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abstract

Dynamics of Systems Driven by an External Force

Xue Liu
Department of Mathematics, BYU

Doctor of Philosophy

In this dissertation, we study the complicated dynamics of two classes of systems: Anosov
systems driven by an external force and partially hyperbolic systems driven by an external
force.

For smooth Anosov systems driven by an external force, we first study the random
specification property, which is on the approximation of an N−spaced arbitrary long finite
random orbit segments within given precision by a random periodic point. We prove that if
such system is topological mixing on fibers, then it has the random specification property.
Furthermore, we prove that the homeomorphism induced by such a system on the space of
random probability measures also has the specification property. We note that the random
specification property implies the positivity of topological fiber entropy. Secondly, we show
that if the system is topological mixing on fibers, then its past and future random correlation
for Hölder observable functions decay exponentially with respect to the system and the
unique random SRB measure.

For smooth partially hyperbolic systems driven by an external force, we prove the exis-
tence of the random Gibbs u−state, which has absolutely continuous conditional measure
on the strong unstable manifolds.

Keywords: random dynamical systems, random specification, Bowen’s specification property,
exponential decay of random correlation, absolute continuity, random SRB measure, Birkhoff
cone, random Gibbs u−state
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Chapter 1. Introduction

The study of complicated dynamics can be traced back to Poincare’s work [50] on the N-body

problem. The modern theory of uniformly hyperbolic dynamical systems was initiated in

the 1960s by Anosov [2] and Smale [60], where Anosov and Axiom A diffeomorphisms/flows

were introduced respectively. The core component in these systems is uniform hyperbolicity,

which is an invariant geometric structure describing the exponential divergence of nearby

orbits. This exponential divergence together with the compactness of phase space produces

rich and complicated dynamical structures.

From a geometric perspective, one of the complicated dynamics of transitive Anosov

system is the abundance of periodic points. Bowen’s specification property, which can be

viewed as a uniform version of topological transitivity [40], says that a finite collection of

arbitrary long orbits segments can be shadowed by a periodic point within given precision

as long as one allows for enough time between segments. Bowen’s specification theorem

[10] affirms that any diffeomorphism restricted to a compact, topological mixing and locally

maximal hyperbolic set (hyperbolic elementary set) has Bowen’s specification property. If

a homeomorphism on a compact metric space has the specification property, then the set

of invariant measures equidistributed on a periodic orbit is dense in the set of invariant

measures [58]. Moreover, the induced system on the space of probability measure also has the

specification property [8]. Furthermore, if the system has expansivity, then the topological

entropy equals the exponential growth rate of periodic orbits [10], and the unique equilibrium

state can be obtained for a large class of potential functions [11]. In recent decades, many

generalizations of the specification property have been developed [56, 49, 65, 20]. In [54, 55],

the authors studied the specification property for the following non-autonomous or time-

dependent discrete systems:

xn+1 = fn(xn), n ≥ 1

on a compact metric space (X, d). A periodic point for such non-autonomous systems is a
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point x ∈ X such that there exists n ∈ N,

fnk ◦ fnk−1 ◦ · · · ◦ f2 ◦ f1(x) = x, for every k ∈ N. (1.1)

While in this dissertation, when an external force evolves in time, the system driven by the

orbit of an external force can be viewed as a non-autonomous discrete dynamical system.

Due to the presence of a random external force, the periodic point defined in (1.1) rarely

exists. We consider the random periodic points in our dissertation, which have already been

studied in the existing literature [38, 69]. To investigate the abundance of random periodic

points in systems driven by external force, we study the random specification property in

the first part of this dissertation.

The study of the statistical behavior of orbits dates back to the work of Birkhoff and Von

Neumann on the ergodic theorem. The ergodic theorem declares that if an invariant measure

µ is ergodic, then the time average of an integrable observable along individual trajectories

µ−a.s. converges to the spatial average. Another stochastic property, which is stronger

than ergodicity, is (measure-theoretic) mixing: a measure-preserving transformation (f, µ)

is mixing if for all measurable sets A, B,

µ(f−nA ∩B)→ µ(A)µ(B) or µ(B|f−nA)→ µ(B) as n→∞.

The functional form of mixing is that the correlation function of two observable functions

g, h with respect to measure µ decays to zero, i.e.

|
∫

(g ◦ fn)hdµ−
∫
gdµ

∫
hdµ| → 0 as n→∞,

which says that g ◦ fn and h become uncorrelated asymptotically. Sinai [59], Ruelle [52]

and Bowen [12] proved that topological mixing Anosov or Axiom A diffeomorphisms have

exponential decay of correlation for Hölder observable functions with respect to the unique
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SRB measure, see also [46, 62, 67, 13]. There are a large number of results that consider the

exponential decay of correlations, for instance [28, 30, 3, 24, 67, 18, 25, 26, 63, 1, 47, 39],

where an invariant measure is called SRB measure if it has absolute continuous conditional

measure on unstable manifolds. In the second part of this dissertation, we prove exponential

decay of random correlation for Anosov systems driven by an external force.

When there is a neutral direction, besides the uniformly expansion and contraction di-

rections in the tangent bundle, the system is a partially hyperbolic system [14]. A special

class of invariant measures for partially hyperbolic systems, which is characterized by hav-

ing absolutely continuous conditional measures on strong unstable manifolds, is the Gibbs

u−state. When the Lyapunov exponents along the neutral direction are non-positive, then

the Gibbs u−state is the SRB measure [68]. In [48], Pesin and Sinai proved the existence of

Gibbs u−state for partially hyperbolic systems. We refer to three surveys about the relation

between Gibbs u−states and physical relevant measures [29, 9, 19]. In this third part of this

dissertation, we prove the existence of the random Gibbs u−state for partially hyperbolic

systems driven by an external force.

1.1 Anosov Systems Driven by an External Force

Let M be a connected closed smooth Riemannian manifold and (Ω, dΩ) be a compact metric

space. Denote B(M) and B(Ω) to be the Borel measurable set on M and Ω respectively.

Let θ : Ω→ Ω be a homeomorphism. In this dissertation, the topological dynamical system

(Ω, θ) will describe the external force. LetH =Diff2(M) be the space of C2−diffeomorphisms

on M quipped with the C2−topology [33]. Let f : Ω → H be a continuous map. The

diffeomorphism fω := f(ω) is driven by the external force (Ω, θ), i.e., while ω is shifted by

θ in time n to θnω on the external force space Ω, any point x ∈ M is mapped to F (n, ω)x,

3



where

F (n, ω) =


fθn−1ω ◦ · · · ◦ fω, if n > 0

idM , if n = 0

(fθnω)−1 ◦ · · · ◦ (fθ−1ω)−1, if n < 0.

Remark 1.1. The following system

F : Z× Ω×M →M, (n, ω, x) 7→ F (n, ω)x

satisfies for each n ∈ Z that, (ω, x) 7→ F (n, ω)x is continuous and the mappings F (n, ω) :=

F (n, ω) : M →M form a cocycle over θ, i.e.,

F (0, ω) = idM for all ω ∈ Ω,

F (n+m,ω) = F (n, θmω) ◦ F (m,ω) for all n,m ∈ Z, ω ∈ Ω.

When (Ω,B(Ω)) is equipped with a θ−invariant probability measure P , F is called a (con-

tinuous) random dynamical system (RDS) [4].

We say that the diffeomorphism fω driven by the external force (Ω, θ) is an Anosov

system driven by the external force (Ω, θ) (or φ is random Anosov on fibers system) if for

every (x, ω) ∈M ×Ω, there is a splitting of the tangent bundle of Mω := M ×{ω} at x into

TxMω = Es(x, ω)⊕ Eu(x, ω),

which depends continuously on (x, ω) ∈ M × Ω with dimEs(x, ω), dimEu(x, ω) > 0, and

where the splitting is invariant in the sense that

DxfωE
u(x, ω) = Eu(fωx, θω), DxfωE

s(x, ω) = Es(fωx, θω)

4



and 
|Dxfωξ| ≥ eλ0|ξ|, ∀ξ ∈ Eu(x, ω),

|Dxfωη| ≤ e−λ0|η|, ∀η ∈ Es(x, ω),

where λ0 > 0 is a constant. Putting fω and θ together forms a skew product system

φ : M × Ω→M × Ω, φ(x, ω) = (fωx, θω).

The system φ is said to be topological mixing on fibers if for any nonempty open sets U, V ⊂

M , there exists N > 0 such that for any n ≥ N and ω ∈ Ω, φn({ω}×U)∩ ({θnω}×V ) 6= ∅.

Anosov system driven by an external force is a class of nonautonomous dynamical sys-

tems. Such systems have been recently studied in [34], in which the authors proved dynamical

complexity, under the topological mixing on fibers assumption, such as the density of random

periodic points, strong random horseshoe, and a simplified random Livšic theorem. Exam-

ples such as fiber Anosov maps on 2-dimension torus driven by irrational rotation on the

torus and random composition of 2×2 area-preserving positive matrices are under consider-

ation (we list these examples in Subsection 2.1.1). Moreover, the random Anosov on fibers

systems actually contain a class of partially hyperbolic systems. In fact, if Ω is a compact

differentiable manifold, and if θ : Ω → Ω is a diffeomorphism such that the expansion of

Dθ is weaker than eλ0 and contraction of Dθ is weaker than e−λ0 . Furthermore, we assume

fω(x) and f−1
ω (x) are C1 in ω. Then the system φ is a partially hyperbolic system with

dimension-dim Ω central direction (we prove this statement in Section 2.1).

1.1.1 Random Specification. The system φ induces a natural self-map φ̃ on L∞(Ω,M)

given by (φ̃g)(ω) = fθ−1ωg(θ−1ω) which is a homeomorphism with respect to the sup-metric

on L∞(Ω,M). A measurable map g ∈ L∞(Ω,M) is said to be a random periodic point of

φ if g is a periodic point of φ̃. In [34], one of the main result for Anosov and topological

mixing on fibers system is the density of random periodic points.

The random specification property is defined analogously to Bowen’s specification prop-
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erty in deterministic systems. The system φ is said to have the random specification prop-

erty if (L∞(Ω,M), φ̃) has Bowen’s specification property, i.e., for any ε > 0, there exists a

N = N(ε) such that for any finite collection of intervals τ = {I1, ..., Im}, Ii = [ai, bi] ⊂ Z,

ai+1 > bi + N, and any P : ∪mi=1Ii → L∞(Ω,M) such that φ̃t2−t1(P (t1)) = P (t2) for

t1, t2 ∈ I ∈ τ , there exists ε−shadowing point g ∈ L∞(Ω,M),

dL∞(Ω,M)(P (t), φ̃t(g)) < ε, ∀t ∈ Ii, i ∈ {1, ...,m}.

Moreover, for any q ≥ N + bm − a1, the shadowing point can be a random periodic point

with period q.

Remark 1.2. In [31], Gundlach and Kifer generalized the notion of specification in RDS

which is based on the construction of the shadowing point in the proof of Bowen’s specification

theorem. In their definition, due to the presence of the random noise, the periodicity part is

missing.

In [34], the following random specification theorem was stated without proof. We give a

proof in this dissertation.

Theorem A (Random specification property). Random Anosov and topological mixing on

fibers systems have the random specification property.

Besides this, we study the consequences of the random specification property. A random

probability measure is a map µ : B(M) × Ω → [0, 1], (B,ω) → µω(B) such that for each

fixed B ∈ B(M), ω → µω(B) is measurable, and for each fixed ω ∈ Ω, B 7→ µω(B) is a

probability measure on M . Let PrΩ(M) be the space of all random probability measures,

which is compact metrizable space [21]. The system φ defines a self-map φ∗ on PrΩ(M) by

(φ∗µ)ω := (fθ−1ω)∗µθ−1ω.

Theorem B. Let φ be random Anosov and topological mixing on fibers systems, then φ∗ is

a homeomorphism and the topological dynamical system (PrΩ(M), φ∗) has Bowen’s specifi-

cation property.

6



Moreover, the random specification implies dynamical complexity in the following sense.

Theorem C. The random specification property implies the positivity of topological fiber

entropy.

1.1.2 Exponential Decay of Random Correlation. To describe the statistical be-

haviour of a random dynamical system, we study the random mixing property. A random

probability measure (µω)ω∈Ω is φ−invariant if (fω)∗µω = µθω for P − a.s ω ∈ Ω.

The system φ, generated by fω and θ, together with an invariant random probability

measure (µω)ω∈Ω has the past random mixing property if for all ω ∈ Ω,

lim
n→∞

µθ−nω(f−nω A|B) = lim
n→∞

µθ−nω(f−nω A ∩B)

µθ−nω(B)
= µω(A).

Notice that µθ−nω(f−nω A) = µω(A) for all n ∈ N, so the above equality is saying that when we

trace back to the history, the “current memory” is fading with respect to the measurement

in the history. Equivalently, given a pair of regular observable functions ϕ and ψ on M , the

past random correlation function of ϕ and ψ goes to zero, i.e.,

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω −
∫
M

ψ(x)dµω

∫
M

ϕ(x)dµθ−nω

∣∣∣∣→ 0 as n→∞.

The system φ, generated by fω and θ, together with an invariant random probability

measure (µω)ω∈Ω has future random mixing property if for all ω ∈ Ω,

lim
n→∞

µω(B|f−nθnωA) = lim
n→∞

µω(f−nθnωA ∩B)

µω(f−nθnωA)
= lim

n→∞

µω(f−nθnωA ∩B)

µθnω(A)
= µω(B).

The future random mixing property is saying that the impact of the future to the current

state is fading with respect to the measurement in the current state. Equivalently, given a

pair of regular observable functions ϕ and ψ on M , the future random correlation function

7



of ϕ and ψ goes to zero, i.e.,

∣∣∣∣∫
M

ψ(fnωx)ϕ(x)dµω −
∫
M

ψ(x)dµθnω

∫
M

ϕ(x)dµω

∣∣∣∣→ 0 as n→∞.

If φ is Anosov and topological mixing on fibers, then φ is a random topological transitive

hyperbolic systems [34], so there exists a unique random SRB measure and the unique ran-

dom SRB measure is given by µω := limn→∞(fnθ−nω)∗m, where m is the normalized Rieman-

nian volume measure [32]. This unique random SRB measure is characterised by the entropy

formula of Pesin’s type, absolutely continuous conditional measure on unstable manifolds,

and variational principle when the topological pressure equals zero [32]. In this dissertation,

we prove that the random Anosov and topological mixing on fibers system has exponen-

tial decay of both past and future random correlation for Hölder observable functions with

respect to the unique random SRB measure.

Theorem D. Let φ be random Ansov and topological mixing on fibers systems, then there

exists a constant ν0 only depending on the system φ such that for any µ, ν ∈ (0, 1) satisfying

0 < µ+ ν < ν0

and ψ ∈ C0,µ(M), ϕ ∈ C0,ν(M), both the past and future random correlation of ϕ and ψ

exponential decay with respect to φ and the unique random SRB measure (µω)ω∈Ω, i.e. for

any n ∈ N, ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω −
∫
M

ψ(x)dµω

∫
M

ϕ(x)dµθ−nω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M) · ‖ϕ‖C0,ν(M) · Λn;∣∣∣∣∫
M

ψ(fnωx)ϕ(x)dµω −
∫
M

ψ(x)dµθnω

∫
M

ϕ(x)dµω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M) · ‖ϕ‖C0,ν(M) · Λn,

where K > 0 and Λ ∈ (0, 1) only depend on µ and ν, and C0,µ(M), C0,ν(M) are the spaces

of real valued Hölder continuous function with Hölder exponents µ and ν respectively.

Remark 1.3. For RDS, the exponential decay of random correlations was obtained for ran-

8



dom Lasota–Yorke maps on intervals in [15] and for random perturbations of expanding

maps in [7]; in [36], the topological one-sided random shift of finite type with the fiber Gibbs

measure was proved to have certain nonuniform ω−wise decay of correlations, and similar

results hold for random expanding in average transformations. Other decay rates of random

correlations such as stretched exponential decay and polynomial decay were also considered

for certain random dynamical systems [41, 53].

The proof of Theorem D is based on studying the fiber transfer operator Lω, which is

defined by

Lωϕ : M → R, (Lωϕ)(x) :=
ϕ((fω)−1x)

| detD(fω)−1(x)fω|

for any measurable observable function ϕ : M → R. We construct the Birkhoff cone on

each fiber and introduce the Hilbert projective metric on each fiber Birkhoff cone. We prove

that iterations of fiber transfer operators LNω = LθN−1ω ◦ · · · ◦ Lω is a contraction, uniformly

for all ω ∈ Ω, with respect to the Hilbert projective metric on fiber Birkhoff cone, where

N comes from the topological mixing on fibers property. The unique random SRB measure

and exponential decay of random correlations can be obtained from the contraction.

The Bikhoff cone approach has been used extensively to study the transfer operator and

exponential decay of correlations. For deterministic systems, Liverani in [46] used it to prove

the exponential decay of correlations for smooth uniformly hyperbolic area-preserving cases.

Later, it was applied to general Axiom A attractors in [62, 6], and some partially hyperbolic

systems [3, 17]. For RDS, the Birkhoff cone approach was used in random perturbations of

Ck(k > 1) expanding maps [7], and in a class of non-uniformly expanding random dynamical

systems [61].

1.2 Partially Hyperbolic Systems driven by an external force

We say that the diffeomorphism fω driven by the eternal force (Ω, θ) is a partially hyperbolic

system driven by the external force (Ω, θ) (or φ a random partially hyperbolic on fibers

9



system) if for every (x, ω) ∈M×Ω, there is a splitting of the tangent bundle ofMω = M×{ω}

at x into central-stable and strong unstable directions

TxMω = Ecs(x, ω)⊕ Euu(x, ω),

which depend continuously on (x, ω) ∈M ×Ω and the splitting is invariant in the sense that

DxfωE
cs(x, ω) = Ecs(φ(x, ω)), DxfωE

uu(x, ω) = Euu(φ(x, ω)),

and there exist constants 0 < eλ < eλ0 <∞, λ0 > 0 and C0 > 1 such that


|Dxfωξ| ≥ C−1

0 eλ0|ξ|, ∀ξ ∈ Euu(x, ω),

|Dxfωη| ≤ C0e
λ|η|, ∀η ∈ Ecs(x, ω).

(1.2)

We list several examples of random partially hyperbolic on fibers systems in Section 2.2.1,

such as random Anosov on fibers systems [34], partially hyperbolic maps on 3−d tori driven

by minimal irrational rotations on a compact torus, random small perturbations of partially

hyperbolic systems, and random composition of (2 × 2 hyperbolic automorphism ⊕ id) on

T2 × S1.

By the invariant unstable manifolds theorem (cf., for example, [45]), there exists an

embedded strong unstable manifold W uu(x, ω) tangent to Euu(x, ω). A random probability

measure (µω)ω∈Ω is called a random Gibbs u−state if it has absolutely continuous conditional

measure on strong unstable manifolds.

Theorem E. There exists at least one random Gibbs u-state for C2 random partially hyper-

bolic on fibers systems.

Note that for a random Gibbs u−state (µω)ω∈Ω, if for µ−a.s. (x, ω) ∈M ×Ω, the strong

10



unstable manifolds coincide with the unstable manifolds

W u(x, ω) := {y ∈M : lim sup
n→∞

1

n
log d(f−nω x, f−nω y) < 0},

then it is a random SRB measure [5, 37].

For RDS, the existence of a random SRB measure was obtained in [32] by Kifer and

Gundlach for random hyperbolic systems which is random semi-conjugated to a random

subshift of finite type. Recently, Wang, Wu and Zhu in [64] proved the existence of Gibbs

u−state (random SRB measures in our definition) in the case that the RDS has a uniformly

dominated splitting is uniformly expanding on the unstable subbundle, and has a non-

positive Lyapunov exponents on the central-stable subbundle.

1.3 Plan of the Paper

We organize the paper as follows. In Chapter 2, we introduce random Anosov on fibers

systems, random partially hyperbolic on fibers systems, and other notations that will be

used in this dissertation. In Chapter 3, we state the formal results for the above two systems

respectively. In Chapter 4, we introduce several preliminary lemmas and propositions to

pave the way for the future proof. In Chapter 5, we prove Theorems A, B, and C related

to the random specification for smooth random Anosov and topological mixing on fibers

systems. In Chapter 6, we prove the exponential decay of random correlation (Theorem D)

for smooth random Anosov and topological mixing on fibers systems. In Chapter 7, we prove

the existence of random Gibb u−state (Theorem E) for smooth random partially hyperbolic

on fibers systems.

Chapter 2. Settings and Notations

In this chapter, we introduce some basic concepts and notations for future references.

11



Let M be a connected closed smooth Riemannian manifold of finite dimension, and dM

be the induced Riemannian metric on M . Let θ : Ω → Ω be a homeomorphism on a

compact metric space (Ω, dΩ) preserving a complete ergodic Borel probability measure P .

Denote B(Ω) to be the Borel measurable sets on Ω. The product space M ×Ω is a compact

metric space with metric d((x1, ω1), (x2, ω2)) = dM(x1, x2) + dΩ(ω1, ω2) for any x1, x2 ∈ M

and ω1, ω2 ∈ Ω. Let H =diff2(M) be the space of C2 diffeomorphisms on M equipped with

the C2 topology [33], and let f : Ω → H be a continuous map. The skew product system

φ : M × Ω→M × Ω induced by f(ω) and θ is defined by:

φ(x, ω) = (f(ω)x, θω) = (fωx, θω), ∀ω ∈ Ω, x ∈M.

where we rewrite f(ω) as fω. Then inductively:

φn(x, ω) = (fnωx, θ
nω) :=


(fθn−1ω ◦ · · · ◦ fωx, θnω), if n > 0

(x, ω), if n = 0

((fθnω)−1 ◦ · · · ◦ (fθ−1ω)−1x, θnω), if n < 0.

2.1 Random Anosov and topological mixing on fibers Systems

Definition 2.1. The system φ is called Anosov on fibers if the following is true: for every

(x, ω) ∈M × Ω, there is a splitting of the tangent bundle of Mω = M × {ω} at x

TxMω = Es(x, ω)⊕ Eu(x, ω),

which depends continuously on (x, ω) ∈ M × Ω with dimEs
(x,ω), dimEu

(x,ω) > 0 and satisfies

that

Dfω(x)Eu(x, ω) = Eu(φ(x, ω)), Dfω(x)Es(x, ω) = Es(φ(x, ω)),
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and 
|Dfωξ| ≥ eλ0|ξ|, ∀ξ ∈ Eu(x, ω),

|Dfω(x)η| ≤ e−λ0|η|, ∀η ∈ Es(x, ω),

where λ0 > 0 is a constant.

Random Anosov on fibers system is a special case of random hyperbolic system defined

in [32].

Definition 2.2. We say that φ : Ω×M → Ω×M is topological mixing on fibers if for any

nonempty open sets U, V ⊂M , there exists N > 0 such that for any n ≥ N and ω ∈ Ω

φn({ω} × U) ∩ {θnω} × V 6= ∅.

2.1.1 Examples of Random Anosov and topological mixing on fibers Systems.

In [34], Huang, Lian and Lu showed that the following two types of systems (S1) and (S2)

are Anosov and topological mixing on fibers.

(S1)−type systems are systems satisfying the following conditions:

(A1) (θ,Ω) is a minimal irrational rotation on the compact torus;

(A2) φ is Anosov on fibers;

(A3) φ is topological transitive on M × Ω.

The following example is an (S1)−type system:

Example 2.3 (Fiber Anosov maps on 2− d tori [34]). Let φ : T2 × T→ T2 × T given by

φ


x
y

 , ω

 =


2 1

1 1


x
y

+

h1(ω)

h2(ω)

 , ω + α

 ,

where α ∈ R\Q, h1(ω), h2(ω) are continuous map from T to itself.
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(S2)−type systems are systems satisfying the following conditions:

(B1) (θ,Ω) is a homeomorphism on a compact metric space;

(B2) φ is Anosov on fibers;

(B3) There exists an fω−invariant Borel probability measure ν with full support (i.e. supp

ν = M) for all ω ∈ Ω.

The following example is an (S2)−type system.

Example 2.4 (Random composition of a 2× 2 area-preserving positive matrices [34]). Let

Ai =

ai bi

ci di




1≤i≤k

be 2 × 2 matrices with positive integer entries and | detAi| = 1 for all i ∈ {1, ..., k}, i.e.,

hyperbolic toral automorphisms. Let Ω := Sk = {1, ..., k}Z together with the left shift operator

σ be the symbolic dynamical system with k symbols. Define f : Ω→ {A1, ..., Ak} by f(ω) =

Aω(0) where ω = (..., ω(−1), ω(0), ω(1), ...) ∈ Ω. Define φ : T2 × Ω→ T2 × Ω by

φ(x, ω) = (f(ω)x, σω).

Next, we show that random Anosov on fibers systems contain a class of partially hyper-

bolic systems.

Definition 2.5. (f,M) is called a partially hyperbolic system in the narrow sense if the

tangent bundle admits a splitting into three continuous vector subbundles TxM = E1(x) ⊕

E2(x)⊕ E3(x) which satisfy

(i) dominated splitting, i.e., Dxf(Ei(x)) = Ei(f(x)) for i = 1, 2, 3, and there exists con-

stants c > 0 and λ ∈ (0, 1) such that ‖Dfn|Ei(x)‖ ≤ cλn‖Dfn|Ei+1(x)‖ for i = 1, 2,

(ii) E1(x) is uniformly contracted and E3(x) is uniformly expanded.
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We denote the dominated splitting by TxM = E1(x)⊕< E2(x)⊕< E3(x).

Let Ω be a compact differentiable manifold, and let θ : Ω → Ω be a diffeomorphism.

Denote f(x, ω) := fω(x) and φ−1(x, ω) = (f−1
ω (x), θ−1ω).

Proposition 2.6. Assume

(a) φ : M × Ω→M × Ω is Anosov on fibers,

(b) f(x, ω) and f−1
ω (x) are C1 in ω,

(c) The diffeomophism θ satisfies:

sup
(x,ω)∈M×Ω

‖Dxfω|Es(x,ω)‖ < inf
ω∈Ω
‖Dωθ

−1‖−1 := m1

≤ sup
ω∈Ω
‖Dωθ‖ := m2 < inf

(x,ω)∈M×Ω
‖Dxf

−1
ω |Eu(x,ω)‖−1.

Then φ is partially hyperbolic in the narrow sense with dimension-dim Ω central direction.

Proof. We first show the existence of a dominated splitting. Note that T(x,ω)M × Ω =

TxM × TωΩ already has a splitting Eu(x, ω) × {0} ⊕ Es(x, ω) × {0} ⊕ {0} × TωΩ, but this

splitting is not invariant. For any v ∈ TxM × TωΩ, then v = v1 + v2 + v3 according to

the above splitting. Notice that ‖Dφ(x, ω)v3‖ only depends on ‖Dωf(x, ω)‖ and ‖Dωθ‖.

‖Dφ−1(x, ω)v3‖ only depends on ‖Dω(fθ−1ω)−1(x)‖ and ‖Dωθ
−1‖, then by the compactness

of M and Ω, there exists a number K such that

‖Dφ(x, ω)v3‖ ≤ K‖v3‖, ‖Dφ−1(x, ω)v3‖ ≤ K‖v3‖.

We let P (Eu(x, ω)×{0}) denote the projection map from TxM×TωΩ to Eu(x, ω)×{0} with

respect to the splitting Eu(x, ω)×{0}⊕Es(x, ω)×{0}⊕{0}×TωΩ. P (Es(x, ω)×{0}) and

P ({0} × TωΩ) are similar notations. Since Es(x, ω) and Eu(x, ω) are uniformly continuous

on x and ω, there exists a number P > 1 such that

sup{‖P (Es(x, ω)× {0})‖, ‖P (Eu(x, ω)× {0})‖ : (x, ω) ∈M × Ω} < P .
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Now consider the cone

C(x, ω) := {v ∈ TxM × TωΩ| ‖v2‖+ b‖v3‖ ≤ ‖v1‖},

where b is a number such that

b >
2PK

eλ0 −m2

.

Denote

c0 = max{2PK + bm2

eλ0b
, e−2λ0} ∈ (0, 1).

For any v ∈ C(x, ω), we have

Dφ(x, ω)v = Dφ(x, ω)v1 +Dφ(x, ω)v2 +Dφ(x, ω)v3

= Dφ(x, ω)v1 + P (Eu(φ(x, ω))× {0})Dφ(x, ω)v3

+Dφ(x, ω)v2 + P (Es(φ(x, ω)))Dφ(x, ω)v3

+ P ({0} × TθωΩ)Dφ(x, ω)v3

:= (Dφ(x, ω)v)1 + (Dφ(x, ω)v)2 + (Dφ(x, ω)v)3.

Then

‖(Dφ(x, ω)v)2‖+ b‖(Dφ(x, ω)v)3‖ ≤ e−λ‖v2‖+ PK‖v3‖+ b ·m2‖v3‖

= e−λ‖v2‖+ (PK + bm2)‖v3‖

≤ e−λ‖v2‖+ (2PK + bm2)‖v3‖ − PK‖v3‖

= eλ
(
e−2λ‖v2‖+ e−λ(2PK + bm2)‖v3‖

)
− c0PK‖v3‖

< eλ(c0‖v2‖+ c0b‖v3‖)− c0PK‖v3‖

≤ c0e
λ‖v1‖ − c0PK‖v3‖

≤ c0‖(Dφ(x, ω)v)1‖.
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Hence Dφ(x, ω)C(x, ω) ⊂ intC(φ(x, ω)). By cone-field criteria (Theorem 2.6 in [22]), TxM×

TωΩ has a dominated splitting S1(x, ω)⊕<S2(x, ω) with dim(S2(x, ω)) = dim(Eu(x, ω)×{0}).

Notice that Eu(x, ω)× {0} lies in C(x, ω) and it is invariant under Dφ(x, ω), so S2(x, ω) =

Eu(x, ω)× {0}.

On the other hand, consider another cone

C̄(x, ω) = {v ∈ TxM × Tωω : ‖v1‖+ d‖v3‖ ≤ ‖v2‖},

where

d ≥ 2PK
eλ −m−1

1

.

Denote

c1 = max{2PK +m−1
1 d

deλ0
, e−2λ0} ∈ (0, 1).

For any v ∈ C̄(x, ω), we have

Dφ−1(x, ω)vDφ−1(x, ω)v1 +Dφ−1(x, ω)v2 +Dφ−1(x, ω)v3

= Dφ−1(x, ω)v1 + P (Eu(φ−1(x, ω))× {0})Dφ−1(x, ω)v3

+Dφ−1(x, ω)v2 + P (Es(φ−1(x, ω))× {0})Dφ−1(x, ω)v3

+ P ({0} × TωΩ)Dφ−1(x, ω)v3

:= (Dφ−1(x, ω)v)1 + (Dφ−1(x, ω)v)2 + (Dφ−1(x, ω)v)3.

Then

‖(Dφ−1(x, ω)v)1‖+ d‖(Dφ−1(x, ω)v)3‖ ≤ e−λ‖v1‖+ PK‖v3‖+ d ·m−1
1 ‖v3‖

< c1e
λ‖v2‖ − c1PK‖v3‖

≤ c1‖(Dφ−1(x, ω)v)2‖.

Hence Dφ−1(x, ω)C̄(x, ω) ⊂ int(C̄(φ−1(x, ω))). By cone-field criteria, TxM × TωΩ has a
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dominated splitting H1(x, ω)⊕< H2(x, ω) with dimH1(x, ω) = dim(Es(x, ω)× {0}). Notice

that Es(x, ω) × {0} lies in cone C̄(x, ω) and it is invariant under Dφ(x, ω), so H1(x, ω) =

Es(x, ω)× {0}.

Now TxM×TωΩ has two dominated splittings: S1(x, ω)⊕<(Eu(x, ω)×{0}) and (Es(x, ω)×

{0})⊕< H2(x, ω). Then, by uniqueness of the dominated splitting (Proposition 2.2 in [22]),

we have

TxM × TωΩ = (Es(x, ω)× {0})⊕< (S1(x, ω) ∩H2(x, ω))⊕< (Eu(x, ω)× {0}).

Besides, we already know that Es(x, ω) × {0} is uniformly contracted under Dφ(x, ω) and

Eu(x, ω)× {0} is uniformly expanded under Dφ(x, ω). Hence φ is partially hyperbolic.

2.2 Random Partially Hyperbolic on Fibers Systems

The system φ is called partially hyperbolic on fibers if the following is true: for every

(x, ω) ∈M × Ω, there is a splitting of the tangent bundle of Mω = M × {ω}

TxMω = Euu(x, ω)⊕ Ecs(x, ω),

which depends continuously on (x, ω) ∈ M × Ω with dimEuu
(x,ω) > 0 and satisfy that for all

(x, ω) ∈M × Ω

DxfωE
uu(x, ω) = Euu(φ(x, ω)), DxfωE

cs(x, ω) = Ecs(φ(x, ω)),

and there exist constants 0 < eλ < eλ0 <∞, λ0 > 0 and C0 > 1 such that


|Dxfωξ| ≥ C−1

0 eλ0|ξ|, ∀ξ ∈ Euu(x, ω),

|Dxfωη| ≤ C0e
λ|η|, ∀η ∈ Ecs(x, ω).

(2.1)
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2.2.1 Examples of Random Partially Hyperbolic on Fibers Systems.

In this subsection, we list several examples of random partially hyperbolic on fibers

systems.

Example 2.7. All examples of random Anosov on fibers system are random partially hyper-

bolic on fibers.

Example 2.8 (Fiber partially hyperbolic maps on 3-d Tori). Let θ : Ω→ Ω be any homeo-

morphism on a compact metric space Ω, and let P be an ergodic measure on Ω with respect

to θ. Define φ : T3 × Ω→ T3 × Ω by

φ



x

y

z

 , ω

 =

A

x

y

z

+ h(ω), θω

 =




2 1 0

1 1 0

0 0 1



x

y

z

+


h1(ω)

h2(ω)

h3(ω)

 , θω

 ,

where h(·) : Ω→ T3 is a continuous map.

The following example can be obtained by modifying the example in [44].

Example 2.9 (Random Small Perturbations of Partially Hyperbolic Systems). Let M be a

smooth compact Riemannian manifold without boundary, and let Diff2(M) be the space of C2

diffeomorphisms from M to M equipped with the C2 topology [33]. Note that the C2 topology

on Diff2(M) is metrizable, where we denote the metric generating the C2 topology by dC2.

Assume h ∈ Diff2(M) is partially hyperbolic in the following sense that there is a continuous

splitting

TM = Eu ⊕ Ecs

with dimEu > 0 and a number λ0 > 0 such that for any x ∈M


lim supn→∞

1
n

log |Dxh
nξ| ≥ λ0, ∀ξ ∈ Eu

x , ξ 6= 0,

lim infn→∞
1
n

log |Dxh
nη| ≤ 0, ∀η ∈ Ecs

x , η 6= 0.
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Let Uε(h) be the ε−neighborhood of h in the Diff2(M). Let Kε(h) ⊂ Uε(h) be any compact

set. For ω ∈ Ωε := Kε(h)Z, we denote by (· · · , g−1(ω), g0(ω), g1(ω), · · · ) the sequence of maps

corresponding to ω and define the metric on Ωε by

dΩε(ω, ω
′) =

∑
i∈Z

dC2(gi(ω), gi(ω
′))

2|i|
.

The metric dΩε generates the product topology on Ωε and as a consequence, Ωε is a compact

metric space. Let θ : Ωε → Ωε be the left shift operator, then θ is homeomorphism. Let

f : Ωε →Diff2(M) by f(ω) = fω = g0(ω), then f is a continuous map. Denote

fnω :=


g0(θn−1ω) ◦ g0(θn−2ω) ◦ · · · ◦ g0(ω), if n > 0

id, if n = 0

(g0(θnω))−1 ◦ · · · ◦ (g0(θ−1ω))−1 ◦ (g0(θ−1ω))−1, if n < 0.

Proposition 2.10. Given sufficiently small δ > 0, we can find εδ > 0 and a constant Aδ

such that the following hold: for every (ω, x) ∈ Ωεδ ×M , there is a splitting

TxM = Eu
(ω,x) ⊕ Ecs

(ω,x)

which depends continuously on (ω, x) and has the following properties:

(i) DxfωE
τ
(ω,x) = Eτ

(θω,fωx) for τ = cs, u;

(ii) for all n ≥ 0

|Dxf
n
ω ξ| ≥ A−2

δ e(λ0−3δ)n|ξ|, ∀ξ ∈ Eu
(ω,x),

|Dxf
n
ωη| ≤ A2

δe
3δn|η|, ∀η ∈ Ecs

(ω,x).

The above Proposition is an adapted version of Proposition 2.2 in [44].
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A proof similar to the proof of Proposition 8.2 in [34] can be applied to prove the following

example is random partially hyperbolic on fibers system.

Example 2.11. Let Ai =


ai bi 0

ci di 0

0 0 1




1≤i≤p

be 3 × 3 matrices with ai, bi, ci, di ∈ Z+, and |aidi − cidi| = 1 for any i ∈ {1, ..., p}. Let

Ω = Sp := {1, ..., p}Z with the left shift operator θ be the symbolic dynamical system with p

symbols.

For any ω = (..., ω−1, ω0, ω1, ...) ∈ Ω define f(ω) = Aω0 . Then the skew product φ :

T3 × Ω→ T3 × Ω defined by

φ(x, ω) = (f(ω)x, θω)

is partially hyperbolic on fibers satisfying our setting.

2.3 Random Probability Measures

In this section, we introduce the theory of random probability measures, most of which

are taken from [21]. Denote Pr(M) to be the space of probability measures on (M,B(M))

equipped with the narrow topology, where the narrow topology on Pr(M) is the smallest

topology that makes ρ 7→ ρ(g) continuous for ρ ∈ Pr(M) and g a continuous function on

M . By Theorem A.2 in [21], we pick

dp(ρ, ζ) = sup{ρ(g)− ζ(g) : g ∈ BL(M), 0 ≤ g ≤ 1, [g]L ≤ 1}

for a metric generating the narrow topology, where BL(M) is the set of Lipschitz functions

on M and [g]L is the Lipschitz constant of g.

Definition 2.12. A map µ : B(M)× Ω→ [0, 1] by (B,ω) 7→ µω(B) satisfying
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(i) for every B ∈ B(M), ω 7→ µω(B) is measurable,

(ii) for P−almost every ω ∈ Ω, B → µω(B) is a Borel probability measure,

is said to be a random probability measure on M , and is denoted by ω 7→ µω or (µω)ω∈Ω.

