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ABSTRACT

Dynamics of Systems Driven by an External Force

Xue Liu
Department of Mathematics, BYU
Doctor of Philosophy

In this dissertation, we study the complicated dynamics of two classes of systems: Anosov
systems driven by an external force and partially hyperbolic systems driven by an external
force.

For smooth Anosov systems driven by an external force, we first study the random
specification property, which is on the approximation of an N—spaced arbitrary long finite
random orbit segments within given precision by a random periodic point. We prove that if
such system is topological mixing on fibers, then it has the random specification property.
Furthermore, we prove that the homeomorphism induced by such a system on the space of
random probability measures also has the specification property. We note that the random
specification property implies the positivity of topological fiber entropy. Secondly, we show
that if the system is topological mixing on fibers, then its past and future random correlation
for Holder observable functions decay exponentially with respect to the system and the
unique random SRB measure.

For smooth partially hyperbolic systems driven by an external force, we prove the exis-
tence of the random Gibbs u—state, which has absolutely continuous conditional measure
on the strong unstable manifolds.

Keywords: random dynamical systems, random specification, Bowen’s specification property,
exponential decay of random correlation, absolute continuity, random SRB measure, Birkhoff
cone, random Gibbs u—state



ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who assisted me to complete
this dissertation.

First, I would like to extend my deepest gratitude to my supervisor, professor Kening
Lu. His in-depth understanding and invaluable insight into the problem deeply influence
me. [ would not have completed this dissertation without his valuable suggestions and
encouragement.

I would also like to thank all the professors and staff in Brigham Young University
Department of Mathematics for their support and help. Thanks should also go to professor
Zeng Lian, who gave me helpful advice in my dissertation.

Finally, special thanks to my family and my girlfriend for their love and emotional sup-

port, despite the distance.



CONTENTS

Contents

1 Introduction
1.1 Anosov Systems Driven by an External Force . . . ... .. ... ... ...
1.1.1 Random Specification. . . . . . . . .. ...
1.1.2  Exponential Decay of Random Correlation. . . . . . . . .. .. .. ..
1.2 Partially Hyperbolic Systems driven by an external force . . . . . . ... ..

1.3 Plan of the Paper . . . . . . . . . ...

2 Settings and Notations
2.1 Random Anosov and topological mixing on fibers Systems . . . . .. .. ..
2.1.1 Examples of Random Anosov and topological mixing on fibers Systems.
2.2 Random Partially Hyperbolic on Fibers Systems . . . . . . .. .. ... ...
2.2.1 Examples of Random Partially Hyperbolic on Fibers Systems.
2.3 Random Probability Measures . . . . . . . . . ... ... L.

2.4 Topological Fiber Entropy . . . . . . . .. .. ... o

3 Main Results
3.1 For Random Anosov and topological mixing on fibers Systems . . . . . . ..
3.1.1 Random Specification Property. . . . . . . . . ... ... ... .. ..
3.1.2 Exponential Decay of Random Correlation. . . . . . . . ... ... ..

3.2 Random Gibbs u—state for Random Partially Hyperbolic on Fibers Systems

4 Preliminary Lemmas and Propositions
4.1 For Random Anosov on Fibers Systems . . . . . . ... ... ... ... ...
4.1.1 Fiberwisely Holder continuity of stable and unstable subbundles. . .

4.1.2 Stable and Unstable Invariant Manifolds. . . . . . . . . . . . . .. ..

v

iv

O 3 ot W

11

12

18
19
21
24

25
25
25
28
30

30
31
31



4.1.3 Random Shadowing Lemma. . . . . . . . .. ... ... ... ... .. 34
4.1.4 Density of Random Periodic Points. . . . . . .. ... ... ... ... 36
4.1.5 Two Distortion Lemmas. . . . . . . . . .. ... ... 36
4.1.6  Fiberwisely Absolute Continuity of the Stable and Unstable Foliations. 41
4.1.7 Fiberwisely Holder Continuity of the Stable and Unstable Foliations. 48

4.1.8 Properties of the Holonomy Map between Two Local Stable Leaves. . 60

4.1.9 Fubini’s Theorem on Rectangles. . . . . .. .. ... ... ... ... 65

4.2  For Random Partially Hyperbolic on Fibers Systems . . . . .. .. ... .. 74
4.2.1 Strong Unstable Invariant Manifolds. . . . . . . .. ... .. ... .. 74

4.2.2 A Distortion Lemma. . . . . . . . ... .. ... 75

5 Random Specification 79

5.1 Random Anosov and topological mixing on fibers systems has Random Spec-

ification . . . . .. 80

5.2 Specification on the Space of Random Probability Measures . . . . . . . .. 91
5.3 Positivity of Topological Fiber Entropy . . . . . . . ... ... .. ... ... 96

6 Exponential Decay of Random Correlation 97
6.1 Construction of Birkhoff Cone . . . . . . . . . ... .. ... ... ... ... 98
6.2 Contraction of the Fiber Transfer Operator . . . . . . . ... ... ... ... 109
6.3 Construction of the Random SRB measure . . . . . . . . ... ... ... .. 129
6.4 Proof of The Exponential Decay of the Past Random Correlations . . . . . . 136
6.5 Proof of The Exponential Decay of the Future Random Correlation . . . . . 142

7 Existence of the random Gibbs u—state 145
A Convex Cone, Projective Metric and Birkhoff’s inequality 151
B The random SRB measure for random hyperbolic Systems 152



Bibliography 155

vi



CHAPTER 1. INTRODUCTION

The study of complicated dynamics can be traced back to Poincare’s work [50] on the N-body
problem. The modern theory of uniformly hyperbolic dynamical systems was initiated in
the 1960s by Anosov [2] and Smale [60], where Anosov and Axiom A diffeomorphisms/flows
were introduced respectively. The core component in these systems is uniform hyperbolicity,
which is an invariant geometric structure describing the exponential divergence of nearby
orbits. This exponential divergence together with the compactness of phase space produces
rich and complicated dynamical structures.

From a geometric perspective, one of the complicated dynamics of transitive Anosov
system is the abundance of periodic points. Bowen’s specification property, which can be
viewed as a uniform version of topological transitivity [40], says that a finite collection of
arbitrary long orbits segments can be shadowed by a periodic point within given precision
as long as one allows for enough time between segments. Bowen’s specification theorem
[10] affirms that any diffeomorphism restricted to a compact, topological mixing and locally
maximal hyperbolic set (hyperbolic elementary set) has Bowen’s specification property. If
a homeomorphism on a compact metric space has the specification property, then the set
of invariant measures equidistributed on a periodic orbit is dense in the set of invariant
measures [58]. Moreover, the induced system on the space of probability measure also has the
specification property [8]. Furthermore, if the system has expansivity, then the topological
entropy equals the exponential growth rate of periodic orbits [10], and the unique equilibrium
state can be obtained for a large class of potential functions [11]. In recent decades, many
generalizations of the specification property have been developed [56, 49, 65, 20]. In [54, 55],
the authors studied the specification property for the following non-autonomous or time-
dependent discrete systems:

Tp41 = fn(xn)7 n Z 1

on a compact metric space (X, d). A periodic point for such non-autonomous systems is a



point x € X such that there exists n € N,
fak © fak—1 0 -0 fyo fi(x) = x, for every k € N. (1.1)

While in this dissertation, when an external force evolves in time, the system driven by the
orbit of an external force can be viewed as a non-autonomous discrete dynamical system.
Due to the presence of a random external force, the periodic point defined in (1.1) rarely
exists. We consider the random periodic points in our dissertation, which have already been
studied in the existing literature [38, 69]. To investigate the abundance of random periodic
points in systems driven by external force, we study the random specification property in
the first part of this dissertation.

The study of the statistical behavior of orbits dates back to the work of Birkhoff and Von
Neumann on the ergodic theorem. The ergodic theorem declares that if an invariant measure
1 is ergodic, then the time average of an integrable observable along individual trajectories
p—a.s. converges to the spatial average. Another stochastic property, which is stronger
than ergodicity, is (measure-theoretic) mixing: a measure-preserving transformation (f, u)

is mixing if for all measurable sets A, B,
p(f AN B) = p(A)p(B) or p(B|f"A) = p(B) as n — oo.

The functional form of mixing is that the correlation function of two observable functions

g, h with respect to measure p decays to zero, i.e.

|/(gOf”)hdu—/gdu/hdu|—>Oasn—>oo,

which says that g o f™ and h become uncorrelated asymptotically. Sinai [59], Ruelle [52]
and Bowen [12] proved that topological mixing Anosov or Axiom A diffeomorphisms have

exponential decay of correlation for Holder observable functions with respect to the unique



SRB measure, see also [46, 62, 67, 13]. There are a large number of results that consider the
exponential decay of correlations, for instance [28, 30, 3, 24, 67, 18, 25, 26, 63, 1, 47, 39],
where an invariant measure is called SRB measure if it has absolute continuous conditional
measure on unstable manifolds. In the second part of this dissertation, we prove exponential
decay of random correlation for Anosov systems driven by an external force.

When there is a neutral direction, besides the uniformly expansion and contraction di-
rections in the tangent bundle, the system is a partially hyperbolic system [14]. A special
class of invariant measures for partially hyperbolic systems, which is characterized by hav-
ing absolutely continuous conditional measures on strong unstable manifolds, is the Gibbs
u—state. When the Lyapunov exponents along the neutral direction are non-positive, then
the Gibbs u—state is the SRB measure [68]. In [48], Pesin and Sinai proved the existence of
Gibbs u—state for partially hyperbolic systems. We refer to three surveys about the relation
between Gibbs u—states and physical relevant measures [29, 9, 19]. In this third part of this
dissertation, we prove the existence of the random Gibbs u—state for partially hyperbolic

systems driven by an external force.

1.1 ANOSOV SYSTEMS DRIVEN BY AN EXTERNAL FORCE

Let M be a connected closed smooth Riemannian manifold and (2, dg) be a compact metric
space. Denote B(M) and B(£2) to be the Borel measurable set on M and € respectively.
Let 6 : 2 — Q be a homeomorphism. In this dissertation, the topological dynamical system
(2, 0) will describe the external force. Let H =Diff?(M) be the space of C?—diffeomorphisms
on M quipped with the C%?—topology [33]. Let f : € — H be a continuous map. The
diffeomorphism f,, := f(w) is driven by the external force (£2,6), i.e., while w is shifted by

0 in time n to 6w on the external force space €2, any point x € M is mapped to F(n,w)z,



where )

fon—1p, 00 fo, itn>0
F(”aw) = ZdM, ifn=20

(f@nw)fl 0--+0 (fgflw)fl, if n < 0.

\

Remark 1.1. The following system

F:ZxQxM—M, (nw,z) = F(n,w)x

satisfies for each n € 7 that, (w, ) — F(n,w)z is continuous and the mappings F(n,w) :=

F(n,w): M — M form a cocycle over 0, i.e.,

F(0,w) =idy for allw € €,

Fn+m,w) = F(n,0Mmw) o F(m,w) for alln,m € Z, w € Q.

When (§2, B(RY)) is equipped with a O—invariant probability measure P, F is called a (con-

tinuous) random dynamical system (RDS) [4].

We say that the diffeomorphism f,, driven by the external force (£2,6) is an Anosov
system driven by the external force (£2,60) (or ¢ is random Anosov on fibers system) if for

every (z,w) € M x 2, there is a splitting of the tangent bundle of M, := M x {w} at x into

T.M, = E*(z,w) & E*(z,w),

which depends continuously on (z,w) € M x Q with dim F*(z,w), dim £%(x,w) > 0, and

where the splitting is invariant in the sense that

D, f,E"(x,w) = E*(fur,0w), D,f,E°(zr,w)=E°(f,x,0w)



and

|szw§‘ > 6)\0|§|7 V€ € Eu(wi)u
Do fonl < e lnl,  ¥n e ES(z,w),

where Ay > 0 is a constant. Putting f,, and 6 together forms a skew product system

¢:MxQ—MxQ, ¢(r,w) = (for,0w).

The system ¢ is said to be topological mixing on fibers if for any nonempty open sets U, V' C
M, there exists N > 0 such that for any n > N and w € Q, ¢"({w} x U)N({0"w} x V) # 0.

Anosov system driven by an external force is a class of nonautonomous dynamical sys-
tems. Such systems have been recently studied in [34], in which the authors proved dynamical
complexity, under the topological mixing on fibers assumption, such as the density of random
periodic points, strong random horseshoe, and a simplified random LivSic theorem. Exam-
ples such as fiber Anosov maps on 2-dimension torus driven by irrational rotation on the
torus and random composition of 2 X 2 area-preserving positive matrices are under consider-
ation (we list these examples in Subsection 2.1.1). Moreover, the random Anosov on fibers
systems actually contain a class of partially hyperbolic systems. In fact, if Q is a compact
differentiable manifold, and if # : Q2 — Q is a diffeomorphism such that the expansion of
D0 is weaker than e and contraction of D@ is weaker than e~°. Furthermore, we assume
fu(z) and f;'(z) are C' in w. Then the system ¢ is a partially hyperbolic system with

dimension-dim €2 central direction (we prove this statement in Section 2.1).

1.1.1 Random Specification. The system ¢ induces a natural self-map ¢ on L>(Q, M)
given by (q;g)(w) = fp-1,9(607'w) which is a homeomorphism with respect to the sup-metric
on L*(2, M). A measurable map g € L>(Q, M) is said to be a random periodic point of
¢ if ¢ is a periodic point of ¢. In [34], one of the main result for Anosov and topological
mixing on fibers system is the density of random periodic points.

The random specification property is defined analogously to Bowen’s specification prop-



erty in deterministic systems. The system ¢ is said to have the random specification prop-
erty if (L>°(Q, M), qB) has Bowen’s specification property, i.e., for any € > 0, there exists a
N = N(e) such that for any finite collection of intervals 7 = {Iy,..., I, }, I; = [a;,b;] C Z,
aiy1 > b+ N, and any P : U™, I; — L™(Q, M) such that ¢ (P(t)) = P(ty) for

t1,t2 € I € 7, there exists e—shadowing point g € L>(Q2, M),

dpoan(P(t),6(9)) <€ Wt e L, i€ {1,...,m}.

Moreover, for any ¢ > N + b,, — a;, the shadowing point can be a random periodic point

with period q.

Remark 1.2. In [31], Gundlach and Kifer generalized the notion of specification in RDS
which is based on the construction of the shadowing point in the proof of Bowen’s specification
theorem. In their definition, due to the presence of the random noise, the periodicity part is

missing.

In [34], the following random specification theorem was stated without proof. We give a

proof in this dissertation.

Theorem A (Random specification property). Random Anosov and topological mixing on

fibers systems have the random specification property.

Besides this, we study the consequences of the random specification property. A random
probability measure is a map p : B(M) x Q — [0,1], (B,w) — uy(B) such that for each
fixed B € B(M), w — u,(B) is measurable, and for each fixed w € Q, B — pu,(B) is a
probability measure on M. Let Prqo(M) be the space of all random probability measures,

which is compact metrizable space [21]. The system ¢ defines a self-map ¢* on Prq(M) by
(¢*:u>w = (fH—lw)*/Le—lw-

Theorem B. Let ¢ be random Anosov and topological mixing on fibers systems, then ¢* is
a homeomorphism and the topological dynamical system (Pro(M),¢*) has Bowen’s specifi-

cation property.



Moreover, the random specification implies dynamical complexity in the following sense.

Theorem C. The random specification property implies the positivity of topological fiber

entropy.

1.1.2 Exponential Decay of Random Correlation. To describe the statistical be-
haviour of a random dynamical system, we study the random mixing property. A random
probability measure (p, ) eq is ¢—invariant if (f, ). = po, for P —a.s w € Q.

The system ¢, generated by f, and 6, together with an invariant random probability

measure (f,)wen has the past random mixing property if for all w € Q,

T pig ([ AIB) = lim Bl A0B) gy

n—00 MG*”w(B)

Notice that pg-n,(f;"A) = p,(A) for all n € N, so the above equality is saying that when we
trace back to the history, the “current memory” is fading with respect to the measurement
in the history. Equivalently, given a pair of regular observable functions ¢ and ¥ on M, the

past random correlation function of ¢ and 1 goes to zero, i.e.,

— 0 asn — oo.

'/M@Z)(fg—nw@@(x)duenw—/Mw(x)duw/M@(x)dwnw

The system ¢, generated by f, and 6, together with an invariant random probability

measure (i, )yco has future random mixing property if for all w € Q,

| o mUEANB) (AN B)
lim i, (B|fg A) = lim — = lim = = pw(B).
n—oo 0 n—o0 Mw(fenwA) n—oo M@"w(A)

The future random mixing property is saying that the impact of the future to the current
state is fading with respect to the measurement in the current state. Equivalently, given a

pair of regular observable functions ¢ and ¥ on M, the future random correlation function



of ¢ and 1) goes to zero, i.e.,

— 0 as n — oo.

‘ /M D(fra)e(@)dp, — /M D) g /M (),

If ¢ is Anosov and topological mixing on fibers, then ¢ is a random topological transitive
hyperbolic systems [34], so there exists a unique random SRB measure and the unique ran-
dom SRB measure is given by fi,, := lim, oo (fj-n,,)«m, where m is the normalized Rieman-
nian volume measure [32]. This unique random SRB measure is characterised by the entropy
formula of Pesin’s type, absolutely continuous conditional measure on unstable manifolds,
and variational principle when the topological pressure equals zero [32]. In this dissertation,
we prove that the random Anosov and topological mixing on fibers system has exponen-
tial decay of both past and future random correlation for Hoélder observable functions with

respect to the unique random SRB measure.

Theorem D. Let ¢ be random Ansov and topological mixing on fibers systems, then there

exists a constant vy only depending on the system ¢ such that for any p,v € (0,1) satisfying
O<pu+v <y

and ¢ € CO*(M), p € C%(M), both the past and future random correlation of ¢ and 1)
exponential decay with respect to ¢ and the unique random SRB measure (i,)weq, i.e. for

anyn € N, w € Q,

’Aw(fgn&)@(fﬂ)dﬂonw — /M?ﬂ(ﬂc)dﬂw/MSO(w)dﬂenw < K||Y|lcowan - lellcorary - A

‘ / B(fr) () dp, — / () dpigne / o(@)dp| < K| llconn - llellcosqan - A,
M M M

where K > 0 and A € (0,1) only depend on p and v, and CO*(M), C* (M) are the spaces

of real valued Holder continuous function with Holder exponents p and v respectively.

Remark 1.3. For RDS, the exponential decay of random correlations was obtained for ran-



dom Lasota—Yorke maps on intervals in [15] and for random perturbations of expanding
maps in [7]; in [36], the topological one-sided random shift of finite type with the fiber Gibbs
measure was proved to have certain nonuniform w—wise decay of correlations, and similar
results hold for random expanding in average transformations. Other decay rates of random
correlations such as stretched exponential decay and polynomial decay were also considered

for certain random dynamical systems [41, 53].

The proof of Theorem D is based on studying the fiber transfer operator L., which is
defined by

Loo: M — R, (Lop)(z) := ]def(lg{:))ifsz|

for any measurable observable function ¢ : M — R. We construct the Birkhoff cone on
each fiber and introduce the Hilbert projective metric on each fiber Birkhoff cone. We prove
that iterations of fiber transfer operators LY = Lyn-1,0---0 L, is a contraction, uniformly
for all w € §2, with respect to the Hilbert projective metric on fiber Birkhoff cone, where
N comes from the topological mixing on fibers property. The unique random SRB measure
and exponential decay of random correlations can be obtained from the contraction.

The Bikhoff cone approach has been used extensively to study the transfer operator and
exponential decay of correlations. For deterministic systems, Liverani in [46] used it to prove
the exponential decay of correlations for smooth uniformly hyperbolic area-preserving cases.
Later, it was applied to general Axiom A attractors in [62, 6], and some partially hyperbolic
systems [3, 17]. For RDS, the Birkhoff cone approach was used in random perturbations of
C*(k > 1) expanding maps [7], and in a class of non-uniformly expanding random dynamical

systems [61].

1.2  PARTIALLY HYPERBOLIC SYSTEMS DRIVEN BY AN EXTERNAL FORCE

We say that the diffeomorphism f,, driven by the eternal force (€2, 0) is a partially hyperbolic

system driven by the external force (€2,0) (or ¢ a random partially hyperbolic on fibers



system) if for every (z,w) € M x €, there is a splitting of the tangent bundle of M,, = M x{w}

at z into central-stable and strong unstable directions

T.M, = E¥(z,w) ® E"(z,w),

which depend continuously on (z,w) € M x  and the splitting is invariant in the sense that

Dwwacs(x7w) = Ecs(¢(x7w>>7 Dwwauu(maw) = Euu(¢($=w))7

and there exist constants 0 < e* < e < 00, Ay > 0 and Cy > 1 such that

|D fu€] > Co—le>\0|§‘7 VE € BV (7, w),
(1.2)

D, fun| < Coerlnl,  Vn € E¥(z,w).

We list several examples of random partially hyperbolic on fibers systems in Section 2.2.1,
such as random Anosov on fibers systems [34], partially hyperbolic maps on 3 —d tori driven
by minimal irrational rotations on a compact torus, random small perturbations of partially
hyperbolic systems, and random composition of (2 x 2 hyperbolic automorphism @ id) on
T2 x St

By the invariant unstable manifolds theorem (cf., for example, [45]), there exists an
embedded strong unstable manifold W"*(z,w) tangent to £**(x,w). A random probability
measure (fi,)weq is called a random Gibbs u—state if it has absolutely continuous conditional

measure on strong unstable manifolds.

Theorem E. There exists at least one random Gibbs u-state for C? random partially hyper-

bolic on fibers systems.

Note that for a random Gibbs u—state (i, )weq, if for p—a.s. (r,w) € M x €, the strong

10



unstable manifolds coincide with the unstable manifolds

1
W' (x,w) :={y € M : limsup ﬁlog d(f,"x, f."y) < 0},

n—oo

then it is a random SRB measure [5, 37].

For RDS, the existence of a random SRB measure was obtained in [32] by Kifer and
Gundlach for random hyperbolic systems which is random semi-conjugated to a random
subshift of finite type. Recently, Wang, Wu and Zhu in [64] proved the existence of Gibbs
u—state (random SRB measures in our definition) in the case that the RDS has a uniformly
dominated splitting is uniformly expanding on the unstable subbundle, and has a non-

positive Lyapunov exponents on the central-stable subbundle.

1.3 PLAN OF THE PAPER

We organize the paper as follows. In Chapter 2, we introduce random Anosov on fibers
systems, random partially hyperbolic on fibers systems, and other notations that will be
used in this dissertation. In Chapter 3, we state the formal results for the above two systems
respectively. In Chapter 4, we introduce several preliminary lemmas and propositions to
pave the way for the future proof. In Chapter 5, we prove Theorems A, B, and C related
to the random specification for smooth random Anosov and topological mixing on fibers
systems. In Chapter 6, we prove the exponential decay of random correlation (Theorem D)
for smooth random Anosov and topological mixing on fibers systems. In Chapter 7, we prove
the existence of random Gibb u—state (Theorem E) for smooth random partially hyperbolic

on fibers systems.
CHAPTER 2. SETTINGS AND NOTATIONS

In this chapter, we introduce some basic concepts and notations for future references.

11



Let M be a connected closed smooth Riemannian manifold of finite dimension, and d,,
be the induced Riemannian metric on M. Let 8 : Q@ — € be a homeomorphism on a
compact metric space (€2, dg) preserving a complete ergodic Borel probability measure P.
Denote B(£2) to be the Borel measurable sets on . The product space M x ) is a compact
metric space with metric d((z1,w1), (z2,w2)) = dy(21, x2) + do(wi, ws) for any xy, 290 € M
and wy,wy € Q. Let H =diff?(M) be the space of C? diffeomorphisms on M equipped with
the C? topology [33], and let f : Q — H be a continuous map. The skew product system
¢ M xQ— M x Qinduced by f(w) and € is defined by:

O(z,w) = (f(w)z,0w) = (fur,0w), Yw € Q, z € M.

where we rewrite f(w) as f,. Then inductively:

)
(for1wo -0 for,0"w), ifn>0

6" (0,w) = (f12,6°w) = { (2.), =0

((fonw) Lo o (fo1) ta, 0Mw), ifn <O.

\

2.1 RANDOM ANOSOV AND TOPOLOGICAL MIXING ON FIBERS SYSTEMS

Definition 2.1. The system ¢ is called Anosov on fibers if the following is true: for every

(x,w) € M x Q, there is a splitting of the tangent bundle of M, = M x {w} at x
T.M, = F*(z,w) ® E*(z,w),

which depends continuously on (x,w) € M x Q with dim E? dim E,

(zw)

w >0 and satisfies

that
Df,(v)E*(z,w) = E*(¢(z,w)), Df,(x)E*(x,w) = E*(¢(z,w)),

12



and

D f.€] > ele], V¢ € BY(z,w),
|Dfo(x)n] < e Mnl, Vne E(z,w),

where \g > 0 is a constant.

Random Anosov on fibers system is a special case of random hyperbolic system defined

in [32].
Definition 2.2. We say that ¢ : Q2 x M — § x M s topological mixzing on fibers if for any
nonempty open sets U,V C M, there exists N > 0 such that for any n > N and w € ()

P"({w} x U)Nn{"w} x V #0.

2.1.1 Examples of Random Anosov and topological mixing on fibers Systems.
In [34], Huang, Lian and Lu showed that the following two types of systems (S1) and (52)
are Anosov and topological mixing on fibers.

(S1)—type systems are systems satisfying the following conditions:
(A1) (6,9) is a minimal irrational rotation on the compact torus;
(A2) ¢ is Anosov on fibers;

(A3) ¢ is topological transitive on M x ).
The following example is an (S1)—type system:

Example 2.3 (Fiber Anosov maps on 2 — d tori [34]). Let ¢ : T? x T — T? x T given by

x 2 1 x hy(w)
qb 7w - + 7w+a Y

Y 1 1) \y ha(w)

where o € R\Q, hy(w), he(w) are continuous map from T to itself.

13



(S2)—type systems are systems satisfying the following conditions:

(B1) (0,9) is a homeomorphism on a compact metric space;
(B2) ¢ is Anosov on fibers;

(B3) There exists an f,—invariant Borel probability measure v with full support (i.e. supp

v = M) for all w € Q.
The following example is an (52)—type system.

Example 2.4 (Random composition of a 2 X 2 area-preserving positive matrices [34]). Let

1<i<k

be 2 x 2 malrices with positive integer entries and |det A;| = 1 for all i € {1,....,k}, i.e.,
hyperbolic toral automorphisms. Let 2 := Sy = {1, ..., k}Z together with the left shift operator
o be the symbolic dynamical system with k symbols. Define f : Q — {Ay, ..., Ax} by f(w) =
Au0) where w = (..., w(—1),w(0),w(1),...) € Q. Define ¢ : T? x @ — T? x Q by

¢(r,w) = (f(w)z,0w).

Next, we show that random Anosov on fibers systems contain a class of partially hyper-

bolic systems.

Definition 2.5. (f, M) is called a partially hyperbolic system in the narrow sense if the
tangent bundle admits a splitting into three continuous vector subbundles TyM = E'(z) @

FE?(z) & E3(z) which satisfy

(1) dominated splitting, i.e., D, f(E'(x)) = E'(f(x)) fori =1,2,3, and there exists con-

stants ¢ > 0 and A € (0,1) such that | D f"

sl < X |Df"

Ez+1(x)|| fOT 1= 1,2,
(11) EY(x) is uniformly contracted and E3(x) is uniformly expanded.
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We denote the dominated splitting by T,M = E'(x) & E*(z) & E*(z).
Let Q be a compact differentiable manifold, and let 6 : Q — Q be a diffeomorphism.
Denote f(x,w) := f,(z) and ¢~ (z,w) = (f;1(x), 07 w).
Proposition 2.6. Assume
(a) ¢: M x Q— M x ) is Anosov on fibers,

(b) f(z,w) and f;*(z) are C' in w,

(c) The diffeomophism 6 satisfies:

sup || Dy f

(z,w)eMxQ

bl < 108 D077 = my

Ev(z,w) || _1-

< sup||D,0| :=ms < inf D, f !
<sup D= ma < i (1D.f

Then ¢ is partially hyperbolic in the narrow sense with dimension-dim 2 central direction.

Proof. We first show the existence of a dominated splitting. Note that T{, .M x Q =
T.M x T, already has a splitting E*(z,w) x {0} & E*(x,w) x {0} & {0} x T,,82, but this
splitting is not invariant. For any v € T,M x T, €2, then v = v; + v + v3 according to
the above splitting. Notice that || D¢(x,w)vs|| only depends on ||D, f(z,w)| and || D,0|.
| D¢~ (z,w)vs|| only depends on ||D,(fs-1,) " (z)| and ||D,07, then by the compactness

of M and (2, there exists a number K such that
|D@(x,w)vs|| < Kus]l, [|1D¢~" (w,w)vs| < K|vs]|.

We let P(E"(z,w) x {0}) denote the projection map from 7, M x T,,Q to E*(z,w) x {0} with
respect to the splitting E¥(z, w) X {0} & E%(z,w) x {0} {0} x T,,Q2. P(E*(x,w) x {0}) and
P({0} x T,Q) are similar notations. Since E*(z,w) and E*(z,w) are uniformly continuous

on x and w, there exists a number P > 1 such that

sup{[| P(E®(z,w) x {ODI|, [ P(E*(z,w) x {0})][  (z,w) € M x Q} <P.
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Now counsider the cone
C(r,w) == {v € T,M x T,,Q| [Jva]| + b|vs]| < [|vs]l},

where b is a number such that
2PK

b> ———.
e — my

Denote

ol ,e 201 € (0,1).

co = max{

For any v € C'(z,w), we have

D¢(z,w)v = Do(z,w)vy + Do(z,w)ve + Do(x,w)vs
= Do(z,w)vr + P(E*(¢(z,w)) x {0}) Do(z, w)vs
+ Do(x, w)vy + P(E*(p(2,w))) DP(x, w)vs
+ P({0} x Ty, Q)Do(x,w)vs

= (D¢(x,w)v); + (Dp(x,w)v)s + (DP(x, w)v)s.

