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abstract

Statistical Properties of 2D Navier-Stokes Equations Driven by Quasi-Periodic Force and
Degenerate Noise

Rongchang Liu
Department of Mathematics, BYU

Doctor of Philosophy

We consider the incompressible 2D Navier-Stokes equations on the torus driven by a determin-
istic time quasi-periodic force and a noise that is white in time and extremely degenerate in Fourier
space. We show that the asymptotic statistical behavior is characterized by a uniquely ergodic
and exponentially mixing quasi-periodic invariant measure. The result is true for any value of the
viscosity ν > 0. By utilizing this quasi-periodic invariant measure, we show the strong law of large
numbers and central limit theorem for the continuous time inhomogeneous solution processes. Es-
timates of the corresponding rate of convergence are also obtained, which is the same as in the time
homogeneous case for the strong law of large numbers, while the convergence rate in the central
limit theorem depends on the Diophantine approximation property on the quasi-periodic frequency
and the mixing rate of the quasi-periodic invariant measure. We also prove the existence of a stable
quasi-periodic solution in the laminar case (when the viscosity is large). The scheme of analyzing
the statistical behavior of the time inhomogeneous solution process by the quasi-periodic invariant
measure could be extended to other inhomogeneous Markov processes.

Keywords: Navier-Stokes equations, quasi-periodic invariant measure, unique ergodicity, mixing,
limit theorems, rate of convergence, Diophantine condition
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Chapter 1. Introduction

We study the asymptotic statistical properties of the time inhomogeneous solution process of the

incompressible 2D Navier-Stokes equation driven by a deterministic time-dependent quasi-periodic

force and a highly degenerate stochastic force. There are three main ingredients of our work for

this system:

(1) We extend the Harris-like theorem in the infinite dimensional hypoelliptic setting developed

by Hairer and Mattingly [41] to the time quasi-periodic inhomogeneous case. This allows us to

view the two-parameter Markov transition operator as a contractive deterministic non-autonomous

dynamical system acting on the space of probability measures endowed with an appropriate Wasser-

stein metric. We then show that the non-autonomous system has a globally exponentially attracting

quasi-periodic trajectory, serving as the uniquely ergodic and exponentially mixing quasi-periodic

invariant measure, which describes the quasi-periodically statistical steady states of the system.

(2) The quasi-periodic invariant measure in (1) enables us to develop a martingale approxi-

mation scheme, to show the strong law of large numbers and central limit theorem for the time

inhomogeneous solution process starting at every deterministic point and for Hölder observables

weighted by a Lyapunov function. The martingale approximation is applied to the corresponding

homogenized process obtained by taking the skew product of the solution process with the irrational

rotation flow induced by the quasi-periodic force. However, the homogenized process is not mixing

so the martingale approximation cannot be applied directly as in the usual way. This is resolved

by centering the observables using the quasi-periodic invariant measure.

(3) We also obtain an estimate on the rate of convergence in the limit theorems. For the strong

law of large numbers, the convergence rate is the same as in the time homogeneous case. While

in the case of the central limit theorem, the convergence rate is related to the mixing rate of the

quasi-periodic invariant measure and the convergence rate of the Birkhoff average of the irrational

rotation flow with particular observable functions involving the quasi-periodic invariant measure.

The latter has a close connection with the Diophantine approximation property of the frequency.

We confine ourselves to the 2D Navier-Stokes system to simplify the presentation of the main

ideas. However, the results can be applied to a class of time inhomogeneous Markov process

generated by stochastic semilinear equations driven by an additional time dependent deterministic
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force for which the inhomogeneity can be modeled by a dynamical system (the Bebutov shift for

example). In what follows we will briefly describe our result and the background. A more detailed

and technical description of the main results is given in Chapter 3.

1.1 Description of Results

Consider the incompressible 2D Navier-Stokes on the two dimensional torus T2 := R2/(2π)Z2 in

the vorticity form

dw(t, x) +B(Kw,w)(t, x)dt = ν∆w(t, x)dt+ f(t, x)dt+

d∑
i=1

gidWi(t), t > s, w(s) = w0, (1.1)

where w(t, x) is the vorticity field, and Kw is the divergence free velocity field. The phase space is

chosen as H :=
{
w ∈ L2

(
T2,R

)
:
∫
T2 wdx = 0

}
whose norm is denoted by ∥ · ∥. The deterministic

force f is quasi-periodic in t in the sense that f(t, x) = Ψ(αt, x) for some Ψ ∈ C(Tn,H). Here the

frequency α = (α1, α2, · · · , αn) and {αk}nk=1 are rationally independent. W = (W1,W2, · · · ,Wd)

is a two-sided Rd-valued standard Wiener process over the sample space (Ω,F ,P) where P is the

Wiener measure, and {gi} are elements of H. Under appropriate spatial regularity conditions on

the external forces (see the next section), the equation is well posed with a time inhomogeneous

Markov solution process ws,t(w0). It generates a two-parameter Markov transition operator Ps,t

acting on the space of bounded measurable functions Bb(H) as

Ps,tϕ(w0) = Eϕ(ws,t(w0)), ∀ϕ ∈ Bb(H), w0 ∈ H.

It acts on the space of probability measures P(H) by duality

P∗
s,tµ(A) =

∫
H
Ps,tIA(w)µ(dw), for µ ∈ P(H), A ∈ B,

where B is the Borel σ-algebra of H and IA is the indicator function of A. For η > 0 small, recall

the geodesic metric ρ weighted by a Lyapunov function introduced in [41]

ρ(w1, w2) = inf
γ

∫ 1

0
eη∥γ(t)∥

2∥γ̇(t)∥dt, ∀w1, w2 ∈ H, (1.2)

where the infimum is taken over all differentiable paths γ connecting w1, w2 ∈ H. We endow P(H)

with the topology of weak convergence and denote by P1(H) the set of probability measures that

have finite first moment with respect to the 1-Wasserstein metric induced from the metric ρ in

H. A quasi-periodic invariant measure is a continuous quasi-periodic map with values in P(H)
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satisfying the following invariance condition

P∗
s,tµs = µt, s ≤ t. (1.3)

To state the main result, we recall a condition on the structure of the degenerate noise from

[42]. Define the set A∞ by setting A1 = {gl : 1 ≤ l ≤ d}, Ak+1 = Ak ∪ {B̃(h, gl) : h ∈ Ak, gl ∈ A1},

and A∞ = span(∪k≥1Ak), where B̃(u,w) = −B(Ku,w) − B(Kw, u) is the symmetrized nonlinear

term. These sets reflect the mechanism of the propagation of the extremely degenerate noise to the

phase space that yields a smoothing effect of the dynamics.

Besides spatial regularity conditions on the external forces, the only remaining assumption for

our main results is A∞ = H. In particular, the noise is allowed to be extremely degenerate to have

A∞ = H, for example it can be excited only through four directions [40].

Remark. Note that our result does not rely on any condition on the viscosity ν > 0, nor conditions

on the strength of the external forces. In particular, we do not need the range condition as in [41]

and our result in the case when f is time independent verifies a conjecture made by Hairer and

Mattingly [41] (see Remark 1.3) that the spectral gap (as well as unique ergodicity and exponentially

mixing) holds without any restriction on f other than it be sufficiently smooth.

1.1.1 Unique Ergodicity and Mixing of the Quasi-periodic Invariant Measure. One

of the main ingredients of this dissertation is to provide a perspective to investigate the asymptotic

statistical behavior of the time inhomogeneous Markov solution process, by analyzing the dynamics

of the non-autonomous system on P(H) induced by the action of the two parameter Markov

transition operators P∗
s,t. It turns out that the asymptotic behavior of P∗

s,t is characterized by a

complete quasi-periodic trajectory in P(H). More precisely, we prove the existence of a unique

quasi-periodic path {µt}t∈R in P(H) satisfying the invariance condition (1.3), such that

ρ(P∗
s,tµ, µt) ≤ Ce−ϖ(t−s)ρ(µ, µs), ∀s ≤ t, µ ∈ P(H), (1.4)

where C,ϖ are positive constants. Such a unique quasi-periodic path is called a uniquely ergodic

and exponentially mixing quasi-periodic invariant measure. One of the classical methods to show

the unique ergodicity and mixing in the homogeneous setting, which dates back to the early works

of Doeblin [18] and Harris [37], is to show that the action of the Markov semigroup on P(H) is a

contraction under an appropriate metric, whose unique fixed point gives the uniquely ergodic and
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mixing invariant measure. The work of Harris was generalized to the hypoelliptic case for infinite

dimensional systems by Hairer and Mattingly [41]. Our result can be regarded as an extension of

their work to the time (quasi-periodically) inhomogeneous setting.

The proof of (1.4) will be given in chapter 5 by first proving P∗
s,t is a contraction on P(H)

in Chapter 4 and then using a fixed point argument to the induced action (through a pull-back

procedure) on the space of quasi-periodic graphs C(Tn,P1(H)). Besides the Lyapunov structure

and a particular type of irreducibility (in a form that is more uniform than the usual topological

irreducibility), the proof of the contraction for P∗
s,t requires a deep analysis of its gradient in the

time inhomogeneous hypoelliptic setting, which was first developed in the time homogeneous case

by Hairer and Mattingly in their celebrated works [40, 41, 42]. In addtion, we prove the particular

type of irreducibility here by combining the parabolic regularizing effect of the equation and the

usual topological irreducibility, where the latter is a consequence of the well known controllability

results of Agrachev and Sarychev [1, 2].

1.1.2 Limit Theorems in Terms of the Quasi-periodic Invariant Measure. In the time

homogeneous setting, the strong law of large numbers and central limit theorem show that the

asymptotic behavior of an observation along a Markov process can be characterized by the unique

invariant measure. Suppose that we are given a homogeneous Markov process Xt with a unique

invariant measure µ∗ with a certain independence condition (mixing for example) and ϕ ∈ C(H,R)

is an observable function with some regularity, say Hölder continuous. Then as T → ∞, one has

(see [48] for example) the strong law of large numbers

1

T

∫ T

0
ϕ(Xt)dt

a.s.−→ ⟨µ∗, ϕ⟩, (1.5)

and the central limt theorem

1√
T

∫ T

0

(
ϕ(Xt)− ⟨µ∗, ϕ⟩

)
dt

D−→ N(0, σ2), (1.6)

where ⟨µ∗, ϕ⟩ is the integral of ϕ with respect to µ∗, and a.s. denotes the almost sure convergence

w.r.t. the Wiener measure P, while D represents the convergence in distribution and N(0, σ2) is

the centered normal distribution with variance σ2 ≥ 0. The strong law of large numbers in the

form (1.5) also bears the name of the ergodic theorem, which states that the time average of the

observations converges to the ensemble average for almost every sample, regardless of the initial
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condition. And the central limit theorem measures the size of fluctuations around the ensemble

average. We notice that the following form of the strong law of large numbers

1

T

∫ T

0

(
ϕ(Xt)− ⟨µ∗, ϕ⟩

)
dt

a.s.−→ 0 (1.7)

captures another role played by the invariant measure in the sense that, the average of observations

centered by the invariant measure converges to the corresponding asymptotic mean. We will see

that the quasi-periodic invariant measure has the same feature, which is the key to extend the limit

theorems to the time inhomogeneous setting.

The celebrated Dobrusion’s theorem [17] is of particular importance in the time inhomogeneous

case. It shows that for any discrete time inhomogeneous Markov chain Xk with a certain com-

patibility condition between the minimal ergodic coefficients, the observable functions ϕk and the

variance, one has the convergence as n → ∞,

Sn −E[Sn]√
Var(Sn)

D−→ N(0, 1), (1.8)

where Sn =
n∑

k=1

ϕk(Xk) and Var(Sn) is the variance. Although this theorem is quite general in its

own right, it is not applicable to the Navier-Stokes equation in our context. Indeed, as mentioned in

[41], the transition probabilities in infinite dimensional systems are likely to be mutually singular,

especially in the case when the strong Feller property does not hold. Hence the non-degeneracy

condition (characterized by the total variational metric) on the minimal ergodic coefficients in

Dobrusion’s theorem may not be satisfied. Besides, to apply the Dobrusion’s theorem, one needs

to compute the expectation and variance along each observation as indicated in (1.8).

Our second result shows how the uniquely ergodic and mixing quasi-periodic invariant measure

µt enables us to give the limit theorems for the time inhomogeneous solution process. Indeed, in view

of the role played by the invariant measure in the homogeneous case, and the fact that the ergodicity

and mixing of the quasi-periodic invariant measure shows that the distribution of any solution is

exponentially attracted by the quasi-periodic path in P(H), one may expect that the quasi-periodic

invariant measure carries the information that one needs to center the observations appropriately

to derive the associated limit theorems. In fact, we obtain the following limit theorems. For any

Hölder continuous observable function ϕ, and any initial data w0 ∈ H, the solution ws,s+t(w0) of

5



the Navier-Stokes system satisfies as T → ∞ the strong law of large numbers

1

T

∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt

a.s.−→ 0, (1.9)

and the central limit theorem

1√
T

∫ T

0

(
ϕ (ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt

D−→ N(0, σ2). (1.10)

These two limit theorems are proved in Chapter 6 through a martingale approximation procedure

and by applying martingale limit theorems. The idea of the martingale approximation was originally

due to Gordin [36] and further developed by Knips and Varadhan [44]. In [62], a new proof of

Dobrusion’ s theorem was given by using similar ideas. Our approach here is different from that in

[62], since we apply the martingale approximation to the associated homogenized Markov process

on the extended phase space H × Tn, where Tn is equipped with the irrational rotation flow with

rotation frequency α from the quasi-periodic force. It is worth mentioning that this homogenized

process is not mixing since the irrational rotation flow is never mixing. Hence the method of

martingale approximation for uniformly mixing time homogeneous Markov processes [48] cannot

be applied in a straightforward way. Fortunately, the exponentially mixing quasi-periodic invariant

measure centers the observations in the limit theorems in an appropriate way that enables us to

derive a martingale approximation.

1.1.3 Rate of convergence in the limit theorems. In the time homogeneous and essentially

elliptic setting, the estimates of the rate of convergence of the limit theorems were obtained for the

2D stochastic Navier-Stokes equation, which are close to being optimal [61]. Our third result shows

that similar estimates hold in the inhomogeneous hypoelliptic context. Namely, we will show the

following convergence rate (which is the same as in the time homogeneous case) for the strong law

of large numbers: for any s ∈ R and ε > 0, there is an almost surely finite random time Ts,ε such

that for all T ≥ Ts,ε, ∣∣∣∣ 1T
∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt

∣∣∣∣ ≤ CT− 1
2
+ε, (1.11)

and a Berry-Esseen type rate of convergence in the central limit theorem measured by the Kol-

mogorov uniform distance:

sup
z∈R

(
ξσ(z)

∣∣∣∣P{ 1√
T

∫ T

0

(
ϕ (ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt ≤ z

}
− Φσ(z)

∣∣∣∣) ≤ Cε0T
− 1

4
+ε0 , (1.12)
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where ξσ ≡ 1 for σ > 0, ξ0(z) = 1 ∧ |z|, and Φσ(z) is the distribution function of the centered

Gaussian distribution. Here ε0 ∈ (0, 14) is a constant depending on the mixing rate of the quasi-

periodic invariant measure and the convergence rate for the Birkhoff ergodic sums of the irrational

rotation for a particular observable function involving the quasi-periodic invariant measure.

These estimates are proved in Chapter 6. The general idea is to derive first the estimates

for the approximating martingale and then pass to inequalities (1.11) and (1.12) by invoking the

martingale approximation. In particular, estimate (1.12) is derived from a combination of several

ideas from [61] with an important Berry-Esseen type result for martingales from [39]. We stress here

that estimate (1.12) requires a detailed analysis on the Hölder regularity of a particular induced

observable function (see Proposition 6.13) on the torus Tn involving the quasi-periodic invariant

measure. This is a main feature in our context that is different from the time homogeneous case.

We will also see that the result from [39] enables us to show (1.12) for observable functions that are

allowed to have exponential growth at infinity, while in the time homogeneous case [61] the estimate

is valid for observable functions growing at infinity not faster than a polynomial. However, due to

the interaction between the mixing of the solution process and the irrational rotation inherited from

the quasi-periodic force, the convergence rate in our context cannot be arbitrarily close to the likely

optimal rate usually obtained in the time homogeneous case. Indeed, from our proof, one can see

that estimate (1.12) is a mixture of the convergence rate to the variance of the time inhomogeneous

solution process, and the convergence rate of the Birkhoff sum for the irrational rotation with a

particular observable function involving the quasi-periodic invariant measure that is related to the

Diophantine approximation property of the frequency. The combination of the two rates prohibits

the possibility of ε0 being arbitrarily small. Besides, estimate (1.11) is obtained by combining the

martingale approximation and the Borel-Cantelli lemma with an estimation on the convergence rate

for the moments of the time average of the observations centered by the quasi-periodic invariant

measure.

1.2 Additional Historical Backgrounds

In this section, we give a brief description about the history of the statistical theory of stochastic

Navier-Stokes equations. Since the literature on this topic is too vast a subject to review here, we

limit ourselves to topics that are closely related to the works in the present dissertation.
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1.2.1 Two Dimensional Turbulence. The following system of two dimensional incompressible

Navier-Stokes equations describes the evolution of the velocity field u(t, x) of a given fluid subject

to a deterministic external force F (x, t),

∂tu(x, t)− ν∆u(x, t) + u(x, t) · ∇u(x, t) +∇P (x, t) = F (x, t),

∇ · u(x, t) = 0,

u(x, s) = u0(x),

(1.13)

where ν is the viscosity, P is the pressure and x takes values on some bounded two dimensional

domain U with appropriate boundary conditions. When U = T2, the equation is equivalent to the

corresponding vorticity equation (1.1) without noise, see the next chapter on this point.

The standard theory of two dimensional turbulence is the study of the dynamical behavior of

the Navier-Stokes equation when the viscosity is small 0 < ν ≪ 1 for many external force F (for

some forces the turbulence can be absent for any value of the viscosity [51]), which corresponds to

the case of large Reynolds number. Various conjectures and experimental discoveries have not been

rigorously treated due to the chaotic nature of the system in the turbulent regime [32]. It is widely

believed that the statistical behavior of the turbulence should be described by a particular invariant

measure supported on the attractor of the system, the so called Sinai-Ruelle-Bowen (SRB) measure

[30]. However, the existence of such a canonical measure is still a challenging open problem.

The approach to the above scenario is accessible when the external force is random. For example,

we may take

F (x, t) = f(x, t) +
∞∑
i=1

biei(x)Ẇi(t), (1.14)

where bi are constants, {ei} is an orthonormal basis of the phase space, Wi(t) are independent

standard Wiener processes and Ẇi(t) are white noise processes. The Navier-Stokes equation (1.13)

is then a stochastic differential equation with such a random external force. Under additional

mild conditions, it can be proved that the Markov solution process of (1.13) has a unique ergodic

invariant measure (which may further be shown to be mixing, see the next section). The advantage

of working with such a random external force is that we have a canonical invariant measure to

analyze the statistical behavior of the turbulence, though in a mean value sense (by taking average

over the samples). The idea that the turbulence should be described by the Navier-Stokes equations

driven by a random force dates back to Kolmogorov [64].
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The concept of determining modes is useful when analyzing the Navier-Stokes dynamics [30].

It is roughly the first N modes of the equation (when rewriting the equation in terms of the

eigenvectors of the linear part) that determines the dynamics of the system, where N depends on

the viscosity ν and the strength of the external force, and N goes to infinity if ν tends to 0. Since

we are considering the Navier-Stokes equations on the torus, one can use Fourier expansions in

terms of the eigenvectors of the Laplacian to rewrite the equation as well as the force (1.14) in the

Fourier space. We say that the stochastic equation (1.13) is elliptic if all bi ̸= 0 in (1.14), and it

is called essentially elliptic if bi ̸= 0 for all 1 ≤ i ≤ N , where the first N modes are precisely the

determining modes. It is called hypoellptic if the noise is extremely degenerate such that it does

not act on all determining modes, i.e., N0 := #{i ≥ 1 : bi ̸= 0} < N , and N0 is independent of ν

and the strength of the external force. These terms correspond to ellipticity (or essential ellipticity,

hypoellipticity) of the Fokker-Planck-Kolmogorov equation associated with (1.13) that governs the

evolution of the distribution of the solution process, which is a deterministic parabolic equation in

an infinite dimensional Hilbert space [5].

1.2.2 The Time Homogeneous Setting. When the deterministic force f(x, t) in (1.14) (or

f(x, t) in (1.1)) is independent of time, the solution process is a time homogeneous Markov process

with corresponding Markov transition semigroup Pt. A probability measure µ is unique if P∗
t µ = µ

for t ≥ 0. The existence of such a measure is usually guaranteed by the Krylov-Bogolyubov theorem

and a compactness argument from the dissipative nature of the Navier-Stokes system. However the

uniqueness and mixing need more effort.

There are mainly two approaches to prove unique ergodicity. One way is the Doob-Khasminskii

type argument that combines the (asymptotic) strong Feller property that shows ergodic invariant

measures have disjoint supports, with topological irreducibility which shows that any invariant

measure is supported on the whole phase space. Another method is the coupling approach that

shows the contraction property of the transition operators by choosing an appropriate copy of the

solution process and analyzing the coupled process. One usually proves (exponential) mixing first

by coupling methods and then shows the unique ergodicity as a consequence. While the Doob-

Khasminskii type argument is powerful when proving unique ergodicity, it gives less information on

(exponential) mixing. It is worth mentioning that in the hypoellptic case when the driving noise

9



is white in time, there is no existing work that proves the unique ergodicity and mixing through

coupling methods.

The Essentially Elliptic Case. When the noise is not degenerate or acting on all determin-

ing modes, the statistical properties of the stochastic Navier-Stokes system have been extensively

studied over the decades, see for example [3, 4, 24, 25, 27, 28, 38, 45, 46, 47, 55, 56, 58, 61, 34, 8]

and references therein. See also the monograph [48] for a summary of the existing results on unique

ergodicity and mixing, as well as limit theorems with convergence rates. The results in the cited

works require the random forcing to act on all determining modes. In particular, the dimension

of the random forcing goes to infinity as viscosity approaches to zero. The methods involved are

either the coupling argument or the Doob-Khasminskii type argument with strong Feller property

and topological irreducibility.

The Hypoelliptic Case. When the noise is extremely degenerate and not all determining

modes are activated, a major breakthrough in this case was made by Hairer and Mattingly in their

seminal work [40], where they introduced the asymptotic strong Feller property to show unique

ergodicity of the Navier-Stokes equation driven by an extremely degenerate noise. To obtain this

asymptotic smoothing property, they developed a theory of infinite dimensional Malliavin calculus

and established an infinite dimensional Hörmander type theorem. This asymptotic smoothing

effect also allowed them to develop an infinite dimensional Harris-like theorem in [41], to prove the

exponential convergence to the unique invariant measure under the Wasserstein metric ρ induced

by (1.2). The result in [41] in turn led to a proof of the weak law of large numbers and the central

limit theorem in [50]. The results in [40, 41, 50] are independent of the strength of the external force

and the viscosity but require a range condition when the time independent force is nonzero, i.e.,

they require the range of the deterministic force f(x) to be contained in the span of the noise. Later

in [35] the authors proved the unique ergodicity without the range condition but the exponential

mixing without the range condition remains unproved. We prove this exponential mixing without

the range condition in the present work and extend the results to the time inhomogeneous case.

1.2.3 The Time Inhomogeneous Setting. When the deterministic force f(x, t) depends on

time, the only existing result is the work of Da Prato and Debussche [16] where they considered a

time periodic force f(x, t). They proved the unique ergodicity and exponential mixing in the essen-
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tially elliptic case by a coupling argument. Unique ergodicity in the hypoelliptic case was claimed

but without proof in [16] with a range condition on f(x, t), i.e., the range of the deterministic force

should be contained in the span of the noise for all t ∈ R. We take an approach completely different

from that in [16] and prove the exponential mixing, unique ergodicity, as well as limit theorems and

convergence rates in the hypoellptic case, without any condition on the deterministic force other

than some spatial regularity.

We also note that the existence of a continuous (in time) periodic invariant measure was obtained

in [16] by first disintegrating an invariant measure of the associated homogenized Markov process

whose existence relies on the Krylov-Bogolyubov theorem, and then proving the existence of a

continuous version. The extension of this method to the quasi-periodic case becomes challenging

when proving the continuity. In this dissertation we extend the Harris-like theorem to the time

inhomogeneous setting, which allows us to prove the existence of a unique quasi-periodic invariant

measure as a fixed point in the space of continuous quasi-periodic measures. This fixed point

naturally has the continuity and can be shown to have a Hölder continuity if the deterministic force

does, which plays an important role in the convergence rate of the central limit theorem.

The concept of quasi-periodic invariant measure with its ergodicity and mixing for stochastic 2D

Navier-Stokes equation, is introduced in the present work. However, the quasi-periodic invariant

measure for ordinary stochastic differential equations has been introduced in [31]. In fact, the

probability measure valued path µt satisfying (1.3) has been studied by Dynkin in [21, 22] where

it is called an entrance law. In this context, a quasi-periodic invariant measure is an entrance law

that possesses additional dynamical structure inherited from the quasi-periodic force.

The martingale limit theory has been widely studied as a generalization of the limit theory for

the sum of independent random variables, see the monograph [39]. It becomes a powerful tool

when studying the limit theorems of Markov processes, in the case that the Gordin’s martingale

approximation is available. This approach has been summarized in [48, 61] in the case of uniformly

mixing time homogeneous Markov processes with applications to randomly forced PDE’s including

the 2D Navier-Stokes equation. As we mentioned above, the result in [48, 61] cannot be applied

directly here due to the time inhomogeneity and non-mixing feature of the homogenized process.

For discrete time inhomogeneous Markov chains, progress on limit theorems has been made over

the decades, which is best summarized in [20]. However, the problem and method we consider here,
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are different from that in [20] where they mainly focus on the local limit theorems in the stationary

regime for discrete time Markov chains and take a different perspective. Furthermore, despite the

uniform boundedness condition on the observables, the uniform elliptic condition in [20] does not

hold in our hypoelliptic setting so that the results cannot be applied. In fact, we are not aware

of any existing results on limit theorems for continuous time inhomogeneous Markov processes, as

well as applications to randomly forced PDE’s both in elliptic and hypoelliptic settings.

Chapter 2. Settings and Preliminaries

In this section, we give definitions, basic settings on the equation and technical preliminaries that

will be used throughout the work.

2.1 Basic Settings on The Equation

This section consists of a brief description of the two dimensional Navier-Stokes equations driven

by a time dependent deterministic quasi-periodic force and a random force that is spatially regular

and white in time. We first give two definitions related to quasi-periodic functions. Let (M,d) be

a metric space with metric d and Cb(R,M) the space of bounded continuous functions endowed

with the uniform convergence topology generated by the following metric

d(q1, q2) = sup
t∈R

d(q1(t), q2(t)).

Definition 2.1 (Quasi-periodic functions). A function q ∈ Cb(R,M) is quasi-periodic with fre-

quency α = (α1, α2, · · · , αn) ∈ Rn if there is Q ∈ C(Tn,M) such that

q(t) = Q(αt) = Q(α1t, α2t, · · · , αnt), (2.1)

where α1, α2, · · · , αn are rationally independent real numbers and Tn = Rn/(2π)Zn is the n-

dimensional torus.

The following Diophantine condition is closely related to the convergence rate in limit theorems

for solutions of the stochastic Navier-Stokes system.
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Definition 2.2 (Diophantine condition). A frequency α ∈ Tn is said to satisfy a Diophantine

condition if there exist K > 0 and A > n such that

dist(k · α,Z) ≥ K

∥k∥A
, (2.2)

for all k ∈ Zn with ∥k∥ ̸= 0, where ∥k∥ := max
1≤i≤n

|ki|, and k · α = kiα1 + k2α2 + · · ·+ knαn.

2.1.1 The Equation. We consider the incompressible Navier-Stokes equations on the two di-

mensional torus T2, which describes the evolution of an incompressible fluid. They are usually

written as follows in terms of the velocity field

∂tu(x, t)− ν∆u(x, t) + u(x, t) · ∇u(x, t) +∇P (x, t) = F (x, t),

∇ · u(x, t) = 0,

u(x, s) = u0(x).

Here u(x, t) ∈ R2 for x ∈ T2, t ∈ R is the velocity field of the fluid. s ∈ R is the initial time and

u0(x) is the initial condition. ν > 0 is the kinematic viscosity, P is the pressure and F is the

external force. We assume that u0 and F have zero mean when averaged on the torus, so that the

solution will have zero mean for all time.

In the two dimensional case, it is convenient to consider the following equivalent equations for

the scalar vorticity field w = ∇∧u = ∂1u2−∂2u1, which is obtained by taking curl on the equations

for the velocity,

∂tw(x, t)− ν∆w(x, t) +B(Kw,w)(x, t) = F (x, t), w(x, s) = w0(x). (2.3)

Here B(Kw,w) = Kw · ∇w is the nonlinear term, where u = Kw and K is the Biot-Savart integral

operator that recovers the velocity from the vorticity through the conditions

w = ∇∧ u, ∇ · u = 0,

∫
T2

u(x)dx = 0.

We will consider equation (2.3) on the space H of square integrable functions over T2 that have zero

mean, i.e., H :=
{
w ∈ L2

(
T2,R

)
:
∫
T2 w(x)dx = 0

}
, where the norm is denoted by ∥·∥ and the inner

product is ⟨·, ·⟩. We also define the interpolation spaces Hs =
{
w ∈ Hs

(
T2,R

)
:
∫
T2 w(x)dx = 0

}
and the corresponding norms ∥·∥s by ∥w∥s =

∥∥∥(−∆)s/2w
∥∥∥.

2.1.2 The Forcing. The external force F (x, t) in equation (2.3) consists of a time dependent

deterministic part and a random part that is white in time and regular in space. More specifically,
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we assume F (x, t) = f(x, t) +GdW (t)
dt .

The notation dW (t)
dt denotes symbolically the time derivative of the two-sided Brownian motion

W (t) and equation (2.3) is understood in the integral form as a stochastic differential equation in

the Ito sense. Here the standard d dimensional two-sided Brownian motion W (t) is obtained as

follows. Let W±(t) be two independent standard d dimensional Brownian motion, then define

W (t) :=

 W+(t) , t ≥ 0,

W−(−t) , t < 0.

The sample space is denoted by (Ω,F ,P), where Ω =
{
ω ∈ C(R,Rd) : ω(0) = 0

}
endowed with the

compact open topology, F is the Borel σ-algebra and P is the Wiener measure associated with the

Brownian motion W . Denote by Ft the filtration of σ-algebras generated by W (t). The coefficient

of the noise is a bounded linear operator G : Rd → H∞ :=
∩

s>0Hs, such that Gei = gi , where

{ei} is the standard basis of Rd and gi ∈ H∞ for i = 1, 2, · · · , d. Then the noise can be expressed

as

GW (t) =
d∑

i=1

giWi(t). (2.4)

Also for integer k ≥ 0, let Bk :=
∑d

i=1 ∥gi∥2k be the various norms of the energy input from the

noise.

We assume that the deterministic force f ∈ Cb (R,H2) is quasi-periodic with frequency α =

(α1, α2, · · · , αn). Then by Definition 2.1 there is a function Ψ ∈ C(Tn;H2) such that f(t, x) =

Ψ(αt, x). The regularity condition imposed on f is to ensure the spatial regularity of the solution

that is needed to show the asymptotic smoothing effect of the dynamics.

2.1.3 Well-Posedness of 2D Stochastic Navier-Stokes Equations. Having introduced

the external force F (x, t) in the previous subsection, we can now rewrite equation (2.3) as an Ito’s

stochastic differential form

dw(x, t)− ν∆w(x, t)dt+B(Kw,w)(x, t)dt = f(x, t)dt+GdW (t), w(x, s) = w0(x). (2.5)

Under the conditions imposed on the forcing term as in the previous subsection, the existence and

uniqueness of the solution to equation (2.5) is well known, see for example [7, 48] and references

therein. To be specific, we have the following
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Proposition 2.3. Assume f ∈ Cb (R,H2) and gi ∈ H∞ (see (2.4)) for all 1 ≤ i ≤ d. Then for

any initial time s ∈ R, every T > s and w0 ∈ H, equation (2.5) under the above conditions has a

unique strong solution w(t, ω; s, w0), t ∈ [s, T ], i.e., it solves the integral equation

w(x, t)− w0(x)−
∫ t

s
ν∆w(x, t)dt+

∫ t

s
B(Kw,w)(x, t)dt

=

∫ t

s
f(x, t)dt+G(W (t)−W (s)), P− a.s.

The solution is adapted to the filtration Ft, and generates a stochastic flow Φ(t, ω; s, ·) : H → H

such that Φ(t, ω; s, w0) = w(t, ω; s, w0) for s ≤ t, w0 ∈ H and

w ∈ C ([s, T ];H) ∩ C ((s, T ];H3) , P− a.s.

Here by a stochastic flow Φ(t, ω; s, w0), we mean that it is a modification of the solution of equation

(2.5) satisfying the following conditions:

(i) It is adapted to Ft and for almost all ω, Φ(t, ω; s, w0) is continuous in (t, s, w0) and Φ(s, ω; s, w0) =

w0.

(ii) For almost all ω,

Φ(t+ τ, ω; s, w0) = Φ(t+ τ, ω; t,Φ(t, ω; s, w0)),

for s ≤ t, τ > 0 and w0 ∈ H.

2.2 Inhomogeneous Markovian Formulations

The solution to (2.5) generates a two parameter Markov transition operator Ps,t : Bb(H) → Bb(H)

defined by

Ps,tφ(w0) := E[φ(w(t; s, w0))], φ ∈ Bb(H), (2.6)

where Bb(H) is the space of bounded Borel measurable functions on H with the supremum norm.

We denote the transition probabilities as Ps,t(w,A) := Ps,tIA(w) for A ∈ B, the Borel σ-algebra

of H, where IA is the characteristic function of A. By duality, the transition operator P∗
s,t acts on

the space P(H) of probability measures on H by

P∗
s,tµ(A) =

∫
H
Ps,t(w,A)µ(dw), for µ ∈ P(H), A ∈ B.
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For η > 0 small, recall the metric ρ on H weighted by the Lyapunov function eη∥w∥2 as in [41],

ρ(w1, w2) = inf
γ

∫ 1

0
eη∥γ(t)∥

2∥γ̇(t)∥dt, ∀w1, w2 ∈ H, (2.7)

where the infimum is taken over all differentiable paths γ connecting w1 and w2. This metric

naturally induces a Wasserstein metric (allowed to take values in [0,∞]) on P(H) by

ρ(µ1, µ2) = inf
µ∈C(µ1,µ2)

∫
H×H

ρ(u, v)µ(dudv), (2.8)

where C(µ1, µ2) is the set of couplings of µ1, µ2 ∈ P(H). The subset

P1(H) := {µ ∈ P(H) : ρ(µ, δ0) < ∞} (2.9)

is complete under the metric ρ [12, 65], where δ0 is the Dirac measure at 0. For this Wasserstein

metric, the following Monge-Kantorovich duality is well-known [12, 65],

ρ (µ1, µ2) = sup
Lipρ(ϕ)≤1

∣∣∣∣∫ ϕ(x)µ1(dx)−
∫

ϕ(x)µ2(dx)

∣∣∣∣ , ∀µ1, µ2 ∈ P1(H), (2.10)

where Lipρ(ϕ) is the Lipschitz constant of the function ϕ on H endowed with the metric ρ.

Remark. We use the metric (2.8) on P(H) to measure the convergence to the quasi-periodic invari-

ant measure. The reason for working with the Wasserstein metric is that the transition probabilities

in infinite dimensional systems are likely to be mutually singular, especially when the strong Feller

property does not hold [41] (which is the case when the driving noise is extremely degenerate).

Hence the convergence to the invariant measure often fails under the total variation metric and one

would like to replace it by a weaker Wasserstein metric.

We now give the definition of a quasi-periodic invariant measure.

Definition 2.4 (Quasi-periodic invariant measures). A quasi-periodic invariant measure of system

(2.5) is a quasi-periodic function µ ∈ C(R,P(H)) that is invariant under the Markov transition

operators ∫
H
Ps,tφ(w)µs(dw) =

∫
H
φ(w)µt(dw), s ≤ t, φ ∈ Bb(H),

or equivalently

P∗
s,tµs = µt, s ≤ t.

It is called uniquely ergodic if such measure is unique. It is exponentially mixing under the Wasser-
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stein metric (2.8) if there is a constant ϖ > 0 such that

ρ(P∗
s,tµ, µt) ≤ Ce−ϖ(t−s)ρ(µ, µs), ∀s ≤ t, µ ∈ P(H).

2.3 Homogenization through Skew-Product

To deal with the time inhomogeneity, we adopt a classical method that has been widely used in the

study of non-autonomous problems arising from deterministic differential equations and dynamical

systems. Let H(f) be the closure in Cb(R,H2) of {f(· + s)|s ∈ R}, the set of time translations

of f . The set H(f) is called the hull of f , which is compact since f is quasi-periodic. It is

the minimal invariant set of the translation group {T (t)} acting on Cb(R;H2) by (T (t)g)(s) =

g(t + s), which is called the Bebutov shift flow. The Bebutov shift dynamics has the advantage

of capturing the nonautonomy caused by the quasi-periodicity of f and the compactness of the

hull H(f) allows us to apply tools from dynamical systems to analyze related problems. For each

g ∈ H(f), there is a unique solution ws,t,g(ω,w0) of (2.5) by replacing f with g, which is called

the process corresponding to problem (2.5) with time symbol g [14]. The homogenization process

associated with Φs,t(ω,w0) is then the homogeneous Markov process in the extended phase space

H ×H(f) defined by S(t, ω, w0, g) := (w0,t,h(ω,w0), T (t)g).

In the quasi-periodic case, it turns out that H(f) = {Ψ(αt + h0, x)|h0 ∈ Tn} [14], where

Ψ ∈ C(Tn,H2) is the function corresponding to f . Hence it is more convenient to work with Tn

instead of H(f). The irrational rotation flow βth := h + αt on torus corresponds to the Bebutov

shift T (t) on H(f) through the continuous map Ψ. Instead of working on H ×H(f), we will study

the associated homogeneous Markov process Xs,t(w0, h0) on H × Tn given by the solution of the

following equation
dw(t, x) +B(Kw,w)(t, x)dt = ν∆w(t, x)dt+Ψ(βt, x)dt+GdW (t),

dβt = αdt,

w(s) = w0, βs = h0.

(2.11)

Note that the solution

Xs,t(w0, h0) = (Φs,t,β−sh0(w0), βt−sh0)

for (w0, h0) ∈ H × Tn, where Φs,t,β−sh0(w0) is the solution to (2.5) by replacing f(t, x) = Ψ(αt, x)

with Ψ(αt−αs+h0, x). We will use ws,t,h(w0) to denote the solution of (2.5) with f(t, x) replaced
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by Ψ(βt, x) with βth = h+ αt.

Let Ps,t,hϕ(w0) = Eϕ (Φs,t,h(w0)) be the transition operator corresponding to the time symbol

h. In particular, Ps,t,0 = Ps,t as defined in (2.6). It follows from the uniqueness of solution that

the following translation identity holds:

Ps+τ,t+τ,h = Ps,t,βτh, τ ∈ R, h ∈ Tn. (2.12)

For φ ∈ Bb(H × Tn), the Markov transition operator associated with the homogenized process is

given by

Ps,tφ(w0, h0) = Eφ (Xs,t) = Eφ
(
Φs,t,β−sh0(w0), βt−sh0

)
= Ps,t,β−sh0φ(·, βt−sh0)(w0). (2.13)

In view of the translation identity (2.12) and time homogeneity of Xs,t, we can assume the initial

time of the homogenized process s = 0 for simplicity.

2.4 Path-wise Random Quasi-periodic Solutions

The existence of a quasi-periodic invariant measure implies the existence of a solution process of

(2.5), whose distribution changes in time quasi-periodically. However, information about path-

wise dynamics is not easy to obtain from the quasi-periodic invariant measure. We now give the

following definition of the random quasi-periodic solution in the path-wise sense. And we will show

that when the viscosity is large, then the dissipation dominates and the system (2.5) has a trivial

dynamics, in the sense that it has a globally stable random quasi-periodic solution which supports

the unique quasi-periodic invariant measure.

Definition 2.5 (Random quasi-periodic solutions). A random quasi-periodic solution of system

(2.5) is a progressively measurable stochastic process w∗(t, ω) defined on R × Ω that satisfies the

following property:

(i) (Invariance property) Φ(t, ω; s, w∗(s, ω)) = w∗(t, ω), for almost all ω;

(ii) (Quasi-periodicity) w∗(t, θ−tω) is a quasi-periodic function for almost every sample ω. That

is, there is a function Q : Tn × Ω → H, where Q(h, ω) is continuous in h ∈ Tn for almost

every ω ∈ Ω and measurable in ω for each fixed h, such that for every t ∈ R,

w∗(t, θ−tω) = Q(αt, ω), P− a.s.
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Here θ : R× Ω → Ω given by

θtω(·) := ω(t+ ·)− ω(t) (2.14)

is the Wiener shift.