Remark 2.13. If µ : B(M)×Ω→ [0, 1] satisfies (ii) from Definition 2.12, and if ω 7→ µω(K)

is measurable for every K from a ∩−closed family K of Borel subsets of M which generates

B(M) (i.e., σ(K) = B(M)), then (i) is satisfied as well, hence µ is a random probability

measure. In fact, D = {D ∈ B(M) : ω → µω(D)is measurable} is a Dynkin system and

K ⊂ D. By Dynkin’s π − λ theorem, B(M) = σ(K) ⊂ D.

As a consequence, it is sufficient to have (ii) together with the measurability of ω → µω(K)

for all closed sets K ⊂M to conclude that (µω)ω∈Ω is a random probability measure.

Note that by Remark 3.20 in [21], µ is a random measure if and only if ω 7→ µω is

measurable with respect to the Borel σ−algebra of the narrow topology on Pr(M). Denote

PrΩ(M) to be the collection of all random probability measures.

Denote PrP (M ×Ω) to be the space of probability measures on (M ×Ω,B(M ×Ω)) with

marginal P on Ω. There is an isomorphism between PrΩ(M) and PrP (M ×Ω) in the sense

of disintegration, i.e., for any µ ∈ PrP (M × Ω) there exists a random probability measure

ω → µω such that

∫
M×Ω

h(x, ω)dµ(x, ω) =

∫
Ω

∫
M

h(x, ω)dµω(x)dP (ω)

for every bounded measurable h : M × Ω → R. Moreover, this disintegration is P−a.e.

unique .

Definition 2.14. A function h : M × Ω→ R is called a random continuous function if

(i) ω → h(x, ω) is measurable for fixed x ∈M ;

(ii) x→ h(x, ω) is continuous for fixed ω ∈ Ω and supx∈M |h(x, ω)| ∈ L1(Ω,B(Ω), P ).
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We denote CΩ(M) to be the collection of all random continuous functions on M . The

narrow topology on PrΩ(M) is generated by the map µ 7→ µ(h) for h ∈ CΩ(M).

Since (Ω,B(Ω)) is a compact metric space, its Borel σ−algebra is countably generated.

Combining with the fact that M is a compact manifold, we know PrΩ(M) is a compact

topological space under the narrow topology by Theorem 4.4 in [21]. Moreover, by Theorem

4.16 in [21], the narrow topology on PrΩ(M) can be metrized by the following random

Prohorov metric

drp(µ, ν) =
∑
m∈N

1

2m
sup

{∫
Gm

µω(g)− νω(g)dP (ω) : g ∈ BL(M), 0 ≤ g ≤ 1, [g]L ≤ 1

}
,

for any µ, ν ∈ PrΩ(M), where {Gm : m ∈ N} is a countable algebra generating B(Ω).

Definition 2.15. A set valued map C : Ω→ 2M is said to be a random closed set if

(i) for each ω ∈ Ω, C(ω) is closed;

(ii) for each x ∈M , the map ω 7→ d(x,C(ω)) is measurable.

A set valued map ω 7→ U(ω) is said to be a random open set if its complement ω 7→ U c(ω)

is a random closed set.

The following proposition comes from corollary 2.10 in [21].

Proposition 2.16. If ω 7→ C(ω) is a random closed set, then its interior intC is an random

open set.

Proposition 2.17 (The Selection Theorem). A set valued map C : Ω → 2M is a random

closed set if and only if there exists a sequence {cn}n∈N of measurable maps cn : Ω → M ,

such that C(ω) = closure{cn(ω) : n ∈ N} for all ω ∈ Ω.

The following is part of the Portmanteau theorem for random probability measures.

Proposition 2.18 (The Portmanteau Theorem). If µn ∈ PrΩ(M), then the following state-

ments are equivalent:
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(i) µn → µ in the narrow topology ;

(ii) lim supn→∞ µn(C) ≤ µ(C) for all random closed sets C, where µ(C) =
∫

Ω
µω(C(ω))dP (ω);

(iii) lim infn→∞ µn(U) ≥ µ(U) for all random open sets U , where µ(U) =
∫

Ω
µω(U(ω))dP (ω).

2.4 Topological Fiber Entropy

In this section, we introduce the topological fiber entropy for random dynamical systems.

Most of the notations are borrowed from [37].

For each n ∈ N, and ω ∈ Ω, we define a family of metrics dω,n on M by

dω,n(x, y) = max
0≤k<n

{d(fkω(x), fkω(y))}, for any x, y ∈M.

Definition 2.19. A set Eω ⊂ M is called (ω, ε, n)−seperated if for any x, y ∈ Eω, x 6= y

implies dω,n(x, y) > ε.

Due to the compactness of Mω, there exists a smallest natural number N(ω, ε, n) such that

card(Eω) ≤ N(ω, ε, n) < ∞ for every (ω, ε, n)−seperated set Eω. Moreover, there always

exits a maximal (ω, ε, n)−seperated set Eω in the sense that for every x ∈Mω with x 6∈ Eω,

the set Eω ∪ {x} is not (ω, ε, n)−seperated anymore. If Eω is maximal (ω, ε, n)−seperated,

then Mω = ∪x∈EωBx(ω, ε, n), where Bx(ω, ε, n) is the closed ball in Mω centered at x of

radius ε with respect to the metric dω,n.

Definition 2.20. The topological fiber entropy on the fiber Mω = M × {ω} is defined by

htop(φ|Mω) = lim
ε→0+

lim sup
n→∞

1

n
logN(ω, ε, n).

The fiber topological entropy of random dynamical system F or the relative topological entropy

of φ is defined by

htop(F ) = h
(r)
top(φ) = lim

ε→0+
lim sup
n→∞

1

n

∫
logN(ω, ε, n)dP (ω),
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recall that P is an ergodic Borel probability measure we fixed in the beginning of this chapter.

Since the noise system (Ω, θ, P ) is an ergodic dynamical system, we obtain the following

proposition by Proposition 1.2.6 in [37].

Proposition 2.21. The following equalities hold:

htop(F ) = h
(r)
top(φ) = htop(φ|Mω) = lim

ε→0+
lim inf
n→∞

1

n
logN(ω, ε, n)

for P -a.s. ω ∈ Ω.

Chapter 3. Main Results

In this chapter, we state our main results for random Anosov and topological mixing on

fibers systems and random partially hyperbolic on fibers systems.

3.1 For Random Anosov and topological mixing on fibers Sys-

tems

In this section, we formulate the main results for random Anosov and topological mixing on

fibers systems. Subsection 3.1.1 addresses the results related to the random specification.

Subsection 3.1.2 addresses the result for exponential decay of random correlations.

3.1.1 Random Specification Property.

We start with the formal definition of random specification. Let L∞(Ω,M) be the space of

Borel measurable maps from Ω to M endowed with the following sup-metric

dL∞(Ω,M)(g1, g2) = sup
ω∈Ω

dM(g1(ω), g2(ω)), for g1, g2 ∈ L∞(Ω,M).
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The system φ induces a map φ̃ from L∞(Ω,M) to itself by φ̃(g)(ω) := fθ−1ωg(θ−1ω) for all

ω ∈ Ω and g ∈ L∞(Ω,M). One can see that

φ(graph(g)) = graph(φ̃(g)).

Moreover, φ̃ is invertible since fω is diffeomorphism on M for all ω ∈ Ω, and φ̃−1(g)(ω) =

(fω)−1(g(θω)).

Definition 3.1. For g ∈ L∞(Ω,M), g is called a random periodic point of φ if there exists

an integer n such that

φn(graph(g)) = graph(g) or φ̃ng = g.

Remark 3.2. Under our assumptions, φ̃ defines a homeomorphism on L∞(Ω,M) with re-

spect to the sup-metric. In fact, for any g1, g2 ∈ L∞(Ω,M), we have

dL∞(Ω,M)(φ̃(g1), φ̃(g2)) = sup
ω∈Ω

dM(fθ−1ωg2(θ−1ω), fθ−1ωg2(θ−1ω))

≤ sup
ω∈Ω
‖fω‖C1 sup

ω∈Ω
dM(g1(θ−1ω), g2(θ−1ω)) ≤ sup

ω∈Ω
‖fω‖C1dL∞(Ω,M)(g1, g2).

Therefore, φ̃ is continuous. Similarly, we have

dL∞(Ω,M)(φ̃
−1(g1), φ̃−1(g2)) ≤ sup

ω∈Ω
‖f−1

ω ‖C1dL∞(Ω,M)(g1, g2).

Hence, φ̃ is a homeomorphism on L∞(Ω,M).

Definition 3.3. A ω−specification Sω = (ω, τ, Pω) consists of a finite collection of intervals

τ = {I1, ..., Im}, Ii = [ai, bi] ⊂ Z, and a map Pω : ∪mi=1Ii →M such that for t1, t2 ∈ I ∈ τ,

φt2−t1(Pω(t1), θt1ω) = (Pω(t2), θt2ω).

A random specification S = (τ, P ) consists of a finite collection of intervals τ = {I1, ..., Im},
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Ii = [ai, bi] ⊂ Z, and a map P : ∪mi=1Ii → L∞(Ω,M) such that for t1, t2 ∈ I ∈ τ ,

φt2−t1(graph(P (t1))) = graph(P (t2)) or φ̃t2−t1(P (t1)) = P (t2).

A random specification S is called n−spaced if ai+1 > bi +n for all i ∈ {1, ...,m− 1} and the

minimal such n is called the spacing of this random specification. Denote L(S) := bm − a1.

Remark 3.4. On one hand, if S = (τ, P ) is a random specification, then for any fixed ω,

Sω = (ω, τ, Pω) defined by Pω(t) := P (t)(θtω) for t ∈ I ∈ τ is a ω−specification.

On the other hand, if

(i) Sω = (ω, τ, Pω) is a ω−specification,

(ii) P(·)(t) : Ω→M is Borel measurable for each fixed t ∈ I ∈ τ ,

and we define P (t) : Ω → M by P (t)(ω) = Pθ−tω(t) for each fixed t ∈ I ∈ τ , Then

P (t) ∈ L∞(Ω,M), and moreover, S = (τ, P ) defines a random specification.

Definition 3.5. The system φ is said to have the random specification property if for any

ε > 0, there exists N = N(ε) > 0 such that any N-spaced random specification S = (τ, P ) is

ε−shadowed by an element g in L∞(Ω,M), i.e.,

dL∞(Ω,M)(P (t), φ̃t(g)) < ε, ∀t ∈ ∪mi=1Ii.

Moreover, for any q ≥ N + bm − a1, there is a random periodic point g with period q

ε−shadowing the random specification S.

Remark 3.6. Let’s recall the definition of Bowen’s specification property. Let T : X → X be

a homeomorphism of a metric space (X, dX). A specification S = (τ, P ) consists of a finite

collection τ = {I1, ..., Im} of finite intervals Ii = [ai, bi] ⊂ Z, and a map P : ∪mi=1Ii → X such

that for t1, t2 ∈ I ∈ τ , we have T t2−t1(P (t1)) = P (t2). (X,T ) is said to have the specification

property if for any ε > 0 there exists an N = Nε ∈ N such that any N−spaced specification
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S is ε−shadowed by a point x ∈ X, i.e., dX(f t(x), P (t)) < ε for all t ∈ I ∈ τ , and for

q > N + bm − a1, then the shadowing point x could be a periodic point.

Then in the Definition 3.5, the statement φ is said to have the random specification

property is equivalent to the statement that the deterministic system (L∞(Ω,M), dL∞(Ω,M), φ̃)

has Bowen’s specification property.

Theorem 3.7. Assume that φ satisfies Anosov on fibers and topological mixing on fibers,

then φ has the random specification property. On the other hand, the random specification

property implies topological mixing on fibers property.

We define φ∗ : PrΩ(M) → PrΩ(M) by (φ∗µ)ω := (fθ−1ω)∗µθ−1ω, i.e., (φ∗µ)ω(B) =

µθ−1ω((fθ−1ω)−1(B)) for any B ∈ B(M).

Theorem 3.8. Assume that φ satisfies Anosov on fibers and topological mixing on fibers, then

φ∗ : PrΩ(M) → PrΩ(M) defines a homeomorphism with respect to the narrow topology on

PrΩ(M). Moreover, the topological dynamical system (PrΩ(M), φ∗) has Bowen’s specification

property.

Theorem 3.9. If φ has the random specification property, then for any ε, there exists two

integers k,N such that for all ω, the topological fiber entropy on Mω satisfies htop(φ|Mω) ≥
log k
N

, where k is the maximal cardinality of the 3ε−seperated set in M with respect to metric

dM and N = N(ε) is the number in random specification corresponding to ε.

3.1.2 Exponential Decay of Random Correlation.

In this subsection, we formulate the result for exponential decay of random correlations.

Let C(M) be the collection of all continuous functions ϕ : M → R. For α ∈ (0, 1), and

ϕ ∈ C(M), let

‖ϕ‖C0(M) := sup
x∈M
|ϕ(x)| and |ϕ|α := sup

x,y∈M,x6=y

|ϕ(x)− ϕ(y)|
d(x, y)α

.
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We denote by C0,α(M) := {ϕ ∈ C(M) : |ϕ|α < ∞} the space of α−Hölder continuous

functions on M . For ϕ ∈ C0,α(M), we let

‖ϕ‖C0,α(M) := ‖ϕ‖C0(M) + |ϕ|α.

For any µ ∈ PrΩ(M), recall φ∗µ is defined by (φ∗µ)ω := (fθ−1ω)∗µθ−1ω, i.e., (φ∗µ)ω(B) =

µθ−1ω((fθ−1ω)−1(B)) for any B ∈ B(M). A random probability measure µ is φ−invariant if

(φ∗µ)ω = µω for P−a.e. ω ∈ Ω.

Theorem 3.10. Assume φ satisfies Anosov on fibers and topological mixing on fibers. Then

(i) the random probability measure ω 7→ µω given by µω = limn→∞(fnθ−nω)∗m is φ−invariant,

where m is the normalized Riemannian volume measure;

(ii) there exists a constant ν0 only depending on the system φ. For Hölder exponents

µ, ν ∈ (0, 1) with

0 < µ+ ν < ν0

and ψ ∈ C0,µ(M), ϕ ∈ C0,ν(M), the past and future random correlation of ϕ and

ψ exponential decay with respect to the system φ and the random probability measure

(µω)ω∈Ω defined in (i), i.e. for any n ∈ N, ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω −
∫
M

ψ(x)dµω

∫
M

ϕ(x)dµθ−nω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M)‖ϕ‖C0,ν(M)Λ
n;∣∣∣∣∫

M

ψ(fnωx)ϕ(x)dµω −
∫
M

ψ(x)dµθnω

∫
M

ϕ(x)dµω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M)‖ϕ‖C0,ν(M)Λ
n,

where K > 0 and Λ ∈ (0, 1) only depend on µ and ν.

Note that topological mixing on fibers property implies random topological transitivity

By Lemma A.1 in [34] and then by Theorem 4.3 in [32], the measure µω we constructed

above is the unique SRB measure (we state this lemma and this theorem in the Appendix).
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3.2 Random Gibbs u−state for Random Partially Hyperbolic

on Fibers Systems

Let φ be a C2 random partially hyperbolic on fibers system. With the help of the unstable

manifolds theorem in [37], the global strong unstable manifold of φ at (x, ω) is defined by

W uu(x, ω) = {y ∈M : lim sup
n→+∞

1

n
log dM(f−nω x, f−nω y) ≤ −λ0}, (3.1)

which is the image of Euu(x, ω) under an injective immersion of class C1,1 and is tangent to

Euu(x, ω) at (x, ω). Notice that {W uu(x, ω)} forms a partition of M × Ω, but in general,

such a partition is non-measurable.

Definition 3.11. Given a φ−invariant random probability measure µ on M×Ω. A measur-

able partition P of M ×Ω is called u−subordinate if for µ−a.e. (x, ω) ∈M ×Ω, P(x, ω) ⊂

W uu(x, ω) and P(x, ω) contains an open neighborhood of x contained in W uu(x, ω), this

neighborhood being taken in the submanifold topology of W uu(x, ω). The invariant random

probability measure µ is called a random Gibbs u−state if it has absolutely continuous mea-

sures on strong unstable manifolds, i.e., for every measurable u−subordinate partition P,

one has

µP(x,ω) � λu(x,ω)

for µ−a.e. (x, ω) ∈ M × Ω, where µP(x,ω) denotes the conditional probability measure of µ

on P(x, ω) and λu(x,ω) denotes the Riemannian volume measure on W uu(x, ω) induced by its

inherited Riemannian structure as a submanifold of M .

Theorem 3.12. If φ is C2 partially hyperbolic on fibers, then there exists at least one in-

variant random Gibbs u−state of φ.
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Chapter 4. Preliminary Lemmas and Propo-

sitions

In this chapter, we state several lemmas and propositions for random Anosov on fibers

systems and random partially hyperbolic systems in Section 4.1 and Section 4.2 respectively.

4.1 For Random Anosov on Fibers Systems

In this section, we introduce several technical lemmas and propositions that will be used in

the proof of the main result for random Anosov on fibers systems. In Subsections 4.1.1, we

state that the stable subbundle Es(x, ω) and the unstable subbundle Eu(x, ω) are not only

continuous on x, but also Hölder continuous on x. In Subsection 4.1.2, we state the stable

and unstable manifolds theorem. The random shadowing lemma in Subsection 4.1.3 and

the density of random periodic points lemma in Subsection 4.1.4 are critical in the proof of

random specification. We state and prove two distortion lemmas in Subsection 4.1.5. We

formulate and prove the absolute continuity and Hölder continuity of the stable and unstable

foliations on each fiber in Subsection 4.1.6 and 4.1.7 respectively. We discuss properties of

holonomy maps between local stable leaves in Subsection 4.1.8. In Subsection 4.1.9, we prove

a version of Fubini’s theorem on each subset of M that is foliated by local stable manifolds

and has local product structure.

4.1.1 Fiberwisely Hölder continuity of stable and unstable subbundles.

In this subsection, we will formulate the Hölder continuity of Eτ (x, ω) for fixed ω and τ = s, u

which is an adapted version of Theorem 4.1 in [45].

By applying the normal neighborhood theorem (Theorem 3.7 in [16]), for each point

p ∈M , there exists a neighborhood Np ⊂M and constant δ such that the exponential map

Expp : Bδ(0) ⊂ TpM →M is a C∞−diffeomorphism andNp ⊂ Expp(Bδ(0)). Since the norm

in TpM is given by the Riemannian metric, we choose an orthonormal basis e1, ..., en of TpM ,

31



then define ψ : Np → Rn by ψ(Expp(
∑n

i=1 xiei)) = (x1, ..., xn) to be the normal coordinate

charts. By compactness of M , we can choose a set of finite points {pi}li=1 together with

{Npi , ψi} to form coordinate charts of M . Throughout this paper, we will fix these normal

coordinate charts.

By the compactness of M , there exists a ρ0 > 0 such that every subset of M having

diameter less than ρ0 is contained in one of the normal coordinate charts. From now on, we

fix this ρ0.

For subspaces A,B ⊂ Rn, define the aperture between two subspaces by

Γ(A,B) := max{ max
v∈A,|v|=1

inf
w∈B
|v − w|, max

w∈B,|w|=1
inf
v∈A
|v − w|}.

Then Γ(A,B) ∈ [0, 1].

For any x, y ∈M , if d(x, y) < ρ0, then we have an isometry from TxM to TyM given by

the parallel transport on the unique geodesic connecting x and y, named P (x, y). Then for

any x, y ∈M , E(x) ⊂ TxM , E(y) ⊂ TyM subspaces, we can define

d(E(x), E(y)) :=


Γ(E(x), P (y, x)E(y)), if d(x, y) < ρ0

1, otherwise.

(4.1)

Lemma 4.1. There are constants C1 and ν1 which both are independent of (x, ω) ∈M × Ω

such that for each ω ∈ Ω, the stable and unstable distribution Es(x, ω), Eu(x, ω) are Hölder

continuous on x with constant C1 and Hölder exponent ν1, i.e.,

d(Eτ (x, ω), Eτ (y, ω)) ≤ C1d(x, y)ν1 , τ = s, u.

32



4.1.2 Stable and Unstable Invariant Manifolds.

We define the local stable and unstable manifolds as the following:

W s
ε (x, ω) = {y ∈Mω| d(φn(y, ω), φn(x, ω)) ≤ ε for all n ≥ 0},

W u
ε (x, ω) = {y ∈Mω| d(φn(y, ω), φn(x, ω)) ≤ ε for all n ≤ 0}.

The following lemma can be found in [34], and it is a special version of Theorem 3.1 in [32].

Denote by P (Eτ (x, ω)) the projection from TxMω to Eτ (x, ω) with respect to TxMω =

Es(x, ω) ⊕ Eu(x, ω) for τ = s, u. Since Es(x, ω), Eu(x, ω) are uniformly continuous on x

and ω, there exists a number P > 1 such that

sup{‖P (Es(x, ω))‖, ‖P (Eu(x, ω))‖ : (x, ω) ∈M × Ω} < P . (4.2)

Lemma 4.2 (Stable and unstable invariant manifolds). For any λ ∈ (0, λ0), there exists

ε0 > 0 such that for any ε ∈ (0, ε0], the followings hold:

(i) W τ
ε (x, ω) are C2 embedded discs for all (x, ω) ∈ M × Ω with TxW

τ (x, ω) = Eτ (x, ω)

for τ = u, s. Moreover, there exist a constant L > 1 and C2 maps

hu(x,ω) : Eu(x, ω)(Pε)→ Es(x, ω), hs(x,ω) : Es(x, ω)(Pε)→ Eu(x, ω)

such that W τ
ε (x, ω) ⊂ Expx(graph(hτ(x,ω))) and ‖Dhτ(x,ω)‖ <

1
3
, Lip(Dhτ(x,ω)) < L for

τ = u, s.

(ii) dM(fnωx, f
n
ωy) ≤ e−nλdM(x, y) for y ∈ W s

ε (x, ω) and n ≥ 0, and dM(f−nω x, f−nω y) ≤

e−nλdM(x, y) for y ∈ W u
ε (x, ω) and n ≥ 0.

(iii) W s
ε (x, ω),W u

ε (x, ω) vary continuously on (x, ω) in C1 topology.

In this paper, we restrict ε0 such that ε0 < ρ0, i.e., W τ
ε (x, ω) is covered by some normal

coordinate charts for any (x, ω) ∈M × Ω and τ = s, u.
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Lemma 4.3 (Local product structure). For any ε ∈ (0, ε0), there is a δ ∈ (0, ε) such that

for any x, y ∈M with dM(x, y) < δ, W s
ε (x, ω)∩W u

ε (y, ω) consists of a single point, which is

denoted by [x, y]ω. Furthermore

[·, ·]ω : {(x, y, ω) ∈M ×M × Ω| dM(x, y) < δ} →M

is continuous.

Corollary 4.4 (Expansivity). The system φ is expansive in the sense that if d(φn(x, ω), φn(y, ω)) <

ε for all n ∈ Z, then x = y for any ε ∈ (0, ε0), where ε0 is the size of stable and unstable

manifolds.

4.1.3 Random Shadowing Lemma.

For any α > 0, a sequence of points {(xi, θiω)}i∈Z ⊂M ×Ω is called an (ω, α)−pseudo orbit

if for any i ∈ Z,

d(φ(xi, θ
iω), (xi+1, θ

i+1ω)) < α.

The next lemma follows the proof of Proposition 3.7 in [32].

Lemma 4.5 (Random shadowing lemma). For any ε > 0, there exists α = α(ε) > 0 such

that any (ω, α)−pseudo orbit {(xi, θiω)}i∈Z can be (ω, ε)−shadowed by a point x ∈M , i.e.

d(φi(x, ω), (xi, θ
iω)) < ε.

Furthermore, when ε < 1
2
ε0 where ε0 is the size of local stable and unstable manifolds, the

shadowing point is unique.

Corollary 4.6. For any ε ∈ (0, ε0/2), there exists α = α(ε) > 0 such that for any sequence

of measurable functions {gi}∞i=−∞ with gi ∈ L∞(Ω,M) satisfying

dL∞(Ω,M)(φ̃(gi), gi+1) < α.
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There exists a unique g ∈ L∞(Ω,M) such that dL∞(Ω,M)(φ̃
t(g), gt) < ε for all t ∈ Z. In

particular, if {gi}n−1
i=0 is an α−pseudo periodic orbit, then the shadowing point g is periodic

with period n.

Proof. For any ω ∈ Ω, define

(yi, θ
iω) := (gi(θ

iω), θiω) for i ∈ Z.

Since dL∞(Ω,M)(φ̃(gi), gi+1) < α, (yi, θ
iω) is an (ω, α)−pseudo orbit, then by the random

shadowing lemma, there exists a unique g(ω) ∈M (ω, ε)−shadowing this sequence. We just

need to prove ω 7→ g(ω) is measurable.

Define a multivalued function Gi : Ω→ 2M for any i ∈ N as the following

Gi(ω) =
⋂
−i≤j≤i

πMφ
−j{(x, θjω)| dM(x, gj(θ

jω)) ≤ ε}.

For each ω ∈ Ω, Gi(ω) is a nonempty closed set since the existence of shadowing point and

continuity of φ(x, ω) on x. Note that for each fixed j between −i and i, the set

ω 7→ πMφ
j{(x, θjω)| dM(x, gj(θ

jω)) ≤ ε}

is a random closed set since gj ∈ L∞(Ω,M). Hence ω 7→ Gi(ω) is a random closed set as a

finite intersection of random closed set. Then by the selection theorem (Proposition 2.17),

it has a Borel selection g̃i : Ω→M such that

g̃i(ω) ⊂ Gi(ω).

As i→∞, by Lemma 4.5, g̃i converges to g pointwisely, thus g is measurable.

If {gi}n−1
i=0 is an α−pseudo periodic orbit, then both g and φ̃ng are ε−shadowing this

sequence. By expansiveness, we have φ̃ng = g.
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4.1.4 Density of Random Periodic Points. The following lemma is one of the main

results in [34]. It addresses the density of random periodic points.

Lemma 4.7. Let φ be an Anosov and topological mixing on fibers system, then for any

ε > 0, there exists N ∈ N such that for any g ∈ L∞(Ω,M) and n ≥ N , there exists a random

periodic point g̃ with period n such that

dL∞(Ω,M)(g, g̃) ≤ ε.

4.1.5 Two Distortion Lemmas.

In this subsection, we prove two distortion lemmas. Lemma 4.8 is used for proving the

fiberwisely absolute continuity of stable and unstable foliations. Lemma 4.9 is used for the

construction of the fiber convex cone of observable functions in Section 6.1.

Lemma 4.8. For any C2 diffeomorphism f : M → M , let E(x) ⊂ TxM , E(y) ⊂ TyM be

subspaces with dim(E(x)) = dim(E(y)), then

|| det(Dxf |E(x))| − | det(Dyf |E(y))|| ≤ C2(‖f‖C2)d(x, y) + C ′2(‖f‖C2)d(E(x), E(y)).

where C2(‖f‖C2) and C ′2(‖f‖C2) are a polynomials of ‖f‖C2 and dim(E(x)). As a conse-

quence, for any x, y ∈ Mω, E(x, ω) ∈ TxMω, E(y, ω) ∈ TyMω with dimE(x, ω) = E(y, ω),

we have

|| det(Dxfω|E(x,ω))| − | det(Dyfω|E(y,ω))|| ≤ C2d(x, y) + C2d(E(x, ω), E(y, ω)).

where C2 = max{C2(supω ‖fω‖C2), C ′2(supω ‖fω‖C2)}.

Proof. It is sufficient to consider the case max{d(x, y), d(f(x), f(y))} < ρ0. Let P (x) :

TxM → E(x) be the projection map with respect to TxM = E(x) ⊕ E(x)⊥ and P (y) :

TyM → E(y) be the projection map with respect to TyM = E(y)⊕E(y)⊥, consider ‖Dxf ◦

P (x)− P (f(y), f(x)) ◦Dyf ◦ P (y) ◦ P (x, y)‖.

36



Let (N,ψ1) be the local coordinate chart of x and y, (N ′, ψ2) be the local coordinate

chart of f(x) and f(y), and denote ψ1(x) = p, ψ1(y) = q, and F = ψ2 ◦ f ◦ ψ−1
1 . Then

Dxf and Dyf have local representation DpF and DqF respectively. Denote A(x, y) by

Dyψ1 ◦P (x, y) ◦ (Dxψ1)−1 the local representation of P (x, y) and A(f(y), f(x)) by Df(x)ψ2 ◦

P (f(y), f(x)) ◦ (Df(y)ψ2)−1 the local representation of P (f(y), f(x)). P (x) and P (y) have

local representation B(x) = Dxψ1 ◦ P (x) ◦ (Dxψ1)−1 and B(y) = Dyψ1 ◦ P (y) ◦ (Dyψ1)−1

respectively. Then we have

‖DpF ◦B(x)− A(f(y), f(x)) ◦DqF ◦B(y) ◦ A(x, y)‖

≤ ‖DpF ◦B(x)−DqF ◦B(x)‖+ ‖DqF ◦B(x)−DqF ◦B(y)A(x, y)‖

+ ‖DqF ◦B(y)A(x, y)− A(f(y), f(x))DqF ◦B(y)A(x, y)‖

≤ C(|D2f |C0‖p− q‖+ |Df |C0‖B(x)−B(y)A(x, y)‖+ |Df |C0‖I − A(f(y), f(x))‖)

≤ C ′(|D2f |C0 + |Df |2C0)d(x, y) + C ′|Df |C0d(E(x), E(y)),

where C and C ′ only depend on the local coordinate charts. As a consequence, we have

‖Dxf ◦ P (x)− P (f(y), f(x)) ◦Dyf ◦ P (y) ◦ P (x, y)‖

≤ C ′′(|D2f |C0 + |Df |2C0)d(x, y) + C ′′|Df |C0d(E(x), E(y)).

Notice that P (f(y), f(x)) and P (x, y) are isometries, so we have

|‖Dxf |E(x)‖ − ‖Dyf |E(y)‖| ≤ C ′′(|D2f |C0 + |Df |2C0)d(x, y) + C ′′|Df |C0d(E(x), E(y)), (4.3)

and by the property of determinant,

|| det(Dxf |E(x))|−| det(Dyf |E(y))|| ≤ C2(|D2
xf |C0+|Dxf |2C0)d(x, y)+C ′2(|Dxf |C0)d(E(x), E(y))

where C2(|D2
xf |C0 + |Dxf |2C0) is a polynomial about |D2

xf |C0 + |Dxf |2C0 and dim(E(x)), and

C ′2(|Dxf |C0) is polynomial about |Dxf |C0 and dim(E(x)).
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Lemma 4.9. Js(x, ω) = | det(Dxfω)|Es(x,ω)| has a uniform Lipschitz variation on the local

stable manifolds, i.e., there is a constant K1 > 0 independent of ω such that for any x, y ∈

W s
ε (z, ω),

|Js(x, ω)− Js(y, ω)| ≤ K1d(x, y),

and

| log Js(x, ω)− log Js(y, ω)| ≤ K1d(x, y).

Proof of Lemma 4.9. Since M × Ω is a compact space and f : Ω→ Diff2(M) is continuous,

|Dxfω| and |D2
xfω| are uniformly bounded. Let K ≥ 1 be a constant such that

max

{
sup

(x,ω)∈M×Ω

|Dxfω|, sup
(x,ω)∈M×Ω

|D2
xfω|, LipDhs(x,ω)

}
≤ K.

For sake of simplicity, we will identify expx(·) with x+ · in the rest of the proof. Recall that

P is defined in (4.2). Notice that if y, z ∈ W s
ε (x, ω), and d(y, z) < ε

2PK2 , then

|P (Es(x, ω))(z − y)| ≤ Pd(y, z) <
ε

2K2
;

|P (Es(fωy, θω))(fω(z)− fω(y))| ≤ P|fω(z)− fω(y)| ≤ PK|z − y| ≤ ε

2K
.

Therefore, (z, ω) ∈ W s
ε (y, ω) and (fω(z), θω) ∈ W u

ε (fω(y), θω). So it is sufficient to prove that

there exists a constant K1 > 0 independent of x and ω such that for any y ∈ W s
ε

2PK2
(x, ω),

|Js(x, ω)− Js(y, ω)| ≤ K1d(x, y). (4.4)

With the help of the normal coordinate chart, and notice that d(x, y) < ε < ρ0 and

d(fωx, fωy) ≤ ε < ρ0, we may view that x, y together with W s
ε

2PK
(x, ω) lie in a same

Euclidean space and fωx, fωy together with W s
ε (fωx, θω) lie in a same Euclidean space. By

the stable manifolds theorem, there exists ξy ∈ Es(x, ω)( ε
2K2 ) and ξfω(y) ∈ Eu(fω(x), θω)(ε)

such that
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y = x+ ξy + hs(x,ω)(ξy); (4.5)

fω(y) = fω(x) + ξfω(y) + hs(fω(x),θω)(ξfω(y)), (4.6)

and Es(y, ω) = graph((Dhs(x,ω))ξy), E
s(fω(y), θω) = graph((Dhs(fω(x),θω))ξfω(y)

). From (4.5)

and (4.6), we have

(
1− 1

3

)
|ξfω(y)| ≤ |ξfω(y) +hs(fω(x),θω)(ξfω(y))| = |fω(y)−fω(x)| ≤ K|y−x| ≤ K

(
1 +

1

3

)
|ξy|,

so |ξfω(y)| ≤ 2K|ξy|.

Now, we define the following linear maps L(x,ω), L(y,ω) : Es(x, ω)→ Es(fω(x), θω) by

L(x,ω) = Dxfω|Es(x,ω);

L(y,ω) = P (Es(fωx, θω))Dyfω|Es(y,ω)(I + (Dhs(x,ω))ξy).

We have ‖L(x,ω)‖, ‖L(y,ω)‖ ≤ 4
3
PK. Hence, we have

sup
v∈Eu(x,ω),‖v‖=1

‖P (Es(fωx, θω))Dxfωv − P (Es(fωx, θω))Dyfω(I + (Dhs(x,ω))ξy)v‖

≤ P(‖Dxfω −Dyfω‖+ ‖Dyfω(Dhs(x,ω))ξy‖)

≤ PK|y − x|+ PK2|ξy|

= PKd(x, y) + PK2|ξy|

≤ (PK +
3

2
PK2)d(x, y).

So ‖L(x,ω) − L(y,ω)‖ ≤ C(PK + 3
2
PK2)d(x, y), where the constant C only depends on the

normal coordinate chart. Then by properties of determinant,

|det(L(x,ω))− det(L(y,ω))| ≤ R1d(x, y), (4.7)

where R1 is a polynomial of K,P and the dimension of dimEs(x, ω).
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Notice that for ξy ∈ Es(x, ω)( ε
2K2 )

‖P (Es(fωx, θω))|Es(fω(y),θω) − I‖ ≤
‖(Dhs(fω(x),θω))ξfω(y)

‖
1− ‖(Dhs(fω(x),θω))ξfω(y)

‖

≤
K|ξfω(y)|

1−K|ξfω(y)|
≤ 2K2|ξy|

1− 2K2|ξy|
≤ 2K2|ξy|

1− 2K2 ε
2K2

≤ 4K2|ξy| ≤ 6K2d(x, y).

So we have

|det(P (Es(fω(x), θω))|Es(fω(y),θω))− 1| ≤ R2d(x, y), (4.8)

where R2 is a polynomial of K and dimEs(x, ω). Also

‖I + (Dhs(x,ω))ξy − I‖ ≤ K|ξy| ≤
3

2
Kd(x, y)

implies that there exists a constant R3 such that

|det(I + (Dhs(x,ω))ξy)− 1| ≤ R3d(x, y). (4.9)

Combining (4.7), (4.8), and (4.9), we have

|Js(x, ω)− Js(y, ω)| ≤ K0d(x, y),

where K0 only depends on K, P and dimEs. Notice that inf(x,ω)∈M×Ω |Js(x, ω)| > 0, as a

consequence, there exists a K1 > K0 such that

| log Js(x, ω)− log Js(y, ω)| ≤ K1d(x, y).
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4.1.6 Fiberwisely Absolute Continuity of the Stable and Unstable Foliations.

The absolute continuity of {W τ
ε (x, ω)} for fixed ω and τ = s, u is stated in [45] for general

random dynamical systems without proof. In this subsection, we give a proof in our settings.

Our proof follows the idea listed in [66].

For any ω ∈ Ω, a smooth submanifold U(ω) ⊂ Mω is said to be transversal to the local

stable manifolds if for any x ∈ U(ω), TxU(ω)⊕Es(x, ω) = TxM . Given smooth submanifolds

U(ω) and V (ω) transversal to the local stable manifolds, we say that ψω : U(ω) → V (ω) is

a fiber holonomy map if ψω is injective, continuous, and

ψω(x) ∈ W s
ε (x, ω) ∩ V (ω) for every x ∈ U(ω).

We say that {W s
ε (x, ω)} is fiberwisely absolutely continuous if every fiber holonomy map ψω

is absolutely continuous.

Proposition 4.10. Suppose φ is C2 Anosov on fibers, then {W s
ε (x, ω)} is fiberwisely abso-

lutely continuous. A similar result holds for {W u
ε (x, ω)}.

Proof of Proposition 4.10. We first prove that {W s
ε (x, ω)} is fiberwisely absolutely continu-

ous. For any fixed ω ∈ Ω, let ψω : U(ω) → V (ω) be the fiber holonomy map between two

random smooth pre-compact submanifolds, where U(ω) and V (ω) are transverse to the local

stable manifolds. Let A ⊂ U(ω) be any compact set, to prove the absolute continuity of ψω,

it is sufficient to prove that there exists a constant C(ω) independent of A such that

mV (ω)(ψω(A)) ≤ C(ω)mU(ω)(A),

where mV (ω) and mU(ω) are the intrinsic Riemann measure on manifolds V (ω) and U(ω)

respectively. Let O be a small neighborhood of A in U(ω) such that

mU(ω)(O) ≤ 2mU(ω)(A). (4.10)
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For any x ∈ U(ω) and y ∈ V (ω), since U(ω), V (ω) are transverse to the local stable

manifolds, we have TxU(ω)⊕Es(x, ω) = TxMω and TyV (ω)⊕Es(y, ω) = TyMω. Recall that

Γ(A,B) is the aperture between two subspaces A and B. Let

γ(ω) := min{inf{Γ(TxU(ω), Es(x, ω))| x ∈ U(ω)}, inf{Γ(TxV (ω), Es(x, ω))| x ∈ V (ω)}} > 0.