Then

[(D(,w)o)al) + bl (Do, w)o)sll < e ol + PE s +b - ol
= e Mva|| + (PK + bmy)||vs]|
< e Mva|l + 2PE + bmo)||vs|| — PK|fvs
=e* (e7M|va|| + e (2PK + bma)||vs||) — coP K ||us]|
< e*(eollvall + cobllvs]l) — coPK]Jvs]
< coe||vr|| — coPK ||vs)|

< ol (Do(, w)v)a |
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Hence D¢(z,w)C(xz,w) C intC(p(x,w)). By cone-field criteria (Theorem 2.6 in [22]), T,,M x
T.,2 has a dominated splitting S} (z, w)® < Sa(x, w) with dim(Sz(z,w)) = dim(E"(z,w)x{0}).
Notice that E"(x,w) x {0} lies in C'(z,w) and it is invariant under D¢(z,w), so Sy(z,w) =
E*(z,w) x {0}.

On the other hand, consider another cone

Cla,w) = {v e TLM x Tyw = |lui]| + dfvs|| < vz},

where
4> 2PK 5
e —my
Denote
2PK +miytd
C1 = maX{TOl,e 2)\0} S (O, ].)

For any v € C(z,w), we have

D¢~ (z,w)vD¢ ™ (z,w)vy + D™ (2, w)ve + D™ (2, w)vs
= D¢~ (z,w)vr + P(E" (™' (z,w)) x {0}) D™ (x,w)uvs
+ Do~ (a,w)vs + P(E* (67 (2, w)) x {0}) Do~ (z, w)vs
+ P({0} x T,0) D¢ (z, w)v3

= (D¢ (z,w)v); + (Do~ Ha,w)v)s + (Do~ (z,w)v)s.

Then

(D¢~ (z,w)v)1|| + d|[(De~ (z,w)v)s|| < e Mor|| + PK|Jvs]| + d - my||vs]|
< cle’\||v2|| — 1 PK|vs|

< al|(De™ (z, w)v)a|.

Hence D¢~ (z,w)C(z,w) C int(C(¢p~ (z,w))). By cone-field criteria, T,M x T, has a
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dominated splitting Hy(z,w) &< Hs(z,w) with dim Hy(z,w) = dim(E*(z,w) x {0}). Notice
that F*(z,w) x {0} lies in cone C(x,w) and it is invariant under D¢(z,w), so Hy(x,w) =
E*(z,w) x {0}.

Now T, M x T, has two dominated splittings: S1(z,w)®(E"(z,w)x{0}) and (E*(z,w) %
{0}) ®< Hy(z,w). Then, by uniqueness of the dominated splitting (Proposition 2.2 in [22]),

we have
T.M x T,Q = (E*(z,w) x {0}) &< (S1(z,w) N He(z,w)) &< (E*(x,w) x {0}).

Besides, we already know that E*(z,w) x {0} is uniformly contracted under D¢(z,w) and

E"(z,w) x {0} is uniformly expanded under D¢(x,w). Hence ¢ is partially hyperbolic. [

2.2 RANDOM PARTIALLY HYPERBOLIC ON FIBERS SYSTEMS

The system ¢ is called partially hyperbolic on fibers if the following is true: for every

(x,w) € M x €, there is a splitting of the tangent bundle of M, = M x {w}
T.M, = E*(z,w) ® E“(z,w),

which depends continuously on (z,w) € M x Q with dimE7y’ > 0 and satisfy that for all
(z,w) e M x

D, f,E" (v, w) = E"($(z,w)), Dpfob(7,w) = E%(¢(z,w)),
and there exist constants 0 < e* < e < 00, Ay > 0 and Cy > 1 such that

D, fu€] > Cytedlel, Ve € Ev(x,w),

D, fun| < Coerlnl,  Vn € E¢(z,w).
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2.2.1 Examples of Random Partially Hyperbolic on Fibers Systems.
In this subsection, we list several examples of random partially hyperbolic on fibers

systems.

Example 2.7. All examples of random Anosov on fibers system are random partially hyper-

bolic on fibers.

Example 2.8 (Fiber partially hyperbolic maps on 3-d Tori). Let 6 : Q — Q be any homeo-

morphism on a compact metric space ), and let P be an ergodic measure on ) with respect

to 0. Define ¢ : T3 x Q — T3 x Q by

x x 2 1 0) (= hy(w)
o ylw|=1Ay| +hw)lw|= 110 y |+ | ho(w) | 0w |,
z z 001 2 hs(w)

where h(-) : Q — T3 is a continuous map.
The following example can be obtained by modifying the example in [44].

Example 2.9 (Random Small Perturbations of Partially Hyperbolic Systems). Let M be a
smooth compact Riemannian manifold without boundary, and let Diff*(M) be the space of C*
diffeomorphisms from M to M equipped with the C? topology [33]. Note that the C* topology
on Dif?(M) is metrizable, where we denote the metric generating the C? topology by dcs.
Assume h € Diff?(M) is partially hyperbolic in the following sense that there is a continuous
splitting

TM = E" & E

with dim E* > 0 and a number Ao > 0 such that for any x € M
limsup,_,, = log|D,h"¢| > Xo, VE € EY, £#0,
liminf, . Llog|D,h™n| <0,  Vne EZ, n#0.
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Let U.(h) be the e—neighborhood of h in the Diff?(M). Let K.(h) C U.(h) be any compact
set. Forw € Q. := K. (h)%, we denote by (- -+ , g_1(w), go(w), g1(w), - - - ) the sequence of maps

corresponding to w and define the metric on Q. by

, de2(g;(w), gs (W'

The metric dg, generates the product topology on ). and as a consequence, () is a compact
metric space. Let 0 : Q. — Q. be the left shift operator, then 6 is homeomorphism. Let

f:Qc = Diff(M) by f(w) = f, = go(w), then f is a continuous map. Denote

(

go(0"*w) 0 go(0"2w) o - - - 0 go(w), ifn>0
fo = 41id, fn=0

(90(0"w)) " oo (go(0~'w)) " o (go(0~'w))~", if n <O.

\

Proposition 2.10. Given sufficiently small § > 0, we can find €5 > 0 and a constant As

such that the following hold: for every (w,x) € Q., x M, there is a splitting

T.M = E, ) & E

(w, (w,)

which depends continuously on (w,x) and has the following properties:

(i) DufuEl, .y = Efgy g0y for 7 =cs,u;

(i) for alln >0

| Do fié] > Ag2eom3e], Ve € By

w,x)?

1D, fon| < A3e*™|n|, Vn € E;

(w,z)

The above Proposition is an adapted version of Proposition 2.2 in [{4].
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A proof similar to the proof of Proposition 8.2 in [34] can be applied to prove the following

example is random partially hyperbolic on fibers system.

Example 2.11. Let

a; bz 0
0 0 1

1<i<p
be 3 X 3 matrices with a;,b;,¢;,d; € ZT, and |a;d; — ¢;d;| = 1 for any i € {1,...,p}. Let
Q =38, :={1,...,p}" with the left shift operator 6 be the symbolic dynamical system with p
symbols.
For any w = (...,w_1,wp,w1,...) € Q define f(w) = A,,. Then the skew product ¢ :

T3 x Q — T3 x Q defined by
gzﬁ(m,w) = (f(w)x, ‘9"‘})

1s partially hyperbolic on fibers satisfying our setting.

2.3 RANDOM PROBABILITY MEASURES

In this section, we introduce the theory of random probability measures, most of which
are taken from [21]. Denote Pr(M) to be the space of probability measures on (M, B(M))
equipped with the narrow topology, where the narrow topology on Pr(M) is the smallest
topology that makes p — p(g) continuous for p € Pr(M) and g a continuous function on

M. By Theorem A.2 in [21], we pick

dy(p,¢) = sup{p(g) —C(g) : g € BL(M), 0 < g <1,[g], <1}

for a metric generating the narrow topology, where BL(M) is the set of Lipschitz functions

on M and [g];, is the Lipschitz constant of g.

Definition 2.12. A map p: B(M) x Q — [0,1] by (B,w) — pu,(B) satisfying
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(1) for every B € B(M), w > p,(B) is measurable,
(ii) for P—almost every w € Q, B — p,(B) is a Borel probability measure,
is said to be a random probability measure on M, and is denoted by w — p, or (Hy)wea-

Remark 2.13. If u: B(M)xQ — [0, 1] satisfies (ii) from Definition 2.12, and if w — p,(K)
1s measurable for every K from a N—closed family IC of Borel subsets of M which generates
B(M) (ie., o(K) = B(M)), then (i) is satisfied as well, hence u is a random probability
measure. In fact, D = {D € B(M) : w — u,(D)is measurable} is a Dynkin system and
KL C D. By Dynkin’s m — X theorem, B(M) = o(K) C D.

As a consequence, it is sufficient to have (ii) together with the measurability of w — i, (K)

for all closed sets K C M to conclude that (p,)weq is a random probability measure.

Note that by Remark 3.20 in [21], & is a random measure if and only if w — p,, is
measurable with respect to the Borel o—algebra of the narrow topology on Pr(M). Denote
Prq(M) to be the collection of all random probability measures.

Denote Prp(M x §2) to be the space of probability measures on (M x Q, B(M x 2)) with
marginal P on ). There is an isomorphism between Prq(M) and Prp(M x Q) in the sense
of disintegration, i.e., for any pu € Prp(M x Q) there exists a random probability measure

w — fi, such that

/Mxﬂ Az, w)dp(w,w) :Léh(x,w)duw(x)dp(w)

for every bounded measurable h : M x 2 — R. Moreover, this disintegration is P—a.e.

unique .
Definition 2.14. A function h : M x 2 — R is called a random continuous function if
(i) w— h(z,w) is measurable for fivred v € M ;

(ii) © — h(z,w) is continuous for fized w € Q and sup, ¢, |h(z,w)| € L' (Q, B(Q), P).
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We denote Cq(M) to be the collection of all random continuous functions on M. The
narrow topology on Prq(M) is generated by the map p +— p(h) for h € Cq(M).

Since (£2,B(Q2)) is a compact metric space, its Borel o—algebra is countably generated.
Combining with the fact that M is a compact manifold, we know Prq(M) is a compact
topological space under the narrow topology by Theorem 4.4 in [21]. Moreover, by Theorem
4.16 in [21], the narrow topology on Prq(M) can be metrized by the following random

Prohorov metric

drp(11, 1) = ) Q%Sup {/G 1o(9) — vu(g)dP(w) : g € BL(M),0<g<1,g]. < 1} ,

meN
for any p,v € Pro(M), where {G,, : m € N} is a countable algebra generating B(£2).
Definition 2.15. A set valued map C : Q — 2M is said to be a random closed set if
(1) for each w € 2, C(w) is closed;
(i1) for each x € M, the map w — d(x,C(w)) is measurable.

A set valued map w — U(w) is said to be a random open set if its complement w — U¢(w)

s a random closed set.
The following proposition comes from corollary 2.10 in [21].

Proposition 2.16. Ifw — C(w) is a random closed set, then its interior intC' is an random

open set.

Proposition 2.17 (The Selection Theorem). A set valued map C : Q — 2M is a random
closed set if and only if there exists a sequence {c,}nen of measurable maps ¢, : Q@ — M,

such that C'(w) = closure{c,(w) : n € N} for all w € Q.
The following is part of the Portmanteau theorem for random probability measures.

Proposition 2.18 (The Portmanteau Theorem). If u,, € Pro(M), then the following state-

ments are equivalent:
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(i) pn, — p in the narrow topology ;
(i) limsup,,_, fin(C) < p(C) for all random closed sets C, where p(C') = [, pt(C(w))dP(w);

(w4i) liminf,, o pn(U) > p(U) for all random open sets U, where u(U) = [, o, (U(w))dP(w).

2.4 TOPOLOGICAL FIBER ENTROPY

In this section, we introduce the topological fiber entropy for random dynamical systems.
Most of the notations are borrowed from [37].
For each n € N, and w € (2, we define a family of metrics d,,,, on M by

dwn(z,y) = max {d(f5(x), fE(y))}, for any z,y € M.

0<k<n

Definition 2.19. A set E, C M s called (w,e,n)—seperated if for any v,y € E,, © # y
implies dy,(z,y) > €.

Due to the compactness of M, there exists a smallest natural number N (w, €, n) such that
card(E,) < N(w,e,n) < oo for every (w,e, n)—seperated set E,. Moreover, there always
exits a maximal (w, €, n)—seperated set E, in the sense that for every x € M, with € E,,
the set F, U {x} is not (w, €, n)—seperated anymore. If E, is maximal (w, €, n)—seperated,
then M, = Uep, B:(w,€,n), where B,(w,€,n) is the closed ball in M, centered at x of

radius e with respect to the metric d,, .
Definition 2.20. The topological fiber entropy on the fiber M,, = M x {w} is defined by

1
lim limsup — log N (w, €, n).

e—0 n—soo N

hiop(@la1,,)

The fiber topological entropy of random dynamical system F' or the relative topological entropy

of ¢ is defined by

1
hiop(F) = hg]))(gb) = lim limsup — /log N(w,e,n)dP(w),
n

=0T nsoo
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recall that P is an ergodic Borel probability measure we fixed in the beginning of this chapter.

Since the noise system (€2, 6, P) is an ergodic dynamical system, we obtain the following

proposition by Proposition 1.2.6 in [37].

Proposition 2.21. The following equalities hold:

1
(@) = hiop(@|ar,) = lim liminf —log N(w, €, n)

e—0t m—oo N

hiop(F) = b

top

for P-a.s. w € ).

CHAPTER 3. MAIN RESULTS

In this chapter, we state our main results for random Anosov and topological mixing on

fibers systems and random partially hyperbolic on fibers systems.

3.1 FoOR RANDOM ANOSOV AND TOPOLOGICAL MIXING ON FIBERS SYS-

TEMS

In this section, we formulate the main results for random Anosov and topological mixing on
fibers systems. Subsection 3.1.1 addresses the results related to the random specification.

Subsection 3.1.2 addresses the result for exponential decay of random correlations.

3.1.1 Random Specification Property.
We start with the formal definition of random specification. Let L*(§2, M) be the space of

Borel measurable maps from €2 to M endowed with the following sup-metric

dLOO(Q,M)(QhQZ) = sug dr(91(w), g2(w)), for g1, g0 € L>(2, M).
we
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The system ¢ induces a map ¢ from L>®(Q, M) to itself by ¢(g)(w) := fo-1,9(0~'w) for all

we Qand g € L>®(2, M). One can see that

p(graph(g)) = graph(é(g)).

Moreover, ¢ is invertible since f,, is diffeomorphism on M for all w € Q, and ¢~'(g)(w) =

(f) (g (bw)).

Definition 3.1. For g € L>(Q, M), g is called a random periodic point of ¢ if there exists

an integer n such that

¢"(graph(g)) = graph(g) or ¢"g = g.

Remark 3.2. Under our assumptions, ¢ defines a homeomorphism on L>(Q, M) with re-

spect to the sup-metric. In fact, for any g1, gs € L>°(Q, M), we have

dreo(on(9(91), 9(g2)) = sup dar(fo-1,92(0'w), fo-1,92(0 ' w))

we

< sup || fuller sup dar (91 (07 w), g2(67'w)) < sup || fullordrec o, (91, 92)-
weN weN we)

Therefore, (5 is continuous. Similarly, we have

a0 (1), 0 (g2)) < sup 1/ lerd e, (91, g2)-
we

Hence, ¢ is a homeomorphism on L2, M).

Definition 3.3. A w—specification S, = (w, T, P,)) consists of a finite collection of intervals

T=A{h,...,In}, I; =lai, b)) CZ, and a map P, : U™, I; — M such that for t,,ts € I € T,
2T (Py(t), 0" w) = (P,(ta), 0"w).

A random specification S = (1, P) consists of a finite collection of intervals T = {Iy, ..., I, },
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I, =la;,b;] CZ, and a map P : U™ I; — L>®(Q, M) such that for t;,ts € I € T,

¢~ (graph(P(t1))) = graph(P(t,)) or ¢ (P(t,)) = P(ty).

A random specification S is called n—spaced if a;41 > b;+mn for alli € {1,....,m — 1} and the

minimal such n is called the spacing of this random specification. Denote L(S) := b, — a;.

Remark 3.4. On one hand, if S = (1, P) is a random specification, then for any fired w,
S, = (w, 7, P,) defined by P,(t) := P(t)(0'w) fort € I € T is a w—specification.
On the other hand, if

(i) S, = (w, T, P,) is a w—specification,
(ii) Py(t) : Q — M is Borel measurable for each fivzedt € I € T,

and we define P(t) : Q@ — M by P(t)(w) = Pp-t,(t) for each fized t € I € 7, Then

P(t) € L>(Q, M), and moreover, S = (1, P) defines a random specification.

Definition 3.5. The system ¢ is said to have the random specification property if for any
€ > 0, there exists N = N(e) > 0 such that any N-spaced random specification S = (1, P) is

e—shadowed by an element g in L>(Q, M), i.e.,

A (P(t), ¢'(9)) < €, Vt € UM T,

Moreover, for any q > N + b,, — a1, there is a random periodic point g with period q

e—shadowing the random specification S.

Remark 3.6. Let’s recall the definition of Bowen’s specification property. LetT : X — X be
a homeomorphism of a metric space (X,dx). A specification S = (1, P) consists of a finite
collection T = {11, ..., I, } of finite intervals I; = [a;,b;]) C Z, and a map P : U™ I; — X such
that for t1,ty € I € T, we have T2 " (P(ty)) = P(t3). (X, T) is said to have the specification

property if for any € > 0 there exists an N = N, € N such that any N —spaced specification
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S is e—shadowed by a point x € X, i.e., dx(f'(z),P(t)) < € for allt € I € 7, and for
q > N + b, — ay, then the shadowing point x could be a periodic point.

Then in the Definition 3.5, the statement ¢ is said to have the random specification
property is equivalent to the statement that the deterministic system (L>(S2, M), d (o ), qg)

has Bowen’s specification property.

Theorem 3.7. Assume that ¢ satisfies Anosov on fibers and topological mizing on fibers,
then ¢ has the random specification property. On the other hand, the random specification

property implies topological mixing on fibers property.

We define ¢ : Pro(M) — Pro(M) by (¢"pw = (fo-10)tio-10, Le., (¢"p)u(B) =
fo-1((fo-10) "1 (B)) for any B € B(M).

Theorem 3.8. Assume that ¢ satisfies Anosov on fibers and topological mixing on fibers, then
¢* 2 Pro(M) — Prqo(M) defines a homeomorphism with respect to the narrow topology on

Pro(M). Moreover, the topological dynamical system (Pro(M), ¢*) has Bowen’s specification

property.

Theorem 3.9. If ¢ has the random specification property, then for any €, there exists two

integers k, N such that for all w, the topological fiber entropy on M,, satisfies hiop(P|rr,) >

log k

=5, where k is the mazximal cardinality of the 3e—seperated set in M with respect to metric

dy and N = N(e€) is the number in random specification corresponding to €.

3.1.2 Exponential Decay of Random Correlation.
In this subsection, we formulate the result for exponential decay of random correlations.
Let C(M) be the collection of all continuous functions ¢ : M — R. For a € (0,1), and

peC(M),let

Pllcoary == sup [p(z)] and |plo == sup ==
llellcoan xeM’ ()] || cyerary AT, y)®
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We denote by C%¥*(M) := {p € C(M) : |p|la < oo} the space of a—Hdlder continuous

functions on M. For ¢ € C%*(M), we let

lellcoaan = llellconany + [@la-

For any pu € Pro(M), recall ¢*p is defined by (¢* )y, = (fo-10)sflo-10, 1-€., (0" 1) (B) =
to-10((fo-1,)"H(B)) for any B € B(M). A random probability measure y is ¢—invariant if
(¢* 1)y = o, for P—ace. w € Q.

Theorem 3.10. Assume ¢ satisfies Anosov on fibers and topological mixing on fibers. Then

(i) the random probability measure w — pu, given by pi, = limy, o (f3ln,)sm is p—invariant,

where m s the normalized Riemannian volume measure;

(ii) there exists a constant vy only depending on the system ¢. For Hélder exponents
w,v € (0,1) with

O<pu+v <y

and ¢ € CO*(M), p € C(M), the past and future random correlation of ¢ and
1 exponential decay with respect to the system ¢ and the random probability measure

(lw)wea defined in (i), i.e. for anyn € N, w € Q,

’/ Ylfenom) (@) dptg—rs = /¢ dﬁ‘w/ p(x)dpig-n,,
‘/Mlb(fﬁx)sﬁ(x)duw—Aw(x)duenwégp(l-)duw

where K >0 and A € (0,1) only depend on p and v.

< K||9Y|lcowan llollcoranA™;

< K||Y|lconan llellcoran AT,

Note that topological mixing on fibers property implies random topological transitivity
By Lemma A.1 in [34] and then by Theorem 4.3 in [32], the measure pu, we constructed

above is the unique SRB measure (we state this lemma and this theorem in the Appendix).
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3.2 RANDOM GIBBS ©—STATE FOR RANDOM PARTIALLY HYPERBOLIC

ON FIBERS SYSTEMS

Let ¢ be a C? random partially hyperbolic on fibers system. With the help of the unstable

manifolds theorem in [37], the global strong unstable manifold of ¢ at (z,w) is defined by

1
W (r,w) = {y € M < limsup ~ log du (£, ") < ~ o}, (31)

n—-+00

which is the image of E““(z,w) under an injective immersion of class C'! and is tangent to
E"(z,w) at (z,w). Notice that {W"(z,w)} forms a partition of M x €, but in general,

such a partition is non-measurable.

Definition 3.11. Given a ¢p—invariant random probability measure p on M x ). A measur-
able partition P of M x  is called u—subordinate if for p—a.e. (r,w) € M x Q, P(x,w) C
W (z,w) and P(x,w) contains an open neighborhood of x contained in W*(x,w), this
neighborhood being taken in the submanifold topology of W"(x,w). The invariant random
probability measure p is called a random Gibbs u—state if it has absolutely continuous mea-
sures on strong unstable manifolds, i.e., for every measurable u—subordinate partition P,

one has

How) < ANow)

for p—a.e. (z,w) € M x Q, where ,uz; ) denotes the conditional probability measure of p
on P(z,w) and X{, ) denotes the Riemannian volume measure on W"*(z,w) induced by its

inherited Riemannian structure as a submanifold of M.

Theorem 3.12. If ¢ is C? partially hyperbolic on fibers, then there exists at least one in-

variant random Gibbs u—state of .
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CHAPTER 4. PRELIMINARY LEMMAS AND PROPO-

SITIONS

In this chapter, we state several lemmas and propositions for random Anosov on fibers

systems and random partially hyperbolic systems in Section 4.1 and Section 4.2 respectively.

4.1 FoRr RANDOM ANOSOV ON FIBERS SYSTEMS

In this section, we introduce several technical lemmas and propositions that will be used in
the proof of the main result for random Anosov on fibers systems. In Subsections 4.1.1, we
state that the stable subbundle E*(z,w) and the unstable subbundle E*(x,w) are not only
continuous on x, but also Holder continuous on x. In Subsection 4.1.2, we state the stable
and unstable manifolds theorem. The random shadowing lemma in Subsection 4.1.3 and
the density of random periodic points lemma in Subsection 4.1.4 are critical in the proof of
random specification. We state and prove two distortion lemmas in Subsection 4.1.5. We
formulate and prove the absolute continuity and Hélder continuity of the stable and unstable
foliations on each fiber in Subsection 4.1.6 and 4.1.7 respectively. We discuss properties of
holonomy maps between local stable leaves in Subsection 4.1.8. In Subsection 4.1.9, we prove
a version of Fubini’s theorem on each subset of M that is foliated by local stable manifolds

and has local product structure.

4.1.1 Fiberwisely Holder continuity of stable and unstable subbundles.
In this subsection, we will formulate the Holder continuity of E7(z,w) for fixed w and 7 = s, u
which is an adapted version of Theorem 4.1 in [45].

By applying the normal neighborhood theorem (Theorem 3.7 in [16]), for each point
p € M, there exists a neighborhood N, C M and constant ¢ such that the exponential map
Exp, : B5s(0) C TpM — M is a C*—diffeomorphism and N,, C Exp,(Bs(0)). Since the norm

in T,,M is given by the Riemannian metric, we choose an orthonormal basis ey, ..., e, of T, M,
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then define ¢ : N, = R" by ¢(Exp,(>_"_, xie;)) = (x1,...,2,) to be the normal coordinate
charts. By compactness of M, we can choose a set of finite points {p;}'_, together with
{N,,,¥;} to form coordinate charts of M. Throughout this paper, we will fix these normal
coordinate charts.

By the compactness of M, there exists a py > 0 such that every subset of M having
diameter less than p, is contained in one of the normal coordinate charts. From now on, we
fix this po.

For subspaces A, B C R", define the aperture between two subspaces by

I'(A, B) :=max{ max inf |[v —w|, max inf|v—wl}.
vEA,|jv|=1weB wEB,|lw|=1veEA

Then I'(A, B) € [0, 1].
For any z,y € M, if d(x,y) < po, then we have an isometry from 7, M to T, M given by
the parallel transport on the unique geodesic connecting = and y, named P(z,y). Then for

any z,y € M, E(z) C T,M, E(y) C T,M subspaces, we can define

AE(), Ey) = D(E(x), Py, 2)E(y)), if d(z,y) < po 1)

1, otherwise.

Lemma 4.1. There are constants Cy and vy which both are independent of (x,w) € M x Q
such that for each w € Q, the stable and unstable distribution E*(z,w), E*(x,w) are Hélder

continuous on x with constant Cy and Hélder exponent vy, i.e.,

d(E™ (z,w), F"(y,w)) < Cid(z,y)"*, 7=s,u.
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4.1.2 Stable and Unstable Invariant Manifolds.

We define the local stable and unstable manifolds as the following:

We(z,w) ={y € M,| d(¢"(y,w), ¢"(z,w)) < € for all n > 0},

Wi(z,w) ={y € M,| d(¢"(y,w), 9" (z,w)) < € for all n < 0}.

The following lemma can be found in [34], and it is a special version of Theorem 3.1 in [32].
Denote by P(E™(z,w)) the projection from T, M, to E™(z,w) with respect to T, M, =
E(z,w) ® E*(z,w) for 7 = s,u. Since F*(zr,w), E"(r,w) are uniformly continuous on z

and w, there exists a number P > 1 such that
sup{||P(E°(z, w)) ||, [P(E"(z,w))| : (v,w) € M x Q} <P. (4.2)
Lemma 4.2 (Stable and unstable invariant manifolds). For any A € (0,\g), there exists
€0 > 0 such that for any € € (0, €], the followings hold:
(i) W7 (z,w) are C? embedded discs for all (v,w) € M x Q with T,W™(z,w) = E7(x,w)

for T = u,s. Moreover, there exist a constant L > 1 and C? maps

(ew) - B (2, w)(Pe) = E*(x,w), hi,,, : E*(x,w)(Pe) = E"(z,w)

(z,w

such that W7 (z,w) C Exp,(graph(h]

(z.w)

)) and |[Dh{, | < %, Lip(Dh{, ) < L for

T =1u,Ss.

(ii) du(f5, fiy) < e dy(w,y) fory € We(z,w) and n > 0, and dy(f7", f5"y) <

e "y (z,y) fory € W(x,w) and n > 0.
(iii) W2 (z,w), W(z,w) vary continuously on (z,w) in C* topology.

In this paper, we restrict ¢y such that ey < pyg, i.e., W7 (z,w) is covered by some normal

coordinate charts for any (z,w) € M x Q and 7 = s, u.
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Lemma 4.3 (Local product structure). For any € € (0,¢€), there is a 6 € (0,€) such that
for any x,y € M with dp(z,y) < 6, W2 (z,w) NW(y,w) consists of a single point, which is

denoted by [x,yl,. Furthermore

[ ]w: {(z,y,w) € M x M X Q| dy(z,y) <6} > M

15 continuous.

Corollary 4.4 (Expansivity). The system ¢ is expansive in the sense that if d(¢"(x,w), ¢"(y,w)) <
€ for all n € Z, then x =y for any € € (0,¢), where €y is the size of stable and unstable

manifolds.

4.1.3 Random Shadowing Lemma.
For any a > 0, a sequence of points {(x;, 0'w) }iez C M x Q is called an (w, a)—pseudo orbit
if for any ¢ € Z,

d(¢(z;, 0'w), (ri41,0W)) < a.

The next lemma follows the proof of Proposition 3.7 in [32].

Lemma 4.5 (Random shadowing lemma). For any ¢ > 0, there ezists o = a(e) > 0 such

that any (w, a)—pseudo orbit {(z;,0'w)}icz can be (w, €)—shadowed by a point x € M, i.e.
d(¢'(z,w), (5, 0'w)) < e.

Furthermore, when € < %eo where € is the size of local stable and unstable manifolds, the

shadowing point is unique.

Corollary 4.6. For any € € (0,¢y/2), there exists a = a(e) > 0 such that for any sequence

of measurable functions {g;}5° . with g; € L>®(Q, M) satisfying

1=—00

dres ) (0(9:), 9it1) < a.
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There exists a unique g € L>®(Q, M) such that dpeu)(¢'(g9),g:) < € for allt € Z. In
n—1

particular, if {g;}1—5 is an a—pseudo periodic orbit, then the shadowing point g is periodic

with period n.

Proof. For any w € (), define

(y;,0'w) == (g;(0'w), O'w) for i € Z.

Since dpsoo,n)(0(9:), giv1) < @, (y;,0'w) is an (w, )—pseudo orbit, then by the random
shadowing lemma, there exists a unique g(w) € M (w, ¢)—shadowing this sequence. We just
need to prove w — g(w) is measurable.

Define a multivalued function G; : Q — 2™ for any i € N as the following

Gilw) = [ mue {(z,0'w)| du(w, g;(0°w)) < €}.