Chapter 3. Main Results

In this subsection, we formulate the main results of the present paper in details. We recall a

condition on the structure of the degenerate noise from [42]. To do that, define the set A∞ by

setting

A1 = {gl : 1 ≤ l ≤ d}, Ak+1 = Ak ∪ {B̃(h, gl) : h ∈ Ak, gl ∈ A1}, and A∞ = span(∪k≥1Ak), (3.1)

where B̃(u,w) = −B(Ku,w)−B(Kw, u) is the symmetrized nonlinear term. These sets reflect the

mechanism of the propagation of the extremely degenerate noise to the phase space that yields a

smoothing effect of the dynamics. With these notations, the condition we need on the structure

of the noise is an infinite dimensional version of the Hörmander’s Lie bracket condition A∞ = H.

In finite dimensional settings, the Hörmander’s Lie bracket condition ensures the invertibility of

the Malliavin matrix and shows the smoothness of the density of the transition probabilities of

a degenerate stochastic differential equation. This hypoelliptic theory was first extended to the

stochastic Navier-Stokes equation driven by an extremely degenerate noise in [57]. Then in [40] the

authors proved the unique ergodicity of the stochastic Navier-Stokes equation in the hypoelliptic

setting by introducing the asymptotic strong Feller property. As was shown in [40, 42], it is notable

that the noise is allowed to be extremely degenerate to have A∞ = H, for example it can be excited

only through four directions.

The following Theorem 3.1-3.4 are our main results under the standing assumption:

f ∈ Cb(R,H2) is quasi-periodic; gi ∈ H∞,∀1 ≤ i ≤ d; and A∞ = H. (3.2)

The first result is the following unique ergodicity and exponentially mixing of the quasi-periodic

invariant measure for (2.5) under the Wasserstein metric (2.8). Note that the metric ρ (2.8) weighted

by the Lyapunov function V (w) = eη∥w∥2 depends on the parameter η > 0. And the following

estimate (A.3) is from Appendix A.
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Theorem 3.1 (Ergodicity and mixing). There is a unique quasi-periodic invariant measure µt

for (2.5) given by a unique map Γ ∈ C(Tn,P(H)), i.e., µt = Γβt0, and P∗
s,tµs = µt. Moreover,

there exists η0 > 0, such that for every η ∈ (0, η0], there are constants C,ϖ > 0, such that

Γ ∈ C(Tn,P1(H)) and

ρ(P∗
s,s+tµ, µs+t) ≤ Ce−ϖtρ(µ, µs), ∀s ∈ R, t ≥ 0, µ ∈ P(H), (3.3)

where C,ϖ do not depend on s. Furthermore, Γ ∈ Cζ(Tn, (P1(H), ρ)) if Ψ ∈ Cγ(Tn,H), where

ζ = ϖγ
r+ϖ with r = 64c60η

−3ν−5 + ηC(f,B0) from estimate (A.3).

In an equivalent form that involves the transition operator acting on observables, we have for

every ϕ ∈ C1
η , ∥∥∥∥Ps,s+t,hϕ−

∫
H
ϕ(w)µs+t(dw)

∥∥∥∥
η

≤ Ce−ϖt∥ϕ∥η. (3.4)

Here

C1
η :=

{
ϕ ∈ C1(H) : ∥ϕ∥η := sup

w∈H
e−η∥w∥2(|ϕ(w)|+ ∥∇ϕ(w)∥

)
< ∞

}
.

Theorem 3.1 will be proved in Chapter 5, by combining a fixed point argument with the following

uniform contraction property proved in Chapter 4.

Theorem 3.2. (Contraction on P(H)) There exists η0 > 0 such that for η ∈ (0, η0], there are

positive constants C and ϖ such that

ρ(P∗
s,s+t,hµ1,P∗

s,s+t,hµ2) ≤ Ce−ϖtρ(µ1, µ2), (3.5)

for every s ∈ R, t ≥ 0, h ∈ Tn and any µ1, µ2 ∈ P(H).

The second result is on the strong law of large numbers (SLLN) and the central limit theorem

(CLT) for the solution process. The proof will be given in Chapter 6. To state the results, we first

define the space of observable functions. For γ ∈ (0, 1], let Cγ
η (H) be the space of Hölder continuous

functions with finite norms weighted by the Lyapunov function eη∥w∥2 ,

Cγ
η (H) := {ϕ : H → R : ∥ϕ∥γ,η < ∞} , (3.6)

where

∥ϕ∥γ,η := sup
w∈H

|ϕ(w)|
eη∥w∥2 + sup

0<∥w1−w2∥≤1

|ϕ(w1)− ϕ(w2)|
∥w1 − w2∥γ

(
eη∥w1∥2 + eη∥w2∥2

) .
Recall that ws,s+t(w0) is the solution to (2.5) starting from w0 ∈ H at time s ∈ R.
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Theorem 3.3. There is a constant η0 > 0, such that for every η ∈ (0, η0], ϕ ∈ Cγ
η (H) and w0 ∈ H,

we have

1. SLLN for the time inhomogeneous solution process:

lim
T→∞

1

T

∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt

a.s.−→ 0. (3.7)

2. CLT for the time inhomogeneous solution process:

lim
T→∞

1√
T

∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt

D
= N(0, σ2), (3.8)

where N(0, σ2) a centered normal variable with variance σ2 and D represents the convergence in

distribution. The variance

σ2 = σ2
ϕ = lim

T→∞

1

T
E

[∫ T

0
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩dt

]2
,

where σϕ ≥ 0 is independent of s.

The third result is an estimate of the rate of convergence in the limit theorems. The proof will

also be given in Chapter 6.

Theorem 3.4. There is a constant η0 > 0 such that the following estimates hold.

1. (Rate of convergence in SLLN) Let ε > 0, for every integer p ≥ 3 satisfying 2p > 1/ε, every

η ∈ (0, 2−p−1η0], and every ϕ ∈ Cγ
η,H(H × Tn), w0 ∈ H, s ∈ R, there is an almost surely finite

random time T0(ω) ≥ 1, depending on p, ε, ∥ϕ∥γ,η,H , s, ∥w0∥ such that for all T > T0, we have∣∣∣∣ 1T
∫ T

0

(
ϕ(ws,s+t(w0))−

⟨
µs+t, ϕ

⟩)
dt

∣∣∣∣ ≤ CT− 1
2
+ε,

where C > 0 is a constant that does not depend on the above parameters. Moreover, for every

0 < ℓ < min{2pε− 1, 2p−2 − 1}, there is a constant Cp = Cp(∥ϕ∥γ,η,H , ℓ, ε) such that

ET ℓ
0 ≤ Cpe

2p+1η∥w0∥2 .

2. (Rate of convergence in CLT) Assume Ψ ∈ Cγ(Tn,H) and the frequency α satisfies the

Diophantine condition (2.2) with constant A and dimension n (of the torus). Let Φσ be the

distribution function of N(0, σ2). Also let Λ = ϖ
5(2−γ) , ζ = ϖγ

r+ϖ and γ0 = Λζ
5(Λ+r)(2−γ) , where ϖ is

the mixing rate from Theorem 3.1 and r = 64c60η
−3ν−5 + ηC(f,B0) is the constant from (A.3).

(1). For any integer p ≥ 2, η ∈ (0, 2−p−1η0], and ϕ ∈ Cγ
η (H) with σ2

ϕ > 0, and w0 ∈ H, there
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are constants Cp = Cp(∥ϕ∥γ,η, ∥w0∥) > 0 and T0 > 0 such that for all T ≥ T0,

sup
z∈R

∣∣∣∣P{ 1√
T

∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt ≤ z

}
− Φσϕ

(z)

∣∣∣∣ ≤ Cp

(
T− 1

4 + T− 2p−2

2p+1 + T
− 2p−1γ0

(2p+1)(A+n)

)
,

(2). For η ∈ (0, 2−7η0] and ϕ ∈ Cγ
η (H) such that σ2

ϕ = 0, and w0 ∈ H, there is a constant

C = C(∥ϕ∥γ,η, ∥w0∥) > 0 such that for all T ≥ 1,

sup
z∈R

(|z| ∧ 1)

∣∣∣∣P{ 1√
T

∫ T

0

(
ϕ(ws,s+t(w0))− ⟨µs+t, ϕ⟩

)
dt ≤ z

}
− Φ0(z)

∣∣∣∣ ≤ C

(
T− 1

4 + T
− γ0

2(A+n)

)
.

The following result shows that if the viscosity is large, then the dynamics of system (2.5) is

actually trivial. Let c0 be the constant from Ladyzhenskaya’s inequality

||w||2L4(T2) ≤ c0∥w∥1∥w∥. (3.9)

And let G =
√
∥f∥2∞/ν4 + B0/ν3 be the Grashof number for the whole system, where ∥f∥∞ =

supt∈R ∥f(t)∥. The following theorem will be proved in Chapter 7. Note that we do not need the

assumption A∞ = H here.

Theorem 3.5. Let η > 0. Assume Ψ ∈ Cγ(Tn,H). If

Gc0 ≤
√

1/2, and ν3 > 8(n+ η)c20B0γ
−1, (3.10)

then there exists a random quasi-periodic solution w∗(t, ω) of equation (2.5) in the sense of Definition

2.5, where the function Q(h, ω) associated with w∗(t, θ−tω) has a continuous (with respect to h)

modification that is η-Hölder continuous for all 0 < η < ηγ
2(n+η) . Moreover, w∗(t, ω) exponentially

attracts all other solutions both in forward and pullback times. The law of w∗(t, ω) gives the unique

quasi-periodic invariant measure.

Chapter 4. Contraction on The Space of Probability

Measures

In this chapter, we prove Theorem 3.2, the “uniform fiber-wise” contraction property (3.5) of the

transition operators {P∗
s,t,h}h∈Tn when acting on P(H). The result can be regarded as an extension

of the Harris-like theorem for infinite dimensional systems first established by Hairer and Mattingly

[41] in the time homogeneous setting, where they proved the existence of a unique invariant measure

that is exponentially mixing under the Wasserstein metric ρ. The idea behind their result dates

back to the early work of Dobelin [18] and Harris [37] for finite dimensional systems. The proof
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here will be accomplished through a combination of a particular type of irreducibility, a Lyapunov

structure and a gradient estimate on the transition operator that requires an infinite dimensional

Malliavin calculus and a Hörmander-type condition. We first prove these three ingredients through

Sections 4.1-4.3, and then prove the contraction as in Theorem 3.2 in Section 4.4. Note that the

proofs of the Lyapunov structure and gradient estimate are essentially adaptations of the scheme

developed in [40, 41] to our time inhomogeneous setting, while the irreducibility is apparently new

and does not require any condition on the deterministic force other than it being time quasi-periodic

and having certain spatial regularity as in the standing assumption (3.2). In particular, we do not

need the range condition as in [41] and our result in the case when f is time independent verifies

a conjecture made by Hairer and Mattingly [41] (see Remark 1.3) that the spectral gap (as well

as unique ergodicity and exponentially mixing) holds without restrictions on f other than it be

sufficiently smooth.

Recall from (2.11) that ws,t,h(w0) and Φs,t,h(w0) denote the solution of (2.5) with f(t, x) replaced

by Ψ(βth, x) with βth = h+ αt and

sup
t∈R

∥Ψ(βth)∥ = sup
h∈Tn

∥Ψ(h)∥ = sup
t∈R

∥f(t)∥ := ∥f∥∞.

For η > 0, 0 < r ≤ 1, define the metric ρr on H weighted by the Lyapunov function V (w) = eη∥w∥2

as in [41],

ρr(w1, w2) = inf
γ

∫ 1

0
V r(γ(t))∥γ̇(t)∥dt, ∀w1, w2 ∈ H, (4.1)

where the infimum is taken over all differentiable paths γ in H connecting w1 and w2. When r = 1

we have ρr = ρ as given in (2.7).

4.1 The Lyapunov Structure

In this section we prove the following estimates, which show a Lyapunov structure that reveals the

dissipation property of the Navier-Stokes system (2.5).

Proposition 4.1 (The Lyapunov Structure). Let V (w) = exp(η∥w∥2), η0 > 0 be the constant from

(A.1) and α(t) = e−νt. For any κ ≥ 1, and any η ∈ (0, η0
2κ ], there is a constant C > 0 such that for

any s ∈ R, and (w, h) ∈ H × Tn, we have

EV κ(Φs,s+t,h(w)) ≤ CV κα(t)(w), (4.2)
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Eρ(0, ws,s+t,h(w))
κ ≤ CV 2κ(w), (4.3)

for all t ≥ 0 and

EV κ(Φs,s+t,h(w))(1 + ∥∇Φs,s+t,h(w))ξ∥) ≤ CV κα(t)(w) (4.4)

for every t ∈ [0, 1], h ∈ Tn and ξ ∈ H with ∥ξ∥ = 1.

Proof. Inequality (4.2) is a reformulation of (A.1). The estimate (4.3) follows from (A.1). Indeed,

by the definition of ρ,

Eρ(0, ws,s+t,h(w))
κ ≤ E∥ws,s+t,h(w)∥κV κ(ws,s+t,h(w))

≤ CEV 2κ(ws,s+t,h(w)) ≤ C exp(2κη∥w∥2),

for η ≤ η0
2κ , where η0 is from (A.1). Estimate (A.6) shows that for any η > 0, there is a constant

C > 0 such that

∥∇Φs,s+t,h(w)ξ∥ ≤ exp

(
νη

∫ s+t

s
∥Φs,r,h(w)∥21dr + Ct

)
.

The estimate (4.4) then follows from (A.1) and (A.2).

With the help of this proposition, one can show the following lemma on a contraction property

under the metric (4.1) weighted by the Lyapunov function.

Lemma 4.2. Fix any 0 < r0 < 1. For any r ∈ [r0, 1], there are constants σ ∈ (0, 1) and C,K > 0

such that

Eρr(Φs,s+t,h(u),Φs,s+t,h(v)) ≤ Cρr(u, v), (4.5)

Eρr(Φs,s+n,h(u),Φs,s+n,h(v)) ≤ σnρr(u, v) +K, (4.6)

for any s ∈ R, n ∈ N, t ∈ [0, 1], h ∈ Tn and u, v ∈ H.

Proof. For any ε > 0, there is a path γ connecting u and v such that

ρr(u, v) ≤
∫ 1

0
V r(γ(t))∥γ̇(t)∥dt ≤ ρr(u, v) + ε.
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Let γ̃(τ) = Φs,s+t,h(γ(τ)) for t ∈ [0, 1]. Then by (4.4),

Eρr(Φs,s+t,h(u),Φs,s+t,h(v)) ≤ E

∫ 1

0
V r(γ̃(τ))∥ ˙̃γ(τ)∥dτ

≤ E

∫ 1

0
V r(γ̃(τ))

∥∥∥∥∇Φs,s+t,h(γ(τ))
γ̇(τ)

∥γ̇(τ)∥

∥∥∥∥ ∥γ̇(τ)∥dτ
≤ C

∫ 1

0
V rα(t)(γ(τ))∥γ̇(τ)∥dτ ≤ Cρr(u, v) + Cε.

The inequality (4.5) then follows since ε is arbitrary. Now let R be large enough so that CV rα(1(u) ≤

σV r(u) for some σ ∈ (0, 1) and for all u with ∥u∥ ≥ R. Then

Eρr(Φs,s+1,h(u),Φs,s+1,h(v)) ≤ C

∫ 1

0
V rα(1)(γ(τ))∥γ̇(τ)∥dτ

≤ σρr(u, v) + C

∫ 1

0
IBR(0)(γ(τ))V

rα(1)(γ(τ))∥γ̇(τ)∥dτ + σε

≤ σρr(u, v) + CV (R)

∫ 1

0
IBR(0)(γ(τ))∥γ̇(τ)∥dτ + ε. (4.7)

Note that if we set u0, v0 to be the points where γ first enters and last exits the ball BR(0), then

we have ∫ 1

0
IBR(0)(γ(τ))∥γ̇(τ)∥dτ ≤

∫ 1

0
IBR(0)(γ(τ))V

r(γ(τ))∥γ̇(τ)∥dτ < ρr(u0, v0) + ε. (4.8)

The second inequality of (4.8) is true since otherwise, one has∫ 1

0
IBR(0)(γ(τ))V

r(γ(τ))∥γ̇(τ)∥dτ ≥ ρr(u0, v0) + ε,

so that
∫ 1
0 V r(γ(τ))∥γ̇(τ)∥dτ ≥ ρr(u, v) + ε by observing that∫ 1

0
IBc

R(0)(γ(τ))V
r(γ(τ))∥γ̇(τ)∥dτ ≥ ρr(u, u0) + ρr(v, v0),

which contradicts the choice of the path γ(τ). Note that by considering the straight line that

connects u0 and v0, we have ρr(u0, v0) ≤ 2RV r(R). Hence∫ 1

0
IBR(0)(γ(τ))∥γ̇(τ)∥dτ ≤ 2RV r(R) + ε. (4.9)

By arbitrariness of ε, we conclude from (4.7) and (4.9) that for K = 2CRV r+1(R),

Eρr(Φs,s+1,h(u),Φs,s+1,h(v)) ≤ σρr(u, v) +K.
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For n > 1, we apply the Markov property. Observe that

E
[
ρr(Φs,s+n,h(u),Φs,s+n,h(v))|Fs+(n−1)

]
= E

[
ρr(Φs+(n−1),s+n,h(Φs,s+(n−1),h(u)),Φs+(n−1),s+n,h(Φs,s+(n−1),h(v)))|Fs+(n−1)

]
≤ σρr(Φs,s+(n−1),h(u),Φs,s+(n−1),h(v)) +K,

and

E
[
ρr(Φs,s+n,h(u),Φs,s+n,h(v))|Fs+(n−2)

]
≤ σ

(
E
[
ρr(Φs+(n−2),s+(n−1),h(Φs,s+(n−2),h(u)),Φs+(n−2),s+(n−1),h(Φs,s+(n−2),h(v)))|Fs+(n−2)

]
+K

)
≤ σ2ρr(Φs,s+(n−2),h(u),Φs,s+(n−2),h(v)) + (σ + 1)K.

By iterating the procedure, we obtain that

Eρr(Φs,s+n,h(u),Φs,s+n,h(v)) ≤ σnρr(u, v) +K

n−1∑
j=0

σj ,

which completes the proof.

4.2 The Irreducibility

In this section we prove a particular form of irreducibility (slightly stronger than the usual topolog-

ical irreducibility) that concerns the small positive probability of being contraction of the dynamics

on the phase space. It deals with the contraction (3.5) at intermediate scales.

Proposition 4.3 (The Irreducibility). For any R, ε, T > 0, and r ∈ (0, 1], there exists a > 0 so

that

inf
∥w1∥,∥w2∥≤R

sup
Γ∈C(P∗

s,s+T,hδw1 ,P
∗
s,s+T,hδw2)

Γ
{
(w′

1, w
′
2) ∈ H ×H : ρr(w

′
1, w

′
2) < ε

}
≥ a, (4.10)

for all s ∈ R, h ∈ Tn. Here the metric ρr is given by (4.1).

The proof is based on the topological irreducibility (Lemma 4.4) which is a consequence of

the celebrated controllability results of Agrachev and Sarychev [1, 2], and a parabolic regularizing

property (Lemma 4.5) of the Navier-Stokes equations. We first state and prove the two lemmas

and then give the proof of Proposition 4.3 at the end.

The first lemma states that uniformly for the initial positions in any given compact set, the

system has a positive probability to enter into any neighborhood of a given position.

26



Lemma 4.4. For any compact set K ⊂ H, any δ, T > 0, and v ∈ H, there is a0 := a0(K, δ, T, v) > 0

such that

inf
w∈K,h∈Tn

P0,T,h(w,Bδ(v)) ≥ a0.

Proof. By the well known controllability argument of Agrachev and Sarychev [1, 2] (see also [35]

and Section B.3 in the appendix) and the condition A∞ = H, it follows that for each h ∈ Tn the

Navier-Stokes equation (2.5) with the deterministic force f replaced by Ψ(βth) is approximately

controllable in H. Hence it is topologically irreducible, i.e., for all w, v ∈ H, δ > 0, T > 0 there is

ε = ε(w, v, δ, T, h) > 0 such that

P0,T,hIBδ/2(v)(w) = P0,T,h(w,Bδ/2(v)) ≥ ε.

Now let 0 ≤ Lδ ≤ 1 be a Lipschitz continuous function on H such that Lδ(w) = 1 on Bδ/2(v) and

Lδ(w) = 0 outside of Bδ(v). Then

P0,T,hIBδ(v)(w) ≥ P0,T,hLδ(w) ≥ P0,T,hIBδ/2(v)(w) ≥ ε.

The Lipschitz continuity of Lδ and estimates (A.3) and (A.4) imply that the function

(w, h) → P0,T,hLδ(w)

is continuous. Hence on the compact set K × Tn, it attains the infimum at some (w0, h0), which

implies

inf
(w,h)∈K×Tn

P0,T,hIBδ(v)(w) ≥ inf
(w,h)∈K×Tn

P0,T,hLδ(w) = P0,T,h0Lδ(w0) ≥ ε(w0, v, δ, T, h0).

The proof is then completed by taking a0 = ε(w0, v, δ, T, h0).

The second lemma is a result of the parabolic regularizing effect, which states that any given

bounded set has a positive probability to be mapped into a compact set by the solution map.

Lemma 4.5. For any R > 0, T > 0, there are R1 := R1(R, T ) > 0 and a1 := a1(R,R1, T ) > 0

such that

inf
w∈BR(0),h∈Tn

P0,T,h

(
w,B

H1

R1
(0)
)
≥ a1,

where BR(0) is the ball in H centered at 0 with radius R, and B
H1

R1
(0) is the closed ball in H1

centered at 0 with radius R1.
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Proof. Let w0,t,h(w0) be the solution of (2.5) with the deterministic force f replaced by Ψ(βth). We

eliminate the additive noise by subtracting from (2.5) the following auxiliary Ornstein-Uhlenbeck

process

dVt = ν∆Vtdt+GdWt, V (0) = 0. (4.11)

It is readily seen that the process ut,h := w0,t,h(w0)− Vt solves the equation

∂tu = ν∆u−B (K (u+ Vt) , u+ Vt) + Ψ(βth), u0,h = w0. (4.12)

For δ > 0, T > 0, consider the event that the d-dimensional Wiener process has small amplitude

on a finite interval

Ωδ,T = {ω ∈ Ω : |W (ω, t)| ≤ δ, for all t ∈ [0, T ]} , (4.13)

where | · | denote the usual norm in Rd. Then there exists a1 = a1(δ, T ) such that

P(Ωδ,T ) ≥ a1 > 0. (4.14)

By the properties of stochastic convolutions, one can show that the Ornstein-Uhlenbeck process Vt

has the following property on the event Ωδ,T .

Lemma 4.6. [23] For any δ > 0, T > 0, there exists a positive deterministic constant εδ,T such

that εδ,T → 0 as δ → 0 for T fixed, and

sup
t∈[0,T ]

∥V (t, ω)∥1 ≤ εδ,T , for all ω ∈ Ωδ,T . (4.15)

Proof. Note that

Vs+t =

∫ s+t

s
eν∆(t+s−r)GdW (r) =

d∑
i=1

∫ s+t

s
eν∆(t+s−r)gidWi(r)

is the stochastic convolution that solves equation (4.11) with initial condition V (s) = 0. From the

integration by parts formula for the Wiener integral (see for example [63]), we have

Vs+t =
d∑

i=1

(
giWi(s+ t)− eν∆tgiWi(s) +

∫ s+t

s
ν∆eν∆(t+s−r)giWi(r)dr

)

=

d∑
i=1

(
gi (Wi(s+ t)−Wi(s)) +

∫ t

0
ν∆eν∆(t−r)gi (Wi(r + s)−Wi(s)) dr

)
.
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Note that gi ∈ H∞ for each 1 ≤ i ≤ d. Hence on Ωδ,T , we have

sup
t∈[s,s+T ]

∥V (t, ω)∥1 ≤ C(1 + T ) sup
t∈[s,s+T ]

|W (s+ t)−W (s)| ≤ C(1 + T )δ,

where the constant C is independent of δ, T and s ∈ R. The lemma then follows by taking

εδ,T = C(1 + T )δ and s = 0.

Return to the proof of Lemma 4.5. Taking H inner product with 2u on both sides of (4.12)

and applying standard estimates on the nonlinear term (see for example [40]), we have (we write u

or ut for ut,h for notational simplicity and denote ∥Ψ∥∞ = suph∈Tn ∥Ψ(h)∥)

∂t∥u∥2 = ⟨ν∆u, 2u⟩ − ⟨B (K (u+ Vt) , u+ Vt) , 2u⟩+ ⟨Ψ(βth), 2u⟩

≤ −2ν∥u∥21 − 2⟨B (KVt, Vt) , u⟩ − 2⟨B (Ku, Vt) , u⟩+
4

ν
∥Ψ∥2∞ + ν∥u∥2

≤ −ν∥u∥21 + C∥Vt∥21∥u∥+ C∥u∥2∥Vt∥1 +
4

ν
∥Ψ∥2∞ (4.16)

≤ C∥Vt∥21∥ut∥2 + C(∥Vt∥41 + ∥Ψ∥2∞).

Hence the Gronwall’s inequality and Lemma 4.6 yield

∥ut∥2 ≤ ∥w0∥2 exp
(
C

∫ t

0
∥Vτ∥21dτ

)
+ C

∫ t

0

(
∥Vτ∥21 + ∥Ψ∥2∞

)
exp

(
C

∫ t

τ
∥Vr∥21dr

)
dτ

≤ C(∥w0∥2 + 1) (4.17)

for all t ∈ [0, T ] and ω ∈ Ωδ,T , where the last constant C = C(εδ,T , T, ∥Ψ∥∞, ν). Using this estimate

and integrating (4.16), we also have on Ωδ,T ,

ν

∫ T

0
∥ut∥21dt ≤ ∥w0∥2 +

∫ T

0

(
C∥Vt∥21∥ut∥+ C∥ut∥2∥Vt∥1 +

4

ν
∥Ψ∥2∞

)
dt ≤ C(∥w0∥2 + 1) (4.18)

with constant C only depending on εδ,T , T, ∥Ψ∥∞, ν.

Differentiating t∥ut∥21 with respect to t and using (4.12) yields

∂t(t∥ut∥21) = ∥u∥21 + 2t⟨∂tu,−∆u⟩

= ∥u∥21 − 2tν∥u∥22 + 2t ⟨B (Ku, u) +B (KVt, Vt) +B (Ku, Vt) +B (KVt, u)−Ψ(βth),∆u⟩ .

It follows from standard estimates on the nonlinear term and interpolation inequalities that

|⟨B (Ku, u) ,∆u⟩| ≤ C∥u∥∥u∥ 3
2
∥u∥2 ≤ C∥u∥∥u∥

1
4 ∥u∥

3
4
2 ∥u∥2

≤ C(ν)∥u∥10 + ν

5
∥u∥22,
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and

|⟨B (KVt, Vt) ,∆u⟩| ≤ C∥Vt∥21∥u∥2 ≤ C(ν)∥Vt∥41 +
ν

5
∥u∥22,

|⟨B (Ku, Vt) ,∆u⟩| ≤ C∥Vt∥1∥u∥1∥u∥2 ≤ C(ν)∥u∥21∥Vt∥21 +
ν

5
∥u∥22,

|⟨B (KVt, u) ,∆u⟩| ≤ C∥Vt∥1∥u∥1∥u∥2 ≤ C(ν)∥u∥21∥Vt∥21 +
ν

5
∥u∥22,

|⟨Ψ(βth),∆u⟩| ≤ ∥Ψ∥∞∥u∥2 ≤ C(ν)∥Ψ∥2∞ +
ν

5
∥u∥22.

Therefore

∂t(t∥ut∥21) ≤ ∥u∥21 + C(ν)t
(
∥u∥10 + ∥Vt∥41 + ∥u∥21∥Vt∥21 + ∥Ψ∥2∞

)
.

Integrating this inequality from 0 to T , using Lemma 4.6 and estimates (4.17)-(4.18), one has

∥uT,h∥21 ≤ C(1 + ∥w0∥2)5,

on Ωδ,T , where C depends on εδ,T , T, ∥Ψ∥∞, ν, but is independent of h ∈ Tn. Hence on Ωδ,T we

have

∥w0,T,h(w0)∥21 ≤ 2(∥uT,h∥21 + ∥VT ∥21) ≤ C(1 + ∥w0∥10),

which completes the proof by taking R1 =
√

C(1 +R10).

We are now in a position to give a proof of Proposition 4.3.

Proof of Proposition 4.3. Fix any v ∈ H. For any δ, T > 0, h ∈ Tn, and w ∈ BR(0), we have by

the Chapman-Kolmogorov relation, the translation identity (2.12) that

P0,T,h(w,Bδ(v)) =

∫
H
PT

2
,T,h(y,Bδ(v))P0,T

2
,h(w, dy) =

∫
H
P0,T

2
,βT

2
h(y,Bδ(v))P0,T

2
,h(w, dy).

It follows from Lemma 4.5 that there are R1 := R1(R, T/2) > 0, and a1 := a1(R,R1, T/2) > 0 such

that

inf
w∈BR(0),h∈Tn

P0,T/2,h

(
w,B

H1

R1
(0)
)
≥ a1.

Combining this with Lemma 4.4 with K = B
H1

R1
(0), we have the existence of a0 := a0(K, δ, T, v) > 0

such that

inf
w∈BR(0),h∈Tn

P0,T,h(w,Bδ(v)) ≥ inf
w∈BR(0),h∈Tn

∫
K
P0,T

2
,βT

2
h(y,Bδ(v))P0,T

2
,h(w, dy)

≥ a1 inf
y∈K,h∈Tn

P0,T
2
,h(y,Bδ(v)) ≥ a0a1.
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Therefore by the translation identity (2.12), one has

Ps,s+T,h(w,Bδ(v)) = P0,T,βsh(w,Bδ(v)) ≥ a0a1, ∀w ∈ BR(0), s ∈ R, h ∈ Tn.

Now for any ε > 0, we choose δ = ε
2V (∥v∥+ε) , here V (w) = eη∥w∥2 for w ∈ H is the Lyapunov

function from Proposition 4.1. Then B̃δ(v) := Bδ(v)×Bδ(v) ⊂ {(w′
1, w

′
2) ∈ H×H|ρr(w′

1, w
′
2) < ε}.

Hence

inf
w1,w2∈BR(0)

sup
Γ∈C(P∗

s,s+T,hδw1 ,P
∗
s,s+T,hδw2)

Γ
{
(w′

1, w
′
2) ∈ H ×H : ρr(w

′
1, w

′
2) < ε

}
≥ inf

w1,w2∈BR(0)
P∗
s,s+T,hδw1 ⊗ P∗

s,s+T,hδw2(B̃δ(v))

= inf
w1,w2∈BR(0)

Ps,s+T,h(w1, Bδ(v))Ps,s+T,h(w2, Bδ(v)) ≥ (a0a1)
2.

The proof is complete with a = (a0a1)
2.

4.3 The Gradient Estimate

In this subsection, we will show that the transition operator Ps,t,h has the following gradient

estimate.

Proposition 4.7. Assume A∞ = H. Then for every η > 0 and a > 0 there exists constants

C = C(η, a) > 0 such that

∥∇Ps,s+t,hϕ(w)∥ ≤ C exp(pη∥w∥2)
(√

(Ps,s+t,h|ϕ|2) (w) + e−at
√

(Ps,s+t,h∥∇ϕ∥2) (w)
)

(4.19)

for some p ∈ (0, 1), for every Frechet differentiable function ϕ, every w ∈ H,h ∈ Tn, s ∈ R and

t ≥ 0. Here C(η, a) does not depend on initial condition (s, w) and ϕ.

Proof. The proof is a combination of inequality (4.27), Proposition 4.16 and Proposition 4.17

below.

The general scheme for the proof of the above gradient inequality is quite standard in the time

homogeneous case after the groundbreaking works [40, 41, 42, 57]. However, there is no known

proof for the time inhomogeneous case in the literature, hence we supply a proof in this section,

using the same arguments as that in the time homogeneous case. We first apply the integration by

parts formula from the theory of Malliavin calculus, to transfer the variation on the initial condition

in a solution to a variation v on the Wiener path. The problem of obtaining estimate (4.19) is then
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reduced to finding an appropriate v with bounded cost to approximately compensate the variation

on the initial condition, so that the error of the two variations in the solution goes to 0 as time

goes to infinity.

The invertibility of the Malliavin matrix is crucial when constructing such a desired control

v. However, it is not easy to verify the invertibility in the infinite dimensional case, hence the

inverse of its Tikhonov regularization is taken into consideration. Moreover, since the noise here

is extremely degenerate, the unstable directions of the system are not directly forced. Hence one

needs an infinite dimensional version of Lie bracket condition A∞ = H as in Hörmander’s theorem

to ensure the propagation of the noise to those unstable directions and obtain a spectral estimate of

the Malliavin matrix to control the dynamics on the determining modes. Since there is no existing

proof of the spectral property of the Malliavin matrix in the time inhomogeneous setting, we give

a proof here.

4.3.1 The Malliavin matrix. In this subsection, we recall several facts about the Malliavin

matrix and give a specific description about the construction of the control v. To introduce the

Malliavin derivative of the solution process, we first consider its linearized equations.

As in [40, 57], the linearized flow Jτ,r,hξ ∈ C ([τ, t];H) ∩ L2 ((τ, t];H1) is the solution to the

equation

∂rJτ,r,hξ = ν∆Jτ,r,hξ + B̃(ws,r,h, Jτ,r,hξ), r > τ, Jτ,τ,hξ = ξ, (4.20)

for any r > τ ≥ s and ξ ∈ H, where B̃(u,w) = −B(Ku,w) − B(Kw, u), where ws,r,h = ws,r,h(w0)

is the solution of (2.5) by replacing the force f(t) with Ψ(βth), see (2.11).

It is also helpful to consider the time-reversed, H-adjoint U
t,(·)
h (r) of Jr,t,h(·) to analyze the

Malliavin matrix. Here we use the notation U t,φ
h (r) to emphasize that the time t is the initial time

and φ ∈ H is the initial data, and the process U t,φ
h (r) runs backward in time for s ≤ r ≤ t. It

follows that U t,φ
h (r) ∈ C ([s, t];H) ∩ L2 ([s, t);H1) is the unique solution to the backward random

PDE ∂rU
t,φ
h (r) = −ν∆U t,φ

h (r) +B
(
Kws,r,h, U

t,φ
h (r)

)
+ C

(
KU t,φ

h (r), ws,r,h

)
, s ≤ r < t,

U t,φ
h (t) = φ.

(4.21)
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Here C (K (·) , ws,r,h) is the adjoint of B (K (·) , ws,r,h) determined by the relation

⟨B (Ku,ws,r,h) , v⟩ = ⟨C (Kv, ws,r,h) , u⟩.

The second derivative Kτ,t,h of ws,r,h with respect to its initial condition is the solution of the

following equation ∂tKτ,t,h (ξ, ξ
′) = ν∆Kτ,t,h (ξ, ξ

′) + B̃ (ws,t,h,Kτ,t,h (ξ, ξ
′)) + B̃ (Jτ,t,hξ

′, Jτ,t,hξ) ,

Kτ,τ,h (ξ, ξ
′) = 0.

(4.22)

By the variation of constants formula Kτ,t,h (ξ, ξ
′) is given by

Kτ,t,h

(
ξ, ξ′

)
=

∫ t

τ
Jr,t,hB̃

(
Jτ,r,hξ

′, Jτ,r,hξ
)
dr.

Note that the solution ws,t,h(ω,w0) is a functional of the two sided Wiener process via the Ito

map Φw0
s,t,h : C([s, t],Rd) → H with ws,t,h(ω,w0) = Φw0

s,t,h

(
W[s,t]

)
, where W[s,t] is the restriction of

the Wiener process on [s, t]. The Cameron-Martin space associated with the Wiener space (Ω,F ,P)

is

CM =
{
V ∈ L2

(
R,Rd

)
: ∂tV ∈ L2

(
R,Rd

)
, V (0) = 0

}
,

endowed with the norm ∥V ∥2CM :=
∫
R |∂tV (t)|2Rddt, which is a Hilbert space isometric to CM′ =

L2(R,Rd). As in Section 4.1 in [42], for any V ∈ CM, denote the directional derivative of the H

valued random variable ws,t,h along the direction V as

DΦw0
s,t,hV := lim

ε→0

Φw0
s,t,h(W + εV )− Φw0

s,t,h(W )

ε
,

which exists and satisfies

DΦw0
s,t,hV =

∫ t

s
Jr,t,hGV ′(r)dr. (4.23)

Now for any v ∈ CM′, define V (t) =
∫ t
0 v(t)dt. Then Dvws,t,h = DvΦw0

s,t,h := DΦw0
s,t,hV is called the

Malliavin derivative of the random variable ws,t,h in the direction v. Since Dvws,t,h is a (random)

bounded linear operator from CM′ to H, by Riesz’s representation theorem, there exists a random

element, Dws,t,h ∈ CM′ ⊗H such that for every v ∈ CM′,

Dvws,t,h = ⟨Dws,t,h, v⟩CM′ =

∫
R
(Drws,t,h) v(r)dr.

The random element Dws,t,h is the Malliavin derivative of ws,t,h, which can be regarded as a

stochastic process (Drws,t,h)r∈R with values in Rd⊗H. From equation (4.23), we see that Drws,t,h =

Jr,t,hG for r ∈ [s, t] and Drws,t,h = 0 for r ∈ R \ [s, t]. The operator D : L2(Ω,R) ⊗ H →
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L2
ad(Ω,Ft, CM′)⊗H is actually a closed unbounded linear operator, which is called the Malliavin

derivative. Here L2
ad is the space of L2 functions adapted to the filtration Ft [42].

For any t ≥ τ ≥ s, define the random operator Aτ,t,h : CM′ → H by

Aτ,t,hv := ⟨Dws,t,h, vI[τ,t]⟩CM′ =

∫ t

τ
Jr,t,hGv(r)dr,

and its adjoint A∗
τ,t,h by the relation ⟨Aτ,t,hv, u⟩H = ⟨v,A∗

τ,t,hu⟩CM′ . Then the Malliavin matrix is

defined as Mτ,t,h := Aτ,t,hA
∗
τ,t,h. We have for ξ ∈ H,

⟨Mτ,t,hξ, ξ⟩ =
d∑

i=1

∫ t

τ
⟨Jr,t,hgi, ξ⟩2dr =

d∑
i=1

∫ t

τ

⟨
gi, U

t,ξ
h (r)

⟩2
dr, (4.24)

where the second identity is due to the fact that U
t,(·)
h (τ) is the adjoint of Jτ,t,h in H, which has

been proved in [42, 57].

For any v ∈ CM′, denote by vτ,t = vI[τ,t] the restriction of v on the interval [τ, t]. Set the error

Rt,h = Js,t,hξ −As,t,hvs,t (4.25)

caused by the infinitesimal variation on the Wiener path W by v that is used to compensate the

variation on the initial condition of the solution process. Applying the integration by parts formula

[59] for the Malliavin derivative, we have for any Fréchet differentiable φ : H → R, any initial

condition w0 ∈ H and α := t− s ≥ 0

⟨∇Ps,t,hφ(w0), ξ⟩ = E
⟨
∇
(
φ
(
ws,t,h(w0)

))
, ξ
⟩
= E

((
∇φ
)(
ws,t,h(w0)

)
Js,t,hξ

)
= E

((
∇φ
)(
ws,t,h(w0)

)
As,t,hvs,t

)
+E

((
∇φ
)(
ws,t,h(w0)

)
Rt,h

)
= E

(
Dvs,tφ

(
ws,t,h(w0)

))
+E

((
∇φ
)(
ws,t,h(w0)

)
Rt,h

)
= E

(
φ
(
ws,t,h(w0)

) ∫ t

s
v(r)dW (r)

)
+E

((
∇φ
)(
ws,t,h(w0)

)
Rt,h

)
(4.26)

≤

(
E

∣∣∣∣∫ s+α

s
v(r)dW (r)

∣∣∣∣2
)1/2√

Ps,s+α,h|φ|2(w0)

+
√
Ps,s+α,h∥∇φ∥2(w0)

(
E∥Rs+α,h∥2

)1/2
, (4.27)

where we used Hölder’s inequality at the last step. Fix ∥ξ∥ = 1, where ξ ∈ H represents the

direction of the variation of the solution on the initial condition. To show the gradient inequality,

we will choose an appropriate random process v with sample paths in CM′ to make sure the
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existence of constant C > 0 and p ∈ (0, 1), such that

E
∣∣∣∫ s+τ

s v(r)dW (r)
∣∣∣ < C exp(pη∥w0∥),

E ∥Rs+τ,h∥ ≤ Ce−aτ exp(pη∥w0∥).
(4.28)

for some a > 0 and all τ ≥ 0, w0 ∈ H. Note once we fixed the initial time s, the values of v before

s do not affect the gradient estimate (4.27). Hence we will set v(r) = 0 for r < s and mainly focus

on the construction of v after the initial time s.