Then by the expansion on the unstable distribution and contraction on the stable distri-

bution, there exists constants C5(ω) and C6(ω) that depend continuous only on γ(ω) such

that

‖Dxf
n
ωv‖ ≥ C5(ω)eλn‖v‖ for v ∈ TxU(ω), TxV (ω), (4.11)

d(Dxf
n
ωTxU(ω), Dxf

n
ωE

u(x, ω)) ≤ C6(ω)e−λnd(TxU(ω), Eu(x, ω)) for x ∈ U(ω), (4.12)

d(Dxf
n
ωTxV (ω), Dxf

n
ωE

u(x, ω)) ≤ C6(ω)e−λnd(TxV (ω), Eu(x, ω)) for x ∈ V (ω). (4.13)

Notice that for any x ∈ U(ω), ψω(x) = V (ω) ∩W s
ε (x, ω), so we have

d(fnωx, f
n
ωψω(x)) < e−λnd(x, ψω(x)). (4.14)

By (4.11), let δ0 be a sufficiently small number, then there exists a number N1(ω) such that

for any n ≥ N1(ω) and δ ∈ (0, δ0), we have

f−nθnωBfnωU(ω)(f
n
ωx, δ) ⊂ O for any x ∈ A,

where BfnωU(ω)(f
n
ωx, δ) is the δ−neighborhood of fnωx on fnωU(ω).

By (4.12), (4.13) and (4.14), we know that fnωU(ω) and fnωV (ω) will be C1−close to each

other and C1−close to the unstable foliation uniformly for points on fnωU(ω) and fnωV (ω) as

n goes to infinity. Hence, there exists a constant C7 > 1 and a number N2(ω) such that for

n ≥ N2(ω) and δ ∈ (0, δ0), for any x ∈ fnωU(ω), we have
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C−1
7 ≤

mfnωU(ω)((BfnωU(ω)(x, δ)))

mfnωV (ω)(ψ̄θnω(BfnωU(ω)(x, δ)))
≤ C7, (4.15)

and

ψ̄θnω(BfnωU(ω)(x, δ)) ⊂ BfnωV (ω)(ψ̄θnω(x), 2δ), (4.16)

where ψ̄θnω : fnωU(ω)→ fnωV (ω) is the holonomy map induced by the local stable manifolds.

Now we let N = N(ω) = max{N1(ω), N2(ω)}, and let {Bi}ki=1 be a finite covering of

fNω A by δ−balls centered at points in fNω A. By the Besicovitch covering lemma (see, e.g.,

[23]), we can assume that

there is no point in fNω A that lies in more than number C ′ = C ′(dim(Eu)) of the Bi’s.

(4.17)

We claim that there exists a constant C8(ω) > 1 only depending on U(ω) and V (ω) such

that

C8(ω)−1mV (ω)(ψω(f−N
θNω

Bi)) ≤ mU(ω)(f
−N
θNω

Bi) ≤ C8(ω)mV (ω)(ψω(f−N
θNω

Bi)). (4.18)

To prove this claim, we need the following lemmas.

Lemma 4.11. Denote

Hn
ω(x, ψω(x), TxU(ω), Tψω(x)V (ω)) :=

| det(Dxf
n
ω |TxU(ω))|

| det(Dψω(x)fnω |Tψω(x)V (ω))|
. (4.19)

Then there exists a constant C9(ω) that only depends on U(ω) and V (ω) such that

C9(ω)−1 ≤ Hn
ω(x, ψω(x), TxU(ω), Tψω(x)V (ω)) ≤ C9(ω).

As a consequence, the limit

Hω(x, ψω(x), TxU(ω), Tψω(x)V (ω)) := lim
n→∞

Hn
ω(x, ψω(x), TxU(ω), Tψω(x)V (ω))
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exists and converges uniformly for all x ∈ U(ω).

Proof of lemma 4.11. For (x, ω) ∈M×Ω, let E(ω) ⊂ TxMω be a subspace such that E(ω)⊕

Es(x, ω) = TxMω, put

κ(E(ω)) := {‖L‖ : where L : Eu(x, ω)→ Es(x, ω) such that E(ω) = {v+Lv| v ∈ Eu(x, ω)}}.

Then the contraction on Es(x, ω) implies that

κ(Dxf
n
ωE(ω)) ≤ e−λnκ(E(ω)).

Now for any x ∈M , y ∈ W s
ε (x, ω), E(ω) ⊂ TxMω, F (ω) ⊂ TyMω such that E(ω)⊕Es(x, ω) =

TxMω, F (ω)⊕ Es(y, ω) = TyMω, we use Lemma 4.8 and Lemma 4.1 to obtain

|det(Dxfω|E(ω))− det(Dyfω|F (ω))|

≤ |det(Dxfω|E(ω))− det(Dxfω|Eu(x,ω))|+ |det(Dxfω|Eu(x,ω))− det(Dyfω|Eu(y,ω))|

+ |det(Dyfω|Eu(y,ω))− det(Dyfω|F (ω))|

≤ C2d(E(ω), Eu(x, ω)) + C2d(F (ω), Eu(y, ω)) + C2d(x, y) + C2d(Eu(x, ω), Eu(y, ω))

≤ C2κ(E(ω)) + C2κ(F (ω)) + C2d(x, y) + C2C1d(x, y)ν1

≤ 2C2C1(κ(E(ω)) + κ(F (ω)) + d(x, y)ν1).

Note that by the compactness of M and Ω and the continuity of fω ∈Diff2(M) on ω ∈ Ω,

there exists a constant C10 such that

C−1
10 ≤ | det(Dyfω|F (ω))| ≤ C10 (4.20)

for any y and F (ω) ⊂ TyMω. So we have

|det(Dxfω|E(ω))|
| det(Dyfω|F (ω))|

≤ 1 + 2C2C1C10(κ(E(ω)) + κ(F (ω)) + d(x, y)ν1). (4.21)
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Denote C11 := 2C2C1C10. By (4.21), we have

Hn
ω(x, ψω(x), TxU(ω), Tψω(x)V (ω))

=
n−1∏
j=0

| det(Dfjωx
fθjω|DxfjωTxU(ω))|

| det(Dfjωψω(x)fθjω|Dψω(x)f
j
ωTψω(x)V (ω))|

≤
n−1∏
j=0

(1 + C11(κ(Dxf
j
ωTxU(ω)) + κ(Dψω(x)f

j
ωTψω(x)V (ω)) + d(f jω(x), f jωψω(x))ν1))

≤
n−1∏
j=0

(1 + C11(e−λjκ(TxU(ω)) + e−λjκ(Tψω(x)V (ω)) + e−λjν1d(x, ψω(x))ν1))

≤
n−1∏
j=0

(1 + C11e
−λjν1(κ(TxU(ω)) + κ(Tψω(x)V (ω)) + d(x, ψω(x))ν1)) (4.22)

≤ exp(C12(ω)), (4.23)

where C12(ω) := C11

1−e−λν1 supx∈U(ω)(κ(TxU(ω)) + κ(Tψω(x)V (ω)) + d(x, ψω(x))ν1)). We denote

exp(C12(ω)) by C9(ω). The same estimate holds for Hn
ω(ψω(x), x, Tψω(x)V (ω), TxU(ω)).

Lemma 4.12. For any x, y ∈ f−N
θNω

Bi and p, q ∈ ψω(f−N
θNω

Bi), there exists constants C17(ω)

and C18(ω) such that

e−C17(ω) ≤
| detDxf

N
ω |TxU(ω)|

| detDyfNω |TyU(ω)|
≤ eC17(ω) (4.24)

and

e−C18(ω) ≤
| detDpf

N
ω |TpV (ω)|

| detDqfNω |TqV (ω)|
≤ eC18(ω). (4.25)

proof of Lemma 4.12. Denote xi = f iωx, yi = f iωy for i ∈ {0, ..., N}. By (4.13) and Lemma

4.1, we have
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d(Txkf
k
ωU(ω), Tykf

k
ωU(ω))

≤ d(Txkf
k
ωU(ω), Eu(xk, θ

kω)) + d(Eu(xk, θ
kω), Eu(yk, θ

kω)) + d(Eu(yk, θ
kω), Tykf

k
ωU(ω))

≤ 2C6(ω)e−λk sup
z∈U(ω)

d(TzU(ω), Eu(z, ω)) + C1d(xk, yk)
ν1

≤ 2C6(ω)e−λk sup
z∈U(ω)

d(TzU(ω), Eu(z, ω)) + C1C5(ω)−ν1e−λ(N−k)ν1d(xN , yN)ν1

≤ C13(ω)e−λk + C14(ω)e−λ(N−k)ν1 ,

where C13(ω) := 2C6(ω) supz∈U(ω) d(TzU(ω), Eu(z, ω)) and C14(ω) := C1

C5(ω)ν1
δν1 .

Now by Lemma 4.8,

| det(Dxkfθkω|TxkfkωU(ω))− det(Dykfθkω|TykfkωU(ω))|

≤ C2d(xk, yk) + C2d(Txkf
k
ωU(ω), Tykf

k
ωU(ω))

≤ C2

C5(ω)
e−λ(N−k)d(xN , yN) + C2(C13(ω)e−λk + C14(ω)e−λ(N−k)ν1)

:= C15(ω)e−λ(N−k)ν1 + C16(ω)e−λk,

where C15(ω) := C2

C5(ω)
δ + C2C14(ω) and C16(ω) = C2C13(ω). Notice that by (4.20), we have

| detDxf
N
ω |TxU(ω)|

| detDyfNω |TyU(ω)|
=

N−1∏
k=0

| det(Dxkfθkω|TxkfkωU(ω))|
| det(Dykfθkω|TykfkωU(ω))|

≤
N−1∏
k=0

(1 + C10(C15(ω)e−λ(N−k)ν1 + C16(ω)e−λk))

≤ exp(
N−1∑
k=0

C10(C15(ω)e−λ(N−k)ν1 + C16(ω)e−λk))

:= exp(C17(ω)).
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Switch x and y, we get

e−C17(ω) ≤
| detDxf

N
ω |TxU(ω)|

| detDyfNω |TyU(ω)|
≤ eC17(ω).

Notice that by (4.16) and ψω(f−N
θNω

Bi) = f−N
θNω

(ψ̄θNωBi), similar to the above proof, we can

prove that there exists a constant C18(ω) such that

e−C18(ω) ≤
| detDpf

N
ω |TpV (ω)|

| detDqfNω |TqV (ω)|
≤ eC18(ω)

for p, q ∈ ψω(f−N
θNω

Bi).

Now we are ready to prove the claim (4.18). Pick any pi ∈ Bi, denote qi := ψ̄θNω(pi) ∈

fNω V (ω), by (4.24) and change of variable, we have

e−C17(ω) · | detDpif
−N
θNω
|TpifNω U(ω)| ·mfNω U(ω)(Bi) ≤ mU(ω)(f

−N
θNω

Bi)

≤ eC17(ω) · | detDpif
−N
θNω
|TpifNω U(ω)| ·mfNω U(ω)(Bi).

Then by Lemma 4.11 and (4.15), we have

C−1
7 C9(ω)−1e−C17(ω) · | detDqif

−N
θNω
|TqifNω V (ω)| ·mfNω V (ω)(ψ̄θNωBi) ≤ mU(ω)(f

−N
θNω

Bi)

≤ C7C9(ω)eC17(ω) · | detDqif
−N
θNω
|TqifNω V (ω)| ·mfNω V (ω)(ψ̄θNωBi).

We apply (4.25) to the above to get

C−1
7 C9(ω)−1e−C17(ω)e−C18(ω) ·mV (ω)(ψωf

−N
θNω

Bi) ≤ mU(ω)(f
−N
θNω

Bi)

≤ C7C9(ω)eC17(ω)eC18(ω) ·mV (ω)(ψωf
−N
θNω

Bi).

Denote C8(ω) := C7C9(ω)eC17(ω)+C18(ω), then the claim (4.18) is proved. Finally, by (4.10)

47



and (4.17),

mV (ω)(ψω(A)) ≤
k∑
i=1

mV (ω)(ψω(f−N
θNω

Bi)) ≤
k∑
i=1

C8(ω)mU(ω)(f
−N
θNω

Bi)

≤ C ′C8(ω)mU(ω)(O)

≤ 2C ′C8(ω)mU(ω)(A).

Hence ψω is absolutely continuous.

Let ψ̄θnω : fnωU(ω)→ fnωV (ω) be the holonomy map induced by the local stable manifolds.

Notice that ψω = f−nθnω ◦ ψ̄θnω ◦ fnω , so

Jac(ψω)(x) = Hn
ω(x, ψω(x), TxU(ω), Tψω(x)V (ω)) · Jac(ψ̄θnω).

Notice that d(fnωx, ψ̄θnω(fnωx))→ 0 exponentially as n→∞ uniformly for all x ∈ U(ω) and

d(Tfnωxf
n
ωU(ω), Tψ̄θnω(fnωx)f

n
ωV (ω)) → 0 exponentially as n → ∞ uniformly for all x ∈ U(ω),

hence Jac(ψ̄θnω)→ 1 as n→∞. Therefore,

Jac(ψω)(x) = Hω(x, ψω(x), TxU(ω), Tψω(x)V (ω)).

The proof of fiberwisely absolute continuity of local stable manifolds is done. Similarly,

the fiberwisely absolute continuity of local unstable manifolds can be proved by reversing

time.

4.1.7 Fiberwisely Hölder Continuity of the Stable and Unstable Foliations.

In this subsection, we prove the Hölder continuity of the holonomy map between two local

stable leaves and the holonomy map between two local unstable leaves. This result is known

in deterministic hyperbolic systems (see, e.g., [51]), but we didn’t find any reference to this

result in RDS. We give a proof in our settings.
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For subspaces A,B ⊂ RN , set

Θ(A,B) = min{‖v − w‖ : v ∈ A, ‖v‖ = 1;w ∈ B, ‖w‖ = 1}.

For θ ∈ [0,
√

2], we say that a subspace A ⊂ RN is θ−transverse to a subspace B ⊂ RN if

Θ(A,B) ≥ θ. Denote θ0 := inf(x,ω)∈M×Ω Θ(Es(x, ω), Eu(x, ω)) > 0.

Proposition 4.13. Suppose φ is C2 Anosov on fibers, let % ∈ (0, 1) satisfy

sup
(p,ω)∈M×Ω

‖Dpfω|Es(p,ω)‖t−%(p,ω) < 1, sup
(p,ω)∈M×Ω

‖Dpf
−1
ω |Eu(p,ω)‖s−%(p,ω) < 1

where

t(p,ω) := inf{d(fωp, fωq)

d(p, q)
: q ∈M, d(p, q) < ε0} > 0,

s(p,ω) := inf{d(f−1
ω (p), f−1

ω (q))

d(p, q)
: q ∈M, d(p, q) < ε0} > 0,

and ε0 is the size of local stable and unstable manifolds. Then there exists a constant δ0 > 0

and H = H(δ0, %) such that for any (q, ω) ∈M × Ω and ε < δ0,

sup

{
supx∈Eu(p,ω)(ε) |hu(p,ω)(x)− h̃u(q,ω)(x)|

d(p, q)%
: q ∈M, d(p, q) < δ0

}
≤ H <∞, (4.26)

sup

{
supx∈Eu(p,ω)(ε) |hs(p,ω)(x)− h̃s(q,ω)(x)|

d(p, q)%
: q ∈M, d(p, q) < δ0

}
≤ H <∞, (4.27)

where hu(p,ω), h̃
u
(q,ω) : Eu(p, ω)(ε) → Es(p, ω) and Expp(graph(hu(p,ω))), Expp(graph(h̃u(q,ω)))

represent the local unstable manifolds passing through p, q respectively, and hs(p,ω), h̃
s
(q,ω) :

Es(p, ω)(ε) → Eu(p, ω) and Expp(graph(hs(p,ω))), Expp(graph(h̃s(q,ω))) represent the local

stable manifolds passing through p, q respectively. Furthermore, the local product struc-

ture is Hölder continuous, i.e., there exists a constant H ′ = H ′(δ0, %, θ0) such that for

any (x, ω) ∈ M × Ω, y ∈ W s
δ0

(x, ω), any z ∈ M such that W s
ε (z, ω) ∩ W u

ε (x, ω) 6= ∅,
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W s
ε (z, ω) ∩W u

ε (y, ω) 6= ∅, we have

d(W s
ε (z, ω) ∩W u

ε (x, ω),W s
ε (z, ω) ∩W u

ε (y, ω)) ≤ H ′d(x, y)%.

For any (x, ω) ∈ M × Ω, y ∈ W u
δ0

(x, ω), any z ∈ M such that W u
ε (z, ω) ∩W s

ε (x, ω) 6= ∅,

W u
ε (z, ω) ∩W s

ε (y, ω) 6= ∅, we have

d(W u
ε (z, ω) ∩W s

ε (x, ω),W u
ε (z, ω) ∩W s

ε (y, ω)) ≤ H ′d(x, y)%.

Proof. We first prove (4.26). Recall that for each point p ∈ M , there exist a neighborhood

Np ⊂ M and constant ε such that the exponential map Expp : Bε(0) ⊂ TpM → M is a

C∞−diffeomorphism and Np ⊂ Expp(Bε(0)). Now for all p ∈ M and ω ∈ Ω, consider any

function g(p,ω) : Eu(p, ω)(ε)→ Es(p, ω) with g(p,ω)(0) = 0, where Eu(p, ω)(ε) is the ε−disk in

Eu(p, ω) centered at the origin. Define the special norm by

‖g(p,ω)‖∗ = sup

{
|g(p,ω)(x)|
|x|

: x ∈ Eu(p, ω)(ε), x 6= 0

}
.

Define

G∗(p,ω) := {g(p,ω) : Eu(p, ω)(ε)→ Es(p, ω)| g(p,ω)(0) = 0 and ‖g(p,ω)‖∗ <∞}

and

G(p,ω) := {g ∈ G∗(p,ω) : Lip(g) ≤ e−2λ + 1

2
}.

Lemma 4.14. G∗(p,ω) equipped with ‖ · ‖∗ is a Banach space and G(p,ω) is a closed subset.

The above Lemma is a corollary of Lemma iii.3 in [57]. {G(p,ω)}(p,ω)∈M×Ω gives a bundle

G on M × Ω with fiber G(p,ω) for (p, ω) ∈M × Ω.

Now we define f(p,ω) : TpMω(ε)→ TfωpMθω by the local representation of fω with respect
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to Expp and Expfωp, i.e.,

f(p,ω)(v) = Exp−1
fωp
◦ fω ◦ Expp(v), ∀v ∈ TpMω(ε).

Define a bundle map φ∗ : G→ G over φ : M × Ω→M × Ω by

(φ∗g)(fωp,θω) = φ∗(p,ω)g(p,ω),

where

graph(φ∗(p,ω)g(p,ω)) = f(p,ω)(graph(g(p,ω))) ∩ (Eu(fωp, θω)(ε)⊕ Es(fωp, θω)).

For a linear transformation T , we denote m(T ) := ‖T−1‖−1 to be the conorm of T .

Lemma 4.15. For any ε′ > 0 such that

e−λ + 2Pε′

eλ − 2Pε′
≤ e−2λ + 1

2
,

there exists a ε0 > 0 such that for any ε ∈ (0, ε0), the bundle map φ∗ defined as above is

well-defined and it is a fiber contraction, i.e., for any g(p,ω), g
′
(p,ω) ∈ G(p,ω), we have

‖φ∗(p,ω)g(p,ω) − φ∗(p,ω)g
′
(p,ω)‖∗ ≤

‖Dpfω|Es(p,ω)‖+ 2Pε′

m(Dpfω|Eu(p,ω))− 2Pε′
· ‖g(p,ω) − g′(p,ω)‖∗.

Proof of Lemma 4.15. Pick any g ∈ G(p,ω), let f(p,ω)(x, g(x)) have decomposition

f(p,ω)(x, g(x)) = (f(p,ω),1(x, g(x)), f(p,ω),2(x, g(x)))

with respect to Eu(fωp, θω)⊕ Es(fωp, θω), denote h(p,ω) := f(p,ω),1(x, g(x)).

By compactness of Ω and M and the continuity of fω on ω, for any ε′ > 0, we can pick
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a ε0 > 0 sufficiently small such that for any ε < ε0,

Lip((f(p,ω) −Dpfω)|TpMω(ε)) < ε′.

Note that

f(p,ω),1(x, g(x)) = P (Eu(fωp, θω)) ◦ f(p,ω) ◦ (id, g)(x),

Dpfω|Eu(p,ω)(x) = P (Eu(fωp, θω)) ◦Dpfω ◦ (id, g)(x).

Then we have

Lip(f(p,ω),1 ◦ (id, g)−Dpfω|Eu(p,ω)(ε))

≤ PLip((f(p,ω) −Dpfω)|TpMω(ε)) · Lip(id, g)

< Pε′.

By the Lipschitz Inverse function theorem(Theorem I.2 in [57]), h(p,ω) is a homeomorphism

and moreover,

Lip(h−1
(p,ω)) ≤

1

‖Dpfω|−1
Eu(p,ω)‖−1 − Lip(f(p,ω),1 ◦ (id, g)−Dpfω|Eu(p,ω)(ε))

<
1

m(Dpfω|Eu(p,ω))− Pε′
. (4.28)

Then for any g ∈ G(p,ω), we have

(φ∗(p,ω)g)(x) = f(p,ω),2(h−1
(p,ω)(x), g(h−1

(p,ω)(x))). (4.29)
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Note that

f(p,ω),2(x, g(x)) = P (Es(fωp, θω)) ◦ f(p,ω) ◦ (id, g)(x),

Dpfω|Es(p,ω)(g(x)) = P (Es(fωp, θω)) ◦Dpfω ◦ (id, g)(x).

Then we have

Lip(f(p,ω),2 ◦ (id, g)) ≤ Lip(f(p,ω),2 ◦ (id, g)−Dpfω|Es(p,ω) ◦ g) + Lip(Dpfω|Es(p,ω) ◦ g)

< Pε′ + ‖Dpfω|Es(p,ω)‖. (4.30)

Combining (4.28), (4.29)and (4.30),

Lip(φ∗(p,ω)g) ≤ Lip(f(p,ω),2 ◦ (id, g)) · Lip(h−1
(p,ω)) ≤

‖Dpfω|Es(p,ω)‖+ Pε′

m(Dpfω|Eu(p,ω))− Pε′

≤ e−λ + Pε′

eλ − Pε′
<
e−2λ + 1

2
.

Obviously that (φ∗(p,ω)g)(0) = 0, so we have shown that φ∗(p,ω) maps G(p,ω) to G(fωp,θω) and as

a consequence, φ∗ is well-defined.

Next, we show that φ∗ is fiber-contraction. It is sufficient to show that for any g, g′ ∈

G(p,ω), for all x ∈ Eu(p, ω)(ε),

|f(p,ω),2(x, g(x))− (φ∗(p,ω)g
′)(f(p,ω),1(x, g(x)))|

|f(p,ω),1(x, g(x))|
≤
‖Dpfω|Es(p,ω)‖+ 2Pε′

m(Dpfω|Eu(p,ω))− 2Pε′
· ‖g − g′‖∗ (4.31)

since h(p,ω)(·) = f(p,ω),1(·, g(·)) is homeomorphism.
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Notice that

|f(p,ω),2(x, g(x))− f(p,ω),2(x, g′(x))|

≤ |(f(p,ω),2 − P (Es(fωp, θω))Dpfω)(x, g(x))− (f(p,ω),2 − P (Es(fωp, θω))Dpfω)(x, g′(x))|

+ |P (Es(fωp, θω))Dpfω(x, g′(x))− P (Es(fωp, θω))Dpfω(x, g(x))|

≤
{
Lip(f(p,ω),2 − P (Es(fωp, θω))Dpfω) + ‖Dpfω|Es(p,ω)‖

}
· |g(x)− g′(x)|

<
(
Pε′ + ‖Dpfω|Es(p,ω)‖

)
|g(x)− g′(x)|, (4.32)

and

|f(p,ω),1(x, g(x))− f(p,ω),1(x, g′(x))|

≤ |(f(p,ω),1 − P (Eu(fωp, θω))Dpfω)(x, g(x))− (f(p,ω),1 − P (Eu(fωp, θω))Dpfω)(x, g′(x))|

+ |P (Eu(fωp, θω)Dpfω)(x, g(x))− P (Eu(fωp, θω)Dpfω)(x, g′(x))|

≤ Lip(f(p,ω),1 − P (Eu(fωp, θω))Dpfω)|g(x)− g′(x)|

< Pε′|g(x)− g′(x)|. (4.33)

Then (4.33) and (4.32) imply that

|f(p,ω),2(x, g(x))− (φ∗(p,ω)g
′)(f(p,ω),1(x, g(x)))|

≤ |f(p,ω),2(x, g(x))− f(p,ω),2(x, g′(x))|+ |f(p,ω),2(x, g′(x))− (φ∗(p,ω)g
′)(f(p,ω),1(x, g(x)))|

≤
(
Pε′ + ‖Dpfω|Es(p,ω)‖

)
|g(x)− g′(x)|

+ |(φ∗(p,ω)g
′)(f(p,ω),1(x, g′(x)))− (φ∗(p,ω)g

′)(f(p,ω),1(x, g(x)))|

≤
(
Pε′ + ‖Dpfω|Es(p,ω)‖

)
|g(x)− g′(x)|+ |f(p,ω),1(x, g(x))− f(p,ω),1(x, g′(x))|

<
(
2Pε′ + ‖Dpfω|Es(p,ω)‖

)
|g(x)− g′(x)|. (4.34)

54



On the other hand,

|f(p,ω),1(x, g(x))| = |(f(p,ω),1 − P (Eu(fωp, θω))Dpfω)(x, g(x)) + P (Eu(fωp, θω))Dpfω(x, g(x))|

≥ (m(Dpfω|Eu(p,ω))− 2Pε′)|x| (4.35)

since |x| ≥ |g(x)|. Hence (4.31) follows by (4.32) and (4.35).

Remark 4.16. It is easy to see that the above lemma also holds if we replace G(p,ω) by

G′(p,ω) := {g ∈ G∗(p,ω) : Lip(g) ≤ 1}.

The following lemma is a skew product version of the invariant section lemma.

Lemma 4.17 (Invariant Section Lemma For Skew Product). Suppose we have a bundle map

F : E → E over φ : M ×Ω→M ×Ω, where E = {(p, ω,E(p,ω))| (p, ω) ∈M ×Ω}, E(p,ω) is a

bounded closed subset of a Banach space and F has the form F (p, ω, y) = (fωp, θω, F(p,ω)(y))

for y ∈ E(p,ω). Denote dE(p,ω)
to be the metric on E(p, ω). If for all (p, ω) ∈M × Ω,

dE(fωp,θω)
(F(p,ω)(y), F(p,ω)(y

′)) ≤ K(p,ω)dE(p,ω)
(y, y′),

and Moreover, sup(p,ω)∈M×ΩK(p,ω) = K < 1, then there exists a unique invariant section

σ∗ : M × Ω→ E, (p, ω) 7→ (p, ω, σ∗(p, ω)), in the sense that for all (p, ω) ∈M × Ω,

σ∗ ◦ φ(p, ω) = F(p,ω) ◦ σ∗(p, ω).

Proof of Lemma 4.17. Let Σ′ be the collection of all sections. Define the metric on Σ′ by

the sup metric, i.e.,

dΣ′(σ, σ
′) = sup{dE(p,ω)

(σ(p, ω), σ′(p, ω)) : (p, ω) ∈M × Ω}.
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Σ′ with dΣ′ is a complete metric space since E(p,ω) is closed. Define F∗ : Σ′ → Σ′ by

(F∗σ)(x, ω) = F((fθ−1ω)−1x,θ−1ω)σ((fθ−1ω)−1x, θ−1ω).

Now, for all σ, σ′ ∈ Σ′, we have

dΣ′(F∗σ, F∗σ
′) = sup

(p,ω)∈M×Ω

{|(F∗σ)(p, ω)− (F∗σ
′)(p, ω)|}

= sup
(p,ω)∈M×Ω

{
|F((fθ−1ω)−1p,θ−1ω)σ((fθ−1ω)−1p, θ−1ω)

− F((fθ−1ω)−1p,θ−1ω)σ
′((fθ−1ω)−1p, θ−1ω)|

}
≤ sup

(p,ω)∈M×Ω

{K|σ((fθ−1ω)−1p, θ−1ω)− σ′((fθ−1ω)−1p, θ−1ω)|}

≤ KdΣ′(σ, σ
′).

Hence F∗ is a contraction mapping. As a consequence, there exists a unique fixed point,

named σ∗, i.e.,

σ∗(p, ω) = F((fθ−1ω)−1p,θ−1ω)σ∗((fθ−1ω)−1p, θ−1ω)

for all (p, ω) ∈M × Ω. By changing of variable,

σ∗(fωp, θω) = F(p,ω)σ∗(p, ω),

for all (p, ω) ∈M × Ω).

We replace F and E(p,ω) in Lemma 4.17 by φ∗ and G(p,ω), then we get a unique section

g∗ : M×Ω→ G such that for each (p, ω) ⊂M×Ω, g∗(p,ω) is a Lipschitz map from Eu(p, ω)(ε)

to Es(p, ω), and g∗ is invariant in the sense that

φ∗(p,ω)g
∗
(p,ω) = g∗(φ(x,ω)).
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Note that one also can obtain the invariant section by iterating any section g ∈ G, i.e.,

g∗(p,ω) = lim
n→∞

((φ∗)ng)(p,ω) = lim
n→∞

φ∗
(f−1
ω p,θ−1ω)

· · ·φ∗
(f−nω p,θ−nω)

g(f−nω p,θ−nω), (4.36)

uniformly for all (p, ω) ∈M × Ω.

By the stable and unstable manifolds theorem we know that the local unstable manifold

passing p on Mω is exactly Expp(graph(g∗(p,ω))).

Next, we will show that the bundle map φ∗ preserves the local Hölder property for an

appropriate Hölder exponent.

Since Eu(x, ω) and Es(x, ω) are uniformly continuous depending on x ∈M , with the help

of local coordinate charts, we may pick a sufficiently small δ0 ∈ (0, ε
2P ) such that whenever

d(p, q) < δ0, g(q,ω) : Eu(q, ω)(ε0) → Es(q, ω) with Lip(g(q,ω)) <
e−2λ+1

2
can be viewed as a

Lipshitz function mapping from Eu(p, ω)(δ0) to Es(p, ω), named g̃(q,ω) with Lip(g̃(q,ω)) < 1.

From now on, we fix this δ0. We pick N > 0 depending on δ0 such that e−Nλ < δ0. Define

G(δ0, %, e
−Nλ, K) :=

{
g ∈ G : sup

x∈Eu(p,ω)(δ0)

|g(p,ω)(x)− g̃(q,ω)(x)| ≤ Kd(p, q)%,

whenever e−Nλ < d(p, q) < δ0

}
.

Lemma 4.18. There exists a constant C = C(δ0) such that G ⊂ G(δ0, %, e
−Nλ, C(δ0)eNλ%).

Proof of Lemma 4.18. Notice that both the Lipschitz constant of g(p,ω) and g̃(q,ω) are less

than 1, and d(p, q) < δ0, hence there exists a constant C = C(δ0) > 0 such that

sup
x∈Eu(p,ω)(δ0)

|g(p,ω)(x)− g̃(q,ω)(x)| ≤ C.

Notice that d(p, q) > e−Nλ, so we have

sup
x∈Eu(p,ω)(δ0)

|g(p,ω)(x)− g̃(q,ω)(x)| ≤ C(δ0) ≤ C(δ0)eNλ%d(p, q)%.
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Lemma 4.19. Let g ∈ G, if d(p, q) < δ0, d(fωp, fωq) < δ0, and supx∈Eu(p,ω)(δ0) |g(p,ω)(x) −

g̃(q,ω)(x)| ≤ Kd(p, q)%, then

sup
x∈Eu(fωp,θω)(δ0)

∣∣(φ∗(p,ω)g(p,ω)

)
(x)−

(
φ∗(p,ω)g̃(q,ω)

)
(x)
∣∣ ≤ Kd(fωp, fωq)

% (4.37)

provided % ∈ (0, 1) satisfying

sup
(p,ω)∈M×Ω

‖Dpfω|Es(p,ω)‖t−%(p,ω) < 1, (4.38)

where

t(p,ω) := inf

{
d(fωp, fωq)

d(p, q)
: q ∈M, d(p, q) < ε

}
> 0. (4.39)

Proof of Lemma 4.19. We use the same notation as the proof of Lemma 4.15. Notice that

by (4.38), we can pick a constant ε′ > 0 sufficiently small both satisfying the condition of

Lemma 4.15 and

sup
(p,ω)∈M×Ω

(2Pε′ + ‖Dpfω‖Es(p,ω))t
−%
(p,ω) < 1. (4.40)

Recall that f(p,ω) : TpMω(ε) → TfωpMθω is the local representation of fω with respect to

Expp and Expfωp. φ
∗
(p,ω) acts on g̃(q,ω) by

graph(φ∗(p,ω)g̃(q,ω)) = f(p,ω)(graph(g̃(q,ω))) ∩ (Eu(fωp, θω)(δ0)⊕ Es(fωp, θω)).

Notice that graph(φ∗(p,ω)g̃(q,ω)) = graph( ˜φ∗(q,ω)g(q,ω)), so by the choice of δ0 and the invariance
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of bundle G, we have Lip(φ∗(p,ω)g̃(q,ω)) < 1. Similar to the proof of (4.34),

|f(p,ω),2(x, g(p,ω)(x))− (φ∗(p,ω)g̃(q,ω))(f(p,ω),1(x, g(p,ω)(x)))|

≤ (2Pε′ + ‖Dpfω|Es(p,ω)‖)|g(p,ω)(x)− g̃(q,ω)(x)|

≤ (2Pε′ + ‖Dpfω|Es(p,ω)‖) sup
x∈Eu(p,ω)(δ0)

|g(p,ω) − g̃(q,ω)|

≤ (2Pε′ + ‖Dpfω|Es(p,ω)‖)Kd(p, q)%

≤ (2Pε′ + ‖Dpfω|Es(p,ω)‖)Kt−%(p,ω)d(fωp, fωq)
%

≤ Kd(fωp, fωq)
%,

provided (4.40). Notice that h(p,ω)(·) = f(p,ω),1(·, g(p,ω)(·)) is a homeomorphism, hence we get

(4.37).

Now consider

Rn(ω) := {(fnθ−nωp, fnθ−nωq) ∈M ×M | max
0≤k≤n−1

d(f
k
θ−nωp, f

k
θ−nωq) < δ0, e

−Nλ < d(p, q) < δ0},

and let Sn(ω) = ∪ni=0Ri(ω). Applying Lemma 4.19 inductively and noticing that φ∗(p,ω)g̃(q,ω) =

˜φ∗(q,ω)g(q,ω) for q in the δ0-neighborhood of p, we see that for any g ∈ G, (p, q) ∈ Sn(ω),

sup
x∈Eu(p,ω)(δ0)

|((φ∗)ng)(p,ω)(x)− ((̃φ∗)ng)(q,ω)(x)| ≤ C(δ0)eNλ%d(p, q)%.

By the stable and unstable manifolds theorem,

{(p, q) ∈Mω ×Mω| q 6∈ W u
δ0

(p, ω), d(p, q) < δ0} ⊂
∞⋃
n=0

Sn(ω).

Hence that fix point obtained by (4.36) has property that for any p, q ∈M , d(p, q) < δ0,

sup
x∈Eu(p,ω)(δ0)

∣∣g∗(p,ω)(x)− g̃∗(q,ω)(x)
∣∣ ≤ C(δ0)eNλ%d(p, q)% := H(δ0, %)d(p, q)%. (4.41)
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Hence the local unstable foliation is Hölder continuous on the base point fiberwisely. A

similar proof can be applied to the local stable foliation by reversing time.

Now let y0, y1 ∈ graph(g∗(p,ω)), let q ∈M and d(p, q) < δ0. Let

z0 := (P (Eu(p, ω)y0, g̃∗(q,ω)(P (Eu(p, ω)y0)))

and

z1 := (P (Eu(p, ω)y1, g̃∗(q,ω)(P (Eu(p, ω)y1))).

Then by (4.41),

|z1 − y1| ≤ H(δ0, %)|z0 − y0|%.

Denote

w0 := exp−1
p (W s

loc(y0, ω)) ∩ graph(g̃∗(q,ω)), w1 := exp−1
p (W s

loc(y1, ω)) ∩ graph(g̃∗(q,ω)).

Since that θ0 := inf(x,ω)∈M×Ω Θ(Es(x, ω), Eu(x, ω)) > 0, hence when δ0 sufficiently small,

there exists a constant C(θ0) independent of (x, ω) ∈M × Ω such that

|y1 − z1|
|y1 − w1|

≥ C(θ0)−1,
|y0 − z0|
|y0 − w0|

≤ C(θ0).

Hence, we get

|y1 − w1| ≤ C(θ0)1+%H(δ0, %)|y0 − w0|%,

i.e., the fiber holonomy map between local unstable manifolds is uniformly %−Hölder con-

tinuous at a small scale. A similar result holds for fiber holonomy map between local stable

manifolds.

The proof of Proposition 4.13 is done.

4.1.8 Properties of the Holonomy Map between Two Local Stable Leaves.

In this subsection, the properties of the Holonomy maps are further discussed.
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For each ω ∈ Ω, γ̃(ω) and γ(ω) is said to be pair of nearby local stable leaves if the

fiber holonomy map ψω : γ̃(ω) → γ(ω) by ψω(x) = W u
ε (x, ω) ∩ γ(ω) for x ∈ γ̃(ω) is a

homeomorphism.

In the following, we restrict the size of local stable and unstable manifolds W s
ε (x, ω),

W u
ε (x, ω) satisfying ε ≤ min{ε0, δ0} to guarantee the Hölder continuity of the stable and

unstable foliations, where δ0 is the constant in Proposition 4.13.

Lemma 4.20. There exists constants a′0, ν
′
0 > 0 that only depend on system φ such that for

any ψω : γ̃(ω) → γ(ω) fiber holonomy map of two nearby random local stable leaves, the

followings hold:

(i) ψω and log | detDψω| are (a′0, ν
′
0)-Hölder continuous;

(ii) log | detDyψω| ≤ a′0d(y, ψω(y))ν
′
0 for every y ∈ γ̃(ω);

(iii) d((fθ−1ω)−1x, (fθ−1ω)−1ψω(x)) ≤ e−λd(x, ψω(x)).

Proof of Lemma 4.20. In Proposition 4.13, we already prove that ψω is (H, %)−Hölder con-

tinuous for all ω ∈ Ω.

Now we prove the Hölder continuity of log | detDψω|. Pick any x, y ∈ γ̃(ω), we consider

two cases: (case 1) d(x, ψω(x)) ≤ d(x, y) and (case 2) d(x, ψω(x)) > d(x, y).

