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abstract

Stabilizing Controlled Systems in the Presence of Time-Delays

Isaac Becker Pardo
Department of Mathematics, BYU

Master of Science

A dynamical system’s state evolves over time, and when the system stays near a particular
state this state is known as a stable state of the system. Through control methods, dynamical
systems can be manipulated such that virtually any state can be made stable. Although
most real systems evolve continuously in time the application of digital control methods to
these systems is inherently discrete. States are sampled (with sensors) and fed back into
the system in discrete-time to determine the input needed to control the continuous system.
Additionally, dynamical systems often experience time delays. Some examples of time delays
are delays due to transmission distances, processing software, sampling information, and
many more. Such delays are often a cause of poor performance and, at times, instability in
these systems. Recently a criterion referred to as intrinsic stability has been developed that
ensures that a dynamic system cannot be destabilized by delays. The goal of this thesis is to
broaden the definition of intrinsic stability to closed-loop systems, which are systems in which
the control depends on the state of the system, and to determine control parameters that
optimize this resilience to time delays. Here, we give criteria describing when a closed-loop
system is intrinsically stable. This allows us to give examples in which systems controlled
using Linear Quadratic Regulator (LQR) control can be made intrinsically stable.

Keywords: mathematical modeling, dynamics, control, time-delay, intrinsic stability
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Chapter 1. Introduction

A dynamical system is any system for which the state of the system evolves over time. Dy-

namical systems are all around us. Some examples of dynamical systems include mechanical,

electrical, fluid, and thermal systems. In the study of dynamical systems mathematical mod-

els are used to describe and to investigate the evolution over time of real and theoretical

systems. An important topic of study in dynamical systems is the study of stability, where

stability can be thought of as the system’s tendency to find its way to or relax back into a

particular state after being perturbed. If so, the system is consider to be stable about that

particular state. Otherwise, if the system does not relax to a particular state, then the sys-

tem is classified as unstable [1]. As described in [2] a dynamical system can also be classified

as intrinsically stable, meaning that no matter what types of time delays it experiences, the

system will not be destabilized by these time delays.

In contrast, control theory can be used to change a system’s dynamics to make it evolve

in a desired way. For example, a method of control that implements this idea is called the

“Linear Quadratic Regulator” or LQR. LQR is an optimization method that finds the best

gains to control a system based on an optimization function. As a first step to understand-

ing the interaction between control and intrinsic stability we develop a sufficient condition

describing when a system can be controlled to be intrinsically stable. Specifically, we extend

the criteria for intrinsic stability to closed-loop systems considering the case in which the

system’s dynamics and the control experience different time delays (see Theorem 5.6).

Some potential applications of this research could involve transmitting data to a system

that is far away (for example planetary rovers), systems that are delayed due to high use

(requests from users), etc. In terms of more general applications, control is often used to

optimize the performance of a system relative to some specific task. However, it has not

been used, as far as we know, to tune a system to be resilient to delays. The hope is that

this work will allow engineers, or others, to consider a new measure of optimal performance
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for controlled dynamical systems that are destabilized by the presence of time-delays.

This thesis is structured as follows. In Chapter 2, we explore how dynamical systems

with control are modeled. We also describe discretization methods and stability of linear

systems. Following this, in Chapter 3 we describe the theory of intrinsic stability and its

relation to time-delayed systems. In Chapter 4 we introduce LQR and discrete-LQR (dLQR),

and we derive the new closed-loop system equations. In Chapter 5 we extend this theory to

controlled systems, specifically closed loop systems and prove our main result. In Chapter 6

we give a few applications of this new theory to controlled systems.

Chapter 2. Background

2.1 Modeling Dynamical Systems and Control Theory

A dynamical system is a system in which the future state of the system depends on the current

or past states of the system via some rule given by a function f : Rn → Rn. In controlled

systems, future states depend both on previous states and on inputs to the system, given

by a function f : (Rn,Rm) → Rn. Dynamical systems can be time-variant or time-invariant

often referred to a homogeneous and in-homogeneous, respectively. Time-variant means that

time has a direct influence on the dynamics, and time-invariant means that the system only

depends on states and input. Here we focus on time-invariant systems, since many real-world

systems are time-invariant. For instance, all examples in this thesis are time-invariant (see

Chapter 6).

The evolution of a continuous-time dynamical system with control is modeled using a

system of differential equations given by,

ẋ = f(x,u), x(t0) = x0. (2.1)

Here f defines the rate of change of the state based on the current state x ∈ Rn and input

u(t) ∈ Rm applied to the system.
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A discrete-time dynamical system with control is given by,

xn+1 = F (xn,un), x(0) = x0. (2.2)

Here F defines the next state xn+1 ∈ Rn based on the current state xn ∈ Rn and current

input un ∈ Rm. We note that this system can be a time-discretized version of Equation

(2.1). There are several methods to discretize a continuous system (see Section 2.2). The

methods vary in complexity and accuracy.

Additionally, we note that if the function F is linear with respect the the state and

input separately, then it can be interpreted as the combination of two functions, F (x, u) =

G(x)+U(u) where G : Rn → Rn and U : Rm → Rn. This is the case in a number of standard

control schemes and is the case we consider in this thesis (see Equation 5.1).

In addition, non-linear models are often linearized to study the stability of the system

about a local region (see Section 2.3). Linearization is done by taking the Jacobian of f or F

with respect an equilibrium state xe ∈ Rn and equilibrium input ue ∈ Rm. An equilibrium

point for a continuous-time system is such that f(xe,ue) = 0 or F (xne ,une) = xne for

discrete-time systems. This results in a linear approximation of the system about the point

x̃ = x−xe with input ũ = u−ue. The linearized system is known as the state-space model

given by,

˙̃x = Ax̃+Bũ (2.3)

in continuous-time where the matrix A ∈ Rn×n describes the evolution of the system based

on its state. The matrix B ∈ Rn×m describes how the inputs affect the evolution of the

system’s state.

Similarly, for discrete systems,

x̃n+1 = Adx̃n +Bdũn. (2.4)

Here Ad and Bd denote the discrete-time system which, in most cases, is different from the

continuous-time version of the system i.e. Ad ̸= A and Bd ̸= B (see Section 2.2).

The state-space equations are used in control methods to drive a system to a desired

3



a) Open-Loop System b) Closed-Loop System

Figure 2.1: (a) The input u = u(t) is set based on time and will not changed based on the
states of the system. (b) The controller changes the input bases the difference between the
desired state xdes and the current states x.

state. Given a desired state xdes ∈ Rn, a system is controllable if it is possible choose

u ∈ Rm such that limt→∞ x(t) = xdes. If u = u(t) depends solely on time t ∈ R then the

control is known as open-loop control (see Figure 2.1 a). The input for an open-loop system

has to be calculated prior to starting the system in order to drive the system to xdes, but

ultimately, there is no guarantee the system will arrive at the desired state due to noise or

unaccounted disturbances. If u depends on both time t and state x then the control is known

as a closed-loop control (see Figure 2.1 b). Often closed-loop systems control based on the

error between the current state and the desired state, that is xerr = x−xdes. When we make

this variable change into our linear system the desired state becomes our fixed point and the

error will be driven to zero if the system is stable (see Section 2.3). The change of variable

for a continuous-time system has the form

ẋerr = Axerr +Bu(xerr, t)

ẋ− ẋdes = Axerr +Bu(xerr, t)

ẋ = Axerr +Bu(xerr, t)

(2.5)

where ẋdes = 0 since xdes is constant. Similarly, controlling for error in a discrete-time system

has the form

xn+1 − xdes = Adxnerr +Bdu(xnerr , t)

xn+1 = Adxnerr +Bdu(xnerr , t) + xdes.