The proof of Proposition 4.7 is then reduced to finding such an appropriate control v, which

involves the inverse of the Malliavin matrix. However, it is unclear if the Malliavin matrix is

invertible or not in the present infinite dimensional setting, therefore we consider its Tikhonov

regularization M̃τ,t,h := Mτ,t,h + β for small constant β > 0, which is invertible. For integer values

n ≥ 0, define Jn = Js+n,s+n+1,h, An = As+n,s+n+1,h, Mn = AnA
∗
n, M̃n = β + Mn. Note that we

omit the dependence on h for notational simplicity. The process v is then recursively defined as

v(r) =

 A∗
2nM̃

−1
2n J2nRs+2n for r ∈ [s+ 2n, s+ 2n+ 1), n ≥ 0,

0 for r ∈ [s+ 2n+ 1, s+ 2n+ 2), n ≥ 0,
(4.29)

where Rs = ξ, and Rt = Js,t,hξ −As,t,hvs,t. The definition is not circular since the construction of

v(r) for r ∈ [s+ 2n, s+ 2n+ 2] only requires the knowledge of Rs+2n, which depends only on v(r)

for r ∈ [s, s+2n]. For instance, for known Rs = ξ, we obtain the definition of v(r) for r ∈ [s, s+2]

from formula (4.29), and Rt = Js,t,hξ−As,t,hvs,t,h for t ∈ [s, s+2]. Then we use Rs+2 to construct

v(r) for r ∈ [s+ 2, s+ 4] and iterate this procedure.

In what follows we first prove a spectral property on the Malliavin matrix in Section 4.3.2 and

then give the desired estimates as in (4.28) in Section 4.3.3.

4.3.2 A Spectral Property of The Malliavin Matrix. We need the following important

result about the spectral property of the Malliavin matrix over the unstable modes to have the

desired controls on the dynamics. The same result in the time homogeneous setting has been

obtained in [7, 40, 42, 57]. Since there is no known proof for a time inhomogeneous system such as

(2.5), we supply a proof here.

Theorem 4.8. Assume A∞ = H. For any p ≥ 1 , positive α, η, n, and any orthogonal projection

Π : H → H on a finite dimensional subspace of H, there exist C = C(p, n, η, ν,Π, f,B) and
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ε0 = ε0(n, α,Π, f,B) such that

P
(
⟨Ms,s+n,hφ,φ⟩ < ε∥φ∥2

)
≤ Cεp exp

(
η ∥w0∥2

)
holds for every (random) vector φ ∈ H satisfying ∥Πφ∥ ≥ α∥φ∥ almost surely, for every ε ∈

(0, ε0), s ∈ R, and for every w0 ∈ H, h ∈ Tn.

The proof is based on the approach in Section 6 of [42] along with some estimates on the solution

of the Navier-Stokes equation (2.5) and its linearization. We first prove several lemmas and then

give the proof of the theorem at the end.

Fixing T > 0, we will consider the problem in the interval [s, s+ T ]. To avoid the singularities

at the initial and terminal times, we introduce Iδ := [s+ T
2 , s+T − δ], where δ = T

4 ε
r for 0 < ε < 1

and some r > 0 that will be determined later. Also for α ∈ (0, 1), and for a given orthogonal

projection Π : H → H, we define Sα ⊂ H by

Sα = {φ ∈ H\{0} : ∥Πφ∥ ≥ α∥φ∥}.

The following estimates about the process U t,φ
h in the time homogeneous case have been proved in

[42]. Since the setting is a bit different here due to time inhomogeneity, we give the proof below

for the reader’s convenience.

Lemma 4.9. For any δ ∈ (0, T/2], p > 0, η > 0, one has the bound

E sup
∥φ∥≤1

∥∥∥U s+T,φ
h (s+ T − δ)− eδν∆φ

∥∥∥2p ≤ Cδp exp
(
pη∥w0∥2

)
,

E sup
∥φ∥≤1

∥∥∥U s+T,φ
h (s+ T − δ)− φ

∥∥∥2p
−1

≤ Cδp exp
(
pη∥w0∥2

)
.

Proof. We first reverse the time of the process by setting w̄s,r = ws,T+2s−r,h(w0), and Ūr =

U s+T,φ
h (T + 2s− r). Then Ūr solves the parabolic equation ∂rŪr = ν∆Ūr +B

(
Kw̄s,r, Ūr

)
− C

(
KŪr, w̄s,r

)
, s < r ≤ s+ T,

Ūs = φ.

It then follows from the variation of constant formula that,

Ūs+δ = eδν∆φ+

∫ s+δ

s
eν∆(s+δ−r)

[
B
(
Kw̄s,r, Ūr

)
− C

(
KŪr, w̄s,r

)]
dr.

Since both ∥B
(
Kw̄s,r, Ūr

)
∥ and ∥C

(
KŪr, w̄s,r

)
|| are bounded by C∥w̄s,r∥1∥Ūr∥1, one has∥∥∥Ūs+δ − eδν∆φ

∥∥∥ ≤ C sup
T+s−δ≤r≤s+T

∥ws,r,h∥1
∫ s+δ

s
∥Ūr∥1dr.
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To estimate ∥Ūr∥1, set ζr = ∥Ūr∥2+ν(r−s)∥Ūr∥21. As in the proof of inequality (A.16), one obtains

from the equation for Ūr that

∥Ūr∥1 ≤
C√
r − s

∥φ∥ exp
(∫ s+T

s
η∥ws,r∥21dr

)
, (4.30)

where C is a constant depending on ν, η, T . Now it follows from the estimate (A.2) that

E sup
∥φ∥≤1

∥∥∥Ūs+δ − eδν∆φ
∥∥∥2p ≤ Cδp exp

(
pη∥w0∥2

)
,

which is the first inequality of Lemma (4.9). The second inequality follows from the first one and

the following fact∥∥Ūs+δ − φ
∥∥
−1

≤
∥∥∥Ūs+δ − eδν∆φ

∥∥∥
−1

+
∥∥∥eδν∆φ− φ

∥∥∥
−1

≤
∥∥∥Ūs+δ − eδν∆φ

∥∥∥+ Cδ.

The next lemma allows one to transfer the properties of φ back from the terminal time.

Lemma 4.10. Fix any orthogonal projection Π of H onto a finite dimensional subspace of H

spanned by elements of H1. There exists a constant c ∈ (0, 1) such that for every r > 0 and every

α > 0, the event

Ωδ,Π :=
{
ω ∈ Ω : φ ∈ Sα =⇒ U s+T,φ

h (T + s− δ) ∈ Scα and ∥ΠU s+T,φ
h (T + s− δ)∥ ≥ α

2
∥φ∥

}
satisfies P

(
Ωc
δ,Π

)
≤ C exp

(
η∥w0∥2

)
εp for every p ≥ 1. Note that here C depends on 1/r.

Proof. Since we have proved Lemma 4.9, this is a reformulation of Lemma 6.15 in [42].

Since the randomness spreads over the state space through the nonlinear term, we define

recursively the following sets {Ak}∞k=1 formed by the symmetrized nonlinear term B̃(u,w) =

−B(Ku,w)−B(Kw, u). Set A1 = {gk : 1 ≤ k ≤ d}, and Ak+1 = Ak ∪ {B̃(h, gl) : h ∈ Ak, gl ∈ A1}.

Also define A∞ = span(∪k≥1Ak). Note that each Ak here, consisting of constant vector fields in

H, is a subset of the k-th Hörmander bracket defined in Section 6 of [42]. To each An we associate

a quadratic form Qn by ⟨φ,Qnφ⟩ =
∑

h∈An
⟨φ, h⟩2. Just as in [7, 42, 57], it is typical to apply

arguments that use local time regularity to replace the analysis of non-adapted processes. Hence

for θ ∈ (0, 1] we define the following (semi-)norm for functions g : Iδ → H by

∥g∥θ,s := sup
r,t∈Iδ

∥g(t)− g(r)∥s
|t− r|θ

, and ∥g∥∞,s := sup
t∈Iδ

∥g∥s.

Also for g : Iδ → R, we use the following notation for the corresponding norms

∥g∥∞ = sup
t∈Iδ

|g(t)|, ∥g∥θ := sup
r,t∈Iδ

|g(t)− g(r)|
|t− r|θ

.
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The following lemma is the key to prove theorem 4.8. The proof requires a technical result

which roughly states that two distinct monomials in a Wiener polynomial cannot cancel each other

out [7, 42, 57].

Lemma 4.11. For every p ≥ 1 and integer N > 0, there exist 0 < εN < 1, rN > 0, pN > 0 and

qN = qN (p) > 0 such that, provided that r ≤ rN , the event

Ωε,N :=

{
ω ∈ Ω : ⟨φ,Ms,s+T,hφ⟩ ≤ ε∥φ∥2 =⇒ sup

h∈AN

sup
t∈Iδ

∣∣∣⟨U s+T,φ
h (t), h

⟩∣∣∣ ≤ εpN ∥φ∥

}
satisfies

P
(
Ωc
ε,N

)
≤ CqN exp

(
η∥w0∥2

)
εp,

for ε ∈ (0, εN ] and η ∈ (0, η0].

Proof. The proof proceeds by induction on N . It suffices to show the result for φ with unit norm

∥φ∥ = 1. We first prove that the result is true for A1. Assume that ⟨φ,Ms,s+T,hφ⟩ ≤ ε, then by

representation (4.24), one has

sup
1≤k≤d

∫
Iδ

⟨
gk, U

s+T,φ
h (τ)

⟩2
dτ ≤ ε.

Setting R(t) =
∫ t
s+T

2

⟨
gk, U

s+T,φ
h (τ)

⟩
dτ , Lemma 6.14 in [42] implies that

sup
t∈Iδ

⟨
gk, U

s+T,φ
h (t)

⟩
= ∥∂tR∥∞ ≤ 4∥R∥∞max

{
1

|Iδ|
, ∥R∥−

1
2∞ ∥∂tR∥

1
2
1

}
≤ CT max

{
ε

1
2 , ε

1
4 ∥∂tR∥

1
2
1

}
,

where CT = 4max
{
1, 2√

T
,
(
T
2

)1/4}. It follows from Lemma E.1 of [57] that

∥U s+T,φ
h ∥1,0 ≤ C

(
1 + ∥ws,·,h∥2∞,1 + ∥U s+T,φ

h ∥2∞,1

)
.

From estimate (4.30), Lemma A.1, we have that for any p′ ≥ 1,

E∥∂tR∥p
′

1 ≤ E∥gk∥p
′∥U s+T,ϕ

h ∥p
′

1,0 ≤ CE∥U s+T,ϕ
h ∥p

′

1,0 ≤ C exp
(
η∥w0∥2

)
δ−p′ .

Therefore by the Markov inequality and recalling that δ = T
4 ε

r, one has for p̃ > 0, α > 0,

P
(
∥∂tR∥1 > αε−p̃

)
= P

(
∥∂tR∥p

′

1 > αp′ε−p̃p′
)

≤ α−p′εp̃p
′
E∥∂tR∥p

′

1 ≤ C(α, p′) exp
(
η∥w0∥2

)
εp̃p

′−rp′ .

Then on a set Ω̃ε,1 ⊂ Ω, such that P(Ω̃c
ε,1) ≤ C(α, p′) exp

(
η∥w0∥2

)
εp̃p

′−rp′ , we have

∥∂tR∥1 ≤ αε−p̃.
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Now choose α = C−2
T , p̃ = 1

4 , and r1 = 1
2 p̃. Then provided r < r1, for any p ≥ 1, by choosing

p′ = p
p̃−r , one has on Ω̃ε,1,

sup
t∈Iδ

⟨
gk, U

s+T,φ
h (t)

⟩
≤ CT max

(
ε

1
2 , α

1
2 ε

1
8

)
≤ ε

1
8

and P(Ω̃c
ε,1) ≤ C exp

(
η∥w0∥2

)
εp for ε ∈ (0, ε1], where ε1 = C

−8/3
T . Observe that the event set Ω̃ε,1

does not depend on the choice of gk ∈ A1 and it is contained in Ωε,1. So

P(Ωc
ε,1) ≤ P(Ω̃c

ε,1) ≤ C exp
(
η∥w0∥2

)
εp.

Hence the proof for the base case is complete with p1 = r1 = 1/8, q1 = p/r1 and ε1 = C
−8/3
T .

The inductive step is accomplished through the following lemma.

Lemma 4.12. For N ≥ 2, fix g ∈ AN−1, and suppose that q := pN−1 has been given. Then for

p ≥ 1, provided r < rN , the event

Ω̃N,ε :=

{
sup
t∈Iδ

∣∣∣⟨U s+T,φ
h (t), g⟩

∣∣∣ ≤ εq =⇒ sup
1≤k≤d

sup
t∈Iδ

∣∣∣⟨U s+T,φ
h (t), B̃(g, gk)⟩

∣∣∣ ≤ εpN

}
satisfies P(Ω̃c

ε,N ) ≤ CqN exp
(
η∥w0∥2

)
εp for ε ∈ (0, εN ). Here pN = q/24, rN = q/12, qN = 12p/q

and εN = C
−8/(7q)
T with CT = 4max {4/T, 1}.

Proof. Let R(t) = ∂t⟨U s+T,φ
h (t), g⟩. Then Lemma 6.14 in [42] (with α = 1/3) implies that

∥R∥∞ ≤ 4max

{
1

|Iδ|
εq, ε

q
4 ∥R∥3/41/3

}
≤ CT max

{
εq, ε

q
4 ∥R∥3/41/3

}
.

Next we show that ∥R∥1/3 has a bounded expectation. As in [42], we consider the process

vs,t,h := ws,t,h −
d∑

k=1

gk (Wk(t)−Wk(s)) , t ≥ s,

since it has more time regularity. Note

R(t) =

⟨
−∆g+ B̃(vs,t,h, g) +

d∑
k=1

B̃(gk, g) (Wk(t)−Wk(s)) , U
s+T,φ
h (t)

⟩
.

And recall that we assumed elements of {gk}dk=1 are smooth, so each g has bounded Hθ norm for

any θ. Observe that∥∥∥⟨B̃(vs,t,h, g), U
s+T,φ
h (t)

⟩∥∥∥
1/3

≤ C∥U s+T,φ
h ∥1,0

(
∥vs,t,h∥∞,1 + ∥vs,t,h∥1/3,1

)
≤ C∥U s+T,φ

h ∥1,0

(
∥ws,t,h∥∞,1 +

d∑
k=1

∥gk∥1∥Wk∥∞ + ∥∂tvs,t,h∥∞,1

)

≤ C∥U s+T,φ
h ∥1,0

(
1 + ∥ws,t,h∥2∞,3 +

d∑
k=1

∥Wk∥2∞

)
, (4.31)
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for constant C depending on ∥g∥2,B1 and ∥f∥∞,1 = supt∈R ∥Ψ(βth)∥1, where we used the fact that

∥∂tvs,t,h∥∞,1 = ∥∆ws,t,h −B(Kws,t,h, ws,t,h) + Ψ(βth)∥∞,1

≤ ∥ws,t,h∥∞,3 + C∥ws,t,h∥2∞,3 + ∥f∥∞,1 ≤ C
(
1 + ∥ws,t,h∥2∞,3

)
.

For other terms in the expression of R(t), one has

∥⟨−∆g, U s+T,φ
h ⟩∥1/3 ≤ C∥U s+T,φ

h ∥1,0, (4.32)

and ∥∥∥∥∥
⟨

d∑
k=1

B̃(gk, g) (Wk(t)−Wk(s)) , U
s+T,φ
h (t)

⟩∥∥∥∥∥
1/3

≤ C
d∑

k=1

∥Wk∥1/3∥U
s+T,φ
h ∥1,0. (4.33)

Therefore one obtains

∥R∥1/3 ≤ C∥U s+T,φ
h ∥1,0

(
1 + ∥ws,t,h∥2∞,3 +

d∑
k=1

∥Wk∥2∞ +
d∑

k=1

∥Wk∥21/3

)
.

From the proof of Lemma 7.12 in [57], we know that E∥Wk∥γα < C(T, γ) for all γ ≥ 1 and α ∈ [0, 12).

This fact, together with the estimates for the solution from Lemma A.1, implies that for any p′ ≥ 1,

α > 0 and p̃ > 0,

P
(
∥R∥1/3 > αε−p̃

)
≤ C(p′, α) exp

(
η∥w0∥2

)
δ−p′εp̃p

′ ≤ C(p′, α) exp
(
η∥w0∥2

)
εp̃p

′−p′r.

Therefore on a set Ω̃ε,N,1 ⊂ Ω, such that P(Ω̃c
ε,N,1) ≤ C exp

(
η∥w0∥2

)
εp̃p

′−p′r, we have

∥R∥1/3 ≤ αε−p̃.

Now choose pN , rN and εN as stated in the Lemma and let p̃ = q/6, α = C
−4/3
T . Then on the set

Ω̃ε,N,1, we have

∥R∥∞ ≤ CT max
{
εq, α

3
4 ε

q
8

}
≤ ε

q
8 .

for all ε ∈ (0, εN ]. Note that α and εN are determined when taking the maximum. Observing that

for any p ≥ 1, provided r < rN , we can take p′ = p
p̃−r , so that

P(Ω̃c
ε,N,1) ≤ CqN exp

(
η∥w0∥2

)
εp.

Denote R0 =
⟨
−∆g+ B̃(vs,t,h, g), U

s+T,φ
h (t)

⟩
and Rk =

⟨
B̃(gk, g), U

s+T,φ
h (t)

⟩
for k = 1, 2, · · · , d,

which are the coefficients of the Wiener polynomial R(t), where the Wiener process W is the shift

of the original two sided Wiener process as in (2.4), i.e.,

W (r) = W (r + s)−W (s) = (θsω)(r), r ≥ 0,
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where θs is the Wiener shift as defined in (2.14). Then the technical Theorem 7.1 from [42] implies

that on a set Ω̃ε,N,2 ⊂ Ω, one has

∥R∥∞ ≤ εq/8 ⇒


either sup

0≤k≤d
∥Rk∥∞ ≤ εq/24,

or sup
0≤k≤d

∥Rk∥1 ≥ ε−q/72,

and P(Ω̃c
ε,N,2) ≤ Cεp, where C depends only on p and the events Ω̃ε,N,2 depends on the processes

Rk only through the value of the highest degree of the Wiener polynomial, which is 1 here. The

Markov inequality and the estimates (4.31)-(4.33) imply that there is an event Ω̃ε,N,3, on which

∥Rk∥1 < ε−q/72 for each k, and

P(Ω̃c
ε,N,3) ≤ CP

(
∥Rk∥

72p/q
1 ≥ ε−p

)
≤ C exp

(
η∥w0∥2

)
εp.

Now observe that
∩3

i=1 Ω̃ε,N,i ⊂ Ω̃ε,N , hence

P(Ω̃c
ε,N ) ≤

3∑
i=1

P(Ω̃c
ε,N,i) ≤ C exp

(
η∥w0∥2

)
εp.

This completes the proof of the induction step.

The proof of Lemma 4.11 is then complete.

Proof of Theorem 4.8. Now we give a proof of Theorem 4.8 by combining the above lemmas. Since

A∞ = H, by Lemma 8.3 in [42], for any fixed finite dimensional projection Π, there exists N > 0 (

N depends on the projection Π, so that pN , rN , εN depends on Π) such that for each α > 0, there

exists a constant Λα > 0, such that for every n ≥ N ,

inf
φ∈Sα

|⟨φ,Qnφ⟩|
∥Πφ∥2

≥ Λα.

On the other hand, it follows from Lemma 4.10 and Lemma 4.11 that there exist constants

pN , rN , εN , c > 0 such that for every α > 0, on the set Ωε,N
∩
Ωδ,Π, the condition

φ ∈ Sα and ⟨φ,Ms,s+T,hφ⟩ ≤ ε∥φ∥2

implies that

U s+T,φ
h (T + s− δ) ∈ Scα, ∥ΠU s+T,φ

h (T + s− δ)∥ ≥ α

2
∥φ∥,

and sup
h∈AN

sup
t∈Iδ

∣∣∣⟨U s+T,φ
h (t), h

⟩∣∣∣ ≤ εpN ∥φ∥,

and P
(
Ωc
ε,N

∪
Ωc
δ,Π

)
≤ C exp

(
η∥w0∥2

)
εp, for any ε ∈ (0, εN ) and p ≥ 1. Then it follows that on
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the set Ωε,N
∩
Ωδ,Π, one has

α

2
∥φ∥ ≤ ∥ΠU s+T,φ

h (T + s− δ)∥ ≤ CΛ−1/2
cα sup

h∈AN

⟨U s+T,φ
h (T + s− δ), h⟩ ≤ CΛ−1/2

cα εpN ∥φ∥.

This in turn shows that on Ωε,N
∩
Ωδ,Π, ⟨φ,Ms,s+T,hφ⟩ ≤ ε∥φ∥2 and φ ∈ Sα implies that

α

2
< CεpN ,

which is not true for ε ≤ ε0 := min
{
εN ,

(
α
2C

)1/pN}.

Hence P
(
⟨Ms,s+T,hφ,φ⟩ < ε∥φ∥2

)
≤ Cεp exp

(
η ∥w0∥2

)
for φ ∈ Sα.

4.3.3 Estimate of The Error R and The Control v. Now it remains to check (4.28). This

will be accomplished through Proposition 4.16 and Proposition 4.17. We first establish several

lemmas. Recall that the error R and control v, as well as related quantities have been given when

defining (4.29).

The following lemma is a version of the well known Foias–Prodi estimate. It shows that the

linearized system of equation (2.5) has only a finite number of unstable directions along the low

modes. The proof of the asymptotic regularizing inequality (4.19) relies on an estimate of the

spectrum of the Malliavin matrix on such determining modes.

Lemma 4.13. For any constants p ≥ 1, T, γ, η > 0, there exists an orthogonal projection πℓ :=

πℓ(p, T, γ, η) onto a finite dimensional subspace of H such that

E ∥(1− πℓ) Js,s+T,h∥p ≤ γ exp
(
η ∥w0∥2

)
,

E ∥Js,s+T,h (1− πℓ)∥p ≤ γ exp
(
η ∥w0∥2

)
,

(4.34)

for every w0 ∈ H, s ∈ R and h ∈ Tn.

Proof. Let {λn} be the eigenvalues of −∆ associated with (2.5), and ΠN the projection onto the

subspace of H spanned by the first N eigenfunctions. Let Π⊥
N = 1 − ΠN . Since

∥∥Π⊥
NJs,s+T,hξ

∥∥ ≤
1
N ∥Js,s+T,hξ∥1, from bound (A.16) for the linearization flow and (A.2), we obtain

E
∥∥∥Π⊥

NJs,s+T,h

∥∥∥p ≤ 1

Np
E ∥Js,s+T,h∥p1 ≤ γ exp

(
η ∥w0∥2

)
,

for any γ > 0, η ∈ (0, η0] by choosing N sufficiently large, where η0 is from Lemma A.1. It is

readily seen that the inequality still holds for η ≥ η0 hence is true for any η > 0.

It follows from Proposition 6.1 in [13] that

∥B̃(ws,r,h, Js,r,hξ)∥−1/4 ≤ ∥ws,r,h∥∥Js,r,hξ∥1 + ∥ws,r,h∥1∥Js,r,hξ∥. (4.35)
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Denote ξ̄N = Π⊥
Nξ. From inequality (4.35), equation (4.20) and using the variation of constant

formula, and the analyticity of et∆, we have that

∥Js,s+T,hξ̄N∥ =

∥∥∥∥eνt∆ξ̄N +

∫ s+t

s
eν(s+t−r)∆B̃(ws,r,h, Js,r,hξ̄N )dr

∥∥∥∥
≤ ∥eνt∆ξ̄N∥+ C

∫ s+t

s
(s+ t− r)−1/4∥B̃(ws,r,h, Js,r,hξ̄N )∥−1/4dr

≤ e−νtλN+1∥ξ∥+ C sup
r∈[s,s+T ]

C(r)

∫ s+t

s
(s+ t− r)−1/4 (r − s)−1/2dr

≤ e−νtλN+1∥ξ∥+ t1/4C sup
r∈[s,s+T ]

C(r), (4.36)

where C(r) = (∥ws,r,h∥∥Js,r,hξ∥1 + ∥Js,r,hξ∥∥ws,r,h∥1) (r − s)1/2. It then follows from the estimate

(A.16), (A.2), (A.6) and (A.8) from Lemma A.1 that there exists a constant C > 0 independent of

s, such that

sup
r∈[s,s+T ]

C(r) ≤ C exp
(
η∥w0∥2

)
. (4.37)

Hence for every p ≥ 1, γ > 0, η > 0, by first choosing sufficiently small t > 0 and then choosing

sufficiently large N , we have by (4.36) and (A.6), (A.2) that

E∥Js,s+T,hΠ
⊥
N∥p ≤

(
E∥Js+t,s+T,h∥2pE∥Js,s+t,hΠ

⊥
N∥2p

)1/2
≤ γ exp

(
η ∥w0∥2

)
.

The proof is complete by setting πℓ = ΠN for a large enough N .

The following lemma gives a quantitative control of the error between the Malliavin matrix and

its regularization.

Lemma 4.14. Fix ξ ∈ H and set

ζ = β (β +M0)
−1 J0ξ.

Then for any constants p ≥ 1, γ, η > 0 and every finite dimensional orthogonal projector πℓ, there

exists a small β0 := β0(p, γ, η) > 0 such that for every β ∈ (0, β0],

E ∥πℓζ∥p ≤ γ exp
(
η ∥w0∥2

)
∥ξ∥p.

Proof. For α > 0, define Aα := {ω ∈ Ω : ∥πℓζ∥ (ω) > α∥ζ∥(ω)}. Let ζα(ω) = ζ(ω)IAα(ω) and

ζ̄α(ω) = ζ(ω) − ζα(ω) = ζ(ω)IAc
α
(ω), where IA is the characteristic function of the set A. Since
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∥β(β +M0)
−1∥ ≤ 1, it follows from estimates (A.2) and (A.6) in Lemma A.1 that

E
∥∥πℓζ̄α∥∥p ≤ αpE∥ζ∥p ≤ αpE ∥J0ξ∥p ≤

γ

2
exp

(
η ∥w0∥2

)
∥ξ∥p (4.38)

by choosing α sufficiently small. Fix such an α. We also have

⟨ζα,M0ζα⟩ ≤ ⟨ζ,M0ζ⟩ ≤ ⟨ζ, (M0 + β) ζ⟩ =
⟨
β (M0 + β)−1 J0ξ, βJ0ξ

⟩
≤ β ∥J0ξ∥2 .

By Theorem 4.8, we know that for every p ≥ 1 and α > 0, there exists a constant C and ε0 such

that

P
(
⟨M0ζα, ζα⟩ < ε ∥ζα∥2

)
≤ Cεp exp

(
η ∥w0∥2

)
holds for every w0 ∈ H and every ε ∈ (0, ε0). Therefore

P

(
∥ζα∥2

∥J0ξ∥2
>

β

ε

)
≤ P

(
⟨M0ζα, ζα⟩ < ε ∥ζα∥2

)
≤ Cεp exp

(
η ∥w0∥2

)
.

Choosing β = ε2, and noting ∥ζα∥
∥J0ξ∥ ≤ 1, we find that

E

(
∥ζα∥2p

∥J0ξ∥2p

)
≤ P

(
∥ζα∥2p

∥J0ξ∥2p
>

βp

εp

)
+

βp

εp
≤ Cεp exp

(
η ∥w0∥2

)
. (4.39)

Note that

E ∥πℓζα∥p ≤ E ∥ζα∥p ≤
√

E
(
∥ζα∥2p ∥J0ξ∥−2p

)
E ∥J0ξ∥2p.

Then combining this with (A.6) from Lemma A.1 and (4.39), it follows that

E ∥πℓζα∥p ≤
γ

2
eη∥w0∥2∥ξ∥p (4.40)

by choosing ε sufficiently small, which in turn gives the desired β0. The lemma then follows from

(4.38) and (4.40) by observing that E ∥πℓζ∥p = E ∥πℓζα∥p +E
∥∥πℓζ̄α∥∥p.

Remark. By the Markov property in its generalized form (see for example Theorem 9.18 in [23]),

it follows from Lemma 4.14 that for each positive integer n and ζ = β (β +Mn)
−1 Jnξ, one has

E (∥πℓζ∥p | Fs+n) ≤ γeη∥ws,s+n,h∥2

∥ξ∥p.

Lemma 4.15. For any constants γ, η > 0 and p ≥ 1, there exists a constant β0 := β0(p, γ, η) > 0

such that whenever 0 < β ≤ β0, we have

E
(∥∥Rs+2(n+1)

∥∥p ∣∣Fs+2n

)
≤ γeη∥ws,s+2n,h∥2

∥Rs+2n∥p , P-a.s.

Proof. The proof is mainly based on Lemma 4.14 and Lemma 4.13. Let ζ = βM̃−1
2n J2nRs+2n.
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Observe that

Rs+2(n+1) = J2n+1Rs+2n+1 = J2n+1ζ. (4.41)

Also note that ∥βM̃−1
2n ∥ ≤ 1 and Rs+2n is Fs+2n measurable. Hence by the estimate (A.6) in

Lemma A.1 and the Markov property, one has

E (∥ζ∥p | Fs+2n) ≤ ∥Rs+2n∥pE (∥J2n∥p | Fs+2n) ≤ Ce
η
2∥ws,s+2n,h∥2

∥Rs+2n∥p . (4.42)

Applying Lemma 4.13, Hölder’s inequality and estimate (4.42), it follows that there exists a pro-

jection πl on a finite dimensional subspace of H such that

E (∥J2n+1 (1− πℓ) ζ∥p | Fs+2n) ≤
√
E
(
∥J2n+1 (1− πℓ)∥2p

∣∣∣Fs+2n

)
E
(
∥ζ∥2p

∣∣∣Fs+2n

)
≤ γ̃e

η
2∥ws,s+2n,h∥2 (

Ce
η
2∥ws,s+2n,h∥2

∥Rs+2n∥p
)

(4.43)

≤ γeη∥ws,s+2n,h∥2

∥Rs+2n∥p . (4.44)

From Lemma 4.14 and the Markov property, it follows that for an arbitrarily small γ̃, one can

choose β sufficiently small such that

E (∥πℓζ∥p | Fs+2n) ≤ γ̃e
η
2∥ws,s+2n,h∥2

∥Rs+2n∥p.

Again applying Hölder’s inequality and the estimate (A.6) on the Jacobian J2n+1, one can deduce

that for any γ > 0,

E (∥J2n+1πℓζ∥p | Fs+2n) ≤ γeη∥ws+2n∥2 ∥Rs+2n,h∥p . (4.45)

by choosing β sufficiently small. The proof is then complete by combining (4.41), (4.43) and

(4.45).

The following result gives a desired estimate on the error between the variations on the initial

condition and that on the Wiener path.

Proposition 4.16. There is p ∈ (0, 1) such that for any η > 0 and a > 0 there are constants

C = C(η, a, p), so that (
E∥Rs+t∥2

)1/2 ≤ C exp(pη∥w0∥2)e−at,

for all s ∈ R and t ≥ 0.

Proof. The proof is based on Lemma 4.15, Lemma A.1 and an iteration procedure. Let Cn =

∥Rs+2n+2∥10

∥Rs+2n∥10
, where we set Cn = 0 if Rs+2n = 0. Note that ∥Rs+2N∥10 =

∏N−1
n=0 Cn since ∥Rs∥ =

45



∥ξ∥ = 1. Also one observes that
∥∥∥βM̃−1

2n

∥∥∥ ≤ 1, and ∥Rs+2n+2∥ ≤
∥∥∥J2n+1βM̃

−1
2n J2n

∥∥∥ ∥Rs+2n∥ in

view of (4.41). So by the estimate (A.6) on the Jacobian from Lemma A.1, it follows that for every

η > 0, there exists a constant C := C(η, ν) such that

Cn ≤
∥∥∥J2n+1βM̃

−1
2n J2n

∥∥∥10 ≤ ∥J2n+1∥10 ∥J2n∥10 ≤ exp

(
η

∫ s+2n+2

s+2n
∥ws,r,h∥21 dr + C

)
, P− a.s.

(4.46)

Now define for η,R > 0,

Cn,R =

 e−ηR if ∥ws,s+2n,h∥2 ≥ 2R,

eηRCn otherwise.

Note that both Cn and Cn,R are Fs+2n+2 measurable. We denote

ΩR :=
{
ω ∈ Ω : ∥ws,s+2n,h∥2 ≥ 2R

}
and ΩR its complement. The probabilities of theses events could depend on the fixed initial time

s and parameter h ∈ Tn, but this dependency will be eliminated when we take expectation later.

It follows from Lemma 4.15 that for every R > η−1, there is β > 0 making γ sufficiently small

such that

E
(
C2
n,R

∣∣Fs+2n

)
= E

(
IΩR

e−2ηR + IΩ̄R
e2ηRC2

n

∣∣Fs+2n

)
= IΩR

e−2ηR + IΩ̄R
e2ηRE

(
C2
n

∣∣Fs+2n

)
≤ IΩR

e−2ηR + IΩ̄R
γe4ηR ≤ 1

2
, P− a.s. (4.47)

It now follows from the definition of Cn and inequality (4.46) that

Cn ≤ Cn,R exp

(
η

∫ s+2n+2

s+2n
∥ws,r,h∥21 dr + η ∥ws,s+2n,h∥2 + C − ηR

)
, P− a.s.

Therefore by the Cauchy-Schwarz inequality,
N−1∏
n=0

Cn ≤
N−1∏
n=0

C2
n,R +

N−1∏
n=0

exp

(
2η

∫ s+2n+2

s+2n
∥ws,r,h∥21 dr + 2η ∥ws,s+2n,h∥2 + 2C − 2ηR

)

≤
N−1∏
n=0

C2
n,R + exp

(
4η

N−1∑
n=0

∥ws,s+2n,h∥2 + 2N (C − ηR)

)

+ exp

(
4η

∫ s+2N

s
∥ws,r,h∥21 dr + 2N (C − ηR)

)
. (4.48)

Now from inequality (4.47) one has

E

(
N−1∏
n=0

C2
n,R

∣∣∣∣∣Fs+2(N−1)

)
≤ 1

2

N−2∏
n=0

C2
n,R, P− a.s.
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Taking conditional expectation repeatedly, one obtains

E

(
N−1∏
n=0

C2
n,R

)
≤ 1

2N
. (4.49)

Fix η > 0 such that η ≤ min{1
4η0ν,

1
4η1}. Then the bounds from inequalities (A.2) and (A.5) imply

that

E exp
(
4η
∫ s+2N
s ∥ws,r,h∥21 dr + 2N (C − ηR)

)
≤ C exp

(
4ην−1 ∥w0∥2 + 2N(C − ηR)

)
,

E exp
(
4η
∑N−1

n=0 ∥ws,s+2n,h∥2 + 2N (C − ηR)
)
≤ exp

(
4aη ∥w0∥2 +N (γ + 2C − 2ηR)

)
.

(4.50)

Choose R sufficiently large such that these two terms satisfy the desired bounds. Then choose β

sufficiently small so that the estimate (4.49) holds and hence by (4.48)-(4.50) we have

E ∥Rs+2N∥10 ≤
C exp

(
η ∥w0∥2

)
2N

(4.51)

for every N ∈ N.

Note that for t ∈ [2n, 2n + 1), one has (we omit the dependence on h ∈ Tn for notational

simplicity)

Rs+t = Js+2n,s+tJs,s+2nξ −As,s+tvs,s+t

= Js+2n,s+tRs+2n + Js+2n,s+tAs,s+2nvs,s+2n −As,s+tvs,s+t

= Js+2n,s+tRs+2n +As,s+tvs,s+t −As+2n,s+tvs+2n,s+t −As,s+tvs,s+t

= Js+2n,s+tRs+2n −As+2n,s+tvs+2n,s+t.

Hence by the definition of v as in (4.29), and the fact that ∥A∗
2nM̃

−1
2n ∥ ≤ β−1/2, we have that

∥Rs+t∥ ≤ ∥Js+2n,s+tRs+2n∥+ ∥As+2n,s+tvs+2n,s+t∥

≤ Cβ−1/2

(
1 + sup

τ∈[s+2n,s+t]
∥Jτ,s+t∥2

)
∥Rs+2n∥. (4.52)

And for t ∈ [2n+ 1, 2n+ 2), we have

Rs+t = Js+2n,s+tJs,s+2nξ −As,s+tvs,s+t

= Js+2n+1,s+2n+2Js,s+2n+1ξ −As,s+tvs,s+t = Js+2n+1,s+tRs+2n+1.

Note that ∥Rs+2n+1∥ = ∥βM̃−1
2n J2nRs+2n∥ ≤ ∥J2n∥∥Rs+2n∥. Hence

∥Rs+t∥ ≤ sup
τ∈[s+2n+1,s+t]

∥Jτ,s+t∥∥Rs+2n+1∥ ≤ sup
τ∈[s+2n,s+t]

∥Jτ,s+t∥2∥Rs+2n+1∥. (4.53)

Combining the above inequalities (4.52) and (4.53) with estimates (A.2), (A.6) and inequality
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(4.51), one has (
E ∥Rs+t∥2

)1/2
≤ C exp

(
pη∥w0∥2

)
e−at

for some p ∈ (0, 1) and all t ≥ 0.

The following result shows that the cost of the variation v on the Wiener path can be bounded.

Since the proof is the same as that in [40] once we obtain the estimate (4.51), we omit it here.

Proposition 4.17. There is p ∈ (0, 1) such that for any η > 0, there exists a constant C =

C(f,B0, η, ν, p) so that for all t ≥ 0,

E

∣∣∣∣∫ s+t

s
v(r)dW (r)

∣∣∣∣2 ≤ C

β2
epη∥w0∥2

∞∑
n=0

(
E ∥Rs+2n∥10

) 1
5
.

As a byproduct, we have the following asymptotic strong Feller property. Note that the constant

C is independent of the initial time s compared with the aymptotic strong Feller property proposed

in [16].

Corollary 4.18. Under the same condition as in Proposition 4.7, with tn = 2n and δn = 2−n, we

have some η0 > 0, such that for η ∈ (0, η0], there is a constant C = C(η) > 0 such that

∥∇Ps,s+tn,hφ(w)∥ ≤ C exp(η∥w∥) (∥φ∥∞ + δn∥∇φ∥∞)

for all φ ∈ C1
b (H), s ∈ R, n ∈ N and w ∈ H, h ∈ Tn.

Proof. The inequality follows by (4.26), estimate (4.51) and Proposition 4.17.

4.4 Proof of Theorem 3.2

As in [41], to prove Theorem 3.2, we use a metric d on H that is equivalent to ρ but easier to

handle with the estimates from previous subsections. Fix any r0 > 0 as in the Lyapunov structure

in Proposition 4.1, and ρr is the metric defined as in (4.1). For constants r ∈ [r0, 1), δ > 0 and

β ∈ (0, 1), the metric d is defined as

d(w1, w2) =

(
1 ∧ ρr(w1, w2)

δ

)
+ βρ(w1, w2), (4.54)

which is equivalent to ρ since βρ(w1, w2) ≤ d(w1, w2) ≤ (δ−1 + β)ρ(w1, w2).

We first give a lemma that can reduce the contraction (3.5) to a relatively simpler case. The first

part of the lemma allows us to extend the contraction of the transition operator on H (embedded in
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P(H)) to a contraction on P(H). And the second part asserts that one can obtain the contraction

for all times once the transition operator is a contraction at a particular time.

Lemma 4.19. We have

(i) For s ∈ R, t ≥ 0, and any given distance d on H, if d(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) ≤ αd(w1, w2),

for any w1, w2 ∈ H, then d(P∗
s,s+t,hµ1,P∗

s,s+t,hµ2) ≤ αd(µ1, µ2) for any µ1, µ2 ∈ P(H).

(ii) If there are N ∈ N, α ∈ (0, 1), such that for any w1, w2 ∈ H, r ∈ [r0, 1] and s ∈ R,

ρr(P∗
s,s+N,hδw1 ,P∗

s,s+N,hδw1) ≤ αρr(w1, w2). Then there are C > 0, γ > 0 such that

ρr(P∗
s,s+t,hµ1,P∗

s,s+t,hµ2) ≤ Ce−γtρr(µ1, µ2),

for any t ≥ 0.