In (case 1), by (4.22), we have

| detDxψω|
| detDyψω|

≤
−∞∏
j=0

(1 + C11e
λjν1d(x, ψω(x))ν1)

−∞∏
j=0

(1 + C11e
λjν1d(y, ψω(y))ν1).
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Then apply Proposition 4.13, we have

| log | detDxψω| − log | detDyψω|| ≤
−∞∑
j=0

C11e
λjν1d(x, ψω(x))ν1 +

−∞∑
j=0

C11e
λjν1d(y, ψω(y))ν1

≤
−∞∑
j=0

C11e
λjν1d(x, ψω(x))ν1 +

−∞∑
j=0

C11H
ν1eλjν1d(x, ψω(x))ν1%

≤ (
−∞∑
j=0

C11e
λjν1 +

−∞∑
j=0

C11H
ν1eλjν1)d(x, y)ν1%

:= S1d(x, y)ν1%. (4.42)

In (case 2), since the expansion on stable manifolds and the contraction on unstable manifolds

when reverse time, there exists an integer m > 0 such that

d(f−kω x, f−kω ψω(x)) > d(f−kω x, f−kω y) for 0 ≤ k ≤ m− 1;

and

d(f−mω x, f−mω ψω(x)) ≤ d(f−mω x, f−mω y).

Note that

| detDxψω|
| detDyψω|

=
| detDxf

−m
ω |Es(x,ω)|

| detDyf−mω |Es(y,ω)|
·
| detDψω(y)f

−m
ω |Es(ψω(y),ω)|

| detDψω(x)f−mω |Es(ψω(x),ω)|
·
| detDf−mω x(f

−m
ω ψωf

m
θ−mω)|

| detDf−mω y(f
−m
ω ψωfmθ−mω)|

.

Denote β := sup{d(f−1
ω x,f−1

ω y)
d(x,y)

: d(x, y) ≤ ε, ω ∈ Ω} ∈ (1,∞), and η := inf{d(f−1
ω x,f−1

ω y)
d(x,y)

:

d(x, y) ≤ ε, ω ∈ Ω} ∈ (0, 1), then by the choice of m, we have

ηmd(x, ψω(x)) ≤ βmd(x, y).

As a consequence, m ≥ (log d(x,ψω(x))
d(x,y)

)/ log(β/η). Hence

e−m ≤ d(x, y)
1

log(β/η)d(x, ψω(x))−
1

log β/η .
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By (4.21), we have

| log | detDxf
−m
ω |Es(x,ω)| − log | detDyf

−m
ω |Es(y,ω)||

≤
m−1∑
k=0

C11d(f−kω x, f−kω y)ν1 ≤
m−1∑
k=0

C11e
−λ(m−1−k)ν1d(f−(m−1)

ω x, f−(m−1)
ω y)ν1

≤ (
m−1∑
k=0

C11e
−λ(m−1−k)ν1)d(f−(m−1)

ω x, f−(m−1)
ω ψω(x))ν1

≤ (
m−1∑
k=0

C11e
−λ(m−1−k)ν1)e−λ(m−1)ν1d(x, ψω(x))ν1

≤ S2e
−λmν1d(x, ψω(x))ν1

≤ S2d(x, ψω(x))ν1−
λν1

log(β/η)d(x, y)
λν1

log(β/η)

≤ S2d(x, y)
λν1

log(β/η) ,

where S2 := (
∑m−1

k=0 C11e
−λ(m−1−k)ν1)eλν1 . Similar to above, we have

| log | detDψω(y)f
−m
ω |Es(ψω(y),ω)| − log | detDψω(x)f

−m
ω |Es(ψω(x),ω)||

≤
m−1∑
k=0

C11d(f−kω ψω(x), f−kω ψω(y))ν1 ≤
m−1∑
k=0

C11e
−λ(m−1−k)ν1d(f−(m−1)

ω ψω(x), f−(m−1)
ω ψω(y))ν1

≤
m−1∑
k=0

C11e
−λ(m−1−k)ν1Hν1d(f−(m−1)

ω x, f−(m−1)
ω y)ν1%

≤
m−1∑
k=0

C11e
−λ(m−1−k)ν1Hν1d(f−(m−1)

ω x, f−(m−1)
ω ψω(x))ν1%

≤ S3e
−λmν1%d(x, ψω(x))ν1%

≤ S3d(x, y)
λν1%

log(β/η) ,

where S3 :=
∑m−1

k=0 C11e
−λ(m−1−k)ν1Hν1eλν1%. Note that fmω ψωf

m
θ−mω is the holonomy map from
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f−mω γ̃(ω) to f−mω γ(ω), hence similar to (4.42), we have

| log | detDf−mω x(f
m
ω ψωf

m
θ−mω)| − log | detDf−mω y(f

m
ω ψωf

m
θ−mω)||

≤
−∞∑
j=0

C11e
λjν1d(f−mω x, f−mω ψω(x))ν1 +

−∞∑
j=0

C11e
λjν1d(f−mω y, f−mω ψω(y))ν1

≤
−∞∑
j=0

C11e
λjν1e−λν1d(f−mω x, f−mω ψω(x))ν1 +

−∞∑
j=0

C11e
λjν1e−λν1d(f−(m−1)

ω y, f−(m−1)
ω ψω(y))ν1

≤
−∞∑
j=0

C11e
λjν1e−λν1

(
d(f−(m−1)

ω x, f−(m−1)
ω ψω(x))ν1 +Hν1d(f−(m−1)

ω x, f−(m−1)
ω ψω(x))ν1%

)
≤ S4d(x, y)

λν1%
log(β/η) ,

where S4 := (
∑−∞

j=0 C11e
λjν1e−λν1 +

∑−∞
j=0 C11e

λjν1e−λν1Hν1)eλν1%. Hence

| log | detDxψω| − log | detDyψω|| ≤ (S2 + S3 + S4)d(x, y)
λν1%

log(β/η) .

For property (2), we use (4.22) to obtain

| detDyψω| ≤
−∞∏
j=0

(1 + C11e
λjν1d(y, ψω(y))ν1);

1/| detDyψω| ≤
−∞∏
j=0

(1 + C11e
λjν1d(y, ψω(y))ν1).

So

| log | detDyψω|| ≤ C11

−∞∑
j=0

eλjνd(y, ψω(y))ν1 .

Now we define a′0 := max{S1, S2 + S3 + S4} and ν ′0 := λν1%
log(β/η)

. Then property (1) and (2)

are proved.

Property (3) follows the definition of holonomy map and contraction on local unstable

manifolds when reverse time.
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4.1.9 Fubini’s Theorem on Rectangles.

We call R(ω) ⊂Mω a rectangle if it is foliated by local stable manifolds and it has the local

product structure. By the lemma 4.20, for any rectangle R(ω) in small scale, the holonomy

map between stable manifolds lying in R(ω) is absolutely continuous and the Log of Jacobian

of holonomy map is (a′0, ν
′
0)−Hölder continuous, and the same results hold for holonomy map

between the local unstable manifolds in R(ω). As a consequence, the Riemannian measure on

R(ω) has disintegration on each local stable leaves in R(ω). Moreover, the density function

on each local stable leaf has Hölder regularity. The proof of this statement is similar to the

determinant case [13]. We supply a proof here for completeness.

Proposition 4.21. There exist constants (a′′0, ν
′′
0 ) only depending on the system such that

for each ω ∈ Ω and any rectangle R(ω) = [W u
ε (x0, ω),W s

ε (x0, ω)] for some x0 ∈ M , there

exists a function H(ω) : R(ω)→ R satisfying

| logH(ω)(x)− logH(ω)(y)| ≤ a′′0d(x, y)ν
′′
0 , ∀x, y ∈ γ(ω)

and for any bounded measurable function ψ : M → R, there is disintegration

∫
R(ω)

ψ(x)dm(x) =

∫ ∫
γ(ω)

ψ(x)Hi(ω)(x)|γ(ω)dmγ(ω)(x)dm̃R(ω)(γ(ω)),

where γ(ω) denote the stable foliations in R(ω) and m̃R(ω) the quotient measure induced by

Riemannian volume measure in the space of local stable leaves in R(ω).

Proof of Proposition 4.21. With the help of a normal coordinate chart, we can view R(ω) as a

subset in the vector space Tx0M . We define a map Ψ : (W u
ε (x0, ω)×W s

ε (x0, ω),B,mu×ms)→

(R(ω),B,m) by

Ψ(ξ, η) = W u
ε (η, ω) ∩W s

ε (ξ, ω),

where mu and ms are the intrinsic Riemannian measures on W u
ε (x0, ω) and W s

ε (x0, ω) re-

spectively and m is the Riemannian measure on R(ω).
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For any x ∈ R(ω), we introduce the following sets:

Sr(x, ω) = {W u
ε (y, ω) ∩W u

ε (z, ω)| d(x, y) ≤ r, y ∈ W s
ε (x, ω), d(x, z) ≤ r, z ∈ W u

ε (x, ω)}

= [W u
r (x, ω),W s

r (x, ω)],

Pr(x, ω) = {x+ v + w| v ∈ Es(x, ω), ‖v‖ ≤ r, w ∈ Eu(x, ω), ‖w‖ ≤ r},

P s
r (x, ω) = {x+ v| v ∈ Es(x, ω)|, ‖v‖ ≤ r},

P u
r (x, ω) = {x+ w| w ∈ Eu(x, ω)|, ‖w‖ ≤ r}.

Lemma 4.22. There exists a constant K4 independent of ω such that

PPr(1−K4r
(ν′0)

2
)
(x, ω) ⊂ Sr(x, ω) ⊂ PPr(1+K4r

(ν′0)
2
)
(x, ω). (4.43)

Furthermore, there exists constant K6 independent of ω and a function θ(x, ω) satisfying that

log θ(x, ω) is (K6, ν
′
0) Hölder continuous on x and continuous on ω such that

m(Sr(x, ω)) = θ(x, ω)ms(P
s
Pr(x, ω))mu(P

u
Pr(x, ω))(1 +O(r(ν′0)2)), (4.44)

where ms is the induced measure on Es(x, ω) and mu is the induced measure on Eu(x, ω).

Proof of Lemma 4.22. For z ∈ x + Eu(x, ω), by the local stable manifolds theorem, there

exists a map h̃s(z,ω) : Es(x, ω) → Eu(x, ω) such that the local stable manifold W s
ε (z, ω) :=

{z+ ξ+ h̃s(z,ω)(ξ)| ξ ∈ Es(x, ω)}. Recall that ν ′0 < min{ν1, %} in Lemma 4.20. By Lemma 4.1

the Hölder continuity of stable subbundles, we have

∥∥∥Dξh̃
s
(z,ω)

∥∥∥ ≤ C1

∥∥∥z + ξ + h̃s(z,ω)(ξ)
∥∥∥ν′0 .

By Proposition 4.13, to represent points in Sr(x, ω), it is sufficient to consider ‖z‖ ≤ Pr and

‖ξ‖ ≤ PH ′rν′0 .
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For v ∈ Es(x, ω), ‖v‖ = 1, we define h(t) = ‖h̃s(z,ω)(vt)‖, then we have

∣∣∣∣dh(t)

dt

∣∣∣∣ =

∣∣∣∣∣(h̃
s
(z,ω)(vt), Dtvh̃

s
(z,ω)v)

‖h̃s(z,ω)(tv)‖

∣∣∣∣∣ ≤ ∥∥∥Dtvh̃
s
(z,ω)

∥∥∥ ≤ C1

∥∥∥z + tv + h̃s(z,ω)(tv)
∥∥∥ν′0 .

So that if ‖z‖ ≤ Pr, h(t) must satisfy the following inequality in the domain ‖t‖ ≤ PH ′rν′0


∣∣∣dh(t)
dt

∣∣∣ ≤ C1

(
Pr + PH ′rν′0 + h(t)

)ν′0 ,
h(0) = 0.

Solve the above equation we get

h(t) ≤ K3tr
(ν′0)2 +O

(
t2r−ν

′
0+2(ν′0)2

)
,

where K3 = K3(P , H ′, ν ′0) is a constant. So if ‖z‖ ≤ Pr, and ‖v‖ ≤ PH ′rν′0 , we have

∥∥∥h̃s(z,ω)(v)
∥∥∥ ≤ K4‖v‖r(ν′0)2 ,

where constant K4 = K4(P , H ′, ν ′0) is independent of ω. The same estimates holds for

unstable manifolds. These two estimate imply that

PPr(1−K4r
(ν′0)

2
)
(x, ω) ⊂ Sr(x, ω) ⊂ PPr(1+K4r

(ν′0)
2
)
(x, ω).

As a consequence,

m
(
PPr(1−K4r

(ν′0)
2
)
(x, ω)

)
⊂ m (Sr(x, ω)) ⊂ m

(
PPr(1+K4r

(ν′0)
2
)
(x, ω)

)
, (4.45)

where m is the Riemannian measure on R(ω). Let {vi}dimEs

i=1 be an orthonormal basis for
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Es(x, ω) and {wj}dimEu

j=1 be an orthonormal basis for Eu(x, ω), we define

θ(x, ω) = | det(v1, ..., vdimEs , w1, ..., wdimEu)|.

Since Θ(Es(x, ω), Eu(x, ω)) ≥ θ0, there exists a constant K5 = K5(θ0) such that θ(x, ω) ≥

K5. By Lemma 4.1, θ(x, ω) is ν ′0−Hölder continuous on x and continuous on ω. Hence there

exists a constant K6 such that log θ(x, ω) is (K6, ν
′
0) Hölder continuous. Combined with

(4.45), we get

m(Sr(x, ω)) = θ(x, ω)ms (P s
Pr(x, ω))mu (P u

Pr(x, ω))
(

1 +O
(
r(ν′0)2

))
.

Note that by the local stable manifolds theorem, for each (x, ω), the local unstable

manifold W s
ε (x, ω) is determined by a C2 function hs(x,ω) : Es(x, ω) → Eu(x, ω). Moreover,

TxW
s
ε (x, ω) = Es(x, ω) and Dhs(x,ω) is Lipschitz with Lipschitz constant L. Hence we have

ms(P
s
Pr(x, ω)) = ms(W s

r (x, ω))
(
1 +O

(
rdimEs

))
.

The same estimate holds for local unstable manifolds:

mu(P
u
Pr(x, ω)) = mu(W u

r (x, ω))
(
1 +O

(
rdimEs

))
.

The above two estimates and (4.44) imply that

m(Sr(x, ω)) = θ(x, ω)ms(W s
r (x, ω))mu(W u

r (x, ω))
(

1 +O
(
r(ν′0)2

))
. (4.46)

For x ∈ R(ω), we define ψsω : R(ω) 7→ W u
ε (x0, ω) by ψsω(x) := W s

ε (x, ω) ∩W u
ε (x0, ω). It

is easy to see that ψsω(·) is constant on each stable foliation in R(ω). Similarly, we define

ψuω : R(ω) 7→ W s
ε (x0, ω) by ψuω(x) = W u

ε (x, ω) ∩W s
ε (x0, ω). We denote W τ (x, ω) ∩ R(ω) for
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x ∈ R(ω) to be the connected part of W τ (x, ω) containing x in R(ω) for τ = s, u. We define

J̃s(x, ω) := Hω(x, ψsω(x), Eu(x, ω), Eu(ψsω(x), ω)),

which is the Jacobian at x of the holonomy map from unstable manifolds W u(ψuω(x), ω)∩R(ω)

to W u
ε (x0, ω). Similarly, we define

J̃u(x, ω) := lim
n→−∞

| det(Dxf
n
ω |Es(x,ω))|

| det(Dψuω(x)fnω |Es(ψuω(x),ω))|
,

which is the Jacobian at x of the holonomy map between local stable manifoldsW s(ψsω(x), ω)∩

R(ω) and W s
ε (x0, ω).

Lemma 4.23. There exists a constant K7 independent of ω such that both log J̃s(x, ω) and

log J̃u(x, ω) are (K7, ν
′
0)−Hölder continuous on x.

Proof. Let x, y ∈ R(ω), we denote z := W u
ε (x, ω) ∩W s

ε (y, ω). Then we have ψsω(z) = ψsω(y).

Notice that z is the image of y under the holonomy map between W u(x, ω) ∩ R(ω) and

W u(y, ω) ∩R(ω), then by Lemma 4.20 (2), we have

| detDzf
n
ω |Eu(z,ω)|

| detDψsω(z)fnω |Eu(ψsω(z),ω)|

/
| detDyf

n
ω |Eu(y,ω)|

| detDψsω(y)fnω |Eu(ψsω(y),ω)|

=
| detDzf

n
ω |Eu(z,ω)|

| detDyfnω |Eu(y,ω)|
≤ ea

′
0d(y,z)ν

′
0 .

Switch y and z and let n goes to infinity we have,

∣∣∣log J̃s(z, ω)− log J̃s(y, ω)
∣∣∣ ≤ a′0d(y, z)ν

′
0 .

Notice that both x, z lie on the local unstable manifold W u
ε (x, ω), then by Lemma 4.20 (1),

we have ∣∣∣log J̃s(x, ω)− J̃s(z, ω)
∣∣∣ ≤ a′0d(x, z)ν

′
0 .
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Notice that z = [y, x]ω and θ0 = inf Θ(Es(x, ω), Eu(x, ω)) > 0, then there exists a constant

K8 := K8(θ0, ν
′
0) such that

d(x, z)ν
′
0 + d(y, z)ν

′
0 ≤ K8d(x, y)ν

′
0 .

Hence ∣∣∣log J̃s(x, ω)− log J̃s(y, ω)
∣∣∣ ≤ a′0K8d(x, y)ν

′
0 := K7d(x, y)ν

′
0 .

The similar proof can be applied to J̃u(x, ω).

Now consider set Cr(Ψ
−1(x), ω) := Ψ−1(Sr(x, ω)). To obtain the Jacobian of the map Ψ,

we need to compare (mu ×ms)(Cr(Ψ
−1(x), ω)) and m(Sr(x, ω)) and prove Ψ is absolutely

continuous.

Lemma 4.24. For x ∈ R(ω) and r sufficiently small, we have

(mu ×ms)(Cr(Ψ
−1(x), ω))

m(Sr(x, ω))
=
J̃u(x, ω)J̃s(x, ω)

θ(x, ω)

(
1 +O

(
r(ν′0)2

))
. (4.47)

Proof. By the definition of ψsω and ψuω, we have Ψ−1(x) = (ψsω(x), ψuω(x)) ∈ W u
ε (x0, ω) ×

W s
ε (x0, ω). Since the set Sr(x, ω) has the local product structure, the set Cr(Ψ

−1(x), ω) is a

product set

Cr(Ψ
−1(x), ω) = Cu

r (Ψ−1(x), ω)× Cs
r (Ψ

−1(x), ω),

where

Cu
r (Ψ−1(x), ω) = {ξ ∈ W u

ε (x0, ω)| Ψ(ξ, ψuω(x)) ∈ Sr(x, ω)},

Cs
r (Ψ

−1(x), ω) = {η ∈ W s
ε (x0, ω)| Ψ(ψsω(x), η) ∈ Sr(x, ω)}.

So (mu × ms)(Cr(Ψ
−1(x), ω)) = mu(Cu

r (Ψ−1(x), ω)) × ms(Cs
r (Ψ

−1(x), ω)). Note that the

holonomy map between W u
ε (x0, ω) and W u(x, ω) ∩ R(ω) is absolutely continuous, hence we
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have

mu(Cu
r (Ψ−1(x), ω)) =

∫
Wu
ε (x,ω)∩Sr(x,ω)

J̃s(y, ω)dmu(y)

= J̃s(x, ω)mu(W u
r (x, ω))

(
1 +O

(
rν
′
0

))
, (4.48)

where the last equality follows the Hölder continuity of log J̃s(·, ω). Similarly, we have

ms(Cs
r (Ψ

−1(x), ω)) = J̃u(x, ω)ms(W s
r (x, ω))

(
1 +O

(
rν
′
0

))
. (4.49)

Now (4.46), (4.48) and (4.49) imply that

(mu ×ms)(Cr(Ψ
−1(x), ω))

m(Sr(x, ω))
=
J̃u(x, ω)J̃s(x, ω)

θ(x, ω)

(
1 +O

(
r(ν′0)2

))
.

Lemma 4.25. Ψ : (W u
ε (x0, ω) ×W s

ε (x0, ω),B,mu ×ms) → (R(ω),B,m) is absolutely con-

tinuous.

Proof. By the local product structure, we know that Ψ is a homeomorphism. Let m̄ = Ψ∗m,

i.e. for any A ∈ B(W u
ε (x0, ω) × W s

ε (x0, ω)), m̄(A) = m(Ψ(A)). To prove the absolute

continuity of Ψ, we just need to prove that m̄� mu ×ms.

For any A ⊂ W u
ε (x0, ω)×W s

ε (x0, ω) Borel measurable set such that m̄(A) > 0, we want to

prove that mu×ms(A) > 0. We prove it by way of contradiction. Suppose mu×ms(A) = 0,

then for any ζ > 0, there exists an open set U ⊃ A such that mu × ms(U) ≤ ζ. We pick

a compact set D ⊂ A such that m̄(D) ≥ 1
2
m̄(A). Since Ψ is a homeomorphism, Ψ(D) is

compact and Ψ(U) is open.

We choose r0 sufficiently small such that for any r ∈ (0, r0), the equation (4.44) implies

m(Sr(x, ω)) ≥ 1

2
K5ms(P

s
Pr(x, ω))mu(P

u
Pr(x, ω)),
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where recall K5 satisfying inf θ(x, ω) ≥ K5. The equation (4.47) implies

(mu ×ms)(Cr(Ψ
−1(x), ω))

m(Sr(x, ω))
=

1

2
inf

x∈R(ω)

J̃u(x, ω)J̃s(x, ω)

θ(x, ω)
≥ 1

2
e−2a′0 .

We can find a finite disjoint collection of cubes Γn ⊂ Ψ(U) with diameter less than r0 and

m(∪nΓn ∩Ψ(D)) ≥ 1

2
m̄(D).

By Lemma 4.22, we can find a set Sn ⊂ Γn which has the same structure as Sr(x, ω) such

that

m(Sn) ≥ 1

2
inf

x∈R(ω)
θx,ωm(Γn) ≥ K5

2
m(Γn).

Now

mu ×ms(U) ≥ mu ×ms(∪nΨ−1Γn) ≥ mu ×ms(∪nΨ−1(Sn))

≥ 1

2
e−2a′0

∑
n

m(Sn) ≥ 1

2
e−2a′0

K5

2

∑
n

m(Γn)

≥ e−2a′0K5

4

1

2
m̄(D)

≥ e−2a′0K5

16
m̄(A).

This leads to a contradiction by choosing ζ < e−2a′0K5

16
m̄(A). Therefore, Ψ is absolutely

continuous.

Now by the Radon-Nikodym theorem, we have

Jac(Ψ)(ξ, η) = lim
r→0

m(Sr(Ψ(ξ, η), ω))

mu ×ms(Cr((ξ, η), ω))
=

θ(Ψ(ξ, η), ω)

J̃u(Ψ(ξ, η), ω)J̃s(Ψ(ξ, η), ω)
.
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Then for any (ξ, η), (ξ′, η′) ∈ W u
ε (x0, ω)×W s

ε (x0, ω), we have

|log Jac(Ψ)(ξ, η)− log Jac(Ψ)(ξ′, η′)|

≤ max{K6, K7}d(Ψ(ξ, η),Ψ(ξ′, η′))ν
′
0

≤ max{K6, K7}(d(Ψ(ξ, η),Ψ(ξ, η′)) + d(Ψ(ξ, η′),Ψ(ξ′, η′)))ν
′
0

≤ max{K6, K7}a′0(d(ξ, ξ′) + d(η, η′))ν
′
0 .

Hence log Jac(Ψ) is (max{K6, K7}a′0, ν ′0)−Hölder continuous. By the Radon-Nikodym the-

orem, for any bounded measurable function I : M → R, we have

∫
R(ω)

I(x)dm(x) =

∫
Wu
ε (x,0,ω)

∫
W s
ε (x0,ω)

I(Ψ(ξ, η))JacΨ(ξ, η)dms(η)dmu(ξ).

For each stable foliation γ ∩ R(ω), there exists a ξ ∈ W u
ε (x0, ω) such that γ ∩ R(ω) is the

image of Ψξ := Ψ|{ξ}×W s
ε (x0,ω) which is exactly the holonomy map between W s

ε (x0, ω) and

γ ∩R(ω). We denote this γ ∩R(ω) by γξ. Denote the Jacobian of Ψ|{ξ}×W s
ε (x0,ω) by Jacξ(Ψ).

Using Radon-Nikodym theorem again, we have

∫
R(ω)

I(x)dm(x) =

∫
Wu
ε (x0,ω)

∫
γξ

I(x)
JacΨ(Ψ−1

ξ (x))

JacξΨ(Ψ−1
ξ (x))

dms
γξ

(x)dmu(ξ).

We define H(ω) : R(ω)→ R by

H(ω)(x) :=
JacΨ(Ψ−1

ψsω(x)(x))

Jacψsω(x)Ψ(Ψ−1
ψsω(x)(x))

.

Note that for x, y in a same stable leaf in R(ω), ψsω(x) = ψsω(y) ∈ W u
ε (x0, ω). Moreover, in

Lemma 4.20, we have proved that the holonomy map Ψ−1
ψsω(x)(x) is (a′0, ν

′
0)−Hölder continuous

on γψsω(x) and log Jacψsω(x)Ψ is (a′0, ν
′
0)−Hölder continuous on {ψsω(x)} ×W s

ε (x0, ω). Hence
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for x, y in a same stable leaf in R(ω), we have

| logH(ω)(x)− logH(ω)(y)| ≤ | log JacΨ(Ψ−1
ψsω(x)(x))− log JacΨ(Ψ−1

ψsω(x)(y))|

+ | log Jacψsω(x)Ψ(Ψ−1
ψsω(x)(x))− log Jacψsω(x)Ψ(Ψ−1

ψsω(x)(y))|

≤ (max{K6, K7}a′0 + a′0)d(Ψ−1
ψsω(x)(x),Ψ−1

ψsω(x)(y))ν
′
0

≤ (max{K6, K7}a′0 + a′0)a′0d(x, y)(ν′0)2 .

Hence logH(ω) is (a′′0, ν
′′
0 ) := ((max{K6, K7}a′0 + a′0)a′0, (ν

′
0)2)−Hölder continuous on each

local stable leaf in R(ω) The proof of Proposition 4.21 is done.

4.2 For Random Partially Hyperbolic on Fibers Systems

In this section, we introduce several lemmas, including the strong unstable invariant mani-

folds theorem in Subsection 4.2.1 and a distortion lemma in Subsection 4.2.2, that will be

used in the proof of existence of the random Gibbs u−states for random partially hyperbolic

on fibers systems.

4.2.1 Strong Unstable Invariant Manifolds.

We first state the local strong unstable invariant manifolds theorem in our settings. Since

f : Ω→Diff2(M) is a continuous mapping, the following condition holds naturally:

∫
(log+ ‖fω‖C2 + log+ ‖f−1

ω ‖C2)dP (ω) <∞.

The following lemma can be viewed as an adapted version of unstable invariant manifolds

theorem with the help of Lusin’s theorem in [37] by noticing that Euu(x, ω) depends contin-

uously on (x, ω) ∈ M × Ω and fω ∈Diff2(M) depends continuously on ω ∈ Ω. The proof of

this lemma can be carried word for word from the arguments of Theorem III3.1 of [45].

Lemma 4.26 (Local Strong Unstable Invariant Manifolds Theorem). For random partially
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hyperbolic on fibers systems in our setting, the local strong unstable set is a C1,1 embedded

submanifold given by

W uu
δ (x, ω) = expx(Graph(hu(x,ω))) (4.50)

satisfying that:

(i) hu(x,ω) : Euu
δ (x, ω) → Ecs(x, ω) is a C1,1−map with hu(x,ω)(0) = 0, Dhu(x,ω)(0) = 0,

Liphu(x,ω)(·) ≤
1
3
, LipD·h

u
(x,ω) ≤ L, where Euu

δ (x, ω) = {η ∈ Euu(x, ω) : |η| < δ} and

L > 1 is a constant;

(ii) W uu
δ (φ(x, ω)) ⊂ fω(W uu

δ (x, ω)), and W uu(x, ω) =
⋃
n≥1 f

n
θ−nωW

uu
δ (f−nω x, θ−nω) where

W uu(x, ω) is given by (3.1);

(iii) du(f−nω y, f−nω z) ≤ γ0e
−n(λ0−ε0)du(y, z) for any y, z ∈ W uu

δ (x, ω) where du denotes the

distance along the strong unstable manifolds, γ0 > 0 and 0 < ε0 � λ0 are constants;

(iv) For any ρ < 1
4
δ, if W u

ρ (x, ω) := expx(Gragh(hu(x,ω)|Euρ (x,ω))) intersects W u
ρ (x′, ω), then

W u
ρ (x, ω) ⊂ W uu

δ (x′, ω);

(v) W uu
δ (x, ω) depends continuously on (x, ω) ∈M × Ω.

In the above lemma, we may shrink δ < ρ0 such that for any (x, ω) ∈Mω, W uu
δ (x, ω) lies

in a normal neighborhood.

4.2.2 A Distortion Lemma.

We also need the following distortion lemma. Denote Ju(x, ω) := |det(Dxfω|Euu(x,ω))|.

Lemma 4.27. There exists a constant C > 0 independent of ω ∈ Ω such that for any n ∈ N,

for any (x, ω), and y, z ∈ W uu
δ (x, ω), we have

1

C
≤

n−1∏
k=0

Ju(φ−k(y, ω))

Ju(φ−k(z, ω))
≤ C. (4.51)
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Proof. We first prove the uniform Lipschitz variation of Ju(x, ω) along the local strong

unstable manifolds, i.e., there exists a constant K > 0 which is independent of x and ω such

that for any (x, ω) ∈Mω, y, z ∈ W uu
δ (x, ω), one has

|Ju(y, ω)− Ju(z, ω)| ≤ Kdu(y, z), (4.52)

where du(·, ·) is the distance along W uu
δ (x, ω).

Denote πuu(x,ω), π
cs
(x,ω) to be the projection from TxMω to Euu(x, ω) and Ecs(x, ω) respec-

tively with respect to the splitting TxMω = Euu(x, ω)⊕Ecs(x, ω), notice that Euu(x, ω) and

Ecs
(x,ω) are continuously depending on (x, ω), so ‖πuu(x,ω)‖ and ‖πcs(x,ω)‖ are uniformly bounded

by the compactness of M × Ω. Notice that f : Ω → Diff2(M) is continuous, ‖Dxfω‖ and

‖D2
xfω‖ are uniformly bounded. Let M ≥ 1 be a constant such that

max

{
sup

(x,ω)∈M×Ω

|Dxfω|, sup
(x,ω)∈M×Ω

|D2
xfω|, sup

(x,ω)∈M×Ω

LipDhu(x,ω), sup
(x,ω)

{‖πcs(x,ω)‖, ‖πuu(x,ω)‖}

}
≤M.

For sake of simplicity, we will identify expx(·) with x+ · in the rest of the proof.

Notice that if y, z ∈ W uu
δ (x, ω), and du(y, z) < δ

2M3 , then

∣∣πuu(y,ω)(z − y)
∣∣ ≤Mdu(y, z) <

δ

2M2
;∣∣πuu(fω(y),θω)(fω(z)− fω(y))

∣∣ ≤M |fω(z)− fω(y)| ≤M2|z − y| ≤ δ

2M
.

Therefore, (z, ω) ∈ W uu
δ (y, ω) and (fω(z), θω) ∈ W uu

δ (fω(y), θω). So it is sufficient to prove

that there exists a constant K > 0 independent of x and ω such that for any y ∈ W uu
δ

2M3
(x, ω),

|Ju(x, ω)− Ju(y, ω)| ≤ Kdu(x, y). (4.53)

With the help of the normal coordinate chart, and notice that d(x, y) < δ < δ0 and

d(fωx, fωy) ≤ δ < δ0, we may view that x, y together with W s
δ

2M3
(x, ω) lie in a same Euclidean
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space and fωx, fωy together with W s
δ (fωx, θω) lie in a same Euclidean space. By the local

strong unstable manifolds theorem, there exist ξy ∈ Euu
δ

2M2
(x, ω) and ξfω(y) ∈ Euu

δ (fω(x), θω)

such that

y = x+ ξy + hu(x,ω)(ξy); (4.54)

fω(y) = fω(x) + ξfω(y) + hu(fω(x),θω)(ξfω(y)), (4.55)

and Euu(y, ω) = graph((Dhu(x,ω))ξy), E
uu(fω(y), θω) = graph((Dhu(fω(x),θω))ξfω(y)

). From

(4.54) and (4.55), we have

(
1− 1

3

)
|ξfω(y)| ≤ |ξfω(y)+h

u
(fω(x),θω)(ξfω(y))| = |fω(y)−fω(x)| ≤M |y−x| ≤M

(
1 +

1

3

)
|ξy|,

so |ξfω(y)| ≤ 2M |ξy|.

Now, we define the following linear maps L(x,ω), L(y,ω) : Euu(x, ω)→ Euu(fω(x), θω) by

L(x,ω) = Dxfω|Euu(x,ω);

L̃(y,ω) = πuu(fω(x),θω)Dyfω|Euu(y,ω)(I + (Dhu(x,ω))ξy).

Then ‖L(x,ω)‖, ‖L̃(y,ω)‖ ≤ 4
3
M2. Now for any v ∈ Euu(x, ω) with ‖v‖ = 1, we have

sup
‖v‖=1

∥∥Dxfωv − πu(fω(x),θω)Dyfω(I + (Dhu(x,ω))ξy)v
∥∥

≤M
(
‖Dxfω −Dyfω‖+ ‖Dyfω(Dhu(x,ω))ξy‖

)
≤M2|y − x|+M3|ξy|

≤ (M2 +
3

2
M3)du(x, y).

Hence, ‖L(x,ω) − L̃(y,ω)‖ ≤ C0(M2 + 3
2
M3)du(x, y), where C0 only depends on the normal

coordinate charts. Then by properties of determinant,
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|det(L(x,ω))− det(L̃(y,ω))| ≤ C1d
u(x, y), (4.56)

where C1 is a polynomial of M and dimEuu(x, ω).

Notice that

‖πuu(fω(x),θω)|Euu(fω(y),θω) − I‖ ≤
‖(Dhu(fω(x),θω))ξfω(y)

‖
1− ‖(Dhu(fω(x),θω))ξfω(y)

‖

≤
M |ξfω(y)|

1−M |ξfω(y)|

≤ 2M2|ξy|
1− 2M2|ξy|

≤ 2M2|ξy|
1− 2M2 δ

2M2

≤ 4M2|ξy| ≤ 6M2du(x, y).

So we have

|det(πuu(fω(x),θω)|Euu(fω(y),θω))− 1| ≤ C2d
u(x, y), (4.57)

where C2 is a polynomial of M and dimEuu(x, ω). Also

‖I + (Dhu(x,ω))ξy − I‖ ≤M |ξy| ≤Mdu(x, y)

implies that there exists a constant C3 such that

|det(I + (Dhu(x,ω))ξy)− 1| ≤ C3d
u(x, y). (4.58)

Combining (4.56), (4.57), and (4.58), we have

|Ju(x, ω)− Ju(y, ω)| ≤ Kdu(x, y),

where K only depends on C1, C2, C3.
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Next, we prove (4.51). By (4.52), for any y, z ∈ W uu
δ (x, ω)

|Ju(φ−k(y, ω))− Ju(φ−k(z, ω))| ≤ C4d
u(f−kω (y), f−kω (z)) ≤ C4γ0e

−k(λ0−ε0)du(y, z) (4.59)

≤ C4γ0e
−k(λ0−ε0)δ.

Notice that Ju(x, ω) ≥ eλ0 > 1 for all (x, ω) ∈M × Ω, hence we have

∣∣∣∣Ju(φ−k(y, ω))

Ju(φ−k(z, ω))
− 1

∣∣∣∣ ≤ C4γ0δe
−λ0e−k(λ0−ε0). (4.60)

As a consequence, there exists a constant C which is independent of x and ω such that

1

C
≤

n−1∏
k=0

Ju(φ−k(y, ω))

Ju(φ−k(z, ω))
≤ C

for any n ∈ N.

By (4.60), the function

D(x, y, ω) := lim
n→∞

n−1∏
k=0

Ju(φ−k(x, ω))

Ju(φ−k(y, ω))
(4.61)

is well defined if x ∈ W uu
δ (y, ω), and this limit converges uniformly on x.

Chapter 5. Random Specification

In this chapter, we prove Theorem 3.7, Theorem 3.8 and Theorem 3.9 in Section 5.1, Section

5.2 and Section 5.3 respectively.
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5.1 Random Anosov and topological mixing on fibers systems

has Random Specification

In this section, we prove Theorem 3.7. The proof is quite similar to the deterministic case.

We start with the following lemma.

Lemma 5.1. Let ε0 be the size of local stable and unstable manifolds, g ∈ L∞(Ω,M) be a

random periodic point of φ with period m, then for any ε ∈ (0, ε0] and any δ > 0, there exists

an integer T = T (g, ε, δ) such that for all ω ∈ Ω

T⋃
k=0

fkmθ−kmω(W u
ε (g(θ−kmω), θ−kmω))

is δ−dense in Mω.

Proof. Pick ε′ ≤ 1
4

min{δ, ε}, and let δ′ ∈ (0, ε′) be the constant in the local product structure

corresponding to ε′, i.e., for all ω ∈ Ω, for any x, y ∈M with dM(x, y) < δ′, then W u
ε′ (x, ω)∩

W s
ε′(y, ω) 6= ∅.

By the compactness of M , we can pick {xj}nj=1 a δ/2−dense subset of M . Define Uj =

Bδ′/8(xj) to be the ball centered at xj with radius δ′/8. By the definition of topological

mixing on fibers, there exists an integer Ti,j such that for any n ≥ Ti,j, for any ω ∈ Ω, we

have

φn(Bδ′/8(xi)× {θ−nω}) ∩ (Bδ′/8(xj)× {ω}) 6= ∅.

Let Tmax = max1≤i,j≤n{Ti,j}, and define T to be any integer such that

T ·m ≥ Tmax and e−Tmλε′ < δ′/8. (5.1)

In the following, we are going to show that for all ω ∈ Ω

T⋃
k=1

fkmθ−kmω(W u
ε (g(θ−kmω), θ−kmω))
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is δ−dense in Mω.

Now for any fixed ω ∈ Ω, g(θ−Tmω) ∈ Bδ′/8(xi) for some xi. Then by definition of T , for

any xj, we have

φTm(Bδ′/8(xi)× {θ−Tmω}) ∩Bδ′/8(xj)× {ω} 6= ∅.

