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ABSTRACT

Statistical Properties of 2D Navier-Stokes Equations Driven by Quasi-Periodic Force and
Degenerate Noise

Rongchang Liu
Department of Mathematics, BYU
Doctor of Philosophy

We consider the incompressible 2D Navier-Stokes equations on the torus driven by a determin-
istic time quasi-periodic force and a noise that is white in time and extremely degenerate in Fourier
space. We show that the asymptotic statistical behavior is characterized by a uniquely ergodic
and exponentially mixing quasi-periodic invariant measure. The result is true for any value of the
viscosity v > 0. By utilizing this quasi-periodic invariant measure, we show the strong law of large
numbers and central limit theorem for the continuous time inhomogeneous solution processes. Es-
timates of the corresponding rate of convergence are also obtained, which is the same as in the time
homogeneous case for the strong law of large numbers, while the convergence rate in the central
limit theorem depends on the Diophantine approximation property on the quasi-periodic frequency
and the mixing rate of the quasi-periodic invariant measure. We also prove the existence of a stable
quasi-periodic solution in the laminar case (when the viscosity is large). The scheme of analyzing
the statistical behavior of the time inhomogeneous solution process by the quasi-periodic invariant
measure could be extended to other inhomogeneous Markov processes.

Keywords: Navier-Stokes equations, quasi-periodic invariant measure, unique ergodicity, mixing,
limit theorems, rate of convergence, Diophantine condition
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CHAPTER 1. INTRODUCTION

We study the asymptotic statistical properties of the time inhomogeneous solution process of the
incompressible 2D Navier-Stokes equation driven by a deterministic time-dependent quasi-periodic
force and a highly degenerate stochastic force. There are three main ingredients of our work for
this system:

(1) We extend the Harris-like theorem in the infinite dimensional hypoelliptic setting developed
by Hairer and Mattingly [41] to the time quasi-periodic inhomogeneous case. This allows us to
view the two-parameter Markov transition operator as a contractive deterministic non-autonomous
dynamical system acting on the space of probability measures endowed with an appropriate Wasser-
stein metric. We then show that the non-autonomous system has a globally exponentially attracting
quasi-periodic trajectory, serving as the uniquely ergodic and exponentially mixing quasi-periodic
invariant measure, which describes the quasi-periodically statistical steady states of the system.

(2) The quasi-periodic invariant measure in (1) enables us to develop a martingale approxi-
mation scheme, to show the strong law of large numbers and central limit theorem for the time
inhomogeneous solution process starting at every deterministic point and for Holder observables
weighted by a Lyapunov function. The martingale approximation is applied to the corresponding
homogenized process obtained by taking the skew product of the solution process with the irrational
rotation flow induced by the quasi-periodic force. However, the homogenized process is not mixing
so the martingale approximation cannot be applied directly as in the usual way. This is resolved
by centering the observables using the quasi-periodic invariant measure.

(3) We also obtain an estimate on the rate of convergence in the limit theorems. For the strong
law of large numbers, the convergence rate is the same as in the time homogeneous case. While
in the case of the central limit theorem, the convergence rate is related to the mixing rate of the
quasi-periodic invariant measure and the convergence rate of the Birkhoff average of the irrational
rotation flow with particular observable functions involving the quasi-periodic invariant measure.
The latter has a close connection with the Diophantine approximation property of the frequency.

We confine ourselves to the 2D Navier-Stokes system to simplify the presentation of the main
ideas. However, the results can be applied to a class of time inhomogeneous Markov process

generated by stochastic semilinear equations driven by an additional time dependent deterministic



force for which the inhomogeneity can be modeled by a dynamical system (the Bebutov shift for
example). In what follows we will briefly describe our result and the background. A more detailed

and technical description of the main results is given in Chapter 3.

1.1 DESCRIPTION OF RESULTS

Consider the incompressible 2D Navier-Stokes on the two dimensional torus T? := R?/(27)Z? in
the vorticity form
d
dw(t,z) + B(Kw,w)(t,z)dt = vAw(t,z)dt + f(t,x)dt + > _ g:dWi(t), t>s, w(s)=uwo, (1.1)

i=1
where w(t, x) is the vorticity field, and Kw is the divergence free velocity field. The phase space is

chosen as H := {w € L? (T R) : [, wdz = 0} whose norm is denoted by || - ||. The deterministic
force f is quasi-periodic in ¢ in the sense that f(t,x) = VU(at, z) for some ¥ € C(T", H). Here the
frequency a = (a1, 00, -+ ,ap) and {oy}}_, are rationally independent. W = (Wy, Wa,--- , Wy)
is a two-sided R%valued standard Wiener process over the sample space (Q, F,P) where P is the
Wiener measure, and {g;} are elements of H. Under appropriate spatial regularity conditions on
the external forces (see the next section), the equation is well posed with a time inhomogeneous
Markov solution process wg¢(wp). It generates a two-parameter Markov transition operator P;

acting on the space of bounded measurable functions By(H) as
Ps1d(wo) = Ed(ws(wo)), Vo € By(H),wo € H.
It acts on the space of probability measures P(H) by duality
Piiu(A) = /HPSJ]IA(w)//,(dw), for p € P(H), A € B,

where 9 is the Borel g-algebra of H and I 4 is the indicator function of A. For n > 0 small, recall

the geodesic metric p weighted by a Lyapunov function introduced in [41]

1
p(wy, ws) = inf / IO |15ty |de,  Vawr,ws € H, (1.2)
7 Jo

where the infimum is taken over all differentiable paths  connecting wy,ws € H. We endow P(H)
with the topology of weak convergence and denote by P;(H) the set of probability measures that
have finite first moment with respect to the 1-Wasserstein metric induced from the metric p in

H. A quasi-periodic invariant measure is a continuous quasi-periodic map with values in P(H)



satisfying the following invariance condition
P;:tus =pe, s<t (1'3)

To state the main result, we recall a condition on the structure of the degenerate noise from
[42]. Define the set Ao by setting A1 = {g;: 1 <1< d}, Apy1 = Ay U{B(h,q): h € A, g € A1},
and Ay = span(Ug>1Ay), where B(u,w) = —B(Ku,w) — B(Kw,u) is the symmetrized nonlinear
term. These sets reflect the mechanism of the propagation of the extremely degenerate noise to the
phase space that yields a smoothing effect of the dynamics.

Besides spatial regularity conditions on the external forces, the only remaining assumption for
our main results is Ao, = H. In particular, the noise is allowed to be extremely degenerate to have

Ao = H, for example it can be excited only through four directions [40)].

Remark. Note that our result does not rely on any condition on the viscosity v > 0, nor conditions
on the strength of the external forces. In particular, we do not need the range condition as in [41]
and our result in the case when f is time independent verifies a conjecture made by Hairer and
Mattingly [41] (see Remark 1.3) that the spectral gap (as well as unique ergodicity and exponentially

mixing) holds without any restriction on f other than it be sufficiently smooth.

1.1.1 Unique Ergodicity and Mixing of the Quasi-periodic Invariant Measure. One
of the main ingredients of this dissertation is to provide a perspective to investigate the asymptotic
statistical behavior of the time inhomogeneous Markov solution process, by analyzing the dynamics
of the non-autonomous system on P(H) induced by the action of the two parameter Markov
transition operators Pg,. It turns out that the asymptotic behavior of Pg, is characterized by a
complete quasi-periodic trajectory in P(H). More precisely, we prove the existence of a unique

quasi-periodic path {}ier in P(H) satisfying the invariance condition (1.3), such that

PPy, i) < Ce ™D p(p, i), Vs < t,pu € P(H), (1.4)

where C, w are positive constants. Such a unique quasi-periodic path is called a uniquely ergodic
and exponentially mixing quasi-periodic invariant measure. One of the classical methods to show
the unique ergodicity and mixing in the homogeneous setting, which dates back to the early works
of Doeblin [18] and Harris [37], is to show that the action of the Markov semigroup on P(H) is a

contraction under an appropriate metric, whose unique fixed point gives the uniquely ergodic and



mixing invariant measure. The work of Harris was generalized to the hypoelliptic case for infinite
dimensional systems by Hairer and Mattingly [41]. Our result can be regarded as an extension of

their work to the time (quasi-periodically) inhomogeneous setting.

The proof of (1.4) will be given in chapter 5 by first proving P, is a contraction on P(H)
in Chapter 4 and then using a fixed point argument to the induced action (through a pull-back
procedure) on the space of quasi-periodic graphs C(T",P;(H)). Besides the Lyapunov structure
and a particular type of irreducibility (in a form that is more uniform than the usual topological
irreducibility), the proof of the contraction for P, requires a deep analysis of its gradient in the
time inhomogeneous hypoelliptic setting, which was first developed in the time homogeneous case
by Hairer and Mattingly in their celebrated works [40, 41, 42]. In addtion, we prove the particular
type of irreducibility here by combining the parabolic regularizing effect of the equation and the
usual topological irreducibility, where the latter is a consequence of the well known controllability

results of Agrachev and Sarychev [1, 2].

1.1.2 Limit Theorems in Terms of the Quasi-periodic Invariant Measure. In the time
homogeneous setting, the strong law of large numbers and central limit theorem show that the
asymptotic behavior of an observation along a Markov process can be characterized by the unique
invariant measure. Suppose that we are given a homogeneous Markov process X; with a unique
invariant measure yu, with a certain independence condition (mixing for example) and ¢ € C(H,R)
is an observable function with some regularity, say Holder continuous. Then as T — oo, one has

(see [48] for example) the strong law of large numbers

T
;/O H(Xe)dt 225 (1, @), (1.5)

and the central limt theorem

T
7= | (0000 = (o))t 2 N(0.0), (1.6)
where (., @) is the integral of ¢ with respect to u., and a.s. denotes the almost sure convergence
w.r.t. the Wiener measure P, while D represents the convergence in distribution and N(0,0?) is
the centered normal distribution with variance 2 > 0. The strong law of large numbers in the
form (1.5) also bears the name of the ergodic theorem, which states that the time average of the

observations converges to the ensemble average for almost every sample, regardless of the initial



condition. And the central limit theorem measures the size of fluctuations around the ensemble

average. We notice that the following form of the strong law of large numbers

T
7| (6000 = e )ar 250 (1.7)
captures another role played by the invariant measure in the sense that, the average of observations
centered by the invariant measure converges to the corresponding asymptotic mean. We will see
that the quasi-periodic invariant measure has the same feature, which is the key to extend the limit

theorems to the time inhomogeneous setting.

The celebrated Dobrusion’s theorem [17] is of particular importance in the time inhomogeneous
case. It shows that for any discrete time inhomogeneous Markov chain X; with a certain com-
patibility condition between the minimal ergodic coefficients, the observable functions ¢; and the

variance, one has the convergence as n — oo,

S, —E[S,] »
el —5 N(0,1), (1.8)

n
where S,, = Z ¢r(Xk) and Var(S,) is the variance. Although this theorem is quite general in its
own right, it kis:;ot applicable to the Navier-Stokes equation in our context. Indeed, as mentioned in
[41], the transition probabilities in infinite dimensional systems are likely to be mutually singular,
especially in the case when the strong Feller property does not hold. Hence the non-degeneracy
condition (characterized by the total variational metric) on the minimal ergodic coefficients in

Dobrusion’s theorem may not be satisfied. Besides, to apply the Dobrusion’s theorem, one needs

to compute the expectation and variance along each observation as indicated in (1.8).

Our second result shows how the uniquely ergodic and mixing quasi-periodic invariant measure
1 enables us to give the limit theorems for the time inhomogeneous solution process. Indeed, in view
of the role played by the invariant measure in the homogeneous case, and the fact that the ergodicity
and mixing of the quasi-periodic invariant measure shows that the distribution of any solution is
exponentially attracted by the quasi-periodic path in P(H), one may expect that the quasi-periodic
invariant measure carries the information that one needs to center the observations appropriately
to derive the associated limit theorems. In fact, we obtain the following limit theorems. For any

Holder continuous observable function ¢, and any initial data wy € H, the solution wg s4+(wo) of



the Navier-Stokes system satisfies as T" — oo the strong law of large numbers

3 [ (St — s )t 2, (19)
and the central limit theorem
[ (6 asrato)) ~ Guers) )t 2 N0.0), (1.10)
\F

These two limit theorems are proved in Chapter 6 through a martingale approximation procedure
and by applying martingale limit theorems. The idea of the martingale approximation was originally
due to Gordin [36] and further developed by Knips and Varadhan [44]. In [62], a new proof of
Dobrusion’ s theorem was given by using similar ideas. Our approach here is different from that in
[62], since we apply the martingale approximation to the associated homogenized Markov process
on the extended phase space H x T™, where T" is equipped with the irrational rotation flow with
rotation frequency « from the quasi-periodic force. It is worth mentioning that this homogenized
process is not mixing since the irrational rotation flow is never mixing. Hence the method of
martingale approximation for uniformly mixing time homogeneous Markov processes [48] cannot
be applied in a straightforward way. Fortunately, the exponentially mixing quasi-periodic invariant
measure centers the observations in the limit theorems in an appropriate way that enables us to

derive a martingale approximation.

1.1.3 Rate of convergence in the limit theorems. In the time homogeneous and essentially
elliptic setting, the estimates of the rate of convergence of the limit theorems were obtained for the
2D stochastic Navier-Stokes equation, which are close to being optimal [61]. Our third result shows
that similar estimates hold in the inhomogeneous hypoelliptic context. Namely, we will show the
following convergence rate (which is the same as in the time homogeneous case) for the strong law
of large numbers: for any s € R and ¢ > 0, there is an almost surely finite random time T . such
that for all ' > Ty .,

1 [T 1
’T/o (¢(ws,s+t(w0)) - <Ms+t,¢>>dt’ < CT 27", (1.11)

and a Berry-Esseen type rate of convergence in the central limit theorem measured by the Kol-

mogorov uniform distance:

ileln% ( {\F/ ¢ (ws,s4¢(wo)) — (Hs+t: ) >dt < Z} — ®5(2)

) <C., T it (1.12)



where &, = 1 for 0 > 0,&p(2) = 1 A |2|, and ®,(z) is the distribution function of the centered
Gaussian distribution. Here gy € (0, %) is a constant depending on the mixing rate of the quasi-
periodic invariant measure and the convergence rate for the Birkhoff ergodic sums of the irrational
rotation for a particular observable function involving the quasi-periodic invariant measure.
These estimates are proved in Chapter 6. The general idea is to derive first the estimates
for the approximating martingale and then pass to inequalities (1.11) and (1.12) by invoking the
martingale approximation. In particular, estimate (1.12) is derived from a combination of several
ideas from [61] with an important Berry-Esseen type result for martingales from [39]. We stress here
that estimate (1.12) requires a detailed analysis on the Holder regularity of a particular induced
observable function (see Proposition 6.13) on the torus T" involving the quasi-periodic invariant
measure. This is a main feature in our context that is different from the time homogeneous case.
We will also see that the result from [39] enables us to show (1.12) for observable functions that are
allowed to have exponential growth at infinity, while in the time homogeneous case [61] the estimate
is valid for observable functions growing at infinity not faster than a polynomial. However, due to
the interaction between the mixing of the solution process and the irrational rotation inherited from
the quasi-periodic force, the convergence rate in our context cannot be arbitrarily close to the likely
optimal rate usually obtained in the time homogeneous case. Indeed, from our proof, one can see
that estimate (1.12) is a mixture of the convergence rate to the variance of the time inhomogeneous
solution process, and the convergence rate of the Birkhoff sum for the irrational rotation with a
particular observable function involving the quasi-periodic invariant measure that is related to the
Diophantine approximation property of the frequency. The combination of the two rates prohibits
the possibility of £y being arbitrarily small. Besides, estimate (1.11) is obtained by combining the
martingale approximation and the Borel-Cantelli lemma with an estimation on the convergence rate
for the moments of the time average of the observations centered by the quasi-periodic invariant

measure.

1.2 ADDITIONAL HISTORICAL BACKGROUNDS

In this section, we give a brief description about the history of the statistical theory of stochastic
Navier-Stokes equations. Since the literature on this topic is too vast a subject to review here, we

limit ourselves to topics that are closely related to the works in the present dissertation.



1.2.1 Two Dimensional Turbulence. The following system of two dimensional incompressible
Navier-Stokes equations describes the evolution of the velocity field u(¢, z) of a given fluid subject

to a deterministic external force F(z,t),

Ou(z,t) — vAu(z,t) + u(x,t) - Vu(z,t) + VP(z,t) = F(x,t),
V- u(x,t) =0, (1.13)
u(z, s) = uo(x),
where v is the viscosity, P is the pressure and x takes values on some bounded two dimensional
domain U with appropriate boundary conditions. When U = T2, the equation is equivalent to the
corresponding vorticity equation (1.1) without noise, see the next chapter on this point.

The standard theory of two dimensional turbulence is the study of the dynamical behavior of
the Navier-Stokes equation when the viscosity is small 0 < v < 1 for many external force F (for
some forces the turbulence can be absent for any value of the viscosity [51]), which corresponds to
the case of large Reynolds number. Various conjectures and experimental discoveries have not been
rigorously treated due to the chaotic nature of the system in the turbulent regime [32]. It is widely
believed that the statistical behavior of the turbulence should be described by a particular invariant
measure supported on the attractor of the system, the so called Sinai-Ruelle-Bowen (SRB) measure
[30]. However, the existence of such a canonical measure is still a challenging open problem.

The approach to the above scenario is accessible when the external force is random. For example,
we may take

0o
Fa,t) = f(z,t) + > biei(x)Wi(t), (1.14)

i=1
where b; are constants, {e;} is an orthonormal basis of the phase space, W;(t) are independent
standard Wiener processes and W;(t) are white noise processes. The Navier-Stokes equation (1.13)
is then a stochastic differential equation with such a random external force. Under additional
mild conditions, it can be proved that the Markov solution process of (1.13) has a unique ergodic
invariant measure (which may further be shown to be mixing, see the next section). The advantage
of working with such a random external force is that we have a canonical invariant measure to
analyze the statistical behavior of the turbulence, though in a mean value sense (by taking average
over the samples). The idea that the turbulence should be described by the Navier-Stokes equations

driven by a random force dates back to Kolmogorov [64].



The concept of determining modes is useful when analyzing the Navier-Stokes dynamics [30].
It is roughly the first N modes of the equation (when rewriting the equation in terms of the
eigenvectors of the linear part) that determines the dynamics of the system, where N depends on
the viscosity v and the strength of the external force, and N goes to infinity if v tends to 0. Since
we are considering the Navier-Stokes equations on the torus, one can use Fourier expansions in
terms of the eigenvectors of the Laplacian to rewrite the equation as well as the force (1.14) in the
Fourier space. We say that the stochastic equation (1.13) is elliptic if all b; # 0 in (1.14), and it
is called essentially elliptic if b; # 0 for all 1 < ¢ < N, where the first N modes are precisely the
determining modes. It is called hypoellptic if the noise is extremely degenerate such that it does
not act on all determining modes, i.e., Ng := #{i > 1:b; # 0} < N, and Ny is independent of v
and the strength of the external force. These terms correspond to ellipticity (or essential ellipticity,
hypoellipticity) of the Fokker-Planck-Kolmogorov equation associated with (1.13) that governs the
evolution of the distribution of the solution process, which is a deterministic parabolic equation in

an infinite dimensional Hilbert space [5].

1.2.2 The Time Homogeneous Setting. When the deterministic force f(z,t) in (1.14) (or
f(x,t) in (1.1)) is independent of time, the solution process is a time homogeneous Markov process
with corresponding Markov transition semigroup P;. A probability measure p is unique if Pfpu = p
for t > 0. The existence of such a measure is usually guaranteed by the Krylov-Bogolyubov theorem
and a compactness argument from the dissipative nature of the Navier-Stokes system. However the
uniqueness and mixing need more effort.

There are mainly two approaches to prove unique ergodicity. One way is the Doob-Khasminskii
type argument that combines the (asymptotic) strong Feller property that shows ergodic invariant
measures have disjoint supports, with topological irreducibility which shows that any invariant
measure is supported on the whole phase space. Another method is the coupling approach that
shows the contraction property of the transition operators by choosing an appropriate copy of the
solution process and analyzing the coupled process. One usually proves (exponential) mixing first
by coupling methods and then shows the unique ergodicity as a consequence. While the Doob-
Khasminskii type argument is powerful when proving unique ergodicity, it gives less information on

(exponential) mixing. It is worth mentioning that in the hypoellptic case when the driving noise



is white in time, there is no existing work that proves the unique ergodicity and mixing through
coupling methods.

The Essentially Elliptic Case. When the noise is not degenerate or acting on all determin-
ing modes, the statistical properties of the stochastic Navier-Stokes system have been extensively
studied over the decades, see for example [3, 4, 24, 25, 27, 28, 38, 45, 46, 47, 55, 56, 58, 61, 34, §]
and references therein. See also the monograph [48] for a summary of the existing results on unique
ergodicity and mixing, as well as limit theorems with convergence rates. The results in the cited
works require the random forcing to act on all determining modes. In particular, the dimension
of the random forcing goes to infinity as viscosity approaches to zero. The methods involved are
either the coupling argument or the Doob-Khasminskii type argument with strong Feller property
and topological irreducibility.

The Hypoelliptic Case. When the noise is extremely degenerate and not all determining
modes are activated, a major breakthrough in this case was made by Hairer and Mattingly in their
seminal work [40], where they introduced the asymptotic strong Feller property to show unique
ergodicity of the Navier-Stokes equation driven by an extremely degenerate noise. To obtain this
asymptotic smoothing property, they developed a theory of infinite dimensional Malliavin calculus
and established an infinite dimensional Hormander type theorem. This asymptotic smoothing
effect also allowed them to develop an infinite dimensional Harris-like theorem in [41], to prove the
exponential convergence to the unique invariant measure under the Wasserstein metric p induced
by (1.2). The result in [41] in turn led to a proof of the weak law of large numbers and the central
limit theorem in [50]. The results in [40, 41, 50] are independent of the strength of the external force
and the viscosity but require a range condition when the time independent force is nonzero, i.e.,
they require the range of the deterministic force f() to be contained in the span of the noise. Later
in [35] the authors proved the unique ergodicity without the range condition but the exponential
mixing without the range condition remains unproved. We prove this exponential mixing without

the range condition in the present work and extend the results to the time inhomogeneous case.

1.2.3 The Time Inhomogeneous Setting. When the deterministic force f(z,t) depends on
time, the only existing result is the work of Da Prato and Debussche [16] where they considered a

time periodic force f(z,t). They proved the unique ergodicity and exponential mixing in the essen-

10



tially elliptic case by a coupling argument. Unique ergodicity in the hypoelliptic case was claimed
but without proof in [16] with a range condition on f(z,t), i.e., the range of the deterministic force
should be contained in the span of the noise for all £ € R. We take an approach completely different
from that in [16] and prove the exponential mixing, unique ergodicity, as well as limit theorems and
convergence rates in the hypoellptic case, without any condition on the deterministic force other
than some spatial regularity.

We also note that the existence of a continuous (in time) periodic invariant measure was obtained
in [16] by first disintegrating an invariant measure of the associated homogenized Markov process
whose existence relies on the Krylov-Bogolyubov theorem, and then proving the existence of a
continuous version. The extension of this method to the quasi-periodic case becomes challenging
when proving the continuity. In this dissertation we extend the Harris-like theorem to the time
inhomogeneous setting, which allows us to prove the existence of a unique quasi-periodic invariant
measure as a fixed point in the space of continuous quasi-periodic measures. This fixed point
naturally has the continuity and can be shown to have a Hélder continuity if the deterministic force
does, which plays an important role in the convergence rate of the central limit theorem.

The concept of quasi-periodic invariant measure with its ergodicity and mixing for stochastic 2D
Navier-Stokes equation, is introduced in the present work. However, the quasi-periodic invariant
measure for ordinary stochastic differential equations has been introduced in [31]. In fact, the
probability measure valued path p; satisfying (1.3) has been studied by Dynkin in [21, 22] where
it is called an entrance law. In this context, a quasi-periodic invariant measure is an entrance law
that possesses additional dynamical structure inherited from the quasi-periodic force.

The martingale limit theory has been widely studied as a generalization of the limit theory for
the sum of independent random variables, see the monograph [39]. It becomes a powerful tool
when studying the limit theorems of Markov processes, in the case that the Gordin’s martingale
approximation is available. This approach has been summarized in [48, 61] in the case of uniformly
mixing time homogeneous Markov processes with applications to randomly forced PDE’s including
the 2D Navier-Stokes equation. As we mentioned above, the result in [48, 61] cannot be applied
directly here due to the time inhomogeneity and non-mixing feature of the homogenized process.

For discrete time inhomogeneous Markov chains, progress on limit theorems has been made over

the decades, which is best summarized in [20]. However, the problem and method we consider here,
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are different from that in [20] where they mainly focus on the local limit theorems in the stationary
regime for discrete time Markov chains and take a different perspective. Furthermore, despite the
uniform boundedness condition on the observables, the uniform elliptic condition in [20] does not
hold in our hypoelliptic setting so that the results cannot be applied. In fact, we are not aware
of any existing results on limit theorems for continuous time inhomogeneous Markov processes, as

well as applications to randomly forced PDE’s both in elliptic and hypoelliptic settings.

CHAPTER 2. SETTINGS AND PRELIMINARIES

In this section, we give definitions, basic settings on the equation and technical preliminaries that

will be used throughout the work.

2.1 BASIC SETTINGS ON THE EQUATION

This section consists of a brief description of the two dimensional Navier-Stokes equations driven
by a time dependent deterministic quasi-periodic force and a random force that is spatially regular
and white in time. We first give two definitions related to quasi-periodic functions. Let (M, d) be
a metric space with metric d and Cy(R, M) the space of bounded continuous functions endowed

with the uniform convergence topology generated by the following metric

d(q1,q2) = igﬂg d(q1(t), q2(1)).

Definition 2.1 (Quasi-periodic functions). A function ¢ € Cy(R, M) is quasi-periodic with fre-

quency o = (aq, @9, - ,ap) € R™ if there is Q € C(T™, M) such that

q(t) = Q(at) = Q(out, ast, -+, ant), (2.1)

n

where aq, 9, - ,q, are rationally independent real numbers and T" = R"/(27)Z" is the n-

dimensional torus.

The following Diophantine condition is closely related to the convergence rate in limit theorems

for solutions of the stochastic Navier-Stokes system.
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Definition 2.2 (Diophantine condition). A frequency a € T" is said to satisfy a Diophantine

condition if there exist X > 0 and A > n such that

K
dist(k - o, Z) > TR (2.2)
for all k € Z™ with ||k|| # 0, where ||k|| := max |k;|, and k- « = ka1 + koag + - -+ + kpap,.

1<i<n

2.1.1 The Equation. We consider the incompressible Navier-Stokes equations on the two di-
mensional torus T2, which describes the evolution of an incompressible fluid. They are usually

written as follows in terms of the velocity field

opu(z,t) — vAu(z,t) + u(z,t) - Vu(a,t) + VP(x,t) = F(z,t),

V- u(z,t) =0,

u(zx, s) = uo(x).
Here u(x,t) € R? for z € T?,t € R is the velocity field of the fluid. s € R is the initial time and
up(z) is the initial condition. v > 0 is the kinematic viscosity, P is the pressure and F is the

external force. We assume that ug and I have zero mean when averaged on the torus, so that the

solution will have zero mean for all time.

In the two dimensional case, it is convenient to consider the following equivalent equations for
the scalar vorticity field w = V Au = 01ue — 021, which is obtained by taking curl on the equations

for the velocity,
ow(z,t) — vAw(z,t) + B(Kw,w)(x,t) = F(z,t), w(x,s)=wo(x). (2.3)

Here B(Kw,w) = Kw - Vw is the nonlinear term, where u = Kw and K is the Biot-Savart integral

operator that recovers the velocity from the vorticity through the conditions
w=VAu, V-u=0, / u(z)dr = 0.
TQ

We will consider equation (2.3) on the space H of square integrable functions over T? that have zero
mean, i.e., H := {w € L? (T%,R) : [, w(z)dz = 0}, where the norm is denoted by ||| and the inner
product is (-,-). We also define the interpolation spaces Hy, = {w € H* (T R) : [, w(z)dz =0}
s/2

and the corresponding norms ||-||, by ||w||s = H(—A) wH

2.1.2 The Forcing. The external force F'(z,t) in equation (2.3) consists of a time dependent

deterministic part and a random part that is white in time and regular in space. More specifically,
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dW (¢
we assume F(z,t) = f(x,t) + G dt( ),

AW (¢)

7~ denotes symbolically the time derivative of the two-sided Brownian motion

The notation

W (t) and equation (2.3) is understood in the integral form as a stochastic differential equation in
the Ito sense. Here the standard d dimensional two-sided Brownian motion W (t) is obtained as

follows. Let W () be two independent standard d dimensional Brownian motion, then define

WH(t),t>0,
W(t) :=
W=(—t),t<0.
The sample space is denoted by (€2, F, P), where ) = {w € C(R,R?) : w(0) = O} endowed with the
compact open topology, F is the Borel o-algebra and P is the Wiener measure associated with the

Brownian motion W. Denote by F; the filtration of o-algebras generated by W (t). The coefficient

of the noise is a bounded linear operator G : R — H. := ﬂs>0 H,, such that Ge; = g; , where

{e;} is the standard basis of R? and ¢; € Hy for i = 1,2,--- ,d. Then the noise can be expressed
as
d
GW(t)=> g:Wi(t). (2.4)
i=1

Also for integer k > 0, let By := Zle |gi||2 be the various norms of the energy input from the
noise.