Proof. Fix s ∈ R, h ∈ Tn and t ≥ 0. By Theorem 4.4.3 from [49] on the existence of optimal

couplings for probability kernels, it follows that for the transition probability kernel

Ps,s+t,h(·, ·) : H × B(H) → R,

there is an optimal coupling kernel Q in the sense that

Q : (H ×H)× (B(H)⊗ B(H)) → R,

is a probability kernel on (H ×H,B(H)⊗ B(H)) such that for every (w1, w2) ∈ H×H, Q((w1, w2), ·)

is an optimal coupling of the transition probabilities P∗
s,s+t,hδw1 and P∗

s,s+t,hδw2 :

d(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) = inf
µ∈C

∫
H×H

d(u, v)µ(dudv) =

∫
H×H

d(u, v)Q((w1, w2), dudv), (4.55)

where C = C(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) is the set of all couplings of the transition probabilities

P∗
s,s+t,hδw1 and P∗

s,s+t,hδw2 .

Define the operator PQ acting on Bb(H ×H) by

PQϕ(w1, w2) =

∫
H×H

ϕ(u, v)Q((w1, w2), dudv),

which induces an operator P ∗
Q on P(H × H) by duality, P ∗

Qµ(A × B) =
∫
H×H Q((w1, w2), A ×

B)µ(dw1dw2). One can verify that if µ is a coupling of µ1, µ2, then P ∗
Qµ is a coupling of P∗

s,s+t,hµ1
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and P∗
s,s+t,hµ2. Suppose µ∗ is an optimal coupling of µ1, µ2. Hence by (4.55),

d(P∗
s,s+t,hµ1,P∗

s,s+t,hµ2) = inf
µ∈C(P∗

s,s+t,hµ1,P∗
s,s+t,hµ2)

∫
H×H

d(u, v)µ(dudv) ≤
∫
H×H

d(u, v)P ∗
Qµ∗(dudv)

=

∫
H×H

∫
H×H

d(u, v)Q((w1, w2), dudv)µ∗(dw1dw2)

=

∫
H×H

d(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2)µ∗(dw1dw2)

≤ α

∫
H×H

d(w1, w2)µ∗(dw1dw2) = αd(µ1, µ2).

This completes the proof for the first part of the lemma. From Lemma 4.2, one has

ρr(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) ≤ Eρr(Φs,s+t,h(w1),Φs,s+t,h(w2)) ≤ Cρr(w1, w2),

for any s ∈ R and t ∈ [0, 1]. Observe that

ρr(P∗
s,s+2,hδw1 ,P∗

s,s+2,hδw2) = ρr(P∗
s+1,s+2,hP∗

s,s+1,hδw1 ,P∗
s+1,s+2,hP∗

s,s+1,hδw2)

≤ Cρr(P∗
s,s+1,hδw1 ,P∗

s,s+1,hδw2) ≤ C2ρr(w1, w2).

So by iteration we have for any n ∈ N,

ρr(P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2) ≤ Cnρr(w1, w2).

Now for any 0 ≤ t ≤ N , we can write t = k + β for a unique integer k ≥ 0 such that k ≤ N and

β ∈ [0, 1). Therefore

ρr(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) = ρr
(
P∗
s+β,s+β+k,hP∗

s,s+β,hδw1 ,P∗
s+β,s+β+k,hP∗

s,s+β,hδw2

)
≤ CN+1ρr(w1, w2).

Hence for any γ > 0, choosing C̃ = CN+1eγN , we have

ρr(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) ≤ C̃e−γtρr(w1, w2), (4.56)

while for t > N , one has t = kN + β, where k ∈ N, and 0 ≤ β < N . By assumption,

ρr(P∗
s,s+N,hδw1 ,P∗

s,s+n,hδw1) ≤ αρr(w1, w2) for all s ∈ R. So for any k ∈ N, by iteration,

ρr(P∗
s,s+kN,hδw1 ,P∗

s,s+kN,hδw1) ≤ αkρr(w1, w2). (4.57)

It then follows from inequality (4.56), (4.57) and the first part of Lemma 4.19 that

ρr(P∗
s,s+t,hδw1 ,P∗

s,s+t,hδw2) = ρr(P∗
s+β,s+β+kN,hP∗

s,s+β,hδw1 ,P∗
s+β,s+β+kN,hP∗

s,s+β,hδw2)

≤ αkρr(P∗
s,s+β,hδw1 ,P∗

s,s+β,hδw2) ≤ α
t−β
N CN+1ρr(w1, w2)]

≤ Ce−γtρr(w1, w2),

for appropriate constants C, γ > 0. The proof is then complete by invoking again the first part of
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Lemma 4.19 .

The irreducibility, Lyapunov structure and gradient inequality give us the contractions on the

state space at different scales. This fact is summarized in the following lemmas. Lemma 4.20

deals with those points that are far apart, where the contraction is guaranteed by the Lyapunov

structure. The gradient inequality and Lyapunov structure give the contraction at small scales

in Lemma 4.21. And the contraction of the intermediate scale in Lemma 4.22 is given by the

irreducibility and Lyapunov structure.

The proof for the lemmas is almost the same as that in [41] since we obtain the irreducibility,

Lyapunov structure and the gradient inequality that are uniform in the initial time and h ∈ Tn in

the previous subsections. We still give the proof here for completeness. Recall that the metric d is

defined in (4.54), which depends on δ, β and r.

Lemma 4.20. There is a constant L > 0 such that for any δ > 0, β ∈ (0, 1) and r ∈ [r0, 1), there

is α1 ∈ (0, 1) such that

ρ(w1, w2) ≥ L

ρr(w1, w2) ≥ δ

 =⇒ d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ α1d(w1, w2),

for all n ∈ N.

Proof. By Lemma 4.2, we know that there are constants α ∈ (0, 1) and K > 0 such that for any

w1, w2 with ρ(w1, w2) ≥ L, we have

Eρ(Φs,s+n,h(w1),Φs,s+n,h(w2)) ≤ αnρ(w1, w2) +K ≤ (α+K/L)ρ(w1, w2).

Choose L large such that α0 := α+K/L ∈ (0, 1). Then

d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ Ed(Φs,s+n,h(w1),Φs,s+n,h(w2))

≤ 1 + βEρ(Φs,s+n,h(w1),Φs,s+n,h(w2)) ≤ 1 + α0βρ(w1, w2).

Since ρr(w1, w2) > δ, by definition of the metric d, one has d(w1, w2) = 1 + βρ(w1, w2) ≥ 1 + βL.

Therefore

1− α0 ≤ (1− α0)
d(w1, w2)

1 + βL
=

1 + α0βL

1 + βL
d(w1, w2)− α0d(w1, w2).

As a result

d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ 1 + α0βρ(w1, w2) = 1− α0 + α0d(w1, w2) ≤

1 + α0βL

1 + βL
d(w1, w2),

51



where α1 :=
1+α0βL
1+βL ∈ (0, 1).

Lemma 4.21. For any α2 ∈ (0, 1) there exist n0 > 0, and r ∈ [r0, 1), δ > 0 such that

ρr(w1, w2) < δ =⇒ d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ α2d(w1, w2),

for all n > n0 and β ∈ (0, 1).

Proof. By the Monge-Kantorovich duality (2.10), one has

d(µ1, µ2) = sup
Lipd(ϕ)≤1

∣∣∣∣∫
H
ϕ(w)µ1(dw)−

∫
H
ϕ(w)µ2(dw)

∣∣∣∣ .
Without loss of generality, in the above formula we could assume the test function ϕ ∈ C1

b (H) and

ϕ(0) = 0. Then Lipd(ϕ) ≤ 1 implies that ∥∇ϕ(w)∥ ≤ (δ−1 + β)V (w). Also by Proposition 4.1 we

have for any κ > 1,

|ϕ(w)| ≤ 1 + β∥w∥V (w) ≤ 1 + βCV κ(w) ≤ 1 + βCV κ(w).

Now combining Proposition 4.1 and Proposition 4.7, one has

∥∇Ps,s+t,hϕ(w)∥

≤ C(η, a)V p(w)

(√
(Ps,s+t,h|ϕ|2) (w) + e−at

√
(Ps,s+t,h∥∇ϕ∥2) (w)

)
≤ C(η, a)V p(w)

[(
1 + β2C2EV 2κ

(
Φs,s+t,h(w)

)) 1
2
+ e−at(δ−1 + β)

(
EV 2

(
Φs,s+t,h(w)

)) 1
2

]
≤ C(η, a)V κα(t)+p(w)(1 + e−atδ−1) = δ−1V κα(t)+p(w)(δC(η, a) + C(η, a)e−at).

For any α2 ∈ (0, 1), choose large T0 > 0 so that C(η, a)e−at < α2
2 for all t ≥ T0. From the formula

for α(t) in Proposition 4.1, we see that there is a large time T > T0 such that for all t ≥ T , one has

κα(t)+p < 1. Choosing r = max{r0, κα(t)+p} < 1 and letting δ be small such that δC(η, a) < α2
2 ,

then we have

∥∇Ps,s+t,hϕ(w)∥ ≤ δ−1V r(w)α2.

Note that for any w1, w2 ∈ H and any ε > 0, there is a differentiable path γ : [0, 1] → H with

γ(0) = w1 and γ(1) = w2 such that

ρr(w1, w2) ≤
∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ ≤ ρr(w1, w2) + ε.
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Then

|Ps,s+t,hϕ(w1)− Ps,s+t,hϕ(w2)| =
∣∣∣∣∫ 1

0
⟨∇Ps,s+t,hϕ(γ(τ)), γ̇(τ)⟩ dτ

∣∣∣∣
≤ δ−1α2

∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ ≤ δ−1α2ρr(w1, w2) + δ−1α2ε ≤ α2d(w1, w2) + δ−1α2ε,

where in the last step we use the fact that ρr(w1, w2) < δ implies d(x, y) = δ−1ρr(w1, w2) +

βρ(w1, w2). Since ε > 0 is arbitrary, we have for any w1, w2 ∈ H

sup
Lipd(ϕ)≤1

|Ps,s+t,hϕ(w1)− Ps,s+t,hϕ(w2)| ≤ α2d(w1, w2).

Hence by the Monge-Kantorovich duality,

d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ α2d(w1, w2).

The proof is complete.

Lemma 4.22. For any L, δ > 0, r ∈ (0, 1], there is some n1 > 0 such that for any n > n1, there

are β, α3 ∈ (0, 1) such that

ρ(w1, w2) < L

ρr(w1, w2) ≥ δ

 =⇒ d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ α3d(w1, w2).

Proof. For L, δ > 0, and r ∈ [r0, 1), Lemma 3.11 of [41] shows that the set S = {(w1, w2) :

ρr(w1, w2) ≥ δ, ρ(w1, w2) < L} is a bounded set in H ×H. So there exists R = R(L, δ, r) > 0 such

that S ⊂ {(w1, w2) : ∥w1∥, ∥w2∥ ≤ R}. By Proposition 4.3, we know that for every n > 0, there is

positive constant a > 0 so that for any (w1, w2) ∈ S, there is a coupling (Xs,s+n,h, Ys,s+n,h) of the

transition probabilities Ps,s+n,h(w1, ·) and Ps,s+n,h(w2, ·), such that P
(
ρr(Xs,s+n,h, Ys,s+n,h) <

δ
2

)
>

a > 0. Note that there is a constant C > 0 such that for any w ∈ H

ρ(w, 0) ≤
∫ 1

0
V (τw)∥w∥dτ ≤ ∥w∥V (∥w∥) ≤ CV κ(w).

Therefore

Eρ(Xs,s+n,h, Ys,s+n,h) ≤ Eρ(Xs,s+n,h, 0) +Eρ(0, Ys,s+n,h)

≤ C (EV κ (Xs,s+n,h) +EV κ (Ys,s+n,h))

= C (EV κ (Φs,s+n,h(w1)) +EV κ (Φs,s+n,h(w2)))

≤ C(V κα(n)(w1) + V κα(n)(w2)) ≤ Rn,

where Rn = CV κα(n)(R). For given random variable X and a measurable set A, recall the notation

53



E(X;A) = EXIA. Then

Ed(Xs,s+n,h, Ys,s+n,h) = E
(
1 ∧

ρr(Xs,s+n,h, Ys,s+n,h)

δ

)
+ βEρ(Xs,s+n,h, Ys,s+n,h)

= E
(
1 ∧

ρr(Xs,s+n,h, Ys,s+n,h)

δ
; ρr(Xs,s+n,h, Ys,s+n,h) <

δ

2

)
+E

(
1 ∧

ρr(Xs,s+n,h, Ys,s+n,h)

δ
; ρr(Xs,s+n,h, Ys,s+n,h) ≥

δ

2

)
+ βEρ(Xs,s+n,h, Ys,s+n,h).

≤ 1

2
+

1

2
P

(
ρr(Xs,s+n,h, Ys,s+n,h) ≥

δ

2

)
+ βRn ≤ 1

2
+

1

2
(1− a) + βRn = 1− a

2
+ βRn.

Letting β be small enough so that α3 := 1 − a
2 + βRn < 1, then since ρr(w1, w2) ≥ δ implies

d(w1, w2) ≥ 1, we have

d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ Ed(Xs,s+n,h, Ys,s+n,h) ≤ α3d(w1, w2),

which completes the proof.

Now we prove Theorem 3.2 with the help of the above lemmas.

Proof of Theorem 3.2. By Lemma 4.19 and the equivalence of the two metrics ρ and d, it suffices

to show that

d(P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2) ≤ αd(w1, w2),

for some N ∈ N and 0 < α < 1 and for every (w1, w2) ∈ H × H. By Lemma 4.21, fixing an

α2 ∈ (0, 1), then there are n0, r, δ such that for those (w1, w2) with ρr(w1, w2) < δ, one has

d
(
P∗
s,s+n,hδw1 ,P∗

s,s+n,hδw2

)
≤ α2d(w1, w2)

for all n > n0 and β ∈ (0, 1). Now fixing L as in Lemma 4.20, then by Lemma 4.22, for the fixed

L, δ, r, there is some n1 such that for n > n1, there exist β, α3 such that the implication in Lemma

4.22 holds true. Now for fixed δ, β, r, L, there is α1 such that the implication of Lemma 4.20 holds

true. So the conclusion follows by taking N > max{n0, n1} and α = max{α1, α2, α3} < 1.

Chapter 5. Unique Ergodicity and Exponential Mix-

ing

In this chapter, we prove Theorem 3.1 by applying a fixed point argument and the uniform contrac-

tion (3.5) proved in the previous chapter. The idea is to regard the two parameter family of Markov
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transition operators P∗
s,t as a non-autonomous dynamical system over the space of probability mea-

sures, whose associated pull back mapping is a contraction semigroup acting on an appropriate

family of closed subsets of the space of “quasi-periodic graphs” C(Tn,P1(H)). And the fixed point

of the semigroup gives the desired quasi-periodic invariant measure. We further show that this fixed

point has a Hölder regularity if the function Ψ that generates the quasi-periodic force does, and

prove the weak convergence of time averages of the transition probabilities to the unique invariant

measure for the homogenized process. These results play important roles in the study of the limit

theorems in the next chapter. In the last section, we prove the exponential mixing (3.4) in terms

of particular observable functions.

5.1 A Fixed Point Argument

In this section we will prove the exponential mixing (5.1) in the following Theorem 5.1 by applying

a fixed point argument. Note that Theorem 3.1 follows from it with µs = Γβs0 by taking h = βs0

in (5.1) and (5.7), and applying the translation identity (2.12).

Theorem 5.1. There is a unique map Γ ∈ C(Tn,P(H)), such that P∗
0,t,hΓh = Γβth for any h ∈ Tn.

Furthermore, there is a constant η0 > 0, such that for every η ∈ (0, η0], there are constants C,ϖ > 0,

such that Γ ∈ C(Tn,P1(H)) and

ρ(P∗
0,t,hµ,Γβth) ≤ Ce−ϖtρ(µ,Γh), t ≥ 0, µ ∈ P(H), h ∈ Tn, (5.1)

where C,ϖ dose not depend on h. Also
∫
H exp

(
2κη∥w∥2

)
Γh(dw) ≤ C for all h ∈ Tn, where κ ≥ 2

is the constant from Proposition 4.1.

Moreover, Γ ∈ Cζ(Tn, (P1(H), ρ)) if Ψ ∈ Cγ(Tn,H), where ζ = ϖγ
r+ϖ with r = 64c60η

−3ν−5 +

ηC(f,B0) from estimate (A.3).

Proof. Recall that P1(H) is defined by (2.9). By Theorem 3.2, for any t ≥ 0, P∗
0,t,h maps P1(H) to

itself. Denote for convenience

φ : R+ × P1(H)× Tn → P1(H), by φ(t, µ, h) = P∗
0,t,hµ.

It follows from the translation identity (2.12) that φ has the cocycle property over the base dy-

namical system (Tn,R, β) since for all τ, t ≥ 0 and h ∈ H(f), µ ∈ P1(H),

P∗
0,t+τ,hµ = P∗

t,t+τ,hP∗
0,t,hµ = P∗

0,τ,βthP
∗
0,t,hµ.
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Hence the pull-back map St induced from φ, is defined on the space of quasi-periodic graphs

C(Tn,P1(H)), i.e.,

St(γ)(h) := φ(t, γ(β−th), β−th)), γ ∈ C(Tn,P1(H)),

which satisfies the semigroup property St1St2γ(h) = St1+t2γ(h). We would like to apply the fixed

point theorem for St on C(Tn,P1(H)) endowed with the metric (which is complete since (P1(H), ρ)

is complete)

p(γ1, γ2) := max
h∈Tn

ρ(γ1(h), γ2(h)), γ1, γ2 ∈ C(Tn,P1(H)).

However, the continuity of φ(t, µ, h) with respect to (µ, h) is unclear due to the Lyapunov structure

of the solution of (2.5). Hence C(Tn,P1(H)) may not be invariant under the map St.

Indeed, from the definition of ρ as in (2.7), one has

ρ(w1, w2) ≤ ∥w1 − w2∥
(
eη∥w1∥2 + eη∥w2∥2

)
, ∀w1, w2 ∈ H. (5.2)

It is known [12, 65] that for any µ1, µ2 ∈ P(H),

ρ(µ1, µ2) = inf Eρ(X1, X2), (5.3)

where the infimum is taken over all couplings (X1, X2) for (µ1, µ2). Combining (5.2)-(5.3) with

estimates (A.1) and (A.3), it follows that

ρ(P∗
0,t,h1

δw,P∗
0,t,h2

δw) ≤ Eρ(w0,t,h1(w), w0,t,h2(w))

≤
(
E∥w0,t,h1(w)− w0,t,h2(w)∥2

) 1
2
(
2E
[
exp(2η∥w0,t,h1(w)∥2) + exp(2η∥w0,t,h2(w)∥2)

]) 1
2

≤ Ceγtg(w) sup
t∈R

∥Ψ(βth1)−Ψ(βth2)∥,

where r = 64c60η
−3ν−5 + ηC(f,B0) is from (A.3), g(w) = V 2κ(w) = exp

(
2κη∥w∥2

)
, and the

Lyapunov function eη∥w∥2 along with κ, η are from Proposition 4.1. Therefore by the Markov

property,

ρ(P∗
0,t,h1

µ,P∗
0,t,h2

µ) ≤ Cert
∫
H
g(w)µ(dw) sup

t∈R
∥Ψ(βth1)−Ψ(βth2)∥, (5.4)

It is unclear if each µ ∈ P1(H) yields
∫
H g(w)µ(dw) finite, therefore we confine ourselves to those

measures that make the integral finite to ensure the continuity. To be specific, consider the family

of closed subsets of P1(H),

PR := {µ ∈ P(H) :

∫
H
g(w)µ(dw) ≤ R}, R > 0.

56



For each fixed R, PR is indeed a closed subset of the complete space P1(H) defined as in (2.9). For

any µ ∈ PR, one has

ρ(µ, δ0) =

∫
H
ρ(w, 0)µ(dw) ≤

∫
H
∥w∥eη∥w∥2µ(dw) ≤ C

∫
H
g(w)µ(dw) < ∞,

so that µ ∈ P1(H). Let µn be a Cauchy sequence in PR under the metric ρ. Then there is a

unique µ ∈ P1(H) such that ρ(µn, µ) → 0 as n → ∞. So µn converges to µ weakly. For N > 0, let

gN (w) = min{g(w), N}, then gN ∈ Cb(H), and∫
H
gN (w)µ(dw) = lim

n→∞

∫
H
gN (w)µn(dw) ≤ lim

n→∞

∫
H
g(w)µn(dw) ≤ R.

Hence by the monotone convergence theorem, one has
∫
H g(w)µ(dw) ≤ R. Therefore µ ∈ PR,

which shows that PR is closed.

By the contraction property in Theorem 3.2, we have that for any R > 0 and µ ∈ PR, φ

is continuous in µ, uniformly with respect to h. And by inequality (5.4), it is continuous in h

uniformly for µ. Hence φ is jointly continuous in (µ, h) ∈ PR ×Tn. Then the fixed point argument

will be applied on the complete subset C(Tn,PR). However the trade off for the joint continuity is

the loss of the invariance of C(Tn,PR) under St uniformly for any t ≥ 0. Indeed, it follows from

Proposition 4.1 that for µ ∈ PR, and any t ≥ 0,∫
H
P0,t,hg(w)µ(dw) =

∫
H
Eg(Φ0,t,h(w))µ(dw)

≤ C

∫
H
gα(t)(w)µ(dw) ≤ C

(∫
H
g(w)µ(dw)

)α(t)

≤ CRα(t),

where we used Jensen’s inequality in the penultimate step. One can check that it is impossible to

choose a common R > 0 such that CRα(t) ≤ R for any t ≥ 0 since α(t) → 0 as t → 0. However,

note that for each fixed t0 > 0, if we choose R = Rt0 := C
1

1−α(t0) then CRα(t) ≤ CRα(t0) = Rt0 ,

which gives the invariance under St uniformly for t ≥ t0.

Now for any fixed t0 ∈ (0, 1), the above analysis shows that the map St : C(Tn,PRt0
) →

C(Tn,PRt0
) is well defined for t ≥ t0. It remains to show that it is a contraction. Indeed, by

Theorem 3.2, one has

p(Stγ1, S
tγ2) = max

h∈Tn
ρ(φ(t, γ1(β−th), β−th), φ(t, γ2(β−th), β−th))

= max
h∈Tn

ρ(P∗
0,t,β−thγ1(β−th),P∗

0,t,β−thγ2(β−th))

≤ Ce−ϖt max
h∈Tn

ρ(γ1(β−th), γ2(β−th)) = Ce−ϖtp(γ1, γ2).
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Therefore for large T > t0, p(STγ1, S
Tγ2) ≤ cp(γ1, γ2) for some c ∈ (0, 1). Fix such a T , then

ST is a contraction over the complete metric space C(Tn,PRt0
), so there is a unique fixed point

Γt0 ∈ C(Tn,PRt0
) of ST . Noting for any t ≥ t0, St maps C(Tn,PRt0

) to itself, hence

ST (StΓt0) = St(STΓt0) = St(Γt0)

implies that St(Γt0) = Γt0 by the uniqueness of the fixed point, which shows that Γt0 is a fixed

point of St for t ≥ t0. For 0 < t1 ≤ t0, one has Rt1 ≥ Rt0 , so PRt0
⊂ PRt1

. And for the same

T > 0, ST is a contraction on C(Tn,PRt1
), which has a unique fixed point Γt1 . By the uniqueness,

Γt1 = Γt0 , hence Γt0 is also a fixed point of St for t ≥ t1. Since t1 is arbitrary, we see that Γ := Γt0

is a fixed point of St for t ≥ 0, that is, φ(t,Γ(β−th), β−th) = Γ(h) for all h ∈ Tn. Replacing h with

βth we have φ(t,Γ(h), h) = Γ(βth) which by definition is

P∗
0,t,hΓ(h) = Γ(βth).

Hence the invariance follows, and the exponential mixing (5.1) then follows from the invariance and

Theorem 3.2. Note that by replacing h with βsh in the invariance identity and using the translation

identity (2.12), we have

P∗
s,s+t,hΓ(βsh) = Γ(βs+th), ∀s ∈ R, t ≥ 0, h ∈ Tn. (5.5)

To show the uniqueness of Γ, suppose that there is another Γ̃ ∈ C(Tn,P(H)) that is invariant.

Then Γ̃ ∈ C(Tn,P1(H)) by the Lyapunov structure (4.2). Indeed, for R > 0, let

gR(w) =

 e2kη∥w∥2 , if ∥w∥ ≤ R,

e2kηR
2
, if ∥w∥ ≥ R.

Then by the invariance of Γ̃ and estimate (4.2), we have for any M,N > 0,∫
H
gR(w)Γ̃h(dw) =

∫
H
P−N,0,hgR(w)Γ̃β−Nh(dw)

≤
∫
{∥w∥≤M}

P−N,0,hgR(w)Γ̃β−Nh(dw) +

∫
{∥w∥≥M}

P−N,0,hgR(w)Γ̃β−Nh(dw)

≤
∫
{∥w∥≤M}

Eg(w−N,0,h(w))Γ̃β−Nh(dw) + e2kηR
2
Γ̃β−Nh({∥w∥ ≥ M})

≤ Ce2κηα(N)M2
+ e2κηR

2
Γ̃β−Nh({∥w∥ ≥ M}).

Since Tn is compact, and Γ̃ ∈ C(Tn,P(H)), where P(H) is endowed with the topology of weak

convergence, therefore {Γ̃h}h∈Tn is compact and hence tight by Prokhorov’s theorem: for any ε > 0,
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there is a compact subset Kε of H such that

Γ̃h(H\Kε) < ε, ∀h ∈ Tn.

Hence for any R > 0 and ε = e−2κηR2 , there is a compact subset Kε of H such that

Γ̃β−Nh(H\Kε) < ε, ∀N > 0.

Now we can choose M large enough such that Kε ⊂ {∥w∥ ≤ M} so that

e2κηR
2
Γ̃β−Nh({∥w∥ ≥ M}) ≤ 1.

Since α(N) → 0 as N → ∞, we can choose N large such that e2κηα(N)M2 ≤ 1 as well. Therefore

we have ∫
H
gR(w)Γ̃h(dw) ≤ C, ∀R > 0,

which, by the monotone convergence theorem, in turn implies that∫
H
g(w)Γ̃h(dw) ≤ C, ∀h ∈ Tn,

and hence Γ̃ ∈ C(Tn,P1(H)). This ensures that

sup
h∈Tn

ρ(Γ(h), Γ̃(h)) < ∞.

Now by the translation identity (2.12) and Theorem 3.2, we have for h ∈ Tn, t ≥ s,

ρ(Γ(βth), Γ̃(βth)) = ρ(P∗
s,t,hΓ(βsh),P∗

s,t,hΓ̃(βsh))

≤ Ce−ϖ(t−s)ρ(Γ(βsh), Γ̃(βsh)) ≤ C sup
h∈Tn

ρ(Γ(h), Γ̃(h))e−ϖ(t−s).

By letting s → −∞, it follows that Γ(βth) = Γ̃(βth) for t ∈ R. In particular this is true for t = 0

and any h ∈ Tn, hence Γ = Γ̃.

To show that Γ ∈ Cζ(Tn, (P1(H), ρ)) if Ψ ∈ Cγ(Tn,H), where ζ = ϖγ
r+ϖ with r = 64c60η

−3ν−5+

ηC(f,B0) from estimate (A.3), observing that for any t ≥ 0 and h1, h2 ∈ Tn, by the invariance of
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Γ and estimate (A.3), one has

ρ
(
Γ(h1),Γ(h2)

)
= ρ
(
φ (t,Γ(β−th1), β−th1) , φ (t,Γ(β−th2), β−th2)

)
≤ ρ
(
φ (t,Γ(β−th1), β−th1) , φ (t,Γ(β−th2), β−th1)

)
+ ρ
(
φ (t,Γ(β−th2), β−th1) , φ (t,Γ(β−th2), β−th2)

)
≤ Cert

∫
H
g(w)Γ(β−th1)(dw)∥Ψ∥γ |h1 − h2|γ + Ce−ϖtρ

(
Γ(β−th1),Γ(β−th2)

)
≤ CertRt0∥Ψ∥γ |h1 − h2|γ + Ce−ϖt sup

h1,h2∈Tn
ρ
(
Γ(h1),Γ(h2)

)
≤ C(ert|h1 − h2|γ + e−ϖt) ≤ C|h1 − h2|ζ ,

with ζ = ϖγ
r+ϖ , by applying the following lemma.

Lemma 5.2. For D ≥ 1,Λ1,Λ2 > 0, γ ∈ (0, 1], 0 < δ ≤ D, one has

eΛ1T δγ + e−Λ2T ≤ 2Dγδγ

for γ = Λ2
Λ1+Λ2

γ, by choosing T = − γ
Λ1+Λ2

ln δ for δ < 1 and T = 0 for δ ≥ 1.

The proof is then complete.

It turns out that Theorem 5.1 also implies the convergence of time averages of the transition

probabilities, which is quite useful when applied to the proof of the limit theorems in the next

chapter.

Proposition 5.3. For any (w0, h) ∈ H × Tn and K ∈ N, we have the following weak convergence

of measures:

1. 1

N

N∑
j=1

P∗
0,(j−1)K,hδw0 →

∫
Tn

Γgλ(dg).

2. 1

N

N∑
j=1

P ∗
(j−1)Kδ(w0,h) → Γg(dw)λ(dg) and 1

T

∫ T

0
P ∗
t δ(w0,h)dt → Γg(dw)λ(dg) as well.

Proof. For any ϕ ∈ Lipρ(H), we have by the Monge-Kantorovich duality (2.10), the invariance and

mixing of the quasi-periodic invariant measure from Theorem 5.1 that∣∣∣∣∣∣
⟨

1

N

N∑
j=1

(
P∗
0,(j−1)K,hδw0 − Γβ(j−1)Kh

)
, ϕ

⟩∣∣∣∣∣∣
≤ Lipρ(ϕ)

1

N

N∑
j=1

ρ(P ∗
0,(j−1)K,hδw0 , P

∗
0,(j−1)K,hΓh) ≤ CLipρ(ϕ)

1

N

N∑
j=1

e−ϖ(j−1)Kρ(δ0,Γh),
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which tends to 0 as N → ∞. Also by Birkhoff’s ergodic theorem for the irrational rotation on Tn,

one has ⟨
1

N

N∑
j=1

Γβ(j−1)Kh, ϕ

⟩
→
∫
Tn

⟨Γg, ϕ⟩λ(dg).

Hence the first claim of the proposition follows.

Now let ϕ ∈ Lipρ,d(H ×Tn), where H is equipped with the metric ρ and d is the usual distance

in Tn induced from Rn. Observe that⟨
1

N

N∑
j=1

P ∗
(j−1)Kδ(w0,h), ϕ

⟩
=

1

N

N∑
j=1

P0,(j−1)K,hϕ(·, β(j−1)Kh)(w0)

=
1

N

N∑
j=1

⟨
P∗
0,(j−1)K,hδw0 − P∗

0,(j−1)K,hΓh, ϕ(·, β(j−1)Kh)
⟩
+

1

N

N∑
j=1

⟨
P∗
0,(j−1)K,hΓh, ϕ(·, β(j−1)Kh)

⟩
:= I + II,

where the first term in the sum vanishes by the mixing of the quasi-periodic invariant measure since

|I| ≤ 1

N

N∑
j=1

Lipρϕ(·, σ(j−1)Kh)ρ(P∗
0,(j−1)K,hδw,P

∗
0,(j−1)K,hΓh)

≤
CLipρ,d(ϕ)

N

N∑
j=1

e−ϖ(j−1)Kρ(δw0 ,Γh) → 0,

while the second term converges to the average of ϕ with respect to Γh(dw)λ(dg) by Birkhoff’s

ergodic theorem for the irrational rotation β:

II =
1

N

N∑
j=1

⟨
Γσ(j−1)Kh, ϕ(·, β(j−1)Kh)

⟩
→
∫
H×Tn

ϕ(w, g)Γg(dw)λ(dg),

since the observable g ∈ Tn →
⟨
Γg, ϕ(·, g)

⟩
is continuous. The proof for the continuous time

version is similar.

Remark. Usually the sequence of time averages of the transition probabilities always possesses a

subsequence that converges to an invariant measure by the Krylov-Bogoliubov theorem, however

it is not guaranteed that the whole sequence always converges to the invariant measure. While in

the above proposition, even if it is the case that the homogenized Markov process is not mixing,

we have the convergence of the time averages to the unique ergodic invariant measure. From the

proof we see that this is a result of the mixing of the inhomogeneous Markov process along the H

component, together with the unique ergodicity of the irrational rotation flow.
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5.2 Exponential Mixing in Terms of Observable Functions

In this section we prove the following two implications that express the mixing property in terms

of the action of the transition operators on observables. Note that the inequality (3.4) in Theorem

3.1 follows from the following Theorem 5.5 with µs = Γβs0 by taking h = βs0 in (5.7), and applying

the translation identity (2.12). We fix h ∈ Tn throughout the proof.

Corollary 5.4. There is a constant η0 > 0, such that for every η ∈ (0, η0], there exist constants

C,ϖ > 0 such that

∥Ps,t,hϕ− Γβth(ϕ)∥ρ,h,s ≤ Ce−ϖ(t−s)∥ϕ− Γβsh(ϕ)∥ρ,h,s,

for every Fréchet differentiable ϕ : H → R, s ≤ t and h ∈ Tn. Here

∥ϕ∥ρ,h,s = sup
u̸=v

|ϕ(u)− ϕ(v)|
ρ(u, v)

+ |⟨Γβsh, ϕ⟩| = Lipρ(ϕ) + |⟨Γβsh, ϕ⟩| . (5.6)

Proof. By the Monge-Kantorovich duality (2.10) and the contraction on P(H) from Theorem 3.2,

we have

|Ps,t,hϕ(u)− Ps,t,hϕ(v)| ≤ Lipρ(ϕ) sup
Lipρ(φ)≤1

∣∣∣∣∫
H
φ(z)P∗

s,t,hδu(dz)−
∫
H
φ(z)P∗

s,t,hδv(dz)

∣∣∣∣
= Lipρ(ϕ)ρ(P∗

s,t,hδu,P∗
s,t,hδv) ≤ Lipρ(ϕ)Ce−γ(t−s)ρ(u, v),

for any u, v ∈ H. By the invariance of the quasi-periodic invariant measure from Theorem 5.1,∫
H(Ps,t,hϕ− Γβth(ϕ))Γβsh(ϕ)(du) = 0. Therefore

∥Ps,t,hϕ− Γβth(ϕ)∥ρ,h,s = Lipρ(Ps,t,hϕ) ≤ Lipρ(ϕ)Ce−γ(t−s) = Ce−γ(t−s)∥ϕ− Γβsh(ϕ)∥ρ,h,s.

The proof is complete.

Theorem 5.5. There is a constant η0 > 0, such that for every η ∈ (0, η0], there exist constants

C,ϖ > 0, such that for every ϕ ∈ C1
η as in Theorem 3.1,

∥P0,t,hϕ−
∫
H
ϕ(w)Γβth(dw)∥η ≤ Ce−ϖt∥ϕ∥η, (5.7)

for any h ∈ Tn, t ≥ 0. In particular, the inequality (3.4) is obtained by replacing h with βs0 and

using the translation identity (2.12), where µs := Γβs0.

The proof of the theorem will be given at the end of this section by combining Corollary 5.4

and the quasi-equivalence of ∥ · ∥ρ,h,s with ∥ · ∥η that will be proved below.
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In the time homogeneous case as in [41], the exponentially mixing in an equivalent form that

involves observables similar to (3.4) is given by proving the quasi-equivalence under the Markov

semigroup of ∥ · ∥η with an appropriate norm ∥ · ∥ρ on Lipρ(H). The norm ∥ · ∥ρ is actually a

combination of Lipρ(ϕ) for ϕ ∈ Lipρ(H) and the integral of ϕ with respect to the unique invariant

measure. In the present time inhomogeneous setting, the quasi-periodic invariant measure depends

on time and the parameter h ∈ Tn. Therefore, to show the mixing property (5.7), we choose the

norm ∥ · ∥ρ,h,s on Lipρ(H) defined as above (5.6). This is natural since ∥ · ∥ρ,h,s is quasi-equivalent

to ∥ · ∥η under the transition operator Ps,t,h and Ps,t,h has a similar contraction property as in the

time homogeneous case proved in Theorem 4.3 of [41]. The dependence on initial time and h ∈ Tn

of the norm ∥ · ∥ρ,h,s can be regarded as a property that adapts to the time inhomogeneity, to yield

a uniform contraction under the action of the transition operator, see Theorem 5.8 below.

To begin with, we first define a family of auxiliary norms for r ∈ [0, 1]. The first involves the

Lipschitz constant in terms of the metric ρr given in (4.1). Define

∥ϕ∥ρr,h,s := Lipρr(ϕ) + |Γβsh(ϕ)| , s ∈ R,

where Lipρr(ϕ) = supu̸=v
|ϕ(u)−ϕ(v)|

ρr(u,v)
. When r = 1, it is Lipρ(ϕ). The second one is a norm weighted

by the Lyapunov function V (w) = eη∥w∥2 , which was introduced in [41].

∥ϕ∥V r := sup
w∈H

|ϕ(w)|+ ∥∇ϕ(w)∥
V r(w)

. (5.8)

Note when r = 1, ∥ · ∥V r = ∥ · ∥η. We first show that ∥ · ∥ρr,h,s can be bounded by ∥ · ∥V r from both

sides with different values of r.

Proposition 5.6. There is a constant C > 0 such that

C−1∥ϕ∥V κr ≤ ∥ϕ∥ρr,h,s ≤ C∥ϕ∥V r , (5.9)

for r ∈ [r0, 1], s ∈ R and ϕ ∈ C1(H), where the constants 0 < r0 < 1 and κ > 1 are taken from the

Lyapunov structure in Proportion 4.1.

Before giving the proof, we need a lemma that connects the norm ∥ · ∥ρr,h,s with the derivative

part of ∥ · ∥V r .

Lemma 5.7. For every ϕ ∈ C1(H), we have

∥ϕ∥ρr,h,s = sup
w∈H

∥∇ϕ(w)∥
V r(w)

+ |Γβsh(ϕ)| , s ∈ R.
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Proof. We first claim that for v ∈ H,

lim
ε→0

sup
u:∥u−v∥<ε

|ϕ(u)− ϕ(v)|
ρr(u, v)

=
∥∇ϕ(v)∥
V r(v)

.

By definition of ρr as in (4.1),

ρr(u, v) ≤
∫ 1

0
V r
(
(1− τ)u+ τv

)
∥u− v∥dτ,

hence we have

sup
u:∥u−v∥<ε

|ϕ(u)− ϕ(v)|
ρr(u, v)

≥ sup
u:∥u−v∥<ε

|ϕ(u)− ϕ(v)|
∥u− v∥

(
sup

u:∥u−v∥<ε

∫ 1

0
V r
(
(1− τ)u+ τv

)
dτ

)−1

.

Therefore by taking the limit,

lim
ε→0

sup
u:∥u−v∥<ε

|ϕ(u)− ϕ(v)|
ρr(u, v)

≥ ∥∇ϕ(v)∥
V r(v)

. (5.10)

Next we prove the reverse inequality of (5.10). For fixed v ∈ H and any u satisfying ∥u− v∥ < ε,

let R > 0 large such that u, v ∈ BR(0), the ball in (H, ∥ · ∥) with radius R centered at 0. For any

w1, w2 ∈ BR(0), one has the equivalence of metrics

∥w1 − w2∥ ≤ ρr(w1, w2) ≤ V (R)∥w1 − w2∥.

Let K = V (R). Then for any δ > 0, there exists a differentiable path γ connecting u, v such that

ρr(u, v) ≤
∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ ≤ ρr(u, v) + δ ≤ Kε+ δ.

Now for any t ∈ [0, 1],

∥γ(t)− v∥ =

∥∥∥∥∫ t

0
γ̇(τ)dτ

∥∥∥∥ ≤
∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ ≤ Kε+ δ,

which means that γ(t) never leaves the ball of radius Kε+ δ centered at v. Therefore,

ρr(u, v) ≥
∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ − δ ≥ inf

w:∥w−v∥≤Kε+δ
V r(w)∥u− v∥ − δ.

Hence by taking δ = ε∥u− v∥ above, we have

|ϕ(u)− ϕ(v)|
ρr(u, v)

≤ |ϕ(u)− ϕ(v)|
∥u− v∥

(
inf

w:∥w−v∥≤(K+ε)ε
V r(w)− ε

)−1

.

By taking limit we have

lim
ε→0

sup
u:∥u−v∥<ε

|ϕ(u)− ϕ(v)|
ρr(u, v)

≤ ∥∇ϕ(v)∥
V r(v)

,

which finishes the proof of the claim.