(2.6)

There are many methods for closed-loop control, and a few are listed for the interested

reader: PID Control, Model Predictive Control, Linear-Quadratic Regulator (LQR), fre-
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quency response, etc. We will be focusing on LQR and discrete LQR (dLQR) (see Section

4.1).

2.2 Discretization

Continuous-time dynamical systems can be thought of as systems that allow for a smooth

simulation and representation of real-world systems. However, discrete-time systems/methods

are used to control the system because of the nature of calculations. Computers process infor-

mation in discrete-time in that they sample the changing state of the system in discrete-time

to determine the input in the case of closed-loop systems. There are several methods to

create a time-discretized version of a continuous-time dynamical system. In this thesis we

consider two of those methods. The first is Euler’s method, which is the simplest but also

the least accurate. The second is the matrix exponential (or zero-order hold), which is more

involved and can be exact if the sampling rate is equal to the discrete time step τ . The

sampling rate τ is the rate that continuous information is discretized. The time-step τ is

a small value that we use to discretize the system (as τ goes to zero the system becomes

continuous).

2.2.1 Euler Discretization. Using the following derivative approximation

ẋ ≈ xn+1 − xn

τ

the Euler discretization of the continuous-time system ẋ = Ax+Bu is given by,

xn+1 − xn

τ
≈ Axn +Bu

xn+1 ≈ Ixn + τAxn + τBu

xn+1 ≈ (I + τA)xn + τBu.

(2.7)

Hence, the new discretized dynamics are,

xn+1 = Adxn +Bdun

5



where

Ad = (I + τAd), Bd = τB. (2.8)

2.2.2 Matrix Exponential. Recall that the derivative of the matrix exponential

d

dt
eAt = AeAt = eAtA,

which can be used to derive the exponential method. Multiplying e−At to the state-space

model in (2.3) we have

e−Atẋ = e−AtAx+ e−AtBu

d

dt
(e−Atx(t)) = e−AtBu(t)

e−Atx(t)− e0x(0) =

∫ t

0

e−At1Bu(t1) dt1

x(t) = eAtx(0) +

∫ t

0

eA(t−t1)Bu(t1) dt1.

(2.9)

This formulation is known as the analytical solution to the continuous model. From here we

can discretize the system by definiting xk = x(kτ) where τ is the sampling time. Then, the

new discretized equation is,

xk = eAkτx0 +

∫ kτ

0

eA(kτ−t1)Bu(t1) dt1. (2.10)

For the (k + 1)st time step we can use this equation to write this in terms of the previous

state

xk+1 = eA(k+1)τx0 +

∫ (k+1)τ

0

eA((k+1)τ−t1)Bu(t1) dt1

= eAτ [eAkτx0 +

∫ kτ

0

eA(kτ−t1)Bu(t1) dt1] +

∫ (k+1)τ

kτ

eA(kτ+τ−t1)Bu(t1) dt1.

(2.11)
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Subbing equation (2.10) into (2.11), doing the variable substitution ν(t1) = kτ + τ − t1, and

assuming u does not depend on t1 we get

xk+1 = eAτxk −

(∫ ν((k+1)τ)

ν(kτ)

eAν dν

)
Buk

= eAτxk −
(∫ 0

τ

eAν dν

)
Buk

= eAτxk +

(∫ τ

0

eAν dν

)
Buk

= eAτxk + A−1(eAτ − I)Buk.

(2.12)

This is the exact solution to the discretization problem, meaning it is the most accurate (as

long as the sampling rate of the state is equal to the discretization). Though this method

is the most accurate, it is also more computationally expensive to compute because of the

matrix exponential operation. On top of that, if A is ill-conditioned, the inverse will prove

to be difficult to compute and could introduce error to the system.

In Chapter 3 we consider how the Euler discretization can be used to define intrinsic

stability for time-discretized versions of continuous-time systems, and consider the possibility

to do the same for the matrix exponential discretization method.

2.3 Stability of Linear Systems

For a linear dynamical system it is relatively simple to determine the system’s stability. The

matrix A in the state-space Equation (2.3) (or Ad in Equation 2.4 for discrete-time) is the

only matrix of interest when determining the stability of the system. This matrix effectively

gives the dynamics of the system. Here a system is referred to as stable if the system will

converge over time to a unique state irrespective of its initial state. This state is known

as the system’s globally attracting fixed point (see, for example, the paragraph following

Definition 3.1). There is no local condition to this stability because the problem is linear. A

continuous-time linear system is stable if the real part of the eigenvalues of the associated

7



matrix A are less than zero. That is,

R(λi) < 0 for λ1, . . . , λn ∈ σ(A) (2.13)

where σ(A) are the eigenvalues of A. Similarly, for a discrete-time linear system the modulus

of the eigenvalues of the associated matrix Ad must be less than one. That is,

|λi| < 1 for λ1, . . . , λn ∈ σ(Ad). (2.14)

In other words, the spectral radius of Ad must be less than 1.

As previously discussed, control is used to drive the system to a desired location. This

can be thought of as changing the dynamics of the system to have a stable fixed point of our

choosing. The control method has to be tuned to get the desired reaction from the system.

This is important because control can potentially destabilize a system. Destabilization of a

system is the main focus of the following chapter, however the destabilization considered is

due to time-delays rather than control.

Chapter 3. Intrinsic Stability

Before describing the stability of a controlled system, e.g. systems given by either Equation

(2.1) or Equation (2.2), we consider the stability of uncontrolled dynamical systems as this

lends itself to the stability analysis of closed-loop systems. The specific systems we consider

are discrete-time systems. The main reason is that the notion of intrinsic stability (see

Definition 3.5) at this point has only been defined for discrete-time systems although here

we make strides in extending this notion to continuous-time systems (see Theorem 3.10).

Definition 3.1. (Dynamical System) Let (Xi, di) be a complete metric space for 1 ≤

i ≤ n. Let (X, dmax) be the complete metric space formed by endowing the product space

X =
⊕n

i=1Xi with the metric

dmax(x,y) = max
i

di(xi, yi) where x,y ∈ X and xi, yi ∈ Xi.

8



Let F : X → X be a continuous map, with ith component function Fi : X → Xi given by

Fi = Fi(x1, x2, . . . , xn) in which xj ∈ Xj for j = 1, 2, . . . , n

where it is understood that there may be no actual dependence of Fi on xj. The dynamical

system (F,X) generated by iterating the function F on X is called a discrete-time dynamical

system. If an initial condition x0 ∈ X is given, we define the kth iterate of x0 as xk = F k(x0),

with orbit {F k(x0)}∞k=0 = {x0,x1,x2, . . .} in which xk is the state of the system at time k ≥ 0.