Pick a point x(ω) ∈ φTm(Bδ′/8(xi)× {θ−Tmω}) ∩ Bδ′/8(xj)× {ω}. Then by the choice of δ′,

then

z(ω) := W u
ε′ (x(ω), ω) ∩W s

ε′(xj, ω)

is defined. By the local unstable manifolds theorem, we have

d(f−Tmω z(ω), f−Tmω x(ω)) ≤ e−Tmλε′ <
δ′

8
.

As a consequence, we have

d(f−Tmω z(ω), xi) ≤ d(f−Tmω z(ω), f−Tmω x(ω)) + d(f−Tmω x(ω), xi) ≤
δ′

8
+
δ′

8
=
δ′

4
.

So we have

d(f−Tmω z(ω), g(θ−Tmω)) ≤ d(f−Tmω z(ω), xi) + d(xi, g(θ−Tmω)) ≤ δ′

4
+
δ′

8
≤ δ′

2
.

Then by the choice of δ′,

q(θ−Tmω) := W u
ε′ (g(θ−Tmω), θ−Tmω) ∩W s

ε′(f
−Tm
ω z(ω), θ−Tmω)

is defined. Moreover, fTmθ−Tmωq(θ
−Tmω) ∈ fTmθ−Tmω(W u

ε (g(θ−Tmω), θ−Tmω)) and

d(fTmθ−Tmωq(θ
−Tmω), xj) ≤ d(fTmθ−Tmωq(θ

−Tmω), z(ω)) + d(z(ω), xj) ≤ e−Tmλε′ + ε′ ≤ δ

2
.

Notice that in the above proof, xj is arbitrarily chosen from a δ
2
−dense subset of M . Hence,
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the proof is done.

Lemma 5.2. For any ε ∈ (0, ε0] there exists an integer N only depending on ε, such that

for any x, y ∈M , ω ∈ Ω, n ≥ N

fnω (W u
ε (x, ω)) ∩W s

ε (y, θnω) 6= ∅.

Proof. For any ε′ > 0, we denote δ(ε′) ∈ (0, ε′) to be the number in local product structure

corresponding to ε′. Define η = min{ε/2, δ(ε/2)/4}. Pick a δ(ε/2)/4-dense set {xk}lk=1 in

M , then x̃k ≡ xk is a continuous function from Ω to M for k ∈ {1, ..., l}. Apply Lemma

4.7, there exists a number n ∈ N (pick a least common multiple if necessary) and a set of

random periodic point {g̃k}lk=1 with period n and satisfying

dL∞(Ω,M)(x̃k, g̃k) ≤ δ(ε/2)/4 for all k ∈ {1, ..., l}.

Then for any x ∈M , there exists a g̃ ∈ {g̃k} such that

sup
ω∈Ω

dM((x, ω), (g̃(ω), ω)) ≤ δ(ε/2)/2.

Use Lemma 5.1, there exists a Tk = Tk(g̃k, η, δ(η)) such that

Tk⋃
m=0

fnmθ−nmω(W u
η (g̃k(θ

−nmω), θ−nmω))

is δ(η)−dense in Mω for all ω ∈ Ω.

Now define T =
∏l

k=1 Tk and N = nT , then for all ω ∈ Ω,

T⋃
m=0

fnmθ−nmω(W u
η (g̃k(θ

−nmω), θ−nmω)) = φN(W u
η (g̃k(θ

−Nω), θ−Nω))

is δ(η)-dense in Mω for all k.

For any x, y ∈M , pick j ∈ {1, 2, . . . , l} such that supω∈Ω d((x, ω), (g̃j(ω), ω)) < δ(ε/2)/2.
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Let z ∈ fNθ−Nω(W u
η (g̃j(θ

−Nω), θ−Nω)) satisfying d((y, ω), (z, ω)) ≤ δ(η), and by the local

product structure, there exists a point

v ∈ W u
η (z, ω) ∩W s

η (y, ω).

Then

f−Nω v ∈ W u
η (φ−N(z, ω))

⊂ W u
2η(g̃j(θ

−Nω), θ−Nω)

⊂ W u
δ(ε/2)/2(g̃j(θ

−Nω), θ−Nω),

so

d
(
φ−N(v, ω), (x, θ−Nω)

)
≤ d

(
φ−N(v, ω), (g̃j(θ

−Nω), θ−Nω)
)

+ d
(
(g̃j(θ

−Nω), θ−Nω), (x, θ−Nω)
)

≤ δ(ε/2)

2
+
δ(ε/2)

2

= δ(ε/2).

Therefore, there exists a point

ρ ∈ W s
ε/2(φ−N(v, ω)) ∩W u

ε/2(x, θ−Nω).

Then We have

fNθ−Nωρ ∈ W
s
ε/2(v, ω) ∩ fNθ−Nω(W u

ε/2(x, θ−Nω))

⊂ W s
η (y, ω) ∩ fNθ−Nω(W u

ε (x, θ−Nω)).
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As a consequence, we have

W s
ε (y, ω) ∩ fNθ−Nω(W u

ε (x, θ−Nω)) 6= ∅.

Now for any n ≥ N

∅ 6= W s
ε (y, ω) ∩ fNθ−Nω(W u

ε (φn−N(x, θ−nω)))

⊂ W s
ε (y, ω) ∩ fnθ−nω(W u

ε (x, θ−nω)).

Since the above holds for arbitrary ω ∈ Ω, we can get the conclusion

fnω (W u
ε (x, ω)) ∩W s

ε (y, θnω) 6= ∅

for n ≥ N and any ω ∈ Ω.

Now we are ready to prove Theorem 3.7. For any fixed ε > 0, we first define N = N(ε)

to be the desired space of the random specification.

Let β ≤ min{ε/2, ε0, δ(ε0), α(ε/2)} be a positive number, where ε0 is the size of local

stable and unstable manifolds, δ(ε0) is the number in local product structure corresponding

to ε0 and α(ε/2) is the number in shadowing lemma corresponding to ε/2. Define γ = β/8,

and let N be in Lemma 5.2 such that for any x, y ∈M , n ≥ N , we have

fnω (W u
γ (x, ω)) ∩W s

γ (y, θnω) 6= ∅ (5.2)

for any ω ∈ Ω. Moreover, we pick N sufficiently large such that e−Nλ0 ≤ 1
2

and fix this N .

Now, let S = (τ, P ) be any N−spaced random specification. For each fixed ω ∈ Ω, define

Pω(t) := P (t)(θtω) for t ∈ I ∈ τ , then Sω = (ω, τ, Pω) is a N−spaced ω−specification by

Remark 3.4. We first prove that the N spaced ω-specification Sω is shadowed by a point.
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We define

(xa1 , θ
a1ω) = (Pω(a1), θa1ω)

and define (xak , θ
akω) inductively: once (xak , θ

akω) is defined, pick

xak+1
∈ fak+1−bk

θbkω
(W u

γ (φbk−ak(xak , θ
akω))) ∩W s

γ (Pω(ak+1), θak+1ω) (5.3)

for k ∈ {1, 2, ...,m−1}, where the right hand set is not the emptyset since ak+1−bk > N and

(5.2). Define x := πMφ
−am(xam , θ

amω), and we are going to show x is (ω, β/2)−shadowing

the ω−specification Sω, i.e.,

d(φt(x, ω), (Pω(t), θtω)) < β/2 for t ∈ ∪mi=1Ii. (5.4)

For any fixed t ∈ ∪mi=1Ii, there exists a j ∈ {1, 2, ...,m} such that aj ≤ t ≤ bj. Then

d(φt(x, ω), (Pω(t), θtω)) ≤ d(φt(x, ω), φt−aj(xaj , θ
ajω)) + d(φt−aj(xaj , θ

ajω), (Pω(t), θtω)),

and we have

d(φt−aj(xaj , θ
ajω), (Pω(t), θtω)) = d(φt−aj(xaj , θ

ajω), φt−aj(Pω(aj), θ
ajω)) ≤ α ≤ β/4. (5.5)

To estimate d(φt(x, ω), φt−aj(xaj , θ
ajω)), we are going to show that

f bjω (x, ω) ∈ W u
2γ(φ

bj−aj(xaj , θ
ajω)). (5.6)

We prove (5.6) by induction, by construction of xak+1
, we know that

f bjω ◦ f
−aj+1

θaj+1ω
xaj+1

∈ W u
γ (φbj−aj(xaj , θ

ajω)).
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By

f bj+1
ω ◦ f−aj+2

θaj+2ω
xaj+2

∈ W u
γ (φbj+1−aj+1(xaj+1

, θaj+1ω)),

we can get

f bjω ◦ f
−bj+1

θbj+1ω
◦ f bj+1

ω ◦ f−aj+2

θaj+2ω
xaj+2

∈ W u
γ·e−λM (φbj−aj+1(xaj+1

, θaj+1ω)),

i.e.

f bjω ◦ f
−aj+2

θaj+2ω
xaj+2

∈ W u
γ·e−λM (φbj−aj+1(xaj+1

, θaj+1ω))

⊂ W u
γ+γ·e−λM (φbj−aj(xaj , θ

ajω)).

Inductively, we have

f bjω ◦ f−amθamωxam ∈ W
u
2γ(φ

bj−aj(xaj , θ
ajω)),

then (5.6) is proved. As a consequence, we have

d(φt(x, ω), φt−aj(xaj , θ
ajω)) ≤ 2γ = β/4. (5.7)

Combining (5.5) and (5.7), we conclude

d(φt(x, ω), (Pω(t), θtω)) ≤ β/4 + β/4 < β/2.

Next, we are going to prove if Pω(t) Borel measurably depends on ω ∈ Ω for fixed t, then

the shadowing point x also depends Borel measurably on ω.
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We define a sequence of points

(yt(ω), θtω) =


(Pω(t), θtω), if t ∈ ∪mi=1Ii

φt−a1(Pω(a1), θa1ω), if t < a1

φi−bm(Pω(bm), θbmω), if t > bm.

Define

ỹt(θ
tω) := yt(ω).

Since Pω(t) is measurable for each fixed t, ỹt is a measurable function.

Notice that in (5.6) when j = 1, we have

f b1ω x ∈ W u
2α(φb1−a1(xa1 , θ

a1ω)),

then

fa1ω x ∈ W u
2α(xa1 , θ

a1ω) = W u
2α(Pω(a1), θa1ω). (5.8)

By the construction of xam , we also have

famω x ∈ W s
α(Pω(am), θamω),

then

f bmω x ∈ W s
α(Pω(bm), θbmω). (5.9)

By (5.8), (5.9) and (5.4), we know that (x, ω) is (ω, β/2)−shadowing the sequence {(yt(ω), θtω)}t∈τ̃

where τ̃ = ∪mi=1Ii ∪ {t < a1} ∪ {t > bm}.

Moreover, (x, ω) is the unique point (ω, β/2)−shadowing the sequence {(yt(ω), θtω)}t∈τ̃ .

In fact, if both (x, ω) and (x′, ω) are (ω, β/2)−shadowing the sequence, then

d((x, ω), (x′, ω)) ≤ β ≤ δ(ε0),
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as a consequence, (z, ω) = [x, x′]ω is defined. Pick n > bm big enough, then

dM(z, x′) ≤ e−nλdM(πMφ
n(z, ω), πMφ

n(x′, ω))

≤ e−nλ0(dM(πMφ
n(x′, ω), πMφ

n(x, ω)) + dM(πMφ
n(x, ω), πMφ

n(z, ω)))

≤ e−nλ0(β + ε0),

and

dM(z, x) ≤ e−nλ0dM(πMφ
−n(z, ω), πMφ

−n(x, ω))

≤ e−nλ0(dM(πMφ
−n(z, ω), πMφ

−n(x′, ω)) + dM(πMφ
−n(x′, ω), πMφ

−N(x, ω)))

≤ e−nλ0(ε0 + β).

Hence

dM(x, x′) ≤ dM(z, x′) + dM(z, x) ≤ 2e−nλ0(ε0 + β)→ 0 (5.10)

as n→∞.

For i > bm, let τ̃i = [−i, ai)∪∪mi=1Ii∪(bm, i], and define a multivalued function x̃i : Ω→ 2M

for any i ∈ N by

x̃i(ω) :=
⋂
t∈τ̃i

πMφ
−t{(x, θtω)| d((x, θtω), (yt(ω), θtω)) ≤ β/2}

for all ω ∈ Ω. x̃i(ω) is nonempty by the existence of the shadowing point, and x̃i(ω) is closed

by the continuity of φ(·, ω). Moreover, we also have that

graph(x̃i) := {(x̃i(ω), ω) : ω ∈ Ω} =
⋂
t∈τ̃i

φ−t(Bỹt(β/2)),

where

Bỹt(β/2) := {(x, θtω)| d((x, θtω), (ỹt(θ
tω), θtω)) ≤ β/2, ω ∈ Ω}
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is the β/2 neighborhood of ỹt. Since ỹt is measurable, Bỹt(β/2) is a Borel measurable subset

in M × Ω. Thus φ−t(Bỹt(β/2)) is also a Borel subset of M × Ω. Then by the selection

theorem (Proposition 2.17), x̃i can produce a selection x̃′i ∈ L∞(Ω,M) with that graph(x̃′i) ⊂

graph(x̃i). Moreover, x̃i converges to a measurable function by (5.10). Hence the shadowing

point x is Borel measurably depends on ω ∈ Ω.

Now for each fixed t ∈ ∪mi=1Ii, by (5.4), we have

dM(Pω(t), f tωx(ω)) < β/2 for all ω ∈ Ω.

Then by the definition of Pω(t), we have

dM(P (t)(θtω), f tωx(ω)) < β/2 for all ω ∈ Ω,

i.e.,

dL∞(Ω,M)(P (t), φ̃t(x)) < β/2. (5.11)

Next, for the case q ≥ N+bm−a1, let τ ′ := τ ∪{{a1 +q}} and define P ′ : τ ′ → L∞(Ω,M)

by P ′|τ := P and P ′(a1 + q) = P (a1). This S ′ = (τ ′, P ′) is clearly N−spaced, there exists a

g ∈ L∞(Ω,M) β/2−shadowing this new specification,i.e.,

dL∞(Ω,M)(φ̃
t(g), P ′(t)) < β/2

for t ∈ τ ′. Define g′ = φ̃a1(g), then we have

dL∞(Ω,M)(φ̃
q(g′), g′) ≤ dL∞(Ω,M)(φ̃

q(g′), P ′(q + a1)) + dL∞(Ω,M)(P
′(q + a1), g′))

≤ β/2 + dL∞(P (a1), g′)

≤ β/2 + β/2 ≤ β.

Since β < α(ε/2) and {φ̃t(g′)}q−1
t=0 is periodic β−pseudo orbit, then by Corollary 4.6, there
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exists a unique z ∈ L∞(Ω,M) such that φ̃q(z) = z and z is ε/2−shadowing this periodic

pseudo orbit.

Now define x := φ̃−a1z, then x is periodic under φ̃ with period q, and for t ∈ I ∈ τ , we

have

dL∞(Ω,M)(φ̃
t(x), P (t)) ≤ dL∞(Ω,M)(φ̃

t(x), φ̃t(g)) + dL∞(Ω,M)(φ̃
t(g), P (t)) ≤ ε

2
+
β

2
< ε.

Thus, φ has the random specification property.

On the other hand, assume φ has the random specification property. For any nonempty

open sets U, V ⊂ M , we can pick points x ∈ U and y ∈ V together with ε > 0 such that

Bε(x) ⊂ U , Bε(y) ⊂ V . Then there exists an N = Nε corresponding to ε in the random

specification property.

Let a1 = b1 = 0, a2 = b2 = N , and define P (a1) = P (b1) ≡ x, P (a2) = P (b2) ≡ y, then

there exists a Borel measurable map g ∈ L∞(Ω,M) ε−shadowing this random specification.

As a consequence, we have

dM(x, g(ω)) < ε, and dM(FN
ω g(ω), y) < ε, ∀ω ∈ Ω.

Hence we have

φN({ω} × U) ∩ {θNω} × V 6= ∅, ∀ω ∈ Ω.

Now for any n > N , we define a1 = b1 = 0, a2 = Nε, b2 = n. Let P (a1) = P (b1) ≡ x,

P (b2) ≡ y and P (i) = φ̃−(n−N)+(i−a2)P (b2) for a2 ≤ i ≤ b2, then there exists a Borel

measurable map g′ ∈ L∞(Ω,M) ε−shadowing this random specification, i.e.,

dM(x, g(ω)) < ε, and dM(F n
ω g(ω), y) < ε, ∀ω ∈ Ω.
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As a consequence,

φn({ω} × U) ∩ {θnω} × V 6= ∅, ∀ω ∈ Ω, ∀n > Nε.

Hence φ is topological mixing on fibers. The proof of Theorem 3.7 is done.

5.2 Specification on the Space of Random Probability Mea-

sures

In this section, we prove Theorem 3.8.

First, we prove that φ∗ : PrΩ(M)→ PrΩ(M) defines a homeomorphism with respect to

the narrow topology. Pick any sequence µα → µ in the narrow topology. For any random

closed set C, define C ′(ω) := (fω)−1C(θω). Using the selection theorem (Proposition 2.17),

we can easily see that C ′ is a random closed set. Now

lim sup
α

φ∗µα(C) = lim sup
α

∫
Ω

(φ∗µ)ω(C(ω))dP (ω)

= lim sup
α

∫
Ω

(φ∗µ)θω(C(θω))dP (ω)

= lim sup
α

∫
Ω

µαω((fω)−1C(θω))dP (ω)

= lim sup
α

∫
Ω

µαω(C ′(ω))dP (ω)

= lim sup
α

µα(C ′)

≤ µ(C ′)

= φ∗µ(C).

Hence φ∗µα → φ∗µ by the Portmanteau theorem (Proposition 2.18). Similarly (φ∗)−1 :=

(φ−1)∗ is also continuous with respect to the narrow topology.

For any g ∈ L∞(Ω,M), define δg by ω 7→ (δg)ω = δg(ω) ∈ Pr(M). Then for fixed ω, (δg)ω
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is a Borel probability measure on M and for each B ∈ B(M),

ω 7→ (δg)ω(B) = δg(ω)(B) =


0, if g(ω) 6∈ B

1, if g(ω) ∈ B.

which is measurable. Hence δg ∈ PrΩ(M) for each g ∈ L∞(Ω,M). We call δg by random

Dirac measure, and it is also named random counting measure or point process [35]. We also

have φ∗δg = δφ̃g.

For any n ∈ N, let PrΩ,n(M) denote the collection of random probability measures of the

form

1

n

n∑
i=1

δgi ,

where gi ∈ L∞(Ω,M) and gi are not necessarily distinct.

Lemma 5.3. ∪n∈NPrΩ,n(M) is dense in PrΩ(M) with respect to the narrow topology.

Proof. Pick any µ ∈ PrΩ(M), and any η > 0 fix. Then ω 7→ µω is measurable with

respect to the Borel σ−algebra of the narrow topology on Pr(M). Notice that P on Ω is

a Borel probability measure, hence regular. Pr(M) is a compact metric space with respect

to Prohorov metric, hence second countable. Then we can apply Lusin’s theorem, we can

choose a compact set E ⊂ Ω with P (Ω − E) < η
4

such that ω 7→ µω restricted on E is

continuous. Moreover, ω 7→ µω on E is uniformly continuous, i.e. there exists ξ > 0 for any

ω1, ω2 ∈ E

dΩ(ω1, ω2) < ξ implies dp(µω1 , µω2) < η/4. (5.12)

Now let {χi}ki=1 be a measurable partition of E, and size of each χi less than ξ. Pick any

ωi ∈ χi and fix, then {ωi}ki=1 is a ξ−net in E. Consider {µωi}ki=1. Notice that ∪n∈NPrn(M)

is dense in Pr(M) by Proposition 2.14 in [27], where Prn(M) is the set of measures on M

of the form
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1

n

n∑
i=1

δxi ,

where the xi are (not necessarily distinct) elements of M . We can pick a sequence of points,

{xi,j}i=1,...,k.j=1,...,n, in M for some n (we can pick a common n since we always can use the

least common multiple) such that

dp

(
µωi ,

1

n

n∑
j=1

δxi,j

)
< η/4 for all i ∈ {1, . . . , k}.

Then for any ω ∈ χi, by using (5.12),

dp

(
µω,

1

n

n∑
j=1

δxi,j

)
≤ dp(µω, µωi) + dp

(
µωi ,

1

n

n∑
j=1

δxi,j

)
< η/2.

Now define ỹj ∈ L∞(Ω,M) for j ∈ {1, 2, ..., n} by

ỹj(ω) =


xi,j, if ω ∈ χi

x1,j, if ω ∈ Ω− E.
(5.13)

Each ỹj is measurable map since ỹj is a simple function. Then for ω ∈ χi, we have

dp

(
µω,

1

n

n∑
j=1

δỹj(ω)

)
= dp

(
µω,

1

n

n∑
j=1

δxi,j

)
< η/2.
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Now

drp

(
µ,

1

n

n∑
j=1

δỹj

)

≤
∑
m∈N

1

2m

∫
Gm

dp

(
µω,

1

n

n∑
j=1

δỹj(ω)

)
dP (ω)

=
∑
m∈N

1

2m

(
k∑
i=1

∫
Gm∩χi

dp(µω,
1

n

n∑
j=1

δỹj(ω))dP (ω) +

∫
Gm∩(Ω−E)

dp

(
µω,

1

n

n∑
j=1

δỹj(ω)

)
dP (ω)

)

=
∑
m∈N

1

2m

(
k∑
i=1

∫
Gm∩χi

η

2
dP (ω) +

∫
Gm∩(Ω−E)

2dP (ω)

)

≤
∑
m∈N

1

2m

(η
2

+ 2 · η
4

)
= η.

Hence ∪n∈NPrΩ,n(M) is dense in PrΩ(M).

Now, we are ready to prove the topological dynamical system (PrΩ(M), φ∗) has the

specification property.

Let ε > 0 and fix this ε, let N := N(ε/2) be the number in random specification property

corresponding to ε/2. Let Ii = [ai, bi] for i = 1, 2, . . . ,m with ai+1 − bi ≥ N for i ∈

{1, 2 . . . ,m − 1}. Given any random probability measures {µi}mi=1 ⊂ PrΩ(M), define P :

∪mi=1Ii → PrΩ(M)

P (j) = (φ∗)j−ai(µi) for j ∈ [ai, bi].

and let K ≥ N(ε/2) + bm − a1,

Notice that PrΩ(M) is a compact metric space with respect to the random Prohorov

metric, and φ∗ : PrΩ(M) → PrΩ(M) is continuous with respect to the narrow topology.

Hence φ∗ is uniformly continuous since PrΩ(M) is compact with respect to the narrow

topology. Then there exists an η > 0 such that

drp(µ, ν) < η implies drp((φ
∗)jµ, (φ∗)jν) < ε/2 for 1 ≤ j ≤ bm.
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Apply Lemma 5.3, there exists νi ∈ PrΩ,n(M) for some integer n such that dp(µi, νi) < η for

1 ≤ i ≤ m. Denote

νi =
1

n

n∑
l=1

δgil for i ∈ {1, 2...,m}.

Since φ has the random specification property, then there exists a zl ∈ L∞(Ω,M) with

φ̃K(zl) = zl and

dL∞(Ω,M)

(
φ̃jzl, φ̃

j−aigil

)
< ε/2

for ai ≤ j ≤ bi, i = 1, 2 . . . ,m and l = 1, 2, ..., n.

Define ρ := 1
n

∑n
l=1 δzl . Then

(φ∗)K(ρ) =
1

n

n∑
l=1

δφ̃Kzl =
1

n

n∑
l=1

δzl = ρ.

For ai ≤ j ≤ bi and i ∈ {1, ...,m},

drp((φ
∗)jρ, (φ∗)j−aiνi) = drp

(
1

n

n∑
l=1

δφ̃jzl ,
1

n

n∑
l=1

δφ̃j−aigil

)

=
∑
m∈N

1

2m
sup

{∫
Gm

1

n

n∑
l=1

(δ(φ̃jzl)(ω)(g)− δ(φ̃j−aigil )(ω)(g))dP (ω),

g ∈ BL(M), 0 ≤ g ≤ 1, [g]L ≤ 1

}

≤
∑
m∈N

1

2m
1

n

n∑
l=1

∫
Gm

dM((φ̃jzl)(ω), (φ̃j−aigil)(ω))dP (ω)

≤
∑
m∈N

1

2m
1

n

n∑
l=1

dL∞(Ω,M)(φ̃
jzl, φ̃

j−ai(gil))

≤ ε/2.

Then by the triangle inequality we have

dp((φ
∗)j(ρ), (φ∗)j−ai(µi)) ≤ dp((φ

∗)j(ρ), (φ∗)j−ai(νi)) + dp((φ
∗)j−ai(νi), (φ

∗)j−ai(µi))

< ε/2 + ε/2 = ε,
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for ai ≤ j ≤ bi, i = 1, ...,m. Hence (PrΩ(M), φ∗) has the specification property. The proof

of Theorem 3.8 is done.

5.3 Positivity of Topological Fiber Entropy

In this section, we prove Theorem 3.9.

For any ε ∈ (0, ε0) a sufficiently small number and fix this ε. We pick any finite

3ε−seperated subset of M , named {xi}ki=1, with respect to dM . Define x̃i ∈ L∞(Ω,M)

by x̃i ≡ xi.

Let N = N(ε) be the spacing number in the random specification property corresponding

to ε. For any n−tuple (z0, ..., zn−1) with zj ∈ {xi}ki=1 for j = 0, 1, ..., n−1, define P (jN) = z̃j.

Apply the random specification property to Ij = {jN} and this P defined above, for any

ω ∈ Ω, there exists a z(ω) ∈Mω such that

d((zj, θ
jNω), φjN(z(ω), ω)) < ε.

If (z0, ...zn−1) 6= (z′0, ..., z
′
n−1), then there exists a j such that zj 6= z′j. Let z(ω) and z′(ω) be

the corresponding shadowing point, then

dω,nN(z(ω), z′(ω)) ≥ d(f jNω z(ω), f jNω z′(ω))

≥ d(zj, z
′
j)− d(f jNω z′(ω), z′j)− d(zj, f

jN
ω z(ω))

> 3ε− ε− ε = ε.

Hence there are at least kn points in Mω which are (ω, ε, nN)−seperated. Then
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htop(φ|Mω) = lim
η→0+

lim sup
n→∞

1

n
logN(ω, η, n)

≥ lim sup
n→∞

1

n
logN(ω, ε, n)

≥ lim sup
n→∞

1

nN(ε)
logN(ω, ε, nN(ε))

≥ lim sup
n→∞

1

nN(ε)
log kn

=
log k

N(ε)
> 0.

The proof of Theorem 3.9 is done.

Chapter 6. Exponential Decay of Random

Correlation

In this chapter, we prove Theorem 3.10. The proof is based on studying of the fiber transfer

operator Lω, which is defined by

Lωϕ : M → R, (Lωϕ)(x) :=
ϕ((fω)−1x)

| detD(fω)−1(x)fω|
(6.1)

for any measurable observable function ϕ : M → R. We denote

Lnω := Lθn−1ω ◦ · · · ◦ Lθω ◦ Lω for n ∈ N, for all ω ∈ Ω.

We first construct the suitable convex cone of observable functions Cω on each fiber in Section

6.1. Then in Section 6.2, we prove that the transfer operator Lω maps Cω into Cθω and the

image of LNω has finite diameter with respect to the Hilbert projective metric on the cone

CθNω uniformly for all ω ∈ Ω, where N comes from the topological mixing on fibers property.

Birkhoff’s inequality implies the contraction of LNω for all ω ∈ Ω. In Section 6.3, we find the
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relationship between the unique random SRB measure and operator Lnθ−nω. We show the

exponential decay of past and future correlations in Section 6.4 and Section 6.5 respectively

by using the contraction of Lnθ−nω and Lnω for n ≥ N .

Before starting the proof, we recall some constants that will be used later on. Let K1 be

the constant in Lemma 4.9 such that

| det(Dxfω)|Es(x,ω) − det(Dxfω)|Es(x,ω)| ≤ K1d(x, y) for any x, y ∈ W s
ε (z, ω), z ∈M.

By the compactness of Ω and M and the continuity of fω on ω, there exists a constant

K2 > 0 independent of ω such that for any x, y ∈M ,

| log | detDxfω| − log | detDyfω|| ≤ K2d(x, y). (6.2)

Let a0 := max{a′0, a′′0} and ν0 := min{ν ′0, ν ′′0}. Then Lemma 4.20 and Proposition 4.21 hold

for constants (a0, ν0). This ν0 is the desired ν0 in the statement of Theorem 3.10.

Now Let’s pick any µ, ν ∈ (0, 1) satisfying 0 < µ+ν < ν0 as in the statement of Theorem

3.10 and fix µ and ν. We also pick µ1 ∈ (0, 1) an auxiliary constant close to 1 and such that

0 < µ+ ν < µ1ν0. (6.3)

Now we are going to prove Theorem 3.10 for fixed µ, ν.

6.1 Construction of Birkhoff Cone

In this section, we will first construct convex cones of density functions on each local stable

leaf. With the help of these convex cones of density functions on each local stable leaf, we

can define our desired convex cone of observable functions on each fiber. The definition of

the convex cone, projective metric on the convex cone and Birkhoff’s inequality are recalled

in the Appendix.
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In the following, we always consider the local stable leaf γ(ω) having size between ε/4

and ε/2, i.e. there exists a x ∈ γ(ω) such that W s
ε/4(x, ω) ⊂ γ(ω) ⊂ W s

ε/2(x, ω), without

further clarifications.

The cone of Hölder continuous densities on a local stable leaf γ(ω) with constant (a, µ),

D(a, µ, γ(ω)), is the collection of all function ρ(·, ω) : γ(ω) → R satisfying the following

conditions:

(D1) ρ(x, ω) > 0 for x ∈ γ(ω);

(D2) for all ω ∈ Ω and any x, y ∈ γ(ω), | log ρ(x, ω)− log ρ(y, ω)| ≤ ad(x, y)µ.

It is easy to check that D(a, µ, γ(ω)) is a convex cone (see Definition A.1 in the Appendix).

Next, we will introduce the Hilbert projective metric dγ(ω)(·, ·) on D(a, µ, γ(ω)).

Now for any ρ1(·, ω), ρ2(·, ω) ∈ D(a, µ, γ(ω)), denote ρ̄i(ω)(·) := ρi(·, ω) : γ(ω) → R for

i = 1, 2, define

α(ρ̄1(ω), ρ̄2(ω)) := sup{t > 0 : ρ̄2(ω)− tρ̄1(ω) ∈ D(a, µ, γ)(ω)};

β(ρ̄1(ω), ρ̄2(ω)) = inf{s > 0 : sρ̄1(ω)− ρ̄2(ω) ∈ D(a, µ, γ)(ω)},

with the convention that sup ∅ = 0 and inf ∅ = +∞. By computation, we have

αγ(ω)(ρ̄1(ω), ρ̄2(ω)) = inf

{
ρ2(x, ω)

ρ1(x, ω)
,
exp(ad(x, y)µ)ρ2(x, ω)− ρ2(y, ω)

exp(ad(x, y)µ)ρ1(x, ω)− ρ1(y, ω)
, x, y ∈ γ(ω)

}
, (6.4)

βγ(ω)(ρ̄1(ω), ρ̄2(ω)) = sup

{
ρ2(x, ω)

ρ1(x, ω)
,
exp(ad(x, y)µ)ρ2(x, ω)− ρ2(y, ω)

exp(ad(x, y)µ)ρ1(x, ω)− ρ1(y, ω)
, x, y ∈ γ(ω)

}
.

(6.5)

Now define

dγ(ω)(ρ̄1(ω), ρ̄2(ω)) = log
βγ(ω)(ρ̄1(ω), ρ̄2(ω))

αγ(ω)(ρ̄1(ω), ρ̄2(ω))
, (6.6)

with the convention that dγ(ω)(ρ̄1(ω), ρ̄2(ω)) =∞ if α(ρ̄1(ω), ρ̄2(ω)) = 0 or β(ρ̄1(ω), ρ̄2(ω)) =

∞.
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By the property of projective metric, the followings hold:

(P1) dγ(ω)(ρ̄1(ω), ρ̄2(ω)) = dγ(ω)(ρ̄2(ω), ρ̄1(ω));

(P2) dγ(ω)(ρ̄1(ω), ρ̄2(ω)) ≤ dγ(ω)(ρ̄1(ω), ρ̄3(ω)) + dγ(ω)(ρ̄3(ω), ρ̄2(ω));

(P3) dγ(ω)(ρ̄1(ω), ρ̄2(ω)) = 0 for all ω ∈ Ω if and only if there exists a constant t ∈ R+ such

that ρ1(·, ω) = tρ2(·, ω).

Note that (P2) and (P3) implies that dγ(ω)(ρ̄1(ω), ρ̄2(ω)) = dγ(ω)(t1ρ̄1(ω), t2ρ̄2(ω)) for any

t1, t2 ∈ R+.

Now for any ω ∈ Ω, and a local stable leaf γ(ω), we subdivide f−1
ω γ(ω) into connected

local stable submanifolds of size between ε/4 and ε/2, named γi(θ
−1ω) for i belonging to a

finite index set. For every ρ(·, ω) ∈ D(a, α, γ(ω)), define

ρi(x, θ
−1ω) :=

| detDxfθ−1ω|Es(x,θ−1ω)|
| detDxfθ−1ω|

ρ(fθ−1ωx, ω) for x ∈ γi(θ−1ω). (6.7)

For ρ(·, ω) ∈ D(a, α, γ(ω)) and for any bounded and measurable function ϕ : M → R, we

have

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ(y, ω)dmγ(ω)(y)

=
∑
i

∫
fθ−1ωγi(θ

−1ω)

ϕ((fθ−1ω)−1y)

| detD(fθ−1ω)−1yfθ−1ω|
· ρ(y, ω)dmγ(ω)(y)

=
∑
i

∫
γi(θ−1ω)

ϕ(x)

| detDxfθ−1ω|
· ρ(fθ−1ωx, ω) · | detDxfθ−1ω|Es(x,θ−1ω)|dmγi(θ−1ω)(x) (6.8)

=
∑
i

∫
γi(θ−1ω)

ϕ(x)ρi(x, θ
−1ω)dmγi(θ−1ω)(x). (6.9)

Given pair of local stable leaves γ(ω) and γ̃(ω). With the help of holonomy map ψω :

γ̃(ω)→ γ(ω), we can define the distance between γ̃(ω) and γ(ω) by

d(γ̃(ω), γ(ω)) := sup{d(x, ψω(x)), x ∈ γ̃(ω)}.

100



For every ρ(·, ω) ∈ D(a1, µ1, γ(ω)), we associate the random density ρ̃(·, ω) on γ̃(ω) by

ρ̃(x, ω) = ρ(ψω(x), ω) · | detDψω(x)|. (6.10)

By changing of variable, we have

∫
γ̃(ω)

ρ̃(x, ω)dmγ̃(ω)(x) =

∫
γ(ω)

ρ(y, ω)dmγ(ω)(y).

Lemma 6.1. Let a1 be any number depending on µ such that

K1 +K2

1− e−λµ
< a1. (6.11)

Let a, depending on µ and a1, be any number such that

a1a
µ1
0 + a0 <

a

2
. (6.12)

Then there are λ1 = λ1(a1, µ) > 0 and Λ1 = Λ1(λ1, a) < 1 such that

(i) if ρ(·, ω) ∈ D(a1, µ, γ(ω)), then ρi(·, θ−1ω) ∈ D(e−λ1a1, µ, γi(θ
−1ω)) ⊂ D(a1, µ, γi(θ

−1ω));

(ii) if ρ(·, ω) ∈ D(a
2
, µ, γ(ω)), then ρi(·, θ−1ω) ∈ D(e−λ1 a

2
, µ, γi(θ

−1ω)) ⊂ D(a
2
, µ, γi(θ

−1ω));

(iii) if ρ(·, ω) ∈ D(a, µ, γ(ω)), then ρi(·, θ−1ω) ∈ D(e−λ1a, µ, γi(θ
−1ω)) ⊂ D(a, µ, γi(θ

−1ω));

(iv) let ρ′(·, ω), ρ′′(·, ω) ∈ D(a, µ, γ(ω)), then

dγi(θ−1ω)(ρ̄
′
i(θ
−1ω), ρ̄′′i (θ

−1ω)) ≤ Λ1dγ(ω)(ρ̄
′(ω), ρ̄′′(ω)),

where ρ̄′i(θ
−1ω)(·) := ρ′i(·, θ−1ω), ρ̄′′i (θ

−1ω)(·) := ρ′′i (·, θ−1ω), ρ̄′(θ−1ω)(·) := ρ′(·, θ−1ω)

and ρ̄′′(θ−1ω)(·) := ρ′′(·, θ−1ω), dγ(ω) and dγi(θ−1ω) are the Hilbert projective metric on

D(a, µ, γ(ω)) and D(a, µ, γi(θ
−1ω)) respectively,
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and

if ρ(·, ω) ∈ D(a1, µ1, γ(ω)), then ρ̃(·, ω) ∈ D(a/2, µ1ν0, γ̃(ω)) ⊂ D(
a

2
, µ, γ̃(ω)). (6.13)

Proof of lemma 6.1. We first prove (1). Let ρ(·, ω) ∈ D(a1, µ, γ(ω)), clearly, ρi(x, θ
−1ω) > 0

for all x ∈ γi(θ−1ω). Since a1 >
K1+K2

1−exp(−λµ)
, we pick λ1 > 0 so that a1 >

K1+K2

e−λ1−exp(−λµ)
> 0.

Then for any x, y ∈ γi(θ−1ω)

| log ρi(x, θ
−1ω)− log ρi(y, θ

−1ω)|

≤ | log ρ(fθ−1ωx, ω)− log ρ(fθ−1ωy, ω)|+ | log | detDxfθ−1ω| − log | detDyfθ−1ω||

+ | log | detDxfθ−1ω|Es(x,θ−1ω)| − log | detDyfθ−1ω|Es(y,θ−1ω)||

≤ a1d(fθ−1ωx, fθ−1ωy)µ +K1d(x, y) +K2d(x, y)

≤ a1e
−λµd(x, y)µ + (K1 +K2)d(x, y)

≤ a1e
−λ1d(x, y)µ,

This proves part (i). Similar proof can be applied to (ii) and (iii) by the choice of a.

