19 (0.60, 1.78) 0.00011
Cunen and Hjort (2021) 1.13 (0.50, 1.76) 0.00595
Zabriskie et al. (2021b) 1.37 (-0.02, 2.57) 0.05950

From Figure 4.1, we can see the results from Table 4.2 (namely, the estimates, which

are at the cusps, and the 95% CIs) along with so much more. We see that the Liu et al.

(2014) and Cunen and Hjort (2021) methods produce similar results, as did their results for

a fixed α of 0.05, both agreeing with the authors of this study that there is a significant

association between CMBs and sICH (Tsivgoulis and Georgios 2016). By comparison, the

Zabriskie et al. (2021b) method gives results that are more conservative, which is expected

given the simulation study results of Chapter 3 (when θ = 1, which is close to this dataset’s
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Figure 4.1: CVs for the Zabriskie et al. (2021b), Liu et al. (2014), and Cunen and Hjort
(2021) methods for the hemorrhage meta-analysis dataset.

estimated combined treatment effect, and τ 2 = 0.4, the Zabriskie et al. (2021b) method has

a larger AUCV and a higher proportion of CIs that cover θ than the other two methods).

Specifically, as we have seen at the α = 0.05 level, the Zabriskie et al. (2021b) method

does not agree that there is a statistically significant association. However, considering the

Zabriskie et al. (2021b) CV as a whole indicates the results could possibly be practically

significant, since its counternull is far from the null value of zero.

Thus, these three methods give a fairly consistent message, which demonstrates the

importance of considering CV’s when interpreting study results. Prior to our work, the

Zabriskie et al. (2021b) method would appear to result in a different conclusion than the
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other methods, but now that we have created a CD from this method, we see that the

conclusions are actually fairly uniform. CV’s offer clarity to the results of a study that a

binary judgement of “significant” or “not significant” cannot replicate. Even results that at

first appear contradictory according to this binary system may actually be compatible when

taking their respective CV’s into account.
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chapter 5

DISCUSSION

Meta-analysis provides a way to combine individual studies to produce one overall result

and is increasingly becoming the gold standard for presenting evidence in public health and

medicine. CDs can be used to combine results for a meta-analysis, and they do not require

selecting a single level of significance. In this work, we present two main contributions to

the meta-analysis field. First, we extend the Zabriskie et al. (2021b) meta-analysis method

by proving it can be considered a CD. Second, we develop two metrics for evaluating the

relative performance of a CD across all levels of significance.

The first goal of showing the Zabriskie et al. (2021b) method can be a CD heightens

the usefulness of this method by lending it all the advantages of CDs. Often in academic

literature, scientific results are designated “significant” or “not significant” based upon some

pre-chosen, rather arbitrary level of significance, which is almost uniformly selected to be

0.05. This binary system provides only a small window into the evidence provided by the

data. This practice can draw arbitrary lines between otherwise similar findings. Further-

more, given the bias within the academic community towards publishing papers that find

significant effects, the emphasis on limited metrics where a significance level must be chosen

can contribute to p-hacking, as researchers respond to the incentive to procure a p-value less

than 0.05.

In contrast, CDs do not require the selection of a single level of significance, and they

provide a wealth of information on the parameter of interest at all levels of significance. As

a result, they create a more complete picture of the evidence provided by the data, and

they can reduce the incentive to p-hack by shifting the focus away from achieving some

arbitrary p-value threshold. Furthermore, this more detailed rendering of model results
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can clarify different study’s findings in relation to one another. Study results that may

seem contradictory under the dichotomous classification system of “significant” versus “not

significant” may prove to be similar when considering CDs as a whole. This circumstance

was demonstrated in Chapter 4, where the Zabriskie et al. (2021b) CD was compared against

two other methods. Under traditional analysis methods (e.g. a 95% CI) the three methods

display different results; however, the CDs all convey similar messages.

The second main contribution of this paper, developing two new metrics to evaluate

any CD, provide researchers a way to compare CDs without having to select a level of

significance. These metrics, which relate to calculating the coverage and width of a single

CI, allow for the comparison of any two CDs—not just those described in the paper. In

light of the more nuanced picture that CDs convey compared to traditional methods, the

development of such metrics is critical to understanding and comparing the results of CDs.

These metrics can help clarify results and allow for better synthesis of the evidence provided

by data.