The metric space we focus on for this thesis is X = Rn with the infinity norm dmax =

∥x∥∞ = maxi |xi|. Also, we say that a dynamical system (F,X) is globally stable if there is

an x∗ ∈ Rn that no matter the starting condition x0 ∈ Rn we get F k(x0) → x∗ as k → ∞.

Here, x∗ is refered to as a globally attracting fixed point.

3.1 The Lipschitz Matrix of a Dynamical System

To give a sufficient condition under which a system (F,X) is stable, we define a Lipschitz

matrix (called a stability matrix in [4]).

Definition 3.2. (Lipschitz Matrix) For F : X → X suppose there are finite constants

aij ≥ 0 such that

di(Fi(x), Fi(y)) ≤
n∑

j=1

aijdj(xj, yj) for all x,y ∈ X.

Then we call A = [aij] ∈ Rn×n a Lipschitz matrix of the dynamical system (F,X).

It is worth noting that if A is a Lipschitz matrix of a dynamical system then any matrix

B for which A ⪯ B, where ⪯ denotes the element-wise inequality, is also a Lipschitz matrix

of the system. However, if the function F : X → X is piecewise differentiable and each

Xi ⊆ R then the matrix A ∈ Rn×n given by

aij = sup
x∈X

∣∣∣∣∂Fi

∂xj

(x)

∣∣∣∣ (3.1)

is the Lipschitz matrix of minimal spectral radius of (F,X). That is, A has the smallest

spectral radius of any Lipschitz matrix (see [4]). This will be the Lipschitz matrix we will use

9



in what follows. From a computational point of view, the Lipschitz matrix A = [aij] of (F,X)

can be more straightforward to find by use of Equation (3.1) if the function F : X → X

is differentiable, compared to the more general formulation in Definition 3.2. Furthermore,

the following theorem from chapter 8 of [6] expounds on the relation between non-negative

matrices and their spectral radii.

Theorem 3.3. If matrices A,B ∈ Nn×n such that 0n×n ⪯ A ⪯ B then 0 = ρ(0n×n) ≤

ρ(A) ≤ ρ(B)

It is straightforward to verify that a Lipschitz matrix exists for a dynamical system (F,X)

if and only if the mapping F is Lipschitz continuous. Here, the idea is to use the Lipschitz

matrix to simplify the stability analysis of nonlinear systems, using the following Theorem

2.3 found in [4]. By way of notation

ρ(A) = max
λ∈σ(A)

|λ|

denotes the spectral radius of a matrix A.

Theorem 3.4. (System Stability) Let A be a Lipschitz matrix of a dynamical system

(F,X). If ρ(A) < 1, then (F,X) is stable, i.e. has a globally attracting fixed point.

This criteria for stability is stronger than the one stated previously in Equation (2.14).

With this in place here we have the tools necessary to define intrinsic stability, and to extend

the theory to controlled systems.

It is worth noting that if we use the Lipschitz matrix A of (F,X) to define the dynamical

system F (x) = Ax then (F,X) is stable if and only if ρ(A) < 1. Thus, a Lipschitz matrix of

a dynamical system (F,X) can be thought of as the worst-case linear approximation to F . If

this approximation has a globally attracting fixed point, then the original dynamical system

(F,X) must also be stable. Note, however, that the condition that ρ(A) < 1 is sufficient

but not necessary for (F,X) to be stable. In fact, this stronger condition implies much more

than system stability, so following the convention introduced in [4], we give it the name of

intrinsic stability.
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Definition 3.5. (Intrinsic Stability) Let A ∈ Rn×n be a Lipschitz matrix of a dynamical

system (F,X). If ρ(A) < 1, then we say (F,X) is intrinsically stable.

3.2 Time-Delayed Dynamical Systems

As previously discussed, most real-world dynamical systems are inherently time-delayed.

This is due to processing time, transmission of information, sampling, etc. Following [2] we

introduce delays into a dynamical system (F,X) using a delay distribution matrix D = [dij]

where each dij is a non-negative integer denoting the constant number of discrete time-steps

by which the dependence of the component Fj = Fj(x1, . . . , xn) on xi is delayed by dij time-

steps. The following definition describes what happens to the dynamical system when a

delay distribution matrix is introduced.

Definition 3.6. (Constant Time-Delayed Dynamical System)

Let (F,X) be a dynamical system and D = [dij] ∈ Nn×n a delay distribution matrix with

maxi,j dij ≤ L, a bound on the delay length. Let XL, the extension of X to delay-space, be

defined as

XL =
L⊕

ℓ=0

n⊕
i=1

Xi,ℓ where Xi,ℓ = Xi for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ L.

Component-wise, define FD : XL → XL by

(FD)i,ℓ+1 : Xi,ℓ → Xi,ℓ+1 given by the identity map (FD)i,ℓ+1(xi,ℓ) = xi,ℓ (3.2)

for 0 ≤ ℓ ≤ L− 1 and

(FD)i,0 :
n⊕

j=1

Xj,dij → Xi,0 given by (FD)i,0 = Fi(x1,di1 , x2,di2 , . . . , xn,din) (3.3)

where Fi : X → Xi is the ith component function of F for i = 1, 2, . . . , n. Then (FD, XL) is

the delayed version of F corresponding to the fixed-delay distribution D with delay bound

L.

We order the component spaces of XL in the following way. If x ∈ XL then

x = [x1,0, x2,0, . . . , xn,0, x1,1, x2,1, . . . , xn,L]
T
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where xi,ℓ ∈ Xi,ℓ for i = 1, 2, . . . , n and ℓ = 0, 1, . . . , L.

The formalization in Definition 3.6 captures the idea of adding a time-delay to the dy-

namics of length dij ≤ L.

Each Xi is effectively copied L times, and past states of the ith component are passed

down this chain by the identity component functions (FD)i,ℓ+1 for 0 ≤ ℓ ≤ L−1 in Equation

(3.2). When a state of the ith component has been passed through the chain dij times over dij

time-steps it then influences the jth component, as described by the entry-wise substitutions

of xj,dij for xj in (FD)i,0 in Equation (3.3).

In [4], the authors demonstrate that intrinsically stable systems are resilient to the addi-

tion of constant time-delays, as is stated in the following theorem.

Theorem 3.7. (Intrinsic Stability and Constant Delays) Let (F,X) be a dynamical

system and D = [dij] a delay-distribution matrix. Let L satisfy maxi,j dij ≤ L. Then (F,X)

is intrinsically stable if and only if (FD, XL) is intrinsically stable.

Beyond maintaining stability, we note that any fixed point(s) of an undelayed system

(F,X) will also be fixed point(s) of any delayed version (FD, XL). This is given in the

following proposition, which is proven in the Appendix of [2]. Before stating this proposition,

we require the following definition.

Definition 3.8. (Extension of a Point to Delay-Space) Let EL(x) ∈ XL be equal to

L+ 1 copies of x ∈ X stacked into a single vector, namely

EL(x) =



x0

x1

...

xL


where xℓ = x for 0 ≤ ℓ ≤ L.