We assume that the deterministic force f € Cy (R, He) is quasi-periodic with frequency o =
(a1, 9, ,ap). Then by Definition 2.1 there is a function ¥ € C(T"; Hy) such that f(t,z) =
U(at,z). The regularity condition imposed on f is to ensure the spatial regularity of the solution

that is needed to show the asymptotic smoothing effect of the dynamics.

2.1.3 Well-Posedness of 2D Stochastic Navier-Stokes Equations. Having introduced
the external force F'(z,t) in the previous subsection, we can now rewrite equation (2.3) as an Ito’s
stochastic differential form

dw(z,t) — vAw(z,t)dt + B(Kw,w)(z,t)dt = f(x,t)dt + GdAW (t), w(z,s) = wo(x). (2.5)

Under the conditions imposed on the forcing term as in the previous subsection, the existence and
uniqueness of the solution to equation (2.5) is well known, see for example [7, 48] and references

therein. To be specific, we have the following
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Proposition 2.3. Assume f € Cy (R, Ha) and g; € Hx (see (2.4)) for all 1 < i < d. Then for
any initial time s € R, every T > s and wy € H, equation (2.5) under the above conditions has a

unique strong solution w(t,w;s,wy), t € [s,T), i.e., it solves the integral equation
¢ ¢
w(z,t) —wo(x) / VAw(az,t)dt+/ B(Kw,w)(x,t)dt
¢
= / f(z,t)dt + GIW (t) — W(s)), P — a.s.

The solution is adapted to the filtration F;, and generates a stochastic flow ®(t,w;s, ) : H — H

such that ®(t,w; s, wy) = w(t,w; s, wp) for s <t,wyg € H and
weC(s,T;H)NC((s,T];H3), P —a.s.
Here by a stochastic flow ®(t,w; s, wp), we mean that it is a modification of the solution of equation

(2.5) satisfying the following conditions:

(i) It is adapted to Fy and for almost allw, ®(t,w; s, wp) is continuous in (t, s,wg) and ®(s,w; s, wp) =

wo-.

(ii) For almost all w,

D(t+ 1,w; s,wp) = ®(t + 7,w; t, P(t, w; s, wp)),

for s <t, >0 and wy € H.

2.2 INHOMOGENEOUS MARKOVIAN FORMULATIONS

The solution to (2.5) generates a two parameter Markov transition operator Ps; : By(H) — By(H)
defined by
Psp(wo) == Elp(w(t; s, wo))], ¢ € By(H), (2.6)

where By,(H) is the space of bounded Borel measurable functions on H with the supremum norm.
We denote the transition probabilities as P (w, A) := Py la(w) for A € B, the Borel o-algebra
of H, where 4 is the characteristic function of A. By duality, the transition operator P;, acts on

the space P(H) of probability measures on H by

Piimu(A) = / Ps i(w, A)p(dw), for p € P(H), A € B.
H
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For 1 > 0 small, recall the metric p on H weighted by the Lyapunov function el as in [41],
1
p(wr, ws) = inf / PO |5 () dt, Yy, ws € H, (2.7)
7 Jo

where the infimum is taken over all differentiable paths v connecting w; and wy. This metric

naturally induces a Wasserstein metric (allowed to take values in [0, 00]) on P(H) by

) = _inf [ pluo)pldudo), (2.8)
neC(pr,p2) JHXH

where C(u1, pu2) is the set of couplings of 1, ue € P(H). The subset
Pi(H) :={peP(H): p(p,d) < oo} (2.9)

is complete under the metric p [12, 65], where dy is the Dirac measure at 0. For this Wasserstein

metric, the following Monge-Kantorovich duality is well-known [12, 65],

plus) = sup | [o@mdn) - [dualdn)|, Vi ePiH), @10

Lip,(¢)<1

where Lip p((ﬁ) is the Lipschitz constant of the function ¢ on H endowed with the metric p.

Remark. We use the metric (2.8) on P(H) to measure the convergence to the quasi-periodic invari-
ant measure. The reason for working with the Wasserstein metric is that the transition probabilities
in infinite dimensional systems are likely to be mutually singular, especially when the strong Feller
property does not hold [41] (which is the case when the driving noise is extremely degenerate).
Hence the convergence to the invariant measure often fails under the total variation metric and one

would like to replace it by a weaker Wasserstein metric.
We now give the definition of a quasi-periodic invariant measure.
Definition 2.4 (Quasi-periodic invariant measures). A quasi-periodic invariant measure of system

(2.5) is a quasi-periodic function p € C(R,P(H)) that is invariant under the Markov transition

operators

/PWMWMWZ/MWMWLSSth&WL
H H

or equivalently
Piips = g, s <t

It is called uniquely ergodic if such measure is unique. It is exponentially mixing under the Wasser-
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stein metric (2.8) if there is a constant w > 0 such that

p(Prop, i) < Ce D p(p, ), Vs < t,p € P(H).

2.3 HOMOGENIZATION THROUGH SKEW-PRODUCT

To deal with the time inhomogeneity, we adopt a classical method that has been widely used in the
study of non-autonomous problems arising from deterministic differential equations and dynamical
systems. Let H(f) be the closure in Cy(R, Ha) of {f(- + s)|s € R}, the set of time translations
of f. The set H(f) is called the hull of f, which is compact since f is quasi-periodic. It is
the minimal invariant set of the translation group {T'(t)} acting on Cy(R; Ha) by (T'(t)g)(s) =
g(t + s), which is called the Bebutov shift flow. The Bebutov shift dynamics has the advantage
of capturing the nonautonomy caused by the quasi-periodicity of f and the compactness of the
hull H(f) allows us to apply tools from dynamical systems to analyze related problems. For each
g € H(f), there is a unique solution ws4(w,wp) of (2.5) by replacing f with g, which is called
the process corresponding to problem (2.5) with time symbol g [14]. The homogenization process
associated with ®,;(w,wp) is then the homogeneous Markov process in the extended phase space
H x H(f) defined by S(t,w,wo,g) := (wo¢h(w,wo), T(t)g)-
In the quasi-periodic case, it turns out that H(f) = {¥(at + ho,x)|ho € T"} [14], where
U e C(T", Hy) is the function corresponding to f. Hence it is more convenient to work with T"
instead of H(f). The irrational rotation flow 5;h := h + ot on torus corresponds to the Bebutov
shift 7'(t) on H(f) through the continuous map ¥. Instead of working on H x H(f), we will study
the associated homogeneous Markov process X +(wp, hg) on H x T™ given by the solution of the
following equation
dw(t, z) + B(Kw,w)(t, z)dt = vAw(t, z)dt + U (By, x)dt + GdW (t),
df; = adt, (2.11)

’IU(S) = wo, Bs = ho.

Note that the solution

Xs,t(wo, ho) = (Pst.5_.ho(W0), Be—sho)

for (wo, ho) € H x T", where ®4, 5 pn,(wo) is the solution to (2.5) by replacing f(t,z) = ¥V (at,x)

with W(at — as+ hg,z). We will use ws ¢, (wp) to denote the solution of (2.5) with f(t,x) replaced
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by U(5, x) with Sth = h + ot.
Let Pstnp(wo) = E¢ (Psrn(wo)) be the transition operator corresponding to the time symbol
h. In particular, Psto = Ps; as defined in (2.6). It follows from the uniqueness of solution that

the following translation identity holds:
Ps+7,t+7,h = Ps,t,,BTha TeR, heT". (212)

For ¢ € By(H x T™), the Markov transition operator associated with the homogenized process is

given by
Ps,t@(wm hO) = EﬁP (Xs,t) = E‘P (q)s,t,ﬁ_sho (w[))a /Bt—sh()) = ,Ps,t,ﬁ_sho@(’v ﬁt—shO)(wO)- (213)

In view of the translation identity (2.12) and time homogeneity of X, we can assume the initial

time of the homogenized process s = 0 for simplicity.

2.4 PATH-WISE RANDOM QUASI-PERIODIC SOLUTIONS

The existence of a quasi-periodic invariant measure implies the existence of a solution process of
(2.5), whose distribution changes in time quasi-periodically. However, information about path-
wise dynamics is not easy to obtain from the quasi-periodic invariant measure. We now give the
following definition of the random quasi-periodic solution in the path-wise sense. And we will show
that when the viscosity is large, then the dissipation dominates and the system (2.5) has a trivial
dynamics, in the sense that it has a globally stable random quasi-periodic solution which supports

the unique quasi-periodic invariant measure.

Definition 2.5 (Random quasi-periodic solutions). A random quasi-periodic solution of system
(2.5) is a progressively measurable stochastic process w*(t,w) defined on R x €2 that satisfies the

following property:
(i) (Invariance property) ®(¢,w; s, w*(s,w)) = w*(¢,w), for almost all w;

(ii) (Quasi-periodicity) w*(t,0_;w) is a quasi-periodic function for almost every sample w. That
is, there is a function @ : T" x Q — H, where Q(h,w) is continuous in A € T" for almost

every w € ) and measurable in w for each fixed h, such that for every t € R,

w*(t,0_w) = Qat,w), P —as.
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Here 6 : R x  — €) given by
Ow(-) :=w(t+ ) — w(t) (2.14)

is the Wiener shift.

CHAPTER 3. MAIN RESULTS

In this subsection, we formulate the main results of the present paper in details. We recall a
condition on the structure of the degenerate noise from [42]. To do that, define the set A by

setting
Ay ={g:1<1<d}, Apy1 = A, U{B(h,g) : h € Ay, g1 € A1}, and A = span(Ug>14;), (3.1)

where B(u,w) = —B(Ku, w) — B(Kw, u) is the symmetrized nonlinear term. These sets reflect the
mechanism of the propagation of the extremely degenerate noise to the phase space that yields a
smoothing effect of the dynamics. With these notations, the condition we need on the structure
of the noise is an infinite dimensional version of the Hormander’s Lie bracket condition A, = H.
In finite dimensional settings, the Hérmander’s Lie bracket condition ensures the invertibility of
the Malliavin matrix and shows the smoothness of the density of the transition probabilities of
a degenerate stochastic differential equation. This hypoelliptic theory was first extended to the
stochastic Navier-Stokes equation driven by an extremely degenerate noise in [57]. Then in [40] the
authors proved the unique ergodicity of the stochastic Navier-Stokes equation in the hypoelliptic
setting by introducing the asymptotic strong Feller property. As was shown in [40, 42], it is notable
that the noise is allowed to be extremely degenerate to have A,, = H, for example it can be excited

only through four directions.
The following Theorem 3.1-3.4 are our main results under the standing assumption:
f € Cy(R, H2) is quasi-periodic; g; € Ho, V1 < i < d; and As, = H. (3.2)
The first result is the following unique ergodicity and exponentially mixing of the quasi-periodic
invariant measure for (2.5) under the Wasserstein metric (2.8). Note that the metric p (2.8) weighted

by the Lyapunov function V(w) = enlwl® depends on the parameter 7 > 0. And the following

estimate (A.3) is from Appendix A.
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Theorem 3.1 (Ergodicity and mixing). There is a unique quasi-periodic invariant measure fi
for (2.5) given by a unique map I' € C(T",P(H)), i.e., pir = U'g,0, and Pgips = pg. Moreover,
there exists ng > 0, such that for every n € (0,m0], there are constants C,w > 0, such that
I'e C(T",P1(H)) and

P(Py siatt piste) < Ce™ p(p, ps), Vs € Rt >0, € P(H), (3.3)

where C,w do not depend on s. Furthermore, I € C*(T",(P1(H),p)) if ¥ € CV(T", H), where

(= 7L withr = 64cSn=3v 75 + nC(f,Bo) from estimate (A.3).

In an equivalent form that involves the transition operator acting on observables, we have for

Cy = {sb e CY(H) : |¢lly = ilelge_"”“’”Q(IQS(w)\ +IVo(w)ll) < OO}-

every ¢ € C%,

< Ce . (3-4)
n

’Ps,s—i-t,h(ﬁ_/Hd)(w)MS-H(dw)

Here

Theorem 3.1 will be proved in Chapter 5, by combining a fixed point argument with the following

uniform contraction property proved in Chapter 4.

Theorem 3.2. (Contraction on P(H)) There exists ng > 0 such that for n € (0,n9], there are

positive constants C' and w such that

p(P;s—i—t,hulv ,P:,s—&—t,h/‘b?) < Ce_th(/‘Ll’ :U’2)’ (35)

for every s e R, t >0, h € T" and any p1,p2 € P(H).

The second result is on the strong law of large numbers (SLLN) and the central limit theorem
(CLT) for the solution process. The proof will be given in Chapter 6. To state the results, we first
define the space of observable functions. For v € (0,1], let C;J (H) be the space of Holder continuous

functions with finite norms weighted by the Lyapunov function e””“’”Q,

Cy(H) :=={¢: H = R:||g]l;y < oo}, (3.6)
where
|6(w)] |b(w1) — d(ws)]
= + .
[9llin = sup e o<l <1 T[wr — wa[Y (enlorl? 4 enllwa]?)

Recall that ws s4+(wo) is the solution to (2.5) starting from wg € H at time s € R.
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Theorem 3.3. There is a constant ng > 0, such that for every n € (0,m0], ¢ € C)(H) and wy € H,

we have

1. SLLN for the time inhomogeneous solution process:
I as
lim — /0 (#(wsrewo)) = (ares 8) ) dt 25 0. (3.7)

2. CLT for the time inhomogeneous solution process:

. 1 T D
Jim [ (6 w0) = G ) )t 2 N0.0%), (3.8)

where N(0,0%) a centered normal variable with variance o® and D represents the convergence in

distribution. The variance

o1 [ /" 2
ot = o3 = Jin 1B [ ouwness(un) — (uerss )]

where o4 > 0 is independent of s.

The third result is an estimate of the rate of convergence in the limit theorems. The proof will

also be given in Chapter 6.

Theorem 3.4. There is a constant ng > 0 such that the following estimates hold.

1. (Rate of convergence in SLLN) Let € > 0, for every integer p > 3 satisfying 2P > 1/e, every
n € (0,2_p_1770], and every ¢ € C’ZH(H x T™), wg € H, s € R, there is an almost surely finite

random time To(w) > 1, depending on p, e, ||¢||yn.H, S, |wol| such that for all T > Ty, we have

‘; /OT (qb(ws,ert(wo)) — (st ¢>)dt

where C' > 0 is a constant that does not depend on the above parameters. Moreover, for every

< CT 3,

0 < ¢ < min{2Pe — 1,22 — 1}, there is a constant C, = Cp(||@||n.1, ¢, €) such that
ET{ < G,
2. (Rate of convergence in CLT) Assume W € CY(T™ H) and the frequency « satisfies the

Diophantine condition (2.2) with constant A and dimension n (of the torus). Let ®, be the

where w s

r4+w

distribution function of N(0,0%). Also let A = 5(27”77), (=L and 7, = W,
the mizing rate from Theorem 3.1 and r = 64c{n=3v =5 + nC(f, By) is the constant from (A.3).

(1). For any integer p > 2, n € (0,277~ g, and ¢ € C (H) with 035 >0, and wy € H, there
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are constants Cp = Cp(|| @y, [[wol|) > 0 and Ty > 0 such that for all T > Ty,

PL [ (blanaratin) - (et < 2} 0,2

(2). Forn € (0,27 "] and ¢ € C(H) such that 035 =0, and wg € H, there is a constant

sup

or—1z
<G <T i+ T 2P+1+T <2P+1)<A+n)>
z€R

C = C(||¢llyms lJwol|) > 0 such that for all T > 1,

sup (2141 [ { [ (60 = ()i < 2} - ()

z€R

<C (Ti + T‘2<Xin>> .

The following result shows that if the viscosity is large, then the dynamics of system (2.5) is

actually trivial. Let cg be the constant from Ladyzhenskaya’s inequality

[wllEs(r2y < collwll1flw]. (3.9)

And let G = /||fl|&/v* + Bo/v? be the Grashof number for the whole system, where | f|loo =
supcr || f(t)]]. The following theorem will be proved in Chapter 7. Note that we do not need the

assumption A., = H here.
Theorem 3.5. Let 7> 0. Assume ¥ € CV(T", H). If
Geo < /1/2, and v3 > 8(n +7)cABoy L, (3.10)

then there exists a random quasi-periodic solution w*(t,w) of equation (2.5) in the sense of Definition
2.5, where the function Q(h,w) associated with w*(t,0_w) has a continuous (with respect to h)

modification that is n-Hélder continuous for all 0 < n < Moreover, w*(t,w) exponentially

(n+n)
attracts all other solutions both in forward and pullback times. The law of w*(t,w) gives the unique

quasi-periodic invariant measure.

CHAPTER 4. CONTRACTION ON THE SPACE OF PROBABILITY

MEASURES

In this chapter, we prove Theorem 3.2, the “uniform fiber-wise” contraction property (3.5) of the
transition operators {73;‘% hthern when acting on P(H). The result can be regarded as an extension
of the Harris-like theorem for infinite dimensional systems first established by Hairer and Mattingly
[41] in the time homogeneous setting, where they proved the existence of a unique invariant measure
that is exponentially mixing under the Wasserstein metric p. The idea behind their result dates

back to the early work of Dobelin [18] and Harris [37] for finite dimensional systems. The proof
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here will be accomplished through a combination of a particular type of irreducibility, a Lyapunov
structure and a gradient estimate on the transition operator that requires an infinite dimensional
Malliavin calculus and a Hérmander-type condition. We first prove these three ingredients through
Sections 4.1-4.3, and then prove the contraction as in Theorem 3.2 in Section 4.4. Note that the
proofs of the Lyapunov structure and gradient estimate are essentially adaptations of the scheme
developed in [40, 41] to our time inhomogeneous setting, while the irreducibility is apparently new
and does not require any condition on the deterministic force other than it being time quasi-periodic
and having certain spatial regularity as in the standing assumption (3.2). In particular, we do not
need the range condition as in [41] and our result in the case when f is time independent verifies
a conjecture made by Hairer and Mattingly [41] (see Remark 1.3) that the spectral gap (as well
as unique ergodicity and exponentially mixing) holds without restrictions on f other than it be
sufficiently smooth.

Recall from (2.11) that ws ¢ 4 (wo) and Py, p(wo) denote the solution of (2.5) with f(¢, x) replaced

by ¥(S5ih,x) with th = h + at and

sup [W(B:h)[| = sup [[W(h)]| = sup [|f(#)I] := [[floo-

teR heTn teR
For n > 0,0 < r < 1, define the metric p, on H weighted by the Lyapunov function V(w) = enllwll?
as in [41],

1
pr(wr,we) = inf / Vi)Wt Y, ws € H, (4.1)
0

where the infimum is taken over all differentiable paths v in H connecting w; and wy. When r = 1

we have p, = p as given in (2.7).

4.1 THE LYAPUNOV STRUCTURE

In this section we prove the following estimates, which show a Lyapunov structure that reveals the

dissipation property of the Navier-Stokes system (2.5).

Proposition 4.1 (The Lyapunov Structure). Let V(w) = exp(n||wl|?), no > 0 be the constant from

(A1) and a(t) = e . For any k > 1, and any n € (0, 2], there is a constant C > 0 such that for

) 2K

any s € R, and (w,h) € H x T", we have

EV*(®q o1rn(w)) < CVED (), (4.2)
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Ep(0, ws,s+4,0(w))" < CVZ*(w), (4.3)
for allt >0 and
BV (g op10(w)) (14 | VOs sr.n(w))E[]) < CVED (w) (4.4)
for every t € [0,1],h € T" and £ € H with ||€]| = 1.

Proof. Inequality (4.2) is a reformulation of (A.1). The estimate (4.3) follows from (A.1). Indeed,

by the definition of p,

Ep(0, w8,s+t,h(w))n < E||w8,s+t,h(w) V" (w&s-l—t,h (w))

< CEV*(ws se.0(w)) < Cexp(2rn|wl]?),

for n < 42, where 7 is from (A.1). Estimate (A.6) shows that for any n > 0, there is a constant

C > 0 such that
s+t 9
9% sawiel < e (s [ oot +Ct).

The estimate (4.4) then follows from (A.1) and (A.2). O

With the help of this proposition, one can show the following lemma on a contraction property

under the metric (4.1) weighted by the Lyapunov function.

Lemma 4.2. Fiz any 0 <19 < 1. For any r € [ro, 1], there are constants o € (0,1) and C,K >0

such that

Epr((I)s,s—i-t,h(u)a (I)s,s-i-t,h(v)) < Cpr(ua U): (45)

Epr(q)s,s-l—n,h(u)a q>s,s+n,h(v)) < U"Pr(U, U) + K, (46)

forany s € R, neN, te0,1], h € T" and u,v € H.

Proof. For any € > 0, there is a path v connecting v and v such that

1
MWMSAVWWMMWWSWWW+a
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Let (1) = @5 5440 (7(7)) for t € [0,1]. Then by (4.4),

1
B, (@5 p00 (1), s gern(v) < B /0 VT (5 () ldr

<& [ VG [ermntm D el

1
<c /0 VO (o)i(n)lldr < Cpr(u,v) + Ce.

The inequality (4.5) then follows since ¢ is arbitrary. Now let R be large enough so that C'V™(! () <

oV (u) for some o € (0,1) and for all w with ||u|| > R. Then
1
Epr(®s,s41.1(w), Pssi1,n(v) < C/O Ve () [5(r)lldr
1
< opr(u,v) + C/O Lg(0) (V) V™ D (1)) 5 (7)lldr + oe

1
< oprlu0) +CVIR) [ Ty (rDOldr+e. @)
Note that if we set ug, vg to be the points where v first enters and last exits the ball Bg(0), then

we have

1 1
/0 I (YDA (D) lldr < /0 L) (Y(ODV (v () A(T)lldT < pr(uo,vo) +&. (4.8)

The second inequality of (4.8) is true since otherwise, one has
1
/0 I 0) ((O)VT (Y (D3 (T ldT = pr(uo, vo) + &,
so that fol V' (v(r)|A(T)||dT > pr(u,v) + € by observing that

1
/ Lge o) (Y (V" (v(m) Y (T)lldT = pr(u, u0) + pr (v, v0),
0
which contradicts the choice of the path (7). Note that by considering the straight line that

connects uy and vy, we have p,(up,v9) < 2RV"(R). Hence

1
| T NI dr < 28V (R) +-= (4.9)

By arbitrariness of &, we conclude from (4.7) and (4.9) that for K = 2CRV"TY(R),

Epr(q)s,s—l—lﬁ(u)v q)s,s—l—l,h(v)) < Upr(% 1)) + K.
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For n > 1, we apply the Markov property. Observe that

E [pr((bs,s—i-n,h(u)v ‘I>s,s+n,h(v))‘~7:s+(n—1)]
=E [IOT((I)s+(n—1),s+n,h(q)s,s+(n—1),h(u))’ (I)s—l-(n—l),s—‘rn,h((I)s,s—‘r(n—l),h(v)))|‘7:8+(n—1)}
< 0pr(Ps sp(n-1),0 (1), Lo sy (n1),n (V) + K,
and
E [Pr(q’s,ern,h(u)a ¢s,s+n,h(v))|~7:s+(n—2)]
<0 (B [pr(®ss(n-2),5+(n—1),0 (Ps s+ (n—2), 2 (1)) P (n=2) 54 (n—1),0 (P 51 (n—2) h (V)| Fst(n—2)] + K)
< UQPr((I)s,an—Z),h(U)a Dy st (n-2)n(v)) + (0 + K.

By iterating the procedure, we obtain that

n—1
Epr (Ps,s4n,n (), Pssnn(v) < 0"pr(u,v) + K Z o’,
j=0
which completes the proof. O

4.2 THE IRREDUCIBILITY

In this section we prove a particular form of irreducibility (slightly stronger than the usual topolog-
ical irreducibility) that concerns the small positive probability of being contraction of the dynamics

on the phase space. It deals with the contraction (3.5) at intermediate scales.

Proposition 4.3 (The Irreducibility). For any R,e,T > 0, and r € (0,1], there exists a > 0 so

that

inf sup I {(w},wy) € H x H : pp(w),wy) <e} > a, (4.10)

1
w w2 ||<R
sl Jlwzfl< FEC(P:,3+T,h6w1 ’P:,3+T,h6w2)

for all s € R,h € T™. Here the metric p, is given by (4.1).

The proof is based on the topological irreducibility (Lemma 4.4) which is a consequence of
the celebrated controllability results of Agrachev and Sarychev [1, 2], and a parabolic regularizing
property (Lemma 4.5) of the Navier-Stokes equations. We first state and prove the two lemmas

and then give the proof of Proposition 4.3 at the end.

The first lemma states that uniformly for the initial positions in any given compact set, the

system has a positive probability to enter into any neighborhood of a given position.
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Lemma 4.4. For any compact set K C H, any §,T > 0, andv € H, there is ag := ao(K,d,T,v) >0

such that

inf B > ap.
wellg,lhe?rn Pocr.n(w, Bs(v)) = ao

Proof. By the well known controllability argument of Agrachev and Sarychev [1, 2] (see also [35]
and Section B.3 in the appendix) and the condition Ay, = H, it follows that for each h € T" the
Navier-Stokes equation (2.5) with the deterministic force f replaced by W¥(S:h) is approximately
controllable in H. Hence it is topologically irreducible, i.e., for all w,v € H, § > 0,7 > 0 there is
e =e(w,v,d,T,h) > 0 such that
Po,1,n1B; 5 (0) (W) = Porn(w, Bsa(v)) = e.
Now let 0 < Ls < 1 be a Lipschitz continuous function on H such that Ls(w) = 1 on Bs/,(v) and
Ls(w) = 0 outside of Bs(v). Then
Po,rnlpsw) (w) = PorpLs(w) =2 Porplp, qw) (w) 2 €.
The Lipschitz continuity of Ls and estimates (A.3) and (A.4) imply that the function
(w, h) — ’Po,T’hL(;(w)

is continuous. Hence on the compact set K x T", it attains the infimum at some (wy, hg), which

implies
inf Pyl > inf  Pornlsw) = Porn L > e(wo, v, 8, T, ho).
s B PO LB 0) (w) > (ot B FOT R s(w) = Po1,nyLs(wo) > (wo,v 0)
The proof is then completed by taking ag = e(wq, v, d, T, hg). O

The second lemma is a result of the parabolic regularizing effect, which states that any given

bounded set has a positive probability to be mapped into a compact set by the solution map.

Lemma 4.5. For any R > 0,7 > 0, there are Ry := R1(R,T) > 0 and a1 := a1(R,R1,T) > 0

such that

. o
f P ( ,Bg, (0 ) > aq,
wEBRl(I(l)LheTn 0.7.h \W R1( )) > a1

where Bgr(0) is the ball in H centered at 0 with radius R, and Eﬁi(o) is the closed ball in Hy

centered at 0 with radius Ry.
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Proof. Let wo+p(wo) be the solution of (2.5) with the deterministic force f replaced by W(5.h). We
eliminate the additive noise by subtracting from (2.5) the following auxiliary Ornstein-Uhlenbeck

process
AV, = vAVidt + GdWy,  V(0) = 0. (4.11)

It is readily seen that the process u; p, := wo ¢, (wo) — V; solves the equation
Ou =vAu— B(K(u+Vy),u+ V) +¥(Bih), ugp = wo. (4.12)

For 6 > 0,7 > 0, consider the event that the d-dimensional Wiener process has small amplitude

on a finite interval

Qr={weQ: |Ww,t) <94, forall te]l0,T]}, (4.13)
where | - | denote the usual norm in R?. Then there exists a; = a1(8,T) such that
P(Q(57T) > a1 > 0. (4.14)

By the properties of stochastic convolutions, one can show that the Ornstein-Uhlenbeck process V;

has the following property on the event ;.