Another result of this paper, discussed in Chapter 3, is understanding the performance

of the permutation-based meta-analysis method when it is a CD. Here, we saw the Zabriskie

et al. (2021b) method CD is conservative, as the AUCV tends to be larger than those of the

other two methods. The average height of the CV at the true value of θ is also generally

slightly higher for the permutation-based CV, indicating that the proportion of all confidence

intervals that cover the true parameter is slightly higher than this proportion from the other

methods. The permutation-based CD was also more conservative in the case study. While

the Zabriskie et al. (2021b) method was shown to outperform other traditional meta-analysis

methods at the α = 0.05 level (in their paper), we find that this method, in its CD form, does

not outperform other CD meta-analysis methods. As noted in Chapter 3, the method used

to generate data can greatly impact the results of rare-event meta-analyses. Future work

would involve applying many data generating methods to better understand the performance

of all methods considered here.
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Additional future work could be to improve this method as a CD. In the R package

implementing the Zabriskie et al. (2021b) method (Zabriskie et al. 2021c), a more powerful

test, using their method, is provided that helps to reduce conservatism. They use the

conditional probabilities test rather than the conditional scores test. We used the conditional

scores test here, so future work could involve creating a CD for this method based on the

conditional probabilities test to reduce conservatism.

Another area of future work would be further development of the metric for evaluating

a CD’s coverage. In theory, the height of the CV at the true parameter value follows

a Uniform(0, 1) distribution. Therefore, the mean height across all simulations should

be around 0.5. It could be useful to have a metric which provides more insight on what

is happening at different levels of α. Another reason for further analysis is that CIs are

generally only of interest for α values less than 0.2. It could be ideal to give additional

weight to common significance levels.
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Appendix A: R Code

Following is a general overview of the code files included in this appendix. The files

relating to the Cunen and Hjort (2021) method were not included as they are proprietary.

• sim data.R: Generates synthetic datasets and writes them to data/datasets.

• model data.R: Calculates a point estimate, CI, p-value, and CV for each dataset in

data/datasets, and writes the corresponding R workspace to data/workspaces.

• summarize data.R: Loads workspaces from data/workspaces and calculates the AUCV

and height for each dataset, which are written to data/sim results.csv.

• sim results.R: Reads data/sim results.csv, and makes two graphs summarizing the

AUCV and height results, which are written to data/area.png and data/height.png

• hemorrhage.R: Reads hemorrhage dataset from data/hemorrhage.csv, and generates a

graph of the Zabriskie et al. (2021b), Liu et al. (2014), and Cunen and Hjort (2021)

CVs which is written to graphs/hemorrhage.png.

• pRandom sameVar.R: Function for simulating datasets.

• get cd.R: Function for calculating the CD for the Zabriskie et al. (2021b) method.

sim data.R
library(tidyverse)

source(’code/source/pRandom_sameVar.R’)

#’ Simulates a meta -analysis dataset and writes it to raw_data folder

#’

#’ @param rep repetition number

#’ @param theta true theta

#’ @param k number of studies

#’ @param p_ic_init true control arm probability

#’ @param tau2 true tau^2

#’ @param min.n Minimum number of subjects

#’ @param max.n Maximum number of subjects

sim_data <- function(rep , theta , k, p_ic_init , tau2 , min.n, max.n){

sim <- pRandom(theta , k, p_ic_init , tau2 , min.n, max.n) %>%

as_tibble
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ident_str <- str_c(theta , ’_’, tau2 , ’_’, rep)

write_csv(sim , str_c(’data/datasets/’, ident_str , ’.csv’))

}

# Simulate all datasets , and write to raw_data

future ::plan(’multisession ’, workers = 100)

expand_grid(

rep = 1:2500 ,

theta = c(-1, -0.5, 0, 0.5, 1),

k = 10,

p_ic_init = 0.05,

tau2 = c(0, 0.2, 0.4, 0.8),

min.n = 10,

max.n = 50

) %>%

filter(!(rep > 1200 & theta >= 0), !(rep > 2000 & theta == -0.5)) %>%

furrr:: future_pmap(sim_data , .options = furrr ::furrr_options(seed =

1234))

model data.R
library(tidyverse)

library(rema)

source(’code/source/get_cd.R’)

source(’code/source/ii_cc_ff.R’)

source(’code/source/0_icf_code.R’)

model_data <- function(filepath){

# Read data

sim <- read_csv(filepath)

# Get parameters

params <- filepath %>%

str_remove(’data/datasets/’) %>%

str_remove(’.csv’) %>%

str_split(’_’) %>%

unlist %>%

as.numeric

theta <- params [1]

tau2 <- params [2]

rep <- params [3]