Next, we prove (iv). Now we have a linear operator that maps from cone D(a, µ, γ(ω))

to cone D(e−λ1a, µ, γi(θ
−1ω)) ⊂ D(a, µ, γi(θ

−1ω)) defined by (6.7). By Birkhoff’s inequality

(Proposition A.4), if

R(θ−1ω) := sup{dγi(θ−1ω)(ρ̄
′
i(θ
−1ω), ρ̄′′i (θ

−1ω)) : ρ′, ρ′′ ∈ D(a, µ, γ)} <∞,

then

dγi(θ−1ω)(ρ̄
′
i(θ
−1ω), ρ̄′′i (θ

−1ω)) ≤ (1− e−R(θ−1ω))dγ(ω)(ρ̄
′(ω), ρ̄′′(ω)), (6.14)

where dγ(ω) and dγi(θ−1ω) are the Hilbert projective metric onD(a, µ, γ(ω)) andD(a, µ, γi(θ
−1ω))

respectively. To estimateR(θ−1ω). It suffices to estimate the diameter ofD(e−λ1a, µ, γi(θ
−1ω))

in D(a, µ, γi(θ
−1ω)).
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Denote D+(γi(θ
−1ω)) by the collection of all measurable functions ρ̄(θ−1ω) : γi(θ

−1ω)→

R such that ρ̄(θ−1ω)(x) > 0 for x ∈ γi(θ−1ω). D+(γi(θ
−1ω)) is a convex cone obviously.

α+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) = sup{t > 0 : ρ̄2(θ−1ω)− tρ̄1(θ−1ω) ∈ D+(γi(θ
−1ω))};

(6.15)

β+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) = inf{s > 0 : sρ̄1(θ−1ω)− ρ̄2(θ−1ω) ∈ D+(γi(θ
−1ω))},

(6.16)

with the convention that sup ∅ = 0 and inf ∅ = +∞. We define the Hilbert projective metric

on D+(γi(θ
−1ω)) for ρ̄1(θ−1ω), ρ̄2(θ−1ω) ∈ D+(γi(θ

−1ω)) by

d+,γi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) := log
β+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω))

α+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω))
, (6.17)

with the convention that d+,γi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) =∞ if α+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω))

= 0 or β+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) =∞. By computation, we have

α+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) = inf

{
ρ̄2(θ−1ω)(x)

ρ̄1(θ−1ω)(x)
, x ∈ γi(θ−1ω)

}
, (6.18)

β+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) = sup

{
ρ̄2(θ−1ω)(x)

ρ̄1(θ−1ω)(x)
, x ∈ γi(θ−1ω)

}
. (6.19)

Given ρ̄1(θ−1ω), ρ̄2(θ−1ω) ∈ D(e−λ1a, µ, γi(θ
−1ω)), ρ̄1(θ−1ω) and ρ̄2(θ−1ω) belong to

D+(γi(θ
−1ω)) automatically. For any x, y ∈ γi(θ−1ω),

exp(ad(x, y)µ)− ρ̄2(θ−1ω)(y)/ρ̄2(θ−1ω)(x)

exp(ad(x, y)µ)− ρ̄1(θ−1ω)(y)/ρ̄1(θ−1ω)(x)
≥ exp(ad(x, y)µ)− exp(e−λ1ad(x, y)µ)

exp(ad(x, y)µ)− exp(−e−λ1ad(x, y)µ)

≥ τ1,

where

τ1 = inf

{
z − zexp(−λ1)

z − z− exp(−λ1)
: z > 1

}
=

1− exp(−λ1)

1 + exp(−λ1)
∈ (0, 1).
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Therefore, comparing (6.4) and (6.18), we have

αγ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) ≥ τ1α+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)).

Similarly, let

τ2 = sup

{
z − z− exp(−λ1)

z − zexp(−λ1)
: z > 1

}
=

1 + exp(−λ1)

1− exp(−λ1)
∈ (1,∞),

we have

βγ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) ≤ τ2β+,γ(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)).

Thus, we conclude

dγi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) ≤ d+,γi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) + log(τ2/τ1). (6.20)

Next, we estimate d+,γi(ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) for ρ̄1(θ−1ω), ρ̄2(θ−1ω) ∈ D(e−λ1a, α, γi(θ
−1ω)).

By property (P3), we can normalize ρ̄1(θ−1ω) and ρ̄2(θ−1ω) by

∫
γi(θ−1ω)

ρ̄1(θ−1ω)(x)dmγi(θ−1ω)(x) =

∫
γi(θ−1ω)

ρ̄2(θ−1ω)(x)dmγi(θ−1ω)(x) = 1.

Then condition (D2) in D(e−λ1a, µ, γi(θ
−1ω)) implies for all x ∈ γi(θ−1ω)

ρ̄2(θ−1ω)(x)

ρ̄1(θ−1ω)(x)
≥ exp(−e−λ1a(diamγi(θ

−1ω))µ)

exp(e−λ1a(diamγi(θ−1ω))µ)
≥ e−2 exp(−λ1)a ≥ e−2a.

It follows that α+,γi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) ≥ e−2a. Similarly, β+,γi(θ−1ω)( ¯θ−1ρ1(ω), ρ̄2(θ−1ω)) ≤

e2a. So we have

dγi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) ≤ d+,γi(θ−1ω)(ρ̄1(θ−1ω), ρ̄2(θ−1ω)) + log(τ2/τ1)

≤ 4a+ log(τ2/τ1). (6.21)
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As a consequence, R(θ−1ω) ≤ 4a + log(τ2/τ1). By (6.14), let Λ1 = 1 − e−(4a+log(τ2/τ1)). The

proof of (4) is done.

Now, let’s prove (6.13). For all ω ∈ Ω, ρ̃(x, ω) > 0 is obvious. Moreover, for any

x, y ∈ γ̃(ω), we have

| log ρ̃(x, ω)− log ρ̃(y, ω)|

≤ | log ρ(ψω(x), ω)− log ρ(ψω(y), ω)|+ | log | detDψω(x)| − log | detDψω(y)||

≤ a1d(ψω(x), ψω(y))µ1 + a0d(x, y)ν0

≤ a1a
µ1
0 d(x, y)µ1ν0 + a0d(x, y)ν0

≤ (a1a
µ1
0 + a0)d(x, y)µ1ν0

≤ a/2d(x, y)µ1ν0 ,

provided assumption (6.12). So if ρ(·, ω) ∈ D(a1, µ1, γ(ω)), then ρ̃(·, ω) ∈ D(a/2, µ1ν0, γ̃(ω)).

Now, we use convex cone D(a1, µ, γ(ω)), D(a
2
, µ, γ(ω)) and D(a, µ, γ(ω)) to define the

convex cone of observable functions on each fiber. Let b, c > 0 be parameters to be deter-

mined later. For any ω ∈ Ω, define Cω(b, c, ν) be the collection of all bounded measurable

functions ϕ : M → R satisfying:

(C1)
∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)(x) > 0 for every local stable submanifold γ(ω) ⊂ Mω hav-

ing size between ε/4 and ε/2, and every ρ(·, ω) ∈ D(a/2, µ, γ(ω)) satisfying that∫
γ(ω)

ρ(x, ω)dmγ(ω)(x) = 1;

(C2) | log
∫
γ(ω)

ϕ(x)ρ′(x, ω)dmγ(ω)(x)−log
∫
γ(ω)

ϕ(x)ρ′′(x, ω)dmγ(ω)(x)| ≤ bdγ(ω)(ρ̄
′(ω), ρ̄′′(ω))

for every local stable submanifold γ(ω) ⊂ Mω having size between ε/4 and ε/2, and

ρ′(·, ω), ρ′′(·, ω) ∈ D(a/2, µ, γ(ω)) ⊂ D(a, µ, γ(ω)) satisfying
∫
γ(ω)

ρ′(x, ω)dmγ(ω)(x) =
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∫
γ(ω)

ρ′′(x, ω)dmγ(ω)(x) = 1 and dγ(ω)(·, ·) is the Hilbert projective metric defined on

D(a, µ, γ(ω)).

(C3) | log
∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)(x) − log
∫
γ̃(ω)

ϕ(x)ρ̃(x, ω)dmγ̃(ω)(x)| ≤ cd(γ(ω), γ̃(ω))ν for

every pair of local stable leaves γ(ω), γ̃(ω) ⊂Mω having size between ε/4 and ε/2, and

γ(ω) is the holonomy image of γ̃(ω), ρ(·, ω) ∈ D(a1, µ1, γ(ω)) and ρ̃(·, ω) corresponding

to ρ(·, ω) defined as (6.10).

Remark 6.2. The choice of parameters a, a1, µ1, b and c is used for proving the contraction

of the transfer operator on the convex cone of observable functions. We just need to guarantee

that all auxiliary parameters only depend on µ and ν.

Remark 6.3. Note that (C2) is automatically fulfilled if ϕ is nonnegative. In fact, notice

that ∫
γ(ω)

ρ′′(x, ω)dmγ(ω)(x) =

∫
γ(ω)

ρ′(x, ω)dmγ(ω)(x) = 1,

so we have

ρ′(x, ω)

ρ′′(x, ω)
≤ sup

x∈γ(ω)

{ ρ
′(x, ω)

ρ′′(x, ω)
}/ inf

y∈γ(ω)
{ ρ
′(x, ω)

ρ′′(x, ω)
} = exp(d+,γ(ω)(ρ̄

′(ω), ρ̄′′(ω)))

≤ exp(dγ(ω)(ρ̄
′(ω), ρ̄′′(ω))).

Switch ρ′ and ρ′′, we get ρ′′(x,ω)
ρ′(x,ω)

≤ exp(dγ(ω)(ρ̄
′(ω), ρ̄′′(ω))). (C2) is a consequence of these

two inequalities as long as b > 1.

Also note that positive constant functions belong to ∩ω∈ΩCω(b, c, ν) obviously.

Lemma 6.4. For each ω ∈ Ω, Cω(b, c, ν) is a convex cone (see Definition A.1 in the Ap-

pendix).

Proof of Lemma 6.4. For any ϕ ∈ Cω(b, c, ν), and t > 0, tϕ ∈ Cω(b, c, ν) obviously.
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Now, we prove the convexity, i.e., ϕ1, ϕ2 ∈ Cω(b, c, ν) and t1, t2 > 0, we are going to prove

t1ϕ+ t2ϕ2 ∈ Cω(b, c, ν). (C1) is automatically fulfilled. For condition (C2),

e−bdγ(ω)(ρ̄
′(ω),ρ̄′′(ω)) ≤

∫
γ(ω)

ϕi(x)ρ′(x, ω)dmγ(ω)(x)∫
γ(ω)

ϕi(x)ρ′′(x, ω)dmγ(ω)(x)
≤ ebdγ(ω)(ρ̄

′(ω),ρ̄′′(ω))

for i = 1, 2. The above implies that

e−bdγ(ω)(ρ̄
′(ω),ρ̄′′(ω)) ≤

∫
γ(ω)

(t1ϕ1(x) + t2ϕ2(x)) ρ′(x, ω)dmγ(ω)∫
γ(ω)

(t1ϕ1(x) + t2ϕ2(x)) ρ′′(x, ω)dmγ(ω)

≤ ebdγ(ω)(ρ̄
′(ω),ρ̄′′(ω)).

So (C2) is verified. Similarly, (C3) is also verified. Therefore, t1ϕ+ t2ϕ2 ∈ C(b, c, ν).

Now, we prove that −Cω(b, c, ν)∩Cω(b, c, v) = {0}. Suppose ϕ ∈ −Cω(b, c, ν)∩Cω(b, c, v),

then there exists ϕ1, ϕ2 ∈ Cω(b, c, ν) and t1n, t
2
n ↓ 0 such that ϕ + t1n(ϕ1) ∈ Cω(b, c, ν) and

−ϕ+ t2n(ϕ2) ∈ Cω(b, c, ν). Hence, for any local stable leaf γ(ω) and ρ(·, ω) ∈ D(a/2, µ, γ(ω)),

we have

∫
γ(ω)

(ϕ+ t1n(ϕ1))(x)ρ(x, ω)dmγ(ω) > 0;∫
γ(ω)

(−ϕ+ t2n(ϕ2))(x)ρ(x, ω)dmγ(ω) > 0.

Let n→∞, we have ∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)(x) = 0 (6.22)

for any ρ(·, ω) ∈ D(a/2, µ, γ(ω)) and any local stable leaf γ(ω). Now pick g̃ ∈ C0,µ(M) any

µ−Hölder continuous function, and define ḡ(x, ω) ≡ g̃(x). Choose B = 2|g̃|µ
a

, then

log(ḡ+(x, ω) +B), and log(ḡ−(x, ω) +B)

are (a/2, µ)−Hölder continuous, where

|g̃|µ := sup
x6=y∈M

|g(x)− g(y)|
d(x, y)µ

, ḡ+ :=
1

2
(|ḡ|+ ḡ), ḡ− :=

1

2
(|ḡ| − ḡ).
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Then (ḡ+(·, ω) + B)|γ(ω), (ḡ−(·, ω) + B)|γ(ω) are in D(a/2, µ, γ(ω)). By (6.22) and linearity

of integration, we have ∫
γ(ω)

ϕ(x)g̃(x)dmγ(ω)(x) = 0.

For any fixed ω, we can pick g̃ ∈ C0,µ(M) L1− approximating ϕ(·), hence we have∫
γ(ω)

ϕ2(x)dmγ(ω)(x) = 0. So ϕ(x) = 0 for x ∈ γ(ω). Since γ(ω) ⊂ Mω is arbitrary,

ϕ(·) ≡ 0.

Now Cω(b, c, ν) is a convex cone, so we can define the Hilbert projective metric on

Cω(b, c, ν). For any ϕ1, ϕ2 ∈ Cω(b, c, ν), define

αω(ϕ1, ϕ2) := sup{t > 0 : ϕ2 − tϕ1 ∈ Cω(b, c, ν)},

βω(ϕ1, ϕ2) := sup{s > 0 : sϕ1 − ϕ2 ∈ Cω(b, c, ν)},

with the convention that sup ∅ = 0 and inf ∅ = +∞, and let

dω(ϕ1, ϕ2) := log
βω(ϕ1, ϕ2)

αω(ϕ1, ϕ2)
,

with the convention that dω(ϕ1, ϕ2) = ∞ if αω(ϕ1, ϕ2) = 0 or βω(ϕ1, ϕ2) = ∞. Without

ambiguity, we write
∫
γ(ω)

ϕρdmγ(ω) instead of
∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)(x). By computation,

we have that

αω(ϕ1, ϕ2) = inf

{∫
γ(ω)

ϕ2ρ
′dmγ(ω)∫

γ(ω)
ϕ1ρ′dmγ(ω)

,

∫
γ(ω)

ϕ2ρ
′dmγ(ω)∫

γ(ω)
ϕ1ρ′dmγ(ω)

ξω(ρ′, ρ′′, ϕ1, ϕ2) (6.23)∫
γ(ω)

ϕ2ρdmγ(ω)∫
γ(ω)

ϕ1ρdmγ(ω)

ηω(ρ, ρ̃, ϕ1, ϕ2),

∫
γ̃(ω)

ϕ2ρ̃dmγ̃(ω)∫
γ̃(ω)

ϕ1ρ̃dmγ̃(ω)

ηω(ρ̃, ρ, ϕ1, ϕ2)

}
,

where

ξω(ρ′, ρ′′, ϕ1, ϕ2) :=
exp(bdγ(ω)(ρ̄

′(ω), ρ̄′′(ω)))−
∫
γ(ω)

ϕ2ρ
′′dmγ(ω)/

∫
γ(ω)

ϕ2ρ
′dm(γ(ω))

exp(bdγ(ω)(ρ̄′(ω), ρ̄′′(ω)))−
∫
γ(ω)

ϕ1ρ′′dmγ(ω)/
∫
γ(ω)

ϕ1ρ′dm(γ(ω))

, (6.24)
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ηω(ρ, ρ̃, ϕ1, ϕ2) :=
exp(cd(γ(ω), γ̃(ω))ν)−

∫
γ̃
ϕ2ρ̃dmγ̃(ω)/

∫
γ(ω)

ϕ2ρdmγ(ω)

exp(cd(γ(ω), γ̃(ω))ν)−
∫
γ̃
ϕ1ρ̃dmγ̃(ω)/

∫
γ(ω)

ϕ1ρdmγ(ω)

, (6.25)

and the infimum runs over all ρ′(·, ω), ρ′′(·, ω) ∈ D(a/2, µ, γ(ω)) with
∫
γ(ω)

ρτ (x, ω)dmγ(ω)(x) =

1 for τ = ′, ′′, every pair of local stable leaves γ(ω) and γ̃(ω), ρ(·, ω) ∈ D(a1, µ1, γ(ω)) and

corresponding ρ̃(·, ω) ∈ D(a/2, µ, γ̃(ω)). Similarly,

βω(ϕ1, ϕ2) = sup

{∫
γ(ω)

ϕ2ρ
′dmγ(ω)∫

γ(ω)
ϕ1ρ′dmγ(ω)

,

∫
γ(ω)

ϕ2ρ
′dmγ(ω)∫

γ(ω)
ϕ1ρ′dmγ(ω)

ξω(ρ′, ρ′′, ϕ1, ϕ2) (6.26)∫
γ(ω)

ϕ2ρdmγ(ω)∫
γ(ω)

ϕ1ρdmγ(ω)

ηω(ρ, ρ̃, ϕ1, ϕ2),

∫
γ̃(ω)

ϕ2ρ̃dmγ̃(ω)∫
γ̃(ω)

ϕ1ρ̃dmγ̃(ω)

ηω(ρ̃, ρ, ϕ1, ϕ2)

}
,

where the supreme runs over all ρ′(·, ω), ρ′′(·, ω) ∈ D(a/2, µ, γ(ω)),
∫
γ(ω)

ρτ (x, ω)dmγ(ω)(x) =

1 for τ = ′, ′′, every pair of local stable leaves γ(ω) and γ̃(ω), ρ(·, ω) ∈ D(a1, µ1, γ(ω)) and

corresponding ρ̃(·, ω) ∈ D(a/2, µ, γ̃(ω)).

6.2 Contraction of the Fiber Transfer Operator

In this section, we will prove that the fiber transfer operator Lω maps Cω(b, c, ν) into

Cθω(b, c, ν) for all ω ∈ Ω. Moreover, the diameter of LNω Cω(b, c, ν) with respect to the

Hilbert projective metric on CθNω(b, c, ν) is finite uniformly for all ω ∈ Ω, where the number

N comes from the topological mixing on fibers property. Birkhoff’s inequality (Proposition

A.4 in the Appendix) implies the contraction of the fiber transfer operator LNω .

Lemma 6.5. Let λ2 ∈ (max{Λ1, e
−λν}, 1) , then there exist constants b0 and c0 such that for

any b > b0 = b0(λ2,Λ1), c > c0 = c0(ν) and for all ω ∈ Ω, we have Lθ−1ω(Cθ−1ω(b, c, ν)) ⊂

Cω(λ2b, λ2c, ν) ⊂ Cω(b, c, ν). Recall that the fiber transfer operator Lθ−1ω is defined by

(Lθ−1ωϕ)(x) =
ϕ((fθ−1ω)−1x)

| detD(fθ−1ω)−1(x)fθ−1ω|
.

Proof of Lemma 6.5. Pick any ω ∈ Ω and fix it. For any ϕ : M → R bounded and measur-

able, it is easy to see that Lθ−1ωϕ : M → R is bounded and measurable.
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Let γ(ω) be a local stable leaf having size between ε/4 and ε/2 and every ρ(·, ω) ∈

D(a/2, µ, γ(ω)). we subdivide f−1
ω γ(ω) into connected local stable submanifolds of size be-

tween ε/4 and ε/2, named γi(θ
−1ω) for i belonging to a finite index set. let ρi(·, θ−1ω) be

defined as (6.7). By Lemma 6.1,

ρi(·, θ−1ω) ∈ D(e−λ1a/2, µ, γi(θ
−1ω)) ⊂ D(a/2, µ, γi(θ

−1ω)).

Hence by (6.9), for any ϕ ∈ Cθ−1ω(b, c, ν), we have

ω 7→
∫
γ(ω)

(Lθ−1ωϕ)(y)ρ(y, ω)dmγ(ω)(y) =
∑
i

∫
γi(θ−1ω)

ϕ(x)ρi(x, θ
−1ω)dmγi(θ−1ω)(x) > 0.

So (C1) is verified.

Now for any ρ′(·, ω), ρ′′(·, ω) ∈ D(a/2, µ, γ(ω)) such that

∫
γ(ω)

ρ′(x, ω)dmγ(ω)(x) = 1 and

∫
γ(ω)

ρ′′(x, ω)dmγ(ω)(x) = 1,

we denote ρ′i := (ρ′)i and ρ′′i := (ρ′′)i which are defined as (6.7) on γi(θ
−1ω). Define

ρ−i (x, θ−1ω) = ρ′i(x, θ
−1ω)/

∫
γi(θ−1ω)

ρ′i(y, θ
−1ω)dmγi(θ−1ω)(y) for x ∈ γi(θ−1ω),

ρ=
i (x, θ−1ω) = ρ′′i (x, θ

−1ω)/

∫
γi(θ−1ω)

ρ′′i (y, θ
−1ω)dmγi(θ−1ω)(y) for x ∈ γi(θ−1ω).
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We have ρ−i (·, θ−1ω), ρ=
i (·, θ−1ω) ∈ D(e−λ1 a

2
, µ, γi(θ

−1ω)) ⊂ D(a
2
, µ, γi(θ

−1ω)). Then

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ′′(y, ω)dmγ(ω)(y)

=
∑
i

∫
γi(θ−1ω)

ϕ(x)ρ′′i (x, θ
−1ω)dmγi(θ−1ω)(x)

=
∑
i

∫
γi(θ−1ω)

ρ′′i (x, θ
−1ω)dmγi(θ−1ω)(x)

∫
γi(θ−1ω)

ϕ(x)ρ=
i (x, θ−1ω)dmγi(θ−1ω)(x)

≤
∑
i

∫
γi(θ−1ω)

ρ′′i dmγi(θ−1ω) · exp(bdγi(θ−1ω)(ρ̄
−
i (θ−1ω), ρ̄=

i (θ−1ω))) ·
∫
γi(θ−1ω)

ϕρ−i dmγi(θ−1ω)

≤
∑
i

∫
γi(θ−1ω)

ρ′′i dmγi(θ−1ω)∫
γi(θ−1ω)

ρ′idmγi(θ−1ω)

· exp(bdγi(θ−1ω)(ρ̄
′
i(θ
−1ω), ρ̄′′i (θ

−1ω))) ·
∫
γi(θ−1ω)

ϕρ′idmγi(θ−1ω)

=
∑
i

∫
γi(θ−1ω)

ρ′′i dmγi(θ−1ω)∫
γi(θ−1ω)

ρ′idmγi(θ−1ω)

· exp(bΛ1dγ(ω)(ρ̄
′(ω), ρ̄′′(ω))) ·

∫
γi(θ−1ω)

ϕρ′idmγi(θ−1ω),

where dγi(θ−1ω) and dγ(ω) are the Hilbert projective metric on the cone D(a, µ, γi(θ
−1ω)) and

D(a, µ, γ(ω)) respectively. Note that

ρ′′i (x, θ
−1ω)

ρ′i(x, θ
−1ω)

=
ρ′′(fθ−1ωx, ω)

ρ′(fθ−1ωx, ω)
≤ exp(dγ(ω)(ρ̄

′(ω), ρ̄′′(ω))) for x ∈ γi(θ−1ω).

Hence we have

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ′′(y, ω)dmγ(ω)(y)

≤ ebΛ1dγ(ω)(ρ̄
′(ω),ρ̄′′(ω))edγ(ω)(ρ̄

′(ω),ρ̄′′(ω))

∞∑
i=1

∫
γi(θ−1ω)

ϕρ′idmγi(θ−1ω)

≤ ebλ2dγ(ω)(ρ̄
′(ω),ρ̄′′(ω))

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ′(y, ω)dmγ(ω)(y),
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provided λ2 ∈ (Λ1, 1) and b > 1
λ2−Λ1

:= b0. Switch ρ′ and ρ′′, we get

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ′(y, ω)dmγ(ω) ≤ ebλ2dγ(ω)(ρ̄
′′(ω),ρ̄′′(ω))

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ′′(y, ω)dmγ(ω)(y).

So condition (C2) is verified.

Next, we verify the condition (C3). Given any pair of local stable leaves γ(ω) and γ̃(ω)

such that γ̃(ω) is the holonomy image of γ(ω). For each fixed ω ∈ Ω, let γi(θ
−1ω) be

defined as before such that γ(ω) = ∪fθ−1ωγi(θ
−1ω), and let γ̃i(θ

−1ω) be the holonomy im-

age of γi(θ
−1ω) inside of (fθ−1ω)−1γ̃(ω). Naturally, we have γ̃(ω) = ∪fθ−1ωγ̃i(θ

−1ω). For

any ρ(·, ω) ∈ D(a1, µ1, γ(ω)), let ρ̃(·, ω) be defined as (6.10), and we already see that

ρ̃(·, ω) ∈ D(a
2
, µ1ν0, γ̃(ω)) ⊂ C(a, µ, γ̃(ω)). Let ρi(·, θ−1ω) and (ρ̃)i(·, θ−1ω) be defined as

(6.7) corresponding to ρ and ρ̃ respectively, then we have

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ(y, ω)dmγ(ω)(y) =
∑
i

∫
γi(θ−1ω)

ϕ(x)ρi(x, θ
−1ω)dmγi(θ−1ω)(x),

∫
γ̃(ω)

(Lθ−1ωϕ)(y)ρ̃(y, ω)dmγ̃(ω)(y) =
∑
i

∫
γ̃i(θ−1ω)

ϕ(x)(ρ̃)i(x, θ
−1ω)dmγ̃i(θ−1ω)(x).

By Lemma 6.1, ρi(·, θ−1ω) ∈ D(e−λ1a1, µ1, γi(θ
−1ω)) ⊂ D(a1, µ1, γi(θ

−1ω)). Since ϕ ∈

Cθ−1ω(b, c, ν), we conclude for each i,

∣∣∣∣log

∫
γi(θ−1ω)

ϕ(x)ρi(x, θ
−1ω)dmγi(θ−1ω) − log

∫
γ̃i(θ−1ω)

ϕ(x)ρ̃i(x, θ
−1ω)dmγ̃i(θ−1ω)

∣∣∣∣ (6.27)

≤ cd(γi(θ
−1ω), γ̃i(θ

−1ω))ν

≤ c · e−λνd(γ(ω), γ̃(ω))ν ,

where

ρ̃i(x, θ
−1ω) = ρi(ψ

i
θ−1ω(x), θ−1ω) · | detDψiθ−1ω(x)| for x ∈ γ̃i(θ−1ω),
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and ψiθ−1ω is the holonomy map between γ̃i(θ
−1ω) and γi(θ

−1ω). To prove the condition

(C3), we need the following Sublemma:

Sublemma 6.2.1. There exists a K0 > 0 only depending on µ such that for each i, the

following inequality holds

∣∣∣∣log

∫
γ̃i(θ−1ω)

ϕ(x)ρ̃i(x, θ
−1ω)dmγ̃i(θ−1ω) − log

∫
γ̃i(θ−1ω)

ϕ(x)(ρ̃)i(x, θ
−1ω)dmγ̃i(θ−1ω)

∣∣∣∣
(6.28)

≤ K0d(γ(ω), γ̃(ω))ν .

Once Sublemma 6.2.1 is proved, we combine (6.27) and (6.28) to obtain

∣∣∣∣log

∫
γ̃i(θ−1ω)

ϕ(x)ρi(x, θ
−1ω)dmγ̃i(θ−1ω) − log

∫
γ̃i(θ−1ω)

ϕ(x)(ρ̃)i(x, θ
−1ω)dmγ̃i(θ−1ω)

∣∣∣∣
≤ (c · e−λν +K0)d(γ(ω), γ̃(ω))ν .

As a consequence,

∣∣∣∣log

∫
γ(ω)

(Lθ−1ωϕ)(y)ρ(y, ω)dmγ(ω)(y)− log

∫
γ̃(ω)

(Lθ−1ωϕ)(y)ρ̃(y, ω)dmγ̃(ω)(y)

∣∣∣∣
≤ (c · e−λν +K0)d(γ(ω), γ̃(ω))ν

≤ λ2cd(γ(ω), γ̃(ω))ν ,

provided λ2 ∈ (e−λν , 1), and c ≥ K0

λ2−exp(−λν)
:= c0. The proof of Lemma 6.5 is done.

Proof of Sublemma 6.2.1. Applying Lemma 6.1 and (6.13) to ρ(·, ω) ∈ D(a1, µ1, γ(ω)), we

see that (ρ̃)i(·, θ−1ω), ρ̃i(·, θ−1ω) both belong toD(a/2, µ1ν0, γ̃i(θ
−1ω)) ⊂ D(a/2, µ, γ̃i(θ

−1ω)).

Without ambiguity, we denote ρ′ := (ρ̃)i and ρ′′ := ρ̃i for short.
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We normalize the random density ρ′ and ρ′′ by

ρ′(x, θ−1ω)∫
γ̃i(θ−1ω)

ρ′(x, θ−1ω)dmγ̃i(θ−1ω)(x)
,

ρ′′(x, θ−1ω)∫
γ̃i(θ−1ω)

ρ′′(x, θ−1ω)dmγ̃i(θ−1ω)(x)
.

Then by condition (C2), we have

∣∣∣∣log

∫
γ̃i(θ−1ω)

ϕ(x)ρ′(x, θ−1ω)dmγ̃i(θ)−1ω − log

∫
γ̃i(θ−1ω)

ϕ(x)ρ′′(x, θ−1ω)dmγ̃i(θ)−1ω

∣∣∣∣
≤ bdγ̃i(θ−1ω)(ρ̄

′(θ−1ω), ρ̄′′(θ−1ω))

+

∣∣∣∣log

∫
γ̃i(θ−1ω)

ρ′(x, θ−1ω)dmγ̃i(θ−1ω)(x)− log

∫
γ̃i(θ−1ω)

ρ′′(x, θ−1ω)dmγ̃i(θ−1ω)(x)

∣∣∣∣ .
Next, we are going to estimate the terms of the right hand of the above inequality. By

definition, we have expressions

ρ′(x, θ−1ω) =
| detDxfθ−1ω|Es(x,θ−1ω)|
| detDxfθ−1ω|

· ρ(ψωfθ−1ωx, ω)| detDfθ−1ωx
ψω|;

ρ′′(x, θ−1ω) =
| detDψi

θ−1ω
(x)fθ−1ω|Es(ψi

θ−1ω
(x),θ−1ω)|

| detDψi
θ−1ω

(x)fθ−1ω|
· ρ(fθ−1ωψ

i
θ−1ω(x), ω) · | detDxψ

i
θ−1ω|.

By definition of holonomy map, we have

ρ(ψωfθ−1ωx, ω) = ρ(fθ−1ωψ
i
θ−1ω(x), ω) for x ∈ γ̃i(θ−1ω). (6.29)

By Lemma 4.20, we have

| log | detDfθ−1ωx
ψω| − log | detDxψ

i
θ−1ω|| ≤ a0d(fθ−1ω(x), ψωfθ−1ω(x))ν0 + a0d(x, ψiθ−1ω(x))ν0

≤ a0(1 + e−λν0)d(γ(ω), γ̃(ω))ν0 . (6.30)

114



Combing Lemma 4.1 and Lemma 4.8, for all x, y ∈M , ω ∈ Ω, we have

|| detDxfω|Es(x,ω)| − | detDyfω|Es(y,ω)|| ≤ 2C2d(x, y)ν0 . (6.31)

Then, by (6.31) and uniformly boundness of | detDxfω|Es(x,ω)|, there exists a constant R

independent of x and ω such that

∣∣∣log | detDxfθ−1ω|Es(x,θ−1ω)| − log | detDψi
θ−1ω

(x)fθ−1ω|Es(ψi
θ−1ω

(x),θ−1ω)|
∣∣∣

≤ Rd(x, ψiθ−1ω(x))ν0

≤ Rd(γi(θ
−1ω), γ̃i(θ

−1ω))ν0

≤ Re−λν0d(γ(ω), γ̃(ω))ν0 . (6.32)

Applying (6.2), we have

∣∣∣log | detDψi
θ−1ω

xfθ−1ω| − log | detDxfθ−1ω|
∣∣∣ ≤ K2d(x, ψiθ−1ωx) ≤ K2e

−λd(γ(ω), γ̃(ω)).

(6.33)

Then (6.29), (6.30), (6.32) and (6.33) imply

∣∣∣∣log

∫
γ̃i(θ−1ω)

ρ′(x, θ−1ω)dmγ̃i(θ−1ω)(x)− log

∫
γ̃i(θ−1ω)

ρ′′(x, θ−1ω)dmγ̃i(θ−1ω)(x)

∣∣∣∣
≤ (a0(1 + e−λν0) +Re−λν0 +K2e

−λ)d(γ(ω), γ̃(ω))ν0

:= K3d(γ(ω), γ̃(ω))ν0 , (6.34)

and

e−K3d(γ(ω),γ̃(ω))ν0 ≤ inf
x∈γ̃i(θ−1ω)

ρ′(x, θ−1ω)

ρ′′(x, θ−1ω)
≤ sup

x∈γ̃i(θ−1ω)

ρ′(x, θ−1ω)

ρ′′(x, θ−1ω)
≤ eK3d(γ(ω),γ̃(ω))ν0 .
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The above inequality implies that

d+,γ̃i(θ−1ω)(ρ̄
′(θ−1ω), ρ̄′′(θ−1ω)) ≤ 2K3d(γ(ω), γ̃(ω))ν0 .

Similar to (6.20), we have an estimate

dγ̃i(θ−1ω)(ρ̄
′(θ−1ω), ρ̄′′(θ−1ω)) ≤ d+,γ̃i(θ−1ω)(ρ̄

′(θ−1ω), ρ̄′′(θ−1ω)) + log
(
τ̂2(θ−1ω)/τ̂1(θ−1ω)

)
,

(6.35)

where

τ̂1(θ−1ω) = inf
x 6=y∈γi(θ−1ω)

exp(ad(x, y)µ)− ρ′′(y, θ−1ω)/ρ′′(x, θ−1ω)

exp(ad(x, y)µ)− ρ′(y, θ−1ω)/ρ′(x, θ−1ω)
,

τ̂2(θ−1ω) = sup
x 6=y∈γi(θ−1ω)

exp(ad(x, y)µ)− ρ′′(y, θ−1ω)/ρ′′(x, θ−1ω)

exp(ad(x, y)µ)− ρ′(y, θ−1ω)/ρ′(x, θ−1ω)
.

Denote

B1(x, y, θ−1ω) :=
ρ′(y, θ−1ω)

ρ′(x, θ−1ω)
· exp(−ad(x, y)ν),

B2(x, y, θ−1ω) :=
ρ′′(y, θ−1ω)

ρ′′(x, θ−1ω)
· exp(−ad(x, y)ν).

Since ρ′(·, θ−1ω), ρ′′(·, θ−1ω) ∈ D(a/2, µ, γ̃i(θ
−1ω)), we have

logB1(x, y, θ−1ω) = log ρ′(y, θ−1ω)− log ρ′(x, θ−1ω)− ad(x, y)µ

≤ a

2
d(x, y)µ − ad(x, y)µ

≤ −a
2
d(x, y)µ < 0.
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As a consequence B1(x, y, θ−1ω) < 1. Similarly, B2(x, y, θ−1ω) < 1. Hence, on one hand

|B1(x, y, θ−1ω)−B2(x, y, θ−1ω)|

≤ max{B1, B2}| logB1(x, y, θ−1ω)− logB2(x, y, θ−1ω)|

≤ | log ρ′(x, θ−1ω)− log ρ′′(x, θ−1ω)|+ | log ρ′(y, θ−1ω)− log ρ′′(y, θ−1ω)|

≤ 2K3d(γ(ω), γ̃(ω))ν0

≤ 2K3d(γ(ω), γ̃(ω))µ+ν . (6.36)

On the other hand,

|B1(x, y, θ−1ω)−B2(x, y, θ−1ω)| ≤ | log ρ′(x, θ−1ω)− log ρ′(y, θ−1ω)|+ | log ρ′′(x, θ−1ω)− log ρ′′(y, θ−1ω)|

≤ 2 · a
2
d(x, y)µ1ν0

≤ ad(x, y)µ+ν .

(6.36) and (6.37) imply that

|B1(x, y, θ−1ω)−B2(x, y, θ−1ω)| ≤ max{a, 2K3}d(γ(ω), γ̃(ω))ν · d(x, y)µ

:= K4d(γ(ω), γ̃(ω))ν · d(x, y)µ. (6.37)

Then

∣∣∣∣log
1−B2(x, y, θ−1ω)

1−B1(x, y, θ−1ω)

∣∣∣∣ ≤ |B1(x, y, θ−1ω)−B2(x, y, θ−1ω)|
1−max{B1(x, y, θ−1ω), B2(x, y, θ−1ω)}

≤ K4d(γ(ω), γ̃(ω))ν · d(x, y)µ

1− exp(−a
2
d(x, y)µ)

≤ K5d(γ(ω), γ̃(ω))ν , (6.38)
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where K5 := K4 · supz∈(0,1)
zµ

1−exp(−a
2
zµ)

<∞. Hence we have

| log τ̂2(θ−1ω)/τ̂1(θ−1ω)| ≤ 2K5d(γ(ω), γ̃(ω))ν . (6.39)

Let K0 = 3K3 + 2K5, then by (6.34), (6.35) and (6.39), Sublemma 6.2.1 is proved.

Let δ ∈ (0, ε/8) be the constant in Lemma 4.3 corresponding to ε/8, i.e., for any x, y ∈M ,

d(x, y) < δ, for all ω ∈ Ω, we have

W s
ε/8(x, ω) ∩W u

ε/8(y, ω) 6= ∅.

Now let {Bδ/4(x)}x∈M be an open cover of M . Pick a subcover {Bδ/4(xi)}li=1 by the com-

pactness of M . Now by the definition of topological mixing on fibers, there exists a N ∈ N

such that for any n ≥ N ,

φn({ω} ×Bδ/4(xi)) ∩ ({θnω} ×Bδ/4(xj)) 6= ∅ for any 1 ≤ i, j ≤ l. (6.40)

Moreover, we pick N large enough such that

eλN ≥ 24, (6.41)

and

e−λNε < 2δ. (6.42)

From now on, we fix this constant N . Next, we are going to show that the diameter of

image of LNθ−Nω : Cθ−Nω(b, c, ν) → Cω(b, c, ν) with respect to the Hilbert projective metric

on Cω(b, c, ν) is finite uniformly for all ω ∈ Ω.

Lemma 6.6. For b > b0, c > c0, there exists a constant D2 = D2(λ2, a, b, c, N) such that for
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any ω ∈ Ω,

sup{dω(LNθ−Nωϕ1, L
N
θ−Nωϕ2) : ϕ1, ϕ2 ∈ Cθ−Nω(b, c, ν)} ≤ D2 <∞, (6.43)

where dω is the Hilbert projective metric on Cω(b, c, ν).