Lemma 4.6. [23] For any 6 > 0,T > 0, there exists a positive deterministic constant 51 such

that es7 — 0 as § — 0 for T' fized, and

sup [|[V(t,w)|; <esr, for all w e Q5. (4.15)
t€[0,T)

Proof. Note that

s+t
‘/S—l-t:/ A(t-i—s TGdW Z/ A(t+s— ngW( )

is the stochastic convolution that solves equation (4.11) with initial condition V(s) = 0. From the

integration by parts formula for the Wiener integral (see for example [63]), we have
d

s+t
Vs—i—t = Z <g¢W¢(s 4 t) o CVAth‘WZ'(S) +/ Z/AeVA(H_S_T)giWi(T)dT>
i=1 s
t
-3 (gz (s+1) — Wi(s)) + / VAT g (Wi(r + 5) — Wi(s)) dr) .
=1 0
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Note that g; € Hy for each 1 <7 < d. Hence on 57, we have
sup |[V(t,w)|l; <CA+T) sup |W(s+t)—W(s)| <C(1+T)d,
te(s,s+T) te(s,s+T]
where the constant C is independent of §,7 and s € R. The lemma then follows by taking

g5 =C(1+T)d and s = 0. O

Return to the proof of Lemma 4.5. Taking H inner product with 2u on both sides of (4.12)
and applying standard estimates on the nonlinear term (see for example [40]), we have (we write u

or u; for uj, for notational simplicity and denote ||¥|| s = suppepn |[¥(R)]])
Oulull> = (vAu,2u) — (B (K (u+ Vi) u+ Vi), 2u) + (U(Bh), 2u)
< —2v|julf = 2(B (KVi, Vi) ,u) — 2(B (Ku, Vi) ,u) + %H‘I’Hio + vful|?
< —vlfullf + CIVelElull + Cllul Vil + %H\IIHZO (4.16)
< C|Valilluel® + C(IVallT + [19]1%)-
Hence the Gronwall’s inequality and Lemma 4.6 yield
t t t
Jual? < JanlPexo ([ WrlEar) ¢ (Wil + 1012 exo (€ [ vilgar) ar
< (ol + 1) (4.17)

for allt € [0,7] and w € Q5 7, where the last constant C' = C(e5 1, T, || V|00, ¥). Using this estimate

and integrating (4.16), we also have on Qs 1,
T T 4
V/O luelidt < o]l +/0 <C||Vt||%HUt|| + Clluel |Vl + VH‘I’H§0> dt < C(JJwol* +1) (4.18)
with constant C' only depending on 57, T, [|V||oo, V.
Differentiating t||u;||? with respect to ¢ and using (4.12) yields
Oc(tlluell?) = llullf + 2t(0pu, —Au)
= |Jul|? — 2tv|ull3 + 2t (B (Ku,u) + B (KV;, Vi) + B (Ku, Vi) + B (KVi,u) — U(Bih), Au) .
It follows from standard estimates on the nonlinear term and interpolation inequalities that
(B (Ku,u), Aw)| < Clluf[[Julls [lullz < Ol el

14
< CW)ull™ + S llull3,
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and
(B KV, V), Au)| < CIVilRllullz < COIVil + Zlul3
(B (Ku, Vo), Au)| < C[Vellaflullillullz < C@)ullFlI VeI + %HUI\%,
(B (KViu), Au)| < OVl llull1|ullz < C)[lull VI + gl!UH%,
(P (Beh), Aw)| < [1¥]oo]lull2 < C) P13, + %HU\!%-
Therefore
Oe(tl|uellF) < llullt + C@E (lull™® + Vel + lulFIVEIT + [1215,) -
Integrating this inequality from 0 to 7', using Lemma 4.6 and estimates (4.17)-(4.18), one has
lur | < C(1+ [|wol*)°,

on Qs 7, where C' depends on €57, T, || V|, v, but is independent of h € T". Hence on Q571 we

have
lwo, 7, (wo) 1 < 2(|lurpllf + 1VrIF) < O+ [lwol'°),
which completes the proof by taking Ry = /C(1 + R'0). O

We are now in a position to give a proof of Proposition 4.3.

Proof of Proposition 4.3. Fix any v € H. For any 6,7 > 0, h € T", and w € Br(0), we have by

the Chapman-Kolmogorov relation, the translation identity (2.12) that

PO,T,h(wv B(S(U)) = / PI Th(ya B5(U))P0 T h(w)dy) = PO T /BTh(y’ B5(U))P0 T h(wa dy)
H 207 120 H 2 L 9

)

It follows from Lemma 4.5 that there are Ry := R;(R,T/2) > 0, and ay := a1(R, R1,T/2) > 0 such

that

. —H;
f P ( B ) > ay.
weBRl(%),he'ﬂ‘” 0,7/2,h \ W Rl( )) > a1

Combining this with Lemma 4.4 with K = Eﬁ; (0), we have the existence of ag := ag(K,9,T,v) >0

such that

inf ,B > inf P ,B P ,d
weBRl(%),heT"PO’T’h(w 5(v)) _weBRl(%),he'Jl‘”/K 0’%’B§h(y (V) 0’%’h(w v)

> aq yeli(%few PO,%,h(% Bs(v)) > apay.
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Therefore by the translation identity (2.12), one has
Ps s+1.n(w, Bs(v)) = Porg.n(w, Bs(v)) > apar, Vw € Br(0),s € R,h € T".

Now for any € > 0, we choose § = m, here V(w) = ellvl® for w € H is the Lyapunov

function from Proposition 4.1. Then Bs(v) := Bs(v) X Bs(v) C {(w}, wh) € H x H|p,(w},wh) < e}.

Hence
inf sup I {(w),wy) € H x H : po(w],wh) < e}
wiw2€Br(0) PEC(P; oz w001 -Pl sz ndus )
> i Pl pOun © Py i pdus (Bs(v))
’l,Ul,’lUQGBR(O) ) ) ) )
= inf Py oprn(wi, Bs(0))Pssirn(wa, Bs(v)) > (agar)?,
’wl,wzeBR(O)
The proof is complete with a = (agar)?. O

4.3 THE GRADIENT ESTIMATE

In this subsection, we will show that the transition operator P,;; has the following gradient

estimate.

Proposition 4.7. Assume Ay, = H. Then for every n > 0 and a > 0 there exists constants

C =C(n,a) > 0 such that

vas,s-i-t,h¢(w)H < Cexp(anwHQ) <\/(Ps,s+t,h|¢’2) (w) + e_at\/(Ps,ert,hHV¢||2) (w)) (4.19)

for some p € (0,1), for every Frechet differentiable function ¢, every w € Hyh € T" s € R and

t > 0. Here C(n,a) does not depend on initial condition (s,w) and ¢.

Proof. The proof is a combination of inequality (4.27), Proposition 4.16 and Proposition 4.17
below. O

The general scheme for the proof of the above gradient inequality is quite standard in the time
homogeneous case after the groundbreaking works [40, 41, 42, 57]. However, there is no known
proof for the time inhomogeneous case in the literature, hence we supply a proof in this section,
using the same arguments as that in the time homogeneous case. We first apply the integration by
parts formula from the theory of Malliavin calculus, to transfer the variation on the initial condition

in a solution to a variation v on the Wiener path. The problem of obtaining estimate (4.19) is then
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reduced to finding an appropriate v with bounded cost to approximately compensate the variation
on the initial condition, so that the error of the two variations in the solution goes to 0 as time

goes to infinity.

The invertibility of the Malliavin matrix is crucial when constructing such a desired control
v. However, it is not easy to verify the invertibility in the infinite dimensional case, hence the
inverse of its Tikhonov regularization is taken into consideration. Moreover, since the noise here
is extremely degenerate, the unstable directions of the system are not directly forced. Hence one
needs an infinite dimensional version of Lie bracket condition A, = H as in Hormander’s theorem
to ensure the propagation of the noise to those unstable directions and obtain a spectral estimate of
the Malliavin matrix to control the dynamics on the determining modes. Since there is no existing
proof of the spectral property of the Malliavin matrix in the time inhomogeneous setting, we give

a proof here.

4.3.1 The Malliavin matrix. In this subsection, we recall several facts about the Malliavin
matrix and give a specific description about the construction of the control v. To introduce the

Malliavin derivative of the solution process, we first consider its linearized equations.

As in [40, 57, the linearized flow J,,,¢ € C ([r,t]; H) N L% ((,t]; H1) is the solution to the
equation

8TJT,r,h’£ = VAJT,r,hg =+ E(ws,r,hy JT,T,h€)7 r>T, JT,T,h§ - fa (420)

for any r > 7 > s and £ € H, where E(u, w) = —B(Ku,w) — B(Kw, u), where wg,j, = ws ,n(wo)

is the solution of (2.5) by replacing the force f(t) with U(5:h), see (2.11).

It is also helpful to consider the time-reversed, H-adjoint U}tl’(')(r) of Jy1n(-) to analyze the
Malliavin matrix. Here we use the notation U, fl’w (r) to emphasize that the time ¢ is the initial time
and ¢ € H is the initial data, and the process Ui’w(r) runs backward in time for s < r < t. It
follows that U,i’“’(r) € C([s,t]; H) N L% ([s,t); Hy) is the unique solution to the backward random
PDE

O UL (r) = —vAURP(r) + B (K, Up?(r)) + C (KURF () wen) s s <7<t

(4.21)
ULP(t) = o.
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Here C (KC(-) ,ws . p) is the adjoint of B (K (-),ws ) determined by the relation
(B (Ku,ws pp),v) = (C (Kv,wsrp),u).

The second derivative K ;) of wg,  with respect to its initial condition is the solution of the

following equation
0K (€,€) = VAK 1 (€,€) + B (wepn, Kran (6,6) + B (Jrpn€', Jrinf)
KT,T,h (57 5/) =

By the variation of constants formula K, (§,¢') is given by

(4.22)

t
Tt h (§ § ) / rthB ( T,T’,h§/7 JT,T‘,hf) dr

Note that the solution ws ¢ p(w, wp) is a functional of the two sided Wiener process via the Ito
map CIDSth : C([s,1],RY) — H with wg g p(w,wp) = <I>Sth (W[&t]), where Wi ;) is the restriction of
the Wiener process on [s, t]. The Cameron-Martin space associated with the Wiener space (2, F, P)
is

CM = {V €12 (R,Rd) L9,V e L2 (R,Rd> L V(0) = 0} :

endowed with the norm [|V[|3,, := [ [0:V (t)|24dt, which is a Hilbert space isometric to CM’ =
L2(R,R%). As in Section 4.1 in [42], for any V € CM, denote the directional derivative of the H

valued random variable wy; , along the direction V' as

wo _ PdWwo
DO,V = lim 5 pWHeV) = @uunW).

e—0 e

which exists and satisfies
t
DOtV = / Jr 1, GV (r)dr. (4.23)

Now for any v € CM’, define V (¢ fo t)dt. Then D"wsyp = DY@}, = DeLY, V is called the
Malliavin derivative of the random variable wgp, in the direction v. Since D"ws,p, is a (random)
bounded linear operator from CM’ to H, by Riesz’s representation theorem, there exists a random

element, Dws ;5 € CM' @ H such that for every v € CM’,

D wsyp = (Dws g hy V)epr = / (Drws ) v(r)dr.
R

The random element Dw,; ) is the Malliavin derivative of ws; s, which can be regarded as a
stochastic process (Dyws 1 1), g With values in Re® H. From equation (4.23), we see that Dywgyp, =

JrinG for r € [s,t] and Dywsyp = 0 for r € R\ [s,#]. The operator D : L?(Q,R) ® H —
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de(Q,}"t, CM') ® H is actually a closed unbounded linear operator, which is called the Malliavin
derivative. Here L2, is the space of L? functions adapted to the filtration JF [42].

For any t > 7 > s, define the random operator A, : CM' — H by

t
Az pnv = (Dwg g p, V) opnr = / JrtnGo(r)dr,

and its adjoint A7, by the relation (Ar;pv,u)m = (v, A7, u)crr- Then the Malliavin matrix is

defined as My, := A; 4 p AL, ;. We have for £ € H,

d t d t
<MT,t,h§7 §> = Z / <Jr,t,hgi) £>2d7' = Z / <gZ7 U]i’g (T)>2 d?", (424)
=17 i=1Y7T

where the second identity is due to the fact that U:L’(')(T) is the adjoint of J;j in H, which has
been proved in [42, 57].

For any v € CM', denote by v, = vl the restriction of v on the interval [r,t]. Set the error
S)“{t,h = Js,t,hf - As,t,hvs,t (4-25)

caused by the infinitesimal variation on the Wiener path W by v that is used to compensate the
variation on the initial condition of the solution process. Applying the integration by parts formula
[59] for the Malliavin derivative, we have for any Fréchet differentiable ¢ : H — R, any initial

condition wg € H and o :=t —5 >0

(VP inp (o). &) = E(V (p(wsen(wo) ). €) = E((Ve) (wernlwo)) Jon)
B( (Vi) (ws0(00)) Asnvss ) + B((76) (ws(10) R 1)
= B(D" g (wesn(w0) ) +B( (V) (wesn(wo)) R

=E (go(wS,t,h(wo)) /: U(r)dW(T)) + E((ch) (ws,t,h(w()))%t,h) (4.26)

o\ 1/2
s(E ) \/ Postanlpl2(wo)

1/2
+ 1/ Passanl V]2 (wo) (El|Resan]?)"

/:Jra v(r)dW(r)

) (4.27)

where we used Holder’s inequality at the last step. Fix [|£|| = 1, where { € H represents the
direction of the variation of the solution on the initial condition. To show the gradient inequality,

we will choose an appropriate random process v with sample paths in CM’ to make sure the
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existence of constant C' > 0 and p € (0, 1), such that

E ‘szJrT v(r)dW (r)| < Cexp(pn|wol]), (4.28)

E [Rgirnl < Ce™T exp(pnl|wol))-
for some a > 0 and all 7 > 0,wg € H. Note once we fixed the initial time s, the values of v before
s do not affect the gradient estimate (4.27). Hence we will set v(r) = 0 for r < s and mainly focus
on the construction of v after the initial time s.

The proof of Proposition 4.7 is then reduced to finding such an appropriate control v, which
involves the inverse of the Malliavin matrix. However, it is unclear if the Malliavin matrix is
invertible or not in the present infinite dimensional setting, therefore we consider its Tikhonov
regularization Mm’h := My 5 + B for small constant 3 > 0, which is invertible. For integer values

n > 0, define J,, = Join stntihy An = Asin stntihy Mn = AL A}, M, = 3+ M,. Note that we

omit the dependence on h for notational simplicity. The process v is then recursively defined as

o(r) = SHMQ;L1J27L£RS+QTL forre[s+2n,s+2n+1),n >0, (4.20)
0 forre[s+2n+1,s+2n+2),n >0,
where R, = &, and Ry = Jy ;1 5§ — As 1 nvs¢- The definition is not circular since the construction of
v(r) for r € [s+ 2n, s 4+ 2n + 2] only requires the knowledge of M9y, which depends only on v(r)
for r € [s, s+ 2n]. For instance, for known Ry = &£, we obtain the definition of v(r) for r € [s, s + 2]
from formula (4.29), and Ry = Js ¢ p§ — As it hvsep for t € [s,s+2]. Then we use Ry4o to construct
v(r) for r € [s + 2, s + 4] and iterate this procedure.

In what follows we first prove a spectral property on the Malliavin matrix in Section 4.3.2 and

then give the desired estimates as in (4.28) in Section 4.3.3.

4.3.2 A Spectral Property of The Malliavin Matrix. We need the following important
result about the spectral property of the Malliavin matrix over the unstable modes to have the
desired controls on the dynamics. The same result in the time homogeneous setting has been
obtained in [7, 40, 42, 57]. Since there is no known proof for a time inhomogeneous system such as

(2.5), we supply a proof here.

Theorem 4.8. Assume Ao = H. For any p > 1 , positive a,n,n, and any orthogonal projection

I1 : H — H on a finite dimensional subspace of H, there exist C = C(p,n,n,v,11, f,B) and
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g0 = eo(n, o, I1, f, B) such that

P (My o, ) < ellg]?) < CPexp (1 |lwol?)

holds for every (random) vector ¢ € H satisfying ||llp| > a| ¢l almost surely, for every e €

(0,e0),s € R, and for every wo € H, h € T™.

The proof is based on the approach in Section 6 of [42] along with some estimates on the solution
of the Navier-Stokes equation (2.5) and its linearization. We first prove several lemmas and then
give the proof of the theorem at the end.

Fixing T' > 0, we will consider the problem in the interval [s, s + T']. To avoid the singularities
at the initial and terminal times, we introduce I5 := [s + %, s+ T — 9], where 6 = %5’” for0<e <1
and some r > 0 that will be determined later. Also for a € (0,1), and for a given orthogonal

projection Il : H — H, we define S, C H by

Sa = {p € H\{0} : [[Ilp] = afeo|}-
The following estimates about the process U ,tl"p in the time homogeneous case have been proved in
[42]. Since the setting is a bit different here due to time inhomogeneity, we give the proof below

for the reader’s convenience.

Lemma 4.9. For any 6 € (0,7/2], p> 0,n > 0, one has the bound

E sup HU,‘:JFT’W(S%—T— ) — Py

N
lell<t

< C6 exp (pnljwoll?)

2p
E sup HU,‘:JFT’SD(S +T —90)— goH . < CéP exp (p17||w0||2) .
lell<1 -

Proof. We first reverse the time of the process by setting ws, = wsry2s—rn(wo), and U, =

U ZJFT’“’(T +2s — 7). Then U, solves the parabolic equation

0,.U, = vAU, + B (K;U_]S’T, UT) -C (ICUT,U_]S’T) , s<r<s+T,
Us = .

It then follows from the variation of constant formula that,
s+9
Uy = ™D+ / A6 [B (K, ) — C (KT, )] dr.
Since both ||B (K, U,) || and ||C (KU,, s, ) || are bounded by C/||ws||1]|Uy|]1, one has

_ s+6
[ous— e < s el [ 10 e
T+s—0<r<s+T s
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To estimate ||U, |1, set ¢ = ||U||? +v(r —s)||U.||?. As in the proof of inequality (A.16), one obtains

from the equation for U, that

_ C s+T
101 < S lellexo ([ allunliar). (4.30)

where C' is a constant depending on v,7,T. Now it follows from the estimate (A.2) that

_ 2p
Ugis — e‘”’%” < OO exp (pn|lwoll?)

E sup
llell<1

which is the first inequality of Lemma (4.9). The second inequality follows from the first one and

the following fact

L IR B R TR

|Osts = el < |
The next lemma allows one to transfer the properties of ¢ back from the terminal time.

Lemma 4.10. Fix any orthogonal projection 11 of H onto a finite dimensional subspace of H
spanned by elements of Hy. There exists a constant ¢ € (0,1) such that for every r > 0 and every

a > 0, the event
Qs = {w €Q:pe Sy = UTTHT +5—0) € Suq and |IIUT(T + 5 — §)| > %H(p”}

satisfies P (QfS H) < Cexp (77||w0||2) eP for every p > 1. Note that here C' depends on 1/r.
Proof. Since we have proved Lemma 4.9, this is a reformulation of Lemma 6.15 in [42]. O

Since the randomness spreads over the state space through the nonlinear term, we define
recursively the following sets {Ax}72, formed by the symmetrized nonlinear term B(u,w) =
—B(Ku,w) — B(Kw,u). Set A1 ={gx: 1 <k <d}, and A1 = Ay U {E(h,gl) che Ak, g € A}
Also define Ay, = span(Ug>14y). Note that each Ay here, consisting of constant vector fields in
H, is a subset of the k-th Hormander bracket defined in Section 6 of [42]. To each A, we associate
a quadratic form Q, by (¢, Qnp) = D 1ca, (¥ h)2. Just as in [7, 42, 57], it is typical to apply
arguments that use local time regularity to replace the analysis of non-adapted processes. Hence
for 6 € (0,1] we define the following (semi-)norm for functions g : Iy — H by

nge = sup Hg(t)_g(T)HS
$§ T

and [|goc.s == sup [l
rt€ls ‘t—ﬂe ’ °® tels H ’s

Also for g : I — R, we use the following notation for the corresponding norms

t) —qglr
gl = sup g, lgllo = sup LO=9DI
tels riels [t —r|
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The following lemma is the key to prove theorem 4.8. The proof requires a technical result
which roughly states that two distinct monomials in a Wiener polynomial cannot cancel each other

out [7, 42, 57].

Lemma 4.11. For every p > 1 and integer N > 0, there exist 0 < ey < 1,ry > 0,py > 0 and

gy = qn(p) > 0 such that, provided that r < ry, the event

Qe = {w € Q: {p, Mosyrnp) < ellol? = sup sup|(U;(1), )| < spanou}

heApn tels

satisfies

P ( g,N) < CQN €xp (77Hw0H2) 5p7
for e € (0,en] and n € (0, ).

Proof. The proof proceeds by induction on N. It suffices to show the result for ¢ with unit norm
loll = 1. We first prove that the result is true for A;. Assume that (¢, M, o7 np) < €, then by

representation (4.24), one has

2
sup / <gk,U,‘:+T’¢(7)> dr < e.
1<k<d JI;

Setting R(t) = f;rg <gk, U2+T’“0(T)> dr, Lemma 6.14 in [42] implies that
2

1

sup <gk, UZ+T7<P(t)> = ||0;R|| 0o < 4||R||co max { 7R

tels

1 1
LN
101 1
< Crmax {s%wll(?tR!f } |
where C7 = 4 max {1, %, (%)1/4}. It follows from Lemma E.1 of [57] that

%)
co,1 ) -

’ T,
105400 < € (1 + s, liZes + 10T

From estimate (4.30), Lemma A.1, we have that for any p’ > 1,

/ / 4}717 / JrT, / o
E|oRIT < Bllgel” U IE o < CEIUZ 1T < Cexp (nllwo]*) 577

Therefore by the Markov inequality and recalling that § = %ET, one has for p > 0,a > 0,
P (||, > ae?) =P (||atR|yf’ > ap/e—ﬁp’)
<a VIE|OR|Y < Cla,p) exp (n]wol?) &7V
Then on a set 55,1 C Q, such that P(ﬁgl) < C(a, p') exp (n]jwo||?) PP =17 we have

10:R||1 < as™?.
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Now choose a = C’;Q, p = i, and r| = %ﬁ. Then provided r < rq, for any p > 1, by choosing

/I _ _D
P =55

one has on () 1,

I\‘:M—t

sup gy, U3 7(1)) < Crmax (%, a3et ) < e
tels
and P(ﬁgl) < Cexp (?7||w0||2) eP for € € (0,¢1], where g1 = 058/3. Observe that the event set (25,1

does not depend on the choice of g, € Ay and it is contained in €. ;1. So

P(QC,) < P(QS)) < Cexp (n]wo|?) €

Hence the proof for the base case is complete with py =r; =1/8,¢q1 = p/r1 and g1 = C;S/?’.

The inductive step is accomplished through the following lemma.

Lemma 4.12. For N > 2, fir g € An_1, and suppose that q :== pn_1 has been given. Then for

p > 1, provided r < ry, the event

QN = { sup
tels

U, )| < e = sup sup (U7, Blg, 1)) < spw}
1<k<dtels

satisfies P(S~2§N) < Cyy exp (n|lwol|?) e for e € (0,en). Here py = q/24, rn = q/12, qn = 12p/q
and en = 0;8/(7(1) with Cr = 4max {4/T,1}.

Proof. Let R(t) = 9,(US™%(t),g). Then Lemma 6.14 in [42] (with o = 1/3) implies that

4, 513/4 PN
1Blloo < 4max{|l|5q 54HR||1?3} < Crmax {8q,64\|R||1;3}.

Next we show that || R||; 3 has a bounded expectation. As in [42], we consider the process

d

Vst = Wern — Y g (Wi(t) = Wi(s)), t=>s,
k=1

since it has more time regularity. Note

d
R(t) = <—A9 + B(vs1,8) + Y Blgr, 8) (Wi(t) — Wi(s)), U2+T’¢(t)> :
=1

And recall that we assumed elements of {%}%;1 are smooth, so each g has bounded Hy norm for

any 6. Observe that

|(Bwna U0, < CHO o (onsalloes + lsenliyan)

d
< CIUZ 10 (Ist,t,hHoo,l + 3 gkl Wlloo + Hatvs,t,hHoo,l)
k=1

<C]U;+T¢H1o<

3+Z||Wk||2 ) (4.31)
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for constant C' depending on ||g||2, B1 and || f||co,1 = supser ||[¥(5:h)||1, where we used the fact that
100vs. 10|00t = [[Awsp.n — B(Kwg g h, s i.n) + Y(Bth) | co,1
<N ws ¢ hll00,3 + Cst,t,hHgo,?) + | fllooy < C (1 + st,t,hngo,?)) .
For other terms in the expression of R(t), one has

s+T, s+T,
(=20, Uy ™) l1ys < ClIUL 1,0, (4.32)

d
s+T,
< CY Wallyslluz ™10 (4.33)
1/3 k=1

and
d
H <Z B(ge, 8) (Wi(t) — Wi(s)). Ui*T*"<t>>
k=1

Therefore one obtains

d d
+T,
IRll1/3 < ClIU,™ # o <1 + [[ws e pll5e3 + Z W%, + Z !!Wk!!f/:s) :
k=1 k=1

From the proof of Lemma 7.12 in [57], we know that E|[W}[|d < C(T,~) forally > 1 and a € [0, 3).
This fact, together with the estimates for the solution from Lemma A.1, implies that for any p’ > 1,

a>0andp >0,
P (| Rllys > as™7) < C(',a) exp (nlwol®) 7' < Cof,a) exp (ilwl|?) 77"
Therefore on a set ﬁgN,l C €, such that P(ngN’l) < Cexp (n]lwol)?) ' ~P'" e have
IR1/3 < ac™P.

Now choose py, Ty and ey as stated in the Lemma and let p = ¢/6, a = 0;4/3. Then on the set

Q. N1, we have
| R||co < Crmax {Eq,ag&‘%} < ek,
for all € € (0,en]. Note that o and ey are determined when taking the maximum. Observing that

. / _ p
for any p > 1, provided r < ry, we can take p’ = 5o » S0 that

P(Qf v 1) < Cyy exp (nljwol?) P

Denote Rg = <—Ag + E(v37t,h,g),U2+T"p(t)> and Ry = <§(gk,g),U;+T’“"(t)> for k=1,2,---.d,
which are the coefficients of the Wiener polynomial R(t), where the Wiener process W is the shift

of the original two sided Wiener process as in (2.4), i.e.,

W(r)=W(r+s)—W(s) = (Osw)(r), r>0,

40



where 65 is the Wiener shift as defined in (2.14). Then the technical Theorem 7.1 from [42] implies

that on a set ﬁs,Ng C €, one has

either sup ||R/,€HOO qu/24’
IR||oo < e%/8 = 0<k<d
or sup ”RkHl > 8—q/727
0<k<d

and P(ﬁg N72) < CeP, where C depends only on p and the events §~25, ~,2 depends on the processes
Ry only through the value of the highest degree of the Wiener polynomial, which is 1 here. The
Markov inequality and the estimates (4.31)-(4.33) imply that there is an event (257 N3, on which

| Re|ly < e=%/7 for each k, and
P( v 3) < CP (IR = e7) < Cexp (i]lwol?)

Now observe that ﬂg’zl QE,NJ- C QE,N, hence

3
P(Qf ) <) PO ;) < Cexp (nl|wol®) €.
i=1

This completes the proof of the induction step. ]
The proof of Lemma 4.11 is then complete. O

Proof of Theorem 4.8. Now we give a proof of Theorem 4.8 by combining the above lemmas. Since
Ao = H, by Lemma 8.3 in [42], for any fixed finite dimensional projection II, there exists N > 0 (
N depends on the projection II, so that py,7n,en depends on II) such that for each a > 0, there
exists a constant A, > 0, such that for every n > N,

inf [{p, On)|

> Ae.
peSa |2 =

On the other hand, it follows from Lemma 4.10 and Lemma 4.11 that there exist constants

PN,TN,EN,c > 0 such that for every a > 0, on the set Q. n (€511, the condition

p e Sa and <907 Ms,s+T7h90> < 5H§0H2

implies that
s+Typ s+Typ a
U, (I'+s5—9) € Sea, |HU, (T+s—=90)| = EHSDH,

and  sup sup <U;+T’w(t),h>‘ < ePVlel,

heAn tels

and P (Q;NUQE’H) < Cexp (n||wol|?) e, for any € € (0,ex) and p > 1. Then it follows that on

41



the set Q. v ()11, one has

%”SOH <|TULTAT + 5 = 6)[| < CAL? sup (UTHH(T + 5 — 6),h) < CALL e [|g].
heAn

This in turn shows that on Q. x (" Qs.11, (9, Mssirne) < €ll¢||? and ¢ € S, implies that

«
§<C€pN,

which is not true for € < g := min {EN, (%)Up}v}.

Hence P ((M; s11n, ) < €l|p]|?) < CePexp (77 ||w0||2) for ¢ € S,. O

4.3.3 Estimate of The Error R and The Control v. Now it remains to check (4.28). This
will be accomplished through Proposition 4.16 and Proposition 4.17. We first establish several

lemmas. Recall that the error SR and control v, as well as related quantities have been given when

defining (4.29).

The following lemma is a version of the well known Foias—Prodi estimate. It shows that the
linearized system of equation (2.5) has only a finite number of unstable directions along the low
modes. The proof of the asymptotic regularizing inequality (4.19) relies on an estimate of the

spectrum of the Malliavin matrix on such determining modes.

Lemma 4.13. For any constants p > 1,T,v,n > 0, there exists an orthogonal projection my :=

me(p, T,7v,n) onto a finite dimensional subspace of H such that

E|(1 = m0) Jossrall? < vexp (nllwol?),

E | Jysma (1= m)lI” < vexp (n]lwoll)

for everywg € H, s ¢ R and h € T".

(4.34)

Proof. Let {\,} be the eigenvalues of —A associated with (2.5), and Iy the projection onto the
subspace of H spanned by the first NV eigenfunctions. Let H]lv =1 —1IIy. Since HH]J\-]J&SJFTJLEH <

+ 1 s,s+1€ll, from bound (A.16) for the linearization flow and (A.2), we obtain

P 1
E |5 Jsizn| < 7B I ssimalll < vexp (nlwol?).

for any v > 0, n € (0,19] by choosing N sufficiently large, where 7y is from Lemma A.1. It is
readily seen that the inequality still holds for n > 7y hence is true for any n > 0.