# See whether dataset is extreme or only one in distribution

perm <- with(sim , rema(TRT_event , TRT_n, CTRL_event , CTRL_n, alpha =

0.05))

extreme <- perm$tstat %in% range(perm$dist$test.stat)
only_one <- nrow(perm$dist) == 1

if(only_one){

ci_df <- NULL

cd_df <- NULL

} else{

# Calculate CD for each method
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thetas <- seq(-15, 15, by = 0.01)

perm_cd <- get_cd(thetas , perm$dist$test.stat , perm$dist$norm.probs ,
perm$tstat)

liu <- gmeta:: gmeta(

with(sim , cbind(TRT_event , TRT_n, CTRL_event , CTRL_n)),

gmi.type = ’2x2’,

method = ’exact1 ’,

gmo.xgrid = thetas

)

dyn.load(TMB:: dynlib(’code/source/meta2x2_re_full_new’))

m_ii_cc_ff <- with(sim , ii_cc_ff(TRT_event , TRT_n, CTRL_event , CTRL_n,

thetas))

# Calculate point estimate , 95% CI, and p-value for each method

ci_df <- tibble(

names = c(’estimate ’, ’lower ’, ’upper ’, ’p_value ’),

ii_cc_ff = with(m_ii_cc_ff , c(estimate , lower , upper , NA)),

liu = with(liu , c(combined.mean , combined.ci[1], combined.ci[2],

pvalue)),

perm = with(perm , log(c(TE , CI[1], CI[2], exp(pval))))

) %>%

pivot_longer(-names , ’method ’) %>%

pivot_wider(method , names)

# Combine CDs for each method

cd_df <- tibble(thetas , perm = perm_cd , liu = liu$combined.cd, ii_

cc_ff = 1-m_ii_cc_ff$cd) %>%

mutate_at(c(’perm’, ’liu’), function(x) 1-abs(1-2*x))

}

file_out <- filepath %>%

str_replace(’.csv’, ’.RData’) %>%

str_replace(’datasets ’, ’workspaces ’)

save(ci_df, cd_df , theta , tau2 , rep , extreme , only_one , file = file_out)

}

# Model data for every dataset in raw_data directory , and write to results

directory

future ::plan(’multisession ’, workers = 75)

dir(’data/datasets ’, full.names = TRUE) %>%

furrr:: future_map(model_data , .options = furrr ::furrr_options(seed = 1))

summarize data.R
library(tidyverse)

count_invalid <- function(cd_df){

cd_df %>%

pivot_longer(-thetas , ’method ’) %>%

group_by(method) %>%

mutate(

estimate = thetas[which.max(value)],

side = ifelse(thetas < estimate , ’left’, ’right’),

d1 = c(diff(value), NA),
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invalid = (side == ’left’ & d1 < -1e-10) | (side == ’right’ & d1 > 1

e-10)

) %>%

filter(abs(thetas - estimate) >= 0.01) %>%

ungroup %>%

summarize(invalid = sum(invalid , na.rm = TRUE)) %>%

pull(invalid)

}

tail_approx <- function(cd_df){

df <- cd_df %>%

pivot_longer(-thetas , ’method ’, values_to = ’cv’) %>%

mutate_at(’thetas ’, round , 2) %>%

group_by(method) %>%

mutate(

a0 = first(cv),

a1 = first(diff(cv))/0.01,

b0 = last(cv),

b1 = last(diff(cv))/0.01

)

df %>%

summarize(

left = ifelse(a1 > 0, round(-a0/a1 , 2) - 15, -15),

right = ifelse(b1 < 0, round(-b0/b1, 2) + 15, 15)

) %>%

slice (1) %>%

mutate(left = replace_na(left , -15), right = replace_na(right , 15))

%>%

ungroup %>%

rowwise %>%

do(tibble(method = .$method , thetas = seq(.$left , .$right , 0.01))) %>%

ungroup %>%

mutate_at(’thetas ’, round , 2) %>%

full_join(df, c(’thetas ’, ’method ’)) %>%

fill(c(’a0’, ’a1’, ’b0’, ’b1’), .direction = ’updown ’) %>%

mutate(

cv_hat = case_when(

thetas < -15 ~ a1*(thetas + 15) + a0 ,

thetas > 15 ~ b1*(thetas - 15) + b0 ,

TRUE ~ 0

),

cv = coalesce(cv , cv_hat)

)

}

summarize_data <- function(filepath){

load(filepath)

if(extreme || count_invalid(cd_df) != 0){

df <- tibble(method = c(’ii_cc_ff’, ’liu’, ’perm’))

} else{

df <- tail_approx(cd_df) %>%

group_by(method) %>%

summarize(
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area = bayestestR ::area_under_curve(thetas , cv , ’trapezoid ’),

height = cv[thetas == theta],

height2 = bayestestR ::area_under_curve(

thetas[cv <= height],

cv[cv <= height],

method = ’trapezoid ’