Proof of Lemma 6.6. By Lemma 6.5, Lθ−1ω(Cθ−1ω(b, c, ν)) ⊂ Cω(λ2b, λ2c, ν) ⊂ Cω(b, c, ν),

for all ω ∈ Ω. Pick any ϕ1, ϕ2 ∈ LNθ−NωCθ−Nω(b, c, ν) ⊂ Cω(λ2b, λ2c, ν), by (6.24) and

condition (C2), we have

ξω(ρ′, ρ′′, ϕ1, ϕ2) =
exp(bdγ(ω)(ρ̄

′(ω), ρ̄′′(ω)))−
∫
γ(ω)

ϕ2ρ
′′dmγ(ω)/

∫
γ(ω)

ϕ2ρ
′dm(γ(ω))

exp(bdγ(ω)(ρ̄′(ω), ρ̄′′(ω)))−
∫
γ(ω)

ϕ1ρ′′dmγ(ω)/
∫
γ(ω)

ϕ1ρ′dm(γ(ω))

≥
exp(bdγ(ω)(ρ̄

′(ω), ρ̄′′(ω)))− exp(bλ2dγ(ω)(ρ̄
′(ω), ρ̄′′(ω)))

exp(bdγ(ω)(ρ̄′(ω), ρ̄′′(ω)))− exp(−bλ2dγ(ω)(ρ̄′(ω), ρ̄′′(ω)))

≥ τ3,

where τ3 := inf{ z−zλ2
z−z−λ2 : z > 1} = 1−λ2

1+λ2
∈ (0, 1). Similarly, we have

ξω(ρ′, ρ′′, ϕ1, ϕ2) ≤ τ4

for τ4 = sup{ z−z−λ2
z−zλ2 : z > 1} = 1+λ2

1−λ2 ∈ (1,∞). Likewise, ηω(ρ, ρ̃, ϕ1, ϕ2) ∈ [τ3, τ4].

Let C+,ω be the collection of all bounded measurable functions ϕ : M → R only satisfying

condition (C1), which is a convex cone obviously. Next, we introduce the Hilbert projective

metric on C+,ω. We define

α+,ω(ϕ1, ϕ2) := sup{t > 0 : ϕ2 − tϕ1 ∈ C+,ω};

β+,ω(ϕ1, ϕ2) := inf{s > 0 : sϕ1 − ϕ2 ∈ C+,ω};
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with the convention that sup ∅ = 0 and inf ∅ = +∞, and let

d+,ω(ϕ1, ϕ2) := log
β+,ω(ϕ1, ϕ2)

α+,ω(ϕ1, ϕ2)

with the convention that d+,ω(ϕ1, ϕ2) = ∞ if α+,ω(ϕ1, ϕ2) = 0 or β+,ω(ϕ1, ϕ2) = ∞. By

computation, we have

α+,ω(ϕ1, ϕ2) = inf

{∫
γ(ω)

ϕ2ρdmγ(ω)∫
γ(ω)

ϕ1ρdmγ(ω)

}
, (6.44)

where the infimum runs over all ρ(·, ω) ∈ D(a
2
, µ, γ(ω)), γ(ω) any local stable leaf having

size between ε/4 and ε/2.

β+,ω(ϕ1, ϕ2) = sup

{∫
γ(ω)

ϕ2ρdmγ(ω)∫
γ(ω)

ϕ1ρdmγ(ω)

}
, (6.45)

where the supremum runs over all ρ(·, ω) ∈ D(a
2
, µ, γ(ω)), γ(ω) any local stable leaf having

size between ε/4 and ε/2.

Compare (6.23) with (6.44) and (6.26) with (6.45), and notice that D(a1, µ1, γ) ⊂

D(a
2
, µ, γ), we have for ϕ1, ϕ2 ∈ LNθ−NωCθ−Nω(b, c, ν) ⊂ Cω(λ2b, λ2c, ν),

αω(ϕ1, ϕ2) ≥ τ3α+,ω(ϕ1, ϕ2)

βω(ϕ1, ϕ2) ≤ τ4β+,ω(ϕ1, ϕ2).

As a consequence, we have

dω(ϕ1, ϕ2) ≤ d+,ω(ϕ1, ϕ2) + log
τ4

τ3

.

To estimate d+,ω(ϕ1, ϕ2) for ϕ1, ϕ2 ∈ LNθ−NωCθ−Nω(b, c, ν), it is sufficient to estimate the
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upper bound of

∫
γ′′(ω)

ϕ2ρ′′dmγ′′(ω)/
∫
γ′′(ω)

ϕ1ρ′′dmγ′′(ω)∫
γ′(ω)

ϕ2ρ′dmγ′(ω)/
∫
γ′(ω)

ϕ1ρ′dmγ′(ω)

=

∫
γ′′(ω)

ϕ2ρ′′dmγ′′(ω)∫
γ′(ω)

ϕ2ρ′dmγ′(ω)

·

∫
γ′(ω)

ϕ1ρ′dmγ′(ω)∫
γ′′(ω)

ϕ1ρ′′dmγ′′(ω)

=

∫
γ′′(ω)

ϕ2ρ′′dmγ′′(ω)/
∫
γ′′(ω)

ρ′′dmγ′′(ω)∫
γ′(ω)

ϕ2ρ′dmγ′(ω)/
∫
γ′(ω)

ρ′dmγ′(ω)

·

∫
γ′(ω)

ϕ1ρ′dmγ′(ω)/
∫
γ′(ω)

ρ′dmγ′(ω)∫
γ′′(ω)

ϕ1ρ′′dmγ′′(ω)/
∫
γ′′(ω)

ρ′′dmγ′′(ω)

for any random local stable leaves γ′(ω), γ′′(ω), ρ′(·, ω) ∈ D(a
2
, µ, γ′(ω)) and ρ′′(·, ω) ∈

D(a
2
, µ, γ′′(ω)). Next, we are going to estimate

∫
γ′′(ω)

ϕ(x)ρ′′(x, ω)dmγ′′(ω)(x)∫
γ′(ω)

ϕ(x)ρ′(x, ω)dmγ′(ω)(x)
(6.46)

for ϕ ∈ LNθ−NωCθ−Nω(b, c, ν) , ρ′(·, ω) ∈ D(a/2, µ, γ′(ω)), and ρ′′(·, ω) ∈ D(a/2, µ, γ′′(ω)) with∫
γ′′(ω)

ρ′′dmγ′′(ω) = 1 =
∫
γ′(ω)

ρ′dmγ′(ω). Let

k̄1(ω) =

(∫
γ′(ω)

ϕ(x)dmγ′(ω)(x)

)−1

,

k̄2(ω) =

(∫
γ′′(ω)

ϕ(x)dmγ′′(ω)(x)

)−1

.

Then we define

k1(x, ω) := k̄1(ω)/

∫
γ′(ω)

k̄1(ω)dmγ′(ω) for x ∈ γ′(ω),

k2(x, ω) := k̄2(ω)/

∫
γ′′(ω)

k̄2(ω)dmγ′′(ω) for x ∈ γ′′(ω).

By construction, we have k1(·, ω) ∈ D(a/2, µ, γ′(ω)) and k2(·, ω) ∈ D(a/2, µ, γ′′(ω)). Now
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by (C2)

∫
γ′′(ω)

ϕ(x)ρ′′(x, ω)dmγ′′(ω)(x)∫
γ′(ω)

ϕ(x)ρ′(x, ω)dmγ′(ω)(x)

=

∫
γ′′(ω)

ϕ(x)ρ′′(x, ω)dmγ′′(ω)(x)∫
γ′′(ω)

ϕ(x)k2(x, ω)dmγ′′(ω)(x)
·

∫
γ′(ω)

ϕ(x)k1(x, ω)dmγ′(ω)(x)∫
γ′(ω)

ϕ(x)ρ′(x, ω)dmγ′(ω)(x)
·

∫
γ′′(ω)

k̄2(ω)dmγ′′(ω)∫
γ′(ω)

k̄1(ω)dmγ′(ω)

≤ eλ2bdγ′′(ω)(ρ
′′(·,ω),k2(·,ω)) · eλ2bdγ′(ω)(ρ′(·,ω),k1(·,ω)) ·

∫
γ′′(ω)

k̄2(ω)dmγ′′(ω)∫
γ′(ω)

k̄1(ω)dmγ′(ω)

.

Sublemma 6.2.2. There exists a constant D1 = D1(a, b, c, N) <∞ such that

∫
γ′(ω)

k̄1(ω)dmγ′(ω)∫
γ′′(ω)

k̄2(ω)dmγ′′(ω)

≤ D1. (6.47)

Now we let τ5 = sup{ z−z−1/2

z−z1/2 : z > 1} and τ6 = inf{ z−z1/2
z−z−1/2 : z > 1}, similar to (6.21), the

diameter of D(a/2, µ, γ(ω)) with respect to the Hilbert projective metric on D(a, µ, γ(ω)) is

finite, i.e.,

dγ′′(ω)(ρ̄
′′(ω), k̄2(ω)) ≤ 4a+ log τ5/τ6, (6.48)

dγ′(ω)(ρ̄
′(ω), k̄1(ω)) ≤ 4a+ log τ5/τ6. (6.49)

Hence (6.46) ≤ e2λ2b(4a+log τ5/τ6)D1. As a consequence, we have d+,ω(ϕ1, ϕ2) ≤ e4λ2b(4a+log τ5/τ6)D2
1,

and

dω(ϕ1, ϕ2) ≤ e4λ2b(4a+log τ5/τ6)D2
1 + log τ4/τ3 := D2. (6.50)

Then the proof of Lemma 6.6 is done.

Proof of Sublemma 6.2.2. For ϕ ∈ Cω(b, c, ν), we define

‖ϕ‖ω,+ = sup

∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)∫
γ(ω)

ρ(x, ω)dmγ(ω)(x)
,

where the supremum runs over all local stable leaf γ(ω) ⊂ Mω having size between ε/4 and
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ε/2 and ρ(·, ω) ∈ D(a/2, µ, γ(ω)). Similarly, we define

‖ϕ‖ω,− = inf

∫
γ(ω)

ϕ(x)ρ(x, ω)dmγ(ω)∫
γ(ω)

ρ(x, ω)dmγ(ω)(x)
,

where the infimum runs over all local stable leaf γ(ω) ⊂Mω having size between ε/4 and ε/2

and ρ(·, ω) ∈ D(a/2, µ, γ(ω)). Then (6.47) is a consequence if there exists D1 = D1(a, b, c, N)

such that:

sup
ω∈Ω

‖LNω ϕ‖θNω,+
‖LNω ϕ‖θNω,−

< D1 for any ϕ ∈ Cω(b, c, ν). (6.51)

We need some preliminary inequalities before we start proof. By the continuity of fω in

ω, there exists a constant K6 such that

K−1
6 ≤ | detDxfω| ≤ K6 for all (x, ω) ∈M × Ω. (6.52)

For any n ≥ 1, for any γ(θnω) ⊂Mθnω local stable leaf having size between ε/4 and ε/2, we

break f−nθnωγ(θnω) into finite pieces of connected local stable leaves having size between ε/4

and ε/2, named γi(ω). Let ρ(·, θnω) ∈ D(a/2, µ, γ(θnω)). Define

ρi(x, ω) =
| detDxf

n
ω |Es(x,ω)|

| detDxfnω |
ρ(fnωx, θ

nω) for x ∈ γi(ω).

Likewise (6.9), we have

∫
γ(θnω)

(Lnωϕ)(x)ρ(x, θnω)dmγ(θnω) =
∑
i

∫
γi(ω)

ϕ(x)ρi(x, ω)dmγi(ω).
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Now we have

∫
γ(θnω)

(Lnϕ)(x)ρ(x, θnω)dmγ(θnω)∫
γ(θnω)

ρ(x, θnω)dmγ(θnω)

=

∑
i

∫
γi(ω)

ϕ(x)ρi(x, ω)dmγi(ω)∫
γ(θnω)

ρ(x, θnω)dmγ(θnω)

≤
∑

i

∫
γi(ω)

ρi(x, ω)dmγi(ω)‖ϕ‖ω,+∫
γ(θnω)

ρ(x, θnω)dmγnω

=

∫
γ(θnω)

(Lnω1)(x)ρ(x, θnω)dmγ(θnω)∫
γ(θnω)

ρ(x, θnω)dmγnω

· ‖ϕ‖ω,+

≤ (K6)n · ‖ϕ‖ω,+.

Since γ(θnω) and ρ(·, θnω) are arbitrary, we get

‖Lnωϕ‖θnω,+ ≤ (K6)n‖ϕ‖ω,+. (6.53)

For any ω ∈ Ω, for any γ(ω) ⊂ Mω local stable leaf having size between ε/4 and ε/2,

ρ1(·, ω), ρ2(·, ω) ∈ D(a/2, µ, γ(ω)), any ϕ ∈ Cω(b, c, ν), we have

sup
z∈γ(ω)

ρ2(z, ω)
∫
γ(ω)

ϕ(x)ρ1(x, ω)dmγ(ω)

ρ1(z, ω)
∫
γ(ω)

ϕ(x)ρ2(x, ω)dmγ(ω)

:= D3 <∞. (6.54)

In fact, for any z ∈ γ(ω), then by condition (C2) and finite diameter of D(a/2, µ, γ(ω)) in

D(a, µ, γ(ω)) with respect to the Hilbert projective metric on D(a, µ, γ(ω)), we have

ρ2(z, ω)

ρ1(z, ω)
·

∫
γ(ω)

ϕ(x)ρ1(x, ω)dmγ(ω)/
∫
γ(ω)

ρ1dmγ(ω)∫
γ(ω)

ϕ(x)ρ2(x, ω)dmγ(ω)/
∫
γ(ω)

ρ2dmγ(ω)

·

∫
γ(ω)

ρ1dmγ(ω)∫
γ(ω)

ρ2dmγ(ω)

≤ ρ2(z, ω)∫
γ(ω)

ρ2(x, ω)dmγ(ω)

∫
γ(ω)

ρ1(x, ω)dmγ(ω)

ρ1(z, ω)
ebdγ(ω)(ρ̄1(ω),ρ̄2(ω))

≤ ρ2(z, ω)∫
γ(ω)

ρ2(x, ω)dmγ(ω)

∫
γ(ω)

ρ1(x, ω)dmγ(ω)

ρ1(z, ω)
e(4a+log τ5/τ6)b

≤ ea/2(diam(γ(ω)))µ · ea/2(diam(γ(ω)))µ · e(4a+log τ5/τ6)b

= ea+b(4a+log τ5/τ6) := D3.

Now we are in the position to prove (6.51). For any ω ∈ Ω, any ϕ ∈ Cω(b, c, ν), we choose
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γ∗(ω) and ρ∗(·, ω) ∈ D(a/2, µ, γ∗(ω)) such that

∫
γ∗(ω)

ϕ(x)ρ∗(x, ω)dmγ(ω)∫
γ∗(ω)

ρ∗(x, ω)dmγ∗(ω)

≥ 1

2
‖ϕ‖ω,+.

Recall we pick N satisfying (6.40), (6.41) and (6.42) and fix it. Pick any γ(θNω) ⊂ MθNω

local stable leaf having size between ε/4 and ε/2. We pick x∗(ω) ∈ γ∗(ω) such that

W s
ε/4(x∗(ω), ω) ⊂ γ∗(ω) ⊂ W s

ε/2(x∗(ω), ω),

and x(θNω) ∈ γ(θNω) such that

W s
ε/4(x(θNω), θNω) ⊂ γ(θNω) ⊂ W s

ε/2(x(θNω), θNω).

Then there exists i and j such that x∗(ω) ∈ Bδ/4(xi) and x(θNω) ∈ Bδ/4(xj). Then by the

choice of N , φN(Bδ/4(xi) × {ω}) ∩ (Bδ/4(xj) × {θNω}) 6= ∅. Pick y(θNω) ∈ fNω Bδ/4(xi) ∩

Bδ/4(xj), then

d(y(θNω), x(θNω)) ≤ d(y(θNω), xj) + d(xj, x(θNω)) ≤ δ/4 + δ/4 < δ.

Then

y1(θNω) := W u
ε/8(y(θNω), θNω) ∩W s

ε/8(x(θNω), θNω) ⊂ W u
ε/8(y(θNω), θNω) ∩ γ(θNω)

exists. Note that by (6.42), we have

d(f−N
θNω

y(θNω), f−N
θNω

y1(θNω)) ≤ e−λNε/8 ≤ δ/4.
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So

d(x∗(ω), f−N
θNω

y1(θNω)) ≤ d(x∗(ω), xi) + d(xi, f
−N
θNω

y(θNω)) + d(f−N
θNω

y(θNω), f−N
θNω

y1(θNω))

≤ δ/4 + δ/4 + δ/4 < δ.

As a consequence,

W s
ε/8(x∗(ω), ω) ∩W u

ε/8(f−N
θNω

y1(θNω), ω) 6= ∅.

Notice that W u
ε/8(f−N

θNω
y1(θNω), ω) breaks f−N

θNω
γ(θNω) into two parts, and each part has size

at least eλN ε
8
≥ 3ε by (6.41). Hence f−N

θNω
γ(θNω) contains a holonomy image of γ∗(ω), named

γ1(ω).

Now let ρ(·, θNω) ∈ D(a/2, µ, γ(θNω)), define

ρ1(x, ω) =
| detDxf

N
ω |Es(x,ω)|

| detDxfNω |
ρ(fNω x, θ

Nω) for x ∈ γ1(ω).

Let ρ̃1(·, ω) be the density function on γ∗(ω) defined by (6.10) corresponding to ρ1. Then

∫
γ(θNω )

(LNω ϕ)(x)ρ(x, θNω)dmγ(θNω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

≥

∫
γ1(ω)

ϕ(x)ρ1(x, ω)dmγ1(ω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

≥

∫
γ∗(ω)

ϕ(x)ρ̃1(x, ω)dmγ∗(ω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

· e−cd(γ1(ω),γ∗(ω))ν ,

pick any z ∈ γ∗(ω), by (6.54),
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the above ≥

∫
γ∗(ω)

ϕ(x)ρ∗(x, ω)dmγ∗(ω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

· e−cd(γ1(ω),γ∗(ω))ν ·D−1
3 ·

ρ̃1(z, ω)

ρ∗(z, ω)

≥
1
2
‖ϕ‖ω,+

∫
γ∗(ω)

ρ∗(x, ω)dmγ∗(ω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

· e−cd(γ1(ω),γ∗(ω))ν ·D−1
3 ·

ρ̃1(z, ω)

ρ∗(z, ω)

≥
‖ϕ‖ω,+

∫
γ∗(ω)

ρ̃1(x, ω)dmγ∗(ω)

2
∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

· e−cd(γ1(ω),γ∗(ω))ν ·D−2
3

=
1

2
e−cd(γ1(ω),γ∗(ω))ν ·D−2

3 · ‖ϕ‖ω,+ ·

∫
γ1(ω)

ρ1(x, ω)dmγ1(ω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

=
1

2
e−cd(γ1(ω),γ∗(ω))ν ·D−2

3 · ‖ϕ‖ω,+ ·

∫
fNω γ1(ω)

(LNω 1)(x)ρ(x, θNω)dmγ(θNω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

≥ 1

2
e−cd(γ1(ω),γ∗(ω))ν ·D−2

3 · ‖ϕ‖ω,+ · (K6)−N ·

∫
fNω γ1(ω)

ρ(x, θNω)dmγ(θNω)∫
γ(θNω)

ρ(x, θNω)dmγ(θNω)

,

pick some y ∈ fNω γ1(ω) ⊂ γ(θNω), then

the above ≥ 1

2
e−cd(γ1(ω),γ∗(ω))ν ·D−2

3 · ‖ϕ‖ω,+ · (K6)−N ·

∫
fNω γ1(ω)

ρ(x, θNω)/ρ(y, θNω)dmγ(θNω)∫
γ(θNω)

ρ(x, θNω)/ρ(y, θNω)dmγ(θNω)

≥ 1

2
e−cd(γ1(ω),γ∗(ω))ν ·D−2

3 · ‖ϕ‖ω,+ · (K6)−N · e−a/2(diam(γ(θNω)))µ·2 ·

∫
fNω γ1(ω)

dmγ(θNω)∫
γ(θNω)

dmγ(θNω)

≥ 1

2
e−cε

ν−aεµ ·D−2
3 · ‖ϕ‖ω,+ · (K6)−N ·

inf(x,ω)∈M×Ω m(Dxfω|Es(p,ω))
N

2N

≥ 1

2N+1
e−cε

ν−aεµ ·D−2
3 · (K6)−2N · inf

(x,ω)∈M×Ω
m(Dxfω|Es(p,ω))

N · ‖LNω ϕ‖θNω,+

:= (D1)−1‖LNω ϕ‖θNω,+.

Since γ(θNω) and ρ(·, θNω) ∈ D(a/2, µ, γ(θNω)) are arbitrary, we have

‖LNω ϕ‖θNω,− ≥ (D1)−1‖LNω ϕ‖θNω,+.
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Hence (6.51) is proved.

Remark 6.7. Note that the Lemma 6.6 is proved for all ω ∈ Ω, so we also have

sup{dθNω(LNω ϕ1, L
N
ω ϕ2) : ϕ1, ϕ2 ∈ Cω(b, c, ν)} ≤ D2, for all ω ∈ Ω, (6.55)

where dθNω is the Hilbert projective metric on CθNω(b, c, ν).

Lemma 6.8. There exist a number D4 and a number Λ ∈ (0, 1) both depending on D2 and

N such that for all n ≥ N , for all ω ∈ Ω,

dω(Lnθ−nωϕ
1
θ−nω, L

n
θ−nωϕ

2
θ−nω) ≤ D4Λn for any ϕ1

θ−nω, ϕ
2
θ−nω ∈ Cθ−nω(b, c, ν); (6.56)

dθnω(Lnωϕ
1
ω, L

n
ωϕ

2
ω) ≤ D4Λn for any ϕ1

ω, ϕ
2
ω ∈ Cω(b, c, ν). (6.57)

Proof. Let’s define the Bowen metric on Cω(b, c, ν) by

dω,B(ϕ1, ϕ2) = max
0≤i≤N−1

dθiω(Liωϕ1, L
i
ωϕ2) for ϕ1, ϕ2 ∈ Cω(b, c, ν).

Now we have a linear operator LNθ−Nω maps cone Cθ−Nω(b, c, ν) into cone Cω(b, c, ν) with

finite diameter of LNθ−Nω(Cθ−Nω(b, c, ν)) in Cω(b, c, ν), then we apply Birkhoff’s inequality

(Proposition A.4) to obtain that for all ω ∈ Ω,

dω(LNθ−Nωϕ1, L
N
θ−Nωϕ2) ≤ Λ′dθ−Nω(ϕ1, ϕ2), for all ϕ1, ϕ2 ∈ Cθ−Nω(b, c, ν), (6.58)

where Λ′ = 1 − e−D2 . Note that LNω (Cω(b, c, ν)) has finite diameter in CθNω(b, c, ν) for all

ω ∈ Ω, so

dθNω,B(LNω ϕ1, L
N
ω ϕ2) = max

0≤i≤N−1
dθi+Nω(LNθiωL

i
ωϕ1, L

N
θiωL

N
ω ϕ2) ≤ D2.
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Then (6.58) implies that for all ω ∈ Ω,

dω(Lnθ−nωϕ
1
θ−nω, L

n
θ−nωϕ

2
θ−nω) ≤ (Λ′)[n−N

N
]dθN−nω,B(LNθ−nωϕ

1
θ−nω, L

N
θ−nωϕ

2
θ−nω)

≤ Λn−2ND2 =
D2

Λ2N
Λn := D4Λn

for all n ≥ N and ϕ1
θ−nω, ϕ

2
θ−nω ∈ Cθ−nω(b, c, ν), where Λ = (Λ′)

1
N < 1.

Similarly, for all ω ∈ Ω

dθnω(Lnωϕ
1
ω, L

n
ωϕ

2
ω) ≤ (Λ′)[n−N

N
]dθNω,B(LNω ϕ

1
ω, L

N
ω ϕ

2
ω)

≤ D4Λn

for all n ≥ N and ϕ1
ω, ϕ

2
ω ∈ Cω(b, c, ν).

6.3 Construction of the Random SRB measure

In this section, we will prove that the sequence (fnθ−nω)∗m converges with respect to the

narrow topology on Pr(M) by using the contraction of Lnθ−nω when n ≥ N . Moreover, we

will prove that the random probability measure µω defined by the weak∗ limit of (fnθ−nω)∗m

is φ−invariant.

Before we introduce the next lemma, we need some preparation. Since the local stable

leaves form a partition in a neighborhood of a point on each Mω, we can divide Mω into some

rectangles foliated by local stable leaves having size between ε/4 and ε/2. We can realize this

partition by first filling Mω by disjoints rectangle [W u
ε/4(x, ω),W s

ε′(x, ω)] as far as possible for

any ε′ < ε/4, then we attach ‘crevices’ to the rectangle, which ‘crevices’ belongs to the same

local stable leaves. After attaching, we divide the rectangle together with the attachment

into several parts (at most three) according to the ‘edge of local stable leaves’ of ‘crevices’.

By this method, we can partition Mω into finite rectangles, and the local stable leaves lying
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in each rectangle have size between ε/4 and ε/2. We name this partition by

R(ω) = {R1(ω), ..., Ri(ω), ..., Rk(ω)(ω)}, k(ω) <∞.

By Proposition 4.21, for any Ri(ω), there exists a function Hi(ω) : Ri(ω)→ R with logHi(ω)

(a0, ν0)−Hölder continuous on each local stable leaf and for all bounded measurable functions

ψ : M → R, we have disintegration

∫
Ri(ω)

ψ(x)dm(x) =

∫ ∫
γi(ω)

ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)dm̃Ri(ω)(γ
i(ω)), (6.59)

where γi(ω) denotes the stable leaves in Ri(ω) and m̃Ri(ω) the quotient measure induced by

Riemannian volume measure in the space of local stable leaves in Ri(ω).

Lemma 6.9. For any fixed ω ∈ Ω, given any sequence {ϕn}n∈N ⊂ Cω(b, c, ν) satisfying

∫
M

ϕn(x)dm(x) = 1 for all n ∈ N,

and

d+,ω(ϕn, ϕm)→ 0 exponentially as n,m→∞.

Then for any continuous function ψ : M → R, the sequence

{∫
M

ϕn(x)ψ(x)dm(x)

}
n∈N

is a Cauchy sequence.

Proof. First, we consider the case for positive continuous function ψ : M → R, satisfying

| logψ(·)|µ = sup
x,y∈M,x6=y

| logψ(x)− logψ(y)|
d(x, y)µ

<
a

4
.

Now for any ω ∈ Ω. Let Ri(ω) and Hi(ω) be defined as above for i ∈ {1, ..., k(ω)}. Note that
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ψ(·)Hi(ω)(·)|γi(ω) is strictly positive on γi(ω). Moreover, log(ψ(·)Hi(ω)(·)) is (a/2, µ)−Hölder

continuous on γi(ω) by assumption (6.12). Therefore, by the representation of β+,ω(ϕk, ϕl)

and α+,ω(ϕk, ϕl) as in (6.45) and (6.44), we have

∫
γi(ω)

ϕk(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)∫
γi(ω)

ϕl(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)
≤ β+,ω(ϕk, ϕl), (6.60)

∫
γi(ω)

ϕk(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)∫
γi(ω)

ϕl(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)
≥ α+,ω(ϕk, ϕl) (6.61)

for all i ∈ {1, ..., k(ω)}, any γi(ω) ⊂ Ri(ω) and k, l ∈ N. On the other hand, notice that

∫
M

ϕk(x)dm(x) =

∫
M

ϕl(x)dm(x) = 1,

so by (6.59), there exists a î and γ î(ω) ⊂ Rî(ω) such that

∫
γ î(ω)

ϕk(x)Hî(ω)(x)|γ î(ω)dmγi(ω)(x) ≤
∫
γ î(ω)

ϕl(x)Hî(ω)(x)|γ î(ω)dmγi(ω)(x).

Now for any i and γi(ω) ⊂ Ri(ω) stable leaf, we have

∫
γi(ω)

ϕk(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)∫
γi(ω)

ϕl(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)

≤ β+,ω(ϕk, ϕl)

α+,ω(ϕk, ϕl)
· α+,ω(ϕk, ϕl)

≤ β+,ω(ϕk, ϕl)

α+,ω(ϕk, ϕl)
·

∫
γ î(ω)

ϕk(x)Hî(ω)(x)|γ î(ω)dmγi(ω)(x)∫
γ î(ω)

ϕl(x)Hî(ω)(x)|γ î(ω)dmγi(ω)(x)

≤ β+,ω(ϕk, ϕl)

α+,ω(ϕk, ϕl)
· 1

= exp(d+,ω(ϕk, ϕl)), for all k, l ≥ 1.
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Now fix N ′ > 0 such that for any k, l > N ′, d+,ω(ϕk, ϕl) <
1
2
. Then, we have

∣∣∣∣∫
M

ϕk(x)ψ(x)dm(x)−
∫
M

ϕl(x)ψ(x)dm(x)

∣∣∣∣
=

∣∣∣∣∫
M

ϕl(x)ψ(x)dm(x)

∣∣∣∣ · ∣∣∣∣
∫
M
ϕk(x)ψ(x)dm(x)∫

M
ϕl(x)ψ(x)dm(x)

− 1

∣∣∣∣
≤ sup

x∈M
|ψ(x)| ·

∣∣∣∣∣
∑k(ω)

i=1

∫
Ri(ω)

ϕk(x)ψ(x)dm(x)∑k(ω)
i=1

∫
Ri(ω)

ϕl(x)ψ(x)dm(x)
− 1

∣∣∣∣∣
= ‖ψ‖C0(M) ·

∣∣∣∣∣
∑k(ω)

i=1

∫ ∫
γi(ω)

ϕk(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)dm̃Ri(ω)∑k(ω)
i=1

∫ ∫
γi(ω)

ϕl(x)ψ(x)Hi(ω)(x)|γi(ω)dmγi(ω)(x)dm̃Ri(ω)

− 1

∣∣∣∣∣
≤ ‖ψ‖C0(M) · (ed+,ω(ϕk,ϕl) − 1)

≤ 2‖ψ‖C0(M) · d+,ω(ϕk, ϕl). (6.62)

Hence {
∫
M
ϕn(x)ψ(x)dm(x)}n∈N is Cauchy sequence in this case.

Next for any ψ ∈ C0,µ(M), let

B =
5|ψ(·)|µ

a
.

We define

ψ+
B(·) :=

1

2
(|ψ(·)|+ ψ(·)) +B, ψ−B(·) :=

1

2
(|ψ(·)| − ψ(·)) +B.

It’s easy to see that

| logψ±B(·)|µ = sup
x,y∈M,x6=y

| logψ±B(x)− logψ±B(y)|
d(x, y)ν

<
a

4
.

Then we apply (6.62) and linearity of integration to get

∣∣∣∣∫
M

ϕk(x)ψ(x)dm(x)−
∫
M

ϕl(x)ψ(x)dm(x)

∣∣∣∣ ≤ max

{
4,

20

a

}
‖ψ‖C0,µ(M) · d+,ω(ϕk, ϕl).

Finally, for any continuous function ψ : M → R, for any ε > 0, we can pick a function
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ψ̃ ∈ C0,µ(M) such that

sup
x∈M
|ψ(x)− ψ̃(x)| < ε/4.

Now, pick N ′ > 0 depending on ψ̃ and ε such that for all k, l ≥ N ′

max

{
4,

20

a

}
· ‖ψ̃‖C0,µ(M) · d+,ω(ϕk, ϕl) < ε/2.

Then

∣∣∣∣∫
M

ϕk(x)ψ(x)dm(x)−
∫
M

ϕl(x)ψ(x)dm(x)

∣∣∣∣
≤
∣∣∣∣∫
M

ϕk(x)ψ̃(x)dm(x)−
∫
M

ϕl(x)ψ̃(x)dm(x)

∣∣∣∣+ ε/4 + ε/4

≤ max

{
4,

20

a

}
· ‖ψ̃(·)‖C0,µ(M) · d+,ω(ϕk, ϕl) + ε/2

≤ ε.

Hence, for any continuous function ψ : M → R, the sequence {
∫
M
ϕn(x)ψ(x)dm(x)}n∈N is

Cauchy sequence.

For any measurable function ϕ : M → R, we define the fiber Koopman operator

Uωϕ : M → R, (Uωϕ)(x) := ϕ(fθ−1ωx). (6.63)

We denote

Un
ω := Uθ−(n−1)ω ◦ · · · ◦ Uθ−1ω ◦ Uω for all n ∈ N and ω ∈ Ω.
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For each fixed ω ∈ Ω, by changing variable, for measurable functions ϕ1, ϕ2, we have

∫
M

(Lθ−1ωϕ1)(y)ϕ2(y)dm(y) =

∫
M

ϕ1((fθ−1ω)−1y)

| detD(fθ−1ω)−1(y)fθ−1ω|
ϕ2(y)dm(y)

=

∫
M

ϕ1(x)

| detDxfθ−1ω|
ϕ2(fθ−1ωx)| detDxfθ−1ω|dm(x)

=

∫
M

ϕ1(x)(Uωϕ2)(x)dm(x). (6.64)

Let 1 be the constant function 1(x) ≡ 1, then 1 ∈ ∩ωCω(b, c, ν) by the Remark 6.3. Now

consider ϕn(x) = (Lnθ−nω1)(x) for n ≥ N and notice that for all ω ∈ Ω,

∫
M

(Lnθ−nω1)(x)dm(x) =

∫
M

1(x)(Un
ω1)(x)dm(x) =

∫
M

1dm(x) = 1.

Moreover, by (6.56), we have

d+,ω(Lnθ−nω1, Ln+k
θ−(n+k)ω

1) ≤ d(Lnθ−nω1, Lnθ−nω(Lkθ−(n+k)ω1)) ≤ Λn ·D4 for n ≥ N. (6.65)

Hence the sequence ϕn = Lnθ−nω1 ⊂ Cω(b, c, ν) satisfies the condition of Lemma 6.9. So

for any g ∈ C0(M), {
∫
M

(Lnθ−nω1)(x)g(x)dm}n∈N is a Cauchy sequence. Now define Fω :

C(M) → R by Fω(g) = limn→∞
∫
M

(Lnθ−nω1)(x)g(x)dm(x). Then Fω is obviously a positive

linear functional on C(M). By Riesz representation theorem, there exists a regular Borel

measure µω such that

∫
M

g(x)dµω(x) = lim
n→∞

∫
M

(Lnθ−nω1)(x)g(x)dm(x). (6.66)

Moreover, µω is a probability measure since
∫
M

(Ln1)(x, ω)dm(x) = 1.

Note that for each g ∈ C(M), ω 7→
∫
M
g(x)dµω(x) is measurable because of the mea-

surability of ω 7→
∫
M

(Lnθ−nω1)(x)g(x)dm(x). For any closed set B ⊂ M , let gk(x) :=

1−min{kd(x,B), 1} for k ∈ N where d(x,B) := inf{d(x, y) : y ∈ B}, then gk(x) ∈ C0(M)
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and gk(x)↘ 1B(x). Then by Monotone convergence theorem, we have

µω(B) = lim
k→∞

∫
M

gk(x)dµω(x) = lim
k→∞

lim
n→∞

∫
M

(Lnθ−nω1)(x, ω)gk(x)dm(x).

Hence ω 7→ µω(B) is measurable for all closed sets B ⊂M . By the Definition in Section 2.3,

ω 7→ µω defines a random probability measure.

Notice that for any g ∈ C0(M), we have

∫
M

g(x)dµω(x) = lim
n→∞

∫
M

(Lnθ−nω1)(x)g(x)dm(x) = lim
n→∞

∫
M

g(fnθ−nωx)dm(x)

= lim
n→∞

∫
M

g(y)d(fnθ−nω)∗m(y).

So µω is actually the weak∗−limit of (fnθ−nω)∗m.

Now for any continuous g : M → R, by (6.64),

∫
M

g(fωx)dµω = lim
n→∞

∫
M

(Lnθ−nω1)(x)g(fωx)dm(x) = lim
n→∞

∫
M

g(fωf
n
θ−nωx)dm(x)

= lim
n→∞

∫
M

g(fn+1
θ−(n+1)θω

x)dm(x) = lim
n→∞

∫
M

(Ln+1
θ−(n+1)θω

1)(x)g(x)dm(x)

=

∫
M

g(x)dµθω.

Thus the random probability measure µω is φ−invariant.

Remark 6.10. Note that for each fixed ω ∈ Ω, for any ϕθ−kω ∈ Cθ−kω(b, c, ν) such that∫
M
ϕθ−kω(x)dm = 1 for all k ∈ N, then we have

lim
n→∞

∫
M

(Lnθ−nωϕθ−nω)(x)g(x)dm(x) =

∫
M

g(x)dµω(x), (6.67)

for any g ∈ C0(M). In fact, we define the sequence ϕ̂n by ϕ̂2k = Lk
θ−kω1, ϕ̂2k+1 = Lk

θ−kωϕθ−kω
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for all k ≥ N , then by noticing

d+,ω(ϕ̂2k, ϕ̂2k+1) ≤ d(Lkθ−kω1, Lkθ−kωϕθ−kω) ≤ ΛkD4

and by (6.64)

∫
M

(Lkθ−kωϕθ−kω)(x)dm(x) =

∫
M

ϕθ−kω(x)(Uk
ω1)(x)dm(x) = 1.

So ϕ̂n ⊂ Cω(b, c, ν) satisfying the condition of Lemma 6.9. Thus the sequence {
∫
M
ϕ̂ngdm}

is Cauchy sequence for all g ∈ C0(M). As a consequence, we have

∫
M

g(x)dµω(x) = lim
n→∞

∫
M

(Lnθ−nω1)(x)g(x)dm(x)

= lim
n→∞

∫
M

(Lnθ−nωϕθ−nω)(x)g(x)dm(x). (6.68)

6.4 Proof of The Exponential Decay of the Past Random Cor-

relations

In this section, we prove the exponential decay of the past random correlations.

Lemma 6.11. Let ψ : M → R be a positive function such that logψ is (a
4
, µ) Hölder

continuous. Then for each fixed ω ∈ Ω, let ϕθ−kω ∈ Cθ−kω(b, c, ν) for k ∈ N, for any n ≥ N ,

the following holds:

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕθ−nω(x)dm(x)−
∫
M

ψ(x)dµω(x)

∫
M

ϕθ−nω(x)dm(x)

∣∣∣∣
≤ K(D4) sup

x∈M
|ψ(x)|

∫
M

ϕθ−nω(x)dm(x)Λn, (6.69)

where K(D4) is a constant only depending on D4. Recall that D4 from (6.56).