It follows from Proposition 6.1 in [13] that

1B (ws s Tsri)ll-1/4 < sl Tsrnéll + lwsrplln | Tsrné]l (4.35)
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Denote &y = IIx¢. From inequality (4.35), equation (4.20) and using the variation of constant

formula, and the analyticity of e'®, we have that

s sernénl = |2 + / T Bwy e, Ty )dr
S

< "By + C / (54t — 1) YA Blws s Jorin) |1 jadr

s+t
<eVPNHLE| 4 C sup C’(r)/ (s+t— 7")_1/4 (r— s)*l/er
re€(s,s+7] s

< eV |g|| +tYAC sup  C(r), (4.36)
r€(s,s+T]

where C(r) = (||wsrnll| Ts.rn&ll1 + | Tsrnélllwsrnlll) (r — s)1/2. Tt then follows from the estimate
(A.16), (A.2), (A.6) and (A.8) from Lemma A.1 that there exists a constant C' > 0 independent of

s, such that
sup C(r) < Cexp (nl|woll?) . (4.37)
re(s,s+T)
Hence for every p > 1,7 > 0,7 > 0, by first choosing sufficiently small £ > 0 and then choosing

sufficiently large N, we have by (4.36) and (A.6), (A.2) that
1/2
Bl s o2l 1 < (Ell st [ PEI s %) < vexp (n o)

The proof is complete by setting w, = Il for a large enough N. O

The following lemma gives a quantitative control of the error between the Malliavin matrix and

its regularization.

Lemma 4.14. Fix £ € H and set

¢ =B(B+ M) " Joé.

Then for any constants p > 1, v,n > 0 and every finite dimensional orthogonal projector mwy, there

exists a small By := Po(p,7y,n) > 0 such that for every 5 € (0, Bol,
E|mC|” < vexp (nlwol®) 1]

Proof. For a > 0, define A, := {w € Q : ||m(| (w) > a|[([[(w)}. Let (4(w) = ((w)la, (w) and

(a(w) = ((w) = (a(w) = ¢(w)Lac (w), where I4 is the characteristic function of the set A. Since
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1B(B + Mp)~t| < 1, it follows from estimates (A.2) and (A.6) in Lemma A.1 that
E||meCa[” < a”EIICI” < o”E |lJog]l” < F exp (nlwol®) €] (4.38)
by choosing « sufficiently small. Fix such an . We also have
(Gas Moa) < (G, MoC) < (G, (Mo+B)€) = (B (Mo + B)™" o€, BJa€ ) < 81 o€

By Theorem 4.8, we know that for every p > 1 and « > 0, there exists a constant C' and ¢y such

that

P (Moo o) < £[IGall*) < Ce” exp (1 o)

holds for every wy € H and every € € (0,£p). Therefore

2
’ <H|J§:£H||2 > f) =P (<M0Ca»Ca> <€ ||CaH2> < Celexp (77 ||w0”2) '

Choosing 3 = 2, and noting IIHiTEHII < 1, we find that

2p 2p » »
. (II‘f:£|’||2p> =F <|||§:g‘|y\2p ~ fp) + 57 < Ceexp (n wol?) (4.39)

Note that

E||mecall” < BiGall” < \/E (1Gall® 1E11727) B 11 Jog

Then combining this with (A.6) from Lemma A.1 and (4.39), it follows that

Blmecall” < gerlol g (4.40)
by choosing ¢ sufficiently small, which in turn gives the desired Fy. The lemma then follows from
(4.38) and (4.40) by observing that E ||m(||” = E ||mlal” + E [|meCa||. O
Remark. By the Markov property in its generalized form (see for example Theorem 9.18 in [23]),
it follows from Lemma 4.14 that for each positive integer n and ( = g (8 + ]\4”)_1 Jn&, one has

2
E (meClP | Forn) < yerllvnsentllje)r.

Lemma 4.15. For any constants v,n > 0 and p > 1, there exists a constant By := PBo(p,7vy,n) > 0
such that whenever 0 < 8 < By, we have

E (|Rsramin ||” | Foron) < ’Yenst’s“”’hH2 [Rst2n]”, P-as.

Proof. The proof is mainly based on Lemma 4.14 and Lemma 4.13. Let { = ﬁ]g;nljgniﬁs_s_gn.
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Observe that

S)%s—"-Z(n—‘,-l) = J2n+1%s+2n+1 = J2n+1€- (4.41)
Also note that ||3M;, '] < 1 and R,y9, is Feyon measurable. Hence by the estimate (A.6) in
Lemma A.1 and the Markov property, one has

2
E ([CI7 | Fosan) < [Roronl” E (| Jan]l? | Foron) < Cedllosseannll™ oz o7 (4.42)

Applying Lemma 4.13, Holder’s inequality and estimate (4.42), it follows that there exists a pro-

jection m; on a finite dimensional subspace of H such that

E ([ Jan+1 (1 = m) C[1” | Foran) < ¢E (Il2ns1 (1 = w17 | Forzn ) B (1617 | Foran)
< 5e8llwssiznnll” (CegHvaSHthQ IR, +2n”p) (4.43)
2
< ,-YeW’|ws,s+2n,hH H%S+2HHP_ (4.44)

From Lemma 4.14 and the Markov property, it follows that for an arbitrarily small 4, one can

choose f sufficiently small such that
| 2
E ([ meC|I” | Fosan) < Fellomssanll o7 o7

Again applying Holder’s inequality and the estimate (A.6) on the Jacobian Ja,41, one can deduce

that for any v > 0,
2
E (|| Jans1meCl1P | Foran) < yeleesnl 9t o |7 (4.45)
by choosing [ sufficiently small. The proof is then complete by combining (4.41), (4.43) and

(4.45). O

The following result gives a desired estimate on the error between the variations on the initial

condition and that on the Wiener path.

Proposition 4.16. There is p € (0,1) such that for any n > 0 and a > 0 there are constants
C =C(n,a,p), so that

1/2 _
(BIIR1e]2) " < Cexplpn]wo|2)e",
foralls € R and t > 0.
Proof. The proof is based on Lemma 4.15, Lemma A.1 and an iteration procedure. Let C, =

10
%, where we set C,, = 0 if R4, = 0. Note that | Reon]||'" = Hivz_ol C,, since |R;|| =
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€]l = 1. Also one observes that HBM{;H < 1, and ||Reroniz] < HJ2”+1BM2_”1J27L

[Rston| in
view of (4.41). So by the estimate (A.6) on the Jacobian from Lemma A.1, it follows that for every

1 > 0, there exists a constant C' := C(n,v) such that

10 10 10 s+2n+2
< a1 | o] ° < exp <77 /
S

Cn < HJQn-&-lﬁMQ_nlJZn

[ws,rnll? dr + C) P —as.
+2n

(4.46)
Now define for 1, R > 0,

einR if ”ws,s—l—Qn,hH2 > 2R7
Cn R =

)

e"™C,,  otherwise.

Note that both (), and (), r are Fsy2,42 measurable. We denote
Qp 1= {w e Q: wssannl® = 2R}

and Qg its complement. The probabilities of theses events could depend on the fixed initial time
s and parameter h € T, but this dependency will be eliminated when we take expectation later.

It follows from Lemma 4.15 that for every R > n~!, there is 8 > 0 making ~ sufficiently small
such that

E (0721,1% | ‘Fs+2n) =E (HQR€_277R + HQRGQHRCTQL } .F3+2n) = HQR€_277R + HQRGQWRE (CEL ‘ Fs+2n)

1
<Tge 2™ 4 HQR764’7R < 2’ P —as. (4.47)

It now follows from the definition of ), and inequality (4.46) that

s+2n+2 5 9
Cp < Copesp (77 / s nll2 dr + 1 [ s 43mn]2 + C — 77R> L P—as.
s+2n

Therefore by the Cauchy-Schwarz inequality,
N-1 N—-1 N-1
H Cp < H CiR—i— H exp (277/
n=0 n=0 n=0 s

N-1 N-1
< H C,%}R + exp <477 Z st’5+2n7h||2 +2N (C — nR))

n=0

s+2n+2

s dr + 2 s s 202 4 2C — m)
+2n

n=0
s+2N
+ exp (477/ stth? dr +2N (C — nR)) . (4.48)

Now from inequality (4.47) one has

N-1
E (H C2p
n=0

N

N—-2

2
H Chor P—as.
n=0

]:s+2(N—1)> <

46



Taking conditional expectation repeatedly, one obtains
N-1 1
E (H C,?L’R> <on (4.49)
n=0
Fix n > 0 such that n < min{4nov, 371 }. Then the bounds from inequalities (A.2) and (A.5) imply
that
Eexp (47 [N wypll} dr + 2N (€ = R)) < Cexp (4= fuo|* + 2N(C = nR))

Eexp (47 00 s ssonnl® +2N (C = nR)) < exp (4an uwo||* + N (v +2C - 20R) ).

Choose R sufficiently large such that these two terms satisfy the desired bounds. Then choose

(4.50)

sufficiently small so that the estimate (4.49) holds and hence by (4.48)-(4.50) we have

Cexp (77 HonQ)

B [%Ron] £ ——y

(4.51)
for every N € N.
Note that for ¢ € [2n,2n + 1), one has (we omit the dependence on h € T™ for notational
simplicity)
Reyt = Js+2n,s+th,s+2n€ - As,s—l—tvs,s—l—t

= s+2n,s+tms+2n + Js+2n,s+tAs,s+2nUs,s+2n - As,s+tvs,s+t

= s+2n,s+t9%s+2n + As,s—&-t”s,s-{—t - A5+2n,s+tvs+2n,s+t - As,s—i—tvs,s—‘rt

= s+2n,s+t9{s+2n - As+2n,s+tvs+2n,s+t-

Hence by the definition of v as in (4.29), and the fact that HA;nM{an < 712, we have that
”%s-l—tH S ||Js+2n,s+t9{s+2nH + ||A5+2n,s+t'vs+2n,s+t”

<O (14 swp s ) [Resonll- (4.52)
TE[s+2n,5+1]

And for t € 2n+1,2n + 2), we have

Rett = Js+2n,s+t<]s,s+2n£ - As,ertUs,ert
= s+2n+1,s+2n+2js,s+2n+1§ - As,s+tvs,s+t = Js+2n+1,s+tm3+2n+1'

Note that ||Rston+1ll = HBMQ_nlJ?n%s—i-QnH < || J2nl[[Rs+2nl|. Hence

[Rstt]| < sup 7, s+t 1| Rs+2n+1 ]l < sup ||Jf,s+t||2||ms+2n+1H- (4.53)
TE[s+2n+1,5+1] TE[s+2n,54]

Combining the above inequalities (4.52) and (4.53) with estimates (A.2), (A.6) and inequality
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(4.51), one has

1/2 Y
(BIRel?) < Cexp (pnllwo]?) e
for some p € (0,1) and all ¢ > 0. O

The following result shows that the cost of the variation v on the Wiener path can be bounded.

Since the proof is the same as that in [40] once we obtain the estimate (4.51), we omit it here.

Proposition 4.17. There is p € (0,1) such that for any n > 0, there exists a constant C =

C(f,Bo,n,v,p) so that for all t > 0,

/:th v(r)dW (r)

2
E

C 2 — :
< ?ePﬁHon Z <E ||9;{8+2n”10> ‘
n=0

As a byproduct, we have the following asymptotic strong Feller property. Note that the constant
(' is independent of the initial time s compared with the aymptotic strong Feller property proposed

in [16].

Corollary 4.18. Under the same condition as in Proposition 4.7, with t, = 2n and 6, = 27", we

have some ny > 0, such that for n € (0,n0], there is a constant C = C(n) > 0 such that

IVPssttanp(w)l < Cexplnllwl]) ([#lloc + 6nllVeolloo)

forallp € CH(H), se R, ne N andw € H, h € T".
Proof. The inequality follows by (4.26), estimate (4.51) and Proposition 4.17. O

4.4 PROOF OF THEOREM 3.2

As in [41], to prove Theorem 3.2, we use a metric d on H that is equivalent to p but easier to
handle with the estimates from previous subsections. Fix any rg > 0 as in the Lyapunov structure
in Proposition 4.1, and p, is the metric defined as in (4.1). For constants r € [rg,1), § > 0 and
B € (0,1), the metric d is defined as

pr(wi, w2)

d(wl, wg) = (1 A 5

> + Bp(wy, we), (4.54)

which is equivalent to p since Bp(wy, we) < d(wi,ws) < (671 4 B)p(wy, wa).
We first give a lemma that can reduce the contraction (3.5) to a relatively simpler case. The first

part of the lemma allows us to extend the contraction of the transition operator on H (embedded in
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P(H)) to a contraction on P(H). And the second part asserts that one can obtain the contraction

for all times once the transition operator is a contraction at a particular time.
Lemma 4.19. We have

(i) For s € R,t >0, and any given distance d on H, if d(P; 4 0w, Py gy pOws) < ad(wi, w2),

for any wi,wy € H, then d(P; 4 i1, Py ph2) < ad(p, p2) for any pn, po € P(H).

(ii) If there are N € N, a € (0,1), such that for any wi,wy € H, r € [ro,1] and s € R,

Pr(P; oy N nOwis Pi gy N p0uwi) < apr(wi,we). Then there are C > 0,7y > 0 such that

Pr(Pharenbns Prgpeniz) < Ce " prpn, pa),

for any t > 0.

Proof. Fix s € R, h € T" and t > 0. By Theorem 4.4.3 from [49] on the existence of optimal

couplings for probability kernels, it follows that for the transition probability kernel
Pssitn(c,-) : Hx B(H) = R,
there is an optimal coupling kernel () in the sense that
Q:(HxH)x (B(H)®B(H)) — R,

is a probability kernel on (H x H,B(H) ® B(H)) such that for every (wi,w2) € HxH, Q((w1,w2),-)

is an optimal coupling of the transition probabilities 73; s +t,h(5w1 and 73;"’ s +t,h5w2:

A(P; stt.h0w1s Py st h0ws) = inf/ d(u, v)p(dudv) 2/ d(u, v)Q((w1,w2), dudv), (4.55)
T T reC Jax g HxH

where C = C( ;",S +t,h5w1’73:,s +t,h5w2) is the set of all couplings of the transition probabilities

* *
P ,s+t,h5w1 and 7357S+t7h6w2.

S

Define the operator Py acting on By(H x H) by

Podlurvun) = [ ou0)Q((wn, wa), dud),
HxH
which induces an operator P} on P(H x H) by duality, Pju(A x B) = S @((w1,w2), A %

B)u(dwidws). One can verify that if 4 is a coupling of i1, pa, then Pju is a coupling of Py,
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and Pj,, ,p2. Suppose ji. is an optimal coupling of u1, u2. Hence by (4.55),
d(P:,sH,hMlaP;ert,hm) = . inf ) / d(u,v)p(dudv) < / d(u,v)Péu*(dudU)
“EC(Ps,ert,h“l7Ps,s+t,h/‘2) HxH HxH

= / / d(u7U)Q((wlyw2),dUd’U),U,*(d’U)1dw2)
HxH JHxH

= / d(P:,s+t,h6w1 9 P:73+t7h5w2)/14* (dw1 dwg)
HxH

< a/ d(wy, wa) ps (dwidwy) = ad(py, p2).
HxH
This completes the proof for the first part of the lemma. From Lemma 4.2, one has
Pr(Ps srtnOuwrs Ps srinOuws) < Epr(Pssqen(wi), s satn(w2)) < Cpr(wr, wa),

for any s € R and t € [0, 1]. Observe that

*

* * _ * * *
Pr (Ps,s—l—Q,héwl ’ Ps,s+2,h5w2) = Pr (Ps+1,s+2,hps,s+1,h5w1 ’ PS+1,S+2,hPS7S+1,h5w2)

< CpT(P:,s+l,h5w17P:,s—i-l,h(swz) < CQPT(whw?)'
So by iteration we have for any n € N,
Pr (P;k,s—&-n,h(swl ) P:,s+n,h6w2) < C"pr (w1, wa).

Now for any 0 <t < N, we can write t = k + [ for a unique integer k£ > 0 such that £k < N and

B € [0,1). Therefore
Pr(Pi oitn0wrs Prorindun) = Pr (PisgsrsinnPrstpnowns PiysstprbnPesipndws) < CN T pr(wi,wo).
Hence for any v > 0, choosing C = CN+1eN , we have

(Pt nduns Pisrendus) < Ce™Vpp(wr, wa), (4.56)
while for ¢ > N, one has t = kN + 3, where £ € N, and 0 < 8 < N. By assumption,
Pr(Ps oy N pOwis Py gpnnduwi) < apr(wi, we) for all s € R. So for any k € N, by iteration,

Pr (p;k,erkN,h(swl ) P:,s+kN,h5w1) < akpr(wla wa). (4.57)
It then follows from inequality (4.56), (4.57) and the first part of Lemma 4.19 that

PT(P:,ert,hdm ) P:,s+t,h5w2) = Pr (P:+ﬁ,s+,8+kN,hP:,s+B,h5101 ) P:+,8,s+ﬁ+kN,h7D:,s+B,h6w2)

* * =
< 0" pr(PE o g nOuwns Prgrpnduws) < a & CNTlp(wy,ws))]

s

< Ce " p,(wi,ws),

for appropriate constants C,~ > 0. The proof is then complete by invoking again the first part of
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Lemma 4.19 . O

The irreducibility, Lyapunov structure and gradient inequality give us the contractions on the
state space at different scales. This fact is summarized in the following lemmas. Lemma 4.20
deals with those points that are far apart, where the contraction is guaranteed by the Lyapunov
structure. The gradient inequality and Lyapunov structure give the contraction at small scales
in Lemma 4.21. And the contraction of the intermediate scale in Lemma 4.22 is given by the
irreducibility and Lyapunov structure.

The proof for the lemmas is almost the same as that in [41] since we obtain the irreducibility,
Lyapunov structure and the gradient inequality that are uniform in the initial time and h € T" in
the previous subsections. We still give the proof here for completeness. Recall that the metric d is

defined in (4.54), which depends on §, 5 and r.
Lemma 4.20. There is a constant L > 0 such that for any 6 > 0, g € (0,1) and r € [ro,1), there
is aq € (0,1) such that

p(wi,wa) > L . .
= d (Ps,ern,hé’LUl ) ,Ps,ern,h(st) < ald(wl? w2)7
pT‘(wla ’UJQ) Z o

for alln € N.
Proof. By Lemma 4.2, we know that there are constants o € (0,1) and K > 0 such that for any
w1, wy with p(wy,we) > L, we have
Ep(®s,s1nn(w1), Ps synn(ws)) < a”plwr,wz) + K < (a+ K/L)p(wy, we).
Choose L large such that o := a+ K/L € (0,1). Then
d (P} g innOwis Prsinnluws) < Bd(®g sppnn(wi), s spnn(ws))
<1+ BEp(Ps s4n,n(w1), Ps snn(w2)) < 1+ agBp(wr, ws).

Since p,(w1,wz) > 0, by definition of the metric d, one has d(wq,ws) = 1+ Bp(wi,ws) > 1+ BL.

Therefore
d(wi,ws) 14+ apBL
1—ap<(1-— _ _ .
ag < (1 —ap) 1+ 5L 15 3L d(w1,w2) — apd(wr, wa)
As a result
* * 14+ agBL
d (P} i nOwis Phsinnluws) <1+ aofp(wr, wz) =1 — ag + agd(wr, ws) < Hgid(whu&),
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where o := IT_fgiL € (0,1). O

Lemma 4.21. For any ay € (0,1) there exist ng > 0, and r € [rg,1), § > 0 such that
pr(wr, we) < 6 == d (P 1 n0wi> Phsinnduws) < aad(wr, wy),

for alln > ny and B € (0,1).

Proof. By the Monge-Kantorovich duality (2.10), one has
d(p1, p12) sup

/¢ i (dw) — /¢ uzdw‘
Llpd ()1

Without loss of generality, in the above formula we could assume the test function ¢ € C} (H) and

#(0) = 0. Then Lipy(¢) < 1 implies that [|[Vé(w)|| < (671 + B)V(w). Also by Proposition 4.1 we

have for any « > 1,
[p(w)] < 1+ Bllw||V(w) <1+ BCVF(w) <14 OV (w).
Now combining Proposition 4.1 and Proposition 4.7, one has
IVPsstind(w)]

< C(, )V (w) W (Passs0ald ) () + €\ (Porinl VoI <w>)

1

< OV ) | (1+ BBV (@ nw)) 4o

NG

at(5=1 4 ) (EV2 (‘I’S,s+t,h(w)>)

|

For any ay € (0,1), choose large Ty > 0 so that C(n,a)e” < % for all t > Tp. From the formula

< C(n, ) VDT () (1 4 e~ 1) = 57 VD2 () (5C (1, a) + C(n, a)e™ ™).

for a(t) in Proposition 4.1, we see that there is a large time T' > T such that for all ¢ > T, one has
ka(t)+p < 1. Choosing r = max{ro, ka(t)+p} < 1 and letting § be small such that 6C(n,a) < %2,

then we have

IVPsstend(w)]| <67V (w)a

Note that for any wy,wy € H and any € > 0, there is a differentiable path ~ : [0,1] — H with

7(0) = w; and (1) = wsy such that

(w1, w3) / VI IANdr < pr(wn, wn) + .
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Then
1
Passnd(101) = Porssond(ws)] = ' [ 9Pecseadtae sy ar

1
< 6_1a2/ V(v (o)D) |ldr < 6 Lagpr(wr, we) + 6 Lase < aod(wr, ws) + 6 Lage,
0
where in the last step we use the fact that p.(wy,ws) < & implies d(x,y) = 1o, (w1, ws) +

Bp(wy,we). Since € > 0 is arbitrary, we have for any w,ws € H

sup ‘,Ps,s+t,h¢(wl) - Ps,s+t,h¢(w2)’ < 042d(w17 w2)~
Lipg(¢)<1

Hence by the Monge-Kantorovich duality,
d (P:,s+n,h6w17P;k,s+n,h5w2) < a2d(w17 w2>'

The proof is complete. O

Lemma 4.22. For any L,0 > 0, r € (0, 1], there is some ny > 0 such that for any n > ny, there

are 3,3 € (0,1) such that

plwi,wz) < L . .
== d (ps,s+n,h5w1 ) ,Ps,ern,h(Swz) < a3d(w17 w?)-
pr(wi,w2) > 6

Proof. For L,6 > 0, and r € [ro,1), Lemma 3.11 of [41] shows that the set S = {(w1,w2) :
pr(wi,we) > 6§, p(wy,we) < L} is a bounded set in H x H. So there exists R = R(L,d,r) > 0 such
that S C {(wi,w2) : ||wi]|, ||wz|| < R}. By Proposition 4.3, we know that for every n > 0, there is
positive constant a > 0 so that for any (w1, wz) € S, there is a coupling (X5 g1 hs Ys s+nn) Of the
transition probabilities Pg g1y 1 (w1, -) and P sy p (w2, -), such that P (pr(Xs,ern,h, Ys sinn) < g) >
a > 0. Note that there is a constant C' > 0 such that for any w € H
p(w,0) < /01 V(rw)llwlldr < lw[[V (lw]) < CV*(w).
Therefore
Ep(Xs sinhs Yostnh) < Ep(Xgoinn,0) + Ep(0,Ys o4nn)
< C(EV" (Xssinh) + EVT (Y stnn))
= C(EV" (®ssqnn(w1)) + EVT (R sqn,n(w2)))

< C(VEM) (1) + VEM (y)) < R,

where R,, = CV**(")(R). For given random variable X and a measurable set A, recall the notation
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E(X;A) = EXI4. Then

P X, ,h?Y, h
7"( s s+n6 $,8+n )) + BEP(Xs,s-i-n,haYts,s-i-n,h)

_ E(l A pr(Xs,s—‘rn,ha Ys,s+n,h) 5)

Ed(Xs,s+n,ha Y;,S—Q—n,h) = E<1 A

5 Pr (XS,S—H’L,ha }/s,s—l-n,h) <z

) 2
p X , ,ho Y. R ,h o
+E (1 A T< - s+n5 ALl ) 5 Pr (Xs,s+n,h7 Y:s,s—&-n,h) > 5) + BEP(Xs,s—i-n,hy sz,s-i—n,h)-
1 1 1) 1 1 a
< 5 + §P pr(Xs,s—&—n,hv)/s,s—&-n,h) > 5 + BR, < 5 5(1 - a) +BR, =1~ 5 + BR,.

Letting 8 be small enough so that a3 := 1 — § + R, < 1, then since p.(w1,w2) > § implies
d(wy,wy) > 1, we have

d (,P;(,s+n,h5wl ) P.;k,s+n,h5w2) < Ed(Xs,s-l-n,ha Ys,s—l—n,h) < 043d(w17 w2)7

which completes the proof. ]
Now we prove Theorem 3.2 with the help of the above lemmas.

Proof of Theorem 3.2. By Lemma 4.19 and the equivalence of the two metrics p and d, it suffices
to show that

d(P;,s+n,h5w1 ) P:,s+n,h6w2) < ad(wlv wQ)u

for some N € N and 0 < a < 1 and for every (wj,w2) € H x H. By Lemma 4.21, fixing an
ag € (0,1), then there are ng,r,d such that for those (wq,ws) with p,(wq,ws2) < J§, one has
d (,P::,s—i-n,héwl ) P:,s+n,h5w2) < O@d(wlﬂ wQ)

for all n > ng and 8 € (0,1). Now fixing L as in Lemma 4.20, then by Lemma 4.22, for the fixed
L,d,r, there is some ni such that for n > nq, there exist 8, ag such that the implication in Lemma
4.22 holds true. Now for fixed 9, 8,7, L, there is a1 such that the implication of Lemma 4.20 holds

true. So the conclusion follows by taking N > max{ng,n1} and o = max{ay, az,as} < 1. O

CHAPTER 5. UNIQUE ERGODICITY AND EXPONENTIAL MIX-

ING

In this chapter, we prove Theorem 3.1 by applying a fixed point argument and the uniform contrac-

tion (3.5) proved in the previous chapter. The idea is to regard the two parameter family of Markov

o4



transition operators Py, as a non-autonomous dynamical system over the space of probability mea-
sures, whose associated pull back mapping is a contraction semigroup acting on an appropriate
family of closed subsets of the space of “quasi-periodic graphs” C(T", P1(H)). And the fixed point
of the semigroup gives the desired quasi-periodic invariant measure. We further show that this fixed
point has a Holder regularity if the function W that generates the quasi-periodic force does, and
prove the weak convergence of time averages of the transition probabilities to the unique invariant
measure for the homogenized process. These results play important roles in the study of the limit
theorems in the next chapter. In the last section, we prove the exponential mixing (3.4) in terms

of particular observable functions.

5.1 A FixEp PoOINT ARGUMENT

In this section we will prove the exponential mixing (5.1) in the following Theorem 5.1 by applying
a fixed point argument. Note that Theorem 3.1 follows from it with p, = I'g,o by taking h = 3,0

in (5.1) and (5.7), and applying the translation identity (2.12).

Theorem 5.1. There is a unique map I' € C(T", P(H)), such that P§, , L', = I'g,p for any h € T™.
Furthermore, there is a constant g > 0, such that for everyn € (0,19, there are constants C,w > 0,

such that T € C(T", P1(H)) and
p(Pg,t,h:ua Fﬁth) < CG_th(,u,, Fh)a t>0,pe P(H)7 heT", (5'1)

where C, @ dose not depend on h. Also [, exp (2kn|w||?) Ta(dw) < C for all h € T, where k> 2
is the constant from Proposition 4.1.

Moreover, T € CS(T", (P1(H),p)) if ¥ € CV(T", H), where ( = L with r = 64cin3v=> +

r+w

nC(f,Bo) from estimate (A.3).

Proof. Recall that P1(H) is defined by (2.9). By Theorem 3.2, for any t > 0, Py, , maps P1(H) to

itself. Denote for convenience
@Ry x Pi(H) xT" = P1(H), by @(t, i, h) = P pt-

It follows from the translation identity (2.12) that ¢ has the cocycle property over the base dy-

namical system (T", R, 3) since for all 7,¢t > 0 and h € H(f), p € P1(H),

* * * * *
PO,tJrT,hM = Pt,t+r,h730,t,hﬂ = PO,T,ﬁthPO,t,hM'
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Hence the pull-back map S* induced from ¢, is defined on the space of quasi-periodic graphs
C(T™, Py(H)), i.e.,

S*(y)(h) == @(t,(B-th), B-h)), v € C(T", P1(H)),
which satisfies the semigroup property S S%2~(h) = Stt2+(h). We would like to apply the fixed

point theorem for S* on C(T"™, P (H)) endowed with the metric (which is complete since (P1(H), p)

is complete)

p(y1,72) := max p(n1(h), 12(h)), 71,72 € C(T", P1(H)).