)/area

)

}

df %>%

mutate(extreme , only_one , theta , tau2 , rep)

}

# Calculate metrics for each CV from results directory , and write to sim_

results.csv

future ::plan(’multisession ’, workers = 75)

dir(’data/workspaces ’, full.names = TRUE) %>%

furrr:: future_map(summarize_data) %>%

bind_rows %>%

write_csv(’data/sim_results.csv’)

sim results.R
library(tidyverse)

########## Prepare data ##########

df <- read_csv(’data/sim_results.csv’) %>%

drop_na %>% # Remove extreme datasets and those with invalid slopes

filter( # These two datasets had a negative area for the Liu method

!(theta == -1 & tau2 == 0.2 & rep == 233),

!(theta == -0.5 & tau2 == 0.8 & rep == 875)

) %>%

group_by(theta , tau2) %>%

mutate(row = ceiling(row_number ()/3)) %>%

filter(row <= 1000) %>% # Keep first 1000 datasets for each combination

of parameters

group_by(method , theta , tau2) %>%

summarize_at(c(’area’, ’height ’), mean) %>%

mutate(

method = recode(

method ,

perm = ’Zabriskie et al. (2021b)’,

liu = ’Liu et al. (2014) ’,

ii_cc_ff = ’Cunen and Hjort (2021) ’

)

)

########## Set plot ##########

plot <- ggplot(df , aes(theta , col = method)) +

facet_grid(cols = vars(tau2)) +

theme_classic () +

xlab(expression(theta)) +

scale_x_continuous(
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breaks = c(-1, -0.5, 0, 0.5, 1),

sec.axis = sec_axis(~ ., name = expression(tau^2), breaks = NULL ,

labels = NULL)

) +

scale_colour_manual(

values = c(’#999999 ’, ’#E69F00 ’, ’#56 B4E9’)

) +

theme(

legend.position = ’bottom ’,

legend.title = element_blank()

)

########## Area plot ##########

plot +

geom_line(aes(y = area), size = 1) +

geom_point(aes(y = area , shape = method)) +

scale_y_continuous(’Area Under the CV’, breaks = 0:4, limits = c(0, 4))

ggsave(filename = ’graphs/area.png’, width = 6, height = 3)

########## Height plot ##########

plot +

geom_line(aes(y = height), size = 1) +

geom_point(aes(y = height , shape = method)) +

geom_hline(yintercept = 0.5, linetype = ’dashed ’) +

scale_y_continuous(

expression(’Proportion of CIs Covering ’ ~ theta),

breaks = seq(0.4, 0.65, 0.05),

limits = c(0.4, 0.65)

)

ggsave(filename = ’graphs/height.png’, width = 6, height = 3)

hemorrhage.R
library(tidyverse)

library(rema)

source(’code/source/get_cd.R’)

source(’code/source/ii_cc_ff.R’)

source(’code/source/0_icf_code.R’)

df <- read_csv(’data/hemorrhage.csv’) %>%

slice(-8)

thetas <- seq(-3, 3, length = 1000)

perm <- with(df ,

rema(CMB_Event , CMB_Total , CTRL_Event , CTRL_Total , alpha = 0.05)

)

perm_cd <- get_cd(

thetas ,

perm$dist$test.stat ,
perm$dist$norm.probs ,
perm$tstat

)

liu <- gmeta:: gmeta(
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with(df, cbind(CMB_Event , CMB_Total , CTRL_Event , CTRL_Total)),

gmi.type = ’2x2’,

method = ’exact1 ’,

gmo.xgrid = thetas

)

dyn.load(’code/source/meta2x2_re_full_new.so’)

m_ii_cc_ff <- with(df,

ii_cc_ff(CMB_Event , CMB_Total , CTRL_Event , CTRL_Total , thetas)

)

cd_df <- tibble(

thetas ,

perm = perm_cd ,

liu = liu$combined.cd,
ii_cc_ff = 1-m_ii_cc_ff$cd

) %>%

mutate_at(c(’perm’, ’liu’), function(x) 1-abs(1-2*x))

cd_df %>%

pivot_longer(-thetas , ’method ’) %>%

mutate(

method = recode(

method ,

perm = ’Zabriskie et al. (2021b)’,

liu = ’Liu et al. (2014) ’,

ii_cc_ff = ’Cunen and Hjort (2021) ’

)