It then follows from the claim that

Lipρr(ϕ) = sup
u̸=v

|ϕ(u)− ϕ(v)|
ρr(u, v)

≥ sup
w∈H

∥∇ϕ(w)∥
V r(w)

. (5.11)
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Hence ∥ϕ∥ρr,h,s ≥ supw∈H
∥∇ϕ(w)∥
V r(w) + |Γβsh(ϕ)|. It remains to show the reverse inequality of (5.11).

Without loss of generality we can assume ϕ(0) = 0 and Lipρr(ϕ) = 1. There is nothing to show if

for some w, 1 ≤ ∥∇ϕ(w)∥
V r(w) . So we assume ∥∇ϕ(w)∥ ≤ V r(w) for all w. Then for any w1, w2 ∈ H,

|ϕ(w1)− ϕ(w2)| =
∫ 1

0
⟨∇ϕ(γ(τ)), γ̇(τ)⟩ dτ ≤ sup

w∈H

∥∇ϕ(w)∥
V r(w)

∫ 1

0
V r(γ(τ))∥γ̇(τ)∥dτ.

By taking infimum over all differentiable γ connecting w1, w2, we have

|ϕ(w1)− ϕ(w2)|
ρr(w1, w2)

≤ sup
w∈H

∥∇ϕ(w)∥
V r(w)

.

The proof is then complete.

Proof of Proposition 5.6. By Theorem 5.1, there is a constant C > 0, independent of the initial

time s such that

|Γβsh(ϕ)| ≤
∫
H
V r(w)

|ϕ(w)|
V r(w)

Γβsh(dw) ≤ ∥ϕ∥V rΓβsh(V
r) ≤ C∥ϕ∥V r . (5.12)

Combining (5.12) with Lemma 5.7 and the definition of the norm ∥ · ∥V r as (5.8), we have

∥ϕ∥ρr,h,s ≤ sup
w∈H

∥∇ϕ(w)∥
V r(w)

+ C∥ϕ∥V r ≤ C̃∥ϕ∥V r .

To show the first inequality of (5.9), we fix ϕ with ∥ϕ∥ρr,h,s = 1. Then by Proposition 4.1,

|ϕ(w)− ϕ(0)| ≤ Lipρr(ϕ)ρr(w, 0) ≤
∫ 1

0
V r(τw)∥w∥dτ ≤ ∥w∥V r(w) ≤ CV κr(w).

Also by Theorem 5.1 and noting that r ≤ 1, we have∫
H
ρr(w, 0)Γβsh(dw) ≤

∫
H
ρ(w, 0)Γβsh(dw) ≤

∫
H
CV κ(w)Γβsh(dw) ≤ C̃.

Hence

|ϕ(0)| ≤
∣∣∣∣∫

H
ϕ(w)Γβsh(dw)− ϕ(0)

∣∣∣∣+ ∣∣∣∣∫
H
ϕ(w)Γβsh(dw)

∣∣∣∣
≤
∫
H
|ϕ(w)− ϕ(0)|Γβsh(dw) +

∣∣∣∣∫
H
ϕ(w)Γβsh(dw)

∣∣∣∣ ≤ C̃ + 1,

where
∣∣∫

H ϕ(w)Γβsh(dw)
∣∣ ≤ 1 since ∥ϕ∥ρr,h,s = 1. It then follows that

|ϕ(w)| ≤ |ϕ(0)|+ |ϕ(w)− ϕ(0)| ≤ C̃V κr(w).

Note that ∥ϕ∥ρr,h,s = 1 also implies that supw∈H
∥∇ϕ(w)∥
V r(w) ≤ 1, therefore

∥ϕ∥V κr ≤ sup
w∈H

∥∇ϕ(w)∥
V κr(w)

+ sup
w∈H

|ϕ(w)|
V κr(w)

≤ 1 + C̃ ≤ C∥ϕ∥ρr,h,s.

The proof is complete.

The following result shows that the transition operator has a contraction property under the
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norms ∥ · ∥V r and ∥ · ∥ρr,h,s.

Theorem 5.8. There are constants C, γ > 0 such that

∥Ps,s+t,hϕ∥V r(t) ≤ Ceγt∥ϕ∥V r , (5.13)

∥Ps,s+t,hϕ∥ρr(t),h,s ≤ Ceγt∥ϕ∥ρr,h,s+t
, (5.14)

for r ∈ [r0, 2κ], s ∈ R, t > 0 and ϕ ∈ C1(H), where r(t) = max{rα(t), r0} and α(t) is from

Proposition 4.1 .

Proof. We first prove the inequalities for t ∈ [0, 1]. By Proposition 4.1, we have

∥∇Ps,s+t,hϕ(w)∥ ≤ E∥∇ϕ(Φs,s+t,h(w))∥∥∇Φs,s+t,h(w)∥

≤ sup
w∈H

∥∇ϕ(w)∥
V r(w)

EV r(Φs,s+t,h(w))∥∇Φs,s+t,h(w)∥

≤ C sup
w∈H

∥∇ϕ(w)∥
V r(w)

V rα(t)(w) ≤ C∥ϕ∥V rV rα(t)(w). (5.15)

It follows from the penultimate step that

sup
w∈H

∥∇Ps,s+t,hϕ(w)∥
V rα(t)(w)

≤ C sup
w∈H

∥∇ϕ(w)∥
V r(w)

. (5.16)

Also

|Ps,s+t,hϕ(w)| ≤ E|ϕ|(Φs,s+t,h(w)) ≤ sup
w∈H

|ϕ(w)|
V r(w)

EV r(Φs,s+t,h(w)) ≤ C∥ϕ∥V rV rα(t)(w). (5.17)

Combining the above two estimates (5.15) and (5.17), we see that ∥Ps,s+t,hϕ∥V r(t) ≤ C∥ϕ∥V r with

r(t) = rα(t). Lemma 5.7 and the invariance of the unique periodic invariant measure, together

with inequality (5.16) imply that

∥Ps,s+t,hϕ∥ρr(t),h,s = sup
w∈H

∥∇Ps,s+t,hϕ(w)∥
V r(t)(w)

+

∣∣∣∣∫
H
Ps,s+t,hϕ(w)Γβsh(dw)

∣∣∣∣
≤ C sup

w∈H

∥∇ϕ(w)∥
V r(w)

+

∣∣∣∣∫
H
ϕ(w)Γβs+th(dw)

∣∣∣∣ ≤ C∥ϕ∥ρr,h,s+t, t ∈ [0, 1].

The case for t > 1 follows by iteration. From Proposition 4.1, for n ∈ N, one has α(n) = α(1)n,

so that r(1) = max{rα(1)n, r0}. By induction, we can show that

∥Ps,s+n,hϕ∥V r(n) ≤ Cn∥ϕ∥V r . (5.18)

Indeed, the base case for n = 1 has been proved. In particular, replacing s by s+ k, it follows that

∥Ps+k,s+(k+1),hϕ∥V r(1) ≤ C∥ϕ∥V r . (5.19)

Assume that for n = k, inequality (5.18) is true for all s ∈ R and r ∈ [r0, 2κ]. Then since
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r(1) ∈ [r0, 2κ], one has

∥Ps,s+k,hϕ∥V max{r(1)α(1)k,r0} ≤ Ck∥ϕ∥V r(1) . (5.20)

It follows from (5.19), (5.20) and the evolution property of the transition operator that

∥Ps,s+(k+1),hϕ∥V max{r(1)α(1)k,r0} = ∥Ps,s+k.hPs+k,s+(k+1),hϕ∥V max{r(1)α(1)k,r0}

≤ Ck∥Ps,s+k,hϕ∥V r(1) ≤ Ck+1∥ϕ∥V r .

Since r(1) = max{rα(1), r0}, we find that r(k + 1) = max{rα(1)k+1, r0} ≥ max{r(1)α(1)k, r0}

always holds. Hence

∥Ps,s+n,hϕ∥V r(k+1) ≤ ∥Ps,s+(k+1),hϕ∥V max{r(1)α(1)k,r0} ≤ Ck+1∥ϕ∥V r .

This completes the induction step. Hence (5.18) is true for all n ∈ N. For any t ≥ 1, there are

unique k ∈ N and β ∈ [0, 1) such that t = k + β. Since r(β) ∈ [r0, 2κ], it follows from (5.18) that

∥Ps,s+k,hϕ∥V max{r(β)α(1)k,r0} ≤ Ck∥ϕ∥V r(β) . (5.21)

Combining (5.21) with (5.13) for β ∈ [0, 1), and the fact that

r(t) = max{rα(β)α(1)k, r0} ≥ max{r(β)α(1)k, r0},

we obtain (5.13) for t ≥ 1,

∥Ps,s+t,hϕ∥V r(t) ≤ ∥Ps,s+k,hPs+k,s+k+β,hϕ∥max{r(β)α(1)k,r0}

≤ Ck∥Ps+k,s+k+β,hϕ∥V r(β)

≤ Ck+1∥ϕ∥V r ≤ Ceγt∥ϕ∥V r ,

by choosing appropriate constants C, γ > 0 since k = t− β. The proof for (5.14) in the case t ≥ 1

is similar.

Corollary 5.9. There exist m > 0, C = C(m) > 0 such that

∥Ps,s+m,hϕ∥V r ≤ C∥ϕ∥ρr,h,τ

for all ϕ ∈ C1(H), r ∈ (1− α(1), 1] and s, τ ∈ R.

Proof. Let rn = r0 +α(1)nκr, where r0 is from Proposition 4.1 and can be chosen to be arbitrarily

close to 0. Since α(1) < 1, we can choose a large m such that α(1)mκr < 1. Fix such an m. Then

we can choose r0 small such that rm ≤ r and r0 < α(1)mκr. As a result, we have by Theorem 5.8
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and Proposition 5.6, that for r ∈ (1− α(1), 1],

∥Ps,s+m,hϕ∥V r ≤ ∥Ps,s+m,hϕ∥V rm ≤ ∥Ps,s+m,hϕ∥V α(1)mκr ≤ C(m)∥ϕ∥κr ≤ C(m)∥ϕ∥ρr,h,τ ,

where in the penultimate step we use inequality (5.13) with

r(t) = max{κrα(m), r0} = max{α(1)mκr, r0} = α(1)mκr.

We are now in a position to prove Theorem 5.5.

Proof of Theorem 5.5. By Corollary 5.4, and Proposition 5.6, we have

∥Ps,s+t,hϕ− Γβs+th(ϕ)∥ρ,h,s ≤ Ce−γt∥ϕ− Γβsh(ϕ)∥ρ,h,s ≤ Ce−γt∥ϕ− Γβsh(ϕ)∥η,

for s ∈ R and t ≥ 0. By Corollary 5.9, there exists m > 0 such that

∥Ps,s+m,hϕ∥η ≤ C(m)∥ϕ∥ρ,h,τ .

Replacing ϕ by Ps+m,s+m+t,hϕ − Γβs+m+th(ϕ) and letting τ = s +m on the right hand side of the

above inequality, we have

∥Ps,s+m+t,hϕ− Γβs+m+th(ϕ)∥η ≤ C(m)∥Ps+m,s+m+t,hϕ− Γβs+m+th(ϕ)∥ρ,h,s+m

≤ C(m)e−γt∥ϕ− Γβs+mh(ϕ)∥η.

Combining the above estimate with (5.12), one has for t ≥ m,

∥Ps,s+t,hϕ− Γβs+th(ϕ)∥η ≤ Ce−γ(t−m)
(
∥ϕ∥η + |Γβs+mh(ϕ)|

)
≤ Ce−γt∥ϕ∥η,

where C depends on m.

By Theorem 5.8, we have for all t > 0,

∥Ps,s+t,hϕ∥η = ∥Ps,s+t,hϕ∥V 1 ≤ ∥Ps,s+t,hϕ∥V max{α(t),r0} ≤ Ceγt∥ϕ∥η.

So for 0 ≤ t ≤ m, ∥Ps,s+t,hϕ∥η ≤ Ceγm∥ϕ∥η. Replacing ϕ by ϕ− Γβs+th(ϕ), we have

∥Ps,s+t,hϕ− Γβs+th(ϕ)∥η ≤ Ceγm∥ϕ− Γβs+th(ϕ)∥η ≤ Ceγm∥ϕ∥η ≤ Ce−γt∥ϕ∥η,

by choosing the last constant C larger. The proof is complete.
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Chapter 6. Limit Theorems

In this chapter, we establish the limit theorems as well as the corresponding convergence rates as

given in Theorem 3.3 and Theorem 3.4 for the time inhomogeneous solution process of the Navier-

Stokes equation (2.5). In fact, we will prove these results for a more general class of observable

functions that will be given below. The proof is based on a martingale approximation and the limit

theorems from the martingale theory.

Due to the time inhomogeneity, it is not obvious to derive a martingale approximation for the

inhomogeneous solution process. We also note that the homogenized process Xt is not mixing in

the usual sense since Eϕ(Xt)−
∫
H×Tn ϕ(w, h)Γh(dw)λ(dh) does not decay to 0, essentially because

the irrational rotation on the torus is not mixing. Here Γh(dw)λ(dh) is the unique invariant

measure for Xt. Therefore the usual martingale approximation cannot be applied directly. Yet

the exponentially mixing quasi-periodic invariant measure enables us to center the observation

along the solution process in an appropriate way, which gives us a chance to have a martingale

approximation. Indeed, by mixing (5.1), the transition probabilities are exponentially attracted by

the quasi-periodic invariant measure, so the expectation of the observation ϕ(w0,t(w0)) along the

inhomogeneous process is attracted by the quasi-periodic path
∫
H ϕ(w)µt(dw). Hence ϕ(w0,t(w0))−∫

H ϕ(w)µt(dw) forms a family of “asymptotically centered” random variables that is expected to

have the asymptotic behavior described by the limit theorems. Note that if we let ϕ̃(w, h) =

ϕ(w)− ⟨ϕ,Γh⟩, then

ϕ(w0,t(w0))−
∫
H
ϕ(w)µt(dw) = ϕ̃(Xt(w0, 0)),

which is the observation of the centered observable function along the homogenized process Xt(w0, 0).

This indicates that the homogenized process is mixing when acting on the observables centered by

the quasi-periodic invariant measure, which enables us to derive a martingale approximation.

Section 6.1 below is devoted to the study of this particular martingale approximation. Then

the strong law of large numbers and the central limit theorem are direct conclusions of the corre-

sponding theorems established in martingale theory, which merely requires the weak convergence

of the average of the transition probabilities established in Proposition 5.3 and the bounds on the

approximating martingale. The proof is presented in Section 6.2. The rate of convergence for the
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limit theorems will be given in Section 6.3, which requires more detailed analyses on regularity

of observables and the convergence rate for the moments of the time average of the observations

centered by the quasi-periodic invariant measure.

We now define the space of observable functions and state the main results of this section. For

γ ∈ (0, 1], let Cγ
η,H(H×Tn) be the space of Hölder continuous functions with finite norms weighted

by the Lyapunov function eη∥w∥2 ,

Cγ
η,H(H × Tn) := {ϕ ∈ C(H × Tn) : ∥ϕ∥γ,η,H < ∞} , (6.1)

where

∥ϕ∥γ,η,H := sup
(w,h)∈H×Tn

|ϕ(w, h)|
eη∥w∥2 + sup

h∈Tn

0<∥w1−w2∥≤1

|ϕ(w1, h)− ϕ(w2, h)|
∥w1 − w2∥γ

(
eη∥w1∥2 + eη∥w2∥2

) . (6.2)

Let also Cγ
η,Tn(H × Tn) be the space of functions that are Hölder continuous on Tn−component

and uniformly on bounded subset of H

Cγ
η,Tn(H × Tn) := {ϕ ∈ C(H × Tn) : ∥ϕ∥γ,η,Tn < ∞} , (6.3)

where

∥ϕ∥γ,η,Tn := sup
(w,h)∈H×Tn

|ϕ(w, h)|
eη∥w∥2 + sup

w∈H
0<∥h1−h2∥≤1

|ϕ(w, h1)− ϕ(w, h2)|
eη∥w∥2 |h1 − h2|γ

.

Recall that ρ is the geodesic distance on H weighted by eη∥w∥2 and therefore depends on η. Let

[ϕ]γ,η,Hρ = sup
h∈Tn

0<ρ(w1,w2)≤1

|ϕ(w1, h)− ϕ(w2, h)|
ρ(w1, w2)γ

,

be the Hölder semi-norm under the metric ρ, and set Cγ
η,Hρ

(H×Tn) as the space of bounded Hölder

continuous (with respect to the metric ρ on H) functions

Cγ
η,Hρ

(H × Tn) =

{
ϕ ∈ C(H × Tn) : ∥ϕ∥γ,η,Hρ := sup

(w,h)∈H×Tn

|ϕ(w, h)|+ [ϕ]γ,η,Hρ < ∞

}
. (6.4)

Remark. It is straightforward to verify that for 0 < δ ≤ γ, the following inclusion holds:{
ϕ ∈ C(H × Tn) : [ϕ]γ,η,Hρ < ∞

}
⊂ Cδ

2η,H(H × Tn).

In the case when the deterministic force f(t, x) vanishes and the noise is degenerate as in our

work, the weak law of large numbers and central limit theorem were proved in [50] for Lipschitz

observable functions ϕ with [ϕ]1,η,Hρ < ∞. In view of the above inclusion and the fact that the
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following Theorem 6.1 and Theorem 6.2 are valid for ϕ ∈ Cγ
η,H(H × Tn), our limit theorems in the

case when the deterministic force f = 0 can be considered as an improvement of those in [50].

For any ϕ ∈ Cγ
η,H(H ×Tn), we set ϕ̃ as the associated function obtained by normalizing ϕ with

the quasi-periodic invariant measure,

ϕ̃(w, h) = ϕ(w, h)− ⟨Γh, ϕ(·, h)⟩. (6.5)

It is clear that ϕ̃ ∈ Cγ
η,H(H × Tn) as well. Note that Xt(w0, h0) = (w0,t,h0(w0), βth0), hence

ϕ̃(Xt(w0, h0)) = ϕ(w0,t,h0(w0), βth0)− ⟨Γβth0 , ϕ(·, βth0)⟩.

Recall from Theorem 5.1 that when h0 = 0, Γβt0 = µt is the unique quasi-periodic invariant

measure of the Navier-Stokes system (2.5) with the deterministic force f(t, x). And when ϕ is an

observable function on H, we have ϕ̃(Xt(w0, 0)) = ϕ(w0,t,h0(w0))−⟨µt, ϕ⟩, which is the observation

along the solution process normalized by the quasi-periodic invariant measure. In particular, The-

orem 3.3 and Theorem 3.4 with s = 0 are obtained from the following Theorem 6.1-6.4 by taking

the observable function ϕ ∈ Cγ
η (H) ⊂ Cγ

η,H(H ×Tn) and h0 = 0. For simplicity, we prove Theorem

6.1-6.4 for initial time s = 0, while the proof applies to s ̸= 0 without any change. Therefore

Theorem 3.3 and Theorem 3.4 hold for any initial time s ∈ R.

Let η0 be the constant from (A.1). The first result is the strong law of large numbers with its

rate of convergence.

Theorem 6.1 (SLLN). For any η ∈ (0, 2−4η0], ϕ ∈ Cγ
η,H(H × Tn), (w0, h0) ∈ H × Tn, and ε > 0,

lim
T→∞

T− 1
2
−ε

∫ T

0
ϕ̃(Xt(w0, h0))dt = 0, P− a.s. (6.6)

The second result is the central limit theorem.

Theorem 6.2 (CLT). For any η ∈ (0, 2−6η0], ϕ ∈ Cγ
η,H(H × Tn), and (w0, h0) ∈ H × Tn, one has

lim
T→∞

1√
T

∫ T

0
ϕ̃(Xt(w0, h0))dt

D
= N(0, σ2), (6.7)

where N(0, σ2) is the standard normal random variable with variance σ2 and D represents the

convergence in distribution. In fact

σ2 = σ2
ϕ = lim

T→∞

1

T
E

(∫ T

0
ϕ̃ (Xt(w0, h0)) dt

)2

.

The third result of this section is an estimate of the rate of convergence for the strong law of

large numbers.
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Theorem 6.3. Let ε > 0, for every integer p ≥ 3 satisfying 2p > 1/ε, every η ∈ (0, 2−p−1η0], and

every ϕ ∈ Cγ
η,H(H×Tn), (w0, h0) ∈ H×Tn, there is an almost surely finite random time T0(ω) ≥ 1,

depending on p, ε, ∥ϕ∥γ,η,H , ∥w0∥, h0 such that for all T > T0, we have∣∣∣∣ 1T
∫ T

0

(
ϕ(Xt(w0, h0))−

⟨
Γβth, ϕ(·, βth)

⟩)
dt

∣∣∣∣ ≤ CT− 1
2
+ε,

where C > 0 is a constant that does not depend on the above parameters. Moreover, for every

0 < ℓ < min{2pε− 1, 2p−2 − 1}, there is a constant Cp = Cp(∥ϕ∥γ,η,H , ℓ, ε) such that

ET ℓ
0 ≤ Cpe

2p+1η∥w0∥2 .

The last result is on the convergence rate of the central limit theorem.

Theorem 6.4. Assume Ψ ∈ Cγ(Tn,H) and the frequency α satisfies the Diophantine condition

(2.2) with constant A and dimension n. Let Λ = ϖ
5(2−γ) , ζ = ϖγ

r+ϖ and γ0 = Λζ
5(Λ+r)(2−γ) , where ϖ

is the mixing rate from Theorem 3.1 and r = 64c60η
−3ν−5 + ηC(f,B0) is the constant from (A.3).

1. For any integer p ≥ 2, η ∈ (0, 2−p−1η0], and ϕ ∈ Cγ
η,H(H × Tn) with σ2

ϕ > 0, and (w0, h0) ∈

H × Tn, there are constants Cp = Cp(∥ϕ∥γ,η,H , ∥ϕ∥γ,η,Tn , ∥w0∥) > 0 and T0 > 0 such that for all

T ≥ T0,

sup
z∈R

∣∣∣∣P{ 1√
T

∫ T

0
ϕ̃(Xt(w0, h0))dt ≤ z

}
− Φσϕ

(z)

∣∣∣∣ ≤ Cp

(
T− 1

4 + T− 2p−2

2p+1 + T
− 2p−1γ0

(2p+1)(A+n)

)
,

2. For η ∈ (0, 2−7η0] and ϕ ∈ Cγ
η,H(H × Tn) such that σ2

ϕ = 0, and (w0, h0) ∈ H × Tn, there is

a constant C = C(∥ϕ∥γ,η,H , ∥ϕ∥γ,η,Tn , ∥w0∥) > 0 such that for all T ≥ 1,

sup
z∈R

(|z| ∧ 1)

∣∣∣∣P{ 1√
T

∫ T

0
ϕ̃(Xt(w0, h0))dt ≤ z

}
− Φ0(z)

∣∣∣∣ ≤ C

(
T− 1

4 + T
− γ0

2(A+n)

)
.

6.1 The Martingale Approximation

We first give several properties of the spaces of observable functions defined above in the following

Proposition 6.5. Then we prove a mixing result (as a consequence of Theorem 5.1) in terms of the

observable functions in Theorem 6.6, which is crucial in deriving the martingale approximation.

Proposition 6.7 gives the definition of the corrector and its properties that will be used to construct

the martingale approximation as given in (6.14).

Proposition 6.5. Let η0 be the constant from estimate (A.1). For η ∈ (0, η0/2], and any 0 < γ ≤ 1,

Pt maps Cγ
η,H(H × Tn) into Cγ

2η,H(H × Tn); If we further assume that Ψ ∈ Cγ(Tn,H), then Pt
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maps Cγ
η,H(H × Tn) ∩ Cγ

η,Tn(H × Tn) into Cγ
2η,H(H × Tn) ∩ Cγ

2η,Tn(H × Tn).

Proof. Let ϕ ∈ Cγ
η,H(H × Tn). It follows from (A.1) and (A.15) that for η ∈ (0, η0/2],

|Ptϕ(w1, h)− Ptϕ(w2, h)|

= |Eϕ(w0,t,h(w1), βth)−Eϕ(w0,t,h(w2), βth)| ≤ E |ϕ(w0,t,h(w1), βth)− ϕ(w0,t,h(w2), βth)|

≤ ∥ϕ∥γ,η,HE∥w0,t,h(w1)− w0,t,h(w2)∥γ
(
eη∥w0,t,h(w1)∥2 + eη∥w0,t,h(w2)∥2

)
≤ C∥ϕ∥γ,η,H

(
E∥w0,t,h(w1)− w0,t,h(w2)∥2

) γ
2

(
E
(
e2η∥w0,t,h(w1)∥2 + e2η∥w0,t,h(w2)∥2

)) 1
2

≤ C∥ϕ∥γ,η,H∥w1 − w2∥γe
γr
2
te

γ
2
η∥w1∥2

(
eη∥w1∥2 + eη∥w2∥2

)
,

where r = 64c60η
−3ν−5 + ηC (f,B0) is the constant from (A.4). Hence we have

|Ptϕ(w1, h)− Ptϕ(w2, h)| ≤ C∥ϕ∥γ,η,H∥w1 − w2∥γe
γr
2
t
(
e2η∥w1∥2 + e2η∥w2∥2

)
, (6.8)

which shows that Pt maps Cγ
η,H(H × Tn) into Cγ

2η,H(H × Tn).

Now assume Ψ ∈ Cγ(Tn,H) and let ϕ ∈ Cγ
η,H(H × Tn) ∩ Cγ

η,Tn(H × Tn). Then

|Ptϕ(w, h1)− Ptϕ(w, h2)| = |Eϕ(w0,t,h1(w), βth1)−Eϕ(w0,t,h2(w), βth2)|

≤ E |ϕ(w0,t,h1(w), βth1)− ϕ(w0,t,h1(w), βth2)|+E |ϕ(w0,t,h1(w), βth2)− ϕ(w0,t,h2(w), βth2)|

≤ ∥ϕ∥γ,η,Tn |h1 − h2|γEeη∥w0,t,h1
(w)∥2 + ∥ϕ∥γ,η,HE∥w0,t,h1(w)− w0,t,h2(w)∥γ

(
eη∥w0,t,h1

(w)∥2 + eη∥w0,t,h2
(w)∥2

)
.

It follows from (A.1) and (A.3) that

E∥w0,t,h1(w)− w0,t,h2(w)∥γ
(
eη∥w0,t,h1

(w)∥2 + eη∥w0,t,h2
(w)∥2

)
≤
(
E∥w0,t,h1(w)− w0,t,h2(w)∥2

) γ
2

(
E
(
e2η∥w0,t,h1

(w)∥2 + e2η∥w0,t,h2
(w)∥2

)) 1
2

≤ Ce
rγ
2
te2η∥w∥2∥Ψ∥γγ |h1 − h2|γ .

Hence

|Ptϕ(w, h1)− Ptϕ(w, h2)| ≤ C(∥ϕ∥γ,η,Tn + ∥ϕ∥γ,η,H∥Ψ∥γγ)e
rγ
2
te2η∥w∥2 |h1 − h2|γ , (6.9)

which shows that Pt maps Cγ
η,H(H×Tn)∩Cγ

η,Tn(H×Tn) into Cγ
2η,H(H×Tn)∩Cγ

2η,Tn(H×Tn).

The following theorem shows that the homogenized process is mixing over the family of ob-

servables normalized by the quasi-periodic invariant measure as in (6.5), although it is not mixing

in the usual sense (by centering the observables with the unique ergodic invariant measure of the

homogenized process).
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Theorem 6.6. For any γ ∈ (0, 1], κ ≥ 2, η ∈ (0, η0/κ] and ϕ ∈ Cγ
η,H(H × Tn) we have

|Ptϕ̃(w, h)| ≤ C∥ϕ∥γ,η,Heκη∥w∥2e−Λt, ∀t ≥ 0, (w, h) ∈ H × Tn, (6.10)

where Λ = ϖ
5(2−γ) , the mixing rate ϖ is from Theorem 5.1, and C is a positive constant independent

of (w, h) and η0 is the constant from (A.1).

Proof. For any R > 0, let χR : H → R ∈ Cγ
η,H(H × Tn) satisfying 0 ≤ χR ≤ 1, with χR(w) = 1 for

∥w∥ ≤ R and χR(w) = 0 for ∥w∥ ≥ R + 1. We can actually choose a χR such that ∥χR∥γ,η,H ≤ 2.

Assume without loss of generality that ∥ϕ∥γ,η,H = 1. Also denote by χR = 1− χR. Then

|Ptϕ̃(w, h)| = |Pt (χRϕ+ χRϕ) (w, h)− ⟨Γβth, (χRϕ)(·, βth) + (χRϕ)(·, βth)⟩|

≤ |Pt(χRϕ)(w, h)− ⟨Γβth, (χRϕ)(·, βth)⟩|+ |Pt(χRϕ)(w, h)− ⟨Γβth, (χRϕ)(·, βth)⟩|

:= I1 + I2. (6.11)

It is straightforward to show that χRϕ ∈ Cγ
η,Hρ

(H ×Tn). Indeed, since χRϕ vanishes outside of the

ball ∥w∥ ≤ R+ 1, in view of the definition (6.2), one has

sup
(w,h)∈H×Tn

|χR(w)ϕ(w, h)| ≤ sup
(w,h)∈H×Tn

∥w∥≤R+1

|ϕ(w, h)| ≤ ∥ϕ∥γ,η,Heη(R+1)2 . (6.12)

Let

S = {(w1, w2) ∈ H2 : ∥w1∥ ≤ R+ 1, ∥w2∥ ≥ R+ 1, 0 < ∥w1 − w2∥ ≤ 1},

and

Sρ = {(w1, w2) ∈ H2 : ∥w1∥ ≤ R+ 1, ∥w2∥ ≥ R+ 1, 0 < ρ(w1, w2) ≤ 1}.

It is clear that Sρ ⊂ S since ∥w1 −w2∥ ≤ ρ(w1, w2). It follows from χR(w2) = 0, ∥w2∥ ≤ R+2 and

(6.12) that

sup
(w1,w2)∈Sρ

|χR(w1)ϕ(w1, h)− χR(w2)ϕ(w2, h)|
ρ(w1, w2)γ

= sup
(w1,w2)∈Sρ

|χR(w1)ϕ(w1, h)− χR(w2)ϕ(w1, h)|
ρ(w1, w2)γ

≤ 2eη(R+1)2 sup
(w1,w2)∈S

|χR(w1)− χR(w2)|
∥w1 − w2∥γ

≤ 4e2η(R+2)2 .

Now let

SR = {(w1, w2) ∈ H2 : ∥w1∥, ∥w2∥ ≤ R+ 1, 0 < ∥w1 − w2∥ ≤ 1},

74



and

SR
ρ = {(w1, w2) ∈ H2 : ∥w1∥, ∥w2∥ ≤ R+ 1, 0 < ρ(w1, w2) ≤ 1}.

First note that for ∥w1∥, ∥w2∥ ≤ R+ 1,

|χR(w1)ϕ(w1, h)− χR(w2)ϕ(w2, h)| ≤ 2eη(R+1)2
(
|χR(w1)− χR(w2) + |ϕ(w1, h)− ϕ(w2, h)|

)
.

Hence

sup
(w1,w2)∈SR

ρ

|χR(w1)ϕ(w1, h)− χR(w2)ϕ(w2, h)|
ρ(w1, w2)γ

≤ 2eη(R+1)2
(

sup
(w1,w2)∈SR

|χR(w1)− χR(w2)|
∥w1 − w2∥γ

+ sup
(w1,w2)∈SR

|ϕ(w1, h)− ϕ(w2, h)|
∥w1 − w2∥γ

)
≤ 4e2η(R+2)2 .

It then follows that χRϕ ∈ Cγ
η,Hρ

(H × Tn) and

∥χRϕ∥γ,η,Hρ ≤ Ce2η(R+2)2 ,

where C is a constant that does not depend on R.

It is known that the dual Hölder metric on P(H) is bounded by the Wasserstein metric (see

Proposition 1.2.6 in [48] for example):

sup
φ∈Cγ

b (H),∥φ∥γ≤1

|⟨µ1, φ⟩ − ⟨µ2, φ⟩| ≤ 5(ρ(µ1, µ2))
1

2−γ , ∀µ1, µ2 ∈ P(H), (6.13)

where Cγ
b (H) is the space of bounded γ−Hölder continuous functions on H endowed with the

metric ρ, and

∥φ∥γ = sup
w∈H

|φ(w)|+ sup
0<ρ(w1,w2)≤1

|φ(w1)− φ(w2)|
ρ(w1, w2)γ

.

Combining this fact with Theorem 5.1, it follows that the first term in (6.11) satisfies

I1 = |Pt(χRϕ)(w, h)− ⟨Γβth, (χRϕ)(·, βth)⟩|

= |⟨P∗
0,t,hδw, (χRϕ)(·, βth)⟩ − ⟨P∗

0,t,hΓh, (χRϕ)(·, βth)⟩|

≤ 5∥χRϕ∥γ,η,Hρ(ρ(P∗
0,t,hδw,P∗

0,t,hΓh))
δ0 ≤ Ce2η(R+2)2e−δ0ϖteκη∥w∥2 .

Here δ0 =
1

2−γ ≤ 1, κ ≥ 2 and ϖ are positive constants.
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To estimate the second term in (6.11), observe that

|Pt(χRϕ)(w, h)| ≤ E(w,h)(|χRϕ|)(Xt) ≤ (E(w,h)χR(Xt))
1/2(E(w,h)|ϕ(Xt)|2)1/2

≤
(
P (∥w0,t,h(w)∥ ≥ R)

)1/2(
Ee2η∥w0,t,h(w)∥2

)1/2
≤ Ceη∥w∥2e−ηR2

(Ee2η∥w0,t,h(w)∥2)1/2 ≤ Ce2η∥w∥2e−ηR2
,

where we used the fact that ∥ϕ∥γ,η,H = 1 and the estimate (A.1) with a smaller η0 (which is the

one in (A.1) divided by 2).

In a similar fashion, note that

|⟨Γβth, (χRϕ)(·, βth)⟩| ≤
(∫

H
χR(w)Γβth(dw)

)1/2(∫
H
|ϕ(w, βth)|2 Γβth(dw)

)1/2
≤
(
Γβth(∥w∥ ≥ R)

)1/2(∫
H
e2η∥w∥2Γβth(dw)

)1/2

≤ Ce−ηR2

(∫
H
e2η∥w∥2Γβth(dw)

)1/2

≤ Ce−ηR2
.

As a result, we have the following estimate on (6.11),

|Ptϕ̃(w, h)| ≤ Ceκη∥w∥2(e4ηR
2−δ0ϖt + e−ηR2

).

By choosing R2 = δ0ϖt
5η , we obtain (6.10) with Λ = δ0ϖ

5 = ϖ
5(2−γ) . The proof is complete.

We now define the corrector that will be used in the martingale approximation procedure.

Proposition 6.7 (The corrector). For ϕ ∈ Cγ
η,H(H × Tn), define

χ(w, h) :=

∫ ∞

0
Ptϕ̃(w, h)dt =

∫ ∞

0
P0,t,hϕ(·, βth)(w)− ⟨Γβth, ϕ(·, βth)⟩dt, (w, h) ∈ H × Tn.

(1). For η ∈ (0, η0/2], γ ∈ (0, 1], the corrector χ ∈ Cγ0
2η,H(H × Tn) as long as ϕ ∈ Cγ

η,H(H × Tn),

where γ0 = Λγ
Λ+r , with Λ from Theorem 6.6 and r = 64c60η

−3ν−5 + ηC(f,B0) is the constant from

(6.8).

(2). If we assume Ψ ∈ Cγ(Tn,H) and ϕ ∈ Cγ
η,H(H × Tn) ∩ Cγ

η,Tn(H × Tn), then the associated

corrector χ ∈ Cγ0
2η,H(H × Tn) ∩ Cγ1

2η,Tn(H × Tn), where γ1 = Λζ
5(Λ+r)(2−γ) with Λ, r as above and ζ

from Theorem 5.1. In particular, we have

χ ∈ C
γ0
2η,H(H × Tn) ∩ C

γ0
2η,Tn(H × Tn),

where γ0 = min{γ0, γ1} = γ1.

Proof. The function χ is well defined in view of Theorem 6.6. We begin with proving the first item.
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Let ϕ ∈ Cγ
η,H(H × Tn). It follows from Theorem 6.6 and inequality (6.8) that, for η ∈ (0, η0/2],

|χ(w1, h)− χ(w2, h)| ≤
∫ T

0
|Ptϕ̃(w1, h)− Ptϕ̃(w2, h)|dt+

∫ ∞

T
|Ptϕ̃(w1, h)|+ |Ptϕ̃(w2, h)|dt

≤
∫ T

0
|Ptϕ(w1, h)− Ptϕ(w2, h)|dt+ C∥ϕ∥γ,η,He−ΛT

(
e2η∥w1∥2 + e2η∥w2∥2

)
≤ C∥ϕ∥γ,η,H

(
∥w1 − w2∥γe

γr
2
T + e−ΛT

)(
e2η∥w1∥2 + e2η∥w2∥2

)
≤ C∥ϕ∥γ,η,H

(
∥w1 − w2∥γerT + e−ΛT

) (
e2η∥w1∥2 + e2η∥w2∥2

)
where r is from inequality (6.8). In view of Lemma 5.2, we have for any 0 < ∥w1 − w2∥ ≤ 1,

|χ(w1, h)− χ(w2, h)| ≤ C∥ϕ∥γ,η,H
(
e4η∥w1∥2 + e4η∥w2∥2

)
∥w1 − w2∥γ0 ,

with γ0 =
Λγ
Λ+r . This also indicates that χ(w, h) is continuous in w uniformly for h. The continuity

of χ(w, h) in h for fixed w follows from the fact that χT (w, h) :=
∫ T
0 Ptϕ̃(w, h)dt is continuous in h

and χT (w, h) → χ(w, h) uniformly for h. Thus χ ∈ C(H × Tn). It also follows from Theorem 6.6

that |χ(w, h)| ≤ C∥ϕ∥γ,η,He2η∥w∥2 . Hence χ ∈ Cγ0
2η,H(H × Tn) .

We now prove the second assertion. Let ϕ ∈ Cγ
η,H(H × Tn) ∩ Cγ

η,Tn(H × Tn) and assume

Ψ ∈ Cγ(Tn,H). Then

|χ(w, h1)− χ(w, h2)| ≤
∫ T

0
|Ptϕ̃(w, h1)− Ptϕ̃(w, h2)|dt+

∫ ∞

T
|Ptϕ̃(w, h1)|+ |Ptϕ̃(w, h2)|dt

:= I + II.

Note that by Theorem 6.6, the second term can be estimated as

II ≤ C∥ϕ∥γ,η,He2η∥w∥2e−ΛT .

For the first term, observe that

I ≤
∫ T

0
|Ptϕ(w, h1)− Ptϕ(w, h2)|dt+

∫ T

0
|⟨Γβth1 , ϕ(·, βth1)⟩ − ⟨Γβth2 , ϕ(·, βth2)⟩| dt

:= I1 + I2.

It then follows from the estimate (6.9) that

I1 ≤ C(∥ϕ∥γ,η,Tn + ∥ϕ∥γ,η∥Ψ∥γγ)e2η∥w∥2 |h1 − h2|γ
∫ T

0
e

rγ
2
tdt

≤ C(∥ϕ∥γ,η,Tn + ∥ϕ∥γ,η∥Ψ∥γγ)e2η∥w∥2 |h1 − h2|γerT .

To estimate I2, noting that as in the proof of Theorem 6.6, especially by (6.13) and Theorem 5.1
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(ζ-Hölder continuity of Γ), we have

I21 := |⟨Γβth1 , ϕ(·, βth1)⟩ − ⟨Γβth2 , ϕ(·, βth1)⟩|

≤ |⟨Γβth1 − Γβth2 , χRϕ(·, βth1)⟩|+ |⟨Γβth1 , (χRϕ)(·, βth1)⟩|+ |⟨Γβth2 , (χRϕ)(·, βth1)⟩|

≤ C∥ϕ∥γ,η,He4ηR
2∥Γ∥

1
2−γ

ζ |h1 − h2|
ζ

2−γ + C∥ϕ∥γ,η,He−ηR2

≤ C∥ϕ∥γ,η,H(∥Γ∥
1

2−γ

ζ + 1)
(
e4ηR

2 |h1 − h2|
ζ

2−γ + e−ηR2
)

≤ C∥ϕ∥γ,η,H(∥Γ∥
1

2−γ

ζ + 1)|h1 − h2|
ζ

5(2−γ)

by Lemma 5.2. Also note that by Theorem 5.1,

I22 := |⟨Γβth2 , ϕ(·, βth1)⟩ − ⟨Γβth2 , ϕ(·, βth2)⟩|

≤ ⟨Γβth2 , |ϕ(·, βth1)− ϕ(·, βth2)|⟩

≤ ∥ϕ∥γ,η,Tn |h1 − h2|γ
∫
H
eη∥w∥2Γβth2(dw) ≤ C∥ϕ∥γ,η,Tn |h1 − h2|γ .