However, the continuity of ¢(t, u, h) with respect to (u, k) is unclear due to the Lyapunov structure
of the solution of (2.5). Hence C(T™,Py(H)) may not be invariant under the map S®.
Indeed, from the definition of p as in (2.7), one has
p(w,ws) < |Jwy — wal| (e"”“””2 + e””wQHZ) ,  Ywy,we € H. (5.2)

It is known [12, 65] that for any i, 2 € P(H),

p(p1, p2) = inf Ep(X1, Xa), (5.3)

where the infimum is taken over all couplings (Xi, X2) for (u1,p2). Combining (5.2)-(5.3) with
estimates (A.1) and (A.3), it follows that

P(PG,t,ny Ows Po 1y Ow) < Ep(wo e,y (w), wo t,n, (W)

< (Bl (1) = w0, (0)[2)? (28 [exp(2nllw, e (w)]) + exp(2nlln.a (w)][)])

< Ce"'g(w) sup [ ¥ (Befn) = ¥(Biha)ll
where r = 64cln~3v™° + nC(f,Bo) is from (A.3), g(w) = V*(w) = exp (2kn||w|?), and the
Lyapunov function enllwl® along with x,7n are from Proposition 4.1. Therefore by the Markov
property,

PPty s PGty 1t) < Ce™ /H g(w)puldw) sup [ (Fihr) = L (Biho)ll, (5.4)

It is unclear if each p € Pi(H) yields [, g(w)u(dw) finite, therefore we confine ourselves to those

measures that make the integral finite to ensure the continuity. To be specific, consider the family

of closed subsets of Py (H),

Pr:={pneP(H): /Hg(w),u(dw) <R}, R>0.
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For each fixed R, P is indeed a closed subset of the complete space P;(H) defined as in (2.9). For

any p € Pg, one has

plaesdo) = [ pluw0p(u) < [ e ) < € [ gwlntan) < .

so that u € Pi(H). Let p, be a Cauchy sequence in Pr under the metric p. Then there is a
unique p € P1(H) such that p(pn, ) — 0 as n — co. So u, converges to p weakly. For N > 0, let

gn(w) = min{g(w), N}, then gy € Cy(H), and

[ awtwwtdn) = i [ gy(wyen(an) < tim [ gy < R

Hence by the monotone convergence theorem, one has [ g(w)u(dw) < R. Therefore i € Pg,
which shows that Pg is closed.

By the contraction property in Theorem 3.2, we have that for any R > 0 and u € Pgr, ¢
is continuous in u, uniformly with respect to h. And by inequality (5.4), it is continuous in h
uniformly for . Hence ¢ is jointly continuous in (p, h) € Pr x T™. Then the fixed point argument
will be applied on the complete subset C'(T", Pr). However the trade off for the joint continuity is
the loss of the invariance of C(T™, Pg) under S* uniformly for any ¢ > 0. Indeed, it follows from

Proposition 4.1 that for p € Pg, and any ¢t > 0,

/ Posng(w)p(dw) = / Eg(®o,1. (w))a(dw)
H H

a(t)
<¢ [ ¢ Owntan) <0 ( [ gt <oreo,
H H
where we used Jensen’s inequality in the penultimate step. One can check that it is impossible to
choose a common R > 0 such that CR*®) < R for any t > 0 since a(t) — 0 as t — 0. However,
1
note that for each fixed ¢ty > 0, if we choose R = Ry, := C''->(0) then CR®) < oRato) = Ry,
which gives the invariance under S* uniformly for ¢ > t,.

Now for any fixed tg € (0,1), the above analysis shows that the map S* : C(T",Pg, ) —
C(T", Pr,,) is well defined for ¢t > ty. It remains to show that it is a contraction. Indeed, by
Theorem 3.2, one has

p(St’Ylv St72) = }Il%%% p(@(tv Al (/Bfth)v /Bfth)v QO(t, 72(/87th)7 ﬁfth))
= max (P w1(B=th), P s n72(B-th))

< Ce™™ max p(71(B-th), 12(B-¢h)) = C e~ 7p(1,72)-
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Therefore for large T' > to, p(STy1,5Tv2) < ep(71,72) for some ¢ € (0,1). Fix such a T, then
ST is a contraction over the complete metric space C(T", PR, ), so there is a unique fixed point
I'y, € C(T", PRy, ) of ST, Noting for any t > to, S* maps C(T", Pry, ) to itself, hence
ST(S'Tyy) = S'(STTy,) = S'(T,)

implies that S*(I'y,) = Ty, by the uniqueness of the fixed point, which shows that T';, is a fixed
point of S* for t > to. For 0 < t; < tg, one has Ry, > Ry, so PRtO C PRtl. And for the same
T >0, ST is a contraction on C(T", Pr,, ), which has a unique fixed point I';,. By the uniqueness,
Iy, = Ty, hence Ty, is also a fixed point of S* for ¢ > #;. Since t; is arbitrary, we see that I' := Ty,
is a fixed point of S* for ¢ > 0, that is, ¢(¢,[(8—¢h), B_th) = ['(h) for all h € T". Replacing h with
Bth we have ¢(t,T'(h), h) = I'(8¢h) which by definition is

Po s pl'(h) = T(Bih).

Hence the invariance follows, and the exponential mixing (5.1) then follows from the invariance and
Theorem 3.2. Note that by replacing h with Ssh in the invariance identity and using the translation

identity (2.12), we have

Proronl(Bsh) =T(Byiih), Vs eR,t>0,heTn (5.5)
To show the uniqueness of T, suppose that there is another I' € C(T", P(H)) that is invariant.
Then I € C(T", Py (H)) by the Lyapunov structure (4.2). Indeed, for R > 0, let
e2knllwll® - if ||lw| < R,
gr(w) =

2R i ||lw|| > R.

Then by the invariance of [ and estimate (4.2), we have for any M, N > 0,

/ gR('w)fh(dw) :/ ,P_Np’th(w)fﬁho(dw)
H H
: / P ongr(w)s_n(dw) +/ P-nongr(w) s yu(dw)
{llwl<M} {llwl|>21}
< /{” 1<) Eg(w—N,o,h(w))fﬁho(dw) +62k’7R2f57Nh({||wH > M})
wl|<

< CeHmaNIME 4 26150y ({|w]| > MY).

Since T is compact, and I' € C(T", P(H)), where P(H) is endowed with the topology of weak

convergence, therefore {fh} retn is compact and hence tight by Prokhorov’s theorem: for any € > 0,
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there is a compact subset K. of H such that
Th(H\K.) <e, YheT"
Hence for any R > 0 and € = 6_2””7R2, there is a compact subset K. of H such that
T yn(H\K.) <&, VN >0.
Now we can choose M large enough such that K. C {||w|| < M} so that
M n({llw] > M}) < 1.

Since a(N) — 0 as N — oo, we can choose N large such that 1N )M? < 1 as well. Therefore

we have

/ gr(w)Th(dw) < C, VR >0,
H

which, by the monotone convergence theorem, in turn implies that
/ g(w)Ly(dw) < C, YheT",
H
and hence I' € C(T", P1(H)). This ensures that

sup p(I'(h),T(R)) < oo.
heTn

Now by the translation identity (2.12) and Theorem 3.2, we have for h € T" ¢ > s,

p(T(Bih), T(Bih)) = p(Piy T (Bsh), Py nT (Bsh))

< Ce =9 p(T(Bsh), T(Bsh)) < C sup p(T'(h),T(h))e =),
heTn

By letting s — —oo, it follows that I'(8;h) = I'(8;h) for t € R. In particular this is true for ¢ = 0

and any h € T", hence I' = L.

To show that I' € C(T", (P1(H), p)) if ¥ € C7(T", H), where ¢ = -5 with r = 64cfn 30" +

nC(f,By) from estimate (A.3), observing that for any ¢t > 0 and hy, he € T™, by the invariance of
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I and estimate (A.3), one has

p(T (). D(h2)) = (i (6D (Beha), Bshn) .0 (T (B-the), Biha) )

< (i (6D (Behn), Bihn) @ (1T (B-the), B-thn) ) + p(0 (1T (Bthe), B-thn) o (t.T(B-ha). Bth) )
< e [N (B-ahn) ) |91 s = hal? + Cem=p(D(3-111), T (3-ho))

< Ce"' Ry |¥||y|h1 — ho|” + Ce™"  sup P(F(hﬂa F(h2)>
hi,ho€T™

S C(ert|h1 — h2|7 + €_wt) S C|h1 — h2|<,

with ( =

by applying the following lemma.

r+w ’

Lemma 5.2. For D > 1,A1,A2 > 0,7 € (0,1],0 < 6 < D, one has

eMT§Y 4 e=22T < opr§7

forvy = All_‘fAQ*y, by choosing T' = — x5 +A Ind foro <1 and T =0 for§ > 1.
The proof is then complete. O
It turns out that Theorem 5.1 also implies the convergence of time averages of the transition

probabilities, which is quite useful when applied to the proof of the limit theorems in the next

chapter.

Proposition 5.3. For any (wg,h) € H x T™ and K € N, we have the following weak convergence

of measures:

N
1,
N ;PO,(jl)K,h(swo — /'Jl‘” LgA(dg).

N
Zp(j 1 icO(wo,n) — Tg(dw)\(dg) and = / P8y mydt — Tg(dw)A(dg) as well.
j 1

Proof. For any ¢ € Lip,(H ), we have by the Monge-Kantorovich duality (2.10), the invariance and

mixing of the quasi-periodic invariant measure from Theorem 5.1 that
1 N
<N Z <P§,(jfl)K,h‘5w0 - Fﬁ(j—l)K’l) ’¢>
j=1

N N
- 1 x % . 1
< Llpp((b)ﬁ § p(P()’(jfUK,h(Swoa Po}(jfl)K’hFh) < CLlpp E e 507Ph)
j=1 J:1
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which tends to 0 as N — oo. Also by Birkhoft’s ergodic theorem for the irrational rotation on T",

one has
N
< g Bi— 1)Kh’ >%/ﬂm<r‘g7¢>)‘(d9)-

Hence the first claim of the proposition follows.

Now let ¢ € Lipp?d(H x T™), where H is equipped with the metric p and d is the usual distance

in T" induced from R™. Observe that

1 N
<NZP(*;_1)K5(wO,h) > Zpo G-1) KR Bii—1yrh) (wo)

N N
Z<Po G-vadu0 = PoGonral 6C, BG-nih) ) + NZ<7’0 G-vialns 60, B nich))

=T+ 11,

where the first term in the sum vanishes by the mixing of the quasi-periodic invariant measure since

N
]. . * *
1] < N Z Llpp¢(‘v U(jfl)Kh>p(’P0,(jf1)K7h5wa P07(j71)K7hFh)
—

CLip,4($) o~ (-
< sze U=DE (80, Th) = 0,

j=1
while the second term converges to the average of ¢ with respect to I'y(dw)A(dg) by Birkhoft’s

ergodic theorem for the irrational rotation f5:

1 N
Il = N JZ_; <FU(]-_1)Kh7 (rb(’ 6(]*1)Kh)> - / ¢(w’ g>rg(dw))\(dg)’

HxTn

since the observable ¢ € T" — <Fg,q§(-,g)> is continuous. The proof for the continuous time

version is similar. O

Remark. Usually the sequence of time averages of the transition probabilities always possesses a
subsequence that converges to an invariant measure by the Krylov-Bogoliubov theorem, however
it is not guaranteed that the whole sequence always converges to the invariant measure. While in
the above proposition, even if it is the case that the homogenized Markov process is not mixing,
we have the convergence of the time averages to the unique ergodic invariant measure. From the
proof we see that this is a result of the mixing of the inhomogeneous Markov process along the H

component, together with the unique ergodicity of the irrational rotation flow.
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5.2 EXPONENTIAL MIXING IN TERMS OF OBSERVABLE FUNCTIONS

In this section we prove the following two implications that express the mixing property in terms
of the action of the transition operators on observables. Note that the inequality (3.4) in Theorem
3.1 follows from the following Theorem 5.5 with pus = I'g o by taking h = 5,0 in (5.7), and applying

the translation identity (2.12). We fix h € T™ throughout the proof.

Corollary 5.4. There is a constant ng > 0, such that for every n € (0,n9], there exist constants

C,w > 0 such that

1Pssnd = Ta,n(d)pns < Ce 9 — Tpn ()| phss

for every Fréchet differentiable ¢ : H - R, s <t and h € T"™. Here

16ll,s = sup 120 =90

wro (U, 0) + [(Tans &)] = Lipy () +[{Tp,n, 9| - (5.6)

Proof. By the Monge-Kantorovich duality (2.10) and the contraction on P(H) from Theorem 3.2,

we have

|,Ps,t,h¢(u) - ,Ps,t,h(b(vﬂ < Llpp(¢) sup
Lip,(p)<1

= Lip,(¢) (P2 s h0us Prynds) < Lip,(¢)Ce =) p(u, v),

/ ()P pbu(dz) / ()P ()
H

H

for any u,v € H. By the invariance of the quasi-periodic invariant measure from Theorem 5.1,

fH(Ps,t,h¢ —I'8,1(0))T,n(¢)(du) = 0. Therefore
1Ps 1 — T (®)lpns = Lip,(Pssn¢) < Lip,(¢)Ce 1) = Ce 1 ||g —Tg ()l o ps-

The proof is complete. O

Theorem 5.5. There is a constant g > 0, such that for every n € (0,n], there exist constants

C,w > 0, such that for every ¢ € C}] as in Theorem 3.1,

| Posnd — /H (w)Dg(dw)lly < Ce==|g]l (5.7)

for any h € T",t > 0. In particular, the inequality (3.4) is obtained by replacing h with 50 and

using the translation identity (2.12), where ps :=T'g.0.

The proof of the theorem will be given at the end of this section by combining Corollary 5.4

and the quasi-equivalence of || - ||, n,s with || - [|;, that will be proved below.
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In the time homogeneous case as in [41], the exponentially mixing in an equivalent form that
involves observables similar to (3.4) is given by proving the quasi-equivalence under the Markov
semigroup of || - ||, with an appropriate norm || - ||, on Lip,(H). The norm | - ||, is actually a
combination of Lip,(¢) for ¢ € Lip,(H) and the integral of ¢ with respect to the unique invariant
measure. In the present time inhomogeneous setting, the quasi-periodic invariant measure depends
on time and the parameter h € T™. Therefore, to show the mixing property (5.7), we choose the
norm || - [|,ns on Lip,(H) defined as above (5.6). This is natural since || - ||, s is quasi-equivalent
to || - ||, under the transition operator P, and P, ,, has a similar contraction property as in the
time homogeneous case proved in Theorem 4.3 of [41]. The dependence on initial time and h € T™
of the norm || - ||, »,s can be regarded as a property that adapts to the time inhomogeneity, to yield

a uniform contraction under the action of the transition operator, see Theorem 5.8 below.

To begin with, we first define a family of auxiliary norms for r € [0,1]. The first involves the

Lipschitz constant in terms of the metric p, given in (4.1). Define

16llpr s = Lipy, (0) + Ta.n()], s €R,

where Lip, (¢) = sup,,, %. When r = 1, it is Lip,(¢). The second one is a norm weighted

by the Lyapunov function V(w) = e"”w”2, which was introduced in [41].

[#(w)| + [Vo(w)l|

r .= Su 58
ol 2= sup AL (59)
Note when r =1, || - |ly» = | - ||;- We first show that || -||,, 4,s can be bounded by || - ||y~ from both
sides with different values of r.
Proposition 5.6. There is a constant C' > 0 such that
CHgllver < 16llprhs < Cllllve, (5.9)

forr € [ro,1], s € R and ¢ € CY(H), where the constants 0 < ro < 1 and k > 1 are taken from the

Lyapunov structure in Proportion 4.1.

Before giving the proof, we need a lemma that connects the norm || - ||, n,s with the derivative

part of || - ||yr.

Lemma 5.7. For every ¢ € C1(H), we have

Hgb”pr,h,s = Sup M

+ | , seER.
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Proof. We first claim that for v € H,
b sy 120 =00 _ [V
0 u—vf<e  Pr(t;0) VT (v)

By definition of p, as in (4.1),

1
prlue) < [ V(= k7o) fu ol
0

hence we have
-1
o) = ¢v)| [6(u) — 6(v)] —— ]
wlhums<e Pr(00) " wpuvice u ol <u:||31—1£)||<a/0 (A =rjustro)ar |

Therefore by taking the limit,

, [p(u) = ¢(0)] _ Vo)
1 .
51_1}1(1) uH31—15||<8 pT(“v ’U) - VT(U)

Next we prove the reverse inequality of (5.10). For fixed v € H and any w satisfying ||[u — v|| < ¢,

(5.10)

let R > 0 large such that u,v € Bg(0), the ball in (H, || - ||) with radius R centered at 0. For any

w1, ws € Br(0), one has the equivalence of metrics
lwi = wal| < pr(w1, w2) < V(R)[lwr — wall.
Let K = V(R). Then for any ¢ > 0, there exists a differentiable path v connecting u, v such that
pr(u,v) < /01 Vi) (n)lldr < pr(u,v) +6 < Ke + 0.
Now for any t € [0, 1],
It~ ol = | [ s(rsar

which means that +(t) never leaves the ball of radius Ke 4 § centered at v. Therefore,

1
< / V' (/) A (7 dr < Ke + 6,
0

1
pr(u,v) = / VI (m)IA()lldr =6 = inf — V'(w)|u— vl -4
0 w:jw—v||<Ke+d

Hence by taking 6 = €||u — v|| above, we have

[p(u) = ¢(v)| _ |p(u) — ¢(v)] LN
pr(u,v) = lu — | <w¢w—’vll|n§f(K+e)ev (w) 8) .

By taking limit we have

i s 9@ =00 _ 196)]
=0 s f|lu—vl|<e pr(u,v) - V() ,
which finishes the proof of the claim.
It then follows from the claim that
: [9(u) — ¢(v)] [Vé(w)|
Lip, (¢) =sup ————= > sup —————. 5.11
Pr( ) uFv pr(ua ’U) weH Vr(w) ( )
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Hence [|9||p, h,s = SUDPyen ”‘v/f w)H + |T'g,n(#)|. It remains to show the reverse inequality of (5.11).

Without loss of generality we can assume ¢(0) = 0 and Lip, (¢) = 1. There is nothing to show if

for some w, 1 < %. So we assume ||Vo(w)|| < Vr(w) for all w. Then for any wq,wy € H,
1
otun) — otuz)| = [ (Vo). 4 dr < s O [y o3
0 weH V
By taking infimum over all differentiable v connecting w1, wo, we have

[Blwn) = own)| _ (V6]

pr(wi,wa) = wem VT(w)

The proof is then complete. ]

Proof of Proposition 5.6. By Theorem 5.1, there is a constant C' > 0, independent of the initial

time s such that

L@ < [ V@i Tan(du) < ol Tan(V") < Clolv- (5.12)

Combining (5.12) with Lemma 5.7 and the definition of the norm || - |y as (5.8), we have

|V6(w)]
Shys < SUP T
I8l < sup S

To show the first inequality of (5.9), we fix ¢ with [|¢||,,. r,s = 1. Then by Proposition 4.1,

+Cllllvr < Cligllv-.

1
[¢(w) = ¢(0)] < Lip,, (¢)pr(w,0) < /0 Vi (rw)llwlldr < [[w][V"(w) < CV™ (w).

Also by Theorem 5.1 and noting that » < 1, we have

/ (w0, 0)T g (dw) < / p(w, 0)T g (dw) < / CVH ()T g (dw) < C.
H H H

Hence

|<‘/¢ w)L'g p(dw) — ' ‘/cﬁ Fﬁhdw)‘
< [ 1otw) = 6Tantaw) + | [ otwirn(an) <E 1,

where | [, ¢(w)Lg,p(dw)| < 1 since ||¢]|p, s = 1. It then follows that

|p(w)| < |6(0)] + |p(w) — ¢(0)] < CV*(w).

Note that ||¢||,, n,s = 1 also implies that sup,,¢cpy HW&( M < 1, therefore

VT (w)
Ol < sup 17O (6@
S

p =
welt V(W) wen VA (w)
The proof is complete. ]

L+ C < Ol8]lpr s

The following result shows that the transition operator has a contraction property under the
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norms | - ||y and || - ||, n,s-

Theorem 5.8. There are constants C,v > 0 such that
IPusrendllye < Cdlvr, (5.13)
”,PS,S-"-t,h(ﬁHpr(t),h,s < Cethqupr,h,s-H’ (5'14)
for v € [ro,2x], s € R;t > 0 and ¢ € C1(H), where r(t) = max{ra(t),ro} and a(t) is from

Proposition 4.1 .

Proof. We first prove the inequalities for ¢ € [0, 1]. By Proposition 4.1, we have

IVPsstt.0d(W)|| < E[VO(Pssttn(w)) [V Ps sps,n(w)]]

< sup WO gyri @)V s ren(w)]
weH V( )
< C sup Iv (“’)”vm(t( ) < C|l@|lyr V7D (w). (5.15)

weH vr (w)

It follows from the penultimate step that

IIVPs,s+t,h¢(w>ll Vo (w)]|
e A 0T B A CT O (5.16)
Also
|p(w)|

|Ps,s1t,0P(w)| < E|P|(Ps s14,n(w)) < sup EV" (@ sysn(w)) < CHQSHVTVm(t) (w).  (5.17)

weH vr ( )
Combining the above two estimates (5.15) and (5.17), we see that ||Ps st¢1|lyrey < C||@]ly+ with

r(t) = ra(t). Lemma 5.7 and the invariance of the unique periodic invariant measure, together

with inequality (5.16) imply that

”vpss h¢
H,Ps,ert,h(prT(t),h,s = Slélg VT’?X( / P, e, h¢( )FBS (dw)
=¢ EHHVTH ’/ d(w Fﬂéﬂh(dw)’ < Cl@llprhstes  t€0,1].

The case for t > 1 follows by iteration. From Proposition 4.1, for n € N, one has a(n) = a(1)",

so that r(1) = max{ra(1)",ro}. By induction, we can show that

1Ps,s4n,n@llyrin < C™[| [y (5.18)

Indeed, the base case for n = 1 has been proved. In particular, replacing s by s+ k, it follows that

[Pstk,st(k+1)w0llvray < Cliflvr (5.19)

Assume that for n = k, inequality (5.18) is true for all s € R and r € [rg,2k]. Then since
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r(1) € [ro, 2], one has

k
||7D5,5+k?,h¢”Vmax{r(l)a(l)k,ro} S C H¢HV”“(1) (520)

It follows from (5.19), (5.20) and the evolution property of the transition operator that

1Py, 54 (h41),0 Pl maxrab ooy = I Ps,sthh Pt yst (k1) h Pl maxir(aykmg
< CF|IPs sk pllyray < CEFHIglyr.
Since 7(1) = max{ra(1),7}, we find that r(k 4+ 1) = max{ra(1)¥*!, 70} > max{r(1)a(1)*,ro}
always holds. Hence
1P stnp®llyrin < 1Py st br1),80lymaxtrayimg < CFHINvr

This completes the induction step. Hence (5.18) is true for all n € N. For any ¢ > 1, there are

unique k € N and 3 € [0,1) such that ¢t = k + (. Since () € [ro, 2x], it follows from (5.18) that
HPS,S—i-k,h¢HVmax{r(ﬂ)a(l)k,ro} < CkH¢HVr(B)- (5‘21)
Combining (5.21) with (5.13) for g € [0,1), and the fact that
r(t) = max{ra(B)a(1)* ro} > max{r(8)a(1)¥,r},
we obtain (5.13) for ¢ > 1,
|Ps,s+t.00llyrey < N Ps,sknPstk,stk+8.09  max{r(8)a(1)kro}

< CF||Pyinsinrandllyre

< CFHY g1y < C]lvr,

by choosing appropriate constants C,~y > 0 since k =t — 3. The proof for (5.14) in the case t > 1

is similar.

Corollary 5.9. There exist m > 0, C = C(m) > 0 such that
HPS,erm,h¢||V’“ < CH(Z)Hp'mhﬂ—

for all p € CY(H), r € (1 — a(1),1] and s,7 € R.

Proof. Let r,, = 1o + a(1)"kr, where r¢ is from Proposition 4.1 and can be chosen to be arbitrarily
close to 0. Since (1) < 1, we can choose a large m such that «(1)"kr < 1. Fix such an m. Then

we can choose 79 small such that r,, <r and ro < a(1)™kr. As a result, we have by Theorem 5.8
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and Proposition 5.6, that for r € (1 — «(1), 1],
Hps,s—i-m,h¢||VT < ||Ps,s+m,h¢||VTm < “Ps,8+m,h¢||vﬂ(l)mm“ < O(m)H(b”m" < C(m)‘|¢||pr,h,7'7
where in the penultimate step we use inequality (5.13) with

r(t) = max{kra(m),ro} = max{a(1)"kr,ro} = a(1)"kr.

We are now in a position to prove Theorem 5.5.

Proof of Theorem 5.5. By Corollary 5.4, and Proposition 5.6, we have
1Psst0¢ = Loopin(@)llpns < Ce™ ¢ = Tan(@)lpns < Ce™ [l = Lpn(e)ln,
for s € R and t > 0. By Corollary 5.9, there exists m > 0 such that
[Pss4mndlly < Cm)l|llpnr-

Replacing ¢ by Psim stm+t,0¢ — L3, 4n4h (@) and letting 7 = s + m on the right hand side of the

above inequality, we have

[Ps,s4mtt.0® = Uy g in (D)l < Cm) 1 Potm stmrtn® = Loy ih(O)llphsm
< C(m)e™ "¢ — g, ;1 (9)lln-
Combining the above estimate with (5.12), one has for ¢t > m,
1Pssstin® = Daopun(@lly < Ce ™ (61l + Lo, n(9)]) < Ce 6],

where C' depends on m.

By Theorem 5.8, we have for all ¢ > 0,

1Psst18lln = 1Pssrtndllvr < 1Pssrtndllymastawirg < Ce™[]ly.

So for 0 <t < m, ||Pssqe,ndlly < Ce¥™(@]ly. Replacing ¢ by ¢ — Tz, ,n(¢), we have

1Ps,s+t0® = Lpoion(@)lly < C™| =Ty on(9)ly < C™(|glly < Ce™ (|l

by choosing the last constant C' larger. The proof is complete. O
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CHAPTER 6. LIMIT THEOREMS

In this chapter, we establish the limit theorems as well as the corresponding convergence rates as
given in Theorem 3.3 and Theorem 3.4 for the time inhomogeneous solution process of the Navier-
Stokes equation (2.5). In fact, we will prove these results for a more general class of observable
functions that will be given below. The proof is based on a martingale approximation and the limit

theorems from the martingale theory.

Due to the time inhomogeneity, it is not obvious to derive a martingale approximation for the
inhomogeneous solution process. We also note that the homogenized process X; is not mixing in
the usual sense since E¢(X;) — [, pn @(w, h)Ty(dw)A(dh) does not decay to 0, essentially because
the irrational rotation on the torus is not mixing. Here I'p(dw)A(dh) is the unique invariant
measure for X;. Therefore the usual martingale approximation cannot be applied directly. Yet
the exponentially mixing quasi-periodic invariant measure enables us to center the observation
along the solution process in an appropriate way, which gives us a chance to have a martingale
approximation. Indeed, by mixing (5.1), the transition probabilities are exponentially attracted by
the quasi-periodic invariant measure, so the expectation of the observation ¢(wo(wo)) along the
inhomogeneous process is attracted by the quasi-periodic path [, ¢(w)p(dw). Hence ¢(wo,¢(wo))—
f 1 @(w) g (dw) forms a family of “asymptotically centered” random variables that is expected to
have the asymptotic behavior described by the limit theorems. Note that if we let a(w,h) =
p(w) = (¢,I's), then

ounsun)) = [ ofw)(du) = G(X;(w0,0))

which is the observation of the centered observable function along the homogenized process X;(wy, 0).
This indicates that the homogenized process is mixing when acting on the observables centered by

the quasi-periodic invariant measure, which enables us to derive a martingale approximation.

Section 6.1 below is devoted to the study of this particular martingale approximation. Then
the strong law of large numbers and the central limit theorem are direct conclusions of the corre-
sponding theorems established in martingale theory, which merely requires the weak convergence
of the average of the transition probabilities established in Proposition 5.3 and the bounds on the

approximating martingale. The proof is presented in Section 6.2. The rate of convergence for the
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limit theorems will be given in Section 6.3, which requires more detailed analyses on regularity
of observables and the convergence rate for the moments of the time average of the observations

centered by the quasi-periodic invariant measure.

We now define the space of observable functions and state the main results of this section. For
v € (0,1], let C’; 7 (H xT™) be the space of Holder continuous functions with finite norms weighted

by the Lyapunov function e"||w||2,

C;H(H xT") :={¢p € C(H xT") :||}|lymu < oo}, (6.1)
where
h h) — h
||d)| S H = sup ‘QI)(U}, 2)| + sup |¢(w17 ) ¢(;U27 )| —. (62)
(w,h)EH xT" e’7||w|| heT™ ||w1 — w2||’Y (enllw1ll —+ @77Hw2|| )

0<[|w1—w2[|<1

Let also C’g o (H x T") be the space of functions that are Holder continuous on T"—component

and uniformly on bounded subset of H

077,11‘" (HxT"):={pc CHXT"):|¢ y T < oo}, (6.3)
where
— [¢(w, h)| |9(w, h1) — p(w, hy)|
||¢”’Y,777’]T” = (w,h)séalXTn 677”“7H2 + igg 677”w”2|h]_ — h2|'7 .