Proposition 3.9. (Fixed Points of Delayed System) Let x∗ be a fixed point of a dy-

namical system (F,X). Then for all delay distributions D with maxij dij ≤ L, EL(x
∗) is a

fixed point of (FD, XL).
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As an immediate consequence of Proposition 3.9 and Theorem 3.7, if an undelayed system

(F,X) is intrinsically stable with a globally attracting fixed point x∗ ∈ X, then the delayed

version (FD, XL) will have the “same” globally attracting fixed point EL(x
∗), in that x∗ is

the restriction of y = EL(x
∗) to the first n component spaces of XL. Thus, the asymptotic

dynamics of an intrinsically stable system and any version of the system with constant time

delays are essentially identical.

3.3 Euler Discrete and Intrinsic Stability

Here we give a criteria describing how intrinsic stability can, roughly speaking, be extended

to continuous-time dynamical systems. What we show is that if a continuous-time system

satisfies the described criteria then any Euler discretization of the system is intrinsically

stable.

Theorem 3.10. (B. and Webb) For the continuous-time dynamical system ẋ = f(x) with

f differentiable on Rn let Ã = [ãij] ∈ Rn×n be given by

ãij =


supx∈X

∂fi
∂xj

(x) if i = j

supx∈X

∣∣∣ ∂fi∂xj
(x)
∣∣∣ if i ̸= j.

(3.4)

If the real part of all eigenvalues of Ã are strictly negative then the Euler discretization of

ẋ = f(x) is intrinsically stable for small enough τ .

Proof. The Euler discretization of ẋ = f(x) is given by xn+1 = xn+τf(xn) via the derivative

approximation in Equation (2.7). Using Equation (3.1), a Lipschitz matrix of this discrete-

time dynamical system is then the matrix M = |(In+ τÃ)|, since for sufficiently small τ > 0

we have |1 + τaii| = 1 + τaii in the diagonal entries of M . Thus, for small enough τ the

matrix In + τÃ ⪰ 0 and we have M = In + τÃ.

Note, σ(M) = {1 + τλ : λ ∈ σ(Ã)}. The claim is that all eigenvalues of M lie within

the unit circle for small enough τ . To see this consider, λj = 1 + τ(a + bi) for arbitrary
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eigenvalue of M . From our assumption on Ã we have a < 0 so,

|λj|2 = |1 + τ(a+ bi)|2 = 1 + 2τa+ τ 2a2 + τ 2b2.

For τ small enough we have τ 2 << τ . Hence, |λj| < 1 since a < 0 for small enough τ in

which case ρ(M) < 1 which means that the Euler discretization of ẋ = f(x) is intrinsically

stable.

Taking Theorem 3.10 together with Proposition 3.9 and Theorem 3.4, the time-delayed

continuous-time dynamical system ẋ = fD(x) with delay distribution D ∈ Rn×n, defined

analogous to (FD, XL) in Definition 3.2, will have a globally attracting fixed point for any

D if it is discretized using the Euler method so long as R(σ(Ã)) < 0 and τ is small enough.

Future work will be to identify under what conditions the Exponential discretization of a

continuous-time dynamical system is intrinsically stable analogous to the result in Theorem

3.10.

3.4 Switched Systems

Beyond the constant time-delays introduced by Definition (3.6) a system may also experience

time-varying time-delays. In order to define a system with time-varying time-delays, we first

define the more general concept of a switched system.

Definition 3.11. (Switched System) Let M be a set of Lipschitz continuous mappings

on X, such that for every F ∈ M , (F,X) is a dynamical system. Then we call (M,X) a

switched system on X. Given some sequence {F (k)}∞k=1 ⊂ M , we say that ({F (k)}∞k=1, X) is

an instance of (M,X), with orbits determined at time k by the function

F k(x) = F (k) ◦ . . . ◦ F (2) ◦ F (1)(x) for x ∈ X.

For the switched system (M,X) we construct a Lipschitz set S consisting of a set of n× n

matrices as follows: For each F ∈ M , identify exactly one Lipschitz matrix A of (F,X) to

the set S.
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In Definition (3.11), (M,X) is an ensemble of dynamical systems formed by taking all

possible sequences of mappings {F (k)}∞k=1 ⊂ M . For a switched system (M,X), the set S

serves an analogous purpose to the Lipschitz matrix A of a dynamical system (F,X).

Since each system in a switches system has its own Lipschitz matrix that determines its

respective stability the following extension of the notion of spectral radius is necessary to

determine the stability of a switched system.

Definition 3.12. (Joint Spectral Radius) Given some z0 ∈ Rn and some set of matrices

S ⊂ Rn×n, let zk = Ak . . . A2A1z
0 for some sequence {Ai}∞i=1 ⊂ S. The joint spectral radius

ρ(S) of the set of matrices S is the smallest value ρ ≥ 0 such that for every z0 ∈ Rn there is

some constant C > 0 for which

||zk|| ≤ C(ρ)k.

The following is the main result of [2].

Theorem 3.13. (Intrinsic Stability and Time-Varying Time-Delayed Systems)

Suppose (F,X) is intrinsically stable with ρ(A) < 1, where A ∈ Rn×n is a Lipschitz ma-

trix of F and x∗ is the system’s globally attracting fixed point. Let L > 0 and

Md = {FD|D ∈ Nn×n with max
ij

dij ≤ L}

and let Sd be the Lipschitz set of Md. Then EL(x
∗) is a globally attracting fixed point of

every instance ({FD(k)}∞k=1, XL) of (Md, XL). Furthermore, ρ(Sd) = ρ(AL) < 1, where

AL =

 0n×nL A

InL×nL 0nL×n

 .

In the following Chapter our goal is to extend Theorem 3.13 to the case of closed-loop

systems under some mild conditions.
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Chapter 4. Controlled Systems

In this chapter we first consider the motivating case of control using LQR and DLQR. We

then show that it is possible to give sufficient conditions under which a closed-loop system

with delays in both its dynamics and control is intrinsically stable. This is our main result

(Theorem 5.6).

4.1 LQR and dLQR

The Linear-Quadratic Regulator (LQR) is an optimal control method. This means that the

controller is determined by minimizing a cost function which depends on both the states

and the control. The goal of an LQR system is to bring the system to the origin. There

are two variations to LQR based on the length of the horizon. In this thesis we focus on

infinite-horizon LQR for both continuous and discrete-LQR (dLQR). The reason being that

finite-horizon requires an update to the control solution, which would complicate identifying

whether the controlled system is intrinsically stable for all time. We expect that our theory

can expand to LQR with finite horizon, but will require further analysis.

The cost functional for a continuous-time system takes the form,

J =

∫ ∞

0

(xTQx+ uTRu) dt (4.1)

and for a discrete-time system,

J =
∞∑
k=0

(xT
kQxk + uT

kRuk) (4.2)

where Q and R are weight factors chosen by the engineer tuning the control. Both matrices

must be positive semi-definite in order for a solution to exist.