—i<j<i

For each w € Q, G;(w) is a nonempty closed set since the existence of shadowing point and

continuity of ¢(z,w) on x. Note that for each fixed j between —i and i, the set
w i ¢ {(2,07w)| dy(z, g;(0w)) < €}

is a random closed set since g; € L>(£2, M). Hence w — G;(w) is a random closed set as a
finite intersection of random closed set. Then by the selection theorem (Proposition 2.17),

it has a Borel selection g; : 2 — M such that

As i — oo, by Lemma 4.5, §; converges to g pointwisely, thus ¢ is measurable.
If {gi}?z_ol is an a—pseudo periodic orbit, then both g and gzNS”g are e—shadowing this

sequence. By expansiveness, we have ¢"¢g = g.
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4.1.4 Density of Random Periodic Points. The following lemma is one of the main

results in [34]. It addresses the density of random periodic points.

Lemma 4.7. Let ¢ be an Anosov and topological mixing on fibers system, then for any
€ > 0, there exists N € N such that for any g € L>®(Q2, M) andn > N, there ezists a random

periodic point g with period n such that

diman(9.) < c.

4.1.5 Two Distortion Lemmas.
In this subsection, we prove two distortion lemmas. Lemma 4.8 is used for proving the
fiberwisely absolute continuity of stable and unstable foliations. Lemma 4.9 is used for the

construction of the fiber convex cone of observable functions in Section 6.1.

Lemma 4.8. For any C* diffeomorphism f : M — M, let E(x) C T,M, E(y) C T,M be
subspaces with dim(E(x)) = dim(E(y)), then

|| det(Da fle@)| — [ det(Dy flew)Il < Calllflle2)d(z, y) + Co(l| fllc2)d(E(z), E(y)).

where Cs(||fllc2) and CL(||fllc2) are a polynomials of || f|lc2 and dim(E(z)). As a conse-
quence, for any x,y € M, E(z,w) € T,M,,, E(y,w) € T,M,, with dim E(z,w) = E(y,w),

we have

1 det(D ol 00| — | det(D ful eyl < Cad(ar, ) + Cad(E(x,w), By, w)).

where Cy = max{Ca(sup, || fullc2), Chlsup, || fullx)}-

Proof. 1t is sufficient to consider the case max{d(z,y),d(f(z), f(y))} < po. Let P(x) :
T,M — E(z) be the projection map with respect to T,M = E(z) ® E(z)* and P(y) :
T,M — E(y) be the projection map with respect to T,M = E(y) ® E(y)*, consider || D, f o

P(x) = P(f(y), f(x)) o Dyf o P(y) o P(x,y)].
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Let (N,1) be the local coordinate chart of x and y, (N’, 1) be the local coordinate
chart of f(x) and f(y), and denote ¥ (z) = p, ¥1(y) = ¢, and F = 1y o f o ;. Then
D,f and D,f have local representation D,F and D,F respectively. Denote A(x,y) by
Dyipy o P(z,y) o (Dy1p1)" the local representation of P(z,y) and A(f(y), f(x)) by Dyz)ts 0
P(f(y), f(z)) o (Dgeyyth2)~* the local representation of P(f(y), f(x)). P(x) and P(y) have
local representation B(x) = D,y o P(x) o (Dy1)~! and B(y) = Dy o P(y) o (D)™

respectively. Then we have

IDpF o B(z) — A(f(y), f()) o DgF o B(y) o A(z, y)||
< [|DpF 0 B(x) = DgF o B(z)|| + || DgF o B(x) — DyF o B(y)A(z, y)|
+ | DgF o B(y)A(z,y) — A(f(y), f(2))DgF o B(y) Az, y)]|
< C(ID* fleollp = qll + IDfleol| B(x) = B(y) Az, y)|| + [Dfleol| T = A(f(y). f(2))]])

< C'(ID*fleo + [Df[go)d(@,y) + C'| D f|eod(E(x), E(y)),

where C' and C’ only depend on the local coordinate charts. As a consequence, we have

[1Dxf o P(x) = P(f(y), f(x)) o Dyf o P(y) o P(z,y]

< C"(|D*fleo + | Df[go)d(z, y) + C"|D fleod(E(x), E(y)).

Notice that P(f(y), f(x)) and P(x,y) are isometries, so we have

D2 f el = 1Dy flewlll < C"(1D* fleo + [Df[Eo)d(w,y) + C"|Dfleod(E(x), E(y)), (4.3)

and by the property of determinant,

| det(Dy flm)| =1 det(Dy flp)ll < Cal| D floo+|Da fl2o)d(w, y)+Co(|De fleo)d(E(z), E(y))

where Cy(|D2 f|co + | Dy f|20) is a polynomial about | D2 f|co + | D, f|Ze and dim(E(z)), and
CY(| Dy f|co) is polynomial about | D, f|co and dim(E(x)). O
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Lemma 4.9. J*(z,w) = |det(D,f.,)

Es(m})| has a uniform Lipschitz variation on the local
stable manifolds, i.e., there is a constant Ky > 0 independent of w such that for any x,y €
Ws(z,w),

(2, w) = J*(y, w)| < Kyd(z, y),

and

|log J*(z,w) —log J*(y,w)| < Kyd(x,y).

Proof of Lemma 4.9. Since M x € is a compact space and f : Q — Diff*(M) is continuous,

|D. f.,| and |D2f,| are uniformly bounded. Let K > 1 be a constant such that

T,w)EM X (z,w)eM xQ

max{ sup  |D.f,|, sup |D§fw|,Lipthx,w)} < K.
(

For sake of simplicity, we will identify exp,(-) with z + - in the rest of the proof. Recall that

P is defined in (4.2). Notice that if y,z € W2(z,w), and d(y, z) < 555z, then
s _ .
(B2, )~ 9)] < Py, 2) < iy
[PE" (£, 0)) (=) = Fo))] < PIL=) = fuly)] < PRz =yl < o

- 2K’

Therefore, (z,w) € W?(y,w) and (f,(2),0w) € W*(f,(y),0w). So it is sufficient to prove that

there exists a constant K; > 0 independent of x and w such that for any y € W

L ([L’, w)u
2P K2

[ (z,w) = J(y,w)| < Kid(z,y). (4.4)

With the help of the normal coordinate chart, and notice that d(z,y) < € < py and
d(fox, foy) < € < pp, we may view that x, y together with W%(x,w) lie in a same
Euclidean space and f,x, f,y together with W?(f,x, 0w) lie in a same Euclidean space. By
the stable manifolds theorem, there exists §, € £*(z,w)(552) and &,y € E"(fu(2),0w)(e)

such that
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y=x+ gy + hfx,w) (Ey); (45)

Jo(y) = fo(@) + &) + Alrn@)00) Eruw) (4.6)

and E*(y,w) = graph((Dh{, ,)e,), E°(fu(y),0w) = graph((Dh{;, ) g.))¢;, ). From (4.5)
and (4.6), we have

1 p 1
(1 - §) o] < &) + 11 @) .00 Erow) | = Lfuly) = fu(@)] < Kly—2] < K (1 i 5> )

50 |1, | < 2K, ).

Now, we define the following linear maps Ly ., L(yw) : E°(z,w) = E*(f.(x), 0w) by

L(x,w) = Da:fw |Es(m,w);

Liyw) = P(E*(fum, 0w)) Dy fu| B (y.0) (L + (Dhiy ))e, )-

We have || L., [| Lyw || < 3PK. Hence, we have

sup  [|P(E*(fur, 0w)) Dy fuv — P(E*(fur, 0w)) Dy fo (I + (D, )¢, )0

veEEY (z,w),||v]|=1

< PIDxfo = Dyfoll + 1Dy fu(Dhty o))e, 1)
< PKly —a| + PK?|g,|
= PKd(z,y) + PK?|¢,|

< (PK + ;PK2)d(:L’,y).

SO || Lzw) — Ly |l < C(PK + 3PK?)d(z,y), where the constant C' only depends on the

normal coordinate chart. Then by properties of determinant,
|det(Lig ) — det(Liyw))| < Rad(z,y), (4.7)

where R; is a polynomial of K, P and the dimension of dimE*(z,w).
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Notice that for &, € Es(x,w)(#)

I(Dhs, (2).60) €|
— 1= I(Dhgy, (200 i)
K|§fu(y)| < 2K2’€y’ < 2K2|§y’

<
S T Klep] = T-2K70g,] = 1- 2255

I1P(E*(for, 0w))

B (fu(y),0w) — L]

< 4K, | < 6K%d(x,y).

So we have

| det(P(E*(fu (), 0w)) s (row) ) — 1] < Rad(z,y), (4.8)

where Ry is a polynomial of K and dimFE*(z,w). Also
7+ (D), — 11l < K| < S Kd(r,y)
implies that there exists a constant R3 such that
|det(I + (Dh{, ,)e,) — 1| < Rzd(z,y). (4.9)
Combining (4.7), (4.8), and (4.9), we have

|‘]S(x7w> - J8<y7w)| < K()d(l',y)7

where Ky only depends on K, P and dim E°. Notice that inf(, .)emxo |J5(x,w)| > 0, as a

consequence, there exists a K7 > K such that

|log J*(z,w) —log J*(y,w)| < Kyd(x,y).
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4.1.6 Fiberwisely Absolute Continuity of the Stable and Unstable Foliations.
The absolute continuity of {W7 (x,w)} for fixed w and 7 = s, u is stated in [45] for general
random dynamical systems without proof. In this subsection, we give a proof in our settings.
Our proof follows the idea listed in [66].

For any w € Q, a smooth submanifold U(w) C M, is said to be transversal to the local
stable manifolds if for any = € U(w), T,U (w) & E*(z,w) = T, M. Given smooth submanifolds
U(w) and V(w) transversal to the local stable manifolds, we say that v, : U(w) — V(w) is

a fiber holonomy map if ¢, is injective, continuous, and
Yo(z) € Wi(z,w) NV (w) for every x € U(w).
We say that {W?(z,w)} is fiberwisely absolutely continuous if every fiber holonomy map 1,

is absolutely continuous.

Proposition 4.10. Suppose ¢ is C* Anosov on fibers, then {W2(x,w)} is fiberwisely abso-

lutely continuous. A similar result holds for {W*(z,w)}.

Proof of Proposition 4.10. We first prove that {W}(z,w)} is fiberwisely absolutely continu-
ous. For any fixed w € Q, let 9, : U(w) — V(w) be the fiber holonomy map between two
random smooth pre-compact submanifolds, where U(w) and V (w) are transverse to the local
stable manifolds. Let A C U(w) be any compact set, to prove the absolute continuity of v,

it is sufficient to prove that there exists a constant C'(w) independent of A such that

My () (Y (A)) < Cw)my,)(A),

where my(,) and my,) are the intrinsic Riemann measure on manifolds V(w) and U(w)

respectively. Let O be a small neighborhood of A in U(w) such that

mU(w)(O) S 2mU(w) (A) (410)
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For any x € U(w) and y € V(w), since U(w),V(w) are transverse to the local stable
manifolds, we have T,U(w) ® E*(z,w) = T, M,, and T,V (w) ® E*(y,w) = T, M,,. Recall that

['(A, B) is the aperture between two subspaces A and B. Let

Y(w) = min{inf{[(T,.U (w), E*(z,w))| z € U(w)}, inf{I(T,V (w), E*(z,w))| 2 € V(w)}} > 0.

Then by the expansion on the unstable distribution and contraction on the stable distri-
bution, there exists constants Cs(w) and Cg(w) that depend continuous only on 7(w) such

that

| Dy fm0|| > Cs(w)e||v]| for v € T,U(w), T,V (w), (4.11)
d(D, f T U(w), Dy fPE*(z,w)) < C(w)e Md(T,U(w), B*(z,w)) for z € U(w),  (4.12)

d(D,f T,V (w), Do frE*(1,w)) < Cs(w)e d(T,V (w), E*(z,w)) for x € V(w).  (4.13)

Notice that for any z € U(w), ¥, (z) = V(w) N W2 (z,w), so we have

d(fox, fivu(@)) < e Md(x,vu(x)). (4.14)

By (4.11), let dg be a sufficiently small number, then there exists a number N;(w) such that

for any n > Nj(w) and § € (0, dp), we have

JonBru (fox,8) C O for any x € A,

where Bynyw)(f5,6) is the §—neighborhood of fJx on flU(w).

By (4.12), (4.13) and (4.14), we know that f"U(w) and [V (w) will be C'—close to each
other and C'—close to the unstable foliation uniformly for points on f'U(w) and fV (w) as
n goes to infinity. Hence, there exists a constant C7 > 1 and a number Ny(w) such that for

n > No(w) and 6 € (0,6y), for any = € f'U(w), we have
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Cfl < mfﬁU(WZ((BfﬁU(W)(xa 6)))
= Mgy (w) (Vorw(Brruw) (7,0)))

<y (4.15)

and

Yoo Bz (@,0)) C Bav () (Yonu(2), 20), (4.16)

where Ygn,, : f7U(w) — 2V (w) is the holonomy map induced by the local stable manifolds.
Now we let N = N(w) = max{N;(w), No(w)}, and let {B;}¥_, be a finite covering of
N A by §—balls centered at points in fVA. By the Besicovitch covering lemma (see, e.g.,

[23]), we can assume that

there is no point in f) A that lies in more than number C’ = C’(dim(E")) of the B;’s.

(4.17)
We claim that there exists a constant Cg(w) > 1 only depending on U(w) and V' (w) such

that

Cs(w) ' mv () (Vo (fynyBi)) < o) (fone, Bi) < Ca(w)my ) (Yo (fyny, Bi))- (4.18)

To prove this claim, we need the following lemmas.

Lemma 4.11. Denote

n |det(Dmfg|TxU w )|
Hw(xa¢w(x)>TxU(w)>T¢u(x)V(w)) = ]det(Dw ( )fn’T ( )V( ))‘
W L) w Ly, (z) V(W

(4.19)

Then there ezists a constant Co(w) that only depends on U(w) and V(w) such that
Co(w) ™" < Hi(w,vu(x), U (W), Ty, ()V (w)) < Co(w).
As a consequence, the limit

H,(z,y(2), T,U (W), Ty, )V (w)) := lim H)(x,Y,(z), T,U(w), Ty, @)V (w))

n—oo
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exists and converges uniformly for all z € U(w).

Proof of lemma 4.11. For (x,w) € M xQ, let E(w) C T, M, be a subspace such that F(w)®
Ef(z,w) =T, M,, put

k(Ew)) :={||L|| : where L : E"(x,w) = E°(z,w) such that F(w) = {v+Lv|v € E*(z,w)}}.

Then the contraction on FE*(z,w) implies that

K(Def3B(W)) < e "(B(w)).

Now for any x € M,y € W#(z,w), E(w) C T,M,,, F(w) C T, M, such that E(w)BE*(r,w) =
T,M,, F(w)® E*(y,w) = T,M,, we use Lemma 4.8 and Lemma 4.1 to obtain

|det(Dq fuo| Bw)) — det(Dy ful pw))]
< |det(Dy fu|Bw)) — det(Dy folpe(aw)| + |det(Dy ful Buww)) — det(Dy ful uyew))]
+ [det(Dy folpu(yw)) — det(Dy fulpw))]
< Cyd(E(w), B"(2,w)) + Cod(F(w), E"(y,w)) + Cod(z,y) + Cod(E" (z,w), E"(y,w))
< Cor(E(w)) 4+ Cor(F(w)) + Cod(z,y) + CoCrd(x, y)™

<2050 (K(E(w)) + k(F(w)) + d(x,y)™).

Note that by the compactness of M and  and the continuity of f, €Diff*(M) on w € ,

there exists a constant Cjg such that

Cro < | det(Dy fu|r))| < Cio (4.20)

for any y and F(w) C T,M,,. So we have

det(Dy ful B(w))]

[det(D, fulrw)] =1 20,01 Cro(K(E(w)) + K(F(w)) + d(z,y)"). (4.21)
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Denote C := 2C,C1Co. By (4.21), we have

Hi(z, (@), TU (W), Ty @)V (W)

n—1

| det(sz)xijw|DxfiTxU(w))|

: ‘ det(DfZ)ww(x)fejw’wa(z)fiquw(z)V(w))’

<
- o

S

<

=

(1 + Cuu(K(DofLToU () + (Do) fL Tpo) V(@) + d(fL (@), frbu(2))™))

S <
Il
- O

<

—

<
I
- o

(1+ C(e™Mr(T,U(w)) + e_Ajm(Tww(x)V(w)) + e d (2, 1, (2)™))

S

< [+ Cue™ M (5(TU () + KTy )V (@) + d(z, vu(2))™)) (4.22)

<.
Il
o

< exp(Cr2(w)), (4.23)
where Cia(w) 1= =0 sup,ep) (B(TU (W) + £(Ty, @)V (w)) + d(z, ¢, (2))")). We denote
exp(Ciz2(w)) by Cy(w). The same estimate holds for H (¢, (), z, Ty, )V (w), T,U(w)). O

Lemma 4.12. For any x,y € fe_NJZBi and p,q € ww(fe_NJZBi), there exists constants Ci7(w)

and Cig(w) such that

N
e C17(w) < |det Dxfw |TIU("")| < eC17(@) (4.24)
| det Dy £ |7, 0|

and

N
e—Cls(w) S |det Dpfw |Tpv(w)| g eClg(w)' (425)
| det Dy f |, v ()|

proof of Lemma 4.12. Denote x; = fix, y; = fiy for i € {0,...,N}. By (4.13) and Lemma

4.1, we have
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d(T,, fEU(w), T, fEU ()
d(Ty, fRU (W), E*(xy, 0%w)) + d(E"(2x, 0°w), E*(yx, 0*w)) + d(E" (yy, 0*w), T,, f*U (w))

< 2C’6(w)e"\k SU.%) | d(T,U(w), E“(z,w)) + Chd(xg, yr)"
zeU(w

< 20g(w)e™ sup d(T.U(w), E"(z,w)) + C1Cs(w) e

zeU(w)

< 013<0J)6_)\k + 014(w)e_’\(N_k)”1,

—A(N—k)1 d(IN, yN)Vl

where Ci3(w) := 2Cs(w) sup, ey ATV (W), E%(z,w)) and Ciy(w) = w)yl ——L— V1.

Now by Lemma 4.8,

|det(D:ka6kw|Trkf5U ) det(Dykakw|T WIEU( w))|
< Cod(zg, yi) + Cod(Ty, fRU (), Ty, fEU (w))
Cy
<
~ Cs(w)
= 015(w)e_>‘(N_k)”1 + Clﬁ(w)e_’\k,

e MV (xn, yn) + Oo(Crz(w)e ™ + Oy (w)e AR

where C5(w) := Gt CyC14(w) and Chg(w) = CoC3(w). Notice that by (4.20), we have

|det Dmfo{)V|TxU(w)| H ‘det kafOkwsz fEU( ))|
| det Dy fY |,v(w)] | det( Dykfekw|Tykka )]

N—
H 1 + 010 015 ) —MN=k)r1 + 016((,0)67)\16))

< eXP(Z Cio(Crs(w)e MN=R 4 Crg(w)e )
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Switch x and y, we get

6—017(0.)) < |det Dme{JV|TCCU(w)’ < 6017(‘*’).
= | det Dy f¥ 00| ~

Notice that by (4.16) and @/Jw(f(;N]YuBi) = ng]\L(@EQNwBi), similar to the above proof, we can

prove that there exists a constant Cg(w) such that

—Cis(w) < | det Dpfo]JV’TpV(w)| < C18(w)

€ ~ -~
| det Dy f¥7,v ()

for p,q € Yo (fon, Bi)-

Now we are ready to prove the claim (4.18). Pick any p; € By, denote q; := Ygn,(p;) €
NV (w), by (4.24) and change of variable, we have

=7 | det Dy, oty |, 0| Mgy (Bi) < mu) (foi,Bi)

< e Y det Dy, fony Iny, sy vl - mpyue) (Bi).
Then by Lemma 4.11 and (4.15), we have

C7'Cy(w) e 7). | det infg_N]\L’Tqiff}’V(w)| MmNy () (Vonw Bi) < mu) (fon Bi)

< C7Co(w)e?™ @) .| det DqZ’fg_N]X,’Tqiff,VV(wﬂ vy () (Vv By ).
We apply (4.25) to the above to get

C;lcg(w)flefCN(w)efCls(w) . mv(w)(wwf;N]\LBi) < mU(w)(f;N]YuBi)

< C7cg<w)6017(w)6018(w) SN () (wwf;N]XJBz)

Denote Cg(w) := C7Cy(w)eC7@H+C1s@) then the claim (4.18) is proved. Finally, by (4.10)
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and (4.17),

k k
my Z my (w) ww fGNw S Z mU w)(ngw z)

S C/CS (w)mU(w) (O)

< 20" Cy(w)my ) (A).

Hence 1, is absolutely continuous.
Let tgn, : U (w) — f7V(w) be the holonomy map induced by the local stable manifolds.

Notice that 1, = f,u", 0 tgn, o f, S0

Jac(,)(x) = H (., thu(x), ToU (), TV (@) - Jac(ions).

Notice that d(fz, Ygn,(f"x)) — 0 exponentially as n — oo uniformly for all 2 € U(w) and
A(Tpne foU (W), Ty (gra) fo V(W) — 0 exponentially as n — oo uniformly for all » € U(w),

hence Jac(gn,) — 1 as n — oo. Therefore,

Jac(po)(x) = Ho(w, o (2), TU (W), Ty @) V(W)

The proof of fiberwisely absolute continuity of local stable manifolds is done. Similarly,
the fiberwisely absolute continuity of local unstable manifolds can be proved by reversing

time. O

4.1.7 Fiberwisely Holder Continuity of the Stable and Unstable Foliations.

In this subsection, we prove the Holder continuity of the holonomy map between two local
stable leaves and the holonomy map between two local unstable leaves. This result is known
in deterministic hyperbolic systems (see, e.g., [51]), but we didn’t find any reference to this

result in RDS. We give a proof in our settings.

48



For subspaces A, B C RY, set

O(A, B) =min{||lv —wl|| : v € A, ||v]| = L;w € B, ||w|| = 1}.

For # € [0,/2], we say that a subspace A C RY is §—transverse to a subspace B C RY if
O(A, B) > 6. Denote 0y := inf, u)emxo O£ (2, w), E*(z,w)) > 0.

Proposition 4.13. Suppose ¢ is C? Anosov on fibers, let o € (0,1) satisfy

Sup ||Dpfw ES pw ||t(pw) < 17 Sup ||Dpf;1|Eu(p7w)||8(_p?w) < ]'
(pw)EM X (p,w)EM X

where

tpw) = inf{% g€ M, d(p,q) < e} >0,
-1 -1
S(wa) = lnf{d(fw C(;Z])?’ 5; (q)) : q € M7 d(p7 q) < 60} > 07

and €y is the size of local stable and unstable manifolds. Then there exists a constant g > 0

and H = H(do, 0) such that for any (q,w) € M x Q and € < &,

SUP,e g (pw)(e) |1, — hijgun (@
sup eEu(p, | ( ) (g, )( )| L g €M, d(p,q) <dp < H < 00, (4.26)
d(p, q)
SUP e v (pw) (e) | — b w)\ L
sup emu(pw)e) P (%) (4, )( ) c g€ M, dp,q) < p < H < oo, (4.27)
d(p, q)
where hfy ), by @ B (0,w)(€) = E*(p,w) and Bapy(graph(h,,)), Epy(graph(h,))

represent the local unstable manifolds passing through p, q respectively, and hfpm,h?q’w) :

E*(p,w)(e) = E"(p,w) and Exzp,(graph(h{,,,)), Exp,(graph(h; ))) represent the local

(gw)
stable manifolds passing through p, q respectively. Furthermore, the local product struc-
ture is Holder continuous, i.e., there exists a constant H' = H'(dy, 0,00) such that for

any (v,w) € M x Q, y € W§ (v,w), any z € M such that W2(z,w) N W (x,w) # 0,
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Ws(z,w) N W (y,w) # 0, we have

d(We(z,0) N W (z,w), Wi(z,w) N Wiy, w)) < H'd(z,y)°.

For any (z,w) € M x Q, y € Wi (2z,w), any z € M such that W!(z,w) N Wg(z,w) # 0,
W¥(z,w) N W (y,w) # 0, we have

AW (z,0) NWE (z,w), W (z,0) N Wy, w)) < H'd(z, y)°.

Proof. We first prove (4.26). Recall that for each point p € M, there exist a neighborhood
N, C M and constant € such that the exponential map Ezp, : B{(0) C TpM — M is a
C>°—diffeomorphism and N, C Exp,(B.(0)). Now for all p € M and w € €2, consider any
function ggp. @ E*(p,w)(€) = E*(p,w) with g, (0) = 0, where E*(p,w)(e) is the e—disk in

E"(p,w) centered at the origin. Define the special norm by

ol = s { 22N € B0, @ 20}
Define
() = 190w + E*(p,w)(€) = E°(p,w)] g(pw)(0) = 0 and [|g(p.e) [« < oo}
and
Gpw =1{9 € Gj,.) Lip(g) < e_%TJrl}-

Lemma 4.14. G*

(pw) €quipped with || - || is a Banach space and G ) 1s a closed subset.

The above Lemma is a corollary of Lemma iii.3 in [57]. {G(pw)}pw)icrmxa gives a bundle
G on M x Q with fiber G, for (p,w) € M x Q.

Now we define f, . : T, M, (€) = Ty, Mg, by the local representation of f,, with respect
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to FExp, and Fxpy, p, i.e.,
fwuw)(v) = Bxp}l o fo, 0 Bxpy(v), Yo € T,M,(c).

Define a bundle map ¢* : G — G over ¢ : M x Q0 — M x ) by

(2°9) (fupb) = P(pu)Ipw)

where
graph(9(, 9ww) = fww (graph(gepw)) N (E*(fup, 0w)(€) & E°(fup, Ow)).
For a linear transformation 7', we denote m(T) := ||[T~!||~! to be the conorm of T.

Lemma 4.15. For any € > 0 such that

e A4 2P e 41
< )
er — 2P — 2

there exists a €9 > 0 such that for any € € (0,¢), the bundle map ¢* defined as above is

well-defined and it is a fiber contraction, i.e., for any gepw), ng,w) € Gpuw), we have

D f |Es || + QPEI
* o ’ < || pJw|E%(pw) ) o .
||¢(p,w)g(z?,w) ¢(p,w)g(p,w) || = m(Dpfw|E“(p,w)) — 9P Hg(p,w) 9(p.w) H

Proof of Lemma 4.15. Pick any g € G(pu), let fpu) (@, g(x)) have decomposition

f(pw)(x? g(x)) - (f(p,w),l(xa g(x)), f(p,w),2(xa g(l’)))

with respect to E"(fup, 0w) ® E*(fup,0w), denote hi,.) := fpwa(z, g(x)).

By compactness of 2 and M and the continuity of f,, on w, for any ¢ > 0, we can pick
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a €y > 0 sufficiently small such that for any € < ¢,

LZp((f(pyw) - Dpfw)|Tpr(€)) < 6,'

Note that

f(p,w),1($ag(x)) = P(Eu(prv 90))) o f(p,w) o (Zda g)(x)v

Dy folupw)(€) = P(E"(fup, 0w)) 0 Dy oy o (id, g) ().

Then we have

Lip(fpuya © (id, §) — Dy fol Bu(pw)(e)
< PLip((fipw) — Dpfo)lmymaie) - Lip(id, g)

< P€.

By the Lipschitz Inverse function theorem(Theorem 1.2 in [57]), h(,. is a homeomorphism

and moreover,

_ 1
(pTW)) < D.f |7t -1_ 1, i D
1Dy fol pw [ Zp(f(p,w)J o (id, g) — pfw|E“(p,w)(6))
(pw)

1
< . 4.28
m(Dpfw|E“(p,w)) - Pe ( )

Lip(h

Then for any g € Gy, we have

(@) (@) = Sipoy.2 (P (2), g(hi (). (4.29)
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Note that

f(p,w),Q(xvg(x)) = P(Es(pr7 Qw)) © f(p,w) © (Zd; g)(l’),

Dy fulgopa (9(2)) = P(E*(fup, 0w)) © Dy [,y © (id, g) ().

Then we have

Lip(f(p,w),Q © (id, g)) < Lip(f(p,W),Q © (id, g) - Dpfw|Es(p,w) o g) + Lip(Dpfw|Es(p,w) o g)
< Pe + || Dy fulps o - (4.30)
Combining (4.28), (4.29)and (4.30),

||Dpfw ES(WJ)H + Pe
m(Dpfw‘E“(pﬁw)) — Pe

Lip($(py9) < Lip(fipw)2 0 (id, g)) - Lip(hy,,,)) <

e+ Pe _ e 41
- e —P¢ 2

Obviously that (¢f,,,9)(0) = 0, so we have shown that ¢, ,, maps G p.w) t0 G(s,pe.) and as
a consequence, ¢* is well-defined.
Next, we show that ¢* is fiber-contraction. It is sufficient to show that for any g, ¢ €

Gpw), for all z € E*(p,w)(e),

o) 2(@9(2) = (009N fow)1 (@ 9@ _ || Dpfolre e | + 2P€

g =4 (4.31
(2, 9(z))] ~ m(Dyp folErpw)) — 2P€ lg =gl ( )

since hpw) () = fipw)1(+, 9(-)) is homeomorphism.
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Notice that

| fp)2(:9(x)) = fpw)2(x, g'(2))]
< (w2 = PE*(fup, 0w) Dy fo) (2, 9(2)) = (fpw) 2 — P(E*(fup, 0w)) Dy fuo) (2, g'(2))]
+ [P(E*(fup, 0w)) Dy fuo(x, g'(2)) = P(E*(fup, 0w)) Dy fuo(2, g(2))]
< ALip(fipw) 2 = PE(fup, 0w)) Dy f) + | Dy ful oo |} - (@) — ¢ ()]

< (P + |1 Dp ol anll) l9(2) = g ()], (4.32)

and

[fp)1 (@, 9(2)) = fpw) 1 (@, ' (2))]
< (fpw1 = PIE*(fup, 0w)) Dy fo) (2, 9(x)) = (fpw1 — P(E*(fop, 0w)) Dy fo)(z, 4 (2))]
+ [P(E*(fup, 0w) Dy fu) (w, 9(x)) = P(E*(fup, 0w) Dy fo)(x, g (2))]
< Lip(fipw)a — P(E"(fup, 0w)) Dy fu)|g(x) — g'(2)]

< Pélg(x) — ¢ (z)|. (4.33)
Then (4.33) and (4.32) imply that

[ 2(:9(x)) = (8()9) (fipawr1 (z, 9(2)))]
< fww2(@ 9(2)) = fowa(@ ¢ @) + [fowa(@ ¢'(@)) = (06,09 fpwi (@ 9()))]
< (P + Dol pepanll) l9(z) — g/ ()]
+ (D) 9) o1 (2, 9'(2)) = ()9 ) (fpaya (2, 9(2)))]
< (P + IDpfol pxwanl) l9(2) = g’ (@) + | fipao) 1 (7, 9(2)) = fipaya (@, g'(2))]

< (2736/ + ||Dpfw|Es(p,w)||> lg(x) — 9/($)|~ (4.34)
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On the other hand,

| fpwa (2, 9(2))] = |(fpwa — P(E*(fup, 0w)) Dy fu) (2, g(x)) + P(E*(fup, 0w)) Dp fu(z, g(2))]
> (m(DpfulBupuw)) — 2P€)|x] (4.35)
since |z| > |g(x)|. Hence (4.31) follows by (4.32) and (4.35). O

Remark 4.16. It is easy to see that the above lemma also holds if we replace G,y by
Glpw =19 € G, ¢ Lip(g) <1}
The following lemma is a skew product version of the invariant section lemma.