As a result,

I2 ≤
∫ T

0
I21 + I22dt ≤ CT

(
∥ϕ∥γ,η,H(∥Γ∥

1
2−γ

ζ + 1) + ∥ϕ∥γ,η,Tn

)
|h1 − h2|

ζ
5(2−γ) .

Therefore by Lemma 5.2 again,

|χ(w, h1)− χ(w, h2)| ≤ Ce2η∥w∥2
(
erT |h1 − h2|

ζ
5(2−γ) + e−ΛT

)
≤ Ce2η∥w∥2 |h1 − h2|γ1 ,

with γ1 =
Λζ

5(Λ+r)(2−γ) . Hence χ ∈ Cγ1
2η,Tn(H×Tn). This completes the proof of this proposition.

We are now in a position to give the martingale approximation. For T ≥ 0, let∫ T

0
ϕ̃(Xt)dt =

∫ N

0
ϕ̃(Xt)dt+

∫ T

N
ϕ̃(Xt)dt = MN +RN,T , (6.14)

where N is the integer part of T ,

MN = χ(XN )− χ(X0) +

∫ N

0
ϕ̃(Xt)dt

is the Dynkin martingale (formally) and

RN,T = −χ(XN ) + χ(X0) +

∫ T

N
ϕ̃(Xt)dt

is the reminder term. Let ZN = MN −MN−1 for N ≥ 1 be the associated martingale difference.

In what follows, we will show that MN is indeed a martingale and RN,T is a negligible term that

vanishes as T → ∞. This will reduce the proof of Theorem 6.1-6.2 to the proof of the limit theorems
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for the associated martingale sequence MN . Let MT = χ(XT )− χ(X0) +
∫ T
0 ϕ̃(Xt)dt for T ≥ 0.

Lemma 6.8. {MT }T≥0 is a zero mean martingale w.r.t the filtration {FT }.

Proof. The martingale property follows from the Markov property of the homogenized process Xt

as follows.

E[MT |Fs] = E[χ(XT )|Fs]− χ(X0) +

∫ s

0
E[ϕ̃(Xu)|Fs]du+

∫ T

s
E[ϕ̃(Xu)|Fs]du.

Since Xu is Fs measurable for 0 ≤ u ≤ s, it follows that∫ s

0
E[ϕ̃(Xu)|Fs]du =

∫ s

0
ϕ̃(Xu)du.

Moreover, by the Markov property,∫ T

s
E[ϕ̃(Xu)|Fs]du =

∫ ∞

s
Pu−sϕ̃(Xs)du−

∫ ∞

T
Pu−T (PT−sϕ̃)(Xs)du = χ(Xs)−E[χ(XT )|Fs].

Hence E[MT |Fs] = Ms.

It is zero mean since

MT = χ(XT )− χ(X0) +

∫ T

0
ϕ̃(Xt)dt

=

∫ ∞

T
Pt−T ϕ̃(XT )dt−

∫ ∞

0
Ptϕ̃(X0)dt+

∫ T

0
ϕ̃(Xt)dt

=

∫ ∞

T
E(w,h)

[
ϕ̃(Xt)|FT

]
dt−

∫ ∞

0
Ptϕ̃(w, h)dt+

∫ T

0
ϕ̃(Xt)dt,

which implies E(w,h)MT = 0.

The following lemma gives estimates on the even order moments of the martingale MN and its

associated martingale difference.

Lemma 6.9 (Bounds on the martingale). For integer p ≥ 1, η ∈ (0, 2−p−1η0] and ϕ ∈ Cγ
η,H(H×Tn),

one has

E(w,h)|MT |2
p ≤ C(T 2−2−p

+ 1)e2
p+1η∥w∥2 , E(w,h)|ZN |2p ≤ Ce2

p+1η∥w∥2 ,

for T ≥ 0 and N ≥ 1. Also with a larger constant C,

PtE(w,h)|MT |2p ≤ C(T 2−2−p
+ 1)e2

p+1η∥w∥2 , ∀t ≥ 0.

Proof. By Proposition 6.7, we know that χ ∈ Cγ0
2η,H(H × Tn). Hence χ2p ∈ Cγ0

2p+1η,H
(H × Tn).

Besides, since ϕ ∈ Cγ
η,H(H ×Tn), |ϕ̃|2p ∈ Cγ

2p+1η,H
(H ×Tn). It follows from estimate (A.1) that for
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η ∈ (0, 2−p−1η0], and any t ≥ 0,

E(w,h)|MT |2
p ≤ C

(
E(w,h)|χ(XT )|2

p
+ |χ(w, h)|2p + T 1−2−p

∫ T

0
E(w,h)|ϕ̃(Xt)|2

p
dt

)
≤ C

(
Ee2

p+1η∥w0,T,h(w)∥2 + e2
p+1η∥w∥2 + T 1−2−p

∫ T

0
Ee2

p+1η∥w0,t,h(w)∥2dt

)
≤ C(T 2−2−p

+ 1)e2
p+1η∥w∥2 .

Similarly, one can show that for any N ≥ 1,

E(w,h)|ZN |2p ≤ Ce2
p+1η∥w∥2 ,

where C does not depend on N,h. It follows from (A.1) that

PtE(w,h)|MT |2
p ≤ C(T 2−2−p

+ 1)Ee2
p+1η∥w0,t,h(w)∥2 ≤ C(T 2−2−p

+ 1)e2
p+1η∥w∥2 .

The following estimate on the remainder term shows that the proof of Theorem 6.1-6.2 can be

reduced to the proof of the corresponding limit theorems for the associated martingale sequence.

Lemma 6.10. Let RN,T be as in (6.14). Then for any initial condition X0 = (w, h), η ∈ (0, 2−4η0]

and ϕ ∈ Cγ
η,H(H × Tn),

lim
T→∞

1√
T
RN,T = 0, P− a.s. (6.15)

Proof. Since N is the integer part of T , it suffices to show

lim
N→∞

1√
N

sup
N≤t≤N+1

RN,t = 0, P− a.s.

By Proposition 6.7, we have that

|χ(XN )| ≤ Ce2η∥w0,N,h(w)∥2 .

Since ϕ ∈ Cγ
η,H(H × Tn), it also holds that

sup
N≤t≤N+1

∣∣∣∣∫ t

N
ϕ̃(Xs)ds

∣∣∣∣ ≤ C sup
N≤t≤N+1

e2η∥w0,t,h(w)∥2 . (6.16)

It then follows from the Markov inequality, estimates (A.2) and (A.1) that for any K > 0,

P

(
sup

N≤t≤N+1
e2η∥w0,t,h(w)∥2 > K

)
≤ Ce2

4η∥w∥2K−8.

Hence
∞∑

N=1

P

(
sup

N≤t≤N+1

(
|χ(XN )|+ χ(w, h) +

∣∣∣∣∫ t

N
ϕ̃(Xs)ds

∣∣∣∣) ≥ N
1
4

)

≤
∞∑

N=1

P

(
C sup

N≤t≤N+1
e2η∥w0,t,h(w)∥2 ≥ N

1
4

)
≤ Ce2

4η∥w∥2
∞∑

N=1

N−2 < ∞,
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By the Borel-Cantelli lemma, there is an almost surely finite random integer time N0(ω) such that

for N > N0(ω),

sup
N≤t≤N+1

RN,t ≤ N1/4, (6.17)

which implies (6.15).

6.2 The Limit Theorems

Based on the martingale approximation given above, we will prove Theorem 6.1 and Theorem

6.2 in this section by showing the limit results for the corresponding martingales. As remarked

earlier, compared with the analysis in the next section the rate of convergence, the proof of the

limit theorems is quite straightforward and merely requires certain moment bounds as given in

Lemma 6.9 and ergodicity properties given in Proposition 5.3. We first prove the strong law of

large numbers, which is based on the following Kolmogorov’s criterion for martingales.

Theorem 6.11 ([39, 48]). Let {MN}N≥1 be a zero mean square integrable martingale and let {cN}

be an increasing sequence going to ∞ such that
∞∑

N=1

c−2
N EZ2

N < ∞,

where ZN = MN −MN−1 and M0 = 0. Then

lim
N→∞

c−1
N MN → 0, P− a.s.

Proof of Theorem 6.1. In view of the martingale approximation (6.14) and Theorem 6.10, to show

(6.6), it suffices to prove that

lim
N→∞

N− 1
2
−εMN = 0, P− a.s.

Lemma 6.9 with p = 1 ensures the condition of Theorem 6.11 with cN = N1/2+ε. Hence the desired

convergence follows from Theorem 6.11.

The rest of this section is devoted to the proof of Theorem 6.2. We first prove the existence of

the asymptotic variance.

Proposition 6.12 (The asymptotic variance). For any (w, h) ∈ H × Tn, η ∈ (0, η0/16] and
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ϕ ∈ Cγ
η,H(H × Tn), we have

lim
T→∞

1

T
E

(∫ T

0
ϕ̃ (Xt(w, h)) dt

)2

= 2

∫
H×Tn

ϕ̃(w, h)χ(w, h)Γh(dw)λ(dh) := σ2
ϕ. (6.18)

Proof. By the Markov property of the homogenized process, one has

1

T
E

(∫ T

0
ϕ̃ (Xt(w, h)) dt

)2

=
2

T
E

∫ T

0

∫ T

s
ϕ̃ (Xt(w, h)) ϕ̃ (Xs(w, h)) dtds

=
2

T

∫ T

0
E

[
ϕ̃ (Xs(w, h))

∫ T

s
E
[
ϕ̃ (Xt(w, h)) |Fs

]
dt

]
ds

=
2

T

∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃

∫ T−s

0
Ptϕ̃dt

⟩
ds.

In view of the weak convergence in Proposition 5.3 and the definition of the corrector in Proposition

6.7, we expect that as T → ∞,∣∣∣ 2
T

∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃

∫ T−s

0
Ptϕ̃dt

⟩
ds− 2

T

∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃χ

⟩
ds
∣∣∣

=

∣∣∣∣ 2T
∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃(χ− χT−s)

⟩
ds

∣∣∣∣→ 0, (6.19)

where χT−s =
∫ T−s
0 Ptϕ̃dt. Indeed, it follows from Theorem 6.6 with κ = 2 that

|χ− χT−s| ≤
∫ ∞

T−s

∣∣∣Ptϕ̃(w, h)
∣∣∣ dt ≤ Ce2η∥w∥2e−Λ(T−s).

Since ϕ̃ ∈ Cγ
η,H(H × Tn), and e2η∥·∥

2 ∈ Cγ
4η,H(H × Tn), it follows that ϕ̃e2η∥·∥

2 ∈ Cγ
8η,H(H × Tn).

Hence by estimate (A.1), we have for η ∈ (0, η0/8], and any s ≥ 0,⟨
P ∗
s δ(w,h), |ϕ̃|e2η∥·∥

2
⟩
≤ C

⟨
P ∗
s δ(w,h), e

8η∥·∥2
⟩
= CEe8η∥w0,s,h(w)∥2 ≤ Ce8η∥w∥2 .

Hence ∣∣∣∣ 1T
∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃(χ− χT−s)

⟩
ds

∣∣∣∣ ≤ Ce8η∥w∥2 1

T

∫ T

0
e−Λ(T−s)ds → 0,

which implies the limit (6.19).

By Proposition 6.7, χ ∈ Cγ0
2η,H(H×Tn). Hence |ϕ̃χ|2 ∈ Cγ0

8η,H(H×Tn). Then by estimate (A.1),

for η ∈ (0, η0/8],

lim sup
T→∞

1

T

∫ T

0

⟨
P ∗
s δ(w,h),

∣∣∣ϕ̃χ∣∣∣2⟩ ds ≤ C lim sup
T→∞

1

T

∫ T

0
Ee8η∥w0,s,h(w)∥2ds < ∞.

Combining this moment bound with the weak convergence in Proposition 5.3, we obtain the desired

convergence

lim
T→∞

2

T

∫ T

0

⟨
P ∗
s δ(w,h), ϕ̃χ

⟩
ds = 2

∫
H×Tn

ϕ̃(w, h)χ(w, h)Γh(dw)λ(dh),

which combined with (6.19) implies the desired (6.18).
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The following proposition gives further properties related to the asymptotic variance. In par-

ticular, the Hölder regularity of the particular observable function F as below, plays an important

role when estimating the rate of convergence in the central limit theorem.

Proposition 6.13. For γ ∈ (0, 1], η ∈ (0, 2−5η0], ϕ ∈ Cγ
η,H(H × Tn) ∩ Cγ

η,Tn(H × Tn), and

X0 = (w, h), let

Y (w, h) = E(w,h)M
2
1 = E(w,h)

(
χ(X1)− χ(X0) +

∫ 1

0
ϕ̃(Xt)dt

)2

.

Assume Ψ ∈ Cγ(Tn,H). Then Y ∈ C
γ0

25η,H
(H × Tn) ∩C

γ0

25η,Tn(H × Tn). Furthermore, the function

F (h) :=

∫
H
Y (w, h)Γh(dw) = ⟨Γh, Y (·, h)⟩

is in Cγ0(Tn,R). Here γ0 is taken from Proposition 6.7. We also have

σ2 =

∫
Tn

F (h)λ(dh) =

∫
H×Tn

Y (w, h)Γh(dw)λ(dh). (6.20)

Proof. It follows from the Markov property that

Y (w, h) = χ2(w, h) + P1χ
2(w, h)− 2χ(w, h)P1χ(w, h) + 2

∫ 1

0
Pt(ϕ̃P1−tχ)(w, h)dt (6.21)

− 2χ(w, h)

∫ 1

0
Ptϕ̃(w, h)dt+ 2

∫ 1

0

∫ t

0
Pτ

(
ϕ̃Pt−τ ϕ̃

)
(w, h)dτdt.

By Proposition 6.7 we know that χ ∈ C
γ0
2η,H(H × Tn) ∩ C

γ0
2η,Tn(H × Tn). Hence for η ∈ (0, η0/2],

χ2 ∈ C
γ0
4η,H(H × Tn) ∩ C

γ0
4η,Tn(H × Tn).

Since γ0 < γ, it follows from Proposition 6.5 that for η ∈ (0, 2−3η0], one has

P1χ ∈ C
γ0
4η,H(H × Tn) ∩ C

γ0
4η,Tn(H × Tn),

and for t ∈ [0, 1],

ϕ̃P1−tχ, χP1χ, P1χ
2 ∈ C

γ0

23η,H
(H × Tn) ∩ C

γ0

23η,Tn(H × Tn).

It then follows from (6.8) and (6.9) that for η ∈ (0, 2−4η0],∫ 1

0
Pt(ϕ̃P1−tχ)(w, h)dt ∈ C

γ0

24η,H
(H × Tn) ∩ C

γ0

24η,Tn(H × Tn).

In a similar way, one can deduce that the remaining two integrals in (6.21) also belong to the same

function space. This shows that Y ∈ C
γ0

24η,H
(H × Tn) ∩ C

γ0

24η,Tn(H × Tn).
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Note that

|F (h1)− F (h2)| ≤ |⟨Γh1 , Y (·, h1)⟩ − ⟨Γh2 , Y (·, h1)⟩|+ |⟨Γh2 , Y (·, h1)⟩ − ⟨Γh2 , Y (·, h2)⟩|

:= I1 + I2.

And using the same functions χR, χR as in the proof of Theorem 6.6, together with the Hölder

continuity of Γh and the fact (6.13), we have for η ∈ (0, 2−5η0],

I1 ≤ |⟨Γh1 − Γh2 , (χRY )(·, h1)⟩|+ |⟨Γh1 − Γh2 , (χRY )(·, h1)⟩|

≤ C∥Y ∥γ0,2
4η,He2

6ηR2
(ρ(Γh1 ,Γh2))

1
2−γ0 + C∥Y ∥γ0,2

4η,He−24ηR2

≤ C∥Y ∥γ0,2
4η,H

(
e2

6ηR2 |h1 − h2|
γ

2−γ0 + e−24ηR2
)
,

where we used the uniform integrability
∫
H e2

5η∥w∥2Γh(dw) ≤ C in the second inequality, which is

a consequence of Theorem 5.1 by taking κ = 24. It then follows from Lemma 5.2 that

I1 ≤ C∥Y ∥γ0,2
4η,H |h1 − h2|

γ
5(2−γ0) .

Also note that

I2 ≤ ⟨Γh2 , |Y (·, h1)− Y (·, h2)|⟩

≤ ∥Y ∥γ0,2
4η,Tn |h1 − h2|γ0

∫
H
e2

4η∥w∥2Γh2(dw) ≤ C∥Y ∥γ0,2
4η,Tn |h1 − h2|γ0 .

Since γ0 ≤
γ

5(2−γ0)
, we deduce that

|F (h1)− F (h2)| ≤ C
(
∥Y ∥γ0,2

4η,Tn + ∥Y ∥γ0,2
4η,H

)
|h1 − h2|γ0 , ∀h1, h2 ∈ Tn.

Hence F ∈ Cγ0(Tn,R).

Equation (6.20) follows from the invariance property of the invariant measure Γh(dw)λ(dh) and

the decomposition (6.21). Indeed, letting m(dwdh) = Γh(dw)λ(dh) and χt =
∫ t
0 Prϕ̃dr, then by the

invariance of m under Pt, one has∫ 1

0

∫ t

0

⟨
m,Pτ

(
ϕ̃Pt−τ ϕ̃

)⟩
dτdt =

∫ 1

0

∫ t

0

⟨
m, ϕ̃Pτ ϕ̃

⟩
dτdt =

∫ 1

0

⟨
m, ϕ̃χt

⟩
dt∫ 1

0

⟨
m,Pt(ϕ̃P1−tχ)

⟩
dt =

∫ 1

0

⟨
m, ϕ̃Ptχ

⟩
dt =

⟨
m, ϕ̃χ

⟩
−
∫ 1

0

⟨
m, ϕ̃χt

⟩
dt,
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where we used the fact that Ptχ = χ− χt. Hence from (6.21) we have∫
H×Tn

Y (w, h)Γh(dw)λ(dh) = ⟨m,Y ⟩

= 2
⟨
m,χ2

⟩
− 2 ⟨m,χP1χ⟩+ 2

⟨
m, ϕ̃χ

⟩
− 2

∫ 1

0

⟨
m, ϕ̃χt

⟩
dt− 2 ⟨m,χχ1⟩+ 2

∫ 1

0

⟨
m, ϕ̃χt

⟩
dt

= 2
⟨
m,χ2

⟩
− 2 ⟨m,χ(χ− χ1)⟩+ 2

⟨
m, ϕ̃χ

⟩
− 2 ⟨m,χχ1⟩

= 2
⟨
m, ϕ̃χ

⟩
= σ2

as in (6.18). The proof is complete.

We now proceed to prove the central limit theorem in Theorem 6.2. This is done by utilizing

the following martingale central limit theorem to the approximating martingale MN in (6.14). It

is notable that the theorem only requires a weak form of law of large numbers for the martingale

difference and Lindeberg type negligible conditions. Basically these conditions can be derived from

the ergodic properties of the homogenized process as in Proposition 5.3 and certain moment bounds

on the martingale from Lemma 6.9. Although Theorem 6.2 is a direct consequence of Theorem

6.4 that will be proved in the next subsection, we supply the proof for Theorem 6.2 below since it

does not require a deep analysis of the convergence of the conditioned martingale difference to the

asymptotic variance.

Theorem 6.14 ([50]). Assume the martingale MN , its quadratic variation [M ]N and the associated

martingale difference ZN = MN −MN−1 (with M0 = 0) satisfy the following

1.(The Lindeberg type conditions) For every ε > 0,

lim
N→+∞

1

N

N−1∑
j=0

E
[
Z2
j+1, |Zj+1| ≥ ε

√
N
]
= 0, (6.22)

lim
K→∞

lim sup
ℓ→∞

1

ℓK

ℓ∑
m=1

mK−1∑
j=(m−1)K

E
[
1 + Z2

j+1,
∣∣Mj −M(m−1)K

∣∣ ≥ ε
√
ℓK
]
= 0. (6.23)

2. (Law of large numbers for the conditioned martingale difference) There exists σ ≥ 0 such that

lim
K→∞

lim sup
ℓ→∞

1

ℓ

ℓ∑
m=1

E

∣∣∣∣ 1KE
[
[M ]mK − [M ](m−1)K

∣∣F(m−1)K

]
− σ2

∣∣∣∣ = 0, (6.24)

with uniformly square integrable condition sup
n≥1

EZ2
n < +∞.

Then one has

lim
N→∞

E[M ]N
N

= σ2,
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and

lim
N→∞

EeiθMN/
√
N = e−σ2θ2/2, ∀θ ∈ R.

Before proving Theorem 6.2 by verifying the conditions of the above Theorem 6.14, we recall a

useful lemma.

Lemma 6.15. [50] If {µN}N≥1 ⊂ P(H × Tn) converges to µ weakly, {FN}N≥1 ⊂ C(H × Tn)

converges to 0 uniformly on compact sets and there is η > 0 such that lim supN→∞⟨µN , |FN |1+η⟩ <

∞, then limN→∞⟨µN , FN ⟩ = 0.

Proof of Theorem 6.2. We first prove the The Lindeberg type conditions. From the Markov prop-

erty of the homogenized process, the left hand side of (6.22) can be rewritten as

1

N

N∑
j=1

E
[
Z2
j ; |Zj | ≥ ε

√
N
]
=

1

N

N∑
j=1

⟨
P ∗
j−1δ(w,h), GN

⟩
,

where GN (u, g) = E(u,g)[M
2
1 ; |M1| ≥ ε

√
N ] for (u, g) ∈ H × Tn. By the Markov inequality and

Lemma 6.9, one has for η ∈ (0, 2−3η0],

GN ≤
(
E(u,g)|M1|4

) 1
2 P

(
|M1| ≥ ε

√
N
) 1

2 ≤
(
E(u,g)|M1|4

) 1
2

(
E(u,g)|M1|4

ε4N2

) 1
2

≤ Cε−2N−1e2
4η∥w∥2 .

Hence GN → 0 uniformly on any compact set. Also by Lemma 6.9, it follows that

1

N

N∑
j=1

⟨
P ∗
j−1δ(w,h), G

2
N

⟩
≤ 1

N

N∑
j=1

Pj−1E(w,h)|M1|4 ≤ Ce2
4η∥w∥2 ,

where C is independent of N . Therefore

lim sup
N→∞

1

N

N∑
j=1

⟨
P ∗
j−1δ(w,h), G

2
N

⟩
< ∞.

The first Lindeberg condition (6.22) then follows from Proposition 5.3 and Lemma 6.15.

Again by the Markov property we can rewrite the left hand side formula in the limit of (6.23)

as

1

ℓK

ℓ∑
m=1

mK−1∑
j=(m−1)K

E
[
1 + Z2

j+1,
∣∣Mj −M(m−1)K

∣∣ ≥ ε
√
ℓK
]
=

1

K

K−1∑
j=0

⟨
1

ℓ

ℓ∑
m=1

P ∗
(m−1)Kδ(w,h), Fℓ,j

⟩
,

86



where Fℓ,j(u, g) = E(u,g)

[
1 + Z2

j+1, |Mj | ≥ ε
√
ℓK
]
. It follows from the Markov inequality that

Fℓ,j(u, g) ≤
(
E(u,g)

(
1 + Z2

j+1

)2) 1
2
P
(
|Mj |(u, g) ≥ ε

√
ℓK
) 1

2

≤
(
E(u,g)

(
1 + Z2

j+1

)2) 1
2

(
E(u,g)|Mj |4

) 1
2(

ε
√
ℓK
)2

≤ C(ε)
1 +E(u,g)|Mj+1|4 +E(u,g)|Mj |4

ℓK
.

In view of Lemma 6.9, we know that for any R > 0, and 0 ≤ j ≤ K, there is a constant C

independent of ℓ such that

sup
(u,g)∈BR(0)×Tn

Fℓ,j(u, g) ≤
C

(ℓK)1/2
.

Hence Fℓ,j → 0 as ℓ → ∞ uniformly on bounded (in particular compact) sets. Again by Lemma

6.9,⟨
1

ℓ

ℓ∑
m=1

P ∗
(m−1)Kδ(w,h), F

2
ℓ,j

⟩
≤ C

(
1 +

1

ℓ

ℓ∑
m=1

P(m−1)KE(w,h)

(
|Mj |4 + |Mj+1|4

))
≤ C(K,w).

Therefore

lim sup
ℓ→∞

⟨
1

ℓ

ℓ∑
m=1

P ∗
(m−1)Kδ(w,h), F

2
ℓ,j

⟩
< ∞.

It then follows from Proposition 5.3 and Lemma 6.15 that

lim
ℓ→∞

⟨
1

ℓ

ℓ∑
m=1

P ∗
(m−1)Kδ(w,h), Fℓ,j

⟩
= 0, j = 0, · · · ,K − 1,

which completes the proof of (6.23).

Now we proceed to show the law of large numbers for the conditioned martingale difference as

in (6.24). The finiteness of sup
n≥1

E(w,h)Z
2
n follows from Lemma 6.9. By the Markov property, we

have

1

ℓ

ℓ∑
m=1

E
∣∣∣ 1
K

E
[
[M ]mK − [M ](m−1)K |F(m−1)K

]
− σ2

∣∣∣ = 1

ℓ

ℓ∑
m=1

⟨
P ∗
(m−1)Kδ(w,h), |HK |

⟩
, (6.25)

where

HK(u, g) = E(u,g)

[
1

K
[M ]K − σ2

]
= E(u,g)

[
1

K
M2

K − σ2

]
=

1

K

K−1∑
j=0

PjY0(u, g),

with Y0(u, g) = E(u,g)[M ]1−σ2 = E(u,g)M
2
1 −σ2. In view of the decomposition (6.21) for E(u,g)M

2
1

and Proposition 6.5, together with Proposition 6.7, we see that for η ∈ (0, 2−4η0], Y0 ∈ C
γ0

24η,H
(H ×

Tn) where γ0 is as in Proposition 6.7. Note that we do not require the Hölder continuity of Ψ here.
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Also by Lemma 6.9, we have

1

ℓ

ℓ∑
m=1

⟨
P ∗
(m−1)Kδ(w,h), |HK |2

⟩
≤ C(σ,K)

(
1 +

1

ℓ

ℓ∑
m=1

P(m−1)KE(w,h)M
4
K

)

≤ C(σ,K,w),

which is independent of ℓ. Hence

lim sup
ℓ→∞

1

ℓ

ℓ∑
m=1

⟨
P ∗
(m−1)Kδ(w,h), |HK |2

⟩
< ∞.

Now since 1

ℓ

ℓ∑
m=1

P ∗
(m−1)Kδ(w,h) converges weakly to Γg(du)λ(dg) by Proposition 5.3, it follows that

lim
ℓ→∞

1

ℓ

ℓ∑
m=1

⟨
P ∗
(m−1)Kδ(w,h), |HK |

⟩
=

∫
H×Tn

|HK(u, g)|Γg(du)λ(dg).

Since the homogenized process is uniquely ergodic with invariant measure Γg(du)λ(dg), it follows

from the Birkhoff ergodic theorem for stationary ergodic process, that for an appropriate initial

condition X0 with law Γg(du)λ(dg),

lim
K→∞

∫
H×Tn

|HK(u, g)|Γg(du)λ(dg) = lim
K→∞

E

∣∣∣∣∣∣ 1K
K−1∑
j=0

PjY0(X0)

∣∣∣∣∣∣ = lim
K→∞

E

∣∣∣∣∣∣ 1K
K−1∑
j=0

Y0(Xj(X0))

∣∣∣∣∣∣
=

∣∣∣∣∫
H×Tn

Y0(u, g)Γg(du)λ(dg)

∣∣∣∣ = 0,

provided that
∫
H×Tn Y0(u, g)Γg(du)λ(dg) = 0, i.e., σ2 =

∫
H×Tn E(u,g)M

2
1Γg(du)λ(dg), which follows

from (6.20). This completes the proof of (6.24). Hence the central limit theorem (6.7) follows from

Theorem 6.14, the martingale approximation (6.14) and Theorem (6.10).

6.3 The Rate of Convergence in the Limit Theorems

The aim of this section is to show the desired rate of convergence in the limit theorems as in Theorem

6.3 and Theorem 6.4. We begin with a result that gives a convergence rate for the moments of the

time average of the observations centered by the quasi-periodic invariant measure. It will be useful

when estimating the rate of convergence of the conditioned martingale difference to the variance.

Proposition 6.16. For any integer p ≥ 1, η ∈ (0, η04p ], γ ∈ (0, 1] and ϕ ∈ Cγ
η,H(H × Tn), we have

E(w,h)

∣∣∣∣∣ 1N
N∑
k=1

(
ϕ(Xk−1)−

⟨
Γβk−1h, ϕ(·, βk−1h)

⟩)∣∣∣∣∣
2p

≤ Cpe
4pη∥w∥2∥ϕ∥pγ,η,HN−p, (6.26)

for all N ≥ 1, (w, h) ∈ H × Tn. The same result also holds if we replace the summation by
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integration:

E(w,h)

∣∣∣∣ 1T
∫ T

0

(
ϕ(Xt)−

⟨
Γβth, ϕ(·, βth)

⟩)
dt

∣∣∣∣2p ≤ Cpe
4pη∥w∥2∥ϕ∥pγ,η,HT−p, (6.27)

for any T ≥ 1 and (w, h) ∈ H × Tn.

To show this proposition, we give a lemma first.

Lemma 6.17. For any real numbers {xi}i≥1 and any integer m ≥ 1, p ≥ 1, let Sm =

m∑
i=1

xi. Then

one has

|Sm|2p =

∣∣∣∣∣
m∑
i=1

xi

∣∣∣∣∣
2p

=

m∑
i=1

m∑
j=i

f2p−2,j(x1, x2, · · · , xi−1, xi)xixj ,

where

f2p−2,j(x1, x2, · · · , xi−1, xi) :=



2p−2∑
k=0

(k + 1)Sk
i−1S

2p−2−k
i , when j = i,

2p

2p−2∑
k=0

Sk
i−1S

2p−2−k
i , when j > i.

Proof. By the multinomial formula, one has for j = i,

f2p−2,i(x1, x2, · · · , xi−1, xi) =
∑

k1+k2+···+ki=2p−2

(2p)!

k1!k2! · · · ki−1!(ki + 2)!
xk11 xk22 · · ·xkii

=

2p−2∑
ki=0

Cki+2
2p S2p−2−ki

i−1 xkii

= x−2
i

(
S2p
i − S2p

i−1 − 2pS2p−1
i−1 xi

)
= x−2

i

(
Si

(
S2p−1
i − S2p−1

i−1

)
− (2p− 1)S2p−1

i−1 xi

)
=

2p−2∑
k=0

(k + 1)Sk
i−1S

2p−2−k
i .

And similarly for j > i,

f2p−2,j(x1, x2, · · · , xi−1, xi) =
∑

k1+k2+···+ki=2p−2

(2p)!

k1!k2! · · · ki−1!(ki + 1)!
xk11 xk22 · · ·xkii

= 2p

2p−2∑
ki=0

Cki+1
2p−1S

2p−2−ki
i−1 xkii

= 2px−1
i

(
S2p−1
i − S2p−1

i−1

)
= 2p

2p−2∑
k=0

Sk
i−1S

2p−2−k
i .
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Proof of Proposition 6.16. Recall that ϕ̃(w, h) = ϕ(w, h) − ⟨Γh, ϕ(·, h)⟩, then the summands in

inequality (6.26) is ξk := ϕ̃(Xk−1). Let

Sm =
m∑
i=1

ξi, sN = sup
1≤m≤N

E(w,h)|Sm|2p.

Let g(ξi, ξj) = ξiE(w,h) [ξj |Fi−1] and gp(w, h) =
(
E(w,h) |g(ξi, ξj)|p

)1/p. It follows from Lemma 6.17

and the Hölder inequality that

E(w,h)|Sm|2p = E(w,h)

m∑
i=1

m∑
j=i

f2p−2,j(ξ1, ξ2, · · · , ξi−1, ξi)ξiξj

=

m∑
i=1

m∑
j=i

E(w,h)

[
f2p−2,j(ξ1, ξ2, · · · , ξi−1, ξi)ξiE(w,h) [ξj |Fi−1]

]
≤

m∑
i=1

m∑
j=i

(
E(w,h) |f2p−2,j(ξ1, ξ2, · · · , ξi−1, ξi)|

p
p−1

) p−1
p

gp(w, h)

≤
m∑
i=1

m∑
j=i

2p

(
(2p− 1)

1
p−1

2p−2∑
k=0

E(w,h)

(
|Si−1|k|Si|2p−2−k

) p
p−1

) p−1
p

gp(w, h)

≤
m∑
i=1

m∑
j=i

2p(2p− 1)
1
p

(
2p−2∑
k=0

E(w,h)

(
k

2p− 2
|Si−1|2p−2 +

2p− 2− k

2p− 2
|Si|2p−2

) p
p−1

) p−1
p

gp(w, h)

≤
m∑
i=1

m∑
j=i

2p(2p− 1)
(
E(w,h)

[
|Si−1|2p + |Si|2p

] ) p−1
p
gp(w, h).

Taking the supremum for 1 ≤ m ≤ N , one has

sN ≤ 4p(2p− 1)s
p−1
p

N

N∑
i=1

N∑
j=i

(
E(w,h) |g(ξi, ξj)|p

)1/p
.

Hence by letting Cp = (4p(2p− 1))p,

sN ≤ Cp

 N∑
i=1

N∑
j=i

(
E(w,h) |g(ξi, ξj)|p

)1/pp

.

Note that by Theorem 6.6 with κ = 2,

E(w,h) |g(ξi, ξj)|p = E(w,h)

∣∣∣ϕ̃(Xi−1)E(w,h)

[
ϕ̃(Xj−1)|Fi−1

]∣∣∣p
≤ E(w,h)

∣∣∣ϕ̃(Xi−1)Pj−iϕ̃(Xi−1)
∣∣∣p

≤ Cp∥ϕ∥pγ,η,He−pΛ(j−i)E(w,h)e
4pη∥w0,i−1,h(w)∥2

≤ Cp∥ϕ∥pγ,η,He−pΛ(j−i)e4pη∥w∥2 ,
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for η ∈ (0, η04p ] by estimate (A.1). Therefore

sN ≤ CCp∥ϕ∥pγ,η,He4pη∥w∥2Np,

where C > 0 does not depend on p. Dividing both sides of the above inequality by N2p completes

the proof of the first estimate (6.26) in Proposition 6.16.

The second inequality follows from the same argument (see also [61] for the case in the time ho-

mogeneous setting). Let ξ(t) = ϕ(Xt)−
⟨
Γβth, ϕ(·, βth)

⟩
, Ir =

∫ r
0 ξ(t)dt and IT = sup

0≤r≤T
E(w,h) |Ir|2p.

We first note that

I2pr =

∫
[0,r]2p

ξ(t1)ξ(t2) · · · ξ(t2p)dt1dt2 · · · dt2p

= (2p)!

∫
0≤t1≤t2≤···≤t2p≤r

ξ(t1)ξ(t2) · · · ξ(t2p)dt1dt2 · · · dt2p.

For r1 ≤ r2, denote φ(r1, r2) = ξ(r1)E(w,h)[ξ(r2)|Fr1 ]. Then

E(w,h) |Ir|2p = (2p)!E(w,h)

∫
0≤t1≤t2≤···≤t2p≤r

ξ(t1)ξ(t2) · · · ξ(t2p−2)φ(t2p−1, t2p)dt1dt2 · · · dt2p

= (2p)!E(w,h)

(∫ r

0

∫ t2p

0
φ(t2p−1, t2p)

(∫
0≤t1≤···≤t2p−1

ξ(t1) · · · ξ(t2p−2)dt1 · · · dt2p−1

)
dt2p−1dt2p

)

≤ 2p(2p− 1)

∫ r

0

∫ t2p

0

(
E(w,h) |φ(t2p−1, t2p)|p

) 1
p

(
E(w,h)

∣∣It2p−1

∣∣2p) p−1
p

dt2p−1dt2p.

Taking the supremum w.r.t r over [0, T ], we have

IT ≤ 2p(2p− 1) (IT )
p−1
p

∫ T

0

∫ t2

0

(
E(w,h) |φ(t1, t2)|p

) 1
p dt1dt2.

Like in the proof of (6.26), one has for η ∈ (0, η04p),(
E(w,h) |φ(t1, t2)|p

) 1
p ≤ C∥ϕ∥γ,η,He−Λ(t2−t1)e4η∥w∥2 .

Therefore

IT ≤ Cp∥ϕ∥pγ,η,HT pe4pη∥w∥2

and the inequality (6.27) follows by dividing both sides with T 2p.

The rate of convergence in SLLN. The convergence rate of SLLN is a consequence of

(6.27), the error estimate in Lemma 6.10 and the Borel-Cantelli lemma. We now give the details.

Proof of Theorem 6.3. For any ε > 0, let EN =
{
ω ∈ Ω :

∣∣ 1
NMN

∣∣ > N−(1/2−ε)
}

. From Proposition

6.7, we know that for η ∈ (0, η0/2], χ ∈ Cγ0
2η,H(H ×Tn). Thus χ2p ∈ Cγ0

2p+1η,H
(H ×Tn). Hence from
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estimate (6.27) and (A.1) and Markov’s inequality, we have for η ∈ (0, 2−(p+1)η0]

P(EN ) ≤ N2p(−1/2−ε)E(w,h)M
2p

N

≤ CpN
2p(−1/2−ε)E(w,h)

(
χ(XN )2

p
+ χ(w, h)2

p
+

(∫ N

0
ϕ̃(Xt)dt

)2p
)

≤ CpN
2p(−1/2−ε)

(
∥χ∥γ0,2p+1η,HEe2

p+1η∥w0,N,h(w)∥2 + ∥χ∥γ0,2p+1η,He2
p+1η∥w∥2 + e2

p+1η∥w∥2∥ϕ∥2p−1

γ,η,HN2p−1
)

≤ Cp(∥ϕ∥γ,η,H)N−2pεe2
p+1η∥w∥2 .

For any ε > 0, and every integer p such that 2pε > 1,
∞∑

N=1

P(EN ) < ∞.

By the Borel-Cantelli lemma, there is an almost surely finite random time N1(ω), such that for all

N > N1(ω), ∣∣∣∣ 1NMN

∣∣∣∣ ≤ N−(1/2−ε).

Note that for ℓ > 0,

EN ℓ
1 =

∞∑
k=1

P(N1 = k)kℓ ≤
∞∑
k=1

P(Ek)k
ℓ

≤
∞∑
k=1

Cp(∥ϕ∥γ,η,H)kℓ−2pεe2
p+1η∥w∥2

≤ Cp(∥ϕ∥γ,η,H , ℓ, ε)e2
p+1η∥w∥2

as long as ℓ < 2pε−1. In a similar fashion we can estimate the moments of the random time N0(ω)

in (6.17). Let ℓ > 0, then for η ∈ (0, 2−p−1η0],

EN ℓ
0 =

∞∑
k=1

P(N0 = k)kℓ

≤
∞∑
k=1

P

(
sup

k≤t≤k+1
Rk,t > k1/4

)
kℓ ≤

∞∑
k=1

E

(
sup

k≤t≤k+1
R2p

k,t

)
kℓ−2p−2

≤ Cp(∥ϕ∥γ,η,H)

∞∑
k=1

E sup
k≤t≤k+1

exp(2p+1η∥w0,t,h∥2)kℓ−2p−2

≤ Cp(∥ϕ∥γ,η,H)

∞∑
k=1

e2
p+1η∥w∥2kℓ−2p−2

= Cp(∥ϕ∥γ,η,H , ℓ)e2
p+1η∥w∥2 ,

provided that ℓ < 2p−2 − 1. The conclusion of Theorem 6.3 then follows from the above estimates,

the martingale approximation (6.14) and Lemma 6.10.
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The rate of convergence in CLT. We recall a Berry-Esseen type estimate for martingales

from [39], which will be used in the proof of the rate of convergence in the central limit theorem.

Theorem 6.18 (Theorem 3.10 of [39]). Let MN =
N∑
j=1

Zj be a zero mean martingale and σ2
k =

k∑
j=1

EZ2
j . If q > 1

2 , and

max
j≤N

1

σ4q
N

E|Zj |4q ≤
M

N2q
, (6.28)

for a constant M > 0. Then there exists a constant C depending only on M and q such that

whenever

N−q +E

∣∣∣∣∣∣ 1

σ2
N

N∑
j=1

E
[
Z2
j |Fj−1

]
− 1

∣∣∣∣∣∣
2q

≤ 1, (6.29)

one has

sup
z∈R

∣∣∣∣P(MN

σN
≤ z

)
− Φ(z)

∣∣∣∣ ≤ C

N−q +E

∣∣∣∣∣∣ 1

σ2
N

N∑
j=1

E
[
Z2
j |Fj−1

]
− 1

∣∣∣∣∣∣
2q1/(4q+1)

,

where Φ(z) is the distribution function of the standard normal distribution.