The solution to the optimization problem has a closed form solution. First we take a

look at the LQR continuous infinite-horizon solution. The input u is,

u = −Kx (4.3)

16



where K ∈ Rm×n is defined as

K = R−1(BTP )

and P is the solution to the continuous algebraic Ricatti equation

ATP + PA− PBR−1BTP +Q = 0. (4.4)

The dLQR infinite-horizon solution closed form derivation is slightly different. Starting

at the input

un = −Txn (4.5)

where T ∈ Rm×n is defined as

T = (R +BT
d PBd)

−1(BT
d PAd)

and P is the solution to the discrete time algebraic Ricatti equation

AT
dPAd + (AT

dPBd)(R +BT
d PBd)

−1(BT
d PAd) +Q = 0. (4.6)

Because of the nature of this control method we can analyze the closed-loop dynamics

as a brand new system without inputs. In continuous time we have

ẋ = Ax+Bu

= Ax−BKx

= (A−BK)x

(4.7)

where BK is an outer product. And the new discrete system,

xn+1 = Adxn +Bdun

= Adxn −BdTxn

= (Ad −BdT )xn

(4.8)

where BdT is an outer product.

These closed-loop systems will drive state to the 0 state. Recall from Section 2.1, Equa-

tions (2.5) and (2.6), that we control for the error for closed-loop systems. LQR and dLQR

17



are used in Chapter 6 to control real systems in a way that focuses on intrinsic stability.

Chapter 5. Main Result

The closed-loop systems we consider have an additive relation between dynamics and control.

Hence, when we consider a closed-loop system (F,X) with additive control we can write

F (x) = G(x) + U(x). (5.1)

Note that for LQR, G = A and U = BK, and for dLQR, G = Ad and U = BdT (see the

second equations in both (4.7) and (4.8)).

In what follows we analyse closed-loop systems with additive control that experience

independently delayed dynamics. That is, delays of differing lengths that impact the system’s

dynamics, given byG(x), and the system’s control given by U(x), respectively. Consequently,

the delay distribution matrix structure previously considered in [2] needs to be extended.

We let the delay distribution for closed-loop systems with additive control be given by

D⃗ = (D,C) where D,C ∈ Nn×n and maxi,j{dij, cij} ≤ L. Here D delays the system’s

dynamics and C delays the system’s control. The result is the delayed closed-loop system

FD⃗(x) = GD(x) + UC(x) (5.2)

with constant time-delays.

In the following section our goal is to extend the results of Chapter 3 to delayed closed-

loop systems.

5.1 Splitting Dynamics from Control Via Delays

Given a controlled system (F,X) where F (x) = G(x)+U(x), where G describes the system’s

dynamics, and U to the system’s control, our objective is to give a criteria describing when

the controlled system (F,X) is resilient to delays in both its dynamics and control.

Definition 5.1. We say the delay distribution D⃗(k) = (Dk, Ck) maintains the interactions
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I = {(i, j) : 1 ≤ i, j ≤ n} if Dk
ij = Ck

ij for all (i, j) ∈ I and k ≥ 1.

The term maintains refers to the case when dynamics and control are equally delayed.

In this case, the dynamics and the control are coupled and there is no need to split these

terms when checking if the system is intrinsically stable.

To prove a result similar to that of Main Result 2 in [2] (and Theorem (3.13) in this

thesis), for closed-loop system of the form given by Equation (5.2) we need a Lipschitz

matrix A of (F,X), and a Lipschitz matrix AD⃗ for (FD⃗, XL).

Lemma 5.2. (B. and Webb) For the closed-loop system F (x) = G(x) + U(x) suppose

D⃗(k) = (Dk, Ck) maintains the interactions in set I. If we define the entries of the matrix

A = [aij] ∈ Rn×n by

aij =


supx∈X

∣∣∣∂Fi

∂xj
(x)
∣∣∣ for (i, j) ∈ I

supx∈X

∣∣∣∂Gi

∂xj
(x)
∣∣∣+ supx∈X

∣∣∣∂Ui

∂xj
(x)
∣∣∣ for (i, j) /∈ I

(5.3)

then A is a Lipschitz matrix of F .

Proof. The matrix Ã defined element-wise by,

ãij = sup
x∈X

∣∣∣∣∂Fi

∂xj

(x)

∣∣∣∣
is a Lipschitz matrix with the smallest spectral radius. Thus, any matrix A is a Lipschitz

matrix of F if Ã ⪯ A. Note, by the triangle inequality that ãij ≤ aij, with equality only

when (i, j) ∈ I. Thus, we have,

di(Fi(x), Fi(y)) ≤
n∑

j=1

ãijdj(xj, yj)

≤
n∑

j=1

aijdj(xj, yj) for all x,y ∈ X.

Hence, A is a Lipschitz matrix of (F,X).

Lemma 5.3. (B. and Webb) Given the delay distribution D⃗ = (D,C), let FD⃗(x) =
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GD(x) + UC(x). Define Aℓ ∈ Rn×n for ℓ ∈ {0, 1, . . . , L} by

(Aℓ)ij =



supx∈X

∣∣∣∂Fi

∂xj
(x)
∣∣∣ if Dij = Cij = ℓ

supx∈X

∣∣∣∂Gi

∂xj
(x)
∣∣∣ if Dij = ℓ, Cij ̸= ℓ

supx∈X

∣∣∣∂Ui

∂xj
(x)
∣∣∣ if Dij ̸= ℓ, Cij = ℓ

0 if Dij ̸= ℓ, Cij ̸= ℓ

. (5.4)

Let AD⃗ ∈ R(L+1)n×(L+1)n be the matrix

AD⃗ =



A0 A1 . . . AL

In 0 . . . 0

0
. . . . . . . . . 0

...
. . .

...

0
. . . 0 In 0


. (5.5)

Then AD⃗ is a Lipschitz matrix for (FD⃗, XL).

Proof. Recall that for x ∈ XL, we order the components xi,ℓ of x as

x = [x1,0, x2,0, . . . , xn,0, x1,1, x2,1, . . . , xn,L]
T

where xi,ℓ ∈ Xi,ℓ for i = 1, 2, . . . , n and ℓ = 0, 1, . . . , L. Let x,y ∈ X be given, and let

mij = max{dij, cij} ≤ L. Then,

di,0 ((FD⃗)i,0)(x), (FD⃗)i,0)(y)) = di
[
Gi(x1,di1 , x2,di2 , . . . , xn,din) + Ui(x1,ci1 , x2,ci2 , . . . , xn,cin),

Gi(y1,di1 , y2,di2 , . . . , yn,din) + Ui(y1,ci1 , y2,ci2 , . . . , yn,cin))
]

≤
n∑

j=1

aijdj(xj,mij
, yj,mij

) =
L∑

ℓ=0

n∑
j=1

aij1mij=ℓdj,ℓ(xj,ℓ, yj,ℓ)

where

1dij=ℓ =


1 if dij = ℓ

0 otherwise.

for 0 ≤ ℓ ≤ L.

This matches the first n rows of AD⃗ i.e. the first block row in AD⃗. For ℓ ≥ 1,

di,ℓ ((FD⃗)i,ℓ)(x), (FD⃗)i,ℓ)(y)) = di,ℓ−1(xi,ℓ−1, yi,ℓ−1),
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which yields the identity matrices In in AD.

With this in place we can prove the following result analogous to Theorem 3.7 for delayed

closed-loop systems.