Lemma 4.17 (Invariant Section Lemma For Skew Product). Suppose we have a bundle map
F:E— Eover¢g: MxQ— MxQ, where E = {(p,w, Epw)| (p,w) € M xQ}, Eg is a
bounded closed subset of a Banach space and F' has the form F(p,w,y) = (fup, 0w, Fpw)(v))

fory € Eg). Denote dg, , to be the metric on E(p,w). If for all (p,w) € M x €,

dE(pr,Gw) (F(va) (y)7 F(p,w) (y/)) S K(p,w)dE(p,w) (yv y/)v

and Moreover, supg, emxo Kpw) = K < 1, then there exists a unique invariant section

0. : M xQ—E, (p,w) — (p,w,o.(p,w)), in the sense that for all (p,w) € M x Q,

Ox O ¢(p:w> = F(p,w) o O'*(pa C«J).

Proof of Lemma 4.17. Let ¥’ be the collection of all sections. Define the metric on ¥’ by

the sup metric, i.e.,

ds(0,0") = sup{dg, , (0(p,w), o' (p,w)) : (p,w) € M x Q}.
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¥ with ds is a complete metric space since F,,, is closed. Define F} : X' — ¥’ by

(F*O')(ZL‘,(U) = F((fgflw)*lwﬁflw)o-((feflw)_lx’ (9_1w).
Now, for all o,0’ € ¥/, we have
ds/(Fo, Foo') = sup  {|(Fo)(p,w) — (Fo')(p,w)|}

(p,w)EM xQ

= sup {IF, ) po w0 ((forw) ', 07 w)
(pw)EM XQ

— Fl(fy1)-1p0 100 ((fo-10) T'p 07 w)| }
< sup {K|o((fo10) 0, 07"0) = o' ((fp10) R, 07 w)]}

(p,w)EM xQ

< Kdg/(O’, 0',).

Hence F, is a contraction mapping. As a consequence, there exists a unique fixed point,

named o,, i.e.,

0*(p, w) = F((fgilw)—1p79—1w)0'*((fg—lw)ilp, G’Iw)

for all (p,w) € M x Q. By changing of variable,

U*(pr7 Qw) - F(p,w)g*(pa W)a

for all (p,w) € M x Q). O

We replace F' and E|, ., in Lemma 4.17 by ¢* and G,.,), then we get a unique section
g* : M xQ — G such that for each (p,w) C M x €, 9{p. 18 a Lipschitz map from E"(p,w)(e)
to E*(p,w), and ¢* is invariant in the sense that

*

I(p(zw))

ﬁp,w)g Ekpvw)
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Note that one also can obtain the invariant section by iterating any section g € G, i.e.,

Jpw) = M ((07)" D)) = W Gpoa o1+ By, gy sz p 0 (4.36)

n—oo n—oo

uniformly for all (p,w) € M x Q.

By the stable and unstable manifolds theorem we know that the local unstable manifold
passing p on M, is exactly Expp(graph(gfpw))).

Next, we will show that the bundle map ¢* preserves the local Hoélder property for an
appropriate Holder exponent.

Since E*(z,w) and E*(x,w) are uniformly continuous depending on x € M, with the help
of local coordinate charts, we may pick a sufficiently small dy € (0, %) such that whenever

d(p,q) < 0o, Gigw) : E*(q,w)(e0) = E*(q,w) with Lip(ggw)) < 672;“ can be viewed as a

Lipshitz function mapping from E"(p,w)(dy) to E°(p,w), named §(4.) With Lip(g(gw)) < 1.

From now on, we fix this d;. We pick N > 0 depending on &, such that e=V* < §,. Define

zeE*(pw)(do)

G(bo, 0, "N K) = {9 €G:  sup  |gpw () — Guw ()| < Kd(p,q)?,

whenever e M < d(p, q) < o} -

Lemma 4.18. There exists a constant C' = C(&y) such that G C G(8y, 0, N, C(d)elNr?).

Proof of Lemma 4.18. Notice that both the Lipschitz constant of g(,.) and g are less

than 1, and d(p, q) < &y, hence there exists a constant C' = C(dy) > 0 such that

sup |g(p,w) (z) — G(qw) (z)| < C.
zeE¥(p,w)(do)

Notice that d(p, q) > e ™*, so we have

SUD |9 (%) = Ggu ()| < C(80) < C(d0)e™4d(p, q)°.
z€E¥(p,w)(do)
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]
Lemma 4.19. Let g € G, if d(p,q) < do, d(fup, fuq) < do, and SUDP,cpu(p ) (5y) |9 (T) —

Jigw) ()] < Kd(p,q)®, then

Sup |(¢?p,w)g(pyw)) (x) - <¢Tp7w)§(q,w)) (JJ)‘ < Kd(pr, wa)Q (437>

£ (fup,0w)(do)

provided o € (0,1) satisfying

sup || Dpfe Es(p,w)||t(;fw) <1, (4.38)
(pw)EM XQ
where
[ d(fup, fuq) }
tipw) :=1Inf ¢ ————=: g€ M, d(p,q) <ep > 0. 4.39
(pw) { 1.0 q (p,q) (4.39)

Proof of Lemma 4.19. We use the same notation as the proof of Lemma 4.15. Notice that
by (4.38), we can pick a constant ¢ > 0 sufficiently small both satisfying the condition of
Lemma 4.15 and

sup  (2P€’ + (| Dy fu|

(pw)EM XQ

B (peo) Sty < 1. (4.40)

Recall that f,.) : T, M, (€) = T, Mg, is the local representation of f,, with respect to

*

Exp, and Expy, . ¢(p,w)

acts on g) by

graph(d(, w)9w) = fow) (graph(Ggew))) N (E*(fup, 0w)(0o) & E°(fup, Ow)).

e~ —

Notice that graph(¢{, . J(.w) = graph(qﬁ?‘q,w) J(qw)), SO by the choice of §y and the invariance
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of bundle G, we have Lip(¢{, ,(qw)) < 1. Similar to the proof of (4.34),

|f(p,W),2($7 9(pw) (IE)) - (Qb?p,w)g(q,w))(f(p,w),l ("E: 9pw) (:L‘)))|

< (2P + || Dpf.

B (pw) D9pw) () — (g0 (@)]

< (27)6/ + ||Dpfw|Es(p,oJ)||) sup |9(p,w) - g(q,w)|
ze€E¥(p,w)(do)

B (pw) || K d(p, q)°

B () | Kt oy d(fuo, f0)*

< (2P€ + || Dy fos

< (2P€ + || Dy f.

< Kd(fup, fuq)®,

provided (4.40). Notice that h,w)(-) = fpw) (s 9pw) () is a homeomorphism, hence we get
(4.37). O

Now consider

Rn<(.U) = {(fGn*"wpu an*”UJQ> € M X M‘ max d(fﬁkfnwp7 ka*"wQ) < 607 €*N>\ < d(p7 Q> < 60}7

0<k<n—1

and let S, (w) = Uy R;(w). Applying Lemma 4.19 inductively and noticing that ¢, ) ) =

Do) (aw) for ¢ in the dg-neighborhood of p, we see that for any g € G, (p,q) € Sn(w),

P

sup  [((6)"9) (e (%) = ((6")"9) (g ()] < C(d0)e™4d(p, 9)°.

zeE¥(p,w)(do)

By the stable and unstable manifolds theorem,

{(p.q) € My x M| g & Wy (p,w), d(p,q) < 6o} C | Sulw).
n=0

Hence that fix point obtained by (4.36) has property that for any p,q € M, d(p,q) < do,

w |90 () = G () (2)]| < C(80)e™2d(p, q)° := H (b0, 0)d(p. q)°. (4.41)

zeE(p,w)(do
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Hence the local unstable foliation is Holder continuous on the base point fiberwisely. A
similar proof can be applied to the local stable foliation by reversing time.

Now let yo,y1 € graph(g{pw)), let ¢ € M and d(p,q) < do. Let

20 = (P(Eu<p7w)y07j*(q,w)(P(Eu(pa W)yo)))

and
21 = (P(Eu(p7w)y17g~*(q7w)(‘P(Eu<p’w)y1)))
Then by (4.41),

|21 — y1| < H(do, 0)]20 — yol°

Denote

wo = exp, (W (yo,w)) N graph(g*,.)), wi = exp, (W (y1,w)) N graph(g*,.))-

Since that 0y = inf(, wyemxo O(L*(z,w), B*(x,w)) > 0, hence when dy sufficiently small,

there exists a constant C'(6y) independent of (z,w) € M x § such that

’yl - 21\ > 0(90)—1’ ’yo - 20| < C’(@O).
’yl —wﬂ |yo—w0’

Hence, we get

ly1 — wi| < C(0) T 2H (80, 0)|yo — wol?,

i.e., the fiber holonomy map between local unstable manifolds is uniformly o—Holder con-
tinuous at a small scale. A similar result holds for fiber holonomy map between local stable
manifolds.

The proof of Proposition 4.13 is done. O]

4.1.8 Properties of the Holonomy Map between Two Local Stable Leaves.

In this subsection, the properties of the Holonomy maps are further discussed.
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For each w € Q, J(w) and ~(w) is said to be pair of nearby local stable leaves if the
fiber holonomy map v, : ¥(w) — 7(w) by Y,(z) = W*(z,w) N y(w) for z € F(w) is a
homeomorphism.

In the following, we restrict the size of local stable and unstable manifolds W} (z,w),
W (x,w) satisfying € < min{eg,dp} to guarantee the Holder continuity of the stable and

unstable foliations, where dy is the constant in Proposition 4.13.

Lemma 4.20. There ezists constants ag, v, > 0 that only depend on system ¢ such that for
any ¥, : Y(w) = y(w) fiber holonomy map of two nearby random local stable leaves, the

followings hold:
(i) ¥, and log|det Di,| are (ay, v,)-Hélder continuous;
(it) log | det Dyth,| < agd(y, vu(y))" for every y € j(w);
(iii) d((fo-10) '@, (fo10) () < e Md(z, ().

Proof of Lemma 4.20. In Proposition 4.13, we already prove that 1, is (H, o)—Holder con-
tinuous for all w € 2.

Now we prove the Holder continuity of log | det Di),,|. Pick any z,y € 4(w), we consider
two cases: (case 1) d(z,v,(x)) < d(z,y) and (case 2) d(z, ¥, (x)) > d(z,y).

In (case 1), by (4.22), we have

% : jHo“ + One?d(a, vu(z))”) jHOﬂ + CreMd(y, u(y))").
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Then apply Proposition 4.13, we have

| log | det Db, | — 10g|detDy@Dw||<ZC’ne>‘J vd(z, by (x V1+chewd ()

Jj=0 Jj=0

SZC 19 (3, 1), (2 ”1+ZC H" e d (1), (x))

7=0

< (Z CreV™ + Z CrH" eV )d(, y)"e

= Sid(z,y)"e. (4.42)

In (case 2), since the expansion on stable manifolds and the contraction on unstable manifolds

when reverse time, there exists an integer m > 0 such that

d(f;k:v,fbjkww(as)) > d(f;kx, fw_ky) for0<k<m-—1;
and
d(f ", £ (@) < d(f e, f,Y).

Note that

|det Dyp,|  |det D, f;
|det Dyy,|  |det D, f5

m ES(:c,w)| . | det D¢w(y)f;m Es(ww(y),w)| ) | det ijmx(f;mwwfergmw)‘

Denote § := sup o 2foly) dz,y) <€ we Q} € (1,00), and n := inf dfo zfs'y)
d(xvy) d(xy

d(z,y) <e weQ} e (0,1), then by the choice of m, we have

n"d(z, ho () < B7d(x,y).

As a consequence, m > (log d(’” %(x )/ log(8/n). Hence

e < d(;p’ y) log(}i/n) d(l‘, qﬁw(x))_m'
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By (4.21), we have

|log |det D, f,™

Es xw | ].Og | det Dyf Es yw)|

< Z Cud(f Fx, £y < Clle_A(m_l_k)Vld(fw_(m_l)xa w_(m_l)y)yl

m—1
S (Z Clle—)\(m—l—k:)ul)e—A(m—l)ul d(l‘, % ($))u1
k=0

< Soe™ Mz, 1), (1))
Av Avy
< Sad(w, ()" T d(w, y) W

Av
< S2d(x, y) log(ﬂl/n) ,

1 A (m—1— .
where Sy == (D", Cie Alm=1=kJr1)eAv1 - Similar to above, we have

| log | det Dy, (y) [ " |2 ().) | — log [ det Dy, @) f; ™ | B2 (g (@) ) ]
m—1 m—1
< D Ond(f5 M hu(w), S5 () < 7 Cune N Ra(f5 0Dy (@), £ D (y)”
k=0 k=0
m—1
S Clle A(m—1— kulHuld(f m— l)x f (m— 1)y>ulg
k=0
m—1
S Clle A(m—1— kulHuld(f m— l)x f (m— l)ww(x»z/lg
k=0
< Sze MM, by, ()0
Avyo
< S:;d(x) y) Tog(8/n) |
where Sy 1= S0 Cpye M m=1=Rm frriedie Note that f74,, £, is the holonomy map from
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£ (w) to f;™v(w), hence similar to (4.42), we have

w

[ log [det D ym  (f5 0w fg" me,)| — log | det D yom, (540 fo" me,)|]

<D OueM (5", [ (@) D Cne (ST, [ ()
J=0 =0

<Y CueMeMA(f e, [ () + ) Cue e (S5 Vy, [0 ()"

7=0 7=0

<3 Cne e (d(f5 Ve, 5V @)+ HO(f D, O (2)))
j=0

Avye

< S4d(x, y) log(B/m) |

where Sy 1= (37,5 CrieMN"e™ + 375 CryeNvie M H)eM1e. Hence

Avio

|log | det D,1b,| — log | det Dyt || < (S2 + S35+ Sy)d(z,y) =6 .

For property (2), we use (4.22) to obtain

| det Dy | < JT(1+ CraeMd(y, vu(y)"):

J=0

1/]det Dyib,| < T(1+ Crae¥™ d(y, b (y))").

J=0

So

[log | det D] < Cua 3 e¥d(y, ()"

=0
Now we define af, := max{S;, S2 + S3 + Ss} and v} := bgé’%. Then property (1) and (2)
are proved.

Property (3) follows the definition of holonomy map and contraction on local unstable

manifolds when reverse time.
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4.1.9 Fubini’s Theorem on Rectangles.

We call R(w) C M, a rectangle if it is foliated by local stable manifolds and it has the local
product structure. By the lemma 4.20, for any rectangle R(w) in small scale, the holonomy
map between stable manifolds lying in R(w) is absolutely continuous and the Log of Jacobian
of holonomy map is (ay, ) —Holder continuous, and the same results hold for holonomy map
between the local unstable manifolds in R(w). As a consequence, the Riemannian measure on
R(w) has disintegration on each local stable leaves in R(w). Moreover, the density function
on each local stable leaf has Holder regularity. The proof of this statement is similar to the

determinant case [13]. We supply a proof here for completeness.

Proposition 4.21. There exist constants (ag,v{) only depending on the system such that
for each w € Q and any rectangle R(w) = [W¥(zo,w), W&(xo,w)] for some xog € M, there

exists a function H(w) : R(w) — R satisfying

|log H(w)(z) — log H(w)(y)| < agd(x,y)"®, Y,y € y(w)

and for any bounded measurable function v : M — R, there is disintegration

/ v(a)dm(a) = [ / () Ho() (@) ) o (@) (7 (),

where y(w) denote the stable foliations in R(w) and mpg,) the quotient measure induced by

Riemannian volume measure in the space of local stable leaves in R(w).

Proof of Proposition 4.21. With the help of a normal coordinate chart, we can view R(w) as a
subset in the vector space Ty, M. We define a map ¥ : (W (zg, w) X W(xg,w), B, m*xm®) —
(R(w), B,m) by

V(g n) = Wn,w) N WE(E, w),

where m* and m?® are the intrinsic Riemannian measures on W*(zo,w) and W2 (zo,w) re-

spectively and m is the Riemannian measure on R(w).
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For any = € R(w), we introduce the following sets:

S, (,w) = (W2(y,w0) "Wz, w)| d(a,y) < 7, y € Wee,w), dz,2) <7, = € Wiz, w)}
= Wiz, w), W2 (z, w)],

P(z,w)={z+v+w|ve E(z,w),|v]| <r, we E'(z,w),|w|] <r},

B, w) = {z +v[ve E(z,w)l, [lv] <7},

Pi(z,w) ={z +w| we E"(z,w)|, [w]| <r}.
Lemma 4.22. There exists a constant K, independent of w such that

C Sp(z,w) C P

pr(1+K4T(96)2)(x7w)- (443)

PPT(I—K4r(”6)2) (,0)

Furthermore, there exists constant Kg independent of w and a function 0(x,w) satisfying that

log 0(z,w) is (Ke,v,) Hélder continuous on x and continuous on w such that

m(Sy(2,w)) = 0z, w)ms (P, (@, @)Jmu (P, (z,0))(1+ O 4F)), - (4.44)
where my is the induced measure on E*(x,w) and m, is the induced measure on E"(x,w).

Proof of Lemma 4.22. For z € x + E*(x,w), by the local stable manifolds theorem, there
exists a map Biz,w) : E*(z,w) — E"(x,w) such that the local stable manifold W?(z,w) :=
{z+§+l~lfsz) (€)| £ € E*(x,w)}. Recall that 1) < min{vy, o} in Lemma 4.20. By Lemma 4.1

the Holder continuity of stable subbundles, we have

l//

<

”D§ﬁ€z,w) zZ+ é- + B?z,w) (6)

By Proposition 4.13, to represent points in S,(x,w), it is sufficient to consider ||z|| < Pr and

lell < PH"r.
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For v € E*(z,w), ||v|]| = 1, we define h(t) = ||l~z‘€27w) (vt)||, then we have
||hfz,w) (t,U)H

!
Yo

<[Pt

<C

Z+tv+ flfzw) (tv)

‘dh(t) ‘ _
dt

So that if ||z|| < Pr, h(t) must satisfy the following inequality in the domain ||t|| < PH'r"0

0| < ¢y (Pr+ PH + h(t))"
1(0) = 0.

Solve the above equation we get
h(t) < Kstr®® + O <t2r—”6+2<”6)2) :
where K3 = K3(P, H', 1)) is a constant. So if ||z|| < Pr, and |jv|| < PH'r"0, we have

where constant Ky = Ky(P,H' 1) is independent of w. The same estimates holds for

< Ky|ol|r”,

ﬁfz,w) (’U)

unstable manifolds. These two estimate imply that

P

Pr(l_Kﬂ(Vé)Q)(I,W) C Sp(z,w) C P T(HKM%)Q)(:C,M).

P

As a consequence,

m (Ppr(l_m(%ﬂ)@,@) c m (S, (z,w)) Cm (PPT(HKU%)Q)@,M)) , (4.45)

where m is the Riemannian measure on R(w). Let {v;}8mE" be an orthonormal basis for
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E*(x,w) and {w; }" 7" be an orthonormal basis for E*(x,w), we define
O(x,w) = |det(vy, ..., Vaim Bs, W1, vy Waim B ) |-

Since O(E*(z,w), E*(x,w)) > 6y, there exists a constant K5 = Kj;(6p) such that §(z,w) >
K. By Lemma 4.1, 0(z,w) is y,—Ho6lder continuous on x and continuous on w. Hence there
exists a constant Ky such that logf(x,w) is (Kg, 1)) Holder continuous. Combined with

(4.45), we get
m(S,(z,w)) = 0(z, w)ms (Ps, (z,w)) my (PE (2, w)) (1 o) (7«(”6)2)) . 0

Note that by the local stable manifolds theorem, for each (z,w), the local unstable
manifold W#(z,w) is determined by a C? function My * E*(x,w) = E"(2,w). Moreover,

T,We(z,w) = E*(z,w) and Dh{, , is Lipschitz with Lipschitz constant L. Hence we have
(P, (2,0)) = m*(Wi(a,w)) (1+0 (1))
The same estimate holds for local unstable manifolds:
my(Pp,(z,w)) = m" (W (z,w)) (1 + O (r™F)) .
The above two estimates and (4.44) imply that
m(S,(z,w)) = 0(z, w)m® (W (z, w))m* (W*(z,)) (1 ) (TW)) . (4.46)
For x € R(w), we define ¥ : R(w) — W(xg,w) by ¥ (z) := W2 (zx,w) N W¥(zg,w). It

is easy to see that 7 (-) is constant on each stable foliation in R(w). Similarly, we define

U R(w) = We(xg,w) by ¥%(x) = Wi(z,w) N WE(xg,w). We denote W7 (z,w) N R(w) for
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x € R(w) to be the connected part of W7 (x,w) containing = in R(w) for 7 = s,u. We define

JS(:E7 w) = HW(I, @/)Z(LE), Eu(x7 w)? Eu(@bi(ﬂﬁ)aw)),

which is the Jacobian at x of the holonomy map from unstable manifolds W* (% (x), w)NR(w)
to W (xg,w). Similarly, we define

3 | det(Dy £ s ()|

Ju Tr,w) = lim !
( ) n——oo |det(D¢g(x)fS Es(wﬁ(ﬂv)vw)”

which is the Jacobian at z of the holonomy map between local stable manifolds W*(¢? (), w)N

R(w) and W2 (zg,w).

Lemma 4.23. There exists a constant K7 independent of w such that both log js(x,w) and

log J*(x,w) are (K7, v})—Hélder continuous on .

Proof. Let x,y € R(w), we denote z := W*(x,w) N W2(y,w). Then we have ¢¥(2) = 5 (y).
Notice that z is the image of y under the holonomy map between W*(x,w) N R(w) and
W*(y,w) N R(w), then by Lemma 4.20 (2), we have

| det D, f)| (2| | det Dy f2] gu(yw)|
| det Dys () fO | Bu(we )| /| det Dys ) [ s ()]
_ |det D, [ gu(z)] < ea6d(y,z)”6
| det Dyf£|E“(y7w)| N .

Switch y and z and let n goes to infinity we have,

log J*(z,w) — log J*(y,w)| < apd(y, 2)".

Notice that both z, z lie on the local unstable manifold W*(z,w), then by Lemma 4.20 (1),
we have

log J*(z,w) — J*(z,w)| < abd(z, 2)"0.
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Notice that z = [y, z], and 0y = inf O(E*(z,w), E*(z,w)) > 0, then there exists a constant

Ky := Kg(6y, ) such that

d(z, 2)"0 + d(y, 2)"0 < Kgd(z,y)".

Hence

log J*(z,w) — log J*(y,w)| < ahKgd(z,y)"® := Kqd(z,y)".
The similar proof can be applied to J*(z,w). ]

Now consider set C,.(¥ ! (z),w) := ¥~(S,(x,w)). To obtain the Jacobian of the map W,
we need to compare (m* x m*)(C,(¥~(z),w)) and m(S,(z,w)) and prove ¥ is absolutely

continuous.

Lemma 4.24. For x € R(w) and r sufficiently small, we have

S I o)

Proof. By the definition of ¢ and 9%, we have U~l(z) = (2 (x),v%(x)) € W¥(x,w) X
W#(xg,w). Since the set S,(z,w) has the local product structure, the set C,.(V~!(z),w) is a

product set

Cr (T (@), w) = CY(TH(z),w) x G (2),w),

T

where

CH(T™H(2),w) = {€ € W@, w)| V(& ¥i(x)) € Sp(z,w)},
Cr (U™ (@), w) = {n € W(zo,w)| V(¥ (x),m) € Sp(,w)}.

So (m* x m*)(C,.(¥~(z),w)) = m“(C* (¥ (z),w)) x m*(C5(V~(z),w)). Note that the

holonomy map between W (zo,w) and W"(x,w) N R(w) is absolutely continuous, hence we
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have

m (O (U (), w)) = / Ty, w)dm"(y)
W (z,w)NSr(z,w)

= J*(z, w)m (W (z, w)) (1 o) (7’)) , (4.48)
where the last equality follows the Hélder continuity of log J*(-,w). Similarly, we have
m*(C2 (UL (z),w)) = J(z,w)m* (W*(z,w)) (1 4O <7‘)> . (4.49)

Now (4.46), (4.48) and (4.49) imply that

(m* x m*)(C, (¥ Y(z),w)) Jz,w)J*(z,w) ()2
m(Sy(z,w)) 0(x,w) (1 O (T )) ' -
Lemma 4.25. U : (W!(zg,w) X W(xg,w), B,m* x m*) — (R(w), B,m) is absolutely con-

tinuous.

Proof. By the local product structure, we know that ¥ is a homeomorphism. Let m = ¥*m,
ie. for any A € B(W*(xo,w) x W?(zg,w)), m(A) = m(¥(A)). To prove the absolute
continuity of ¥, we just need to prove that m < m" x m?.

For any A C W*(xo,w) x W?(xo,w) Borel measurable set such that m(A) > 0, we want to
prove that m* x m*(A) > 0. We prove it by way of contradiction. Suppose m* x m*(A) = 0,
then for any ¢ > 0, there exists an open set U D A such that m" x m*(U) < (. We pick
a compact set D C A such that m(D) > 1m(A). Since ¥ is a homeomorphism, ¥(D) is
compact and W(U) is open.

We choose ry sufficiently small such that for any r € (0,r), the equation (4.44) implies

(8.(0,)) 2 3 Korna (P, (0,0) (PR (2,0),
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where recall Ky satisfying inf 6(z,w) > K5. The equation (4.47) implies

(" ) (G (@), )) _ 1 1
m (S, (z,w)) 2 wekw) Oz, w) 2

We can find a finite disjoint collection of cubes I',, C W(U) with diameter less than ry and

m(U,T, N ¥(D)) > ~im(D).

By Lemma 4.22, we can find a set S,, C ', which has the same structure as S,(z,w) such

that

().

=
=8
oS
8
£
2
)1
N
V
vo| X
3

Now

m" x m*(U) > m" x m*(U, U 'T,,) > m" x m*(U, ¥ (S,))

2 2(10 Zm > 5 —2a0 I;S Zm(rn>

n

—2a0K5 1
> —m(D
z— 3mp)
—2a/
> s .
16

This leads to a contradiction by choosing ¢ < ‘fil—g&m(/l). Therefore, ¥ is absolutely

continuous. O

Now by the Radon-Nikodym theorem, we have

m(S.(Y(€,n),w)) (v, n),w)

JCLC( )(5 T]> r—>0 m¥ X ms( 7"((&”)7("})) B ju(qj(fan)vw)js(\l[(gan)7w)
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Then for any (éa Tl)v (gla 77/) S Weu(lbuw) X W:(JL‘O,Q})7 we have

llog Jac(¥)(&,n) —log Jac(¥)(£', n')|
< max{Kg, K7}d(W(¢,n), ¥ (¢, 7))"s
< max{Kg, K7 }(d(¥(&,1), U(&, 7)) +d(U(E 7)), T(E, 7))

< max{Kg, K7 }ap(d(€,€) + d(n,1))"

Hence log Jac(¥) is (max{ K, K7}ay, v))—Holder continuous. By the Radon-Nikodym the-

orem, for any bounded measurable function I : M — R, we have

/R(w /u(“w /wa (& m))Jac¥ (&, n)dm*(n)dm"(§).

For each stable foliation v N R(w), there exists a £ € W(xp,w) such that v N R(w) is the
image of We 1= U|(exws(zow) Which is exactly the holonomy map between W¢(zo,w) and
yYN R(w). We denote this v N R(w) by 7¢. Denote the Jacobian of V| e} s (zow) by Jace(V).

Using Radon-Nikodym theorem again, we have

/R(w / (0 ) / e jz;i (( )))) dm?, (x)dm"(§).

We define H(w) : R(w) — R by

JacV (U ws (@)
Jac¢5($)@(q!;5 (7))

H(w)(z) =

Note that for x,y in a same stable leaf in R(w), ¥?(z) = 2 (y) € W*(zo,w). Moreover, in
Lemma 4.20, we have proved that the holonomy map \Ifqzsl(m) (x) is (ag, v,)—Holder continuous

on Yys (z) and log Jacys )V is (ag, vy)—Hdélder continuous on {47 (x)} x W (o, w). Hence
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for x,y in a same stable leaf in R(w), we have

[ log H(w)(x) — log H(w)(y)] < |log Jac¥ (¥}, (x)) — log Jac¥ (¥}, (4))|

+ | log Jacwz(x)\ll(lll;g(x)(x)) —log Jacwz(x)\ll(\lllzg(x) (y))]

< (max{Ks, K7}ay + af))d(\l/;g(x) (@), \I’;g(x)(y))yé

< (max{Ks, K7 }ay + ap)ayd(z, y)*".

Hence log H(w) is (ay,vy) = ((max{Ks, K7}ay + ay)ay, (v5)?)—Holder continuous on each

local stable leaf in R(w) The proof of Proposition 4.21 is done. O

4.2 FoOR RANDOM PARTIALLY HYPERBOLIC ON FIBERS SYSTEMS

In this section, we introduce several lemmas, including the strong unstable invariant mani-
folds theorem in Subsection 4.2.1 and a distortion lemma in Subsection 4.2.2, that will be
used in the proof of existence of the random Gibbs u—states for random partially hyperbolic

on fibers systems.