0<||h17h2||§1

Recall that p is the geodesic distance on H weighted by eMwl* and therefore depends on 7. Let
|¢(w17 h) - (b(va h)‘

OlynH, = sup
Pk, heTn p(wr, wa)? ’
0<p(wr,wz)<1

be the Holder semi-norm under the metric p, and set CZI Hp(H x T™) as the space of bounded Hélder

continuous (with respect to the metric p on H) functions
C%HP(H x T") = {gb c C(H xT"): |pllym.mH, := sup  [p(w, h)| + [@]yn,H, < oo} . (6.4)
(w,h)€H xT"
Remark. 1t is straightforward to verify that for 0 < § <, the following inclusion holds:
{¢p € C(HXT") : [y y,11, <0} CC3 (H x T").

In the case when the deterministic force f(¢,z) vanishes and the noise is degenerate as in our
work, the weak law of large numbers and central limit theorem were proved in [50] for Lipschitz

observable functions ¢ with [¢]1, 1, < co. In view of the above inclusion and the fact that the
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following Theorem 6.1 and Theorem 6.2 are valid for ¢ € Cg g (H xT™), our limit theorems in the
case when the deterministic force f = 0 can be considered as an improvement of those in [50].
For any ¢ € C’7 H(H x T™), we set % as the associated function obtained by normalizing ¢ with

the quasi-periodic invariant measure,
(w,h) = d(w, h) = (Tn, &, h). (6.5)
It is clear that ¢ € CZH(H x T") as well. Note that X;(wo, ho) = (wo+,h,(wo), Btho), hence

gg(Xt(w()? ho)) = ¢(w0,t,ho (w0)7 5th0) - <F5th07 ¢(7 5th0)>'

Recall from Theorem 5.1 that when hg = 0, I'g,0 = p¢ is the unique quasi-periodic invariant
measure of the Navier-Stokes system (2.5) with the deterministic force f(¢,z). And when ¢ is an
observable function on H, we have ¢(X,(wp,0)) = d(wo,t,ho (wo)) — (e, @), which is the observation
along the solution process normalized by the quasi-periodic invariant measure. In particular, The-
orem 3.3 and Theorem 3.4 with s = 0 are obtained from the following Theorem 6.1-6.4 by taking
the observable function ¢ € C}) (H) C pr g (H xT") and ho = 0. For simplicity, we prove Theorem
6.1-6.4 for initial time s = 0, while the proof applies to s # 0 without any change. Therefore

Theorem 3.3 and Theorem 3.4 hold for any initial time s € R.

Let 1y be the constant from (A.1). The first result is the strong law of large numbers with its

rate of convergence.
Theorem 6.1 (SLLN). For any n € (0,2 *no], ¢ € C) ;(H x T"), (wo, ho) € H x T", and £ > 0,
T ~
lim T%E/ B(X¢(wo, ho))dt =0, P —as. (6.6)
T—o0 0

The second result is the central limit theorem.

Theorem 6.2 (CLT). For any n € (0,2 %], ¢ € CVH(H x T™), and (wo, ho) € H x T™, one has

. 1 T D 2
lim = /0 3(X, (wo, ho))dt 2 N(0,02), (6.7)

T—o00

where N(0,0%) is the standard normal random variable with variance o* and D represents the

convergence in distribution. In fact

0'2 — 0'33 = Tlm — </ ¢ Xt ’U)(),ho))dt)

The third result of this section is an estimate of the rate of convergence for the strong law of

2

large numbers.
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Theorem 6.3. Let ¢ > 0, for every integer p > 3 satisfying 2P > 1/e, every n € (0,2 P~ 1], and

every ¢ € C’JH(H xT™), (wo, ho) € HxT™, there is an almost surely finite random time Ty(w) > 1,

depending on p, e, ||¢|
T 1
7| (ot ha)) = (Tt si))ae| < T4

~m.Hs ||woll;s ho such that for all T > Ty, we have

where C' > 0 is a constant that does not depend on the above parameters. Moreover, for every

0 < ¢ < min{2Pe — 1,22 — 1}, there is a constant C, = Cp(||@||n.1, ¢, €) such that

ET{ < Cpe?” il

The last result is on the convergence rate of the central limit theorem.

Theorem 6.4. Assume ¥ € CV(T", H) and the frequency « satisfies the Diophantine condition

(2.2) with constant A and dimension n. Let A = ﬁ, (=75 and 7, = W, where @

is the mixing rate from Theorem 3.1 and r = 64c§n=3v=> + nC(f, Bo) is the constant from (A.3).

1. For any integer p > 2, n € (0,277~ ng], and ¢ € C’;IYH(H x T™) with U<27> > 0, and (wo, ho) €

H x T", there are constants Cp = Cyp(||@||ly.n, b [|@lly.nTn, |wol]) > 0 and Ty > 0 such that for all

T > TO;
1 [T~ ) =2 2 lm
sup (P {/ d(Xe(wo, ho))dt < z} —®,,(2)| <Cy <T_4 + T 2741 4+ T (2p+1>(f‘+”>> ,
zeR \/T 0

2. Forn € (0,2 ] and ¢ € C, g(H x T") such that a(% =0, and (wo, ho) € H x T, there is

a constant C = C(||@|yn,1, |@|ly,n,7, [[wol]) > 0 such that for all T > 1,

1 __Jo _
<C <T—4 +T 2(A+n>> .
z€R

sup (|2 A 1) 'P {\/IT /OT (X (wo, ho))dt < z} — By(2)

6.1 THE MARTINGALE APPROXIMATION

We first give several properties of the spaces of observable functions defined above in the following
Proposition 6.5. Then we prove a mixing result (as a consequence of Theorem 5.1) in terms of the
observable functions in Theorem 6.6, which is crucial in deriving the martingale approximation.
Proposition 6.7 gives the definition of the corrector and its properties that will be used to construct

the martingale approximation as given in (6.14).

Proposition 6.5. Let ng be the constant from estimate (A.1). Forn € (0,10/2], and any 0 < v <1,
Py maps C) y(H x T") into Cy, y(H x T"); If we further assume that ¥ € CV(T", H), then P,
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maps C;H(H x T™) N C’;Tn (H x T™) into C;n,H(H x T™) N C;n,ﬂl‘" (H x T™).

Proof. Let ¢ € C';;H(H x T™). It follows from (A.1) and (A.15) that for n € (0,70/2],
’Pt(b(wla h) - Pt(b(’IUQ, h)‘

= |E¢p(wo tn(w1), Beh) — Ed(wo ¢ p(w2), Bih)| < E|p(worn(wi), Beh) — ¢p(wo s n(ws), Bih)|

< 19l Bl ) — wi g (2) [ (P0en DI el eI

[NIES

< Clplyamn (EHwo,t,h(wl) _ wO,t,h(w2)H2)% (E <62nl|w0,t,h(wl)”2 + 6277||w0,t,h(w2)”2)>
< C|\ypori s — wo|Ve® tezllunll” (enlell2 + enszlP) ’
where 7 = 64cln~3v=° + nC (f, By) is the constant from (A.4). Hence we have
[Prp(wr, h) = Pe(ws, )| < Cllgllyirllor — gl e* (e e2ilal®) - (6.8)
which shows that P, maps C, ,(H x T") into Cy, (H x T").

Now assume ¥ € C7(T", H) and let ¢ € C':;H(H x T")NC)

7 g (H x T"). Then

|Pyp(w, h) — Pip(w, ho)| = [Ed(won, (), Beh1) — Bo(wo i h, (W), Biha)|
< E |p(wo t p, (W), Bth1) — d(worn, (), Beho)| + E|p(wotn, (W), Btha) — ¢(wo ¢ py (W), Beha)|

< @l en s — Bl B O ] B (1) = w0y )] (1000 O 4 i I
It follows from (A.1) and (A.3) that
E||wo 5, (w) — wo¢.py (W) (enllwo,t,hl(w)ll2 + 677||w0,t,h2(w)”2)
< (Bl () — s (@) (E (2100 0P 4 eznnwo,t,@(w)n?))%
< 06%t62nllwll2”@|mhl ~ hal".
Hence
(Pu(, 1) — Pub(w, )| < Ol + 1@llymat [ W12 F o200 |y — By, (6.9)

which shows that P; maps C,) ;(H xT")NC} 1. (H x T") into Cg, y (H x T")NC3,

o e (HxT). O

The following theorem shows that the homogenized process is mixing over the family of ob-
servables normalized by the quasi-periodic invariant measure as in (6.5), although it is not mixing
in the usual sense (by centering the observables with the unique ergodic invariant measure of the

homogenized process).
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Theorem 6.6. For any v € (0,1], K > 2, n € (0,m0/k] and ¢ € C) ;(H x T") we have
[P (w, h)| < Ol meIP e Wt >0, (w, h) € H x T", (6.10)

where A = , the mizing rate w is from Theorem 5.1, and C' is a positive constant independent

2
of (w,h) and ng is the constant from (A.1).
Proof. For any R > 0,let yp: H - R € C';YH(H x T™) satisfying 0 < yg < 1, with xgp(w) =1 for
|w|| < R and xr(w) =0 for |w| > R+ 1. We can actually choose a xg such that ||xg|yn.z < 2.
Assume without loss of generality that |¢[/y,, 7 = 1. Also denote by X =1 — xr. Then
|[Pid(w, B)| = |P; (xro + Xr®) (w,h) = (Taon, (Xad) (-, Beh) + (Xp#) (-, Bih))|
< |Bi(xr®)(w, h) = (T, (Xr®) (- Beh))| + |Pe(Xr®) (w, h) — (Lg,n, (XrP)(:, Bih))|
D (6.11)
It is straightforward to show that xr¢o € C;]’, H, (H x T™). Indeed, since yr¢ vanishes outside of the

ball ||w|| < R+ 1, in view of the definition (6.2), one has

sup  [xr(w)p(w,h)| < sup |¢(w, k)| < [|@lygme" TV, (6.12)
(w,h)EH xT" (w,h)EH XT"
lw||<R+1
Let
S = {(wi,wa) € H : Jun|| < R+ 1, wal| > R+1,0 < [lwy — w2 <1},
and

S, = {(w1,ws) € H?: |lwi|| < R+ 1, ||lwe|| > R+ 1,0 < p(wi,wz) < 1}.

It is clear that S, C S since ||lw1 —wa|| < p(wi, w2). It follows from xr(w2) = 0, ||we| < R+2 and

(6.12) that
sup Ixr(w1)d(wr, h) — xr(w2)p(wa, h)| —  sup Ixr(w1)d(wr, h) — xr(w2)P(w1, h)]|
(’LUl,’lUZ)GSP p(w17 w2)’y (wl,w2)€Sp p(w17 ’LUQ)’Y
< gen®? g Xr(w1) = Xe(ws)]
(w1,w2)€ES le - w2||'y
< 4e2n(B+2)?
Now let

ST = {(wr,w2) € H? : |lwi], w2l < R+ 1,0 < wr —we <13,
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and

Sf = {(wy,w2) € H? : ||wy]], ||wa|| < R+ 1,0 < p(wy,ws) < 1}.

First note that for ||wq|], ||w2| < R+ 1,

[xr(wn)d(wr, h) = xrwz)(ws, W] < 267 ([xn(wr) = xpws) + [6(w1,h) = oz, 1))

Hence

Ixr(w1)p(wi, h) — xr(wa)d(wa, h)|

sup

(’wl,wg)ES;} p(whwz)’y

< 9B+ (g [Xr(w1) — xr(w2)| b sup [p(wr, h) —¢(w27h)|>
(wiwa)esk  lwr —wal? (w1,w2)ESE [|wi — wa7

< 462’7(R+2)2.

It then follows that xr¢ € Cg H, (H x T™) and

2
‘|XR¢H%777Hp S C€2n(R+2) )

where C' is a constant that does not depend on R.

It is known that the dual Hoélder metric on P(H) is bounded by the Wasserstein metric (see

Proposition 1.2.6 in [48] for example):
1
sup (1, 0) = (2, 0)| < 5(p(p1, p2))>, VY, pe € P(H), (6.13)
peCy (H),[lelly<1

where C}/(H) is the space of bounded y—Hélder continuous functions on H endowed with the

metric p, and

p(wi) = p(ws)|
lelly = sup [p(w)[+  sup -
weH 0<p(w1,w2)<1 p(w17w2)

Combining this fact with Theorem 5.1, it follows that the first term in (6.11) satisfies

Il = ‘Pt(XR(ZS)(wv h) - <Fﬁth7 (XR(b)(u ﬁth)H
= [(Po,1,n0w> (Xr®) (- Beh)) — (Po 1L hs (XRD)(-, Beh))|
< 5”XR¢||7,77,H,) (p(P87t7h5w,P57t7hFh))50 < CQQW(R+2)2e—50wtem7||w”2_

Here §p = <1,k > 2 and w are positive constants.

1
2—y
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To estimate the second term in (6.11), observe that

|Pe(X o) (w, B)| < By i) (IRrd) (X0) < (BuwmXr(Xe)) /(B m|¢(Xo) )/

1/2 1/2
< (P (lwosn(w) > R) ) (Benvoenl®)

12

2 _ 2 2 2
< cevlFg=nl (ge2nllwo.en(w)I®y1/2 < Ce2nllwl® =l

where we used the fact that ||¢|,, 7 = 1 and the estimate (A.1) with a smaller 79 (which is the
one in (A.1) divided by 2).

In a similar fashion, note that

(Tg,n, (XR®) (-, Beh))| < (/HXR(U))F,Bth(dw))I/Z(/H |¢(w’ﬁth)|2rﬁth(dw)>1/2
= (Fﬁth(”wu > R)) 12 </H e2n|lwl|zrﬁth(dw)>1/2

1/2
< Ce M < / 62nw|2F6th(dw)> < Ce M,
H
As a result, we have the following estimate on (6.11),
|Pi(w, h)| < Cernllvll (nfE—domt 4 o=nft?)

By choosing R? = 6%7, we obtain (6.10) with A = %Tw = 5oy The proof is complete. O

We now define the corrector that will be used in the martingale approximation procedure.

Proposition 6.7 (The corrector). For ¢ € C:;H(H x T™), define

X(w, h) = /0 ~ Pd(w, h)dt = /0 " Pound (s Bih) (w) — (o 6 Beh))dt,  (w,h) € H x T,

(1). Forn € (0,m0/2], v € (0,1], the corrector x € C’;&H(H x T™) as long as ¢ € C;H(H x T™),

where vy = AAJZT, with A from Theorem 6.6 and v = 64cn=3v=° + nC(f, By) is the constant from
(6.8).
(2). If we assume ¥ € CV(T", H) and ¢ € C’;IY,H(H x T™) N C’%Tn(H x T™), then the associated

corrector x € C’;f; y(H xT")NnCH

o o (H x T"), where v =

W with A,r as above and (

from Theorem 5.1. In particular, we have
X € Co0 (H x T") N C30 o (H x TT),
where 7, = min{vp, 1} = 71.

Proof. The function y is well defined in view of Theorem 6.6. We begin with proving the first item.
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Let ¢ € C,;YH(H x T™). It follows from Theorem 6.6 and inequality (6.8) that, for n € (0,70/2],
o) = 3] < [ 1R, )~ P e+ [ LR, ]+ 1P,
< /OT |Pyp(w1, h) — Pyp(wa, h)|dt + C|| @y me T <e277|\w1H2 + e2nllwzll2>
< Cllbllpit (101 = walP T + &) (bl 1 o
< Cl\9llym,u (H’wl — wol[Te™ + e_AT) (6277||w1H2 + 6277”“’2”2)

where r is from inequality (6.8). In view of Lemma 5.2, we have for any 0 < ||w; —ws| <1,

2 2
(wr h) = x(uwz, )| < Clgllir (€11 4 120 oy — w0,

Ay
A+r

of x(w,h) in h for fixed w follows from the fact that yr(w,h) := fOT P,é(w, h)dt is continuous in h

with vg = . This also indicates that x(w, h) is continuous in w uniformly for h. The continuity

and xr(w,h) = x(w, h) uniformly for h. Thus y € C(H x T™). It also follows from Theorem 6.6

that [x(w, )] < Cll¢ll.p.rre? . Hence x € C30 ; (H x T") .

We now prove the second assertion. Let ¢ € CJH(H x T™) N C;,Tn (H x T™) and assume
U e CY(T", H). Then
T ~ ~ o) - -
() = x(w.ha)| < [ 1P, h) = Pid(w. ha)de+ [ 7 1P|+ Pedw, ho)lde
0 T
=1+11I.
Note that by Theorem 6.6, the second term can be estimated as

I1 < Cll |l zre®MI"e AT

For the first term, observe that
T

IS/OTPt¢(w,h1)—Pt¢(w,h2)\dt+/0 T, &, Behn)) — (T 6 Gua))|
— I+ .
It then follows from the estimate (6.9) that
I < C([[¢llynmn + H¢H%n”\y”3)e2nllw\\2’hl — ho|? /OT e ldt
< C(||@llypmm + H¢H7,n||‘1’||3)62"”w“2]hl — holYerT.

To estimate I, noting that as in the proof of Theorem 6.6, especially by (6.13) and Theorem 5.1
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(¢-Holder continuity of I'), we have

Ioy :=[(Lg,hy> O Beha)) — (Tgyng, S5 Behn))|
< (s = Dpnas xRO(, Bh)) | + s () s Beh)] + | (Cpes (Xd) (- Behn))
< Oy e DI E [~ Baf 75 4 Oy e
< Ol ir (ITNET +1) (7 g = ol 257 + &)
< Cll6llymar(ITIZT + Dl — b5

by Lemma 5.2. Also note that by Theorem 5.1,

Iz := |<P5th27¢('7ﬁth1)> - <P5th27¢(‘7ﬁth2)>|
< <Fﬁth27 ’(b('?ﬂthl) - ¢)<'7ﬁth2>‘>

2
< \Bllymzelhr — hal? /H ML (dw) < O]

'y,n,']l'”|h1 - h2|’y'
As a result,

T _1 <
I < / It + Ippdt < CT (HcfﬁHwH(llTllg27 +1)+ WH%MT") |h1 = ha|5C=7.
0

Therefore by Lemma 5.2 again,
) =y < €I (Tl 757 477 )

< Ce2lwl®|py — po|m,

A

¢
ST - Hence x € C)*

o, T (H x T™). This completes the proof of this proposition. []

with v1 =

We are now in a position to give the martingale approximation. For T' > 0, let
T _ N _ T _
/ o(Xy)dt = / o(Xy)dt + / ¢(Xy)dt = My + Ry, (6.14)
0 0 N
where N is the integer part of T',
N ~
My =x(Xn) = x(Xo) + [ G
0
is the Dynkin martingale (formally) and
T ~
Ry = —x(Xx) +x(X0) + [ 6(X)i
N

is the reminder term. Let Zy = My — My_1 for N > 1 be the associated martingale difference.
In what follows, we will show that My is indeed a martingale and Ry 7 is a negligible term that

vanishes as T' — co. This will reduce the proof of Theorem 6.1-6.2 to the proof of the limit theorems
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for the associated martingale sequence My. Let Mp = x(X7) — x(Xo) + fo Xt dt for T > 0.
Lemma 6.8. {Mr}r>¢ is a zero mean martingale w.r.t the filtration {Fr}.

Proof. The martingale property follows from the Markov property of the homogenized process X

as follows.
s T
E[Mr ) = B[x(Xn)| 7]~ x(Xo) + | BIS(X.)Fldu+ [ BGX)|Fdu
0 S
Since X, is Fs measurable for 0 < u < s, it follows that

[ BaIFId = [ 3

Moreover, by the Markov property,
[ iRl = [~ R @t [T PP )X = x(5) - BRI
Hence E[Mrp|Fs] = M;
It is zero mean since
Mr = x(X7) — x(Xo) / é(Xy)d

~ ~ T
:/T Pt—T¢(XT)dt—/0 Pt¢(Xo)dt+/0 ¢(Xi)dt

:/OOE(U,,,Z) [5()@;&} dt—/OoPtgﬁ(w,h)dt—k/oT%(Xt)dt

T 0

which implies E(w,h)MT = 0. 0

The following lemma gives estimates on the even order moments of the martingale My and its

associated martingale difference.

Lemma 6.9 (Bounds on the martingale). For integerp > 1,n € (0,277 1] and ¢ € CVH(HX'IF")
one has

Em|Mr[? < (227 4 1) el B, 2y < ce? il
forT >0 and N > 1. Also with a larger constant C,
PE (| Mr[? < OT?2 " 1) el® v > 0,

Proof. By Proposition 6.7, we know that x € C’;;;H(H x T™). Hence x*" € CJ°

oy o (H % T,

Besides, since ¢ € CgH(H x T"), || € C 2p+1 g (H xT"). It follows from estimate (A.1) that for
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ne (07 2—]3—17]0]’ and any ¢t > 0,

T ~
B Ml < C <E<w,h>|x<XT>Pp + x(w, B2 + T2 / E<w,h>|¢<xt>|2”dt)

T
<c <Ee2p+1nwo,T,h<w>||2 L2l | -2 / E62P+1n||wo,t,h<w>2dt)
0

< O(T> 27 4 1) llvl,
Similarly, one can show that for any N > 1,
B Zy[? < Ce2 i,
where C' does not depend on N, h. It follows from (A.1) that

12

PtE(w,h)|MT\2p < C’(T2_27p + 1)E62p+177”w0¢7h(w) < C(TQ—T” + 1)62”177”10”2_ O

The following estimate on the remainder term shows that the proof of Theorem 6.1-6.2 can be

reduced to the proof of the corresponding limit theorems for the associated martingale sequence.

Lemma 6.10. Let Ry be as in (6.14). Then for any initial condition Xo = (w, h), n € (0,2 1]

and ¢ € C’;H(H x T"™),

, 1
Tlgréo ﬁRNvT =0, P-—as. (6.15)
Proof. Since N is the integer part of T, it suffices to show
1
lim — sup Ry;=0, P-—as.

N—oo /N N<t<N+1

By Proposition 6.7, we have that
IX(XN)| < Ce2llwo.nn@l?,
Since ¢ € C)) ,(H x T"), it also holds that
sup

t~
/ 3(X,)ds
N<t<N+1|JN

It then follows from the Markov inequality, estimates (A.2) and (A.1) that for any K > 0,

<C sup e2nllwo,e n(w)l?
N<t<N+1

(6.16)

p ( sup  e2lwon @) K) < ce2tllvl? -8,

N<t<N+1
1

oo oo
<SS P(C sup el > NE) < geilel? SN2 < o,
N<t<N+1 N1

Hence

iP sup (!x(XN)\+x(w,h)+'/];<$(xs)ds

N<t<N+1
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By the Borel-Cantelli lemma, there is an almost surely finite random integer time Ny(w) such that

for N > Ny(w),

sup  Ryy < NY4 (6.17)
N<t<N+1

which implies (6.15). O

6.2 THE LiMIiT THEOREMS

Based on the martingale approximation given above, we will prove Theorem 6.1 and Theorem
6.2 in this section by showing the limit results for the corresponding martingales. As remarked
earlier, compared with the analysis in the next section the rate of convergence, the proof of the
limit theorems is quite straightforward and merely requires certain moment bounds as given in
Lemma 6.9 and ergodicity properties given in Proposition 5.3. We first prove the strong law of

large numbers, which is based on the following Kolmogorov’s criterion for martingales.

Theorem 6.11 ([39, 48]). Let {Mn}n>1 be a zero mean square integrable martingale and let {cn}

be an increasing sequence going to oo such that

[o.¢]
> eNEZY < oo,
N=1
where Zy = My — My_1 and My = 0. Then

lim cy'My —0, P —as.
N—o00

Proof of Theorem 6.1. In view of the martingale approximation (6.14) and Theorem 6.10, to show

(6.6), it suffices to prove that

lim N"2 My =0, P—as.

N—oo

Lemma 6.9 with p = 1 ensures the condition of Theorem 6.11 with ¢y = N*/2t¢. Hence the desired

convergence follows from Theorem 6.11. 0

The rest of this section is devoted to the proof of Theorem 6.2. We first prove the existence of

the asymptotic variance.

Proposition 6.12 (The asymptotic variance). For any (w,h) € H x T", n € (0,19/16] and
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NS CVH(H x T™), we have

2
= Nw w w = 0'2. .
lim = (/ 3 (X,(w h))dt) 2/HW 3w, h)x(w, W) (dw)A(dh) = o2 (6.18)

T—oo 1

Proof. By the Markov property of the homogenized process, one has

E</ 9 (Xiw, ) dt) E/ / ¢ (X¢(w, h)) ¢ (Xs(w, h)) dtds
/ [ (w h))/s B[ (Xu(w,h)) || dt] ds

~ T_S ~
= / <Ps*5(w,h)v¢/ Pt¢dt> ds.
T 0 0

In view of the weak convergence in Proposition 5.3 and the definition of the corrector in Proposition

6.7, we expect that as T — oo,
2 T _ T—s . 9 T .
B /0 <Ps i)+ @ /O Pt¢dt> ds - /0 (P2 8y &) ds|
2 (T ~
’T /0 <P;5(w,h), d(x — XT—s)> ds
where x7_s = fOT_S PtQNSdt. Indeed, it follows from Theorem 6.6 with k = 2 that

oS
’X - XT—s| < /
T—s

Since ¢ € C’;H(H x T™), and e21l* ¢ CZmH(H x T™), it follows that ge21l'I* ¢ an,H(H x T™).

0, (6.19)

Pt%(w, h)‘ dt < Ce2nllwl? —A(T—s),

Hence by estimate (A.1), we have for n € (0,70/8], and any s > 0,
<Ps*5(w h)> |$|6277||~H2> <C <ps*5(w By 6877||'H2> = CEeSwosn@)? < crednllwll?,
Hence
e ~
’T/o <Ps*5(w,h)7 d(x — XT—5)> ds
which implies the limit (6.19).

T
< 068771”211_,/ e MT=9)ds — 0,
0

By Proposition 6.7, x € Cg) yy(H x T"). Hence lox|2 € Cgy g (H xT"). Then by estimate (A.1),

for ne (07770/8]7

1 [T
limsup/ <Ps*6w ,
T—o0 T 0 (wh)

Combining this moment bound with the weak convergence in Proposition 5.3, we obtain the desired

2 1 (T
>ds < C'limsup / Eedlwosn@)? g < 00.

T—o00 0

convergence
2 (T . .
lim — Pr6 ds =2 h h)L'p(dw)A(dh
Jim 2 [ (P ds =2 [ G hu T ),
which combined with (6.19) implies the desired (6.18). O
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The following proposition gives further properties related to the asymptotic variance. In par-
ticular, the Holder regularity of the particular observable function F' as below, plays an important

role when estimating the rate of convergence in the central limit theorem.
Proposition 6.13. For v € (0,1], n € (0,2 %], ¢ € C’ZH(H x T™) N C;;TH(H x T™), and
Xo = (w, h), let
1 2
Y(w,h) = E@pnM? =Egupn (X(Xl) — x(Xo) +/ d’(Xt)dt) .
0

Assume W € C?(T", H). ThenY € CJ9

oo (H x T") N Cy0

5o, o (H x T"). Furthermore, the function

PO = [ ¥ (w bEs(dw) = (T V(1)
is in C7o(T™ R). Here 7, is taken from Proposition 6.7. We also have
0% = / F(h)A(dh) = / Y (w, h)T(dw)A(dh). (6.20)
n HXT"
Proof. 1t follows from the Markov property that
Y (w, h) = x*(w, h) + Pix*(w, h) — 2x(w, k) Py x(w, h) + 2/1 P(¢Pr_yx)(w, h)dt (6.21)
—2x(w,h)/0 Ptqﬁ w, h) dt+2/ / ngt ngb (w, h)drdt.
By Proposition 6.7 we know that x € C;‘;H(H x T™) N C;&Tn (H x T™). Hence for n € (0,10/2],
x? € CZ%H(H x T™) N ng,irn(H x T™).
Since 7, < v, it follows from Proposition 6.5 that for n € (0,273n], one has
Pix € CJ0 p(H x T") N CJ0 1 (H x T7),
and for t € [0, 1],

OP1_ix, XPix, Pix* € ng?n Ly (H xT")NCY

o, Tn(H x T"™).

It then follows from (6.8) and (6.9) that for n € (0,2 4],
1 - _ _
/0 P(¢pPr_ix)(w, h)dt € C’;me(H x T™) N C;fn’Tn(H x T™).
In a similar way, one can deduce that the remaining two integrals in (6.21) also belong to the same

g(H T NCY

function space. This shows that Y € C)? 94y Tn

. (H x T).
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Note that
[F(h1) = F(h)| < (Thy, Y (5 h1)) = (Thg, Y (5 )| + [(Chg, Y, ha)) = (Tay, Y-, h2))
=11 + Is.

And using the same functions xgr,Xp as in the proof of Theorem 6.6, together with the Holder

continuity of I';, and the fact (6.13), we have for € (0,27 5n0],
I < |(Thy = Dhyy (XRY) (5 R+ [(Thy = Thys (XRY) (5 1))
6, P2 _1 o4, p2
< CHYHW()Q“T],HeQ nk (p(FhI,FhQ))Q"YO + CHYHVo,Q‘LTI»He 2k
< C|Y [l5,,249, 5 (626nR2|h1 - h2|ﬁ + 6_24"R2> ,

where we used the uniform integrability | " e2nllwl*p n(dw) < C in the second inequality, which is

a consequence of Theorem 5.1 by taking x = 24. It then follows from Lemma 5.2 that
I < ClY |y, ,24n,mP1 — h2|5(2+%)-

Also note that

Iy < (Thy, [Y (5 ha) =Y (-, ho)l)

< Yl ztn,mn b2 — haf /H MLy, (dw) < CIY |5, a0, b — hal.