We are now in a position to give an estimate of the convergence rate in the central limit theorem.

Proof of Theorem 6.4. Recall from (6.20) that the asymptotic variance

σ2 =

∫
H×Tn

Y (w, h)Γh(dw)λ(dh) =

∫
Tn

⟨Γh, Y (·, h)⟩λ(dh).

Since Y ∈ C
γ0

25η,H
(H × Tn) by Proposition 6.13, thus Proposition 6.16 implies that for η ∈

(0, 2−7p−1η0], and N ≥ 1,

E(w,h)

∣∣∣∣∣ 1N
N∑
k=1

(
Y (Xk−1)−

⟨
Γβk−1h, Y (·, βk−1h)

⟩)∣∣∣∣∣
2p

≤ Cpe
27pη∥w∥2∥Y ∥p

γ0,2
5η,H

N−p. (6.30)

In addition, since F = ⟨Γh, Y (·, h)⟩ ∈ Cγ0(Tn,R) by Proposition 6.13, it follows from Theorem 3

in [43] that for N ≥ 1,∣∣∣∣∣ 1N
N∑
k=1

⟨
Γβk−1h, Y (·, βk−1h)

⟩
− σ2

∣∣∣∣∣ ≤ C∥F∥γ0
N− γ0

A+n , (6.31)

where A is the constant from the Diophantine condition (2.2) and n is the dimension of the torus.

Therefore, by the Markov property, inequality (6.30) with p = 1, and inequality (6.31), it follows
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that for η ∈ (0, 2−7η0], and N ≥ 1,∣∣∣∣ 1N σ2
N − σ2

∣∣∣∣ =
∣∣∣∣∣ 1N

N∑
k=1

E(w,h)Z
2
k − σ2

∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
k=1

(
E(w,h)

[
E(w,h)

[
Z2
k |Fk−1

]]
−
⟨
Γβk−1h, Y (·, βk−1h)

⟩)∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
k=1

⟨
Γβk−1h, Y (·, βk−1h)

⟩
− σ2

∣∣∣∣∣
≤ E(w,h)

∣∣∣∣∣ 1N
N∑
k=1

(
Y (Xk−1)−

⟨
Γβk−1h, Y (·, βk−1h)

⟩)∣∣∣∣∣+
∣∣∣∣∣ 1N

N∑
k=1

⟨
Γβk−1h, Y (·, βk−1h)

⟩
− σ2

∣∣∣∣∣
≤ Ce2

6η∥w∥2∥Y ∥1/2
γ0,2

5η,H
N−1/2 + C∥F∥γ0

N− γ0
A+n . (6.32)

This shows that 1
N σ2

N converges to σ2. To estimate the convergence rate for the central limit

theorem of the approximating martingale sequence, we first deal with the case when σ2 > 0. Set

q = 2p−2 for integer p ≥ 2 in Theorem 6.18 and choose N1 > 0 such that for all N ≥ N1, inequality

(6.29) is satisfied and 1
N σ2

N ∈ [σ2/2, 3σ2/2]. It then follows from Lemma (6.9) that the condition

(6.28) holds for p ≥ 2 and η ∈ (0, 2−p−1η0].

Observe that

E(w,h)

∣∣∣∣∣∣ 1

σ2
N

N∑
j=1

E(w,h)

[
Z2
j |Fj−1

]
− 1

∣∣∣∣∣∣
2p−1

≤ Cp

E(w,h)

∣∣∣∣∣ 1

σ2
N

N∑
k=1

(
Y (Xk−1)− F (βk−1h)

)∣∣∣∣∣
2p−1

+

∣∣∣∣∣ 1

σ2
N

N∑
k=1

F (βk−1h)− 1

∣∣∣∣∣
2p−1

≤ Cp

e2
p+5η∥w∥2∥Y ∥2p−2

γ0,2
5η,HN−2p−2

+

∣∣∣∣∣ 1N
N∑
k=1

F (βk−1h)− σ2

∣∣∣∣∣
2p−1

+

∣∣∣∣ 1N σ2
N − σ2

∣∣∣∣2p−1


≤ Cp

(
e2

p+5η∥w∥2∥Y ∥2p−2

γ0,2
5η,HN−2p−2

+ ∥F∥2p−1

γ0
N− 2p−1γ0

A+n

)
.

Therefore by Theorem 6.18 we have

sup
z∈R

∣∣∣∣P(MN

σN
≤ z

)
− Φ(z)

∣∣∣∣ ≤ C

N−2p−2
+E

∣∣∣∣∣∣ 1

σ2
N

N∑
j=1

E
[
Z2
j |Fj−1

]
− 1

∣∣∣∣∣∣
2p−1


1/(2p+1)

≤ Ce2
5η∥w∥2

(
N− 2p−2

2p+1 +N
− 2p−1γ0

(2p+1)(A+n)

)
.
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As a result,

sup
z∈R

∣∣∣∣P(MN√
N

≤ z

)
− Φσ(z)

∣∣∣∣ ≤ sup
z∈R

∣∣∣∣∣P
(
MN√
N

≤ z

)
− Φ

(√
N

σN
z

)∣∣∣∣∣+ sup
z∈R

∣∣∣∣∣Φ
(√

N

σN
z

)
− Φσ(z)

∣∣∣∣∣
≤ sup

z∈R

∣∣∣∣P(MN

σN
≤ z

)
− Φ(z)

∣∣∣∣+ C

∣∣∣∣ σN√
N

− σ

∣∣∣∣
≤ Ce2

5η∥w∥2
(
N− 2p−2

2p+1 +N
− 2p−1γ0

(2p+1)(A+n)

)
.

When σ = 0, we note that

(|z| ∧ 1)

∣∣∣∣P(MN√
N

≤ z

)
− Φ0(z)

∣∣∣∣ ≤ (|z| ∧ 1)

∣∣∣∣P(∣∣∣∣MN√
N

∣∣∣∣ ≥ |z|
)∣∣∣∣

≤ (|z| ∧ 1)|z|−1N−1/2E(w,h)|MN | ≤ N−1/2
(
E(w,h)|MN |2

)1/2
=

(
1

N

N∑
k=1

Z2
k

)1/2

≤ Ce2
5η∥w∥2

(
N−1/4 +N

− γ0
2(A+n)

)
by estimate (6.32).

To pass the estimates to continuous times, we apply the following lemma from [61].

Lemma 6.19. Let R1, R2 be real random variables. Then for any σ ≥ 0 and ε > 0 we have

sup
z∈R

|∆σ(R1, z)| ≤ sup
z∈R

|∆σ(R2, z)|+P(|R1 −R2| > ε) + cσε,

where cσ is a constant depending only on σ and ∆σ(R, z) for random variable R is defined as

∆σ(R, z) :=

 P(R ≤ z)− Φσ(z) , σ > 0,

(|z| ∧ 1) (P(R ≤ z)− Φ0(z)) , σ = 0.

Recall that N is the integer part of T in the martingale approximation (6.14). It follows from

the approximation that∣∣∣∣ 1√
T

∫ T

0
ϕ̃(Xt)dt−

MN√
N

∣∣∣∣ ≤ 1√
NT

∣∣∣∣∫ T

0
ϕ̃(Xt)dt

∣∣∣∣+ RN,T√
N

.

The expectation of the remainder term RN,T obtained in the proof of Lemma 6.10 together with

the Markov inequality yields

P

(
RN,T√

N
> ε/2

)
≤ Ce2η∥w∥2N−4ε−8.

It follows from (6.27) with p = 1 that

E

∣∣∣∣∫ T

0
ϕ̃(Xt)dt

∣∣∣∣ ≤
(
E

(∫ T

0
ϕ̃(Xt)dt

)2
) 1

2

≤ T
1
2Ce2η∥w∥2 .
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Now applying Lemma 6.19 with R1 = 1√
T

∫ T
0 ϕ̃(Xt)dt and R2 = MN√

N
, and the Markov inequality

we have

sup
z∈R

|∆σ(R1, z)| ≤ sup
z∈R

|∆σ(R2, z)|+P(|R1 −R2| > ε) + cσε

≤ sup
z∈R

|∆σ(R2, z)|+ 2ε−1N− 1
2E

∣∣∣∣T− 1
2

∫ T

0
ϕ̃(Xt)dt

∣∣∣∣+ Ce2η∥w∥2N−4ε−8 + cσε

≤ sup
z∈R

|∆σ(R2, z)|+ Ce2η∥w∥2N− 1
4

by taking ε = N− 1
4 .

Chapter 7. Large Viscosity Implies Trivial Dynamics

In this chapter, we will show the existence of a unique stable quasi-periodic solution of (2.5) when

the viscosity is large as in Theorem 3.5. Recall that G =
√
∥f∥2∞/ν4 + B0/ν3, and c0 is the constant

from (3.9). Let δ0 = ν − c20ν
−2
(
∥f∥2∞ν−1 + B0

)
. Then δ0 > 0 is equivalent to G < 1/c0. Fix a

lattice Zκ = {κm : m ∈ Z} where κ > 0 is a real number. For each h ∈ Tn, denote by (2.5)h the

Navier-Stokes equation (2.5) with f(t, x) = Ψ(βt0, x) replaced by Ψ(βth, x). Let n1 ∈ Zκ and

wn1+N,t,h(0) = w(n1 +N, t, h, ω, 0), N ∈ Z−
κ , t ≥ n1

be the sequence of solutions of (2.5)h. In exactly the same way as in [52], one can show the following

Theorem 7.1. Assume δ0 > 0 and let δ ∈ (0, δ0). Then for each h ∈ Tn there is a full measure

subset Ωh,κ of Ω such that:

1. There is a complete random trajectory w∗(·, h, ·) : R×Ω → H, which is a strong solution of (2.5)h.

For each n1 ∈ Zκ and ω ∈ Ωh,κ, w∗(·, h, ω) is the limit of {wn1+N,t,h(0)}N∈Z−
κ

in C([n1,∞),H)

equipped with the supremum norm.

2. For any s ∈ R, there exist positive random times n∗(s, δ, h,κ) and n∗(s, δ, h,κ) having all

moments finite such that

sup
w0∈Br(w∗(s,h,ω))

∥ws,t,h(ω,w0)− w∗(t, h, ω)∥2 ≤ r2e−δ(t−s), (7.1)

sup
w0∈Br(w∗(τ,h,ω))

∥wτ,s,h(ω,w0)− w∗(s, h, ω)∥2 ≤ r2e−δ(s−τ), (7.2)
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for all r > 0, t > s+ n∗ and τ < s− n∗. Here Br(w) is the ball centered at w with radius r in H

with the norm ∥ · ∥.

Proof. It follows from (A.12) (with η = 1, τ = s and a = 1) that

c20
ν

∫ t

s
∥ws,r,h∥21dr ≤ c20

ν2

(
∥w0∥2 +M(s, t) + (t− s)

(
∥f∥2∞
ν

+ B0

))
,

where

M(s, t) = 2

∫ t

s
⟨ws,r,h, GdWr⟩.

It also follows from the proof of (A.4) that

∥et∥2 ≤ ∥es∥2 exp
(
−ν(t− s) +

c20
ν

∫ t

s
∥ws,r,h∥21dr

)
,

where et = Φs,t,h(w0)−Φs,t,h(w̃0) is the difference of the two solutions starting from different initial

conditions. Hence

∥et∥2 ≤ ∥es∥2e−(t−s)(δ0−Γ(s,t)), (7.3)

where

Γ(s, t) =
c20

ν2(t− s)

(
∥w0∥2 +M(s, t)

)
.

The strategy of the proof is to show that the average Γ(s, t) can be small for large time, so that

we obtain a contraction in (7.3) as long as δ0 > 0, i.e., when the viscosity ν is large. The proof

consists of two steps.

Step 1. Fix a δ ∈ (0, δ0) and t1 ∈ Zκ. We claim that for any ε > 0, there exists a Z+
κ valued

random time n∗(ε, δ, t1, h,κ), such that with probability one, for any τ ≥ 0 and n1, n2 ∈ Zκ,

n1, n2 < t1 − n∗ =⇒ ∥wn1,t1+τ,h(0)− |wn2,t1+τ,h(0)∥2 ≤ εe−δτ . (7.4)

Assume t1 = 0 without loss of generality. We also assume that n ∈ Z−
κ . Since wn−κ,n,h(0) starts

from 0 for each n, estimate (A.1) implies that for each p > 0 there is a constant C > 0 independent

of n such that E∥wn−κ,n,h(0)∥p ≤ C. Then Lemma A.1 from [53] gives a Z+
κ valued random time

N0(ω) = N0(ε, δ, h, κ, ω) with all moments finite, such that for any n with |n| > N0(ω), one has

∥wn−κ,n,h(0)∥2 < εδ2|n|. (7.5)

Set δ′ = δ0 − δ. Consider the solution {wn,t,h(0)}t≥n that starts from 0 at time n ∈ Z−
κ . By
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(7.3) it follows that

∥wn,n+τ,h(0)− wn,n+τ,h(wn−κ,n,h(0))∥2 ≤ ∥wn−κ,n,h(0)∥2e−τ(δ0−Γ(n,n+τ)),

where Γ(n, n+ τ) =
c20
ν2τ

M(n, n+ τ). Note that the quadratic variation process of M(n, n+ τ) is

[M ](n, n+ τ) = 4

∫ n+τ

n

d∑
k=1

⟨wn,r,h, gk⟩2dr ≤ 4B0

∫ n+τ

n
∥wn,r,h∥2dr.

Therefore by Doob’s Lp maximal inequality and the Burkholder-Davis-Gundy inequality, we find

that for δ1 :=
ν2δ′

2c20
,

P

(
sup

n≤t≤n+τ
|M(n, t)| ≥ δ1τ

)
≤ Cp

E|M(n, n+ τ)|2p

δ2p1 τ2p
≤ Cp

E[M ](n, n+ τ)p

δ2p1 τ2p

≤ Cp
τp−1E

∫ n+τ
n ∥wn,r,h∥2pdr
δ2p1 τ2p

≤ C

δ2p1 τp
,

where in the last inequality we use the fact that there is a constant C independent of n, τ such that

E sup
n≤r≤n+τ

∥wn,r,h∥2p ≤ C, which is derived from estimate (A.1) and the fact that wn,r,h has initial

condition w(n) = 0. In particular, for m ∈ Z+
κ we have

P

(
sup

n+m−κ≤t≤n+m
|M(n, t)| ≥ δ1m

)
≤ C

δ2p1 mp
. (7.6)

Again by Lemma A.1 from [53], there exists a Z+
κ valued random time

N1(n, ω) = N1(δ1, n, h,κ, ω) ≥ κ

with all moments finite, such that for all m ∈ Z+
κ with m > N1(n, ω),

sup
n+m−κ≤t≤n+m

|M(n, t)| ≤ δ1m.

Note that for any τ > N1(n, ω), there exists m ∈ Z+
κ such that n+ τ ∈ [n+m− κ, n+m]. Hence

1

τ
|M(n, n+ τ)| ≤ δ1

m

τ
≤ δ1

τ + κ
τ

≤ 2δ1,

which in turn shows that Γ(n, n+ τ) ≤ 2c20
ν2

δ1 = δ′. Therefore for τ > N1(n, ω),

∥wn,n+τ,h(0)− wn,n+τ,h(wn−κ,n,h(0))∥2 ≤ ∥wn−κ,n,h(0)∥2e−τ(δ0−δ′) = ∥wn−κ,n,h(0)∥2e−τδ. (7.7)
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Observe that the inequality (7.6) gives a bound that does not depend on n, therefore

EN1(n, ω)
q =

∑
m∈Z+

κ

mqP(N1(n, ω) = m)

≤
∑

m∈Z+
κ

mqP

(
sup

n+m−κ≤t≤n+m
|M(n, t)| ≥ δ1m

)

≤
∑

m∈Z+
κ

C

δ2p1 mp−q
≤ C,

for every q < p− 1 and C is independent of n. Since the estimate in the last inequality is valid for

p > 1, we have EN1(n, ω)
q ≤ C for every q > 0. Again by Lemma A.1 from [53], it follows that

there exsits a T Z+ valued random time N2(ω) = N2(δ1, h,κ, ω), with all moments finite, such that

for n satisfying |n| > N2(ω), one has N1(n, ω) ≤ |n|.

Now let n∗(ε, δ, h,κ) = max {N0, N2}, which has all moments finite as N0 and N2 do. Then for

those n ∈ Z−
κ with |n| > n∗, and τ > N1(n, ω), one has from (7.5) and (7.7) that

∥wn,n+τ,h(0)− wn,n+τ,h(wn−κ,n,h(0))∥2 ≤ ∥wn−κ,n,h(0)∥2e−τ(δ0−δ′)

= ∥wn−κ,n,h(0)∥2e−τδ ≤ εδ2|n|e−δτ .

In particular, if τ = |n|, then |n| > N1(n, ω) for |n| > n∗, hence by the evolution property of

stochastic flow,

∥wn,0,h(0)− wn−κ,0,h(0)∥2 = ∥wn,0,h(0)− wn,0,h(wn−κ,n,h(0))∥2 ≤ εδ2|n|e−δ|n|.

This also implies that for any τ ≥ 0, as long as |n| > n∗,

∥wn,τ,h(0)−wn−κ,τ,h(0)∥2 = ∥wn,τ,h(0)−wn,τ,h(wn−κ,n,h(0))∥2 ≤ εδ2|n|e−δ(τ−n) = εδ2|n|e−δ(τ+|n|).

As a result, for any n1, n2 ∈ Zκ and n1, n2 < −n∗ < 0 ≤ τ , we have

∥wn1,τ,h(0)− wn2,τ,h(0)∥ ≤
∑

n∈Zκ ,n<−n∗
∥wn,τ,h(0)− wn−κ,τ,h(0)∥

≤
∑

n∈Zκ ,n<−n∗

√
ε|n|δe−

δ
2
(τ+|n|) ≤

√
εδe−δτ/2

∫ ∞

0

√
xe−δx/2dx.

This completes the proof of the claim (7.4).

Step 2. Let n1 ∈ Zκ. Consider the sequence of solutions {wn1−n,t,h(0)}n∈Z+
κ

for t ≥ n1. The

claim (7.4) in Step 1 states that there exists a random time n∗(ε, δ, n1, h, κ) such that for every

t ≥ n1 and every m1,m2 ∈ Zκ satisfying m1,m2 > n∗, one has

∥wn1−m1,t,h(0)− wn1−m2,t,h(0)∥2 ≤ εe−δ(t−n1).
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This implies that {wn1−n,·,h(0)}n∈Z+
κ

is a Cauchy sequence in C ([n1,∞),H), which is complete with

the norm ∥w∥∞ := sup
t≥n1

∥w(t)∥. Define w∗(t, h, ω) to be the limit for t ≥ n1. Since n1 is arbitrary, we

obtain a process w∗(t, h, ω) defined for t ∈ R. For any fixed T > n1, it is well known (see [10, 26] for

example) that there exists a random variable K(ω, T ) such that lim supn ∥wn1−n,t,h(0)∥1 < K(ω, T )

almost surely for all t ∈ [n1, T ]. Therefore w∗ ∈ C([n1,∞],H1), and {wn1−n,·,h(0)}n∈Z+
κ

converges

to w∗ weakly in H1. Hence Lemma B.6 from [53] shows that w∗ is a strong solution of equation

(2.5)h. This proves the first part of Theorem 7.1.

It remains to show that w∗(t, h, ω) has the attraction property. Note that each wn1−n,t,h(0)

starts from 0, hence estimate (A.1) implies that for p > 0, E∥wn1−n,t,h(0)∥p ≤ C for some constant

C independent of n and t. This in turn shows that E∥w∗(t, h)∥p ≤ C for t ∈ R. Let ε = δ0 − δ.

Define the random time τ1 =
2c20
εν2

∥w∗(s)∥2, which has all moments finite. Note that for τ > τ1, we

have c20
ν2τ

∥w∗(s)∥2 < ε
2 , which controls the first term in Γ(s, s + τ) from (7.3). Based on the same

reasoning as in Step 1, we find that there exists a Z+
κ valued random time n1(s, δ, h,κ) such that

for all τ > n1, one has
c20
ν2τ

|M(s, s+ τ)| < ε

2
.

The estimate (7.1) then follows by taking n∗ = max{τ1, n1}. For t > 0, inequality (7.3) states that

∥es∥2 ≤ ∥es−t∥2e−t(δ0−Γ(s−t,s)),

where Γ(s−t, s) =
c20
ν2t

(
∥w∗(s− t)∥2 +M(s− t, s)

)
. Now s is fixed, so M(s−t, s) is not a martingale

since it runs backwards in time. Nonetheless, we can still use the same reasoning as above. By

replacing the Doob Lp maximal inequality with the backwards maximal inequality (see Lemma A.6

in [53]), one obtains a Z+
κ valued random time n2(s, δ, h,κ) with all moments finite such that for

all t > n2,
c20
ν2t

|M(s− t, s)| < ε

2
.

To estimate the term 1
t ∥w

∗(s− t)∥2, noting that Theorem 3.13 in [53] remains true in our setting,

hence there exists a random time τ2 > 0, such that for all t > τ2, we have c20
ν2t

∥w∗(s − t)∥2 < ε
2 .

Therefore the inequality (7.2) holds by taking n∗ = max{τ2, n2}.

The proof is complete.

The following proposition shows that there is a continuous modification of the random field

100



w∗(0, h, ω), which is proved by applying the Kolmogorov continuity theorem. The desired quasi-

periodic solution will be constructed from this random field.

Proposition 7.2. Assume Ψ ∈ Cγ(Tn,H), Gc0 ≤
√
1/2. For any p ≥ 1, if

ν3 > 8pc20B0, (7.8)

then there is a constant C > 0 such that

E∥w∗(0, h1, ·)− w∗(0, h2, ·)∥2p ≤ C|h1 − h2|pγ , ∀h1, h2 ∈ Tn. (7.9)

In particular, for any η > 0, if condition (7.8) holds for p = n+η
γ , then the random field w∗(0, h, ω)

has a continuous (with respect to h) modification, which is η-Hölder continuous for all 0 < η <

ηγ
2(n+η) .

Proof. For N ∈ Z−
κ and h1, h2 ∈ Tn, let Rr = wN,r,h1(0) − wN,r,h2(0). To show (7.9), we first

prove that the same inequality holds for R0 and then letting N → −∞. Let δ > 0 be a constant

whose value will be determined later. Since wN,r,hi
(0) is the solution to (2.5)hi

starting from initial

position 0 ∈ H at initial time s = N , it follows that (see also the proof of (A.3))

∂r∥Rr∥2 = ⟨ν∆Rr, 2Rr⟩ − ⟨B (KRr, wN,r,h1(0)) , 2Rr⟩+ ⟨Ψ(βrh1)−Ψ(βrh2), 2Rr⟩

≤ −2ν∥Rr∥21 + 2c0∥Rr∥∥wN,r,h1(0)∥1∥Rr∥1 + 2∥Ψ(βrh1)−Ψ(βrh2)∥∥Rr∥

≤ −2ν∥Rr∥21 + c20ν
−1∥Rr∥2∥wN,r,h1(0)∥21 + ν∥Rr∥21 + 4δ−1∥Ψ∥γ |h1 − h2|γ +

δ

4
∥Rr∥2

≤ −(ν − δ/4)∥Rr∥2 + c20ν
−1∥Rr∥2∥wN,r,h1(0)∥21 + 4δ−1∥Ψ∥γ |h1 − h2|γ .

By the Gronwall’s inequality and Hölder’s inequality, and noting that RN = 0, we have for p, q > 0

with 1/p+ 1/q = 1,

∥R0∥2p ≤ 4pδ−p∥Ψ∥pγ |h1 − h2|pγ
(∫ 0

N
exp

(∫ 0

z
−
(
ν − δ

4

)
+ c20ν

−1∥wN,r,h1(0)∥21dr
)
dz

)p

≤ 4pδ−p∥Ψ∥pγ |h1 − h2|pγ
(∫ 0

N
eq

∫ 0
z − δ

4
drdz

) p
q
∫ 0

N
ep

∫ 0
z −(ν− δ

2)+c20ν
−1∥wN,r,h1

(0)∥21drdz

≤ 42p−1q
− p

q δ−2p+1∥Ψ∥pγ |h1 − h2|pγ
∫ 0

N
ep

∫ 0
z −(ν− δ

2)+c20ν
−1∥wN,r,h1

(0)∥21drdz. (7.10)

We would like to have a bound on the expectation of exp
(∫ 0

z pc20ν
−1∥wN,r,h1(0)∥21dr

)
. It follows
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from Ito’s formula that for N ≤ z ≤ t ≤ 0,

∥wN,t,h1∥
2 + ν

∫ t

z
∥wN,r,h1∥

2
1 dr − B0(t− z)

= ∥wN,z,h1∥
2 + 2

∫ t

z
⟨wN,r,h1 , GdW (r)⟩ − ν

∫ t

z
∥wN,r,h1∥

2
1 dr + 2

∫ t

z
⟨wN,r,h1 ,Ψ(βrh1)⟩ dr

≤ ∥wN,z,h1∥
2 + 2

∫ t

z
⟨wN,r,h1 , GdW (r)⟩+ ∥f∥2∞

ν
(t− z).

Therefore for ε > 0,

(1 + ε)pc20
ν

∫ t

z
∥wN,r,h1∥

2
1 dr −

(1 + ε)pc20
ν2

(
B0 +

∥f∥2∞
ν

)
(t− z) ≤ M(z, t),

where M(z, t) :=
(1+ε)pc20

ν2
∥wN,z,h1∥

2 +
2(1+ε)pc20

ν2

∫ t
z ⟨wN,r,h1 , GdW (r)⟩ is a continuous square inte-

grable martingale whose quadratic variation [M ](z, t) satisfies

[M ](z, t) =
4(1 + ε)2p2c40

ν4

∫ t

z

d∑
k=1

⟨wN,r,h1 , gk⟩2dr ≤ 4(1 + ε)2p2c40B0

ν4

∫ t

z
∥wN,r,h1∥21dr.

As a consequence, one has

pc20
ν

∫ t

z
∥wN,r,h1∥

2
1 dr −

(1 + ε)pc20
ν2

(
B0 +

∥f∥2∞
ν

)
(t− z) ≤ M(z, t)− εpc20

ν

∫ t

z
∥wN,r,h1∥

2
1 dr

≤ M(z, t)− εν3

4(1 + ε)2pc20B0
[M ](z, t).

Let b = εν3

2(1+ε)2pc20B0
. It then follows from the exponential supermartingale inequality that for

K ≥ 0,

P

(
sup
t≥z

exp

(
pc20
ν

∫ t

z
∥wN,r,h1∥

2
1 dr −

(ε+ 1)pc20
ν2

(
B0 +

∥f∥2∞
ν

)
(t− z)

)
≥ eK

∣∣∣∣Fz

)
= P

(
sup
t≥z

(
pc20
ν

∫ t

z
∥wN,r,h1∥

2
1 dr −

(ε+ 1)pc20
ν2

(
B0 +

∥f∥2∞
ν

)
(t− z)

)
≥ K

∣∣∣∣Fz

)
≤ P

(
sup
t≥z

(
M(z, t)− b

2
[M ](z, t)

)
≥ K

∣∣∣∣Fz

)
= P

(
sup
t≥z

exp

(
bM(z, t)− b2

2
[M ](z, t)

)
≥ ebK

∣∣∣∣Fz

)
≤ exp

(
(ε+ 1)pc20

ν2
∥wN,z,h1∥

2

)
e−bK .

If b = εν3

2(1+ε)2pc20B0
> 1, then the same argument as we derive (A.11) implies that

E sup
t≥z

exp

(
pc20
ν

∫ t

z
∥wN,r,h1∥

2
1 dr −

(ε+ 1)pc20
ν2

(
B0 +

∥f∥2∞
ν

)
(t− z)

)
(7.11)

≤ E exp

(
(ε+ 1)pc20

ν2
∥wN,z,h1∥

2

)
4

1− 21−b
.

To bound the expectation on the right, we note that the solution wN,r,h1 starts from 0, so (A.10)

implies that

P

(
∥wN,z,h1∥

2 − C(f,B0)

ν
>

K

α

)
≤ e−K ,
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where α = (1−a)ν
2B0

, C(f,B0) =
∥f∥2∞
2a + B0 and a ∈ (0, 1). Therefore

P

(
exp

(
(ε+ 1)pc20

ν2
∥wN,z,h1∥

2 − (ε+ 1)pc20C(f,B0)

ν3

)
> e

(ε+1)pc20K

αν2

)
≤ e−K ,

Again by the same argument as in (A.11) with c = αν2

(ε+1)pc20
, one has

E exp

(
(ε+ 1)pc20

ν2
∥wN,z,h1∥

2 − (ε+ 1)pc20C(f,B0)

ν3

)
≤ 4

1− 21−c
, (7.12)

provided that c = αν2

(ε+1)pc20
= (1−a)ν3

2(ε+1)pc20B0
> 1. We take a = 1

1+ε , which yields b = c.

Now it follows from (7.10)-(7.12) that

E∥R0∥2p ≤ 42p−1q
− p

q δ−2p+1∥Ψ∥pγ |h1 − h2|pγ
∫ 0

N
ep(ν−

δ
2)zEep

∫ 0
z c20ν

−1∥wN,r,h1
(0)∥21drdz

≤ C(δ, ε)|h1 − h2|pγ
∫ 0

N
ep(ν−

δ
2)ze

− (1+ε)pc20
ν2

(
B0+

∥f∥2∞
ν

)
z
dz

= C(δ, ε)|h1 − h2|pγ
∫ 0

N
e
pz

(
ν− δ

2
− (1+ε)c20

ν2

(
B0+

∥f∥2∞
ν

))
dz (7.13)

where C(δ, ε) =
(

1
1−21−c

)2
42p+1q

− p
q δ−2p+1∥Ψ∥pγ exp

(
(1+ε)pc20C(f,B0)

ν3

)
. Since

δ0 = ν − c20
ν2

(
B0 +

∥f∥2∞
ν

)
> 0,

one has

δε := ν − (1 + ε)c20
ν2

(
B0 +

∥f∥2∞
ν

)
> 0, as long as ε < ε0 := (Gc0)

−2 − 1.

Keep in mind that we need to ensure inequalities (7.11) and (7.12) hold, which amounts to showing

the existence of ε ∈ (0, ε0) such that c = εν3

2(1+ε)2pc20B0
> 1. This can be achieved if we let (Gc0)

2 ≤ 1
2

(thus ε0 ≥ 1), and
2pc20B0

ν3
< sup

ε∈(0,ε0)

ε

(1 + ε)2
=

1

4
.

Therefore, under the conditions given in Proposition 7.2, there is an ε ∈ (0, ε0), such that δε > 0.

And by choosing δ = δε, we have from (7.13) that

E∥R0∥2p ≤ C|h1 − h2|pγ , with C =
2C(δε, ε)

pδε
.

By Theorem 7.1, we know that for i = 1, 2, as N → −∞, wN,r,hi
(0) converges to w∗(0, hi, ω) almost

surely. Hence it follows from Fatou’s lemma that

E∥w∗(0, h1, ·)− w∗(0, h2, ·)∥2p ≤ lim inf
N→−∞

E∥R0∥2p ≤ C|h1 − h2|pγ . (7.14)
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Since the dimension of the torus is n, by taking p = n+η
γ for any η > 0, we have

E∥w∗(0, h1, ·)− w∗(0, h2, ·)∥
2(n+η)

γ ≤ C|h1 − h2|n+η, ∀h1, h2 ∈ Tn.

Hence by Kolmogorov’s continuity test, the random field w∗(0, h, ω) has a continuous modification.

Moreover, with probability one, the modification is η-Hölder continuous for all 0 < η < ηγ
2(n+η) .

Note that for h = 0 ∈ Tn, the associated equation (2.5)0 is actually (2.5). We will show that

the complete trajectory w∗(t, 0, ω) given in Theorem 7.1 is a quasi-periodic solution in the sense of

Definition 2.5.

Proposition 7.3. The process w∗(t, 0, ω) is a quasi-periodic solution of (2.5).

Proof. The invariance property in Definition 2.5 follows from the stochastic flow property and

Theorem 7.1. Note that for any τ ≥ 0 and s ∈ R,

w∗(s+ τ, 0, ω) = lim
N→∞
N∈Zκ

w(n1 −N, s+ τ, 0, ω, 0)

= lim
N→∞
N∈Zκ

Φ(s+ τ, ω; s, w(n1 −N, s, 0, ω, 0))

= Φ(s+ τ, ω; s, lim
N→∞
N∈Zκ

w(n1 −N, s, 0, ω, 0)) = Φ(s+ τ, ω; s, w∗(s, 0, ω)), P− a.s.

For t ∈ Zκ, it follows that

w∗(t, 0, ω) = lim
N→∞
N∈Zκ

w(n1 −N, t, 0, ω, 0)

= lim
N→∞
N∈Zκ

w(n1 −N − t, 0, βt0, θtω, 0) = w∗(0, βt0, θtω), P− a.s.

In particular, for each κ ∈ R, there is a subset Ωκ ⊂ Ω of full measure such that

w∗(κ, 0, ω) = w∗(0, βκ0, θκω), ∀ω ∈ Ωκ.

Therefore for each t ∈ R,

w∗(t, 0, θ−tω) = w∗(0, βt0, ω), P− a.s.

By Proposition 7.2, we can choose a continuous version of w∗(0, h, ω) such that w∗(t, 0, θ−tω) is a

random quasi-periodic function in the sense of Definition 2.5. This completes the proof.
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Appendix A. Various Estimates of The Solution

Several estimates about the solution ws,t,h(w0) of the stochastic Navier-Stokes equation (2.5) with

time symbol h ∈ Tn are collected in the following Lemma A.1. Note that for any h ∈ Tn, we have

sup
t∈R

∥Ψ(βth)∥ = sup
t∈R

∥Ψ(βt0)∥ = sup
t∈R

∥f(t)∥ := ∥f∥∞,

therefore the constant C in bounds on the solution does not depend on h.

Lemma A.1. Let a ∈ (0, 1), c ∈ (1,∞), η0 = (1−a)ν
2cB0

and C(f,B0) =
∥f∥2∞
aν + B0. For solutions of

the Navier-Stokes equation (2.5), we have

(i) For every t > s, h ∈ Tn and every η ∈ (0, η0] , we have

E exp
(
η ∥ws,t,h∥2

)
≤ C exp

(
ηe−ν(t−s) ∥w0∥2

)
, (A.1)

where C = 4
1−21−c exp

(
η0C(f,B0)

ν

)
.

(ii) The following inequality

E exp

(
η sup

t≥τ

(
∥ws,t,h∥2 + ν

∫ t

τ
∥ws,r,h∥21 dr − C(f,B0)(t− τ)

))
≤ C exp

(
ηe−ν(τ−s) ∥w0∥2

)
(A.2)

holds for every τ ≥ s and η ∈ (0, η0], where C = 16
(1−21−c)2

exp
(
η0C(f,B0)

ν

)
.

(iii) For any h1, h2 ∈ Tn, and every η ∈ (0, η0], with r = 64c60η
−3ν−5 + ηC(f,B0) and C =

16(rν)−1

(1−21−c)2
exp

(
η0C(f,B0)

ν

)
, we have

E ∥ws,t,h1 − ws,t,h2∥
2 ≤ Cer(t−s) exp

(
η∥w0∥2

)
sup
t∈R

∥Ψ(βth1)−Ψ(βth2)∥2, (A.3)

for every t ≥ s, where for i = 1, 2, ws,t,hi
is the solution to equation (2.5) with f = Ψ(βt0)

replaced by Ψ(βthi) and with initial condition (s, w0).

(iv) For any h ∈ Tn, and every η ∈ (0, η0], we have

E∥ws,s+t,h(w1)− ws,s+t,h(w2)∥2 ≤ C∥w1 − w2∥2eη∥w1∥2+r(t−s), (A.4)

for every s ∈ R and t ≥ 0. Here C = 64(1− 21−c)−3/2 exp
(
η0C(f,B0)

ν

)
and r = 64c60η

−3ν−5 +

ηC(f,B0).
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(v) There exist constants η1, a, γ > 0, depending on f,B0, ν, η0, such that

E exp

(
η

N∑
n=0

∥ws,s+n,h∥2 − γN

)
≤ exp

(
aη ∥w0∥2

)
(A.5)

holds for every integer N > 0, every η ≤ η1, h ∈ Tn, s ∈ R and every initial condition w0 ∈ H.

(vi) For every η > 0, h ∈ Tn and t ≥ τ ≥ s, there exists a constant C = C (ν, η) > 0 such that the

Jacobian Jτ,t,h as defined in (4.20) satisfies almost surely

∥Jτ,t,h∥ ≤ exp

(
η

∫ t

τ
∥ws,r,h∥21 dr + C(t− τ)

)
. (A.6)

(vii) For every η > 0, h ∈ Tn and every p > 0, there exists C = C (f,B0, ν, η, p) > 0 such that the

Hessian as defined in (4.22) satisfies

∥Kτ,t,h∥p ≤ C exp

(
pη

∫ τ+1

τ
∥ws,r,h∥21 dr

)
(A.7)

for every τ ≥ s, h ∈ Tn and t ∈ (τ, τ + 1).

(viii) For any integer k ≥ 0, set

Ew0(k, t, s) = (t− s)k ∥ws,t∥2k + ν

∫ t

s
(r − s)k ∥ws,r∥2k+1dr.

Suppose that in equation (2.5), f ∈ L2
loc(R,Hk) and gi ∈ Hk for i = 1, · · · , d. Then for any

m ≥ 1, η > 0 and T > s, there is a constant C = C(k,m, T − s, ν, ∥f∥L2([s,T ],Hk),Bk, η) > 0,

such that

E sup
s≤t≤T

Ew0(k, t, s)
m ≤ C exp

(
η∥w0∥2

)
. (A.8)

Proof. (i) Applying Ito’s formula to the functional F (t, w) = eν(t−s)∥w∥2 and noting the fact

that ⟨B(Kw,w), w⟩ = 0, we have

eν(t−s) ∥ws,t,h∥2 =− ∥w0∥2 − 2ν

∫ t

s
eν(r−s) ∥ws,r,h∥21 dr + 2

∫ t

s
eν(r−s)

⟨
ws,r,h,

d∑
k=1

gkdWk(r)

⟩

+ ν

∫ t

s
eν(r−s) ∥ws,r,h∥2 dr + 2

∫ t

s
eν(r−s) ⟨ws,r,h,Ψ(βrh)⟩ dr +

eν(t−s) − 1

ν
B0.

Given 0 < a < 1, let C(f,B0) = ∥f∥2∞
aν + B0. By the inequality ∥w∥21 ≥ ∥w∥2 and Young’s

product inequality, it follows that

∥ws,t,h∥2 − e−ν(t−s)∥w0∥2 −
C(f,B0)

ν

≤ −(1− a)ν

∫ t

s
e−ν(t−r)∥ws,r,h∥2dr + 2

∫ t

s
eν(r−s)

⟨
ws,r,h,

d∑
k=1

gkdWk(r)

⟩
.
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Let Mt = 2
∫ t
s

⟨
ws,r,h,

∑d
k=1 gkdWk(r)

⟩
whose quadratic variation is

[M ]t = 4

∫ t

s

d∑
k=1

⟨ws,r,h, gk⟩2 dr.

Observe that

−(1− a)ν∥w∥2 ≤ −(1− a)ν

B0

d∑
k=1

⟨w, gk⟩2 = −α

2

d∑
k=1

4 ⟨w, gk⟩2 (A.9)

where α = (1−a)ν
2B0

. Hence

∥ws,t,h∥2 − e−ν(t−s)∥w0∥2 −
C(f,B0)

ν
≤
∫ t

s
e−ν(t−r)dMr −

α

2

∫ t

s
e−ν(t−r)d[M ]r.

Then Lemma A.1 from [54] implies that

P

(
∥ws,t,h∥2 − e−ν(t−s) ∥w0∥2 −

C(f,B0)

ν
>

K

α

)
≤ e−K , (A.10)

which is, for any c > 1 and with η0 =
α
c , equivalent to

P

(
exp

(
η0 ∥ws,t,h∥2 − η0e

−ν(t−s) ∥w0∥2 −
η0C(f,B0)

ν

)
> e

K
c

)
≤ e−K .

Now if a random variable X satisfies P (X ≥ C) ≤ 1
Cc for every C ≥ 1, then

EX =

∫
Ω
XdP ≤

∫
{0≤X≤1}

XdP+

∫
{X≥1}

XdP ≤ 1 +
∞∑
n=0

∫
{2n≤X≤2n+1}

XdP

≤ 1 +

∞∑
n=0

2n+1 1

2cn
≤ 4

1− 21−c
. (A.11)

Therefore we have for η ∈ (0, η0], by Hölder’s inequality,

E exp

(
η ∥ws,t,h∥2 − ηe−ν(t−s) ∥w0∥2 −

ηC(f,B0)

ν

)
≤
(
E exp

(
η0 ∥ws,t,h∥2 − η0e

−ν(t−s) ∥w0∥2 −
η0C(f,B0)

ν

))η/η0

≤ 4

1− 21−c
.