Proof. We first prove the case that ϕθ−kω ∈ Cθ−kω(b, c, ν) and
∫
M
ϕθ−kω(x)dm(x) = 1 for all
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k ∈ N. Similarly as (6.62), for any n ≥ N, k ≥ 0, we have

∣∣∣∣∫
M

ψ(x)(Lnθ−nωϕθ−nω)(x)dm(x)−
∫
M

ψ(x)(Ln+k
θ−(n+k)ω

ϕθ−(n+k)ω)(x)dm(x)

∣∣∣∣
≤ ‖ψ‖C0(M)(e

d+,ω(Ln
θ−nω

ϕ,Ln+k
θ−(n+k)ω

ϕ
θ−(n+k)ω

) − 1)

≤ ‖ψ‖C0(M)(e
d+,ω(Ln

θ−nω
ϕ,Ln

θ−nω
Lk
θ−(n+k)ω

ϕ
θ−(n+k)ω

) − 1)

≤ ‖ψ‖C0(M)(e
D4Λn − 1)

≤ K(D4)‖ψ‖C0(M)Λ
n,

where K(D4) is a constant only depending on D4. Let k →∞, by Remark 6.10, we have

∣∣∣∣∫
M

ψ(x)(Lnθ−nωϕθ−nω)(x)dm(x)−
∫
M

ψ(x)dµω(x)

∣∣∣∣ ≤ K(D4) · ‖ψ‖C0(M)Λ
n. (6.70)

Note that by (6.64), we have

∫
M

ψ(x)(Lnθ−nωϕθ−nω)(x)dm(x) =

∫
M

ψ(fnθ−nωx)ϕθ−nω(x)dm(x).

Hence (6.70) becomes

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕθ−nω(x)dm(x)−
∫
M

ψ(x)dµω(x)

∣∣∣∣ ≤ K(D4) · ‖ψ‖C0(M)Λ
n. (6.71)

Now for any ϕθ−nω ∈ Cθ−nω(b, c, ν), let ϕ̃θ−nω(x) := ϕθ−nω(x)/
∫
M
ϕθ−nω(x)dm(x), then (6.69)

is proved by replacing ϕθ−nω by ϕ̃θ−nω in (6.71).

We still need the following lemma:

Lemma 6.12. Pick the number c in the definition of Cω(b, c, ν) satisfying

2(2a0 +
K2

1− e−λ
+

2C2

1− e−λν0
) < c (6.72)
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where K2 is defined in (6.2), C2 is defined in Lemma 4.8. Let c1 be a constant such that

1 < c1 < 2a0 +
K2

1− e−λ
+

2C2

1− e−λν0
. (6.73)

Given any positive continuous function ϕ : M → R+ with

sup
x,y∈M, x6=y

| logϕ(x)− logϕ(y)|
d(x, y)ν

< c1,

then ϕ(Ll
θ−lω1) ∈ Cω(b, c, ν) for every l ≥ 1 and all ω ∈ Ω.

Proof. We prove this lemma for each fixed ω ∈ Ω. Let l ≥ 1 be fixed. ϕ ·(Ll
θ−lω1) is obviously

bounded and measurable function.

For every random local stable manifold γ(ω) and ρ(·, ω) ∈ D(a/2, µ, γ(ω)), we have

∫
γ(ω)

ϕ(x)(Llθ−lω1)(x)ρ(x, ω)dmγ(ω)(x) ≥ inf ϕ ·
∫
γ(ω)

(Llθ−lω1)(x)ρ(x, ω)dmγ(ω)(x) > 0

since Ll
θ−lω1 ∈ Cω(b, c, ν) and ϕ is positive.

By Remark 6.3, ϕ · Ll
θ−lω1 fulfills (C2) since ϕ · Ll

θ−lω1 is nonnegative. So it is left to

verify (C3).

Let γ(ω), γ̃(ω) be any pair of local stable manifolds such that γ̃(ω) is the holonomy image

of γ(ω). Let ρ(·, ω) ∈ D(a1, µ1, γ(ω)) and ρ̃(·, ω) ∈ D(a/2, µ, γ̃(ω)) which is defined as (6.10)

corresponds to ρ(·, ω). We subdivide f−lω γ(ω) into γi(θ
−lω) such that γi(θ

−lω) are local stable

manifolds having size between ε/4 and ε/2. Let γ̃i(θ
−lω) be the holonomy image of γi(θ

−lω)

which lies in f−lω γ̃(ω). Denote ψω : γ̃(ω)→ γ(ω) to be the holonomy map between γ̃(ω) and

γ(ω), and ψi
θ−lω : γ̃i(θ

−lω) → γi(θ
−lω) the holonomy map between γ̃i(θ

−lω) and γi(θ
−lω).
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By using the definition of Lω, we have

∫
γ(ω)

(Llθ−lω1)(x)ϕ(x)ρ(x, ω)dmγ(ω)(x)

=
∑
i

∫
γi(θ−lω)

| detDxf
l
θ−lω|Es(x,θ−lω)|

| detDxf lθ−lω|
ρ(f lθ−lωx, ω)ϕ(f lθ−lωx)dmγi(θ−lω)(x)

=
∑
i

∫
γ̃i(θ−lω)

| detDψi
θ−lω

(x)f
l
θ−lω|Es(ψi

θ−lω
(x),θ−lω)|

| detDψi
θ−lω

(x)f
l
θ−lω
|

· ρ(f lθ−lωψ
i
θ−lω(x), ω) · ϕ(f lθ−lωψ

i
θ−lω(x))

· | detDψiθ−lω(x)|dmγ̃i(θ−lω)(x).

On the other hand, we have

∫
γ̃(ω)

(Llθ−lω1)(x)ϕ(x)ρ̃(x, ω)dmγ̃(ω)(x)

=
∑
i

∫
γ̃i(θ−lω)

| detDxf
l
θ−lω|Es(x,θ−lω)|

| detDxf lθ−lω|
ρ̃(f lθ−lωx, ω)ϕ(f lθ−lωx)dmγ̃i(θ−lω)(x)

=
∑
i

∫
γ̃i(θ−lω)

| detDxf
l
θ−lω|Es(x,θ−lω)|

| detDxf lθ−lω|
ρ(ψω(f lθ−lωx), ω)ϕ(f lθ−lωx)| detDψω(f lθ−lωx)|dmγ̃i(θ−lω).

Note that f l
θ−lωψ

i
θ−lω(x) = ψω(f l

θ−lωω) by the invariance of stable and unstable manifolds, so

ρ(f lθ−lωψ
i
θ−lω(x), ω) = ρ(ψω(f lθ−lωω), ω). (6.74)

Since logϕ(·) is (c1, ν)−Hölder continuous on local unstable manifolds,

∣∣logϕ(f lθ−lωψ
i
θ−lω(x))− logϕ(f lθ−lωx)

∣∣ ≤ c1d(f lθ−lωψ
i
θ−lω(x), f lθ−lω(x))ν

≤ c1d(γ(ω), γ̃(ω))ν . (6.75)
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By Lemma 4.20,

∣∣log | detDψω(f lθ−lωx)| − log | detDψiθ−lω(x)|
∣∣

≤ a0d(f lθ−lωx, ψωf
l
θ−lωx)ν0 + a0d(x, ψiθ−lωx)ν0

≤ a0d(γ(ω), γ̃(ω))ν0 + a0d(γi(θ
−lω), γ̃i(θ

−lω))ν0

< 2a0d(γ(ω), γ̃(ω))ν0 . (6.76)

By (6.2), for x ∈ γ̃i(θ−lω), we deduce that

| log | detDψi
θ−lω

(x)f
l
θ−lω| − log | detDxf

l
θ−lω||

≤ K2d(x, ψiθ−lω(x)) +K2d(fθ−lωx, fθ−lωψ
i
θ−lω(x)) + · · ·+K2d(f l−1

θ−lω
x, f l−1

θ−lω
ψiθ−lω(x))

≤ K2e
−lλd(γ(ω), γ̃(ω)) +K2e

−(l−1)λd(γ(ω), γ̃(ω)) + · · ·K2d(γ(ω), γ̃(ω))

≤ K2/(1− e−λ) · d(γ(ω), γ̃(ω)). (6.77)

By applying (6.31),

∣∣∣log | detDψi
θ−lω

(x)f
l
θ−lω|Es(ψi

θ−lω
(x),θ−lω)| − log | detDxf

l
θ−lω|Es(x,θ−lω)|

∣∣∣
≤ 2C2d(ψiθ−lω(x), x)ν0 + · · ·+ 2C2d(f l−1

θ−lω
ψiθ−lω(x), f l−1

θ−lω
x)ν0

≤ 2C2/(1− e−λν0)d(γ(ω), γ̃(ω))ν0 . (6.78)

Combing (6.74), (6.75), (6.76), (6.77) and (6.78), we conclude

∣∣∣∣log

∫
γ(ω)

(Llθ−lω1)(x)ϕ(x)ρ(x, ω)dmγ(ω)(x)− log

∫
γ̃(ω)

(Llθ−lω1)(x)ϕ(x)ρ̃(x, ω)dmγ̃(ω)(x)

∣∣∣∣
≤ (c1 + 2a0 +

K2

1− e−λ
+

2C2

1− e−λν0
)d(γ(ω), γ̃(ω))ν

≤ cd(γ(ω), γ̃(ω))ν .

Hence (C3) is verified.
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Now we assume continuous function ψ ∈ C0(M) such that ψ > 0, logψ(·) is (a/4, µ)−Hölder

continuous. Let positive continuous function ϕ : M → R with logϕ is (c1, ν)−Hölder con-

tinuous. Then by the Lemma 6.12, for each n ∈ N

ϕ · Llθ−(l+n)ω1 = ϕ · Llθ−lθ−nω1 ∈ Cθ−nω(b, c, ν) for all l ∈ N all ω ∈ Ω.

Now, we apply Lemma 6.11 to obtain that for all ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnθ−nωx)(ϕ · Llθ−lθ−nω1)(x)dm(x)−
∫
M

ψ(x)dµω

∫
M

(ϕ · Llθ−lθ−nω1)(x)dm(x)

∣∣∣∣
≤ K(D4)D4 sup

x∈M
|ψ(x)|

∫
M

(ϕ · (Llθ−lθ−nω1))(x)dm · Λn, for all l ∈ N. (6.79)

Let l→∞, by (6.66), for all ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω −
∫
M

ψ(x)dµω(x)

∫
M

ϕ(x)dµθ−nω

∣∣∣∣
≤ K(D4)‖ψ‖C0(M)

∫
M

ϕ(x)dµθ−nω · Λn

≤ K(D4)‖ψ‖C0(M) · ‖ϕ‖C0(M) · Λn. (6.80)

Finally, given ψ ∈ C0,µ(M) and ϕ ∈ C0,ν(M), let

Bψ =
5|ψ(·)|µ

a
, Bϕ =

2|ϕ(·)|ν
c1

,

and define

ψ+
Bψ

(
· = 1

2
(|ψ(·)|+ ψ(·)

)
+Bψ, ψ

−
Bψ

(·) =
1

2
(|ψ(·)| − ψ(·)) +Bψ,

ϕ+
Bϕ

(·) =
1

2
(|ϕ(·)|+ ϕ(·)) +Bϕ, ϕ

−
Bϕ

(·) =
1

2
(|ϕ(·)| − ϕ(·)) +Bϕ.

Then logψ±Bψ(·) are (a/4, µ)−Hölder continuous, and logϕ±Bϕ(·) are (c1, ν)−Hölder continu-
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ous. By (6.80) and the linearity of integration, we conclude

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω(x)−
∫
M

ψ(x)dµω(x)

∫
M

ϕ(x)dµθ−nω(x)

∣∣∣∣
≤ 4K(D4) ·max

{
1,

5

a

}
·max

{
1,

2

c1

}
· ‖ψ‖C0,µ(M) · ‖ϕ‖C0,ν(M) · Λn.

Note that the above is true for all n ≥ N . Next, we let

K := max

{
4K(D4) ·max

{
1,

5

a

}
·max

{
1,

2

c1

}
, 2Λ−N

}
, (6.81)

then

∣∣∣∣∫
M

ψ(fnθ−nωx)ϕ(x)dµθ−nω −
∫
M

ψ(x)dµω(x)

∫
M

ϕ(x)dµθ−nω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M) · ‖ϕ‖C0,ν(M) · Λn

for all n ≥ 0.

This finishes the proof for the past random correlations.

6.5 Proof of The Exponential Decay of the Future Random

Correlation

In this subsection, we prove the exponential decay of the future random correlations.

Lemma 6.13. Let positive continuous function ψ : M → R satisfy that logψ is (a
4
, µ)−Hölder

continuous. Then for each fixed ω ∈ Ω, ϕω ∈ Cω(b, c, ν), for any n ≥ N , the following holds:

∣∣∣∣∫
M

ψ(fnωx)ϕω(x)dm−
∫
M

ψ(x)dµθnω

∫
M

ϕω(x)dm

∣∣∣∣ ≤ K(D4) · ‖ψ‖C0(M)

∫
M

ϕω(x)dm · Λn.

(6.82)

Recall that K(D4) is defined in Lemma 6.11.

Proof. We first prove the case that
∫
M
ϕω(x)dm(x) = 1. Note that for any n ≥ N, k ≥ 0,

Lnωϕω, L
n+k
θ−kω

1 ∈ Cθnω(b, c, ν). Similar proof as (6.62) can be applied on the fiber {θnω} to
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show that

∣∣∣∣∫
M

ψ(x)(Lnωϕω)(x)dm(x)−
∫
M

ψ(x)(Ln+k
θ−kω

1)(x)dm(x)

∣∣∣∣
≤ ‖ψ‖C0(M)(e

d+,θnω(Lnωϕω ,L
n+k

θ−kω
1) − 1)

≤ ‖ψ‖C0(M)(e
d+,θnω(Lnωϕω ,L

n
ωL

k
θ−kω

1) − 1)

≤ ‖ψ‖C0(M)(e
D4Λn − 1)

≤ K(D4) · ‖ψ‖C0(M)Λ
n,

where we apply (6.57) in the last inequality. Notice that Ln+k
θ−kω

1 = Lk
θ−kθnωL

n
θ−kω1, Ln

θ−kω1 ∈

Cθn−kω(b, c, ν) = Cθ−kθnω(b, c, ν) and
∫
M
Ln
θ−kω1dm = 1 for all k ∈ N. Let k →∞, by Remark

6.10, we have

∣∣∣∣∫
M

ψ(x)(Lnωϕω)(x)dm(x)−
∫
M

ψ(x)dµθnω(x)

∣∣∣∣ ≤ K(D4) · ‖ψ‖C0(M)Λ
n. (6.83)

Note that by (6.64),

∫
M

ψ(x)(Lnωϕω)(x)dm(x) =

∫
M

ψ(fnωx)ϕω(x)dm(x).

Hence (6.70) becomes

∣∣∣∣∫
M

ψ(fnωx)ϕω(x)dm(x)−
∫
M

ψ(x)dµθnω(x)

∣∣∣∣ ≤ K(D4) · ‖ψ‖C0(M)Λ
n. (6.84)

Now for any ϕω ∈ Cω(b, c, ν), let ϕ̃ω(x) := ϕω(x)/
∫
M
ϕω(x)dm(x), then (6.82) is proved by

replacing ϕω by ϕ̃ω in (6.84).

Now assume function ψ : M → R such that ψ > 0, logψ(·) is (a/4, µ)−Hölder continuous.

Let ϕ : M → R with logϕ is (c1, ν)−Hölder continuous. Then by the Lemma 6.12, we have

ϕ · Llθ−lω1 ∈ Cω(b, c, ν) for all l ∈ N all ω ∈ Ω.
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Now, we apply Lemma 6.13 to obtain that for all ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnωx)(ϕ · Llθ−lω1)(x)dm(x)−
∫
M

ψ(x)dµθnω

∫
M

(ϕ · Llθ−lω1)(x)dm(x)

∣∣∣∣
≤ K(D4)‖ψ‖C0(M)

∫
M

(ϕ · (Llθ−lω1))(x)dm · Λn, for all l ∈ N.

Let l→∞, by (6.66), for all ω ∈ Ω,

∣∣∣∣∫
M

ψ(fnωx)ϕ(x)dµω −
∫
M

ψ(x)dµθnω(x)

∫
M

ϕ(x)dµω

∣∣∣∣
≤ K(D4)‖ψ‖C0(M)

∫
M

ϕ(x)dµω · Λn

≤ K(D4)‖ψ‖C0(M) · ‖ϕ‖C0(M) · Λn. (6.85)

Finally, given ψ ∈ C0,µ(M) and ϕ ∈ C0,ν(M), let

Bψ =
5|ψ(·)|µ

a
, Bϕ =

2|ϕ(·)|ν
c1

,

and define

ψ+
Bψ

(
· = 1

2
(|ψ(·)|+ ψ(·)

)
+Bψ, ψ

−
Bψ

(·) =
1

2
(|ψ(·)| − ψ(·)) +Bψ,

ϕ+
Bϕ

(·) =
1

2
(|ϕ(·)|+ ϕ(·)) +Bϕ, ϕ

−
Bϕ

(·) =
1

2
(|ϕ(·)| − ϕ(·)) +Bϕ.

Then logψ±Bψ(·) are (a/4, µ)−Hölder continuous, and logϕ±Bϕ(·) are (c1, ν) Hölder continuous.

By (6.85) and the linearity of integration, we conclude

∣∣∣∣∫
M

ψ(fnωx)ϕ(x)dµω −
∫
M

ψ(x)dµθnω(x)

∫
M

ϕ(x)dµω

∣∣∣∣ ≤ K‖ψ‖C0,µ(M) · ‖ϕ‖C0,ν(M) · Λn.

for all n ≥ 0. Recall that K is defined in (6.81).

This finishes the proof for the future random correlations. The proof of Theorem 3.10 is
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done.

Chapter 7. Existence of the random Gibbs

u−state

In this chapter, we prove the Theorem 3.12 by using the geometric ‘push-forward’ approach,

appeared in [48], [42] and [43], on each fiber. We refer to a survey about this approach in

deterministic dynamical systems [19]. We proceed with the proof by a reference measure λx

which is a random probability measure and its disintegration coincides with the normalized

intrinsic Riemmanian measure on a local strong unstable manifold. Then we consider the

Krylov-Bogolyubov type sequence 1
n

∑n−1
k=0(φ∗)kλx. We keep track of the density function

when the system is stretched along the unstable direction, and finally, we prove that any

weak∗ limit point in the Krylov-Bogolyubov sequence satisfies the definition of the random

Gibbs u−state.

Pick any x ∈M and fix, define Lx : Ω→ 2M by

Lx(ω) := W uu
δ (x, ω).

We define (λx)ω ∈ Pr(M) by the normalized intrinsic Riemannian volume measure on Lx(ω)

as a submanifold. Then the disintegration {(λx)ω}ω∈Ω defines a random probability measure,

named λx. In fact, for any g : M → R bounded and Lipschitz continuous function, we have

|(λx)ω(g)− (λx)ω′(g)|

=

∣∣∣∣∣ 1

λu(x,ω)(W
uu
δ (x, ω))

∫
Wuu
δ (x,ω)

g(y)dλu(x,ω)(y)− 1

λu(x,ω′)(W
uu
δ (x, ω′))

∫
Wuu
δ (x,ω′)

g(y)dλu(x,ω′)(y)

∣∣∣∣∣ ,
where λu(x,ω) and λu(x,ω′) are the intrinsic Riemannian volume measure on W uu

δ (x, ω) and

W uu
δ (x, ω′) induced by the inherited Riemannian structure respectively. So ω 7→ (λx)ω(g)

is continuous due to the continuity of W uu
δ (x, ω) on ω for fixed x. Now for any closed set
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B ⊂M , define gn(x) := 1−min{nd(x,B), 1} which is bounded and Lipshitz. By Monotone

convergence theorem, we have (λx)ω(gn) → (λx)ω(B). Hence ω 7→ (λx)ω(B) is measurable.

By Remark 2.13, λx defined by disintegration {(λx)ω}ω∈Ω is a random probability measure

by definition.

Consider the sequence of random probability measures { 1
n

∑n−1
k=0(φ∗)kλx}∞n=1 ⊂ PrΩ(M).

Since PrΩ(M) is compact with respect to the narrow topology, then there exists a subse-

quence { 1
ni

∑ni−1
k=0 (φ∗)kλx}∞i=1 converging in the narrow topology. We denote µ by the limit

of this subsequence in narrow topology. µ is obviously a φ−invariant random probability

measure.

Let {xi}∞i=1 ⊂M be a countable dense subset. For any ω ∈ Ω, we define

Vxi,ε(ω) =
⋃

y∈Σxi,ε(ω)

W uu
ρ (y, ω)− ∂(

⋃
y∈Σxi,ε(ω)

W uu
ρ (y, ω))

where Σxi,ε(ω) := expxi(E
cs
ε (xi, ω)) and ∂ denotes the boundary. Here, by property (4)

in Lemma 4.26, we pick ε sufficiently small such that W u
ρ (y, ω) ∩ W u

ρ (z, ω) = ∅ for any

y, z ∈ Σxi,ε(ω). This {Vxi,ε(ω)}∞i=1 forms an open cover of Mω. We choose a finite cover

of it, named {Vxi,ε(ω)}m(ω)
i=1 . By continuity of W uu

δ (x, ω) and Ecs(x, ω) on ω, there exists a

γ(ω) > 0 sufficiently small such that whenever d(ω, ω′) < γ(ω), {Vxi,ε(ω′)}
m(ω)
i=1 is still an

open cover of Mω′ . Keep doing this process and use the compactness of Ω, we can find a

finite measurable partition {Fi}ni=1 of Ω in small scale and a sequence of numbers {mi}ni=1

such that whenever ω ∈ Fi, {Vxj ,ε(ω)}mij=1 is an open cover of Mω.

Now define gj1,j2,...,jn ∈ L∞(Ω,M) for ji ∈ {1, ...,mi} by gj1,...,jn(ω) = xji when ω ∈ Fi.

Now for any g ∈ {gj1,...,jn}, define Vg,ε : Ω→ 2M by

Vg,ε(ω) := Vg(ω),ε(ω).

Notice that ω 7→ Vg,ε(ω) is obviously a random closed set by the continuity of W uu
ρ (y, ω) on ω

and the measurability of Σg(ω),ε(ω) on ω. As a consequence, Vg,ε(ω) = V o
g,ε(ω) := int(Vg,ε(ω))
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is an random open set by Proposition 2.16. We have for any ω ∈ Ω,

⋃
g∈{gj1,...,jn}

Vg,ε(ω) = Mω.

By shrinking ε and ρ if necessary, without losing any generality, one can assume that

µ(∂Vg,ε) =
∫

Ω
µω(∂Vg,ε(ω))dP (ω) = 0. For each ω ∈ Ω, we divide Vg,ε(ω) into pieces

{W uu
ρ (y, ω)}y∈Σg(ω),ε(ω), which produces a measurable partition of V (ω). Let (µω|Vg,ε(ω))y

be the conditional probability measure of µω|Vg,ε(ω) on W uu
ρ (y, ω) for y ∈ Σg(ω),ε(ω). Then

µ is a random Gibbs u-state if for P−a.s. ω ∈ Ω, and neglecting a µω|Vg,ε(ω)−null set, the

following holds

(µω|Vg,ε(ω))y � λu(y,ω) on every piece W uu
ρ (y, ω), y ∈ Σg(ω),ε(ω), (7.1)

where λu(y,ω)is the intrinsic Riemannian volume measure on W uu
ρ (y, ω).

For each n ≥ 0, for all ω ∈ Ω, let

Ln(ω) :=
{
z ∈ Lx(ω) : fnω (z) ∈ W uu

ρ (y, θnω) for some y ∈ Σg,ε(θ
nω)

but W uu
ρ (y, θnω) 6⊂ fnωLx(ω)

}
.

By the local strong unstable invariant manifolds theorem, we have that for any z ∈ Ln(ω),

du(z, ∂Lx(ω)) ≤ δγ0e
−n(λ0−ε0). Otherwise, since for any z′ ∈ W uu

ρ (y, θnω), du(fnω (z), z′) < ρ,

then

du(z, f−nω z′) ≤ γ0e
−n(λ0−ε0) · ρ ≤ γ0e

−n(λ0−ε0)δ < du(z, ∂Lx(ω)),

which implies that z′ ∈ fnωLx(ω), contradiction. Therefore, by Lemma 4.26 (1), there exists

a constant C independent of ω ∈ Ω and x ∈M such that

λLx(ω)(Ln(ω)) ≤ C(δγ0e
−n(λ0−ε0))dim(Euu(x,ω)) → 0 as n→∞
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uniformly for all ω ∈ Ω. Thus we have

lim
i→∞

1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Ln) = µ. (7.2)

where λx|Lx−Ln is the random measure with disintegration ω 7→ (λx)ω|Lx(ω)−Ln(ω).

For each random box Vg,ε,
∫

Ω
µω(∂Vg,ε(ω))dP (ω) = 0, we claim that

lim
i→∞

(
1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Ln)

)
(Vg,ε) = µ(Vg,ε). (7.3)

In fact, by the portmanteau theorem (Proposition 2.18) and notice that ω 7→ Vg,ε(ω) is

random closed set, and ω 7→ Vg,ε(ω) is a random open set, then on one hand

µ(Vg,ε) =

∫
Ω

µω(Vg,ε(ω))dP (ω)

≤ lim inf
i→∞

1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Ln)(Vg,ε),

and on the other hand

µ(Vg,ε) =

∫
Ω

µω(Vg,ε(ω))dP (ω)

=

∫
Ω

µω(Vg,ε(ω))dP (ω)

≥ lim sup
i→∞

1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Ln)(Vg,ε)

≥ lim sup
i→∞

1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Ln)(Vg,ε).

Hence the equality (7.3) holds.

Recall that Ju(x, ω) is defined in Subsection 4.2.2. Now for any n ∈ N, and any z ∈
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Vg,ε(ω), define

hn(z, ω) =

∏n
k=0

1
Ju(φ−k(z,ω))∫

Wu
ρ (y,ω)

∏n
k=0

1
Ju(φ−k(z,ω))

dλu(y,ω)(z)

=

∏n
k=0

Ju(φ−k(y,ω))
Ju(φ−k(z,ω))∫

Wu
ρ (y,ω)

∏n
k=0

Ju(φ−k(y,ω))
Ju(φ−k(z,ω))

dλu(y,ω)(z)
,

where y ∈ Σg(ω),ε(ω) is the point such that z ∈ W uu
ρ (y, ω).

Suppose that W uu
ρ (y, ω) ⊂ fnθ−nω(Lx(θ

−nω)− Ln(θ−nω)) for some y ∈ Σg(ω),ε(ω), and let

mn
(y,ω) be the conditional measure of (fnθ−nω)∗((λx)θ−nω|Lx(θ−nω)−Ln(θ−nω)) on W uu

ρ (y, ω), then

by definition we have

hn(·, ω)|Wuu
ρ (y,ω) =

dmn
(y,ω)

dλu(y,ω)

. (7.4)

Notice that hn : graph(Vg,ε) = {(x, ω)| x ∈ Vg,ε(ω)} ⊂ M × Ω → R is obviously mea-

surable with respect to the σ−algebra graph(Vg,ε) ∩ B(M)⊗ B(Ω). By (4.61), hn converges

uniformly to a measurable function h : graph(Vg,ε)→ (0,+∞) defined by

h(z, ω) :=

∏∞
k=1

Ju(φ−k(y,ω))
Ju(φ−k(z,ω))∫

Wuu
ρ (y,ω)

∏∞
k=1

Ju(φ−k(y,ω))
Ju(φ−k(z,ω))

dλu(y,ω)(z)
(7.5)

for any (z, ω) ∈ W uu
ρ (y, ω) and y ∈ Σg(ω),ε(ω). Moreover, for each ω ∈ Ω, note that Ju(·, ω)

is a continuous function and φ−1(·, ω) is continuous function, so hn(·, ω) is a continuous

function on each local strong unstable leaf. Thus, h(·, ω) is continuous on each local strong

unstable leaf since hn(·, ω)→ h(·, ω) uniformly on each local strong unstable leaf as n→∞.

Now define a random measure ν on graph(Vg,ε) by

ν(A) =

∫
Ω

∫
Σg(ω),ε(ω)

∫
Wuu
ρ (y,ω)∩A(ω)

h(z, ω)dλu(y,ω)(z)d( ˜µω|Vg,ε(ω))(y)dP (ω) (7.6)

for any measurable set A ⊂M×Ω with A ⊂ graph(Vg,ε) and A(ω) := {x ∈M : (x, ω) ∈ A},
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where d( ˜µω|Vg,ε(ω))(y) is the projection measure on Σg(ω),ε(ω) with respect to the measurable

partition {W uu
ρ (y, ω)}y∈Σg(ω),ε(ω).

For any random continuous function c(x, ω), and z ∈ W uu
ρ (y, ω) with y ∈ Σg(ω),ε(ω),

define

c̄(z, ω) =

∫
Wuu
ρ (y,ω)

c(z′, ω)h(z′, ω)dλu(y,ω)(z
′).

Then we have that c̄(z, ω) is a bounded measurable function defined on graph(Vg,ε) and for

each fixed ω, c̄(z, ω) is constant on each W u
ρ (y, ω) for y ∈ Σg(ω),ε(ω).

Denote Λk(ω) := fk
θ−kω(Lx(θ

−kω) − Lk(θ
−kω)) ∩ Σg(ω),ε(ω), and denote (φ∗)k(λx|Lx−Lk)

by µk, and (̃µk)ω the projection of (µk)ω on Λk(ω) with respect to the measurable partition

{W uu
ρ (y, ω)}y∈Λk(ω). Then for any random continuous function c(z, ω), by (7.2), and the

uniform convergence of hk, we have

µ|Vg,ε(c)

= lim
i→∞

1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Lk)|Vg,ε(c)

= lim
i→∞

∫
Ω

∫
Vg,ε(ω)

c(z, ω)d(
1

ni

ni−1∑
k=0

(φ∗)k(λx|Lx−Lk)|Vg,ε)ωdP (ω)

= lim
i→∞

1

ni

ni−1∑
k=0

∫
Ω

∫
Vg,ε(ω)

c(z, ω)d((φ∗)k(λx|Lx−Lk)|Vg,ε)ωdP (ω)

= lim
i→∞

1

ni

ni−1∑
k=0

∫
Ω

∫
Λk(ω)

((φ∗)k(λx|Lx\Lk))ω(W uu
ρ (y, ω))

∫
Wuu
ρ (y,ω)

c(z, ω)hk(z, ω)dλu(y,ω)(z)d(̃µk)ω(y)dP

= lim
i→∞

1

ni

ni−1∑
k=0

∫
Ω

∫
Λk(ω)

((φ∗)k(λx|Lx\Lk))ω(W uu
ρ (y, ω))

∫
Wuu
ρ (y,ω)

c(z, ω)h(z, ω)dλu(y,ω)(z)d(̃µk)ω(y)dP

= lim
i→∞

1

ni

ni−1∑
k=0

∫
Ω

∫
Λk(ω)

((φ∗)k(λx|Lx\Lk))ω(W uu
ρ (y, ω))

∫
Wuu
ρ (y,ω)

c̄(z, ω)h(z, ω)dλu(y,ω)(z)d(̃µk)ω(y)dP

= µ|Vg,ε(c̄)

=

∫
Ω

∫
Vg,ε(ω)

c̄(z, ω)d(µ|Vg,ε)ω(y)dP (ω)

=

∫
Ω

∫
Σg(ω),ε(ω)

∫
Wuu
ρ (y,ω)

c(z, ω)h(z, ω)dλu(y,ω)(z)d(µ̃|Vg,ε)ω(y)dP (ω).
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Hence, we have µ|Vg,ε = ν, and therefore (7.1) holds. This proves that µ is a random Gibbs

u−state.

The proof of Theorem 3.12 is done.

Appendix A. Convex Cone, Projective Met-

ric and Birkhoff’s inequality

In this appendix, we review the notion of Hilbert projective metric associated to a convex

cone in a topological vector space. The following notions are borrowed from [62].

Definition A.1. Let E be a topological vector space. A subset C ⊂ E is said to be a convex

cone if

(i) tv ∈ C for v ∈ C and t ∈ R+;

(ii) for any t1, t2 ∈ R+, v1, v2 ∈ C, then t1v1 + t2v2 ∈ C;

(iii) C̄ ∩ −C̄ = {0}, where C̄ the closure of C is defined by: w ∈ C̄ if and only if there are

v ∈ C and tn ↘ 0 such that w + tnv ∈ C for all n ≥ 1.

Definition A.2. For a convex cone C ⊂ E, given any v1, v2 ∈ C, we define

α(v1, v2) := sup{t > 0 : v2 − tv1 ∈ C};

β(v1, v2) := inf{s > 0 : sv1 − v2 ∈ C},

with the convention that sup ∅ = 0 and inf ∅ = +∞. The Hilbert projective metric between

v1, v2 ∈ C is defined by

dC(v1, v2) = log
β(v1, v2)

α(v1, v2)

with the convention that dC(v1, v2) =∞ if α(v1, v2) = 0 or β(v1, v2) =∞.

Proposition A.3. dC is a metric in the projective quotient of C, i.e.,
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(i) dC(v1, v2) = dC(v2, v1) for all v1, v2 ∈ C;

(ii) dC(v1, v3) ≤ dC(v1, v2) + dC(v2, v3) for all v1, v2, v3 ∈ C;

(iii) dC(v1, v2) = 0 if and only if there exists t ∈ R+ such that v1 = tv2.

An important property of the Hilbert projective metric is Birkhoff’s inequality. We use

this theorem to prove that the iterations of fiber transfer operator is a contraction on a

suitable fiber observations cone in Section 6.2.

Proposition A.4 (Birkhoff’s inequality). Let E1, E2 be two topological vector spaces, and

Ci ⊂ Ei, for i = 1, 2 be convex cones. Let L : E1 → E2 be a linear operator and assume that

L(C1) ⊂ C2. Let D = sup{dC2(L(v1), L(v2)) : v1, v2 ∈ C1}. If D <∞, then

dC2(L(v1), L(v2)) ≤ (1− e−D)dC1(v1, v2) for all v1, v2 ∈ C1.

Appendix B. The random SRB measure for

random hyperbolic Systems

Let F : Z × Ω × M → M be a continuous random dynamical system over an invertible

ergodic metric dynamical systems (Ω,B, P, θ). A random variable γ : Ω 7→ R+ will be called

tempered, if it satisfies limn→±∞
1
n

log γ(θnω) = 0 P−a.s.

Definition B.1. A random compact nonempty set ω 7→ Λ(ω) is called invariant under F

if F (ω)Λ(ω) = Λ(θω) for P−a.s. ω ∈ Ω. Such a Λ is called a random hyperbolic set for F

if there exists an open set V with a compact closure V̄ , tempered random variables λ > 0,

α > 0, C > 0, and subbundles Γu(ω) and Γs(ω) of the tangent bundle TΛ(ω), depending

measurably on ω such that

(i) for P−a.s. ω ∈ Ω, there exist a measurable in ω family of open sets U(ω) such that

{x : d(x,Λ(ω)) < α(ω)} ⊂ U(ω) ⊂ V , F (ω)U(ω) ⊂ V , and F (ω) restricted to U(ω)
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is a diffeomorphism and both log+ supx∈U(ω) ‖DxF (ω)‖ and log+ supx∈U(ω) ‖DxF (ω−1)‖

belong to L1(Ω, P );

(ii) TΛ(ω) = Γu(ω) ⊕ Γs(ω), DF (ω)Γτ (ω) = Γτ (θω) for τ = u, s, and ∠(Γu(ω),Γs(ω)) ≥

α(ω) P−a.s.

(iii) for n ∈ N and λ(n, ω) = λ(ω) · · ·λ(θn−1ω) and P−a.s. ω

‖DF (n, ω)ξ‖ ≤ C(ω)λ(n, ω)‖ξ‖ for ξ ∈ Γs(ω);

‖DF (−n, ω)η‖ ≤ C(ω)λ(n, θ−nω)‖η‖ for η ∈ Γu(ω);

(iv)
∫

log λdP < 0;

(v) logα ∈ L1(Ω, P )

If in addition, F (ω)U(ω) ⊂ U(θω) P−a.s. and ∩n∈NF (n, θ−nω)U(θ−nω) = Λ(ω), then we

call Λ a random hyperbolic attractor of F . If M is compact and all Λ(ω) = M and satisfy

assumptions above, then we call F a random Anosov system.

It is obviously that the random Anosov on fibers systems defined in Section 2.1 is random

Anosov systems.

Definition B.2. F is called random topological transitive if for any given open random sets

U and V with U(ω), V (ω) 6= ∅ for all ω ∈ Ω, there exists a random variable n taking values

in Z such that the intersection F (n(ω), θ−n(ω))U(θ−nω) ∩ V (ω) 6= ∅ P−a.s..

The following lemma is the Lemma A.1 in [34].

Lemma B.3. If F is topological mixing on fibers, then F is random topological transitive.

The following theorem is Theorem 4.3 in [32], which is the main result of the SRB measure

for random hyperbolic systems.
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Theorem B.4. Let F be a C1+α RDS with a random topological transitive hyperbolic at-

tractor Λ ⊂ M × Ω. Then there exists a unique F−invariant measure (SRB-measure) ν

supported by Λ and characterized by each of the following:

(i) hν(F ) =
∫ ∑

λ+
i dν, where λi are the Lyapunov exponents corresponding to ν;

(ii) P−a.s. the conditional measure of νω on the unstable manifolds are absolutely contin-

uous with respect to the Riemannian volume on these submanifolds;

(iii) hν(F )+
∫
fdν = supF−invariant ν{hν(F )+

∫
fdν} and the later is the topological pressure

πF (f) of f which satisfies πF (f) = 0;

(iv) ν = ψµ̃, where ψ is the conjugation between F on Λ and two-sided shift σ on ΣA, and µ̃

is the equilibrium state for the σ and function f ◦ψ. The measure µ̃ can be obtained as

a natural extension of the probability measure µ which is invariant with respect to the

one-sided shift on Σ+
A and such that L∗ηµθω = µω P−a.s. where η−f ◦ψ = h−h◦(θ×σ)

for some random Hölder continuous function h;

(v) ν can be obtained as a weak limit νω = limn→ F (n, θ−nω)mθ−nω P−a.s. for any measure

mω absolutely continuous with respect to the Riemannian volume such that suppµω ⊂

U(ω).
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