) %>%

ggplot(aes(thetas , value , col = method , linetype = method)) +

# geom_point(aes(counternull , perm$pval), shape = ’circle open ’, size =

2) +

geom_line(size = 1) +

geom_hline(yintercept = 0.05, linetype = ’dashed ’) +

geom_vline(xintercept = 0) +

xlim(-1, 3) +

xlab(expression(theta)) +

ylab(’Confidence Curve’) +

scale_colour_manual(

values = c(’#999999 ’, ’#E69F00 ’, ’#56 B4E9’)

) +

scale_linetype_manual(

values = c(’solid’, ’longdash ’, ’dotted ’)

) +

theme_classic () +

theme(

legend.position = ’bottom ’,

legend.title = element_blank()

)

ggsave(’graphs/hemorrhage.png’)

# counternull = thetas[which.min(abs(curve - m$pval))]
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pRandom sameVar.R
# based on the incorporation of the between -study variance in both

# treatment arms via the use of logits

# theta =1; k=10; p_ic_init =0.05; tau2 =0.2; min.n=10; max.n=50; set.seed

(1234)

pRandom <- function(theta , k, p_ic_init , tau2 , min.n, max.n) {

# 2

p_it_init <- p_ic_init * exp(theta) / (1 - p_ic_init + p_ic_init * exp(

theta))

# For balanced designs:

------------------------------------------------------

# # 3

# n_i <- round(runif(n = k, min = min.n, max = max.n))

#

# # 4

# n_ic <- n_i

# n_it <- n_i

#

----------------------------------------------------------------------------

# For unbalanced designs:

----------------------------------------------------

# 3 & 4

n_ic <- round(runif(n = k, min = min.n, max = max.n))

n_it <- round(runif(n = k, min = min.n, max = max.n))

#

----------------------------------------------------------------------------

# 5

mu_ic <- log(p_ic_init / (1 - p_ic_init))

mu_it <- log(p_it_init / (1 - p_it_init))

# For equal variances:

-------------------------------------------------------

# 6

theta_ic <- rnorm(n = k, mean = mu_ic, sd = sqrt(tau2) / sqrt (2))

theta_it <- rnorm(n = k, mean = mu_it, sd = sqrt(tau2) / sqrt (2))

#

----------------------------------------------------------------------------

# For unequal variances:

-----------------------------------------------------

# 6

# theta_ic <- rnorm(n = k, mean = mu_ic , sd = sqrt (0.5))

# theta_it <- rnorm(n = k, mean = mu_it , sd = sqrt(tau2))
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#

----------------------------------------------------------------------------

# 7

p_ic <- 1 / (1 + exp(-theta_ic))

p_it <- 1 / (1 + exp(-theta_it))

# 8

r_ic <- rbinom(n = k, size = n_ic, prob = p_ic)

r_it <- rbinom(n = k, size = n_it, prob = p_it)

# first check: make sure there are at least two studies with non -zeros

in at

# least one arm (if not , then estimating heterogeneity is pointless

since

# only one study is used in the analysis)

# second check: make sure there is at least one event across studies in

the

# treatment group

# third check: make sure there is at least one event across studies in

the

# control group

while(sum((r_ic + r_it) > 0) < 2 ||

sum(r_it) == 0 ||

sum(r_ic) == 0) {

r_ic <- rbinom(n = k, size = n_ic, prob = p_ic)

r_it <- rbinom(n = k, size = n_it, prob = p_it)

}

r.list <- list("CTRL_n" = n_ic, "TRT_n" = n_it,

"CTRL_event" = r_ic, "TRT_event" = r_it)

return(r.list)

}

get cd.R
#’ Compute a CD for the perm method

#’

#’ @param thetas An x-grid of theta values.

#’ @param u Possible values of distribution of test statistic.

#’ @param prob Probabilities of each test statistic in distribution.

#’ @param t_obs Observed test statistic.

#’ @return A vector containing the corresponding CD for thetas.

#’ @examples

#’ m <- rema::rema(TRT_event , TRT_n, CTRL_event , CTRL_n)

#’ theta_grid <- seq(-1, 1, length = 1000)

#’ get_cd(theta_grid , m$dist$norm.probs , m$dist$test.stat , m$tstat)
get_cd <- function(thetas , u, prob , t_obs){

# rescale test statistic

t_obs <- t_obs - min(u)

u <- u - min(u)
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# get normalized probabilites for each theta

P_unnorm <- prob*exp(u %x% t(thetas))

P_norm <- t(t(P_unnorm)*colSums(P_unnorm)^(-1))

# sum up extreme values

extreme <- as.numeric(u > t_obs) + 0.5*(u == t_obs)

colSums(P_norm*extreme)

}
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