4.2.1 Strong Unstable Invariant Manifolds.
We first state the local strong unstable invariant manifolds theorem in our settings. Since

f: Q —Diff*(M) is a continuous mapping, the following condition holds naturally:

/ (log* [Ifullox + log* [ £l )dP(w) < oo.

The following lemma can be viewed as an adapted version of unstable invariant manifolds
theorem with the help of Lusin’s theorem in [37] by noticing that E**(z,w) depends contin-
wously on (z,w) € M x Q and f,, €Diff*(M) depends continuously on w € Q. The proof of

this lemma can be carried word for word from the arguments of Theorem III3.1 of [45].

Lemma 4.26 (Local Strong Unstable Invariant Manifolds Theorem). For random partially
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hyperbolic on fibers systems in our setting, the local strong unstable set is a C1' embedded

submanifold given by

Wi (z,w) = exp,(Graph(h{,.,)) (4.50)
satisfying that:

(i) I, + Ef'(z,w) — E®(z,w) is a CY'—map with h{, ,(0) = 0, Dh{, ,(0) = 0,

Liph, (1) < 3 LipD.h{, ,, < L, where E*(z,w) = {n € E"(z,w) : |n| <} and

L > 1 s a constant;

(i8) WP (p(2,w)) © fu(Wi(,0)), and W (w,0) = Uysy fia, Wa(f7,070) where
Wt (z,w) is given by (3.1);

(iii) d*(f5"y, f3"2) < yoe "M du(y, 2) for any y,z € W¥(z,w) where d* denotes the

distance along the strong unstable manifolds, vy > 0 and 0 < €9 <K A\ are constants;

(iv) For any p < 36, if W(z,w) == expy(Gragh(h{, .| ps@w)) intersects Wy (a',w), then

T

Wiz, w) € Wi (2, w);
(v) Wi (z,w) depends continuously on (x,w) € M x (.

In the above lemma, we may shrink § < py such that for any (z,w) € M,,, Wi (x,w) lies

in a normal neighborhood.

4.2.2 A Distortion Lemma.

We also need the following distortion lemma. Denote J"(z,w) := |det(Dy fo| guu(zw))]-

Lemma 4.27. There exists a constant C' > 0 independent of w € §2 such that for anyn € N,

for any (z,w), and y, z € Wi (x,w), we have

1 _Tp /0ty w)
o< kl;[g o6z m)) <C. (4.51)
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Proof. We first prove the uniform Lipschitz variation of J"(z,w) along the local strong
unstable manifolds, i.e., there exists a constant K > 0 which is independent of x and w such

that for any (z,w) € M,, y,z € W¥(z,w), one has

|J (y,w) — J(z,w)| < Kd"(y, 2), (4.52)

where d"(-,-) is the distance along Wi (z,w).

Denote n)!, ), 7(; ) to be the projection from T, M, to E*"(z,w) and E®(z,w) respec-

W)
tively with respect to the splitting T, M,, = E**(x,w) & E°(z,w), notice that E**(x,w) and

E'CS

(z,w

by the compactness of M x . Notice that f : Q — Diff2(M) is continuous, ||D,f,|| and

) are continuously depending on (z,w), so [|7(’, | and |77 || are uniformly bounded

:z:w)| xw)|

| D2, || are uniformly bounded. Let M > 1 be a constant such that

maX{( sup  [Dofol, sup |Diful, sup  LipDhi,,). (Sup{H?T(wH 17 II}}

T,w)EM X (z,w)EM XQ (zw)eMxQ

For sake of simplicity, we will identify exp,(-) with x + - in the rest of the proof.

Notice that if y, 2 € Wi (z,w), and d"(y, z) < 2M3, then
’WEZL)(Z —y)| < Md*(y,2) < SYVEL
)
‘ﬂ- ),0w) (fw( ) fw(y))l S lew(z) - fw(y)| S M2|Z - yl S m

Therefore, (z,w) € Wi (y,w) and (f,(2),0w) € Wi (f,(y),0w). So it is sufficient to prove

that there exists a constant K > 0 independent of  and w such that for any y € W* (z,w),
2M3

With the help of the normal coordinate chart, and notice that d(z,y) < ¢ < & and

d(fox, foy) < § < o, we may view that z, y together with W*; (z,w) lie in a same Euclidean

2M3
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space and f,x, f,y together with W#(f,z,0w) lie in a same Euclidean space. By the local

strong unstable manifolds theorem, there exist £, € B} (z,w) and &, ) € Ef*(fu(z), 0w)

2M?2

such that

foy) = fo(@) + &) + Mpo@)0m Erow) (4.55)

and E"(y,w) = graph((Dh{,)e,), E"(fu(y),0w) = graph((Dh{;, ) g.))¢p, ). From
(4.54) and (4.55), we have

1 1
(1 - 5) €| < 1w TRt @00 Erw)l = [foy) = ful@)] < Mly—2| <M (1 " 5) Gl

S0 |€r, | < 2M (&)

Now, we define the following linear maps Lz ), L(yw) : E*(x,w) = E*(f,(x),0w) by

L(x,w) = Dmfw|E““(x,w);

L(y,w) = W?}i(m),@w) Dyfw|E““(y7w) (I + (Dh?m,w))§y>

Then || Ll | L || < 3M?. Now for any v € E*"(x,w) with ||Jv|| = 1, we have

Sup HDIwa - W?fw(z),Gw)Dy,fw(I + (Dh?z,w))&/)i)”

Jell=1
< M (I[Daf = Dyfull + | Dy fu(Dhiy )e, 1)
< M|y — x|+ M°IE,|

< (M?+ ;M3)d“<:c,y)-

Hence, || Lipw) — Liyw)ll < Co(M? + 2M?)d"(x,y), where Cy only depends on the normal

coordinate charts. Then by properties of determinant,
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|det (Lizw)) — det(Liyw)| < Crd*(z,y), (4.56)

where C} is a polynomial of M and dimE""(x,w).

Notice that

||(Dh?f (z) Gw))ff ( )”
17 .00 | B o) = 1 < () 0e) Sty
L=l (Dh(fw(iv)a9w))5fw(y) |

M’£fw(?l)|

o _2M2lg|
— 1-2M2¢,
2M2|§yy
1—2M228

2M?2

< AM[¢,| < 6M3d" (2, y).

<

So we have

|det(7?ﬁ)(x),9w)’E““(fu(y)ﬁw)) - 1| < CQdu(xa y)7 (457)

where Cy is a polynomial of M and dimE""(x,w). Also

11+ (Dhiy e, — Il < M|§y| < Md*(x,y)

(2w
implies that there exists a constant C3 such that
det(I + (DY, )e,) — 1] < Cod"(z,y). (4.58)
Combining (4.56), (4.57), and (4.58), we have

|Ju($’w) - Ju(y7w)| < Kdu<x7y)v

where K only depends on Cf, Cs, Cs.
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Next, we prove (4.51). By (4.52), for any y, z € W§"(z,w)

T4  (y,w)) = TU(6 " (z,0))| < Cad"(£,5(y), £, (2)) < Cayoe™ P07 0d" (y, 2)

< Cyype HP0m0lg,

Notice that J*(z,w) > e* > 1 for all (z,w) € M x €, hence we have

&
<y7w)) . 1) < 04705€_>\06_k(>\0_60)-

(4.59)

(4.60)

As a consequence, there exists a constant C' which is independent of x and w such that

1 _TJUe ww)
o=l Ggrca) =°

for any n € N.

By (4.60), the function

is well defined if x € W¥*(y,w), and this limit converges uniformly on z.

CHAPTER 5. RANDOM SPECIFICATION

(4.61)

In this chapter, we prove Theorem 3.7, Theorem 3.8 and Theorem 3.9 in Section 5.1, Section

5.2 and Section 5.3 respectively.
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5.1 RANDOM ANOSOV AND TOPOLOGICAL MIXING ON FIBERS SYSTEMS

HAS RANDOM SPECIFICATION

In this section, we prove Theorem 3.7. The proof is quite similar to the deterministic case.

We start with the following lemma.

Lemma 5.1. Let €y be the size of local stable and unstable manifolds, g € L*(Q2, M) be a
random periodic point of ¢ with period m, then for any e € (0, €] and any 6 > 0, there ezists

an integer T'=T(g,€,0) such that for all w €

Uf b, (W2 (g (6757), 67P7e0))

18 0—dense in M.,,.

Proof. Pick € < 7min{d, e}, and let &' € (0, €¢') be the constant in the local product structure

1
4

corresponding to €, i.e., for all w € Q, for any z,y € M with dy(z,y) < ', then W¥(z,w)N
Ws(y,w) # 0.

By the compactness of M, we can pick {z;}"_, a §/2—dense subset of M. Define U; =
By s(x;) to be the ball centered at x; with radius ¢’/8. By the definition of topological
mixing on fibers, there exists an integer 7;; such that for any n > T; ;, for any w € €2, we

have
6" (Bys(s) % {67"w}) 01 (Bas(ay) x {e}) # 0
Let Thax = maxi<;j<n{7;;}, and define T" to be any integer such that
T -m > Tyax and e 7™ < §'/8. (5.1)

In the following, we are going to show that for all w € Q2

Uf b (W (9(0770),0770)
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is 0—dense in M,,,.
Now for any fixed w € Q, g(0~"™w) € By s(x;) for some z;. Then by definition of T, for
any x;, we have

¢"™(Bys(wi) x {677"w}) N Byys(;) x {w} # 0.

Pick a point z(w) € ¢*™(Bys(x;) x {§77"w}) N By s(x;) x {w}. Then by the choice of ¢,
then

2(w) = Wi(z(w),w) NWa(z;,w)
is defined. By the local unstable manifolds theorem, we have

!/

d(f5" " 2(w), [T a(w)) < eTTM < o

g
As a consequence, we have
—Tm —Tm —Tm —Tm o' o' o
d(fw Z(w)wri) Sd(fw Z(w)afw x(w>>+d<fw Z‘(W),(L’i) S §+§ — Z
So we have
—Tm —Tm —Tm —Tm 5/ 5/ (5/

Then by the choice of ¢,
(07" w) == WHg(0™ " w), 07 W) NWE(f "2 (w), 07 W)
is defined. Moreover, f"%,, q(0~""w) € f %, (Wr(g(0~""w),0""w)) and

A 007770, ) < AT, q(07 "7 w), 2(0)) + d(2(w),2;) < e T+ ¢ <

Notice that in the above proof, x; is arbitrarily chosen from a g—dense subset of M. Hence,
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the proof is done. O]

Lemma 5.2. For any € € (0,¢] there exists an integer N only depending on €, such that

foranyx,y e M, we Q, n>N
JoWe (@, w)) N We(y, 0"w) # 0.

Proof. For any ¢ > 0, we denote d(¢') € (0,€) to be the number in local product structure
corresponding to €. Define = min{e/2,d(¢/2)/4}. Pick a d(e/2)/4-dense set {z;}._, in
M, then 7} = zy is a continuous function from Q to M for k € {1,...,1}. Apply Lemma
4.7, there exists a number n € N (pick a least common multiple if necessary) and a set of

random periodic point {g }L_, with period n and satisfying
dLOO(Q,M)(i‘kugk) S (5(6/2)/4 for all k € {]_, ceey l}
Then for any x € M, there exists a g € {gr} such that

sup dM((xa w): (§]<w)v w)) < 6(6/2)/2'

weN

Use Lemma 5.1, there exists a Ty, = T;(gx, n,0(n)) such that

Tk
U 37 W30 w), 07" w)
m=0

is 0(n)—dense in M, for all w € Q.
Now define T' = Hﬁczl Ty, and N = nT, then for all w € Q,

U S (W (067 0), 07 w)) = ¢ (W2 (36 V), 67V w))

is d(n)-dense in M, for all k.

For any x,y € M, pick j € {1,2,...,1} such that sup ., d((z,w), (g;(w),w)) < §(e/2)/2.
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Let z € fln, (WH(g;(0Nw),0w)) satisfying d((y,w), (z,w)) < 6(n), and by the local

product structure, there exists a point

ve Wi (z,w) NW(y,w).

Then
foNv e Wi (o™ (z,w))
C Wi (3;(0Vw), 07V w)
C Wilesay2(95(0~Nw), 0V w),
SO

d (qﬁ’N(v, w), (x, G’Nw))

<d (7N (v,w), (5;(07Nw),07Nw)) +d ((3;(07 w), 07Nw), (z,07Vw))

< 5(62/2) N (5(62/2)

=0(€/2).

Therefore, there exists a point
pe :/2(¢7N(U7W>) NW(z, 0N w).
Then We have

fej\inp < W:/Z(Uﬂw) n fGJYNw( 6’“}2(I79_Nw>>

C Wy, w) N fony (W, 07 w)).
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As a consequence, we have

W2y, ) N F¥ (W, 07Vw)) £ 0.

Now for any n > N

0 # Wy, w) N fon, (W (" (w,07"w)))

C Wy, w) O fgn, (W (2, 67"w)).

Since the above holds for arbitrary w € €2, we can get the conclusion

foWe(z,w)) N Wy, 0"w) # 0

for n > N and any w € (2. O]

Now we are ready to prove Theorem 3.7. For any fixed € > 0, we first define N = N(e)
to be the desired space of the random specification.

Let 8 < min{e/2, €y, (), @(€/2)} be a positive number, where ¢, is the size of local
stable and unstable manifolds, d(¢y) is the number in local product structure corresponding
to €y and a(e/2) is the number in shadowing lemma corresponding to €/2. Define v = /8,

and let N be in Lemma 5.2 such that for any =,y € M, n > N, we have

foW3 (z,w)) N Wiy, 0"w) # 0 (5.2)

for any w € Q. Moreover, we pick N sufficiently large such that e~ < % and fix this N.
Now, let S = (7, P) be any N —spaced random specification. For each fixed w € €2, define
P,(t) .= P(t)(f'w) for t € I € 7, then S, = (w,7, P,) is a N—spaced w—specification by

Remark 3.4. We first prove that the N spaced w-specification S, is shadowed by a point.
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We define
(T4, 0w) = (P,(ay),0"w)

and define (z,,,0%w) inductively: once (z,,,0%w) is defined, pick
Tar € fot (WO (@, 0))) N W (P(agsn), 6%+ w) (5.3)

bk

for k € {1,2,...,m— 1}, where the right hand set is not the emptyset since ay1 —by > N and
(5.2). Define x := mp¢p~ " (x,,,,0°"w), and we are going to show z is (w, §/2)—shadowing

the w—specification S, i.e.,
d(¢'(z,w), (P,(t),0'w)) < B/2 for t € U, I,. (5.4)
For any fixed t € U",I;, there exists a j € {1,2,...,m} such that a; <t <b;. Then
(¢ (z,w), (Pu(t),0'w)) < d(¢'(z,w), ¢ (24,07 w)) + (¢ (24,, 0™ w), (P(t), 0'w)),
and we have
(¢ (24;, 0™ w), (Pa(t),0'w)) = d(¢'™" (w4,,07w), ¢~ (Pu(ay),07w)) < a < B/4. (5.5)
To estimate d(¢'(z,w), §'~% (x4,,0%w)), we are going to show that
£ (w,w) € W3 (677 (24, 0% w)). (5.6)
We prove (5.6) by induction, by construction of z,,,,, we know that

10 F g, € W™ (2, 09w)).
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J7 0 Jy8 g s € W (2, 0971)),

we can get

) —b; . —a; s .
ff’] © febjf:d © f‘zﬁl © fe“?i;i;xajw € W;L-e*AM (gbbj a1+l(xaj+179a]+lw))>

1.e.

flio f;l?i;ixaj+2 = W«?efkfvf<¢bj_a‘j+l(xaj+n 0%+ w))

cw e,XM(qbbj_“f(xaj,Q“jw)).

Y+

Inductively, we have

1 © fgumian € Wi (677 (24, 0% w)),

then (5.6) is proved. As a consequence, we have
d(¢'(z,w), §' ™ (24;,0%0)) < 27 = B/4. (5.7)
Combining (5.5) and (5.7), we conclude
d(¢'(z,w), (P,(t),0'w)) < B/4+ B/4 < B/2.

Next, we are going to prove if P,(t) Borel measurably depends on w € €2 for fixed ¢, then

the shadowing point x also depends Borel measurably on w.
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We define a sequence of points

7

(P,(t),0'w), ift e U, I,

(ye(w), 0'w) = { pt=a1(P,(ay), 04w), ift < ay

G (P (b)), 0P7w), if t > by,
\

Define

(0'w) = gu(w).

Since P,(t) is measurable for each fixed ¢, ¢; is a measurable function.

Notice that in (5.6) when j = 1, we have
forw € Wao (6"~ (20,0 w)),

then

for e W (24,0 w) = W3 (P,(a1),0"w). (5.8)

By the construction of x, , we also have
fora € Wi(Po(am), 0" w),

then

foma € WE(P,(by,), 0" w). (5.9)

By (5.8), (5.9) and (5.4), we know that (z,w) is (w, 3/2)—shadowing the sequence {(y;(w), 'w)}iez
where 7 = U, [; U{t < a1} U{t > b, }.
Moreover, (x,w) is the unique point (w, 8/2)—shadowing the sequence {(y;(w), 0'w)}icz.

In fact, if both (z,w) and (2/,w) are (w, 5/2)—shadowing the sequence, then
d((z,w), (v, w)) < B < d(eo),
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as a consequence, (z,w) = [z, 2], is defined. Pick n > b, big enough, then

dy(z, 7)) < e ™y (mad™ (2, w), T (2, w))
< e " (dM(ﬂ-qun(x/’ w)’ WM¢n(x’ w)) + dM(ﬂ-Mgbn(x’ w)’ WMgbn(Z? w)))

S e_nAO (ﬁ + EO)a

and

dy(z,x) < 6_")‘°dM(7rM¢>_”(z,w),WMQS_"(Q:,W))
< e M (dy (mard " (2, w), T (@ w) A+ dar (T (2, w), g (2, w)))

S €7n)\0(60 + ﬁ)

Hence
dyr(z,2') < dpr(z,2)) + dar(z,2) <27 (g + ) = 0 (5.10)
as n — 0o.
Fori > by, let 7; = [—i, a;)UUT, [;U(b,,, 1], and define a multivalued function #; : Q — 2M

for any ¢ € N by

Ti(w) = () mud{ (2, 8'w)] d((z,0'w), (ye(w), 6'w)) < 5/2}

teT;

for all w € Q. Z;(w) is nonempty by the existence of the shadowing point, and Z;(w) is closed

by the continuity of ¢(-,w). Moreover, we also have that

graph(#;) = {(#i(w),w) : we Q} =[] ¢7(B;(6/2),

teT;

where

By, (8/2) = {(z,0'w)| d((z,0'w), (§:(0'w),0'w)) < B/2, w € Q}
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is the /2 neighborhood of ;. Since ; is measurable, By, (5/2) is a Borel measurable subset

in M x Q. Thus ¢ *(By,(8/2)) is also a Borel subset of M x . Then by the selection
theorem (Proposition 2.17), Z; can produce a selection &; € L>(2, M) with that graph(z}) C
graph(z;). Moreover, Z; converges to a measurable function by (5.10). Hence the shadowing
point x is Borel measurably depends on w € ().

Now for each fixed ¢t € U~ I;, by (5.4), we have
dar(P,(t), fra(w)) < /2 for all w € Q.
Then by the definition of P,(t), we have
dy(P(t)(0'w), flo(w)) < B/2 for all w € Q,

ie.,

die ) (P(1), ¢ (x)) < B/2. (5.11)

Next, for the case ¢ > N+b,, —ayq, let 7/ := 7U{{a1 +q¢}} and define P’' : 7/ — L>(Q, M)
by P'|; :== P and P'(a; + q) = P(a;y). This S’ = (7', P’) is clearly N—spaced, there exists a

g € L>(Q, M) B/2—shadowing this new specification,i.e.,
dieon(9'(9), P'(1) < /2
for t € 7. Define ¢’ = ¢™ (g), then we have

i@ (9U(9), 9') < dr@an(0U(d), P'(¢+ a1)) + drse(ann (P'(q + a1), g))
< B/2+ dp~(P(a1), 4

< B2+ 8/2<p.

Since < a(e/2) and {¢'(¢')}¢= is periodic B—pseudo orbit, then by Corollary 4.6, there
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exists a unique z € L®(Q, M) such that ¢9(z) = z and z is ¢/2—shadowing this periodic
pseudo orbit.
Now define z := ¢~ 2z, then z is periodic under ¢ with period ¢, and for t € I € 7, we

have

< €.

die=(0,10)(0'(2), P(t)) < dr=(ean (6'(x), 8'(9)) + di=a.00)(#'(g), P(1)) < % + §
Thus, ¢ has the random specification property.

On the other hand, assume ¢ has the random specification property. For any nonempty
open sets U,V C M, we can pick points x € U and y € V together with ¢ > 0 such that
B.(x) C U, B(y) C V. Then there exists an N = N, corresponding to € in the random
specification property.

Let ay = by =0, ag = by = N, and define P(a;) = P(by) = z, P(ay) = P(by) =y, then
there exists a Borel measurable map g € L>(), M) e—shadowing this random specification.

As a consequence, we have
dyr(z, g(w)) <€, and dy(FYg(w),y) < e, Yw € Q.

Hence we have

PN {wh x U)N{oNw} x V £ 0, Yw € Q.

Now for any n > N, we define a; = by = 0, as = N, by = n. Let P(a;) = P(by) = =,
P(by) = y and P(i) = ¢~ (=N+i=a)p(p)) for ay < i < by, then there exists a Borel

measurable map ¢’ € L>(§2, M) e—shadowing this random specification, i.e.,

dy(z,g(w)) <€, and dy(Flg(w),y) <€, Yw € Q.
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As a consequence,
"({w} x U)N{0"w} x V #0, Yw € Q, Yn > N..

Hence ¢ is topological mixing on fibers. The proof of Theorem 3.7 is done.

5.2 SPECIFICATION ON THE SPACE OF RANDOM PROBABILITY MEA-

SURES

In this section, we prove Theorem 3.8.

First, we prove that ¢* : Pro(M) — Prq(M) defines a homeomorphism with respect to
the narrow topology. Pick any sequence u® — p in the narrow topology. For any random
closed set C, define C'(w) := (f,) 'C(6w). Using the selection theorem (Proposition 2.17),

we can easily see that C” is a random closed set. Now

«

i sup 63 (C) = lim s / (6" 1) (C(w))dP(w)

«

~ limsup / (6 1) (C(0w) AP (w)

~ limsup / 12 ((£.)1C (0w))dP (w)

«

= limsup/g,ug(C"(w))dP(w)

«

= lim sup p*(C")

«

< u(C")

= ¢"u(C).

Hence ¢*u® — ¢*u by the Portmanteau theorem (Proposition 2.18). Similarly (¢*)™! :=
(¢~1)* is also continuous with respect to the narrow topology.

For any g € L>(Q, M), define §, by w — (04)w = 0g(y € Pr(M). Then for fixed w, (dg).,
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is a Borel probability measure on M and for each B € B(M),

0, ifgw)¢ B
w > (0g)w(B) = d4()(B) =

1, if g(w) € B.

which is measurable. Hence §, € Prq(M) for each g € L>(Q, M). We call §, by random
Dirac measure, and it is also named random counting measure or point process [35]. We also
have ¢*0y = 05,

For any n € N, let Prq (M) denote the collection of random probability measures of the

form
1 n
- 5.
n Z gi»
=1
where g; € L*°(Q, M) and g; are not necessarily distinct.

Lemma 5.3. U,enPro (M) is dense in Pro(M) with respect to the narrow topology.

Proof. Pick any p € Prqo(M), and any n > 0 fix. Then w ~ pu, is measurable with
respect to the Borel o—algebra of the narrow topology on Pr(M). Notice that P on € is
a Borel probability measure, hence regular. Pr(M) is a compact metric space with respect
to Prohorov metric, hence second countable. Then we can apply Lusin’s theorem, we can
choose a compact set £ C Q with P(Q2 — E) < 7 such that w ~— p, restricted on £ is
continuous. Moreover, w > p,, on E is uniformly continuous, i.e. there exists £ > 0 for any

wi,wy € K

do(wr,wa) < & implies dp (e, , fuy) < n/4. (5.12)

Now let {x;}*_, be a measurable partition of F, and size of each y; less than &. Pick any
w; € x; and fix, then {w;}¥ | is a é—net in E. Consider {u,, }*_,. Notice that U,en Pr, (M)
is dense in Pr(M) by Proposition 2.14 in [27], where Pr, (M) is the set of measures on M

of the form
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1 n
SO DL
i=1
where the x; are (not necessarily distinct) elements of M. We can pick a sequence of points,

{xi;}iz1,. kj=1,.n, in M for some n (we can pick a common n since we always can use the

least common multiple) such that

1 & .
d, (uwi, - 25) <n/aforallie{l,... k}.
=

Then for any w € x;, by using (5.12),

1 1
dy (:uw’ n Zéwi,j) < dp(p, fheo;) + dy (Nww n Zéwi,j> <n/2.

j=1 j=1

Now define g; € L>*(Q, M) for j € {1,2,...,n} by

~ Tij, ifwe Xi
gi(w) = (5.13)
L1,5, ifweQ—F.

Each y; is measurable map since g; is a simple function. Then for w € x;, we have

1 & 1 &
dp (/Lwyﬁz(sﬂj(w)> = dp (Nwaﬁzém”> < 77/2
j=1 j=1
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n

k’ n
= Z QLm (Z/ dp (1, % Z 5@j(W)>dP(W) +/ )dp (Mw % Z 5@j(w)> dP(w))

om 4
meN
Hence U,enPra, (M) is dense in Pro(M). O

Now, we are ready to prove the topological dynamical system (Prq(M),¢*) has the
specification property.

Let € > 0 and fix this €, let NV := N(¢/2) be the number in random specification property
corresponding to €/2. Let I; = [a;, b for i« = 1,2,...,;m with a;;; — b; > N for i €
{1,2...,m — 1}. Given any random probability measures {u;}"; C Pro(M), define P :
U I; — Pro(M)

P(j) = (¢") ™ (w) for j € [a;, bi].
and let K > N(e/2) + b,, — ay,

Notice that Prqo(M) is a compact metric space with respect to the random Prohorov
metric, and ¢* : Pro(M) — Pro(M) is continuous with respect to the narrow topology.

Hence ¢* is uniformly continuous since Prq(M) is compact with respect to the narrow

topology. Then there exists an 7 > 0 such that

drp(p,v) < 17 implies dyp((6°) 11, (¢*)v) < /2 for 1 < j < by
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Apply Lemma 5.3, there exists v; € Prq (M) for some integer n such that d,(u;,v;) < n for

1 <7 < m. Denote

1 n
v = — E Ogi for i € {1,2...,m}.
n
I=1

Since ¢ has the random specification property, then there exists a z, € L*>(Q, M) with
X (z) = z and
dre(Q,M) (éjzl,&_aigf) <e€/2

fora; <j<b,i=12....mandl=1,2,...n

Define p := £ 3" | 6.,. Then

1 & 1
— E;dé}(zl = EZ(SZZ = pP.

For a; <j<b;andie€ {1,..,m},

| 1 1 ¢
drp((¢") p, (&7 " 1i) = (gz wszZ‘s&-%gf)
=1 =1
1 n
= Z_SUP{/ ﬁz(%f‘zn(w)( = Og-uighy ) (9) AP (W),
Gm ™" =1

meN

g€ BL(M).0<g<1, [g]L<1}

Z/ (2 (@), (37 ) ) AP ()

mGN

< Z Q_mﬁ ; dreo,m) (&2, ¢ (g;))

meN

< €/2.
Then by the triangle inequality we have

dp((0°) (p), (&)~ (1)) < dp((&7) (), (&7~ (1)) + dp((&7) ™ (1), (&7) ™ (112))

<€/2+¢€/2=c¢,
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for a; < j <b;,i=1,..,m. Hence (Prq(M), $*) has the specification property. The proof

of Theorem 3.8 is done.

5.3 PosiTivity OF TOoPOLOGICAL FIBER ENTROPY

In this section, we prove Theorem 3.9.

For any ¢ € (0,¢y) a sufficiently small number and fix this e. We pick any finite
3e—seperated subset of M, named {w;}¥_,, with respect to dy;. Define &; € L>(Q, M)
by z; = x;.

Let N = N(e) be the spacing number in the random specification property corresponding
to e. For any n—tuple (o, ..., 2,_1) with z; € {@;}F_, for j = 0,1, ...,n—1, define P(jN) = Z;.
Apply the random specification property to I; = {jN} and this P defined above, for any

w € ), there exists a z(w) € M, such that
A((z, V), 7 (2(), ) < €

If (20, .--2n-1) # (20, -+, 2,_1), then there exists a j such that z; # 2. Let z(w) and 2'(w) be

n—1

the corresponding shadowing point, then

dynn (2(w), 2 (W) > d(fIV2(w), fIV 2 (w))
> d(z;, Z;) —d(fIN (W), z;) — d(zj, N 2(w))

>3c—€c—¢€—c¢c

Hence there are at least k™ points in M, which are (w, e, nN)—seperated. Then
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1
hiop(@P|ar,) = lim limsup — log N(w, n,n)
n

n—=0"  nooo

1
> limsup — log N (w, €,n)

n—oo T

1
> h?j}ip AN log N(w, €,nN (€))

> lim sup log k"

n—00 nN<€>
_ logk
~ N(o)

> 0.

The proof of Theorem 3.9 is done.

CHAPTER 6. EXPONENTIAL DECAY OF RANDOM

CORRELATION

In this chapter, we prove Theorem 3.10. The proof is based on studying of the fiber transfer

operator L,,, which is defined by

Lug: M = R, (Lug)(x) = — L) 0) (6.1)

- [det Dygyro ful

for any measurable observable function ¢ : M — R. We denote

L' = Lyp-1,0---0Lg,0L, forn €N, for all w € Q.

w

We first construct the suitable convex cone of observable functions C,, on each fiber in Section
6.1. Then in Section 6.2, we prove that the transfer operator L, maps C,, into Cy, and the
image of LY has finite diameter with respect to the Hilbert projective metric on the cone
Cyn,, uniformly for all w € 2, where N comes from the topological mixing on fibers property.