Since 7, < 5(2%%), we deduce that

|F () = F(h2)] < C (Y llyg2tm1n + 1Y ll5y,209,8) 11 = ho®, Iy, ho € T"
Hence F € C7o(T™, R).

Equation (6.20) follows from the invariance property of the invariant measure I', (dw)A(dh) and

the decomposition (6.21). Indeed, letting m(dwdh) = T'y(dw)A(dh) and x; = fg P,dr, then by the

invariance of m under P;, one has

/ / m, Py ¢Pt TCZ) det / / ngTqb det /01 <m7<l~5Xt> dt
/0 <m’ Pt(¢P17tX)> dt = /o <m, ¢Ptx> dt = <m,¢x> _ /01 <m’ $Xt> dt,
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where we used the fact that Py = x — x¢. Hence from (6.21) we have

/ Y (w, b (dw)A(dh) = (m, Y
HXxTn

1

=9 <m, X2> —2(m,xP1x) +2 <m, gx> — 2/01 <m, $Xt> dt — 2 (m, xx1) + 2/0 <m, $Xt> dt

=2(m,x*) — 2 (m, x(x — x1)) + 2 <m 5x> —2(m, xx1)

=2 <m, gx> =02

as in (6.18). The proof is complete. O

We now proceed to prove the central limit theorem in Theorem 6.2. This is done by utilizing
the following martingale central limit theorem to the approximating martingale My in (6.14). It
is notable that the theorem only requires a weak form of law of large numbers for the martingale
difference and Lindeberg type negligible conditions. Basically these conditions can be derived from
the ergodic properties of the homogenized process as in Proposition 5.3 and certain moment bounds
on the martingale from Lemma 6.9. Although Theorem 6.2 is a direct consequence of Theorem
6.4 that will be proved in the next subsection, we supply the proof for Theorem 6.2 below since it
does not require a deep analysis of the convergence of the conditioned martingale difference to the

asymptotic variance.

Theorem 6.14 ([50]). Assume the martingale My, its quadratic variation [M|nx and the associated
martingale difference Zn = My — My—_1 (with My = 0) satisfy the following

1.(The Lindeberg type conditions) For every e > 0,

N—-1
. 1 9
Jim > E [ZjH, \Zj 1] > sx/ﬁ] —0, (6.22)
p
mK—1
Kh_r)nooluéri)s;ngK Z Z E [1+Z+1,}M M1y | > eVIK ] —0. (6.23)

m=1j=(m—-1)K
2. (Law of large numbers for the conditioned martingale difference) There exists o > 0 such that

1
lim limsup — Z E|—E HM]mK — [M]m-1)x ’ S(m—l)K} — o

K—o00 y_so0 ‘K

=0, (6.24)

with uniformly square integrable condition sup EZ% < +00.
n>1

Then one has

. EM]y
1 =
Ngnoo N T
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and

lim EeMy/VN 6_0262/2, Vo € R.

N—o0

Before proving Theorem 6.2 by verifying the conditions of the above Theorem 6.14, we recall a

useful lemma.

Lemma 6.15. [50] If {un}n>1 C P(H x T") converges to p weakly, {Fn}n>1 C C(H x T")
converges to 0 uniformly on compact sets and there is ) > 0 such that limsup y_, . (un, |[Fy|1T7) <

00, then limy_ o0 (un, Fn) = 0.

Proof of Theorem 6.2. We first prove the The Lindeberg type conditions. From the Markov prop-

erty of the homogenized process, the left hand side of (6.22) can be rewritten as
1 1O
2. _ *
~ S B |Z512)| 2 eVN| = =3 (Pridun G ).
j=1 j=1
where Gy (u,g) = Eq, g [ME; [ M| > eV/'N] for (u,g) € H x T". By the Markov inequality and

Lemma 6.9, one has for € (0,2 3n0],

1
43 2 0 [ Byl —2 n7—1_2%]|w|?
GN S (E(u7g)|M1‘ )2 P (|M1‘ Z €\/N> S (E(u7g)|M1’ )2 W S CE N e i .

Hence Gy — 0 uniformly on any compact set. Also by Lemma 6.9, it follows that

N N
1 1 4 2
N E <f);fl(5(w,h)aG?V> < N E Pj—lE(w,h)|M1\4 < ce? el
=1 P

where C is independent of V. Therefore
N

: 1 x
o 3 (P GR) <

The first Lindeberg condition (6.22) then follows from Proposition 5.3 and Lemma 6.15.

Again by the Markov property we can rewrite the left hand side formula in the limit of (6.23)

1 l mK—1 1 K-1 1 l
w2 2. E [1 + 21 |Mj = Min_yyic| > 5@} =K <g 2. P(*rn—l)K5(w7h)’F€7j> :

m=1j=(m-1)K j=0
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VIK } It follows from the Markov inequality that

P (|0 (u.g) > eVIE)

where Fy j(u,g) = E(u,g) [1 + 72 1 |M;| > €

Frj(u.9) < (Brug (1+ Z241)°)

[NIE

N

= (E(u,g) ( Z]2+1) )2 (ég)\/;j)z)

1+ B0 Mjpa|* + Eg, |M|
< 0(e) s jeK

In view of Lemma 6.9, we know that for any R > 0, and 0 < j < K, there is a constant C

independent of ¢ such that

sup Iy (u,g) < .
(u,9)€BR(0)xT" i(.9) ((K)1/2

Hence Fy; — 0 as £ — oo uniformly on bounded (in particular compact) sets. Again by Lemma

6.9,
4

[a—y

Z (m—1 KE(wh (’MJ’4 + ’Mj+1’4)) < C(Kaw)

y4
1 *
<gzp(m1)K6(w,h)ang,j> SC( Z
m=1 ot

Therefore
l
. 1 " 2
lim sup <£ mz_:l Pl 1)kO(w,h)» Fﬁ,j> < 00

£—00

It then follows from Proposition 5.3 and Lemma 6.15 that
j=0,--- ,K—1,

l
/1 \
fim <e > P (m—1>K5<w,h>aFe,j> =0, j
m=1

{—00
which completes the proof of (6.23).
Now we proceed to show the law of large numbers for the conditioned martingale difference as

n (6.24). The finiteness of sg;l) E,, h)Z follows from Lemma 6.9. By the Markov property, we
n

¢ ¢
% > E‘?E [IM]mg = [M]n-1)k | Fim-1)K | — 02‘ = % > <P{§n—1)x5(w,h), |HK|>7 (6.25)
m=1

1 , | K1
=Mk — 0?| =B,y MK—U =2 > PiYo(u
=0

with Yo(u, g) = E(yg)[M]1 — 0% = E(, 4 M{ — 02 In view of the decomposition (6.21) for E, 4 M?
and Proposition 6.5, together with Proposition 6.7, we see that for n € (0,27 %], Yp € Cif 5 (H X

T™) where 7, is as in Proposition 6.7. Note that we do not require the Holder continuity of ¥ here

87



Also by Lemma 6.9, we have

¢ ¢
%Z <P(m 1)K O(wh) [HK| >< C(o,K) ( 7 Z (m—1)K BE(w, h)MK>

S C(Uu K)w)a

which is independent of /. Hence

l
lim sup %Z <P(m 1K O(w.n) [ HK| ><oo

£— o0

0
1
Now since 7 Z (m— 1)k O(w,n) converges weakly to I g(du)X(dg) by Proposition 5.3, it follows that
m=1

lim 7 Z (Pl syt 1) = [ i g)ITy (d)A ),

L—o0
Since the homogenlzed process is uniquely ergodic with invariant measure I'g(du)A(dg), it follows
from the Birkhoff ergodic theorem for stationary ergodic process, that for an appropriate initial

condition X with law I'y(du)A(dg),

K- K—
1 1

lim |Hk (u, g)|T'y(du)A(dg) = lim E|— P;Yy(Xo)| = hm Yo(X
K—oo JgxTn K—oo K =0 ]:0

-| [ sy @] <o

provided that [, 1. Yo(u, 9)Tg(du)A(dg) =0, ie., 0* = [4, pn B g) MiTg(du)X(dg), which follows

—
H

from (6.20). This completes the proof of (6.24). Hence the central limit theorem (6.7) follows from

Theorem 6.14, the martingale approximation (6.14) and Theorem (6.10). O

6.3 THE RATE OF CONVERGENCE IN THE LIMIT THEOREMS

The aim of this section is to show the desired rate of convergence in the limit theorems as in Theorem
6.3 and Theorem 6.4. We begin with a result that gives a convergence rate for the moments of the
time average of the observations centered by the quasi-periodic invariant measure. It will be useful

when estimating the rate of convergence of the conditioned martingale difference to the variance.

Proposition 6.16. For any integer p > 1, n € (0, ], v € (0,1] and ¢ € C, y(H x T"), we have

2p

2 _
E () < G Fg)? NP, (6.26)

N
%Z ((b(Xk:—l) - <F/Bk71h’ ¢("Bk_lh)>>
k=1

for all N > 1,(w,h) € H x T"™. The same result also holds if we replace the summation by
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integration:
1 [T 2P 2
= /0 (#(X0) = (Tans 6, Beh)) Jt| - < et P27, (6.27)

for any T > 1 and (w,h) € H x T™.

E(w,h)

To show this proposition, we give a lemma first.

Lemma 6.17. For any real numbers {x;};>1 and any integer m > 1,p > 1, let S,, = Z xi. Then
i=1

one has
2p m m
2
S| = =Y fopag(mr, @, @iy, mi)wiay,
i=1 j=i
where
2p—2
2p—2—k o
E (k + I)Sk WSPTEE whenj =1,
._ k=
f?p—27j(xl7‘/1:2) T 7:62'—15:177;) O 0 2p—2
2p Z Sk 522k whenj > i.

Proof. By the multinomial formula, one has for j = i,

2p)! .

Jop—24(x1, T2, -+, Ti—1,25) = (2p) 90]f156§2 gl

2 Tl -k 11 (s + 2)!
kitka+thi=2p—2 ’ ’

2p—2
2p—2—k; k;
_ Z Chir2g2; hi ghs

~

7

— 1:;2 (S.zp — S - 2p52p1 1%)

3 K3 3

(s (szp—l - S77) - (2 - 1S 1)
pz k+1 Sk 152p 2— k’
k=0

And similarly for j > 1,

2p)! ki k ki
fop—2,4(@1, @2, B, i) = > P v(k )l(k» +1)! syt wy?
o Hhg o hy=2p—g L2 ML :

2p—2
ki+1 o2p—2—k; k
:2p202p+1sp

~

= 2px; <52p1 53p11>
2p—2

_2pz S2p2k
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Proof of Proposition 6.16. Recall that ¢(w,h) = ¢(w,h) — (Uh,d(-,h)), then the summands in
inequality (6.26) is & := ¢(Xj_1). Let

m
Sm=3 L, sn= sup Eg,p)|Sml”.

1<m<N

Let g(&,&5) = &E ) [€1Fi—1] and gp(w, h) = (Egp) |g(§i,§j)’p)l/ P Tt follows from Lemma 6.17

and the Holder inequality that

E () Sml™ =Bl > > fap2,(&1, &2+, &1, 6)&E;

i=1 j=i

B | fop-2(61, &0, +Eim, €)EB o (61 Fima] |

s 11
MS I MS

p—1
< (E<w,h> Fop2(€1,60, &1, &)7T) 7 gylw,h)
i=1 j=i
p—1
m m L21)—2 - P
<> > 2 ((21? 17T Y By (!Si—l\k\sz'!?”_Q_k) ’ > gp(w, h)
i=1 j=i k=0

i
L

Ms

-
Il

_

<.
Il
-

2p—2 p p
1 k _ 2p— 2—k _ p—1
p(2p—1)» (E E(w,n) < —5 i1 [P 4 2}97_2@’27] 2) ) gp(w, h)

p—1

2p(2p = 1) (B [1Si11 +150%] ) 7 gylw, ).

NE
gk

<

S
I

—

<.
Il
-

Taking the supremum for 1 < m < N, one has

= N N
sy < 4p(2p — 1)s ZZ( wm l9(& EHIP) P

Hence by letting Cp, = (4p(2p — 1))P,

N N P
sy < Cp (ZZ (w,h) ’g gzafy)p)l/p> .

=1 j=1
Note that by Theorem 6.6 with k = 2,

Bty 1966 ) = By [6(Xi 1) By (60 0)1Fi ][

< En ’5(&4)345(&4)‘1)

—pA(7—1 4 i 2
< Cp|‘¢||g7n7H€ PA(j Z)E(w,h)e pnllwo,i—1,n(w)

—pA(j—i 2
< CpHﬁng,n,He PAG=) Apnllwll®
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for n € (0, 2] by estimate (A.1). Therefore

2
sy < CCyllglP eI N,

where C' > 0 does not depend on p. Dividing both sides of the above inequality by N2 completes

the proof of the first estimate (6.26) in Proposition 6.16.

The second inequality follows from the same argument (see also [61] for the case in the time ho-

mogeneous setting). Let £(t) = ¢(X;)—(Lgn, ¢(, Bih)), I = [ £(t)dt and Ip = sup B, p ||
0<r<T
We first note that

P = / §(t1)&(ta) - - - & (tap)dtrdiy - - - dizy
0,27

= (2p)! / f(tl)f(tg) cee f(tgp)dtldtg cee dtgp.
0<t1<to<--<top<r

For 11 <19, denote ¢(r1,72) = &(r1)E ) [§(r2)|F]. Then

E(wn [P = (20) B n) / §(t1)E(t2) - - - Etap—2)p(tap—1,tap)dtidts - - - diay

0<t1<to<--<top<r

r top
= (2p)'Ey,n) (/ / o(top—1,tap) </ E(t1) - E(tap—2)dty - - - dtQp—l) dt2p—1dt2p>
0 Jo 0<t1<---<tgp_1

p—

r top 1 9 p—1
< 2p(2p - 1)/0 /0 (E(w,h) ’w(tQp—latQp)’p)p (E(w,h) ‘Itgpfl‘ P) ! dt2p—1dt2p-
Taking the supremum w.r.t r over [0, 7], we have
p—1 T to » 1
Tr < 2%p - D @)T [ [ B loltr, o)) it

o Jo
Like in the proof of (6.26), one has for n € (0, 32),

1 _ _ 2

(Bl lo(t1, 02)I")7 < Clllly g e 20t

Therefore

2
Ir < Cylol? , TP

and the inequality (6.27) follows by dividing both sides with 727, O

The rate of convergence in SLLN. The convergence rate of SLLN is a consequence of

(6.27), the error estimate in Lemma 6.10 and the Borel-Cantelli lemma. We now give the details.

Proof of Theorem 6.3. For any € > 0, let By = {w €N ‘%MM > N_(I/Z_E)}. From Proposition

6.7, we know that for n € (0,70/2], x € C’;&H(H x T™). Thus x?" € C’;SHW’H(H x T™). Hence from
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estimate (6.27) and (A.1) and Markov’s inequality, we have for i € (0,2~ (®P+1y]

P(Ey) < N¥CV29E, ) MY
< CpN2P(—1/2—€)E(w7h) <X(XN) + x(w, h)? </ gb (X3) dt> )

< Cpsz(_1/2—a) (HXH’YO72p+177,HE€2p+177”w0’N’h(w)“2 + HX"70,21’*177,H62p+177”w“2 1 2P+177Hw|\2”¢”’2yp77,1 N2 1)

< CP(H¢H%7I,H)N_QpaezpﬂnuwHQ'
For any € > 0, and every integer p such that 2Pe > 1,
o0
> P(Ey) < oo
N=1

By the Borel-Cantelli lemma, there is an almost surely finite random time N (w), such that for all
N >N (w),
1
— M| < N—(1/2=¢)
B
Note that for £ > 0,

P(E))k

M

EN{ =) P(N = k)k*

i
I

Cp( ||d)|”y,n,H)k£_2p8€2p+177||w||2

M

B
Il
—

20+ |lw]|?

< Gy(

, H,f, 6)6

as long as £ < 2P — 1. In a similar fashion we can estimate the moments of the random time Ny(w)

n (6.17). Let £ > 0, then for n € (0,277~ 1n],

ENG =) P(No = k)k!

k=1

o0 o0 9
< P sup Ry > VA R < Z E sup  R7, K2

1 k<t<k+1 1 k<t<k+1

2
Co (|l ZE sup  exp(2P L yllwo pnl| 2K

oy kR<t<k+1
- 2 2 1 2
p+1 _op— ot
Cp(H(pH%”’H)ZQ el = Cp(“¢‘|%n,H7£)€2 ikl )
k=1

provided that ¢ < 2P~2 — 1. The conclusion of Theorem 6.3 then follows from the above estimates,

the martingale approximation (6.14) and Lemma 6.10. O
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The rate of convergence in CLT. We recall a Berry-Esseen type estimate for martingales

from [39], which will be used in the proof of the rate of convergence in the central limit theorem.

N
Theorem 6.18 (Theorem 3.10 of [39]). Let My = ZZj be a zero mean martingale and oi =
j=1
k
ZEZJZ. If ¢ > %, and
=1
max UT;\?E\ZH < NV (6.28)

for a constant M > 0. Then there exists a constant C depending only on M and q such that

whenever
N 24
1
N9+ E U—QZE (Z2|Fja] - 1] <1, (6.29)
N ;-1
one has
2g\ 1/(4g+1)
MN 1 al 2
Pl—< ) <C|N 14+ E|—= E|Z:F_1| -1 ,
sup <UNZ> (2)| < +B| > E[Z]|F]

N j=1

where ®(z) is the distribution function of the standard normal distribution.
We are now in a position to give an estimate of the convergence rate in the central limit theorem.

Proof of Theorem 6.4. Recall from (6.20) that the asymptotic variance

aQZ/HXTn Y(w,h)rh(dw)A(dh):/ (Th, Y (-, h))A(dh).

n

Since Y € C;OHH(H x T™) by Proposition 6.13, thus Proposition 6.16 implies that for n €

(0,27 "p~ngl, and N > 1,

L X

N ; (Y(Xk—l) - <T,8k_1h7Y('w3k—1h)>)
In addition, since F' = (I'5, Y (-, h)) € C70(T",R) by Proposition 6.13, it follows from Theorem 3

2p

7 2 _
E(u.n) < Gt PRy P o yNTP. (6.30)

in [43] that for N > 1,
1 N
N Z <Fﬁk,1h7 Y(7 Bk—lh)> - 02

k=1

< C||F||- N~ *fa, 6.31
Yo

where A is the constant from the Diophantine condition (2.2) and n is the dimension of the torus.

Therefore, by the Markov property, inequality (6.30) with p = 1, and inequality (6.31), it follows
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that for n € (0,27 "], and N > 1,

1

TIN

M=

(Tge_rh, Y (-, Br—1h)) —

=
Il

1

ﬁ:( Y (Xk-1) = (Tp_sn, Y (-, Br—rh) )

k:l

SE(wh

Z<F/Bk 1ha Bk 1h)>

1/2 _ __Jo_
Y225, 5N 7H2 4+ C|[F|l5, N~ 75, (6.32)

< ce2nlwl?

This shows that %JJZV converges to 2.

To estimate the convergence rate for the central limit
theorem of the approximating martingale sequence, we first deal with the case when o2 > 0. Set
q = 2P~2 for integer p > 2 in Theorem 6.18 and choose N7 > 0 such that for all N > Ny, inequality
(6.29) is satisfied and 0% € [02/2,30%/2]. It then follows from Lemma (6.9) that the condition
(6.28) holds for p > 2 and n € (0,277~ 1yg).

Observe that

N op—1
1
EWH‘?X:QM (2217, 1] —1
N :
N op—1 N -
! 1
<G, UTZ( (Xk-1) (Bk_lh)> O’T F(Br1h) — 1
ket N =1
| X 9p—1 ' ot
+5 2 op2
<Gy | MY g N v 2 FBeah) —a? + ‘NUN—U2
k=1
2p+577||wH2 op—2 _9p—2 op—1 _2p7170
< Cp e HYH%,QsmHN + HF‘H0 N~ A .
Therefore by Theorem 6.18 we have
op—1\ 1/(2P+1)
My _op—2 )
e (T <) wef <o (v m p Sm i)
z€R ON N 2

5 2P~ 15
< 062"77\\”»”“2 (N 2p+1 1+ N™ (217+1)(A+n)>
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As a result,

M M vIN vIN
sup [P <N <z> —®,(2)| <sup|P <N <z> — O —=z||+sup|®| —=2 ] — Dy(2)
z€R vN z€R vN ON z€R ON
M
SsupP<N§z>— (2) —i—C'—a
z€R ON

op—1
< Ce2’nllwll® (N 2p+1 + N~ (2p+1)<A+n)) '

When o = 0, we note that

(A0 [P (X <) oot < (el an | (|72 2 141)

N 1/2
< (2| A DT NV gy [ My | < N7V (B | My [?) ' = (1ZZ£>

< cenlvl? (N—1/4 N NM%)

by estimate (6.32).

To pass the estimates to continuous times, we apply the following lemma from [61].

Lemma 6.19. Let Ry, Ry be real random variables. Then for any o > 0 and € > 0 we have

sup |Ay(R1, 2)| <sup |As(Re, z)| + P(|R1 — Ra| > €) + ¢o¢,
z€R z€R

where ¢y is a constant depending only on o and Ay (R, z) for random variable R is defined as

P(R <z)—®,(2) , o >0,
As(R, z) =
(Iz2[ A1) (P(R < 2) = ®o(2)) , o=0.
Recall that N is the integer part of 7' in the martingale approximation (6.14). It follows from

the approximation that

i ][] 5

The expectation of the remainder term RMT obtained in the proof of Lemma 6.10 together with

the Markov inequality yields

P <RN’T > 5/2) < Ol N8,
VN -

It follows from (6.27) with p =1 that

E /OTqNﬁ(Xt)dt‘ < (E </OT $(Xt)dt>2>

NI

cenlwl?.

N

IN

T
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Now applying Lemma 6.19 with Ry = % fOT 5(Xt)dt and Ry = %, and the Markov inequality

we have

sup |Ax(R1, 2)| < sup |Ay(Ra,2)| + P(|R1 — Ra| > €) + coe
z€R z€R

T ~
< sup |Ag(Ry, 2)| + 26 !N 2E ‘T—é / gb(Xt)dt’ +CelvlP N—4-8 4 ¢ e
z€R 0

< sup |A, (Ry, 2)| + Ce?lv I N=3
z€R

by takingz-::N_i. O

CHAPTER 7. LARGE VISCOSITY IMPLIES TRIVIAL DYNAMICS

In this chapter, we will show the existence of a unique stable quasi-periodic solution of (2.5) when

the viscosity is large as in Theorem 3.5. Recall that G = /|| f[|2,/v* + Bo/v3, and ¢y is the constant
from (3.9). Let 6o = v — 32 (|f||2%v~ " 4+ Bo). Then &y > 0 is equivalent to G < 1/¢y. Fix a
lattice Z,, = {s¢m : m € Z} where » > 0 is a real number. For each h € T", denote by (2.5), the

Navier-Stokes equation (2.5) with f(¢,2) = ¥(3;0, z) replaced by ¥ (5;h,x). Let ny € Z,, and
Wny+Np(0) =w(ny + Nt h,w,0), NeZ,,t>n

be the sequence of solutions of (2.5),. In exactly the same way as in [52], one can show the following

Theorem 7.1. Assume 69 > 0 and let 6 € (0,00). Then for each h € T" there is a full measure
subset Qy, .. of Q such that:

1. There is a complete random trajectory w*(-, h,-) : RxQ — H, which is a strong solution of (2.5),,.
For each ni € Z, and w € Q,, w*(+, h,w) is the limit of {wn,+Nn(0)}yez- in C(ln1,00), H)
equipped with the supremum norm.

2. For any s € R, there exist positive random times n*(s,d, h, ) and n.(s,0, h, ) having all

moments finite such that

sup |ws ,n(w,wo) —w*(t, h,(.u)||2 < TQe_‘S(t_S), (7.1)
woE€Br(w*(s,h,w))

sup w1 (w, wo) — w*(s, by w)||? < r2e™06=7) (7.2)
wo € By (w* (1,h,w))
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forallr >0,t>s+n" and T < s—n*. Here By(w) is the ball centered at w with radius r in H

with the norm || - ||.

Proof. 1t follows from (A.12) (with n =1, 7 = s and a = 1) that

D[ oapaliar < S (ol + 21,0+ - (e 1 5, )

t
M(s,t) = 2 / (s GAVV).

where

It also follows from the proof of (A.4) that

Het\?é\esu%xp( (t—s) /nwsrhu dr)

where e; = @44 p(wo) — Ps+.1(Wo) is the difference of the two solutions starting from different initial

conditions. Hence
lee]? < [leg)|2e™ im0 =T (=) (7.3)

where

[(s,t) = (llwoll® + M (s,1)) .

4
V2(t — s)
The strategy of the proof is to show that the average I'(s,t) can be small for large time, so that
we obtain a contraction in (7.3) as long as dy > 0, i.e., when the viscosity v is large. The proof
consists of two steps.

Step 1. Fix a § € (0,0p) and t; € Z,,. We claim that for any € > 0, there exists a Z; valued

random time n*(g,d,t1, h, 3), such that with probability one, for any 7 > 0 and ny,ns € Z,,,
ni,ng <ty =1 = wn by 474(0) = Wyt 474 (0)]7 < 70T (7.4)

Assume t; = 0 without loss of generality. We also assume that n € Z;,. Since wy,_, n4(0) starts
from 0 for each n, estimate (A.1) implies that for each p > 0 there is a constant C' > 0 independent
of n such that E|wy,—,. 1 (0)||? < C. Then Lemma A.1 from [53] gives a Z}, valued random time

No(w) = No(g,0, h, k,w) with all moments finite, such that for any n with |n| > Ny(w), one has
[wn—sen,n (0)] < £6%|n]. (7.5)

Set ¢ = 09 — 0. Consider the solution {wy,+,(0)}:>n that starts from 0 at time n € Z,,. By
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(7.3) it follows that

||2 H26—7'(50—F(n,n+7'))’

Hwn,n—i-‘r,h(o) - wn,n—i—‘r,h(wn—%,n,h(o)) < ||wn—%7n,h(0)

2
where I'(n,n 4+ 7) = &M (n,n + 7). Note that the quadratic variation process of M (n,n + 7) is
veT

d

n—+t
[M](n,n+7)—4/n Z

n+rt
(W go)2dr < 4By / ol Pl
k=1 n

Therefore by Doob’s LP maximal inequality and the Burkholder-Davis-Gundy inequality, we find

that for 01 := ”22 ,
E|M 2p E[M p
< . 71m25ﬂ>§0 Mo+, B[M](n,0+7)
n<t<n+7' 51p7_2p 511)7_2p
pflE n+T7 de
< CpT fn . Hwn,r,h” T < 20 ’
6. 2 6, TP

where in the last inequality we use the fact that there is a constant C' independent of n, 7 such that

E sup |Jwn,4||** < C, which is derived from estimate (A.1) and the fact that w,, ., has initial
n<r<n+Tt

condition w(n) = 0. In particular, for m € Z} we have

C
5Pmp

P( sup ImeQ&m>§ (7.6)

n+m—x<t<n+m

Again by Lemma A.1 from [53], there exists a Z} valued random time
Ni(n,w) = Ni(d1,n, h, 2¢,w) >
with all moments finite, such that for all m € Z} with m > Ny(n,w),

sup |M(n,t)] < oym.
n+m—x<t<n+m
Note that for any 7 > Ni(n, w), there exists m € Z} such that n + 7 € [n + m — s, n + m]. Hence

]M(n n+ 7)) <51—<517—+%

< 204,

which in turn shows that I'(n,n 4+ 7) < 21%(’51 = ¢'. Therefore for 7 > Ny (n,w),

Hwn,nJrT,h(O) - wn,nJrT,h(wnﬂf,n,h(o))H2 < Hwnf%,n,h( )H2 7(%0=3) Hwnf%,n,h(O)HQ‘fTé‘ (7.7)
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Observe that the inequality (7.6) gives a bound that does not depend on n, therefore

ENi(n,w)? = Z mIP(Ni(n,w) =m)

mezZt

< Z miP ( sup |M(n,t)| > 51m)

n+m—x<t<n+m
mEZi -

C
< —— <
B Z 5Pmp—a ~ <

mezZL

for every ¢ < p— 1 and C is independent of n. Since the estimate in the last inequality is valid for
p > 1, we have ENj(n,w)? < C for every ¢ > 0. Again by Lemma A.1 from [53], it follows that
there exsits a TZ" valued random time No(w) = No(d1, h, 5, w), with all moments finite, such that

for n satisfying |n| > Na(w), one has Ni(n,w) < |n|.