Theorem 5.4. (B. and Webb: Intrinsic Stability and Closed-Loop Systems with

Constant Time-Delays) Let (F,X) be a closed-loop system with F (x) = G(x) + U(x)

differentiable on X ⊆ Rn. For the delay distribution D⃗ = (C,D) let A ∈ Rn×n be defined by

Equation (5.3). Then ρ(A) < 1 if and only if ρ(AD⃗) < 1.

Proof. From Lemma 3 in [7] it follows that ρ(AD⃗) < 1 if and only if ρ
(∑L

i=0Ai

)
< 1. Since∑L

i=0Ai = A then the result follows.

Now we extend Proposition 3.9 to delayed closed-loop systems.

Proposition 5.5. (B. and Webb: Fixed Points of Delayed Closed-Loop Systems)

Let x∗ be a fixed point of the closed loop system (F,X) where F (x) = G(x) + U(x). Then

for any delay distribution D⃗ = (D,C) with maxi,j(dij, cij) ≤ L, EL(x
∗) is a fixed point of

(FD⃗, XL).

Proof. Let x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T be a fixed point of a dynamical network (F,X). Then by

definition

Fi(x
∗
1, x

∗
2, . . . , x

∗
n) = Gi(x

∗
1, x

∗
2, . . . , x

∗
n) + Ui(x

∗
1, x

∗
2, . . . , x

∗
n) = x∗

i for all 1 ≤ i ≤ n.

Let D⃗ be a delay distribution with maxij{dij, cij} ≤ L for some finite L > 0. With the usual
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ordering of the component spaces of x ∈ XL, we have

FD⃗(EL(x
∗)) =



(FD⃗)1,0(x
∗
1, x

∗
2, . . . , x

∗
n)

(FD⃗)2,0(x
∗
1, x

∗
2, . . . , x

∗
n)

...

(FD⃗)n,0(x
∗
1, x

∗
2, . . . , x

∗
n)

(FD⃗)1,1(x
∗
1)

(FD⃗)2,1(x
∗
2)

...

(FD⃗)n,L(x
∗
n)



=



G1(x
∗
1, x

∗
2, . . . , x

∗
n) + U1(x

∗
1, x

∗
2, . . . , x

∗
n)

G2(x
∗
1, x

∗
2, . . . , x

∗
n) + U2(x

∗
1, x

∗
2, . . . , x

∗
n)

...

Gn(x
∗
1, x

∗
2, . . . , x

∗
n) + Un(x

∗
1, x

∗
2, . . . , x

∗
n)

x∗
1

x∗
2

...

x∗
n



=



x∗
1

x∗
2

...

x∗
n

x∗
1

x∗
2

...

x∗
n



= EL(x
∗).

Hence, the extended fixed point EL(x
∗) is a fixed point of (FD⃗, XL).

Thus, we have that extended fixed points EL(x
∗) ∈ R(L+1)n of closed-loop systems are
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fixed points of time-delayed versions of these systems. Now we proceed by extending the

theory of intrinsic stability with time-varying time-delays to closed-loop systems.

Theorem 5.6. (B. and Webb: Intrinsic Stability for Closed-Loop Systems with

Time-Varying Time-Delays) For the closed-loop system (F,X) where F (x) = G(x) +

U(x) is differentiable on X ⊆ Rn suppose D⃗(k) = (D(k), C(k)) maintains the set I. Let the

Lipschitz matrix A ∈ Rn×n be the Lipschitz matrix given by Equation (5.3) and assume that

ρ(A) < 1 so that (F,X) has a globally attracting point x∗ ∈ Rn. Let L > 0 and

Md = {FD⃗|D⃗ = (D,C) with max
i,j

{dij, cij} ≤ L}, (5.6)

and let Sd be the Lipschitz set of Md. Then, EL(x
∗) is a globally attracting fixed point of

every instance ({FD⃗(k)}∞k=1, XL) where FD⃗(k)(x) = GD(k)(x) + UC(k)(x).

Additionally, ¯ρ(Sd) = ρ(AL⃗) < 1, where

AL⃗ =

 0n×nL A

InL×nL 0nL×n

 (5.7)

Proof. Consider the matrix AD⃗ (5.5) in lemma (5.3) for some D⃗. Recall, by the result

inLlemma 5.3, that this is a Lipschitz matrix of F and therefore AD⃗ ∈ Sd. Note also that

A =
∑L

ℓ=0Aℓ for any D⃗. Since we assume that ρ(A) < 1 then Lemma 3.3 of [3] implies

ρ(A) ≤ ρ(AD⃗) < 1. Let AL⃗ be given by Equation (5.7). Similarly, if ρ(AD⃗) < 1 then Lemma

3.3 of [3] implies ρ(AD⃗) < ρ(AL⃗) < 1. Lastly, by Proposition (3.9) we have that EL(x
∗) is a

globally attracting fixed point of every instance ({FD⃗(k)}∞k=1, XL). Theorem 5.6 then follows

by a direct modification of the proof of Main Result in [2].
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Chapter 6. Examples

In this Chapter we consider a number of applications of the theory we developed in Chapter

5. Specifically, we focus on two controlled systems. First, we consider the control of a

mass-spring-damper system. In our second example we consider the control of a circuit.

These systems are simple cases of mechanical and electrical systems, respectively, but we

note that our theory can be scaled to more complex systems. Other general systems we hope

to consider in the future is the control of fluid and thermal systems.

6.1 Mass-Spring-Damper-System

A mass-spring-damper is a simple two-dimensional mechanical system. The system’s equa-

tions of motion are derived using the Newtonian physics equation F = ma. There are three

forces acting on the mass of the system. The spring constant k generates a force as the

spring is lengthened or contracted. The damper b slows the system based on the speed ż of

the mass, and an input force F drives the movement of the system. The dynamics of the

system is given by

dż

dt
=

F − żb− zk

m

dz

dt
= ż

where z is the distance from the equilibrium of the spring. We can formulate the system as

a state-space model by taking the Jacobian which results in the system

ẋ =

−b/m −k/m

1 0

x+

1/m
0

F

where,

x =

ż
z

 .

24



Figure 6.1: Forces acting on a mass-spring-damper system. The forces are produced by the
spring with spring constant k, the damper with damper coefficient b, and input force F . The
displacement z measures the distance of the mass from spring at rest.

Using the values m = 5 kg, k = 3N/m, b = 0.5N s
m

we have the system:

A =

−0.1 −0.6

1 0

 , B =

0.2
0

 .

The system without control has eigenvalues {−0.05+0.77j, − 0.05− 0.77j}. Recall that

this implies that the system is stable by the condition in Equation (2.13). Using the results

from Theorem 3.10, we can check if this system is intrinsically stable before discretization

by finding the eigenvalues of the matrix Ã as defined in Equation (3.4). In this particular

case Ã has eigenvalues σ(Ã) = {−0.826, 0.726}. Hence, we cannot conclude that the Euler

discretized version of this system is not intrinsically stable.

We try to intrinsically stabilize the system by implementing LQR control. The control

matrix BK (from Equation (4.7)) is

BK =

0.2k1 0.2k2

0 0


and the closed-loop dynamics plus control is given by

A−BK =

−0.1− 0.2k1 −0.6− 0.2k2

1 0

 .