Birkhoff’s inequality implies the contraction of LY for all w € Q. In Section 6.3, we find the
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relationship between the unique random SRB measure and operator Ly, . We show the
exponential decay of past and future correlations in Section 6.4 and Section 6.5 respectively
by using the contraction of Lj_, and L} for n > N.

Before starting the proof, we recall some constants that will be used later on. Let K; be

the constant in Lemma 4.9 such that

| det (D fo)

Es(r7w) - det(Dmfw>

B ew)| < Kid(x,y) for any z,y € Wi(z,w), 2 € M.

By the compactness of €2 and M and the continuity of f, on w, there exists a constant

Ky > 0 independent of w such that for any z,y € M,

|log |det D, f.,| — log |det D, f,,|| < Kad(z,y). (6.2)

Let ag := max{aj, ag} and vy := min{y(, {/}. Then Lemma 4.20 and Proposition 4.21 hold
for constants (ag, ). This 1y is the desired 14 in the statement of Theorem 3.10.
Now Let’s pick any u, v € (0, 1) satisfying 0 < p+ v < 14 as in the statement of Theorem

3.10 and fix p and v. We also pick p; € (0, 1) an auxiliary constant close to 1 and such that

0<p+v <. (6.3)

Now we are going to prove Theorem 3.10 for fixed u, v.

6.1 CONSTRUCTION OF BIRKHOFF CONE

In this section, we will first construct convex cones of density functions on each local stable
leaf. With the help of these convex cones of density functions on each local stable leaf, we
can define our desired convex cone of observable functions on each fiber. The definition of
the convex cone, projective metric on the convex cone and Birkhoff’s inequality are recalled

in the Appendix.
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In the following, we always consider the local stable leaf v(w) having size between ¢/4
and €/2, i.e. there exists a ¢ € y(w) such that W, (z,w) C y(w) C Wi, (z,w), without
further clarifications.

The cone of Holder continuous densities on a local stable leaf (w) with constant (a, u),

D(a, p,v(w)), is the collection of all function p(-,w) : y(w) — R satisfying the following

conditions:
(D1) p(xz,w) >0 for x € y(w);
(D2) for all w € Q and any z,y € y(w), |log p(x,w) — log p(y,w)| < ad(z, y)*.

It is easy to check that D(a, u,v(w)) is a convex cone (see Definition A.1 in the Appendix).
Next, we will introduce the Hilbert projective metric d. (-, ) on D(a, i, y(w)).

Now for any p;(-,w), p2(-,w) € D(a, u,v(w)), denote p;(w)(:) := pi(-,w) : y(w) — R for
1 =1,2, define

a(p1(w), p2(w)) = sup{t > 0: pa(w) —tp1(w) € D(a, p,7)(w)};

B(p1(w), p2(w)) = inf{s > 0: spi(w) — pa(w) € D(a, p,7)(w)},
with the convention that sup ) = 0 and inf ) = +o00. By computation, we have

st o).

_ _ . IOQ(xu (,d) exp(ad(w, y)M)PQ(
(), ) = nt { 22 AL DE

o _ p2(z,w) exp(ad(x,y)*)pa(z, w) — pa(y,w)
At ) =, o)~y YT}
(6.5)
Now define
d’y(w)(ﬁl(w);ﬁQ(w)) — log 67(@(@(“)792(“)))7 (6.6)

Oy (w) (pl (W)a P2 (W))
with the convention that d,(.(p1(w), p2(w)) = o0 if a(p1(w), p2(w)) = 0 or B(p1(w), p2(w)) =

Q.
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By the property of projective metric, the followings hold:
(P1) dyy(p1(w), p2(w)) = dyw)(P2(w), pr(w));
(P2) dyw)(p1(w), p2(w)) < dye) (P1(w), P3(w)) + dye) (P3(w), p2(w));

(P3) dyw)(p1(w), p2(w)) = 0 for all w € Q if and only if there exists a constant ¢ € R* such

that pl('aw) = tpz(-,(,d).

Note that (P2) and (P3) implies that dy,)(p1(w), p2(w)) = dyw)(t1p1(w), tape(w)) for any
ti,to € RT.

Now for any w € €, and a local stable leaf v(w), we subdivide f'v(w) into connected
local stable submanifolds of size between ¢/4 and €/2, named 7;(0~'w) for i belonging to a

finite index set. For every p(-,w) € D(a, a,y(w)), define

d tDm —1w S(x.0— 1w _
= [det Dafy- oo )‘p(f9_1wx,w) for z € (0 'w). (6.7)

4 971 .
P (x7 W) | det sz0*1w|

For p(-,w) € D(a,a,v(w)) and for any bounded and measurable function ¢ : M — R, we

have

/ ( )(Le—lww)(y)p(y,w)dmw(m (y)

o((fo-1)"'y)
- -y, w)dm ) ()
;/J;elw%(elw) ’det D(fg—lw)_lyf9_1w| ()

QD(ZE)
- SO et Dy fyro|gotag-1n | A -1 .
: /%(9_%) (et Dy fooro] p(fo-10x,w) - | det Dy fo-1| B (z,0-10) [dMr, 910y () (6.8)

-y / . )(p(x)pi(x,e1w)dm%(9_1w)<x). (6.9)

Given pair of local stable leaves vy(w) and ¥(w). With the help of holonomy map 1, :

(w) = v(w), we can define the distance between §(w) and ~y(w) by
d(Y(w), 7(w)) := sup{d(z, Yo, (2)), = € Y(w)}.
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For every p(-,w) € D(aq, p1,v(w)), we associate the random density 5(-,w) on §(w) by
5, 0) = plih(2),w) - | det D ()] (6.10)
By changing of variable, we have

/ (i, w)dmis () = / Py, )i (1).
A(w) v (w)

Lemma 6.1. Let ay be any number depending on p such that

K+ Ky

o < (6.11)

Let a, depending on i and ay, be any number such that

arayt + ap < g. (6.12)

Then there are Ay = A(a1, 1) > 0 and Ay = A1(A1,a) < 1 such that
(i) if p(-,w) € D(ar, p,y(w)), then pi(-,0~'w) € D(e™Mar, p, %i(0~'w)) C D(ar, p, (0~ 'w));
(i) if p(-,w) € D(§, p1,7(w)), then p;(-,07'w) € D(e™ 1§, 1, 7:(07'w)) C D(§, p, %(0~'w));
(iii) if p(-,w) € D(a, p,v(w)), then pi(-,0~'w) € D(e"Ma, u, 7(0~'w)) C D(a, (0~ w));
(M}) let pl<'7w)7 p”(*,&)) < D(a’7 Hs 7("‘})); then
-1y (A6 0), 707 10)) < Ay (7 (), 7()),
where F(071w)() 1= pl(07w), FO-W)() 1= P, 07w, FOTW)() = p( 07 w)

and p"(07'w)(:) == p"(-,07'w), dyw) and d., g1, are the Hilbert projective metric on

D(a, p,v(w)) and D(a, 1, 7i(0~'w)) respectively,
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and

a

Sm). (613

pr(,td) < D(alaula’Y(w))’ then ﬁ("w) < D(a/27M1V0a’7(w)) - D(

Proof of lemma 6.1. We first prove (1). Let p(-,w) € D(ay, p,y(w)), clearly, p;(z, 0 'w) >0

Ki+K>

m, we ple >\1 > 0 so that a, > Bt K, > 0.

for all z € v;(6~'w). Since a; > T —exp()

Then for any z,y € v;(0~'w)

| Tog pi(z, 0™ 'w) — log pi(y, 0~'w)|
< |log p( fo-10%, w) — log p( fo-1,y, w)| + |log | det D, fy-1,,| — log | det Dy, fop-1,||

+ | lOg ‘ det sz9—1w|Es(:r,9—1w)| - log | det Dyfa—lw

Es(y,G—lw)H
< a1d(f9—1w$, f@‘lwy>u + Kld(xa y) + K2d<x7 y)
< areMd(z,y)* + (Kq + Ka)d(z,y)

< Cll@_)‘ld(xa y)r,

This proves part (z). Similar proof can be applied to (ii) and (iii) by the choice of a.
Next, we prove (iv). Now we have a linear operator that maps from cone D(a, p1,y(w))
to cone D(e ™a, p,v; (0~ w)) C D(a, p,v;(0~'w)) defined by (6.7). By Birkhoff’s inequality

(Proposition A.4), if
R(0™'w) = sup{d,,(9-10) (7;(0~'w), p} (0~'w)) : 0/, p" € Dla, u,7)} < o0,

then

o010y (P07 ), Y (07'w)) < (1= e MO, (7 (W), P (), (6.14)

where d,(,) and d.,9-1,, are the Hilbert projective metric on D(a, pt,v(w)) and D(a, p, 7;(60~'w))
respectively. To estimate R(0~'w). It suffices to estimate the diameter of D(e=*1a, y, v;(6~'w))

in D(a, p, %(0~'w)).
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Denote D, (v;(6~'w)) by the collection of all measurable functions p(6~'w) : v (07 'w) —

R such that p(0~'w)(x) > 0 for x € (0~ 'w). D, (v;(6~'w)) is a convex cone obviously.

g (010 (P10 W), pa (07 w)) = sup{t > 01 pa(07'w) —tp1 (07 w) € Dy (3(07'w))};
(6.15)
By o1 (P07 W), p2(07'w)) = inf{s > 01 sp1 (07 w) — pa(07'w) € Dy (07 'w))},

(6.16)

with the convention that sup ) = 0 and inf ) = +o00. We define the Hilbert projective metric
on D (7i(07'w)) for pi1(07'w), pa(0~'w) € Dy (7i(0'w)) by

Biao-10) (1 (07 w), p2(67'w))
a1y (P1(071W), p2(071w))’

By (010 (01 (670), p207')) = log (6.17)

with the convention that d ,g-1.)(p1 (0 'w), p2(07'w)) = 00 if oy (g-10)(P1 (0 W), p2(0~'w))

=0 or B4 5(0-1w)(P1(07'w), p2(0~'w)) = 0. By computation, we have

(P 07) (07 0) = inf {2 s e b (69
B o100y (p1(07 W), po(0'w)) = sup {%, x € (6 1w)} . (6.19)

Given py(0~'w), po(0~'w) € D(e ™Ma,p,v(07'w)), p1(0~'w) and pa(0~1w) belong to

D, (7;(07'w)) automatically. For any z,y € v;(6~'w),

exp(ad(z, y)") — pa(0~'w)
exp(ad(z, y)i) = pr(0~1w)(y)/p1 (0~ 'w)(x)

Y
Neg
SN—
~
Rl
)
—~
>
L
&
S—
—
8
SN—

o _explad(z,y)") — exp(e”" ad(x, y)")
> L

exp(ad(z, y)*) — exp(—eMad(x, y)*)

Z T1,

where

z — 2P(=M) 1 —exp(—X\)
e {z —mem(-h) CC } 1+ exp(—X\1) (0.1)
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Therefore, comparing (6.4) and (6.18), we have

(0-10) (1 (07 w), p2(07'w)) > Ty 4 0-10) (P1(07 W), pa(071w)).

Similarly, let

7 — 7z~ &P(A) 1+ exp(—X\)
TQZSUP{W Z>1}:Tp(_>\l>€(lyoo)7

we have
Byo-10) (1 (07 w), p2(07'w)) < 7284 (9-10) (91 (07 w), 207 'w)).

Thus, we conclude

010 (P10 'W), Pa(071w)) < dy y0-10) (1 (07 w), (07 'w)) + og(72/T1). (6.20)

Next, we estimate d ) (7107 w), p2(0~'w)) for p1 (07 w), p2(0~'w) € D(e ™a, o, v; (0~ w)).

By property (P3), we can normalize p; (6~ 'w) and py(6~'w) by

/ P07 w) () dm g 10 () = / P20 w) (@) o 10 () = 1.
7i(0~w) 7i(07 w)

Then condition (D2) in D(e *a, p,v;(0~'w)) implies for all x € (6~ w)

exp(—e"\la(diam’yi(O_lw))“) > 6—2exp(—)\1)a > 6—2(1
" e .

52(0—%)(3:)
Z “exple Maldiamm (0-w)e)

It follows that oy, (9-1.) (1 (07 w), pa (0~ w)) > e~2. Similarly, By . 6-10) (0711 (W), p2(07w)) <
e?*. So we have

d%(eflw)(m(@_lw), p2(07'w)) < d+m(9*1w)(/71(9_lw)7 p2(07'w)) + log (/1)
< 4a + log(ma/m1). (6.21)
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As a consequence, R(0~'w) < 4a + log(mo/m1). By (6.14), let A} = 1 — e~(a+los(m/m))  The
proof of (4) is done.
Now, let’s prove (6.13). For all w € Q, p(x,w) > 0 is obvious. Moreover, for any

z,y € ¥(w), we have

[ log p(x,w) — log p(y, w)]
< [log p(ths(2), w) — log p(vh(y), w)| + [log | det Dy, (x)| — log | det Diby, ()|
< a1d(thu(2), Yo (y))" + aod(z,y)"
< ayalytd(z, y)""° + apd(z,y)"°
< (araf' + ag)d(z,y)"*°

< a/2d(z,y)"",

provided assumption (6.12). Soif p(-,w) € D(aq, p1,7(w)), then p(-,w) € D(a/2, pivy, ¥(w)).
[

Now, we use convex cone D(a1, it,y(w)), D(5, 1, v(w)) and D(a, pu,y(w)) to define the
convex cone of observable functions on each fiber. Let b,c > 0 be parameters to be deter-
mined later. For any w € 2, define C, (b, c,v) be the collection of all bounded measurable

functions ¢ : M — R satisfying:

(C1) fv(w) o(z)p(z,w)dm.)(x) > 0 for every local stable submanifold y(w) C M, hav-

ing size between €/4 and €/2, and every p(-,w) € D(a/2,pu,v(w)) satisfying that

f’y(w) p(x7 w)dm’Y(w) <I> = ]'7

(C2) [log [, @20 (@, ) (@) —log [, @(2)0" (&, w)dmaey ()] < bily (7 (), 7/())

for every local stable submanifold v(w) C M, having size between €/4 and €/2, and

p(w), p'(w) € D(a/2,p,v(w)) C Dla,p,v(w)) satisfying [ ¢'(2,w)dm, ) (z) =
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fw(w) P’ (z,w)dmy () = 1 and dy)(-,-) is the Hilbert projective metric defined on

D(a, pt,y(w)).

(3) 1108 [0 ) )dms (o) = Vo [y 000)00)ms o (0)] < (), 7)) for
every pair of local stable leaves v(w), ¥(w) C M, having size between €/4 and ¢/2, and
7v(w) is the holonomy image of ¥(w), p(-,w) € D(ay, pn,v(w)) and p(-,w) corresponding
to p(-,w) defined as (6.10).

Remark 6.2. The choice of parameters a, ay, j1, b and c is used for proving the contraction
of the transfer operator on the convex cone of observable functions. We just need to guarantee

that all auziliary parameters only depend on p and v.

Remark 6.3. Note that (C2) is automatically fulfilled if ¢ is nonnegative. In fact, notice

that
/ P (x, w)dmy ) (z) = / P (z,w)dmy ) (z) =1,
7(w) v(w)
so we have
ple,w) ple,w)y, o pw) Loy
< su inf {——=%} = exp(dy (v w), p(w
p”(m,w) — xEW(IZJ){p”(xaw) }/yE’y(w){p”(ZL’,w)} p( +,7( )(p( ) p ( )))
< expldy (7 (), 7()).
Switch p' and p", we get % < exp(dy) (p'(w), p"(w))). (C2) is a consequence of these

two inequalities as long as b > 1.

Also note that positive constant functions belong to N,eqC.y(b, ¢, v) obviously.

Lemma 6.4. For each w € §, C,(b,c,v) is a convex cone (see Definition A.1 in the Ap-

pendiz).

Proof of Lemma 6.4. For any ¢ € C,(b,c,v), and t > 0, t € C, (b, ¢, v) obviously.
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Now, we prove the convexity, i.e., 1, s € C, (b, c,v) and t1,ty > 0, we are going to prove

t1p + taps € C,y(b, e, v). (C1) is automatically fulfilled. For condition (C2),

. /
b (P (@), () < S Pil@)p! () dmy ) ()
St #i(@)p" () ()

< by () (P (w),0" (w))

for i = 1,2. The above implies that

Sy (trp1(2) + tapa(@)) o' (2, w)dmy )
fy(w) (tip1(x) + tapa(2)) p' (2, w)dimy )

e_bd'y(w)(f_)/(w)7p”(w)) S S ebd'y(w)(f_)/(w)7ﬁ”(w)).

So (C2) is verified. Similarly, (C3) is also verified. Therefore, t1p + taps € C(b, ¢, v).

Now, we prove that —C,, (b, ¢,v)NC, (b, c,v) = {0}. Suppose ¢ € —C,,(b, ¢, v)NC, (b, ¢, v),
then there exists ¢y, ps € C,(b,c,v) and t.,t2 | 0 such that ¢ + t!(¢1) € C,(b,c,v) and
—p+12(p2) € Cu(b, c,v). Hence, for any local stable leaf v(w) and p(-,w) € D(a/2, u,y(w)),

we have

/( )(90 + L (01)) (@)@, w)dma ) > 0;

/ (e @i >0

Let n — oo, we have

| ot yime) = o (622

for any p(-,w) € D(a/2, u,v(w)) and any local stable leaf v(w). Now pick g € C*#(M) any

pu—Holder continuous function, and define g(z,w) = g(z). Choose B = 2‘?1 . then
log(g*(z,w) + B), and log(g (z,w) + B)
are (a/2, u)—Hoélder continuous, where

Jly = sup —————
| |'u x#yeM d(l’,y)u
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Then (g7 (-,w) + B)|yw), (7 (sw) + B)|yw) are in D(a/2, u,y(w)). By (6.22) and linearity
of integration, we have

/ PG () =0

For any fixed w, we can pick g € C%*(M) L'— approximating ¢(-), hence we have
fv(w) ©*(z)dmywy(z) = 0. So p(z) = 0 for € y(w). Since y(w) C M, is arbitrary,
o(-) =0. O

Now C,(b,c,v) is a convex cone, so we can define the Hilbert projective metric on

C,(b,c,v). For any @1, pe € C,(b, c,v), define

(@1, 2) ==sup{t > 0: pg —ty; € Cy(b,c,v)},
Bu (@1, 02) :=sup{s > 0: sp — s € Cy(b,c,v)},

with the convention that sup () = 0 and inf ) = +o00, and let

ﬁw(sf?h 902)

d., (o1, p2) := log ,
(1 2) aw(901,802)

with the convention that d,(¢1,p2) = oo if a,(p1,p2) = 0 or B,(p1, ) = co. Without
ambiguity, we write f,y(w) @pdm. . instead of f'y(w) o(x)p(z,w)dm. ) (z). By computation,

we have that

f’y(w) P2 dmmy () f»y(w) P20 dimy ()
f'y(w) prp/dma )’ f'y(w) P1p/dimy ()
f:y(w) ©2pdms ()
S5 P1PAM5 )

Oéw(%a 902) = inf { fw(ﬂla P”a ©1, 802) (6-23)

f’y(w) S02pd7n7(‘*))
[y prpdme )

77w<,0>,57 9017()02)7 77w(5707<P1a902)} )

where

exp(bdy(w) (P'(w), 0"(w))) = [y 20" A )/ [,y P20 A ()
exp(bdy(w) (7' (w), 0"(w))) = [y L1710 0) ) [y P10 Ay (e))

&0, 0" o1, p2) 1= . (6.24)
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exp(cd(y(w), ¥(w))") — fa Papdms )/ f'y(w) P2pdimy ()
exp(cd(y(w), ¥(w))) — f@ P1pdms )/ fv(w) P1pdM ()

N (P, Ps P15 p2) 1= (6.25)

and the infimum runs over all p/ (-, w), p”(+,w) € D(a/2, u,y(w)) with fv(w) p7(x, w)dmay(x) =
1 for 7 = 1,11, every pair of local stable leaves v(w) and 7 (w), p(-,w) € D(ay, p1,v(w)) and

corresponding p(-,w) € D(a/2, i, 7(w)). Similarly,

f’y(w) pap'dm () ffy(w) P2’ dmy ()
ffy(w) P1p/dmeyw)’ f'y(w) P10 dmy ()
ffy(w) P2y () f:,(w) p2pdms ()
f'y(w) ©1pdMy () f’y(w) 1AM ()

Bu(p1, p2) = sup { &P, 0", 01, 02) (6.26)

(P, P, P1, P2), N (P, P P15 m)} :

where the supreme runs over all p/(-,w), p"(-,w) € D(a/2, u,v(w)), fv(w) P (2, w)dmy e (x) =
1 for 7 = 1,11, every pair of local stable leaves vy(w) and §(w), p(-,w) € D(ay, p1,v(w)) and

corresponding p(-,w) € D(a/2, pu, ¥ (w)).

6.2 CONTRACTION OF THE FIBER TRANSFER OPERATOR

In this section, we will prove that the fiber transfer operator L, maps C,(b,c,v) into
Copo(b,c,v) for all w € Q. Moreover, the diameter of LYC, (b, c,v) with respect to the
Hilbert projective metric on Cyn, (b, ¢, V) is finite uniformly for all w € €2, where the number
N comes from the topological mixing on fibers property. Birkhoff’s inequality (Proposition

A.4 in the Appendix) implies the contraction of the fiber transfer operator LY.

Lemma 6.5. Let Ay € (max{A,e "}, 1), then there exist constants by and cy such that for
any b > by = by(Aa, A1), ¢ > ¢y = co(v) and for all w € Q, we have Ly-1,(Cyp-1,(b,c,v)) C

C(Aab, Aoc,v) C C,(b,c,v). Recall that the fiber transfer operator Lg-1,, is defined by

Lo _ ol
(Lo-100) (@) |det Ds,_, y-1(2) fo-1ul

Proof of Lemma 6.5. Pick any w € ) and fix it. For any ¢ : M — R bounded and measur-

able, it is easy to see that Ly-1,0 : M — R is bounded and measurable.
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Let v(w) be a local stable leaf having size between €/4 and €/2 and every p(-,w) €
D(a/2, u,y(w)). we subdivide f;'y(w) into connected local stable submanifolds of size be-
tween €/4 and €/2, named ~;(#~'w) for 7 belonging to a finite index set. let p;(-,607'w) be
defined as (6.7). By Lemma 6.1,

pi(-,07'w) € D(e Ma/2, 1, 7:(07'w)) C D(a/2, p,7:(6"'w)).

Hence by (6.9), for any ¢ € Cy-1,,(b, ¢, v), we have

W = /( )(LefleD)(y) Py, w)dme ) (y Z/ 2)pi(x, 07 w)dm., -1, (x) > 0.
y\w (0-'w

So (C1) is verified.

Now for any p'(+,w), p”(-,w) € D(a/2, u,y(w)) such that

/( )p’(x,w)dm,y(w)(x) =1 and / P (x, w)dmy ) (z) =1,
Y(w

v(w)

we denote p} := (p'); and p! := (p"); which are defined as (6.7) on v;(0~'w). Define

o (@, 07'w) = iz, 0'w)) / By, 07 ) o1 (y) for @ € 74(0 ),
(01w)

o (2,07 w) = pll (z,0'w // P (y, 0™ w)dm7 o-1)(y) for z € Y (607 w).
(6— 1w)
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We have p (-, 071w), p7 (-, 0~ 1w) € D(e=%, p, (0~ 1w)) € D(&, 1, 74(6~'w)). Then

/ | )(LefleD)(y)P"(y,w)dmw(w)(y)

= Z/ (2, 0" w)dm, (g1 ()
i (0~ 1W

= Z/(e ', 0 w)dm., - 1w)(x)/ ()7 (2, 0 'w)dm., g-1.,) ()
Vi 1W

~i (0~ 1w)

<[ e (b o (670 500D [ o
Y0~ w) Yi(0~ w)

i

f'Yz(H 1w) pldm% 0~1w)
i f%(eflw PidMy(9-10)

(0~ 1, p?, dm'Yz(e ! w) — —
_Z f ) eXp(bAldy(w)@,(W%PH(W)))'/(9 ) dm (0~ 1w)s
z Yi —lw

(0-10) Pid MMy (0-10)

<

eXP(bdw(e—lw)(ﬁ;(e160)7/72/(9lw)))'/( )@Pédm%(e—lw)
(0~ 1w

where d.,p-1,) and d,(, are the Hilbert projective metric on the cone D(a, i, v;(0~'w)) and

D(a, pu,v(w)) respectively. Note that

p;’(l’, 071("}) o p”(fQ’lwxaw)
pi(z,07w) P (forum,w)

< exp(dy () (7' (w), p"(w))) for € 7,(0 w).
Hence we have

/ ( )(Le—lww)(y)p”(y,W)dmww)(y)

¥(w

< A1y ) (P (@),7" (@) gy () (P (@), ( )Z / 1 AN (910
(0—1w)

S eb/\zdv(w)(p’(w),pu(w))/ (Leflwso)(y)p'(y,w)dmy(w)(y),
¥(w)
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provided Ay € (Ay,1) and b > ﬁ := by. Switch p’ and p”, we get

/ o, LR W) () < PO / (Lo-100) )0 ()i (9):
'Y w

v(w)

So condition (C2) is verified.

Next, we verify the condition (C3). Given any pair of local stable leaves y(w) and J(w)
such that J(w) is the holonomy image of vy(w). For each fixed w € Q, let (607 'w) be
defined as before such that v(w) = Ufy-1,7:(0"'w), and let 3;(#~'w) be the holonomy im-
age of v;(071w) inside of (fyp-1,) " ¥(w). Naturally, we have J(w) = Ufp-1,7 (0 'w). For
any p(-,w) € D(ay,pur,v(w)), let p(-,w) be defined as (6.10), and we already see that
p(-,w) € D(%, o, ¥(w)) € Cla, p,7(w)). Let p;(-,0'w) and (p);(-,07'w) be defined as

(6.7) corresponding to p and p respectively, then we have

l Rl ) = 3 / L A (o)

/ﬂw)(Lg_lM)(y)m sy Z/'y o- u) pli(, 07 w)dms, (g1 ().

By Lemma 617 pi('76_1w> S D(G_Achlv:LLl?’Yi(H_lw)) - D(alvﬂlvvi(e_lw))' Since Y €

Cy-1,(b, ¢, v), we conclude for each i,

log/( 1 o(2)pi(, 07 W) dimey, g1 —log/( 1 )gp(m)ﬁi(%@flw)dmw_lw) (6.27)
(07 1w) 5:(0-1w

< ed(y;(07 w), 7 (0~ w))"

<ec- e—/\”d(y(w)ﬁ(w))”,

where

5i(2,07'w) = py (Y1, (@), 67'w) - | det D, (@) for @ € 5(0'w),

112



and ¢}_,  is the holonomy map between 7;(0~'w) and ~;(0~'w). To prove the condition

(C3), we need the following Sublemma:

Sublemma 6.2.1. There exists a Ko > 0 only depending on p such that for each i, the

following inequality holds

log/ go(x),é,»(x,@‘lw)dm%(gflw) — log/ cp(x)(ﬁ)i(x,Q_Iw)dm%(ng)
3:(0-10) 5:(0-1)
(6.28)

< Kod(y(w), 7(w))".

Once Sublemma 6.2.1 is proved, we combine (6.27) and (6.28) to obtain

log/ gp(az)pi(xﬁ_lw)dm%(gflw) — log/ gp(x)(ﬁ)i(m,9_1w)dm%(971w)
Yi(0~ w) Fi(0~1w)

< (cr eV + Ko)d(y(w), 7(w))"-

As a consequence,

log / (Lo-100) (y)p(y, w)dm . (y) — log / (Lo—109)(y)p(y, w)dmsw (y)
v(w) A(

w)

< (e e + Ko)d(y(w), F(w))”

< Aped(v(w), 7(w))”,

provided A\ € (e7*, 1), and ¢ > /\27+p0(7>\y) := ¢p. The proof of Lemma 6.5 is done. ]

Proof of Sublemma 6.2.1. Applying Lemma 6.1 and (6.13) to p(-,w) € D(ay, p1,v(w)), we
see that (p);(-, 07 'w), p:(+, 0~ w) both belong to D(a/2, 110, 7:(0'w)) C D(a/2, u, 7 (0~ w)).