Hence we arrive at (A.1) with C = 4
1−21−c exp

(
η0C(f,B0)

ν

)
and η0 =

α
c = (1−a)ν

2cB0
.

(ii) Again apply Ito’s formula, for any η > 0, s ≤ τ < t,

η ∥ws,t,h∥2 + ην

∫ t

τ
∥ws,r,h∥21 dr − ηB0(t− τ)

= η ∥ws,τ,h∥2 + 2η

∫ t

τ
⟨ws,r,h, GdW (r)⟩ − ην

∫ t

τ
∥ws,r,h∥21 dr + 2η

∫ t

τ
⟨ws,r,h,Ψ(βrh)⟩ dr

≤ η ∥ws,τ,h∥2 + 2η

∫ t

τ
⟨ws,r,h, GdW (r)⟩ − ην(1− a)

∫ t

τ
∥ws,r,h∥21 dr +

η

aν
∥f∥2∞ (t− τ) .

(A.12)
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Therefore

η ∥ws,t,h∥2 + ην

∫ t

τ
∥ws,r,h∥21 dr − ηC(f,B0)(t− τ)

≤ η ∥ws,τ,h∥2 + 2η

∫ t

τ
⟨ws,r,h, GdW (r)⟩ − ην(1− a)

∫ t

τ
∥ws,r,h∥21 dr

≤ η ∥ws,τ,h∥2 + 2η

∫ t

τ
⟨ws,r,h, GdW (r)⟩ − ηα

2

∫ t

τ

d∑
k=1

4 ⟨ws,r,h, gk⟩2 dr. (A.13)

Again the last inequality is obtained by choosing α = (1−a)ν
2B0

as in (A.9). Setting M(τ, t) =

η ∥ws,τ,h∥2+2η
∫ t
τ ⟨ws,r,h, GdW (r)⟩, then the right hand side of inequality (A.13) is M(τ, t)−

α
2η [M ](τ, t), where [M ](τ, t) is the quadratic variation of the continuous L2-martingale M .

Hence by the exponential supermartingale inequality, it follows that

P

(
sup
t≥τ

(
M(τ, t)− α

2η
[M ](τ, t)

)
≥ K

∣∣∣∣Fτ

)
≤ exp

(
η ∥ws,τ,h∥2 −

αK

η

)
for all τ ≥ s. As a consequence,

P
(
η sup

t≥τ

(
∥ws,t,h∥2 + ν

∫ t

τ
∥ws,r,h∥21 dr − C(f,B0)(t− τ)

)
≥ K

∣∣∣Fτ

)
(A.14)

≤ exp
(
η ∥ws,τ,h∥2 −

αK

η

)
.

In view of (A.13) and (A.11), we deduce that

E exp

(
α

c
sup
t≥τ

(
∥ws,t,h∥2 + ν

∫ t

τ
∥ws,r,h∥21 dr − C(f,B0)(t− τ)

))
≤ 4

1− 21−c
E exp

(
η∥ws,τ,h∥2

)
.

The conclusion follows from (A.1) by taking η0 =
α
c .

(iii) Let Rt = ws,t,h1 − ws,t,h2 then

∂tRt =ν∆Rt +B (Kws,t,h2 , ws,t,h2)−B (Kws,t,h1 , ws,t,h1) + Ψ(βth2)−Ψ(βth1)

= ν∆Rt +B (KRt,Rt)−B (KRt, ws,t,h1)−B (Kws,t,h1 ,Rt) + Ψ(βth2)−Ψ(βth1).

Therefore from the inequality |⟨B(Ku, v), w⟩| ≤ c0∥u∥∥v∥1∥w∥1/2 and the interpolation in-

equality ∥w∥21/2 ≤ ε∥w∥21 + ε−2∥w∥2 for ε > 0, we have

∂t∥Rt∥2 = ⟨ν∆Rt, 2Rt⟩ − ⟨B (KRt, ws,t,h1) , 2Rt⟩+ ⟨Ψ(βth2)−Ψ(βth1), 2Rt⟩

≤ −2ν∥Rt∥21 + 2c0∥Rt∥∥ws,t,h1∥1∥Rt∥1/2 + 2 sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥∥Rt∥

≤ −2ν∥Rt∥21 +
4c20
ην

∥Rt∥21 + ην∥ws,t,h1∥21∥Rt∥2 + ν∥Rt∥21 +
1

ν
sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥2

≤
(
C(η, ν) + ην∥ws,t,h1∥21

)
∥Rt∥2 +

1

ν
sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥2,
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where C(η, ν) = 64c60η
−3ν−5. By Gronwall’s inequality, and estimate (A.2), we have

E∥Rt∥2 ≤
1

ν
sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥2
∫ t

s
exp

(
C(η, ν)(t− τ)

)
E

[
exp

(∫ t

τ
ην∥ws,r,h1∥21

)
dr

]
dτ

≤ C

ν
sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥2
∫ t

s
exp (r(t− τ)) exp

(
ηe−ν(τ−s)∥w0∥2

)
dτ

≤ Cer(t−s) exp
(
η∥w0∥2

)
sup
t∈R

∥Ψ(βth2)−Ψ(βth1)∥2,

with r = 64c60η
−3ν−5 + ηC(f,B0) and C = 16(rν)−1

(1−21−c)2
exp

(
η0C(f,B0)

ν

)
.

(iv) We now compare solutions that start from different initial positions. Let w0, w̃0 ∈ H, and

et = ws,t,h(w0)− w̃s,t,h(w̃0), where ws,t,h(w0), w̃s,t,h(w̃0) are the solutions starting from w0, w̃0.

In view of equation (2.5) with symbol h, we see that et solves the following equation

∂tet = ν∆et −B(Kws,t,h, ws,t,h) +B(Kw̃s,t,h, w̃s,t,h)

= ν∆et −B(Kws,t,h, ws,t,h) +B(K(ws,t,h − et), ws,t,h − et)

= ν∆et −B(Kws,t,h, et) +B(Ket, ws,t,h) +B(Ket, et).

From the fact ⟨B(Kw, v), v⟩ = 0 and the basic estimates of the nonlinear term as in the proof

of (A.3), we have

∂t∥et∥2 = 2⟨et, ∂tet⟩ = −2ν∥et∥21 + 2⟨B(Ket, ws,t,h), et⟩

≤ −2ν∥et∥21 + 2c0∥et∥∥ws,t,h∥1∥et∥1/2

≤
(
C(η, ν) + ην∥ws,t,h1∥21

)
∥et∥2,

where C(η, ν) = 64c60η
−3ν−5. Hence by Gronwall’s inequality,

∥et∥2 ≤ ∥es∥2 exp
(
C(η, ν)(t− s) + ην

∫ t

s
∥ws,r,h1∥21dt

)
.

From the estimate (A.2), we have

E∥ws,t,h(w0)− w̃s,t,h(w̃0)∥2 ≤ C∥w0 − w̃0∥2eη∥w0∥2+r(t−s), (A.15)

where C = 16
(1−21−c)2

exp
(
η0C(f,B0)

ν

)
and r = 64c60η

−3ν−5 + ηC(f,B0).

(v) The proof of the inequality (A.5) is the same as that in [40], hence we omit it here.

(vi) For any τ ≥ s and initial condition ξ ∈ H, the evolution of ξt := Jτ,t,hξ is given by equation

(4.20), which is a PDE with random coefficients. Taking H inner product with ξt and using
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the fact that ⟨B(Kw, ξ), ξ⟩ = 0, we have

∂t ∥ξt∥2 = −2ν ∥∇ξt∥2 − 2⟨B(Kξt, ws,t,h), ξt⟩.

Then note

|2⟨B(Kξt, ws,t,h), ξt⟩| ≤ C ∥ws,t,h∥1 ∥ξt∥ ∥ξt∥ 1
2
≤ Cη ∥ξt∥21

2
+

η

2
∥ws,t,h∥21 ∥ξt∥

2

≤ Cη

(
ε ∥ξt∥2 +

1

ε2
∥ξt∥21

)
+

η

2
∥ws,t,h∥21 ∥ξt∥

2 = C ∥ξt∥2 + ν ∥ξt∥21 +
η

2
∥ws,t,h∥21 ∥ξt∥

2 ,

by choosing ε =
√

Cη/ν , where C depends on η, ν. Therefore

∂t ∥ξt∥2 ≤ −ν ∥∇ξt∥2 + C ∥ξt∥2 +
η

2
∥ws,t,h∥21 ∥ξt∥

2 ≤ C ∥ξt∥2 +
η

2
∥ws,t,h∥21 ∥ξt∥

2 .

And the result follows by the Gronwall’s inequality.

(vii) Define ζt = ∥ξt∥2 + ν(t− τ) ∥ξt∥21. From the equation (4.20) for the Jacobian ξt, one has

∂t

(
ν(t− τ) ∥ξt∥21

)
= ν∥ξt∥21 − 2ν2(t− τ) ∥ξt∥22 + 2ν(t− τ)⟨B̃(ws,t,h, ξt),−∆ξt⟩

≤ ν∥ξt∥21 − 2ν2(t− τ) ∥ξt∥22 + 2Cν(t− τ) ∥ξt∥1 ∥ws,t,h∥1 ∥ξt∥3/2 .

Therefore

∂tζt ≤C ∥ξt∥2 +
η

2
∥ws,t,h∥21 ∥ξt∥

2 − 2ν2(t− τ) ∥ξt∥22 + 2Cν(t− τ) ∥ξt∥1 ∥ws,t,h∥1 ∥ξt∥3/2 .

From interpolation inequalities, one has

C∥w∥1∥ξ∥1∥ξ∥3/2 ≤ Cη ∥ξ∥23/2 +
η

2
∥w∥21 ∥ξ∥

2
1 ≤ ν∥ξ∥22 + C∥ξ∥21 +

η

2
∥w∥21∥ξ∥21.

As a consequence,

∂tζt ≤ C ∥ζt∥2 +
η

2
∥ws,t,h∥21 ∥ζt∥

2 .

Hence by Gronwall’s inequality, for s ≤ τ < t ≤ s+ T ,

∥ξt∥21 ≤
C

t− τ
exp

(
η

∫ t

τ
∥ws,r,h∥21 dr

)
∥ξ∥2 , (A.16)

where C depends on ν, η, T . From basic Sobolev inequalities and interpolation inequalities,

one has

∥B̃(u,w)∥ ≤ C
(
∥u∥1/2∥w∥1 + ∥u∥1∥w∥1/2

)
≤ C

(
∥u∥1/2∥u∥1/21 ∥w∥1 + ∥w∥1/2∥w∥1/21 ∥u∥1

)
.
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It then follows from the definition of Kτ,t in (4.22) that for t ∈ (τ, τ + 1),

∥Kτ,t,h∥ ≤ C

∫ t

τ
∥Jr,t,h∥ ∥Jτ,r,h∥

1
2 ∥Jτ,r,h∥

3
2
1 dr

≤ exp

(
η

∫ τ+1

τ
∥ws,r,h∥21 dr + C

)
exp

(
3

4
η

∫ τ+1

τ
∥ws,r,h∥21 dr

)∫ τ+1

τ

C̃

(r − τ)3/4
dr

≤ C exp

(
η

∫ τ+1

τ
∥ws,r,h∥21 dr

)
,

where we used inequalities (A.6) and (A.16) in the second step. The proof is complete.

(viii) The proof proceeds by induction as in [48]. Let L = −∆, Fk(w) = (t − s)k∥w∥2k = (t −

s)k⟨Lkw,w⟩. We first prove the base case when k = 0. Applying Ito’s formula to the

functional F0(ws,t), and noting ⟨B(Kw,w), w⟩ = 0, we have for s ≤ t ≤ T ,

∥ws,t∥2 = ∥w0∥2 − 2ν

∫ t

s
∥ws,r∥21dr + 2

∫ t

s
⟨ws,r, f(r)⟩dr + B0(t− s) +Mt

≤ ∥w0∥2 − 2ν

∫ t

s
∥ws,r∥21dr +

ν

2

∫ t

s
∥ws,r∥2dr +

2

ν
∥f∥2L2([s,T ],H) + B0(T − s) +Mt

where Mt = 2
∫ t
s ⟨ws,r,

∑d
i=1 gidWi(r)⟩. Note that the quadratic variation process of Mt

satisfies

[M ]t =

∫ t

s
4

d∑
i=1

⟨ws,r, gi⟩2dr ≤ 4B0

∫ t

s
∥ws,r∥2dr.

If we let σ0 =
1

4B0
, C0 =

2
ν ∥f∥

2
L2([s,T ],H) + B0(T − s), then it follows that

Ew0(0, t, s) ≤ ∥w0∥2 + C0 +Mt −
σ0ν

2
[M ]t.

By the supermartingale inequality, one has for any K > 0

P

(
sup
t≥s

(
Mt −

σ0ν

2
[M ]t

)
≥ K

)
≤ e−σ0νK .

Therefore

P

(
sup
t≥s

(
Ew0(0, t, s)− C0 − ∥w0∥2

)
≥ K

)
≤ e−σ0νK .

Note for non-negative random variables a and b, one has

Eam ≤ 2m
(
E (a− b)m I{a>b} +Ebm

)
= 2m

∫ ∞

0
P{a− b > λ1/m}dλ+ 2mEbm.

Therefore

E sup
t≥s

Ew0(0, t, s)
m ≤ 2m

∫ ∞

0
e−σ0νλ1/m

dλ+ 2mE(C0 + ∥w0∥2)m

≤ C exp
(
η∥w0∥2

)
. (A.17)
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This finishes the proof of the base case.

We now assume that k = n ≥ 1 and that for k ≤ n − 1 the inequality has been proved.

Applying Ito’s formula to Fn(ws,t,h) we find that

Fn(ws,t)

=

∫ t

s
n(r − s)n−1∥ws,r∥2n + 2(r − s)n⟨Lnws,r,−νLws,r −B(Kws,r, ws,r) + f(r)⟩dr

+
(t− s)n+1

n+ 1
Bn +

∫ t

s
2(r − s)n⟨Lnws,r,

d∑
i=1

gidWi(r)⟩.

Note the quadratic variation process [M ]t of the martingale

Mt :=

∫ t

s
2(r − s)n⟨Lnws,r,

d∑
i=1

gidWi(r)⟩

satisfies

[M ]t =

d∑
i=1

∫ t

s
4(r − s)2n⟨Lnws,r, gi⟩2dr ≤ 4Bn (T − s)n

∫ t

s
(r − s)n ∥ws,r,h∥2ndr.

Also note∫ t

s
2(r − s)n⟨Lnws,r, f(r)⟩dr ≤

∫ t

s
2(r − s)n∥ws,r∥n∥f(r)∥ndr

≤
∫ t

s
(r − s)n−1∥ws,r∥2n + (r − s)n+1∥f(r)∥2ndr.

Applying the inequality ∥w∥n ≤ ∥w∥n+1, and combining these estimates, it follows that

Fn(ws,t) ≤(n+ 1)

∫ t

s
(r − s)n−1∥ws,r∥2ndr −

3ν

2

∫ t

s
(r − s)n∥ws,r∥2n+1dr

− 2

∫ t

s
(r − s)n⟨Lnws,r, B(Kws,r, ws,r)⟩dr + Cn +Nn(t),

where Cn = (T − s)n+1
(
∥f∥2L2([s,T ],Hn)

+ Bn
n+1

)
, Nn(t) = Mt − νσn

2 [M ]t and σn = 1
4Bn(T−s)n .

When n = 1, the nonlinear term has the following bounds by the interpolation inequality,

2⟨Lw,B(Kw,w) ≤ C∥w∥1/2∥w∥1∥w∥2 ≤
ν

2
∥w∥22 + C∥w∥10.

Then one has

sup
s≤t≤T

Ew0(1, t, s)

≤ 2

ν
sup

s≤t≤T
Ew0(0, t, s) + C sup

s≤t≤T

∫ t

s
(r − s)∥ws,r∥10dr + C1 + sup

t≥s
N1(t)

≤ 2

ν
sup

s≤t≤T
Ew0(0, t, s) + C(T − s)2 sup

s≤t≤T
Ew0(0, t, s)

10 + C1 + sup
t≥s

N1(t).

And the result then follows from the supermartingale inequality and the same argument as
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in the case n = 0. If n ≥ 2, we use the following inequality to bound the nonlinear term

|⟨Lnw,B(Kw,w)⟩| ≤ Cn∥w∥
4n−1
2n

n+1 ∥w∥
n+1
2n

1 ∥w∥
1
2 ≤ ν

2
∥w∥2n+1 + C∥w∥2(n+1)

1 ∥w∥2n,

which can be proved as Lemma 2.1.20 in [48]. It then follows that

sup
s≤t≤T

Ew0(n, t, s)

≤ n+ 1

ν
sup

s≤t≤T
Ew0(n− 1, t, s) + C sup

s≤t≤T

∫ t

s
(r − s)n∥ws,r∥2n∥ws,r∥2(n+1)

1 dr + Cn + sup
t≥s

Nn(t)

≤ n+ 1

ν
sup

s≤t≤T
Ew0(n− 1, t, s) +

C

ν
sup

s≤t≤T
Ew0(1, t, s)

n sup
s≤t≤T

Ew0(0, t, s)
n+1 + Cn + sup

t≥s
Nn(t).

Then the desired result follows by induction hypothesis and the same reasoning as above.

Appendix B. Approximate Controllability and Topo-

logical Irreducibility

The approximate controllability of the Navier-Stokes system by a degenerate (low modes, or finite

dimensional) force was first proved by Agrachev and Sarychev [1, 2] in the case when there is

no fixed external force. It was later realized that their proof still works if one add an additional

body force f , whether it is time dependent or not. However, since we cannot locate any existing

literature regarding the proof for the case that f is time dependent, we supply a proof here. The

idea is taken from [35], where the case when f is time independent was proved. When the fixed

body force is time dependent, the system becomes non-autonomous, and the notion of semigroups

in [35] needs to be replaced by the evolution solution operators that depend on the initial time.

And modifications are needed to adapt the proofs in [35] to the current non-autonomous setting.

The key ideas of scaling and saturation are exactly the same as that in [35].

Consider the controlled Navier-Stokes equation

∂tw(x, t)− ν∆w(x, t) +B(Kw,w)(x, t) = f(x, t) +
d∑

k=1

ck(t)gk, w(x, s) = w0(x), (B.1)

where t ≥ s ≥ 0 and {gk}dk=1 is from (2.4). Denote the solution of the above equation by ws,t(w0, c ·

g), where c = (c1, c2, · · · , cd) : R → Rd is piecewise constant and g = (g1, g2, · · · , gd) ∈ Hd. The

approximate controllability of equation (B.1) means that for any v1, v2 ∈ H, t > s and ε > 0, there
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is a piecewise constant control c : [s, t] → Rd such that

∥ws,t(v1, c · g)− v2∥ < ε. (B.2)

We assume the initial time s = 0 but keep in mind that the equation (B.1) is non-autonomous since

f(x, t) depends on t. Denote the solution operator of equation (B.1) by

Φc·g
s,tw0 := ws,t(w0, c · g).

It follows from the uniqueness that

Φc·g
s,tw0 = Φc·g

u,tΦ
c·g
s,uw0, ∀s ≤ u ≤ t.

Also for v1, v2 ∈ H define Rv2
s,tv1 as the ray starting from v1

Rv2
s,tv1 = v1 + (t− s)v2, s ≤ t. (B.3)

Let

F0 = {Φc·g
s,t : c ∈ Rd, 0 ≤ s < t} (B.4)

and define the accessibility sets

AF0(v, t0, t) := {Φm
tm−1,t · · ·Φ

1
t0,t1v : Φℓ ∈ F0 for 1 ≤ ℓ ≤ m and 0 ≤ t0 < t1 < · · · < tm−1 < t}.

(B.5)

Then equation (B.1) is approximate controllable (B.2) if AF0(v, t) = H for every v ∈ H and t > 0.

Here AF0(v, t) is the closure of AF0(v, t) in H.

B.1 Two Scaling Estimates

The following two scaling limits play an important role in establishing the approximate control-

lability of system (B.1). The first one indicates that we can approach the set of points of the

form w0 + tc · g, t ≥ 0, in a very short amount of time. The second scaling limit shows that one

can generate new directions by pushing the control directions obtained in the first scaling into the

system through the nonlinear term, to approach points in the form w0− tB(Kc · g, c · g), t ≥ 0. The

approximate controllability will follow from iterating the two scaling arguments to generate a much

richer collection of new directions and a saturating process that will be given in the next section.
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Proposition B.1. For any w0 ∈ H, c ∈ Rd, and s, t > 0, one has

lim
λ→+∞

∥∥∥Φλc·g
s,s+ t

λ

w0 −Rc·g
0,tw0

∥∥∥ = 0, (B.6)

lim
λ→+∞

∥∥∥∥R−λ2c·g
0, 1

λ

Φ0
s,s+ t

λ2
Rλ2c·g

0, 1
λ

w0 −R
−B(Kc·g,c·g)
0,t w0

∥∥∥∥ = 0. (B.7)

Proof. Let πN be the orthogonal projection on the set of Fourier modes {ek} with |k| ≤ N and

RN = Rc·g
0,tπNw0, wλ = Φλc·g

s,s+ t
λ

w0. Note that S = wλ −RN satisfies the equation

∂tS =
1

λ
(ν∆S −B(KS, S) + f(s+ t) + ν∆RN +B(KRN , RN )−B(Kwλ, RN )−B(KRN , wλ)) .

Taking H inner product with 2S, and using standard estimates for the nonlinear term, we have

λ∂t∥S∥2 ≤ −2ν∥S∥21 + 2∥f∥∞∥S∥+ 2ν∥RN∥1∥S∥1 + C∥RN∥21∥S∥+ C∥wλ∥1∥RN∥1∥S∥

≤ ∥wλ∥21∥S∥2 + C(∥f∥2∞ + ∥RN∥41 + 1)

≤ ∥wλ∥21∥S∥2 + CN4(∥w0∥4 + t4∥c · g∥41 + 1).

It then follows from Gronwall’s inequality that

∥S(t)∥2 ≤∥w0 − πNw0∥2 exp
(∫ t

0

1

λ
∥wλ(r)∥21dr

)
+

CN4

λ

∫ t

0
(∥w0∥4 + r4∥c · g∥41 + 1) exp

(∫ t

r

1

λ
∥wλ(τ)∥21dτ

)
dr. (B.8)

Standard energy estimates [48] yield∫ t

0

1

λ
∥wλ(r)∥21dr ≤ C

(
1

λ
+ ∥c · g∥+ ∥w0∥

)
,

where C := C(∥f∥∞, t) is independent of λ. Now choosing N large to make the first term in the sum

in (B.10) small and then letting λ → ∞ to make the second term small, we find that ∥S(t)∥ → 0

as λ → ∞. The limit (B.6) follows once we note that∥∥∥Φλc·g
s,s+ t

λ

w0 −Rc·g
0,tw0

∥∥∥ ≤ ∥S(t)∥+ ∥w0 − πNw0∥.

The proof of (B.7) is similar. Let RN = R
−B(Kc·g,c·g)
0,t πNw0, Wλ = R−λ2c·g

0, 1
λ

Φ0
s,s+ t

λ2
Rλ2c·g

0, 1
λ

w0 and

S = Wλ −RN . Note that S solves the equation

∂tS =
1

λ2

(
ν∆S −B(KS,S) + ν∆RN +B(KRN ,RN )−B(KWλ,RN )−B(KRN ,Wλ) + f(s+ t)

)
− 1

λ

(
B(KS, c · g) +B(Kc · g,S) +B(KRN , c · g) +B(Kc · g,RN )

)
. (B.9)

Taking H inner product with 2S, we find through standard estimates on the nonlinear term that
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∂t∥S∥2 ≤
1

λ2

(
− 2ν∥S∥21 + 2ν∥S∥1∥RN∥1 + C∥S∥∥RN∥21 + C∥S∥∥Wλ∥1∥RN∥1 + ∥f∥∞∥S∥

)
+

C

λ

(
∥c · g∥2∥S∥2 + ∥c · g∥2∥RN∥2∥S∥

)
≤ C

λ2

(
1 + ∥RN∥41 + ∥f∥2∞

)
+

1

λ2
∥S∥2∥Wλ∥21 +

C

λ
(1 + ∥RN∥22)∥S∥2

≤ CN4

λ2

(
1 + t4 + ∥w0∥4

)
+

1

λ2
∥S∥2∥Wλ∥21 +

C

λ
(1 +N4∥w0∥2 + t2)∥S∥2

≤
(

1

λ2
∥Wλ∥21 +

C(t)N4

λ

)
∥S∥2 + C(t)N4

λ2
,

where C(t) is continuously increasing in t but does not depend on λ,N . Again by Gronwall’s

inequality, one has

∥S(t)∥2 ≤∥w0 − πNw0∥2 exp
(∫ t

0

(
1

λ2
∥Wλ(r)∥21 +

C(r)N4

λ

)
dr

)
+

N4

λ2

∫ t

0
C(r) exp

(∫ t

r

(
1

λ2
∥Wλ(τ)∥21 +

C(τ)N4

λ

)
dτ

)
dr. (B.10)

Note that Wλ satisfies the equation

∂tWλ =
1

λ2

(
ν∆Wλ −B(KWλ,Wλ)− λB(KWλ, c · g)− λB(Kc · g,Wλ) + ν∆c · g

− λ2B(Kc · g, c · g) + f(s+ t)
)
.

Taking H inner product with Wλ and using standard estimates on the nonlinear term we find

∂t∥Wλ∥2 ≤
1

λ2

(
− 2ν∥Wλ∥21 + λC∥c · g∥2∥Wλ∥2 + ν∥c · g∥2∥Wλ∥+ λ2C∥c · g∥22∥Wλ∥+ ∥f∥∞∥Wλ∥

)
≤ −2ν

λ2
∥Wλ∥21 +

C

λ2
(λ2 + λ+ 1)∥Wλ∥2. (B.11)

Gronwall’s inequality implies that

∥Wλ(t)∥2 ≤ e
Ct
λ2

(λ2+λ+1)∥w0∥2.

Using this estimate and integrating (B.11), it follows that

1

λ2

∫ t

0
∥Wλ(r)∥21dr ≤ ∥w0∥2 +

C

λ2
(λ2 + λ+ 1)

∫ t

0
e

Cr
λ2

(λ2+λ+1)∥w0∥2dr,

which remains bounded as λ → ∞ with other parameters remaining fixed. Therefore we can choose

N large but less than λ to make the first term in the sum in (B.10) small and then choose some

λ0 > N such that the second term is small for all λ > λ0, which implies

lim
λ→∞

∥S(t)∥ = 0.
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The conclusion of (B.7) then follows once we note that∥∥∥∥R−λ2c·g
0, 1

λ

Φ0
s,s+ t

λ2
Rλ2c·g

0, 1
λ

w0 −R
−B(Kc·g,c·g)
0,t w0

∥∥∥∥ ≤ ∥S(t)∥+ ∥w0 − πNw0∥.

The proof is complete.

B.2 Saturation

The saturation argument was introduced in [35] to deal with the multiple time scales when iter-

atively using the previous two scaling arguments. Recall the definition of the set F0 as in (B.3).

Define the time relaxed set of accessible points as

AF0(v, t0,≤ t) = {Φm
tm−1,tm · · ·Φ1

t0,t1v : Φℓ ∈ F0 for 1 ≤ ℓ ≤ m and 0 ≤ t0 < · · · < tm−1 < tm ≤ t}.

(B.12)

Let X0 = {c · g : c ∈ Rd} and define inductively for k ≥ 1

Xk = span
{
Xk−1 ∪ {B(Kg, g) : g ∈ Xk−1}

}
, and X∞ = ∪k≥1Xk. (B.13)

Also let G0 =
{
Rg

s,t : g ∈ X0, s ≤ t
}
∪ F0, where Rg

s,t is defined as in (B.3). Then define for k ≥ 1

Gk =
{
Rg

s,t : g ∈ Xk, s ≤ t
}
∪ F0. (B.14)

Let S = {Ψ : Ψ ∈ Gk for some k or Ψ ∈ F0}. Given F,G ∈ S, G is said to subsume F , denoted by

F ≼ G, if

AF (v, tF ,≤ tF + t) ⊂ AG(v, tG,≤ tG + t), for all v ∈ H, t > 0, tF , tG ≥ 0.

They are called equivalent if both F ≼ G and G ≼ F , which we denote by F ∼ G. The following

lemma taken from [35] gives a useful characterization of subsuming relations. For any sequence of

reals ti > 0, we denote t(k) :=
∑k

i=1 ti and make the convention that t(0) = 0.

Lemma B.2. Let F,G ⊂ S, then F ≼ G if and only if for any given Ψ ∈ F , v ∈ H, and

ε > 0, t > 0, tF , tG ≥ 0, there exists Φ1, · · · ,Φm ∈ G and positive times ti such that t(m) ≤ t and∥∥∥Φm
tG+t(m−1),tG+t(m) · · ·Φ1

tG,tG+t(1)
v −ΨtF ,tF+tv

∥∥∥ < ε. (B.15)

Furthermore, for any family F i ⊂ S such that F i ≼ G for each i, one has G ∼ ∪iF
i ∪G.

Proof. If F ≼ G then (B.15) follows from the definition. We now assume that the characterization

(B.15) is true and to show AF (v, tF ,≤ tF + t) ⊂ AG(v, tG,≤ tG + t) for any v ∈ H, t > 0, and

tG, tF ≥ 0. Let u ∈ AF (v, tF ,≤ tF + t), then there are Φ1, · · · ,Φm ∈ G and ti > 0, i = 1, · · · ,m
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with t(m) ≤ t such that

u = Φm
tF+t(m−1),tF+t(m) · · ·Φ1

tF ,tF+t(1)
v =:

m∏
i=1

Φi
tF+t(i−1),tF+t(i)

v.

The proof proceeds by induction on m ≥ 1. If m = 1, then by (B.15), for any ε > 0, tG ≥ 0, there

exist Ψ1, · · · ,Ψn ∈ G and positive times τi, 1 ≤ i ≤ n with τ (n) ≤ t(1) such that∥∥∥∥∥
n∏

i=1

Ψi
tG+τ (i−1),tG+τ (i)

v − u

∥∥∥∥∥ =

∥∥∥∥∥
n∏

i=1

Ψi
tG+τ (i−1),tG+τ (i)

v − ΦtF ,tF+t(1)

∥∥∥∥∥ < ε.

Hence u ∈ AG(v, tF ,≤ tF + t(1)). Suppose that m ≥ 2. By continuity of Φm
tF+t(m−1),tF+t(m) , one has

the existence of δ > 0 such that for w ∈ H, if∥∥∥∥∥w −
m−1∏
i=1

Φi
tF+t(i−1),tF+t(i)

v

∥∥∥∥∥ < δ,

then∥∥∥Φm
tF+t(m−1),tF+t(m)w − u

∥∥∥ =

∥∥∥∥∥Φm
tF+t(m−1),tF+t(m)w − Φm

tF+t(m−1),tF+t(m)

m−1∏
i=1

Φi
tF+t(i−1),tF+t(i)

v

∥∥∥∥∥
< ε/2. (B.16)

By the induction hypothesis, we know that
m−1∏
i=1

Φi
tF+t(i−1),tF+t(i)

v ∈ AG(v, tG,≤ tG + t(m−1)).

So there exist Ψ
1
, · · · ,ΨK ∈ G and positive times ri, 1 ≤ i ≤ K with r(K) ≤ t(m−1) such that∥∥∥∥∥

K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v −

m−1∏
i=1

Φi
tF+t(i−1),tF+t(i)

v

∥∥∥∥∥ < δ. (B.17)

Also from the characterization (B.15), one has the existence of Ψ1, · · · ,ΨJ ∈ G and positive times

si, 1 ≤ i ≤ J with s(J) ≤ t(m) − t(m−1) such that∥∥∥∥∥
J∏

i=1

Ψi
tG+r(K),tG+r(K)+s(i)

K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v − Φm

tF+t(m−1),tF+t(m)

K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v

∥∥∥∥∥ < ε/2.

By setting r(K+i) = r(K) + s(i) and Ψ
K+i

= Ψi for 1 ≤ i ≤ J , we have r(J+K) ≤ t(m) and∥∥∥∥∥
J+K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v − Φm

tF+t(m−1),tF+t(m)

K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v

∥∥∥∥∥ < ε/2.
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Now by the triangle inequality, estimates (B.16) and (B.17),∥∥∥∥∥
J+K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v − u

∥∥∥∥∥ ≤

∥∥∥∥∥
K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v − u

∥∥∥∥∥
+

∥∥∥∥∥
J+K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v − Φm

tF+t(m−1),tF+t(m)

K∏
i=1

Ψ
i
tG+r(i−1),tG+r(i)v

∥∥∥∥∥
< ε/2 + ε/2 = ε.

Hence u ∈ AG(v, tG,≤ tG + t) and F ≼ G as desired.

If F i ⊂ S such that F i ≼ G for each i, then G ∼ ∪iF
i ∪G by noting that G ≼ ∪iF

i ∪G since

G is a subset and ∪iF
i ∪G ≼ G by characterization (B.15). The proof is complete.

Corollary B.3. For Gk and Xk as defined in (B.14) and (B.13), we have{
Rg

s,t : g ∈ X∞, s ≤ t
}
≼ F0. (B.18)

Proof. Note that the ray semigroups Rg
s,t as defined in (B.3) are time homogeneous Rg

s,t = Rg
0,t−s.

Hence we are free to choose any initial time we want. Now it follows from the scaling (B.6) and

Lemma B.2 that G0 ≼ F0. It also follows from the second scaling (B.7) and Lemma B.2 that

Gk ≼ Gk−1 for each k ≥ 1. Therefore Gk ≼ F0 for each k ≥ 0. This implies that ∪k≥0Gk ≼ F0.

Hence {
Rg

s,t : g ∈ X∞, s ≤ t
}
≼
{
Rg

s,t : g ∈ X∞, s ≤ t
}
∪ F0 ≼ F0.

The proof is complete.

The following lemma, which is essentially Lemma 3.7 in [35], allows us to pass the time relaxed

accessible points AF0(v, t0,≤ t) in (B.12) to exact time accessible points AF0(v, t0, t) as in (B.5).

Lemma B.4. Suppose F ⊂ S and V ⊂ H is open with the property that

V ⊂ AF (v, t0,≤ t0 + t), for all v ∈ V, t0 ≥ 0, t > 0.

Then

V ⊂ AF (v, t1, t1 + t), for all v ∈ V, t1 ≥ 0, t > 0.

Proof. For simplicity we assume that t1 = 0 and show that u ∈ AF (v, 0, t) for any given u, v ∈ V

and t > 0. Fix ε > 0 such that B(u, ε) ⊂ V . Pick any Φ ∈ F ⊂ S. By continuity we can choose
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0 < ε′ < ε such that the first exit time

T := inf
w∈B(u,ε′)

{
inf
{
t > 0 : ∥Φt0,t0+tw − u∥ > ε

}}
> 0. (B.19)

T is independent of any initial time t0 > 0 due to the fact that Φt0,t0+t is either a ray semigroup as

in (B.3) which is time homogeneous, or Φt0,t0+tw is a solution to (B.1) (with a time independent

c(t)) that is continuous in (t, w) independent of t0, which follows from the uniform boundedness

of f(x, t), i.e., supt∈R ∥f(t)∥ < ∞. By assumption, there exist Φ0,1, · · · ,Φ0,m0 and positive times

r0,i, 1 ≤ i ≤ m0 with r
(m0)
0 ≤ t such that

u0 :=

m0∏
i=1

Φ0,i

r
(i−1)
0 ,r

(i)
0

v ∈ B(u, ε′),

where r
(k)
0 =

∑k
i=1 r0,i. If r(m0)

0 + T ≥ t, then in view of (B.19) we see that

Φ
r
(m0)
0 ,t

m0∏
i=1

Φ0,i

r
(i−1)
0 ,r

(i)
0

v = Φ
r
(m0)
0 ,r

(m0)
0 +t−r

(m0)
0

m0∏
i=1

Φ0,i

r
(i−1)
0 ,r

(i)
0

v ∈ B(u, ε),

since t− r
(m0)
0 ≤ T . This shows u ∈ AF (v, 0, t) as desired.

If r(m0)
0 + T < t, then there exists an integer n ≥ 1 such that

r
(m0)
0 + nT < t ≤ r

(m0)
0 + (n+ 1)T.

Let δ := t− r
(m0)
0 − nT ≤ T . Note that u0 ∈ B(u, ε′) ⊂ V , hence by (B.19) we find that

w1 := Φ
r
(m0)
0 ,r

(m0)
0 +T

u0 ∈ B(u, ε) ⊂ V.

By assumption there exist Φ1,1, · · · ,Φ1,m1 ∈ F and positive times r1,i, 1 ≤ i ≤ m1 with r
(m1)
1 ≤ δ/n

such that

u1 :=

m1∏
i=1

Φ1,i

r
(m0)
0 +T+r

(i−1)
1 ,r

(m0)
0 +T+r

(i)
1

w1 ∈ B(u, ε′).

Iterating this process, for 2 ≤ k ≤ n, define

wk := Φ∑k−1
j=0 r

(mj)

j +(k−1)T,
∑k−1

j=0 r
(mj)

j +kT
uk−1 ∈ B(u, ε) ⊂ V.

Then by assumption, there are Φk,1, · · · ,Φk,mk ∈ F and positive times rk,i, 1 ≤ i ≤ mk with

r
(mk)
k ≤ δ/n such that

uk :=

mk∏
i=1

Φk,i∑k−1
j=0 r

(mj)

j +kT+r
(i−1)
k ,

∑k−1
j=0 r

(mj)

j +kT+r
(i)
k

wk ∈ B(u, ε′).

Now observe that un ∈ B(u, ε′), so by (B.19) one has

Φ∑n
j=0 r

(mj)

j +nT,t
un ∈ B(u, ε),
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since

0 ≤ t−

 n∑
j=0

r
(mj)
j + nT

 < T.

This shows that u ∈ AF (v, 0, t) and completes the proof.

B.3 Approximate Controllability and Topological Irreducibility

In this section we show how the scaling and saturation results in the previous two sections yield the

approximate controllability of the equation (B.1), which in turn implies the topological irreducibility

of the system (2.5).

For each t > 0, let Ωt = {ω ∈ C([0, t],Rd) : ω(0) = 0} equipped with the supremum norm,

be the restricted Wiener space. For any T > 0 and V ∈ ΩT , it can be shown that the solution

w0,t(w0, V ) of the equation

w(x, t)− w0(x)−
∫ t

0
ν∆w(x, t)dt+

∫ t

0
B(Kw,w)(x, t)dt =

∫ t

0
f(x, t)dt+ g · V, (B.20)

where g = (g1, · · · , gd) ∈ Hd, is continuous in V . And if we replace c(t) in (B.1) with ∂t
∫ t
0 c(t)dt and

set initial data as w(0, x) = w0(x), then the solution Φc·g
0,tw0 = w0,t(w0, V ) with V (t) =

∫ t
0 c(t)dt.

Proposition B.5 (Approximate Controllability). If A∞ = H (see (3.1) for the definition), then

for any ε > 0, w0, w1 ∈ H and t > 0, there exists V ∈ Ωt such that

∥w0,t(w0, V )− w1∥ < ε. (B.21)

Proof. It follows from [35] that A∞ = H implies X∞ = H, where X∞ is given as in (B.13). It then

follows from Corollary B.3 that

AF (v, t0,≤ t0 + t) = H, for all v ∈ H, t0 ≥ 0, t > 0.

Lemma B.4 then yields

AF (v, 0, t) = H, for all v ∈ H, t > 0.

In view of the Definition B.5 and B.4, we find that for given w0, w1 ∈ H and ε > 0, there are

Φ1, · · · ,Φm ∈ F0 and 0 = t0 < t1 < t2 < · · · < tm−1 < tm = t such that

∥Φcm
tm−1,tm

· · ·Φc1
t0,t1

w0 − w1∥ < ε,
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which is equivalent to saying that the solution Φc·g
0,tw0 with c(t) =

∑m
i=1 ciI[ti−1,ti+1)(t) satisfies

∥Φc·g
0,tw0 − w1∥ < ε.

Setting V (t) =
∫ t
0 c(t)dt, we arrive at (B.21).

A direct consequence is the following topological irreducibility.

Corollary B.6 (Topological Irreducibility). If A∞ = H, then the transition operator P0,t (see

(2.6)) of equation (2.5) satisfies

P0,t(w0, Bδ(w1)) > 0,

for all w0, w1 ∈ H, δ > 0 and t > 0.

For a proof of the corollary, see Lemma 4.7 in [35].
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