Theorem 3.10 does not have a clear result here because k1 and k2 depend on LQR tuning.
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Using Equation (2.7) we write the discretized system using the Euler discretization which

results in the discrete-time system

xn+1 =

In + τ

−0.1− 0.2k1 −0.6− 0.2k2

1 0


xn

Unfortunately, this matrix is not intrinsically stable for any values of k1 and k2. We show

this by considering the matrix 0 0

0 1


with spectral radius equal to 1, and which is element-wise less than or equal to |In + τ(A−

BK)| for all K and τ . Hence, by Theorem 3.3 we know ρ(|In + τ(A − BK)|) ≥ 1 and

therefore not intrinsically stable. This result that the Euler discretized mass-spring-damper

system cannot be intrinsically stable is a special case of the following theorem.

Theorem 6.1. (B. and Webb) Suppose the continuous-time closed-loop system has the

form ẋ = g(x) +BKx where g(x) is differentiable on X ⊂ Rn where B = [bi] ∈ Rn. If

sup
x∈X

∂gi
∂xi

(x) ≥ 0 for some i ∈ {1, . . . , n}

and bi = 0 then it is not possible to find a matrix K such that the Euler discretization of

this system is intrinsically stable.

Proof. Consider the Euler discretized system xn+1 = xn+τ(g(xn)+BKxn) where τ > 0 and

let A ∈ Rn×n be the Lipscitz matrix of this system. Now, assume supx∈X
∂gi
∂xi

(x) = v ≥ 0 and

bi = 0 for some i ∈ {1, . . . , n}. Then, biki = 0 where ki is the ith column of K. Therefore,

the (i, i)th entry of A is equal to 1+ τv ≥ 1. Now consider the sparse matrix L ∈ Rn×n with

0’s everywhere except for the (i, i)th entry which equals 1. Note that L ⪯ A and by Theorem

3.3, we have that 1 = ρ(L) ≤ ρ(A), and hence, the Euler discretized version of this system

is not intrinsically stable for any values of τ or K.

We now consider the matrix exponential discretization (see Equation (2.12)) of the orig-
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Figure 6.2: Parameter search for values of Q and R to minimize spectral radius of Lipschitz
matrix of mass-spring-damper system where Q = Inq and R = Imr. Note that there is no
spectral radius less than 1 and therefore the closed-loop system is not intrinsically stable
with dLQR control.

inal mass-spring-damper system without control. For computational purposes we will fix

τ = 0.01, which results in values

Ad =

0.99897052 −0.00599694

0.0099949 0.99997001

 , Bd =

1.99898034e− 03

9.99661752e− 06

 .

For this system we have ρ(|A|) = 1.0072284 which means the exponential matrix discretiza-

tion results in a discrete-time system that is also not intrinsically stable. Curiously, the

matrix Bd has values in both entries, so it might be possible to intrinsically stabilize through

dLQR. We do a parameter search over values of Q and R in Equations (4.1) and (4.2) to

minimize the spectral radius of the Lipschitz matrix of the closed-loop system. As can be

seen in Figure 6.2 varying the values of Q and R does not produce an intrinsically stable

mass-spring-damper system. We can choose Q and R to minimize the spectral radius of the

Lipschitz matrix of the system which would make the system more resilient to time-delays,

but would not guarantee the system won’t become unstable due to time-delays.

Something to consider for future work is a control method that allows the user to choose

the eigenvalues of the system because, as it turns out, as long as 500 < k1 < 1000 and k2 > 0
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then the system will be intrinsically stable. For example, ρ(|A − BK|) = 0.99999998 < 1

when k1 = 600 and k2 = 1, and therefore intrinsically stable. That is, this system’s behavior

needs more analysing to draw more informative conclusions.

We conclude that the mass-spring-damper system and closed-loop systems that have the

properties described in Theorem 6.1 cannot be intrinsically stable.
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Figure 6.3: A simple circuit system. The input is current i(t), which flows through resistors
R, capacitors C, and inductors L. The letters a, b, and c are the places where the system’s
state (current i and voltage e) take on different values, and g is the ground which means
current and voltage are zero.

6.2 Electrical System

Circuits are, for us, an interesting topic in control because states are not solely defined in

terms of another state like position and velocity in the case of mass-spring systems. The

states for simple circuits are voltage e and current i. The following case study is Example 3

from [5]. The circuit in this example uses three basic elements of passive electrical systems.

These elements are resistors R, capacitors C, and inductors L. The relation of these constants

to the state of the system are

e1 − e2 = Ri (6.1)

i = Cs(e1 − e2) (6.2)

si =
1

L
(e1 − e2) (6.3)

where s represents the derivative with respect to time of the variable adjacent to it (i.e.

si = di
dt
).

The following differential equations are the least number of equations needed to model

the circuit system as derived in [5],

se3 =
1

C3

(
i1(t)−

e3
R4

− ieq

)
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sieq =
1

Leq

(e3 − ieqR5) .

This can be written in state-space form:

ẋ =

 −1
R4C3

−1
C3

1
Leq

−R5

Leq

x+

 1
C3

0.0

 i1(t)

where

x =

e3
ieq


For this example we will consider two cases. One where the system is intrinsically stable

without control, and another where it is only stable and it is made intrinsically stable through

control.

6.2.1 Case 1: An Intrinsically Stable System. We use the following parameter

values: Leq = .8, C3 = 2, R4 = 2, R5 = 3. The dynamics of this system are

A =

−0.25 −0.5

1.25 −3.75


with Lipschitz matrix Ã, as defined in Equation (3.4). Note that σ(Ã) = {−0.078,−3.9203}

which implies the Euler discretized version of this system is intrinsically stable by Theorem

3.10. So, we take the closed-loop system

ẋ = Ax+Bi1(t), B =

0.5
0.0


and proceed by using Euler discretization to get the discrete-time system in Equation (2.7).

Here we get

Ad =

1− 0.25τ −0.5τ

1.25τ 1− 3.75τ

 , Bd = τ

0.5
0.0

 .

Now the goal is to control this system while keeping the dynamics intrinsically stable.
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Figure 6.4: Parameter search for values of Q and R to minimize spectral radius of Lipschitz
matrix of circuit (A) system where Q = Inq and R = Imr. Note that all values of q and r
produce a closed-loop system that is intrinsically stable with dLQR control.

We use dLQR so the input becomes uk = −Txk where T = [t1, t2]. This results in the closed

loop system

Ad −BdT =

1− (0.25 + 0.5t1)τ (−0.5− 0.5t2)τ

1.25τ 1− 3.75τ

 .

At this point we know that for small enough τ the open-loop system is intrinsically

stable, so we have to check if dLQR would cause the system to no longer be intrinsically

stable. We let τ = 0.01 and do a parameter search over values of Q and R in Equation (4.2).

We see in Figure (6.4) that there are parameters such that the closed-loop dLQR system

remains intrinsic stable. We choose Q = 10In and R = 0.1Im to continue our example. The

closed-loop system will referred to as Ac where Ac = Ad −BdT which is equal to

Ac =

0.95067034 −0.00665859

0.01196397 0.96315311

 .

From Theorem 3.13 we know Ac is stable in the presence of time-varying time-delays.