Without ambiguity, we denote p’ := (p); and p” := p; for short.
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We normalize the random density p’ and p” by

o (z, 07 w) o' (z, 07 w)
f’n(e_lw) p’(m, e_lw)dm%(e_lw) (J?) ’ f’%(O—lw) ,0”(56, e_lw)dm’ﬁ(e—lw) (x) ‘

Then by condition (C2), we have

log/ e(2)p' (z, 0~ w)dms,g)-1 — log/ o()p" (2, 0 w)dms,g)-1.,
5:(0-10) 5071

< bd’}/i(@*lw) (ﬁ’(&‘lw), ﬁ”(@‘lw))

log/ p(z, 07 w)dms, -1, (2) —log/ P (z, 07 w)dms, g1, (2)]| .
Fi (0~ w) Fi(0~w)

+

Next, we are going to estimate the terms of the right hand of the above inequality. By

definition, we have expressions

_ |det Dxf@*%ulE“’ z,0 1w |
Pl 07 hw) = P B - p(Wafoum, )] det Dy ot
zJo— 1w
|det Dwé_lw(x)feflw Es( é_lw(x),e—lw)|

[det Dys (@) fo-10]

p/,(l'7 0_1("}) = : P(f@*lwiﬁg—lw(ff); LU) . | det Dx¢é—1w|'

By definition of holonomy map, we have
Py fo1,m,w) = p(foroVh-1,(7),w) for € F;(6'w). (6.29)
By Lemma 4.20, we have

‘ 10g | det Df9_1wx'¢w| - log | det Dx%—le S aOd(fé?*lw(x)a ¢wf071w($))V0 + aod(l’, wéilw(w))lfo

< ag(1+ e M) d(y(w), §(w))". (6.30)
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Combing Lemma 4.1 and Lemma 4.8, for all x,y € M, w € €2, we have

|| det D f.,

Es(x7w)| - | det Dyfw

B (yw)|| < 2C2d(z,y)". (6.31)

Then, by (6.31) and uniformly boundness of | det D, f,,

E‘S(x’w)|7 there exists a constant R

independent of x and w such that

log | det Dxfgflw‘Es(x’gflw)’ — log ’ det D¢271w(x)f971w Es(wé71w($)7971“’)|
< Rd(x, Y1, (7))"
< Rd(y,(07'w), 7:(0~'w))"™

< RemM0d(v(w), 3 (w))™. (6.32)
Applying (6.2), we have

log | det Dys | o fo1u] = log | det Dy fy- 1ol < Kad(w, th1,7) < Kae ™ d(7(w), ().
(6.33)
Then (6.29), (6.30), (6.32) and (6.33) imply

log/( )p'(w,@‘lw)dm%(gm)(x) — log/ P (2,07 w)dms, g1, (2)
¥ (0~ w

Fi(0~w)
< (ag(1 + e ™) + Re™0 + Koe™)d(y(w), F(w))™

= Kad(v(w),7(w))", (6.34)

and

/ -1 / -1
e~ Kad(y (@A) < ple,6” w) < sup Mgemmwm(w))vo_

eeqi(0-1w) P (2, 071w) T pesio-1w) P (2,07 1W)
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The above inequality implies that

Ay 5,(0-10) (P (07 w), 0"(07w)) < 2K3d(y(w), ()"

Similar to (6.20), we have an estimate

d’yi(é’*lw) (ﬁ/(e_lw)7 ﬁ”(e_lw)) < d+ﬂi(9*1w)(ﬁ/(9_1w)7 ﬁ//<€_1w>) + log (712(9_%‘))/721 (e—lw)) )

(6.35)
where
wY _ -1 " -1
f_l(eflw) — 1nf exp(ad(m, y) ) P (y7 (9 lw)/p, <I7 9 - w)7
a#yeyi(0-1w) explad(z,y)*) — p'(y, 0~ w)/p'(z, 6~ w)
d AN/ 6—1 " 0 1
%2(9—1&)) — sup eXp(a (fL‘, y) ) pl(y7 1(,(})/p/ (1:7 : W)
x£yev; (0~ 1w) exp(ad(x, y)ﬂ) - p (y7 0 W)/p (ZL‘, 0 (,U)
Denote

—1 p/(yv eilw) o v

Bl (ZL‘, Y, 0 CU) - p,(flf, 9_1(.{)) eXp( (ld(l’, y) >’
Ly Py, 0 w) v

B2 ('Tu Y, 0 w) - p”(l‘, 9_1(,4)) eXp( ad(x, y) )

Since p'(+, 07 'w), p"(+,07'w) € D(a/2, p, (07 w)), we have

log By (z,y, 0" w) = log p'(y,0~'w) — log p'(x, 0™ 'w) — ad(x, y)"

< gd(x,y)“ - ad(x,y)“
a
< —§d(w,y)“ < 0.
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As a consequence By (z,y,0 'w) < 1. Similarly, By(x,y,0 'w) < 1. Hence, on one hand

|Bi(x,y,07'w) — Ba(, 9,0 w)|
< max{By, By}|log By (x,y, 0 w) — log By(z,y,0 'w)|
< [log p (2,0 'w) —log p" (2,0 w)| + | log p'(y, 60~ 'w) — log p"(y,6~'w)|
< 2K3d(y(w), ¥(w))™

< 2Kd(7(w), 7 (). (6.36)
On the other hand,

|Bi(2, 9,07 w) — Ba(, 9,0 w)| < |log p'(x,07'w) —log p(y, 0~ 'w)| + |log p”(x,0~'w) — log p" (y, 0™ w)|
< 2. %d(l‘, y)uwo

< ad(z, ).
(6.36) and (6.37) imply that

1By, 67'w) — By(e,y,07'w)| < max{a, 2K }d(y(w), 7(w))" - d(z, y)"

= Kayd(y(w), ¥(W))” - d(z, y)". (6.37)

Then
1 — By(z,y,07'w) - |B1(z,y,07'w) — By(z,y, 0" 'w)|
1 — Bi(z,y,07'w)| = 1 —max{B(z,y,0 'w), Ba(x,y, 0 'w)}

< Kad(y(w),7(w))” - d(z, y)"
~ 11— exp(—%d(z, y)")

< Ksd(v(w), 7(w))", (6.38)

log
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where K5 := Ky - sup,¢q) < o0o. Hence we have

2
1—exp(—52H)

[log 72(6~"w) /71 (07 w)| < 2K5d(y(w), 3(w))". (6.39)
Let Ky = 3K3 + 2K, then by (6.34), (6.35) and (6.39), Sublemma 6.2.1 is proved. O

Let § € (0,€/8) be the constant in Lemma 4.3 corresponding to €/8, i.e., for any z,y € M,

d(z,y) < 0, for all w € 2, we have

Wes/8(‘r7w) N Weq;S(y7w> 7& @

Now let {Bjs/4(x)}senm be an open cover of M. Pick a subcover {Bs/4(x;)}i_; by the com-
pactness of M. Now by the definition of topological mixing on fibers, there exists a N € N

such that for any n > NV,

" ({w} x Bsja(x;)) N ({0"w} x Bsja(x;)) # 0 for any 1 <4,5 <. (6.40)

Moreover, we pick N large enough such that

M > 24, (6.41)

and

e e < 26 (6.42)

From now on, we fix this constant N. Next, we are going to show that the diameter of
image of L) v : Cp-ny(b,c,v) = C,(b,c,v) with respect to the Hilbert projective metric

on C, (b, c,v) is finite uniformly for all w € Q.

Lemma 6.6. Forb > by, ¢ > co, there exists a constant Dy = Do(Aa, a,b, ¢, N) such that for
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any w € §,
sup{du(Lp n 01, Ly v 02) © @1, 02 € Cygny(b,c,v)} < Dy < 00, (6.43)

where d,, is the Hilbert projective metric on C,(b,c,v).

Proof of Lemma 6.6. By Lemma 6.5, Lg-1,(Cp-1,(b,c,v)) C C,(Aab, Aac,v) C C,(b,c,v),
for all w € Q. Pick any ¢1,¢0 € LY v Cop-n,(b,c,v) C Cy(Aab, Xoc,v), by (6.24) and
condition (C2), we have
(0 5" 1. 00) exp (bl () (7' (W), 2"(w))) = [, ) P20 M)/ [y P20 At )
w\Ps P H¥1,¥2) = _ _
exp(bels () (7' (W), 7"(w))) = [, ) L1 A ()] [y 9L D)

exp(bdy ) (P (W), p"(w))) — exp(bAady(w) (7' )7 ()))
— exp(bdy ) (7' (w), p"(w))) — exp(=bAady ) (7

Z 73,

where 73 := inf{ 2= foQ ;2> 1} = {32 € (0,1). Similarly, we have
gw(plv p,la 1, 902) STy

for 74 = Z__Z;; 2> 1} = 1+’\2 € (1,00). Likewise, n,(p, p, ¢1,¢2) € [73, T4].

Let C , be the collection of all bounded measurable functions ¢ : M — R only satisfying
condition (C'1), which is a convex cone obviously. Next, we introduce the Hilbert projective

metric on C ,,. We define

y w(p1,p2) i=sup{t > 01—ty € Oy L}

Biwlpr, p2) ==inf{s > 0: sp1 — 2 € Cyu};
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with the convention that sup () = 0 and inf ) = +o0, and let

B w (o1, p2)

dy (o1, p2) = log
" a/-hw(gpla 902)

with the convention that d ,(¢1,2) = 00 if ap ,(¢1,92) = 0 or Si,(¢1,92) = c0. By

computation, we have

(6.44)

) P2y (4
ay (1, 02) = inf{f% ) 7 )}

o) P10dMA )

where the infimum runs over all p(-,w) € D(§, u,7(w)), v(w) any local stable leaf having

size between €/4 and €/2.

(6.45)

w gprdm w
ﬁ+,w(@1,§02> = Sup{f’Y( ) ~( )}

f'y(w) cplpdm')’(w)

where the supremum runs over all p(-,w) € D(§, i, 7(w)), v(w) any local stable leaf having
size between €/4 and €/2.
Compare (6.23) with (6.44) and (6.26) with (6.45), and notice that D(ay,u1,7y) C

D(§, 1, 7y), we have for o1, s € LéV,NwC’Q—Nwa), c,v) C Cyu(Aab, Aac, 1),

A, (p1, p2) > T304 (1, P2)

Bu(p1, 92) < TaBi w1, 02).

As a consequence, we have

_
(1, p2) < dy (1, p2) + log 7—4
3

To estimate dy (1, 92) for o192 € L)y Cop-ny,(b,c,v), it is sufficient to estimate the
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upper bound of

Sy P21 [ [y €101
f’y’(w) Qng,dm,y/(w)/ f'y’(w) QOlp,dm,y/(w)

f,y//(w) S02p//dmfy//(w) f,y,(w) (Plp/dmw(w)
f’Y/(W) SOZp/dm'Y/(w) fy//(w) wlp//dm'y//(w)

Sy 201 80) | Ly P10 Ly 91210/ [ )
f’y/(w) (p2pldm7,(w)/ f’y/(w) p/dm'yl(w) f"}///( ()Olp//dm'y// / f // //dm'y”(w)

for any random local stable leaves +'(w), 7"(w), p'(-,w) € D(5, 1,7 (w)) and p’(-,w) €

D(§, pt,7"(w)). Next, we are going to estimate

f’y”(w) p(@)p (@, w)dm.w) ()

Sy @)/ (@, 0)dmey ) () (6.46)

for p € LY n Co-ny(b,c,v) , p/(+,w) € D(a/2, 1,7 (w)), and p"(-,w) € D(a/2, p,7"(w)) with

f’y”(w) P”dmw(w) =1= f’y’(w) pldmfy/(w). Let

Then we define

ky(z,w) = ki (w)/ ki (w)dm. ) for x € ' (w),

7' (w)
ko (2, w) == ka(w // w)dmey ) for © € 4" (w).

By construction, we have ki(-,w) € D(a/2, u,y'(w)) and kq(-,w) € D(a/2,p, 7" (w)). Now
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by (C2)

fv”(w) () p!(x, w)dmayue ()
f'y’(w) @(I)p%(]ﬁ, (’U)dm"/,(w) (I‘)

Sy @)t (2, ) dmanie) (x) [y P @)k (@ )y (@) [ Fa(w)dmao)
fv,,(w)gp(m)l@( w)dm)(7) fy ) P2 (2, 0)dmey ) () fy(w) ky(w)dmy w)

< by () (0 (-w) k2 (@) | phabdy ) (0 (@) k1 () | f’y”(w) lfQ(w)dmv”(w)'
f'y’(w) ka(w)dmey ()

Sublemma 6.2.2. There exists a constant Dy = Dy(a,b,c, N) < oo such that

N A L
S Fr(@)dmy < D. (6.47)
fw(w) ko (w)dmey )

Now we let 75 = sup{zgf;jéz : z> 1} and 75 = inf{ Z,z_;zjl//QQ . z > 1}, similar to (6.21), the

diameter of D(a/2, u,v(w)) with respect to the Hilbert projective metric on D(a, i, y(w)) is

finite, i.e.,

() (P (W), ko (w)) < 4a + log 75/ 76, (6.48)

Ay () (P (W), k1 (w)) < da + log 75 /7. (6.49)

Hence (6.46) < e?2bUatlosms/7) ), - As a consequence, we have d. (1, po) < ethebldatlosns/mo) N2
and

d,, (@1, p2) < 64)‘2b(4a+1°g75/T6)Df + log 14/73 := Ds. (6.50)
Then the proof of Lemma 6.6 is done. O]
Proof of Sublemma 6.2.2. For ¢ € C,(b,c,v), we define

f’y(w) QD(.%)p(x, w)dm'y(w)
fv(w) p(x, w)dme ) ()

1@l + = sup ,

where the supremum runs over all local stable leaf «(w) C M, having size between €/4 and
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€/2 and p(-,w) € D(a/2, u,y(w)). Similarly, we define

S P(@)p(, w)dme )
f’y(w) p(J;? w)dm’Y(w) ('I)

[@llw,~ = inf

9

where the infimum runs over all local stable leaf v(w) C M, having size between €/4 and €/2
and p(-,w) € D(a/2, p,y(w)). Then (6.47) is a consequence if there exists D; = D;(a, b, ¢, N)
such that:

LN
sup I, @llove. < D for any ¢ € C,(b,c,v). (6.51)

wee [|IL5 ellone,-
We need some preliminary inequalities before we start proof. By the continuity of f, in

w, there exists a constant Kg such that

Kit < |det D, f,| < Kg for all (z,w) € M x €. (6.52)

For any n > 1, for any (0"w) C Mpn,, local stable leaf having size between €/4 and €/2, we
break f,."v(6"w) into finite pieces of connected local stable leaves having size between €/4

and €/2, named v;(w). Let p(-,0"w) € D(a/2, p,v(6"w)). Define

Es(z,w) |

|det D, fn|

| det D, f1
pi(x7w> =

p(f5w,0"w) for x € 7i(w).

Likewise (6.9), we have

/(9 )(LZ@)(x)p(a:,H"w)dmy(gnw) = Z/( )¢($)Pi($7w)dm7i(w)'
y(0"w i Y
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Now we have
f’y(ﬂ"w (Lnsp)( ) (‘I enw)dm’y omw ) Z f,y (w pz T (A))d?’)’L7 ()
J y(0mw) P (2, 0"w)dms (g ffy(@"w) (I 0w )dme gn.)

Zi f'yi(w) pi(z, w)dm%(w) HSDHUJHr - f,y(gnw)(Lﬁl)(ﬂf)p(% enw)dmy(enw) ol
= — . w,+
fW(G"W) plz, an)dmvnw fv(enw) plz, gnw)dmv"w

< (Ke)" - [[@llw.+-

Since v(6"w) and p(-, 0"w) are arbitrary, we get
[LEellonwt < (Ko)" |@llu.+- (6.53)
For any w € Q, for any v(w) C M, local stable leaf having size between €/4 and €/2,

pl('uw)JPQ('7w) S D(G/Qaﬂﬁ(w))a any ¢ < Cw<b7 ¢ V>7 we have

pa(2,w) [ P(@)p1 (@, w)dma )
sup

= D3 < 00. (6.54)
z€y(w) P1 <Z’ w) f'y(w) 90(37)/)2(1', w)dmv(w)

In fact, for any z € y(w), then by condition (C2) and finite diameter of D(a/2, u,v(w)) in

D(a, pt,v(w)) with respect to the Hilbert projective metric on D(a, u,y(w)), we have

p2(z,w) fv(w)‘P(Q;)pl(xaa))dm"/(w)/fy(w)pldm”/(w) fy(w)pldmv(w)
p1(z0) [ P@pa(w w)dma/ [ p2dmaw) [, p2dmaw)

pQ(Z’ W) f"/(w) P (l’, w)dmw(w) ebdw(w)(
B ffy(w) P2 (*T7 w)dmv(w) P1 (Zv w)

p1(w),p2(w))

pQ(Za W) f,y(w) ,01 (:L.) W)dm’)/(w) e(4a+]og T5/T6)b

<
f,y(w) p2(x7w)dm’7(w) pl(sz)

< ea/?(diam('y(w)))” . ea/Q(diam('y(w)))“ . 6(4(1—&-103;7'5/76)17

€a+b(4a+log T5/7T6) — D3 )

Now we are in the position to prove (6.51). For any w € €, any ¢ € C,(b, ¢, ), we choose
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Ye(w) and pi(-,w) € D(a/2, u,v.(w)) such that

f (W) (,O(ZL'),O*(?L’, w)dm’y(w)
ffy*(w) p*(‘r?w)dm"/*(w)

Y

Lol
2 QD UJ7+'

Recall we pick N satisfying (6.40), (6.41) and (6.42) and fix it. Pick any v(6Nw) C Myn,,

local stable leaf having size between €/4 and €/2. We pick z.(w) € v.(w) such that
a(Tx(w), w) C yu(w) C Wi(z.(w), w),
and z(0Vw) € y(0Nw) such that
Ja(@(0"w), 0V w) C y(0Vw) C Wp(2(0"w), 0V w).

Then there exists ¢ and j such that z,(w) € Bs(x;) and z(0Vw) € Bsjs(x;). Then by the
choice of N, ¢™(Bsa(z;) x {w}) N (Bsja(z;) x {#¥w}) # 0. Pick y(0w) € fYBsja(z;) N
B(g/4<Ij), then
d(y(0Nw), 2(0Vw)) < d(y(0™w), ;) + d(x;, 2(0Vw)) < 6/4+6/4 < 6.
Then
1 (07 w) = Wi (y(0%w), 0V w) N W (2(0Vw), 0% w) C Wis(y(0™w), 0% w) N(0Vw)

exists. Note that by (6.42), we have

d(fJNJZ)y(HNw), fg_N]X,yl(er>> < e_’\Ne/8 < 0/4.
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So

d(z. (W), i (07 w)) < d(wu(w), 2:) + d(@i, fonyy(0™w)) + d(for,y (07 w), fonpyn (07 w))

< G6/A+6/4+5/4 < 6.

As a consequence,

s (W), w) VW s (fonpyn (07 w),w) # 0.

Notice that ng(fe_N]\Lyl(QNw), w) breaks f,\ v(6"w) into two parts, and each part has size
at least eV € > 3¢ by (6.41). Hence f,3" v(#Vw) contains a holonomy image of 7, (w), named
7 (w).

Now let p(-,0Vw) € D(a/2, p,v(0Nw)), define

dth N S(z,w
L Dellesal g, ) or 2 € ),

pl(x7w> |dethfN|

Let p1(-,w) be the density function on 7.(w) defined by (6.10) corresponding to p;. Then

Loy (L) (@) p(z, 0V w)dm v
f’y(@Nw) p(I, QN(U)dmfy(gNw)

> f’h(w) (,D(x)pl (xy w)dm%(w)
2 fv(er) p(r, QNw)de(gNw)
Sy @)1 (2, W) () e edn (@), (@)
f’Y(GNw) p(l’, er)dmw(er)

>

Y

pick any z € y.(w), by (6.54),
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(T, w)dm., .
the above > f G )SD( 2)p-(@, w)dmy. . e~ A (@)« (w)) D;t.
Jyomay P(x, 0N w)dm o) pe(z,w)
1 ~
2l Pllot [ o)) o p;1. 2z
||(10||w+f ( pl xT,w dm%s w) ) e—Cd(’Yl(w)ﬁ*(w))” ) D3_2
2 [ vy P(@, 0N W) dm gn )
16—cd(71(w),’y*(UJ))V -2 ”@”w L f’n(w) 1Y (l”w)dm'yl(w)
’ fv((?”w) (2, 0N w)dm. v,
N
~A DD DI o]l - Sy (L D (@)p(, 0% w)dmy o)
7 f(eN )P p(x, ONw)dm.gn.,)
ONw)d
> lefcd('n(w),’y*(w)) -2 HQDHer ) (K6)7N ffN'ﬂ $ LU) M.y er)’
2 ’ fv(GNw) p(z, ONw)dm.,gn,)

g P07 0) [y, 0% w)dm o)
Syovey P20V W)/ p(y, 0N w)dm gn )
dm.gv.)

o—/2(diam (v (0N w))H-2 fme
f(er) dm,gn )

pick some y € fVv(w) C v(6Nw), then

Dy |l - (Ko)

the above > 56 ed(y1 (W) s (w))”
. (K,
s - (K6) ™™

L cdin (@) ()
= 26
N inf(z,w)eMxQ m(D:chw

. i

“ Dy @l - (Ke)

Es(p,w))

||L %0||9Nw+

Es(pw)

m( Dy fos

Vv

N inf
(z,w)EMXQ

1 —ce¥ —ae — —
Z2N-|-1 H'D32'(K6) ?

D)L ellgwe,+-

=

)) are arbitrary, we have

Since y(0Vw) and p(-, 0Nw) € D(a/2, u,(
(D) HILE llove -

HLL{.}V@HONL;J,— =
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Hence (6.51) is proved. O

Remark 6.7. Note that the Lemma 6.6 is proved for all w € Q, so we also have

Sup{dGNw(Lcijlﬁ LLVSO2) S, P2 € Cu)(bv ) V)} < D?a fO’f’ all w € Qa (655)

where dgn, is the Hilbert projective metric on Cyn (b, c,v).

Lemma 6.8. There exist a number Dy and a number A € (0,1) both depending on Dy and

N such that for alln > N, for all w € €2,

Aoy (L= Cp-nys Liy-rniyP—ny,) < DaN™ for any ©p-u,, @a-n,, € Co-nu(b, c,v); (6.56)

dgnw(Lngi, L”gpi) < D4A™ for any goi, goi € Cy(b,c,v). (6.57)

w

Proof. Let’s define the Bowen metric on C, (b, ¢, v) by

dw,B(Spla 902) = OSIZ'%E}\?{—I daiw(ngpla LWSOQ) for ¥1, P2 € CW(b7 ¢, V)‘

Now we have a linear operator L)) v maps cone Cp-n, (b, ¢, ) into cone C,(b, ¢, v) with
finite diameter of LY v (Cy-n,(b,c,v)) in Cy,(b,c,v), then we apply Birkhoff’s inequality

(Proposition A.4) to obtain that for all w € Q,

dw(LéV*ngplu Lé\in902> < A/dg—Nw<§01, 902)7 for all Y1, P2 € CG—Nw(bv C, V)7 (658>

where A’ = 1 — e P2. Note that LY (C,(b,c,v)) has finite diameter in Cyn (b, c,v) for all

w € 2, so

doveo 6 (L3 01, L3 pa) = max dyeene,(Lgi, Lior, L, LS 02) < Do,
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Then (6.58) implies that for all w € Q,

n—N

dw( g—”w@é—"w7L3—”w@3—”w) < (A/)[ N ]dQanw,B(LéV—”wgpé—"w7Lév—"wgog—"w)
D
n—2N 2 An . n
< ATEVD, = SZAT = DA

for all n > N and ¢, ., p5-n, € Co-ny(b, c,v), where A = (M)~ < 1.

Similarly, for all w € €2

n—N
d@"w(‘[/un)(pin Lngoczu) S (A/>[ N }dQNw,B(LuJYSOiN LNSOSJ)

w w

< D,A"

for all n > N and ), 02 € C,(b,c,v). O

6.3 (CONSTRUCTION OF THE RANDOM SRB MEASURE

In this section, we will prove that the sequence (f;-._ )«m converges with respect to the
narrow topology on Pr(M) by using the contraction of Lj_, when n > N. Moreover, we
will prove that the random probability measure fi, defined by the weakx limit of (f;-._).m
is ¢—invariant.

Before we introduce the next lemma, we need some preparation. Since the local stable
leaves form a partition in a neighborhood of a point on each M,,, we can divide M,, into some
rectangles foliated by local stable leaves having size between €/4 and €/2. We can realize this
partition by first filling M, by disjoints rectangle [W;} J(z,w), W5 (z,w)] as far as possible for
any € < e/4, then we attach ‘crevices’ to the rectangle, which ‘crevices’ belongs to the same
local stable leaves. After attaching, we divide the rectangle together with the attachment

into several parts (at most three) according to the ‘edge of local stable leaves’ of ‘crevices’.

By this method, we can partition M, into finite rectangles, and the local stable leaves lying
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in each rectangle have size between €/4 and ¢/2. We name this partition by

R(w) = {Ri(w), ..., Ri(w), ..., Riwy(w) }, k(w) < o0.

By Proposition 4.21, for any R;(w), there exists a function H;(w) : R;(w) — R with log H;(w)
(ap, vo)—Holder continuous on each local stable leaf and for all bounded measurable functions

¥ M — R, we have disintegration

| i@ = [ [ s B b o @din w6’ @), 659
R;(w) v (w)

where 7' (w) denotes the stable leaves in R;(w) and g, the quotient measure induced by

Riemannian volume measure in the space of local stable leaves in R;(w).

Lemma 6.9. For any fivzed w € 2, given any sequence {@y }nen C Cy (b, c,v) satisfying

/ on(x)dm(z) =1 for alln € N,
M
and

ds w(@n, pm) — 0 exponentially as n,m — oco.

Then for any continuous function ¢ : M — R, the sequence

{L%mwwwmwhm

1s a Cauchy sequence.

Proof. First, we consider the case for positive continuous function ¢ : M — R, satisfying

_ |log¢(x) —log(y)| a
O AT W

Now for any w € Q. Let R;(w) and H;(w) be defined as above for i € {1, ..., k(w)}. Note that
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() Hi(w)()
continuous on ~'(w) by assumption (6.12). Therefore, by the representation of S, ,(k, ¢1)

+i(w) 18 strictly positive on v*(w). Moreover, log(1(-) H;(w)(-)) is (a/2, u)—Holder

and o ., (k, 1) as in (6.45) and (6.44), we have

f,yi(w) @k(x)w(x)Hz(w) (x) "yi(w)dm’yi(w) (ZB)

Loy 0120 () Hi(w) () iy dmi ) () < Brwlen 1), (6.60)
fv’(w) k() Hi (W) (2) |4 (@) My () (2)
o P ) (@) ol (@) Ot Prs 1) (6.61)

| eaimi) = [ ey =1,

M

so by (6.59), there exists a ¢ and 7'(w) C R;(w) such that

[ @@L ) < [ @ @b @)

7 (w)

Now for any 7 and v*(w) C R;(w) stable leaf, we have

< ﬁJr,w(SOkv 901)
~ gk, 1)

() @My (7)

() Ay () (2)

’ a-‘r,w((pk’a SOZ)

< /6+,w(90k; SOZ) f'ﬁ(w) @k(x)H;(w) (l‘) fﬁ(w)dmwi(w) ($)

~ gk, 1) ‘ fwz(w) oi(z) H;(w) ()

dm i(w)(:r)

i (w) My

5+7w(§0k7 (Pl) .
Oé.;_,w(gﬁk, QOZ)

IN

= exp(d+w(pr, 1)), forall k,1 > 1.

131



Now fix N’ > 0 such that for any k,l > N’, d; ,,(vk, 1) < % Then, we have

‘/M @k(x)@/}(x)dm(x)—/Mgol(x)@z)(x)dm(x)

Ju or(2)Y(x)dm(z) ‘
— d . _
[ et | B -
‘ S [ P(@)0(@)dm ()
< sup [Y(z -1
a7 > fR oy @) P (@) dm(z)
Zl | ff (@)3(2) Hi(w) () i () A ) (€) diegi )
= [[¥llcoqary - -1
)@l($)¢($)Hi(w)($) i () Ay o) (2) AT R )
< HwHCO(M) . (ed+,w(90k’ﬂol) —1)
< 2bllooqan - ot 1) (6.:62)
Hence { [}, ¢n (@) (x)dm(z)}nen is Cauchy sequence in this case.
Next for any ¢ € CO*(M), let
B = 5|¢()|u
a
We define
1 1
Vp() = SO+ 90) + B, ¢p() = (190 = ¢() + B.
It’s easy to see that
o |log ¢ (x) —log ¥ (y)| _ a
[ log Y5 ()l = Lo Az ) <7
Then we apply (6.62) and linearity of integration to get
20
[ ea@ant) - [ aepin)| <mxfa 2 il - et
M M

Finally, for any continuous function ¢ : M — R, for any ¢ > 0, we can pick a function
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Y € CO*(M) such that
sup [¢/(w) — ¢ (x)] < /4.

zeM

Now, pick N’ > 0 depending on ¢ and e such that for all k,[ > N’

20 ~
{4, 2 v dvtion ) < /2,

Then

+e/d+¢e/d

\/wk /Msol din(z)

20 ~
< max {4, 3} NEO o - ds (e 21) +€/2

< e.

Hence, for any continuous function t : M — R, the sequence { [}, on(z)(x)dm(z)}nen is

Cauchy sequence. ]

For any measurable function ¢ : M — R, we define the fiber Koopman operator

Usp: M =R, (Uyp)(x) = p(fo-1,7). (6.63)

We denote

U, =Up-mn-,0--0Up-1,0U, foralln € Nand w € Q.
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For each fixed w € €2, by changing variable, for measurable functions ¢y, o, we have

©1((fo-10)"'y)
M | det D(fgflw)il(y)f671w|

/M (Lo-soipr)()pa(y)dm(y) = o2(y)dm(y)

v1(x)

e\ )| det Dy fyold
M’dethfG—leOQ(fe wx)‘ € f9 ’ m(x)

- /M o1(2) (Unipa) () dm(a). (6.64)

Let 1 be the constant function 1(x) = 1, then 1 € N,C, (b, c,v) by the Remark 6.3. Now

consider ¢, (z) = (Lj-,1)(z) for n > N and notice that for all w € €,

/M (L2 1) () dm () = /M @) (U) (2)dm(z) / Ldm(z) = 1.

M

Moreover, by (6.56), we have

Ay w(Lyn, 1, LIFE 0 1) < d(Lg-n 1, Ly (L ni,1)) < A" Dy forn > N.  (6.65)

N 97(n+k)w

Hence the sequence ¢, = L7, 1 C C,(b,c,v) satisfies the condition of Lemma 6.9. So

0—"w
for any g € C°(M), {[,,(Li-.,1)(x)g(x)dm}nen is a Cauchy sequence. Now define F, :
C(M) — R by Fu(g) = limy—eo [3,(Lh-n,1)(@)g(x)dm(x). Then F, is obviously a positive

linear functional on C'(M). By Riesz representation theorem, there exists a regular Borel

measure fi, such that

/M g(a)dp(e) = tim [ (Ly.,1)(0)g(x)dm(z). (6.66)

Moreover, fi,, is a probability measure since [, (L"1)(z,w)dm(z) = 1.