Now we will work up to our main result to show that this system is intrinsically stable in

the presence of delay distribution of the form D⃗ = (D,C) where dynamics and control can
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I ρ(|A|)
{(1, 1), (1, 2)} 0.9674

{(1, 1)} 0.9674
{(1, 2)} 1.0454

{} 1.0454

Table 6.1: Given D⃗(k) = (D(k), C(k)) and we define the set I = {(i, j)|d(k)ij = c
(k)
ij for k ≥ 0}.

Note that for Case 1 the second row of BdT is all 0’s and therefore it does not matter if
(2, 1), (2, 2) ∈ I, which is why they are not considered in this table. The table shows the
spectral radii for different sets of indices. The spectral radii ρ(|A|) < 1 are the systems that
are intrinsically stable and therefore stable regardless of time-varying time-delays.

experience delays that are not coupled. The dynamics and control matrix of our system are

Ad =

0.9975 −0.005

0.0125 0.9625

 , BdT =

0.0469094645631977 0.00160645169761599

0 0

 .

Whether the dynamics and the control experience different times delays comes from field

knowledge, but for our examples we will check all cases. Recall that if dij = cij then (i, j) ∈ I

and that the Lipschitz matrix A as defined in Equation (5.3) depends on the set I. Note that

the second row of BdT is 0 and hence does not affect the spectral radius of A. Therefore,

the only (i, j) entries of interest are (1, 1), (1, 2). As can be see in Table (6.2) if the dynamics

and the control do not maintain the (1, 1) interaction then the closed-loop system will no

longer be intrinsically stable by Theorem (5.4). Furthermore, given the delay distribution

D⃗(k) = (D(k), C(k)) if (1, 1) ∈ I for all k, then the closed-loop system is intrinsically stable

for all time-varying time-delays by Thorem (5.6).

6.2.2 Case 2: Intrinsically Stable through Control. We use the following parameter

values: Leq = .8, C3 = 2, R4 = 2, R5 = 1. The dynamics of this system are

A =

−0.25 −0.5

1.25 −1.25


with Lipschitz matrix Ã, as defined in Equation (3.4). Note that σ(Ã) = {0.1854,−1.685}

which does not implies the Euler discretized version of this system is intrinsically stable by
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Figure 6.5: Parameter search for values of Q and R to minimize the spectral radius of
Lipschitz matrix of Case 2 system where Q = Inq and R = Imr. Note that depending on
the values of Q and R the closed-loop system is intrinsically stable with dLQR control (see
green area).

Theorem 3.10. So, we take the closed-loop system

ẋ = Ax+Bi1(t), B =

0.5
0.0


and proceed by using Euler discretization to get the discrete-time system in Equation (2.7).

We get

Ad =

1− 0.25τ −0.5τ

1.25τ 1− 1.25τ

 , Bd = τ

0.5
0.0

 .

We let τ = 0.01, the same value given in Case 1, to check if this system is intrinsically

stable. Note, ρ(|Ad|) = 1.002 hence this system is not intrinsically stable. We attempt to

use dLQR to make the system intrinsically stable. We do a parameter search over values of

Q and R in Equation (4.2). We see in Figure (6.5) dLQR can produce a closed-loop system

that is intrinsically stable. We chose Q = 10In and R = 0.1Im to continue our example. The

closed-loop system is given by the matrix Ac where Ac = Ad −BdT and

Ac =

0.947925999046769 −0.0172496249884508

0.0125 0.9875

 .
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I ρ(|A|)
{(1, 1), (1, 2)} 0.9924

{(1, 1)} 0.9924
{(1, 2)} 1.0505

{} 1.0505

Table 6.2: Given D⃗(k) = (D(k), C(k)) and we define the set I = {(i, j)|d(k)ij = c
(k)
ij for k ≥ 0}.

Note that for Case 2 the second row of BdT is all 0’s and therefore it does not matter if
(2, 1), (2, 2) ∈ I, which is why they are not considered in this table. The table shows the
spectral radii for different sets of indices. The spectral radii ρ(|A|) < 1 are the systems that
are intrinsically stable and therefore stable regardless of time-varying time-delays.

From Theorem 3.13 we know Ac is stable in the presence of time-varying time-delays.

Now we will work up to our main result to show that this system is intrinsically stable in

the presence of delay distribution of the form D⃗ = (D,C) where dynamics and control can

experience delays that are not coupled. The dynamics and control matrix of our system are

Ad =

0.9975 −0.005

0.0125 0.9875

 , BdT =

0.0495740009532309 0.0122496249884508

0 0

 .

Again, whether the dynamics and the control experience different times delays comes

from field knowledge, but for our examples we will check all cases. Recall that if dij = cij

then (i, j) ∈ I and that the Lipschitz matrix A as defined in Equation (5.3) depends on

the set I. Note that the second row of BdT is 0 and hence does not affect the spectral

radius of A. Hence the only (i, j) entries of interest are (1, 1), (1, 2). As can be seen in

Table (6.1) if the dynamics and the control do not maintain the (1, 1) interaction then the

closed-loop system would no longer be intrinsically stable by Theorem (5.4). Furthermore,

for any delay distribution D⃗(k) = (D(k), C(k)), if (1, 1) ∈ I for all k, then the closed-loop

system is intrinsically stable for all time-varying time-delays by Thorem (5.6).

Chapter 7. Conclusion

In this thesis we have explored criteria for LQR and dLQR closed-loop dynamical systems

to be intrinsically stable. We have shown some Euler discretized physical systems cannot
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be controlled to be intrinsically stable (e.g. mass spring damper system). Alternatively,

these same physical systems can be made intrinsically stable using a different discretization

method and other control methods (i.e. pole-placement control). The results of the latter

are not explored here because the control method is not LQR or dLQR.

We have shown that other physical systems can be made or remain intrinsically stable

using dLQR (e.g. a circuit system). For these systems, we have applied the main result of

this thesis, that is, a criteria for determining if the closed-loop system is stable in the presence

of decoupled time-delays between the dynamics and the control. Our results show that for

each decoupled time-delay the spectral radius of the new Lipschitz matrix is equal or larger

than the original Lipschitz matrix. Therefore, the system is less likely to be intrinsically

stable for each decoupling between dynamics and control. Furthermore, some decoupling

have a larger impact on spectral radius, where even one split in the time-delay the dynamics

and control are experiencing can cause the system to no longer be intrinsically stable.

7.1 Future Work

This work primarily focuses on systems that are linear or linearized around a fixed point

in the specific case where the fixed point is the global attracting fixed point. Future work

to be done on the subject of intrinsic stability for closed-loop systems is to look at systems

that need new linearization as the state evolves. Examples of these type of systems include

fluid and thermal systems, and even some mechanical systems, like robot arms. The idea

of repetitive linearization can be thought of as a series of switched systems as discussed

previously in this thesis.

Similarly, the finite-horizon version of LQR and dLQR are control methods that change

with respect to time and state. This requires further analysis to determine if the system is

intrinsically stable over time under this type of control.

Lastly, it would be interesting to build the analogous version of intrinsic stability for

continuous-time systems. We showed a sufficient condition for Euler discretization in Theo-
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rem (3.10), which we believe can be done for the Exponential discretization method. Hope-

fully, a proof that shows an if and only if condition would construct the analogous criteria

we alluded to in this thesis.
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