Note that for each g € C(M), w — [,, 9(x)dp,(x) is measurable because of the mea-
surability of w — [, (Lp-. 1)(z)g(x)dm(x). For any closed set B C M, let gy(x) :=
1 — min{kd(x, B),1} for k € N where d(x, B) := inf{d(z,y) : y € B}, then gx(x) € C°(M)
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and gi(x) \( 1g(x). Then by Monotone convergence theorem, we have

po(B) = lim [ gr(z)dp,(x) = lim lim [ (Lpj-., 1)(x,w)gr(x)dm(z).

k—o00 M k—o00 n—o0 M

Hence w — p,,(B) is measurable for all closed sets B C M. By the Definition in Section 2.3,
w +— U, defines a random probability measure.

Notice that for any g € C°(M), we have

/M g(@)dpo() = tim [ (Lpw D) (@)g(@)dm(z) = lm | g(fw,z)dm(z)

= lim [ g(y)d(fg-n,)m(y).

n—oo M

So 1, is actually the weak*—limit of (fj. ).m.

Now for any continuous g : M — R, by (6.64),

[ st = i [ (@ D@ fa)dmn) = i [ oufioin()

M

= lim Mg(f::}erl)ewx)dm(x) = lim (L 1)(x)g(x)dm(z)

n—00 n—00 0= (1w

= /M 9(@)dyig.-

Thus the random probability measure p,, is ¢p—invariant.

Remark 6.10. Note that for each fixzed w € Q, for any pg-r, € Cyp-r,(b,c,v) such that

Jis o-ro()dm =1 for all k € N, then we have

i [ (Lo @gle)dm(a) = [ o(@dnta) (6.67)

n—oo M

for any g € C°(M). In fact, we define the sequence ¢, by pox = LE 1, Gopr1 = LY ppr,
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for all k > N, then by noticing

d-i—,w(@?kn ¢2k’+1> S d(ngfkw]-a ng*kwwefkw) S AkDZ,L

and by (6.64)

/M(Lgkwwo—kw)(x)dm( ) = /MS00 co(2)(US1) (x)dm(z) = 1.

S0 ¢y C Cy(b, c,v) satisfying the condition of Lemma 6.9. Thus the sequence { [,; $ngdm}

is Cauchy sequence for all g € C°(M). As a consequence, we have

Aﬁwwww=Mn (L8 1) (2)g(x)dm (z)

n—o0 M

= lim [ (L§-n,po-nu)(@)g(z)dm(z). (6.68)

n—0o0 M

6.4 PROOF OF THE EXPONENTIAL DECAY OF THE PAST RANDOM COR-

RELATIONS
In this section, we prove the exponential decay of the past random correlations.

Lemma 6.11. Let ¢ : M — R be a positive function such that logv is (¢, ) Hélder
continuous. Then for each fizred w € €, let py-r, € Cy-r,(b,c,v) for k € N, for anyn > N,

the following holds:

V¢h%WWwWﬂ ) [ @dnta) [ orateyims

< K(Dy) sup |¢(z |/ Yg-ny(x)dm(x)A", (6.69)

zeM
where K(Dy) is a constant only depending on Dy. Recall that Dy from (6.56).

Proof. We first prove the case that @g-r, € Cy-r,(b,c,v) and [, @g-r,(z)dm(z) = 1 for all
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k € N. Similarly as (6.62), for any n > N, k > 0, we have

n

< ||¢HCO(M)( d+w(L9 ne# Le—(n+k)w"09—(n+k)w

‘/ (@) (Lg-n,po-ne) (x)dm(z / Y(@)(Lg T, o) (2)dm(z)

< ||1/’HCO(M)(6d+’“(Lg*"wso’Lg*"wL:—(n+k>w“’97<n+k>w) _ 1)

< [l (€74 — 1)

< K(Dy)l[¢[lcoanA™,
where K(D,) is a constant only depending on D,. Let k — oo, by Remark 6.10, we have

< K(Dy) - [[¢]lcoan A" (6.70)

[ @@ @an) - [ vl
Note that by (6.64), we have
[ @ s @am(a) = [ wfradgaafa)in(a).
Hence (6.70) becomes

’/¢hme%(Wl - [ @dto)| < KD Wl (67

Now for any pg—ny, € Co—ne(b, ¢, V), let @g-ny(x) := @g—ny(x)/ [, Po-nw(x)dm(zx), then (6.69)

is proved by replacing @p-ny, by Pg-n,, in (6.71). O
We still need the following lemma:

Lemma 6.12. Pick the number ¢ in the definition of C, (b, c,v) satisfying

K, 20,
2(2a0 + o + 1_641/0) <c (6.72)
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where Ky is defined in (6.2), Cy is defined in Lemma 4.8. Let ¢, be a constant such that

K, 2Cy
1<e <2 . 6.73
C1 ag + 1— e + 1— e ( )

Given any positive continuous function ¢ : M — RY with

|log o(x) — log p(y)|
sup
x,yEM, m#:’J d(m’ y)”

< (1,

then o(LL_, 1) € Cy(b,c,v) for every I > 1 and all w € Q.
0—lw

Proof. We prove this lemma for each fixed w € ). Let [ > 1 be fixed. ¢- (Lle_lwl) is obviously
bounded and measurable function.

For every random local stable manifold v(w) and p(-,w) € D(a/2, u,v(w)), we have

/ PO D@l )i (@) 2 nf- | D@l z) >0

y(w)

since L}, , 1 € C,(b,¢,v) and ¢ is positive.

By Remark 6.3, ¢ - L}, 1 fulfills (C2) since ¢ - L}, 1 is nonnegative. So it is left to
verify (C3).

Let v(w),¥(w) be any pair of local stable manifolds such that §(w) is the holonomy image
of y(w). Let p(-,w) € D(ay, pt1,7v(w)) and p(-,w) € D(a/2, p,¥(w)) which is defined as (6.10)
corresponds to p(-,w). We subdivide f!y(w) into v;(6~'w) such that v;(6~'w) are local stable
manifolds having size between €/4 and €/2. Let %;(6~'w) be the holonomy image of ~;(6~'w)
which lies in f;!¥(w). Denote 1, : ¥(w) — v(w) to be the holonomy map between J(w) and

Y(w), and ¥}, : %(0~'w) = ~;(0~'w) the holonomy map between %;(6~'w) and 7;(6~'w).
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By using the definition of L, we have

/ @)t ) )

Es(mﬁ*lw)’

|det D, f}-, z l
_= w B - d . -
Zi: /%‘(9‘%) | det széfzw’ P12, W)P(fo-1,2 )M 010 ()

|det Dy ) fo-tolpes , @010
— 0—lw w 0—lw ’ . l % . l 7
Z /’y(alw) |det le l (x)féil | p(f071w¢97[w(x),W) w(feflwwﬁflw(x))
7 4 0—lw w

- | det Dybg-,, ()| dms, g-1) ().
On the other hand, we have

/ @), ) )

|det Dy foi | ps(@o-tw)| -
N Z/ -1 IdetOD [ P fo-17, @)@ (fg1,7) A5, (910 ()
i (07w TJ o=l

|del _szé 1 Es(z G*Zw)| l l ! d 9—lw
Z w ’ f , f det D W 7 Vi :
/i(e_lgd) | detDm ?l 1 | p(@@;( 9*1( 71‘) w)(p( 0 l( I)l ¢ ( 7] lwm)| m z( ! )

)

Note that f} , i, (x) = ¥y (fi_, w) by the invariance of stable and unstable manifolds, so

p(fé*lwwg*lw(x)aw) = p(ww(fel?*lww)a w)' (6'74)

Since log () is (¢1, v)—Holder continuous on local unstable manifolds,

|log @(fo-1,V-1,(x)) —og ©( fo-1,2)| < crd(fo-1,t0p-10 (@), fo-1(x))"

< ad(y(w), Y(w))"- (6.75)
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By Lemma 4.20,

}log | det wa(fé,lwmﬂ — log | det D@/J;,lw(x)H
< a’Od(fé*lwx’ @Z)Wfé*lww)yo + CL()d(iL’, wé*lwm)yo
< agd(y(w), 7(w))" + aod(:(07'w), 5 (0~ w))"

< 2apd(y(w), F(w))". (6.76)
By (6.2), for x € 7;(0~'w), we deduce that

| log | det Dw;,lw(z)fé*lw‘ —log | det Dy f)-u ||
< KQd(a:? wé*lw(m)) + KQd(fB—lwaja fe—lw%—zw(l’)) + -+ KZd(fé:llwxa fé:llww;*lw(x))
< Koe Pd(y(w), 3(w)) + Koe” T (v(w), F(w)) + - - Kad(y(w), 7 (w))

< Kp/(1—e™) - d(y(w), 7(w)). (6.77)

By applying (6.31),

log ’ det D¢2_lw(l’)f0[—lw Es(l%_lw(m),@flw” - IOg | det Dxfé_zw Es(rﬁ*lw)‘
< 2C5d(0y 1, (), 2) + o+ 20od [y 0y (2), S o)

< 205/(1 — e )d(y(w), F(w))™. (6.78)

Combing (6.74), (6.75), (6.76), (6.77) and (6.78), we conclude

log /W(w)(Lle_lwl)(xﬁp(x)p(x,w)dmv(w) () —log A( (ng—zwl)(x)@(x)ﬁ(x,w)dm@(w)(az)

w)
K 20,

o T T o (@), (@)

< cd(y(w), ¥(w))".

S (Cl + 2CLO +

Hence (C3) is verified. O
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Now we assume continuous function ¢ € C°(M) such that ¢ > 0, log¢(-) is (a/4, u)—Holder
continuous. Let positive continuous function ¢ : M — R with log ¢ is (¢1, v)—Hdélder con-

tinuous. Then by the Lemma 6.12, for each n € N
- Lé_(Hn)wl =p- ng,,e,nwl € Cy-ny(b,c,v) foralll e Nall w € Q.

Now, we apply Lemma 6.11 to obtain that for all w € 2,

' [ 0o Ly D@ma) [ vl [ (o Ly (o) mla)

< K(D4)D, sup | ( |/ Ly 1)) (@)dm - A", for all | € N. (6.79)

Let | — oo, by (6.66), for all w € Q,

‘ / V(fony,T)(x)dptg-ny, — / ¥(z)dpe () /M p(@)dpg—ne,

< K(D2)|[¢lleon / () djig ey - A"
M

< K(Dy)[[¢llcoqary - llellcoary - A™ (6.80)

Finally, given ¢ € CO*(M) and ¢ € C% (M), let

g = MOk 20
1

Y

and define

o3, ( = L) +w<->) + By, 05,() = S (10)] = 9()) + By,

05, () =5 (o)l +¢() + By, ¢, () = 5 (Ie()] = #(-)) + B,

l\DI»—t
[\3|,_. [\.’)I

Then log wgw(') are (a/4, p)—Holder continuous, and log @ﬁw(-) are (c¢p,v)—Holder continu-
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ous. By (6.80) and the linearity of integration, we conclude

‘ / U(fo-nw)p()dptg-ne / V() dp (v / () dpig-ngy, ()

5 2
< 4K (D) - max {1, 2 ma {1 24 utlcosaan - Bolloeon - 47

Note that the above is true for all n > N. Next, we let

K := max {4K(D4) - max {1, §} - max {1, E} ,2A_N} , (6.81)
a C1

then

\ / B n) (@) ity — /M () dp () /M (@) dpo—ra] < Kllloonqan - [@lloown - A”

for all n > 0.

This finishes the proof for the past random correlations.

6.5 PROOF OF THE EXPONENTIAL DECAY OF THE FUTURE RANDOM
CORRELATION
In this subsection, we prove the exponential decay of the future random correlations.

Lemma 6.13. Let positive continuous function ) : M — R satisfy thatlog) is ($, u)—Hélder

continuous. Then for each fivzed w € Q, ¢, € C,(b,c,v), for anyn > N, the following holds:

' [ vtizneteyin = [ @ [ gow(x)dm\ < K(D) - Wlloosn [ pule)dm- A"
M M M M

(6.82)
Recall that K(Dy) is defined in Lemma 6.11.

Proof. We first prove the case that fM Yw(x)dm(x) = 1. Note that for any n > N, k > 0,

L@y, Ly 1 € Cyny(b,c,v). Similar proof as (6.62) can be applied on the fiber {#"w} to
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show that

\ [ veorzie) / () Lk 1) () dm(z)

< kuco( ( dyone(LGpw, LyT ntk 1)
< ol 28

< |1l coany (€P — 1)

< K(Dy) - 4]l coan A",

where we apply (6.57) in the last inequality. Notice that L”+k 1= L'g kg Lg-r, 1 Ly—r,1 €
Con-rey (b, ¢, V) = Cprgny, (b, c,v) and [, Ly, 1dm = 1for all k € N. Let k — oo, by Remark

6.10, we have

\ [ vz @in - [ v

Note that by (6.64),

/M (@) (L) (@) dm(z) = /M B 2)pu(x)dm(z).

Hence (6.70) becomes

< K(Dy) - |[9]lcoanyA™ (6.83)

’/ w fn (Pw dm / w d,ugn < K(D4) kuco(M)An (684)
Now for any ¢, € Cy(b,c,v), let ¢, (z) == wu(x)/ [,; u(@)dm(x), then (6.82) is proved by
replacing ¢, by @, in (6.84). O

Now assume function ¢ : M — R such that ¢» > 0, log(-) is (a/4, u)—Holder continuous.

Let ¢ : M — R with log ¢ is (c1,v)—Holder continuous. Then by the Lemma 6.12, we have

- Lh 1€ C,(b,ecv) foralll € Nallwe Q.
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Now, we apply Lemma 6.13 to obtain that for all w € €2,

[ vtz sy @int) - [ @i, [ @@

< K(D)|[lleogan / (¢ (Lh- 1)) (x)dm - A", for all I € N.
M

Let [ — oo, by (6.66), for all w € Q,

‘Lw(fﬁx)ﬂx)duw—/Mw(a:)duenw(g;)L@@)duw
< K(Da)[[¢llesqan /M @)y, A

< K(DJ)||¢llcoar - lellcoary - A™. (6.85)

Finally, given v € C%*(M) and » € C% (M), let

po= B0k A0l
and define
1 _ 1
b, (- = 3 IO+ 00)) + Buy v, 0) = 5 (06| - 00 + B,
#5,() = 5 (90 +60) + B, 95,0) = 5 (16} = 9()) + B,-

Then log ¢§w(') are (a/4, p)—Holder continuous, and log SOE,(') are (¢, v) Holder continuous.

By (6.85) and the linearity of integration, we conclude

‘/ Y(fox)e(r)du, —/ w(l’)dﬂenw(x)/ o(x)dpn| < K||Y|lconmn - |@llcoroar - A"
M M M

for all n > 0. Recall that K is defined in (6.81).

This finishes the proof for the future random correlations. The proof of Theorem 3.10 is
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done.

CHAPTER 7. EXISTENCE OF THE RANDOM GIBBS

U—STATE

In this chapter, we prove the Theorem 3.12 by using the geometric ‘push-forward’ approach,
appeared in [48], [42] and [43], on each fiber. We refer to a survey about this approach in
deterministic dynamical systems [19]. We proceed with the proof by a reference measure A,
which is a random probability measure and its disintegration coincides with the normalized
intrinsic Riemmanian measure on a local strong unstable manifold. Then we consider the
Krylov-Bogolyubov type sequence %Zz;é(gb*)k)\z. We keep track of the density function
when the system is stretched along the unstable direction, and finally, we prove that any
weak® limit point in the Krylov-Bogolyubov sequence satisfies the definition of the random

Gibbs u—state.

Pick any « € M and fix, define L, : Q — 2™ by
L,(w) = W5 (z,w).

We define (\;),, € Pr(M) by the normalized intrinsic Riemannian volume measure on L, (w)
as a submanifold. Then the disintegration {(\;), }.ecq defines a random probability measure,

named \,. In fact, for any g : M — R bounded and Lipschitz continuous function, we have

[(A2)w(9) = (Aa)wr (9)]

1 / 1
— 9N 0) = s o [ SN,
)\(m,w)(Wé ($,W)) Wit (z,w) (@) )\(z,w’)(Wﬁ (x,w’)) Was (z,w") (@)

where A(, ) and A, are the intrinsic Riemannian volume measure on Wit (z,w) and
Wi (z,w') induced by the inherited Riemannian structure respectively. So w — (\;)w(9)

is continuous due to the continuity of Wi*(z,w) on w for fixed x. Now for any closed set
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B C M, define g,(z) := 1 —min{nd(z, B), 1} which is bounded and Lipshitz. By Monotone
convergence theorem, we have (\;)u(g,) = (A2)w(B). Hence w — (\,),(B) is measurable.
By Remark 2.13, X\, defined by disintegration {(\;),}weq is a random probability measure
by definition.

Consider the sequence of random probability measures {+ S ()AL}, C Pro(M).
Since Prqo(M) is compact with respect to the narrow topology, then there exists a subse-
quence {ni Zzi:_ol@*)k)\x}fil converging in the narrow topology. We denote p by the limit
of this subsequence in narrow topology. u is obviously a ¢—invariant random probability

measure.

Let {x;}22, C M be a countable dense subset. For any w € 2, we define

V)= U Wrww -oC U w.w)
YEX g, e(w) YEX g, e (W)

where X, (w) = exp,,(E¥(x;,w)) and O denotes the boundary. Here, by property (4)
in Lemma 4.26, we pick ¢ sufficiently small such that Wi (y,w) N W} (z,w) = 0 for any
Y,z € Xy, (w). This {Vj, (w)}2, forms an open cover of M,. We choose a finite cover
of it, named {in,e(w)}?i(f). By continuity of Wi (z,w) and E®(z,w) on w, there exists a
v(w) > 0 sufficiently small such that whenever d(w,w’) < Y(w), {Va, (@)} is still an
open cover of M. Keep doing this process and use the compactness of {2, we can find a
finite measurable partition {F;}" ; of Q in small scale and a sequence of numbers {m;}";
such that whenever w € Fy, {V,, ((w)}}, is an open cover of M,,.

.......... jn(w) = xj, when w € Fj.

.....

V(W) = Vi) e(w).

Notice that w + V (w) is obviously a random closed set by the continuity of W} (y,w) on w

and the measurability of ¥y, (w) on w. As a consequence, V; (w) = V7 (w) 1= int(V, (w))
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is an random open set by Proposition 2.16. We have for any w € €2,

By shrinking € and p if necessary, without losing any generality, one can assume that
(OVye) = Jo1o(0Vg(w))dP(w) = 0. For each w € Q, we divide V (w) into pieces
{W3(y,w) yes, oy () Which produces a measurable partition of V(w). Let (pwlv, . (w)y
be the conditional probability measure of ji,|v, () on W) *(y,w) for y € ¥y, (w). Then
p is a random Gibbs u-state if for P—a.s. w € 2, and neglecting a j,|y, . ()—null set, the

following holds

(Mol Ve () )y K Ay ) 00 every piece Wi (y,w), y € Yy).(w), (7.1)

where A, is the intrinsic Riemannian volume measure on Wi (y,w).

For each n > 0, for all w € €, let

Ly(w) :={z € Ly(w) : f1(z) € Wi (y,0"w) for some y € By (0"w)

but W (y, 0"w) ¢ fiLa(w)} .

By the local strong unstable invariant manifolds theorem, we have that for any z € L, (w),
d*(z,0Ly(w)) < dype"P07<0). Otherwise, since for any 2’ € W (y,0"w), d“(f(z),2) < p,

then
d"(z, f;72) < qoe P07 0) . p < qpem om0 § < @ (2, 0L, (w)),

which implies that 2z’ € f7L,(w), contradiction. Therefore, by Lemma 4.26 (1), there exists

a constant C independent of w € 2 and x € M such that

ALy(w)(Ln(w)) < C((S’Yoe_"(’\o_m))dim(Euu(I’”)) —0asn — oo
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uniformly for all w € €2. Thus we have

nifl

lim — > (6")* (Al L, 1,) = 1. (7.2)

where A\;|r,—r, is the random measure with disintegration w — (Ay)w| L, (@)= Ln(w)-

For each random box Vi, [, 1t.(0Vy(w))dP(w) = 0, we claim that

lim (i iw*)’mum)) (Vo) = Vo). (7.3)

In fact, by the portmanteau theorem (Proposition 2.18) and notice that w + V, (w) is

random closed set, and w +— V; ((w) is a random open set, then on one hand

(V) = / o (V) dP ()

n;—1
.. .1 X X
< h{gg}lf n—l kZ:O(¢ )k<)\$‘Lz*Ln)(‘/g:€)7

and on the other hand

(Vi) = / (Vi (1)) AP(w)
- / 1o (Vy (@) dP(w)

n;—1

> lim sup 1 Z(W)k()\x’Lan)(Vg,e)

1—00 7 k=0

n;—1
: L
> hm sup n— Z(¢ )k<>\x’Lm—Ln)(va7€)'
i—»00 i =0

Hence the equality (7.3) holds.

Recall that J“(x,w) is defined in Subsection 4.2.2. Now for any n € N, and any z €
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Vge(w), define

Hk 0 Ju(p k(zw))
f u(y,w) Hk 0 Ju(¢ k(zw))d)‘(uyw)(z)

no JU¢ ’“(yw))
k=0 Ju($=F(zw))

w)
n T (yw))
fW:(w) k=0 To(o=F (z0)) W) (7)

hn(z,w) =

Y

where y € Yy (w) is the point such that z € W (y,w).
Suppose that W (y,w) C fin, (Le(07"w) — L, (07"w)) for some y € ¥y, (w), and let
"

', ) be the conditional measure of (fg'.,)*((As)o-nw|L.(6-7w)~ L, (6-7w)) 00 W (y, w), then

by definition we have

dm?

(y,w)
= . 7.4

(y,w)

hn('a OJ) |Wg“(y,w)

Notice that h, : graph(V,.) = {(z,w)| z € V,(w)} C M x Q — R is obviously mea-
surable with respect to the o—algebra graph(V,.) N B(M) ® B(2). By (4.61), h,, converges

uniformly to a measurable function h : graph(V,.) — (0,400) defined by

2. e
h(z,w) = . (7.5)
) % T ) o
Jwyniyer Lits ooy My (2)

for any (2,w) € W) (y,w) and y € ¥y, (w). Moreover, for each w € €, note that J*(-,w)
is a continuous function and ¢ '(-,w) is continuous function, so h,(-,w) is a continuous
function on each local strong unstable leaf. Thus, h(-,w) is continuous on each local strong
unstable leaf since h,(-,w) — h(-,w) uniformly on each local strong unstable leaf as n — oo.

Now define a random measure v on graph(V,.) by

- ] (. w)AN (ol ) WAPw)  (76)
QI Tg(w),e(w) W (yw)NA(w)

for any measurable set A C M xQ with A C graph(V,) and A(w) :={z € M : (z,w) € A},
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where d(fi,v, . (w))(y) is the projection measure on X (w) with respect to the measurable

partition {W,ﬁ‘“(y, W)}y62g<w),e(W)'
For any random continuous function c(z,w), and z € Wi*(y,w) with y € Yy, (w),

define

é(z,w) = /W ( )c(z/,w)h(z/,w)d)\z‘va)(z').

Then we have that ¢(z,w) is a bounded measurable function defined on graph(V, ) and for
each fixed w, ¢(z,w) is constant on each W (y,w) for y € Xy,) (w).

Denote Ag(w) = fi (L0 w) — Li(07Fw)) N By e(w), and denote (¢*)*(Nu|r,—1,)
by k., and m the projection of (py), on Ag(w) with respect to the measurable partition
(W (y,w) byeny(w)- Then for any random continuous function c(z,w), by (7.2), and the

uniform convergence of h;, we have

flvy.(€)

’ni*l

- zlggonl Z(gb*)k()‘ |L.— Lk)|V9€(C)

-1

: 1 "
= /v< ) mD ) Qali -1 lv, Jud P@)

k=0

— lim —m_l//v (") (NelLamre) vy )wdP(w)

1—00 711

—_—~—

g LY / / ) s W ) / (2, w)he(z, w)dNL Ly (2)d () (y)dP

e My 4 Wi (yw)

—~—

~ > / [ @ Oadian oW ) [ el w)dN o () 0)dP
oo M g Ag(w) Wit (y,w)

. 1”“1 w ]
=tm o [ @O W) [ e e )N ()P

Wi (y,w)

= plv,.(C)

//Vgg(w z,w)d(plv, )w(y)dP(w)

/ / /Ww(w) c(z, w)h(z,w)dA(, ) (2)d(plv, ) (y)dP(w).

g(w)e
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Hence, we have p|y,, = v, and therefore (7.1) holds. This proves that j is a random Gibbs
u—state.

The proof of Theorem 3.12 is done.

APPENDIX A. CONVEX CONE, PROJECTIVE MET-

RIC AND BIRKHOFF’S INEQUALITY

In this appendix, we review the notion of Hilbert projective metric associated to a convex

cone in a topological vector space. The following notions are borrowed from [62].

Definition A.1. Let E be a topological vector space. A subset C' C E is said to be a convex

cone if
(i) tv € C forve C andt € RT;
(i1) for any ty,ty € RY, v1,v9 € C, then tyv + tavy € C;

(iii) C' N —C = {0}, where C the closure of C is defined by: w € C if and only if there are

v e C andt, \ 0 such that w+t,v € C for allmn > 1.
Definition A.2. For a convex cone C' C F, given any vi,vy € C, we define

a(vy,vg) :=sup{t > 0: vy —tv; € C};

B(vy,ve) :=inf{s > 0: sv; — vy € C},

with the convention that sup() = 0 and inf ) = +o0o. The Hilbert projective metric between

vy, v9 € C is defined by
B(/Ula v?)

d =1
o(vn,v2) = log Lt

with the convention that dc(vy,ve) = 00 if a(vy,v2) = 0 or B(vy,ve) = 0.

Proposition A.3. d¢ is a metric in the projective quotient of C, i.e.,
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(i) dc(vi,ve) = do(va,v1) for all vy, vy € C;
(i) do(vr,v3) < do(vi,v2) + de(ve, v3) for all vy, ve,v3 € C;
(111) dc(vi,v) =0 if and only if there exists t € RY such that vy = tvs.

An important property of the Hilbert projective metric is Birkhoff’s inequality. We use
this theorem to prove that the iterations of fiber transfer operator is a contraction on a

suitable fiber observations cone in Section 6.2.

Proposition A.4 (Birkhoft’s inequality). Let Ey, FEy be two topological vector spaces, and
C; C FE;, fori=1,2 be convex cones. Let L : By — FEs be a linear operator and assume that

L(Cy) € Cy. Let D = sup{de,(L(v1), L(ve)) : v1,v3 € C1}. If D < o0, then

de,(L(vy), L(vy)) < (1 — e P)de, (v1,v2) for all vy, vy € Of.

APPENDIX B. THE RANDOM SRB MEASURE FOR

RANDOM HYPERBOLIC SYSTEMS

Let ' : Z x Q x M — M be a continuous random dynamical system over an invertible
ergodic metric dynamical systems (2, B, P,6). A random variable v :  — R* will be called

tempered, if it satisfies lim,, 1o = log y(0"w) = 0 P—a.s.

Definition B.1. A random compact nonempty set w — A(w) is called invariant under F
if F(w)A(w) = A(Ow) for P—a.s. w € Q. Such a A is called a random hyperbolic set for F
if there exists an open set V with a compact closure V, tempered random variables A > 0,
a >0, C >0, and subbundles I'*(w) and I'*(w) of the tangent bundle TA(w), depending

measurably on w such that

(i) for P—a.s. w € Q, there exist a measurable in w family of open sets U(w) such that

{z :d(z,A(w)) < a(w)} CU(w) CV, Flw)U(w) CV, and F(w) restricted to U(w)
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is a diffeomorphism and both 1og™ sup,cyr | Do F (W) and log® sup, e || D F(w™) ||
belong to LY(Q), P);

(i) TA(w) = T"(w) ® ' (w), DF(w)I'(w) = T7(0w) for 7 = u,s, and Z(I"(w), ¥ (w)) >
a(w) P—a.s.

(iii) forn € N and A(n,w) = A(w) - A(0"'w) and P—a.s. w

IDE(n, w)]l < Clw)A(n, w)l[E]] for & € T*(w);

IDE(=n,w)nl] < C(w)A(n, 0 )|l for n € T*(w);

(i) [log\dP < 0;
(v) loga € LY(Q2, P)

If in addition, F(w)U(w) C U(6w) P—a.s. and NpenF'(n, 0 "w)U (0 "w) = A(w), then we
call A a random hyperbolic attractor of F. If M is compact and all A(w) = M and satisfy

assumptions above, then we call F' a random Anosov system.

It is obviously that the random Anosov on fibers systems defined in Section 2.1 is random

Anosov systems.

Definition B.2. F is called random topological transitive if for any given open random sets
U and V with U(w),V(w) # 0 for all w € Q, there exists a random variable n taking values
in 7. such that the intersection F(n(w),0"“)U(0"w) NV (w) # 0 P—a.s..

The following lemma is the Lemma A.1 in [34].
Lemma B.3. If F' is topological mixing on fibers, then F' is random topological transitive.

The following theorem is Theorem 4.3 in [32], which is the main result of the SRB measure

for random hyperbolic systems.
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Theorem B.4. Let F be a C'™ RDS with a random topological transitive hyperbolic at-
tractor A C M x Q. Then there exists a unique F—invariant measure (SRB-measure) v

supported by A and characterized by each of the following:
(i) h,(F) = [>> A dv, where \; are the Lyapunov exponents corresponding to v;

(ii)) P—a.s. the conditional measure of v, on the unstable manifolds are absolutely contin-

uous with respect to the Riemannian volume on these submanifolds;

(i) h,(F)+ [ fdv = supp_invariant v (F)+ [ fdv} and the later is the topological pressure
wr(f) of f which satisfies mp(f) = 0;

(iv) v = 1f, where 1 is the conjugation between F' on A and two-sided shift o on ¥ 4, and i
is the equilibrium state for the o and function f o). The measure [i can be obtained as
a natural extension of the probability measure p which is invariant with respect to the
one-sided shift on X% and such that Ly g = p P—a.s. wheren— fot) = h—ho(fx o)

for some random Hélder continuous function h;

(v) v can be obtained as a weak limit v, = lim,,_, F(n,0 "w)mgy-n, P—a.s. for any measure
my, absolutely continuous with respect to the Riemannian volume such that suppp., C

U(w).
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