Now let n*(e, d, h, ) = max { Ng, N2}, which has all moments finite as Ny and Ny do. Then for
those n € Z;; with |n| > n*, and 7 > Nj(n,w), one has from (7.5) and (7.7) that

[ ()RR A (OSSP (1)) = [ (0] 2
= Hwn_,{,n,h(O)HQe_T‘s < 5(52|n|e_67.
In particular, if 7 = |n|, then |n| > Ni(n,w) for |n| > n*, hence by the evolution property of
stochastic flow,
Hwn,O,h(O) - wnf%,O,h(O)HQ = Hwn,O,h(O) - wn,O,h(wnf%,n,h(o))H2 < 552|n’676‘n‘-

This also implies that for any 7 > 0, as long as |n| > n*,
[[wn,7,1(0) — wn,%7T7h(0)H2 = ||lwn,rn(0) — wn,T,h(wnf%,n,h(O))HQ < 552|n’676(‘rin) = 552‘n|€76(7-+‘n‘)-

As a result, for any ni,no € Z,, and ni,ny < —n* < 0 < 7, we have

1wy 1 (0) = woy rn O < D [wnrn(0) = wnesern(0)]

NEL e, N< —Nk

< Z \/E\n\ée*%(ﬂr'"') < \@6657/2/ Ve 2y,
0

NEL e, N< —Nk

This completes the proof of the claim (7.4).
Step 2. Let ny € Z,,. Consider the sequence of solutions {wm—n,t,h(o)}nezﬁ for t > nq. The
claim (7.4) in Step 1 states that there exists a random time n*(e,d,n1, h, k) such that for every

t > ny and every my, mo € Z, satisfying mi, ms > n*, one has

Wny —my .21 (0) = Wiy —mp . n(0)])* < ced(t—m1)
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This implies that {wy, —,..n(0)},,cz+ is a Cauchy sequence in C' ([n1, 00), H), which is complete with
the norm ||w||co := s>up |lw(t)]|. Define w*(¢, h,w) to be the limit for ¢ > ny. Since n; is arbitrary, we
obtain a process w*t(ET;L, w) defined for t € R. For any fixed T' > nq, it is well known (see [10, 26] for
example) that there exists a random variable K (w,T') such that lim sup,, ||wpn, —ntn(0)|1 < K(w,T)
almost surely for all ¢ € [nq, T]. Therefore w* € C([n1,00], H1), and {wn,—n,. n(0)},cz+ converges
to w* weakly in H;. Hence Lemma B.6 from [53] shows that w* is a strong solution of equation
(2.5),- This proves the first part of Theorem 7.1.

It remains to show that w*(t,h,w) has the attraction property. Note that each wy, 11 (0)
starts from 0, hence estimate (A.1) implies that for p > 0, E|jwy,—n ¢ 4(0)||” < C for some constant
C independent of n and ¢t. This in turn shows that E|w*(¢,h)||P < C for t € R. Let € = g — 4.
Define the random time 71 = 3%@”10*(5)“2, which has all moments finite. Note that for 7 > 71, we
have VCT(Q)T||u)*(s)H2 < &, which controls the first term in I'(s, s + 7) from (7.3). Based on the same
reasoning as in Step 1, we find that there exists a Z} valued random time nq(s,d, h, 5) such that
for all 7 > ny, one has

i]M(s s+ 7)< =
V2T ’ 2

The estimate (7.1) then follows by taking n* = max{ry,n;1}. For ¢t > 0, inequality (7.3) states that

||25 ||2 S ||83,t H2e_t(50_r(8—t,s))

9

2

where I'(s—t,s) = - ([w*(s — t)|> 4+ M (s — t,5)). Now s is fixed, so M(s—t, s) is not a martingale
since it runs backwards in time. Nonetheless, we can still use the same reasoning as above. By
replacing the Doob LP maximal inequality with the backwards maximal inequality (see Lemma A.6
in [53]), one obtains a Z} valued random time ns(s,d, h, 3¢) with all moments finite such that for
all £ > no,

2
Ch g
72t|M(8 —t, S)’ < 5

To estimate the term 1||w*(s — t)||?, noting that Theorem 3.13 in [53] remains true in our setting,
2

hence there exists a random time 7 > 0, such that for all ¢ > 7, we have VC—StHw*(s -1)? < &.

Therefore the inequality (7.2) holds by taking n. = max{72,na}.

The proof is complete. ]

The following proposition shows that there is a continuous modification of the random field
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w*(0, h,w), which is proved by applying the Kolmogorov continuity theorem. The desired quasi-
periodic solution will be constructed from this random field.
Proposition 7.2. Assume ¥ € CY(T", H), Gcy < \/m For anyp>1, if
V3 > 8pciBy, (7.8)
then there is a constant C > 0 such that
E||w*(0,hy,-) — w*(0, ha, )||* < Clhy — ho|P?,  Vhi, ho € T". (7.9)

In particular, for any 7 > 0, if condition (7.8) holds for p = %‘m, then the random field w*(0, h,w)

has a continuous (with respect to h) modification, which is n-Holder continuous for all 0 < n <

Y
2(n+7) °

Proof. For N € Z;, and hi,hy € T", let R, = wnyp,(0) — wnrpy(0). To show (7.9), we first
prove that the same inequality holds for Ry and then letting N — —oo. Let § > 0 be a constant
whose value will be determined later. Since wy ., (0) is the solution to (2.5), starting from initial
position 0 € H at initial time s = N, it follows that (see also the proof of (A.3))

a7“||RT||2 = (VAR;,2R;) — (B (ICRrvamM(O)) ,2Rr) 4+ (¥(Brh1) — ¥ (Brh2), 2R;)

< =20 Re | + 2col | Ry [y (O) LR ll1 + 209 (Brha) — W(Brha) [ Ry |

A

_ _ 5
=20 e[+ v IRl s (O + VIR [T+ 457 [ @]ly 71 = hol" + IR, ||

IN

~(v = /DR N? + v IR P iy ()T + 407l hy — ha].

By the Gronwall’s inequality and Hoélder’s inequality, and noting that Ry = 0, we have for p,q > 0

with 1/p+1/q =1,

0 0 p
5
IRl < 4267 W|2| oy — ol </ exp </ - <u - 4> " c%u_leN7T7h1(0)ﬁdr> dz)
N z

0 B0
< 4P5P (WP Ay — ho|” < / el —iw) q / e Iz~ (=) howra O)Fdr g
N N
0
<4271 R g — g [ ) e Ol (7.10)
N

We would like to have a bound on the expectation of exp (fzo v W n, (O)H%dr) It follows
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from Ito’s formula that for N < z <t <0,
t
el +v [T dr = Bole - )

t t
= |lwn o | +2/ (WNphy, GAW (1)) — v Hrithld?“Jr?/ (WN 7 by U (Brha)) dr
Hf”2

t
< lwyon, | +2 / (g, GAW () + o0

Therefore for ¢ > 0,

1+e)pc [ 1+ ¢e)pcg >
A [ ar - S0 (4 I ) 02y < e,

2
where M(z,t) := (Hj# wnzm, |I* + 2(1+a Alte)peg f (WNrhy, GAW (1)) is a continuous square inte-

grable martingale whose quadratic variation [M](z,t) satisfies

t d

4(1 + €)%p?cd 41+82pCB
M(ert) = EFED (5 gt < LEEDLDE [y
7 k=1

As a consequence, one has

2t 2 2 2t
e 1+¢)pc f epc,
0/ [y, I3 dr = L+ e)pey 2) 0 <Bo+ ” H°°> (t—z) < M(z,t) - 0/ lwp,rn |17 dr
v J, v v v o J,

3

eV

<M(zt)— —
(2,1) 4(1 4+ €)2pctBy

[M](z,1).

3

Let b = ud

3(15e)pe2Bo” It then follows from the exponential supermartingale inequality that for

K >0,

2t 2 2
+1 S
P (supexp <pCO/ Hwthledr — % <Bo + HfH) (t— z)) > eK‘}"z>
>z v J, v v
2 ot 2 2
+1 s
—P <Sup (pCO/ wpy e |12 dr — % <Bo + Hf”> (t — Z)) > K‘}‘Z>
>2 \ V J, v v

<P <sup (M(z,t) - Z[M](z,t)) > z)

t>z

b? 1)pcd
=P <sup exp (bM(z,t) - 2[M](z,t)> > ebK‘]:z> < exp <W} HwN,Z7h1H2) e VK,
t>z 1%
Ifb= m > 1, then the same argument as we derive (A.11) implies that
2 [t e+ 1)pc 2
E sup exp (po/ [ wn gy 1 dr — % <Bo + ”f||°°> (t— z)) (7.11)
1>z v/, v v
(e + 1)pcp 2 4
< Eexp <V20 w2l 19l %

To bound the expectation on the right, we note that the solution wy, p, starts from 0, so (A.10)

C(f,B K _
P <|wN,Z7h1H2 - M > Ck) <e K7

v

implies that
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where a = %, C(f,Bo) = ”J;‘L‘% + By and a € (0,1). Therefore

£+ 1)pck e+ 1)p2C(f, B (c+D)pR K B
e N e e B <ok

av? <S y
v3

2
[09%
+Dpcd One has

(e + 1)pck (e + 1)pctC(f, Bo) 4
E exp (VQO 0N 2 ||* — V% < 7o (7.12)

Again by the same argument as in (A.11) with ¢ =

av? _ (1—a)?
(e+1)pc2 = 2(e+1)pciBo

provided that ¢ = > 1. We take a = ﬁ , which yields b = c.
Now it follows from (7.10)-(7.12) that
0
B[[Ro| < 4% q™ 85 W Elhy — ha [l per e e O
N

14e)pe2 2
_ (telre (BOJrnfﬂoo)Z

0 )
< C(d,e)|lh1 — hg\m/ eP(v=5)z¢ dz
N

0 (s 0+ (1 1715
— .ol ha [ p(eo i (meR)) -
N

P

2
where C(d,¢) = <#> 42r+L g™ a 52| W |5 exp (M) . Since

v
2 2
o=v—23 <Bo+HfH°°> >0,
v 14

one has

14 ¢)c3 ;
0 = v — (tﬁ)co (Bo + HfVHOO) >0, aslongas & <eg:=(Gep) 2—1.

Keep in mind that we need to ensure inequalities (7.11) and (7.12) hold, which amounts to showing

the existence of € € (0, () such that ¢ = m > 1. This can be achieved if we let (Gep)? < 2

(thus g9 > 1), and
2pct By € 1

< sup = —.
v? e€(0,e0) (1 + 5)2 4

Therefore, under the conditions given in Proposition 7.2, there is an € € (0,¢p), such that éz > 0.

And by choosing § = dz, we have from (7.13) that
2C(0z,2)

E||Ro||* < Clhy — hof?, with C = e

By Theorem 7.1, we know that for i = 1,2, as N — —o0, wn 4, (0) converges to w*(0, h;, w) almost

surely. Hence it follows from Fatou’s lemma that

E[w(0, h1,) = w(0, ho, )| < liminf B|[Ro|[* < Clh1 — haf”. (7.14)
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Since the dimension of the torus is n, by taking p = %Jrﬁ for any n > 0, we have

2(n+7)

E||w*(0,h1, ) — w*(O,hg, )H 2l < C‘hl — hg‘n—’—ﬁ, Vhl,hz e T,

Hence by Kolmogorov’s continuity test, the random field w*(0, h,w) has a continuous modification.

Moreover, with probability one, the modification is n-Hélder continuous for all 0 < n < % O

Note that for h = 0 € T", the associated equation (2.5), is actually (2.5). We will show that

the complete trajectory w*(t,0,w) given in Theorem 7.1 is a quasi-periodic solution in the sense of

Definition 2.5.
Proposition 7.3. The process w*(t,0,w) is a quasi-periodic solution of (2.5).

Proof. The invariance property in Definition 2.5 follows from the stochastic flow property and

Theorem 7.1. Note that for any 7 > 0 and s € R,

w*(s+7,0,w) = A}im w(ny — N,s+7,0,w,0)
Nez,

= lim ®(s+ 7,w;s,w(ny — N, s,0,w,0))
N—oo
N€Z,

= PO(s+ 7,w; s, A}im w(n; — N, s,0,w,0)) = ®(s+ 7,w; s, w*(s,0,w)), P —as.
Nez,
For t € Z,,, it follows that

w*(t,0,w) = A}i_r)rloow(m — N,t,0,w,0)
NEZ.

= lim w(n; — N —t,0,50,0w,0) =w*(0, 5,0,0,w), P —a.s.
Nete

In particular, for each » € R, there is a subset €2,, C € of full measure such that
w*(5,0,w) = w*(0,6,.0,0,w), YweEQ,.

Therefore for each t € R,
w*(t,0,0_w) = w*(0,50,w), P —as.

By Proposition 7.2, we can choose a continuous version of w*(0, h,w) such that w*(¢,0,60_,w) is a

random quasi-periodic function in the sense of Definition 2.5. This completes the proof. O
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APPENDIX A. VARIOUS ESTIMATES OF THE SOLUTION

Several estimates about the solution ws ¢ ,(wo) of the stochastic Navier-Stokes equation (2.5) with

time symbol h € T™ are collected in the following Lemma A.1. Note that for any h € T", we have

sup [[W(B¢h)|| = sup [[W(B:0)|| = sup [[f(£)]| := [ flloos
teR teR teR

therefore the constant C' in bounds on the solution does not depend on h.

Lemma A.1. Let a € (0,1), c € (1,00), no = U= nd C(f,Bo) = [EiT=S—. By. For solutions of

2cBg av

the Navier-Stokes equation (2.5), we have

(i) For everyt > s,h € T" and every n € (0,m0], we have

Eexp (77 st,t,hH2> < Cexp (ne*”(tfs) HonQ) , (A.1)

where C' = —3— exp (”Oc(f’BO)).

1-21-¢ v

(i) The following inequality
2 ! 2 2
Eexp <7] igp <]ws,t7h|| + V/ |wsrnll] dr — C(f, Bo)(t — 7-))) < Cexp (ne*”(T*S) l[wo| )

(A.2)

TloC(f,Bo)) )

v

holds for every T > s and n € (0,n9], where C' = (1_2116,C)2 exp (

iii) For any hi,ha € T", and every n € (0,m0], with r = 64cSn=3v=> + nC(f,By) and C =
0

7(116_(;/2:)12 exp (7"00(5’80)), we have

E |[wsthy — Wsih||” < Ce™ ) exp (n]|wol|?) sup W (Beh1) — U (Beha)|?, (A.3)
S

for every t > s, where for i = 1,2, wsyp, is the solution to equation (2.5) with f = ¥(/,0)

replaced by W (Bih;) and with initial condition (s,wo).

(iv) For any h € T", and every n € (0,n9], we have
B|ws s (w1) = e spn(wa)||2 < Cllwy — w2l Hrt=2), (A4)

for every s € R and t > 0. Here C = 64(1 — 2'7°)=3/2exp <M> and r = 64cSn 370 +

nc(fv BO)
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(v) There exist constants n1,a,vy > 0, depending on f, By, v,no, such that

N
Eexp (nz s snall® - w) < exp (an [lwol?) (A.5)
n=0

holds for every integer N > 0, everyn < n1, h € T", s € R and every initial condition wg € H.

(vi) For everyn >0, h € T" and t > 7 > s, there exists a constant C = C (v,n) > 0 such that the

Jacobian Jr4p as defined in (4.20) satisfies almost surely

t
< exp (77 / |ws rp
T

(vii) For everyn >0, h € T" and every p > 0, there ezists C = C (f, Bo,v,n,p) > 0 such that the

|71

2dr+C(t - T)> : (A.6)

Hessian as defined in (4.22) satisfies

T+1
eaal? < Cox (i [ sl (A7)
T

for every T > s, h € T" and t € (1,7 + 1).

(viti) For any integer k > 0, set
t
k k
Euo (ot 5) = (¢ — 8)" w2 + v / (r — )" Jwer |2 dr-
S

Suppose that in equation (2.5), f € L2 (R, Hy) and g; € Hy, fori=1,---,d. Then for any

loc

m >1,n>0and T > s, there is a constant C = C(k,m,T — s,v, || fllL2(s,1),m,): Br,m) > 0,

such that

E sup &u,(k,t, )™ < Cexp (77||w0||2) . (A.8)

s<t<T
Proof. (i) Applying Ito’s formula to the functional F(t,w) = €’*~%)|lw||> and noting the fact
that (B(Kw,w),w) = 0, we have
2 2 ¢ 2 ! d
0 gl = ol =2 [ fualfiar +2 [ €0 (Y grdiilr)
S S

k=1

t ) t e1/(1&—5) -1
+ V/ eV(T_S) st,r,hH dr + 2/ el/(r—s) <ws,r,hu \Il(ﬁrh» dr + TBO

Given 0 < a < 1, let C(f,By) = [FilFS By. By the inequality ||w||? > ||w||?> and Young’s

av

product inequality, it follows that
2 e—u(t—s)HwOH2 C(f, Bo)

v

||ws,t,h

t t d
<—(1- a)u/ e_”<t_r)||w5,r7hH2dr + 2/ e’ (r—s) <w57r7h, ngde(r)> .

k=1
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Let M; =2 fst <w5mh, Zzzl gdek(r)> whose quadratic variation is

t d
M]t = 4/ Z <ws’r7h,gk>2 dr.
5 k=1

Observe that

d d
—(1 - a)w|w|?® < v SIS w, g = 3 24w )’ (A.9)
k=1 k:l
where a = %. Hence
fnaal? — e u)? - CLB) < [ ovinans, & [ ey,
Then Lemma A.1 from [54] implies that
P (Jlwaeall® = 0 ) - SEE) S ) < o (A10)

which is, for any ¢ > 1 and with g = %, equivalent to

(- C(f, B K _
P (o0 (m onaal — e 100 ol - PELED) 5 o8 < ok,

Now if a random variable X satisfies P (X > C) < % for every C' > 1, then

EX:/XdPg/ XdP+/ XdP§1+Z/ XdP
Q {0<x<1} {x>1} =0/ {2n<X<an+1y
4
<1 gt L —. Al
+ Z 2cn - 2 ( )
Therefore we have for n € (0, no], by Hoélder’s inequality,
—v(t—s C ’B
Bexp (nlluseall” = e o] — 250 )

v - 1—2l-¢’

l—a)v
and 7o = ¢ = (2083 .

Culi—s C(f,B /70 A
< (Bexp (mllwneall = me ) ] - MELEN) )T <

(noC(ijo)>

Hence we arrive at (A.1) with C = exp

- 21 c
Again apply Ito’s formula, for any n > 0, s < 7 < t,
¢
waanl? 0 [l dr = nBot — )
T

t t t
— llwsnnll? + 20 / (Waros GAW () — v [ w2 dr + 21 / (e W31} dr

-
t

t
(s GAW (1)) = (1 = @) [ ol L7 (6= 7).

(A.12)

< 1 lwarnl® + 20 /

T
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Therefore
t
7 llwsenll® + v / o2 dr — nC(f, Bo)(t — 7)
T

t t
< gl + 20 [ o GAW () = w1 =) [ ] dr
T T
2 ! na [t & 2
<nlwarall + 20 [ o G D) = [ a g ar (A1)
T T k=1
Again the last inequality is obtained by choosing o = % as in (A.9). Setting M (7,t) =
1 [ws -0l + 21 f: (Ws .h, GAW (1)), then the right hand side of inequality (A.13) is M (7,t) —

%[M |(1,t), where [M](r,t) is the quadratic variation of the continuous L?-martingale M.

Hence by the exponential supermartingale inequality, it follows that

P (sup (M1(r0) — - 101)r0)) 2 K| 7 ) < xp (el — 25

t>7 n

for all 7 > s. As a consequence,
t
P (up (sl + y/ el dr — O, Bo) 2 7)) = K | F) (A.14)
t>1 T

2 ocK)

< exp (1w
In view of (A.13) and (A.11), we deduce that
o ¢ 4
Bexp (% sup (sl +0 [ lspaldr = OB~ 1)) ) < 1=y Bexp (lwennl?).

The conclusion follows from (A.1) by taking 7o = <.

(ili) Let Ry = wstph, — Wsth, then
OiRt =VAR; + B (Kws t by Ws t,hy) — B (Kws ¢ hy s Wsthy ) + ¥(Biha) — Y (Bihy)
=vAR; + B(KR¢, Rt) — B(KRy, wst.h,) — B (Kws ¢y, Re) + ¥(Beha) — U(Beha).
Therefore from the inequality [(B(Ku,v),w)| < collull||v][1]|w][;/2 and the interpolation in-
equality HwH%/2 <ellw|)? + e 2|w]||? for € > 0, we have
O Re||? = (VAR 2Ry) — (B (KR, wst.hy ) , 2Re) + (¥(Btha) — W(Bih1), 2Ry)

< =20\ Rul} + 2col| Rellllws,e,n 111 Rell1 /o + 2sup W (Beha) — ®(Beh) [ Re
S

IN

42 1
—2v(|Ry|I7 + n*;IIRtH? +ulwsen, IR IRA + vIRT + 5 Sup 1@ (Biha) — ¥ (Bihr)|?

1
< (Cnv) +mllwspnI7) IRl + sup 19 (Beha) — U (Bin)|1%,
S
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where C(n,v) = 64cin=3v75. By Gronwall’s inequality, and estimate (A.2), we have
t

t
BIRP < L sup [9(3he) Wl [ exp (COnie—7))B [exp ([ wvlwn ) ar) ar

C ¢ —v(T—s
< & sup [0(5iha) — W(Bh)? [ exp (ot = 7)) exp (e fun ) dr
V teR s

< G exp (]| wo|?) sup 19 (Beha) — @ (Beha)ll?,
S

with r = 64cSn=3v =" + nC(f,Bp) and C =

(116,(;1@;)12 €xp (noC(Vf,Bo)) .

(iv) We now compare solutions that start from different initial positions. Let wo,wp € H, and
¢ = W ¢ h(W0o) — W t.h(Wo), Where w4 p(wo), Ws ¢ 1 (Wo) are the solutions starting from wo, wo.

In view of equation (2.5) with symbol h, we see that ¢; solves the following equation
Orer = vAe, — B(Kwgs ¢, ws e ) + B(KWs ¢ h, Ws t1)
=vAe; — B(Kws ¢ p, Wst.p) + B(K(wspp — ), Ws it p — )
=vAe; — B(Kwsp, ) + B(Key, wsp p) + B(Key, e).

From the fact (B(Kw,v),v) = 0 and the basic estimates of the nonlinear term as in the proof

of (A.3), we have
Oellec))® = 2(es, Orer) = —2v||eg||3 + 2(B(Key, ws 1.1), er)
< —2|ee] + 2ecoleclllws,enllilleclls /o
< (Cn,v) +nvlfws,en 1) llec?,
where C(n,v) = 64cin=3v75. Hence by Gronwall’s inequality,
Jel? < el exp (COnote =)+ v [ oo )
From the estimate (A.2), we have
E||ws,¢,1(w0) — Ws 0 (o) |* < Cllwg — o |20l +r(t=2), (A.15)

where C' = ﬁ exp (M) and r = 64cSn3v=> + nC(f, Bo).

14

(v) The proof of the inequality (A.5) is the same as that in [40], hence we omit it here.

(vi) For any 7 > s and initial condition £ € H, the evolution of & := J,; ,¢ is given by equation

(4.20), which is a PDE with random coefficients. Taking H inner product with & and using
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the fact that (B(Kw,§),&) = 0, we have

O 1€))® = —2v | V&P — 2(B(KE, wsrn), &)-

Then note

‘2<B(K§t> ws,t,h)a £t>| < C ||w8,t,h

el s < Ol + 2 a2 l?
<Gy ( el + ||stu%) + L lwseall gl = Cllgl® +v gl + 7 lwsenl gl
by choosing ¢ = \/m , where C' depends on 7, v. Therefore
Bcll&ll” < —v V&I + CllEl® + 5 lwssal} €l < C &l + 5 lwsnl} el
And the result follows by the Gronwall’s inequality.
(vii) Define ¢; = [|&|* + v(t — 7) ||&]|3. From the equation (4.20) for the Jacobian &, one has
0 (vt =) &I1) = v} — 202 = 7) &l + 20t = ) (Blwssns &), ~AG)
< vléll} =202t — 1) €3 + 200 (t — 1) 1€l llwsnlly 1€z -
Therefore
0G <C[1&))* + g lwsenll§ 1€l — 202 (8 =) ll€ellz + 20w(t — ) |y llwsenlly 1€l -
From interpolation inequalities, one has
Cllwllléll €l < Cy lIEN32 + g lwllFIENT < VIS + ClIENT + gHwH%HSH%
As a consequence,
01 < OGP + 3 llwsaallF 161

Hence by Gronwall’s inequality, for s <7 <t < s+ T,

C t
Je < 7o (o [ ol ar ) el (A16)

where C' depends on v,n,T. From basic Sobolev inequalities and interpolation inequalities,

one has

1B(u,w)|| < C (l[ullyjallwlls + fulli[[wlly/2)

1/2
< C (Il ffully el + el 2 e el ) -
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(viii)

It then follows from the definition of K,; in (4.22) that for ¢ € (1,7 + 1),

t 1 3
1K renll < C / Vil [Tl 1 rnll dr
T

T+1 3 T+1 T+1 é
<ep (1 st s Cexp (3o [ pocalfar) [T
r T T (r—r)
7+1
< Cexp (n / yws,r,hn%dr) ,
T

where we used inequalities (A.6) and (A.16) in the second step. The proof is complete.

The proof proceeds by induction as in [48]. Let L = —A, F(w) = (t — s)*|w|? = (t —
s)¥(L*w,w). We first prove the base case when k& = 0. Applying Ito’s formula to the

functional Fy(ws.), and noting (B(Kw,w), w) = 0, we have for s <t < T,

||w0||2—27// l[ws,r |1 d?“+2/ (wsr, f(r))dr + Bo(t — s) + M;

2
< Jwoll® — 2 / s li2r + / lws2dr + 11 ooy + BolT = 5) + M
S S

where M; = 2fst<ws,r,2‘ij:1 9idW;(r)). Note that the quadratic variation process of M;

satisfies
t d t
M, = / 2> (ws, gi)2dr < 4By / s 0 |2dr.
R s
If we let g = 480 = 2||f|3, (s, T Bo(T — s), then it follows that
Eup(01,8) < [Jwol]* + Co + My — 5= (M)

By the supermartingale inequality, one has for any K > 0

P (Sup (Mt - %[M]O > K) < e o0vK,

t>s

Therefore

g <SUP (Eun (0, 8) = Clo = [[woll”) = K) < e oK,

t>s
Note for non-negative random variables a and b, one has
Ea™ < 2™ (E(a—b)™ Liaspy + Ebm) =2" /OOO P{a—-b> )\l/m}d)\ +2"EbL".
Therefore

[e.9]
Esupgwo(o’t’s)m S 2m/ e—o’ol/)\l/md)\ + 2mE(CO + ||w0||2)m
t>s 0

< Cexp (nllwol?) (A.17)
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This finishes the proof of the base case.

We now assume that & = n > 1 and that for £ < n — 1 the inequality has been proved.

Applying Ito’s formula to Fy,(ws ) we find that
Fn(ws,t)
t
= / n(r — 5)"71Hw57r|]% +2(r — s)"(L"ws p, —vLwg , — B(Kws p, ws,r) + f(r))dr
S

(t—s)n+1 ¢ n/rn :
gy / 2r — (L ws,r,;gidwm»-

Note the quadratic variation process [M]; of the martingale

t d
M, = / 2(r — 8)"(L"wsr, ¥ gidWi(r))
s i=1
satisfies

t t
M =3 / A(r — 8)2 (LMws 1, g3)2dr < 4B, (T — s)" / (r — )" [ws.r ]| dr-

i=1
Also note

t t
/ 2 — 8 (L wg ()} < / 2r — )" w nll £ () lnclr

t
< / (r =) Huwsyll7 + (r = )" f(r) |7

Applying the inequality ||w]|, < ||w|n+1, and combining these estimates, it follows that

3v [t
hdr — > | = 8)"|ws,r 74 1dr
S

t
Fuwed) <+ 1) [ = 9" e
t
- 2/ (r—s)"(L"ws y, B(Kwg ;, ws ) )dr + Cp, + Ny(t),

where C), = (T — S)nJrl (Hf”iQ([s,T],Hn) + %)7 Nn(t) = M; — %[M]t and oy, = m

When n = 1, the nonlinear term has the following bounds by the interpolation inequality,
v
2(Lw, B(Kw, w) < Cllwljyallwlillwlls < 3 llwllz + Cllwl™.
Then one has

sup &y, (1,t, )
s<t<T

2 t
< = sup &uy(0,t,8) +C sup / (r — 8)||Jws||"°dr + C1 + sup Ny (t)
V s<t<T s<t<T Js t>s

2
<= sup Euy(0,t,8) + C(T — 5)2 sup Euy (0,1, 5)10 + C + sup Ny (2).

V s<t<T s<t<T t>s

And the result then follows from the supermartingale inequality and the same argument as
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in the case n = 0. If n > 2, we use the following inequality to bound the nonlinear term
n=1 o omdlo1 oy 2(n+1
(L™w, B(Kw,w))| < Cullwll, 2y lwlly™ ]2 < Zlwl? iy + Cllwlli™ ™ wl,
which can be proved as Lemma 2.1.20 in [48]. It then follows that

sup Euy(n,t,s)

s<t<T
n+1 ! n 2n 2(n+1)
< sup Ey,(n —1,t,5) +C sup (r —s)"|ws || “"[|Jws r |1 dr + Cy, + sup Ny, (t)
Vo s<t<T s<t<T Js t>s
n+1 C
< i SUp Ewo(n — 1,1,8) + — sup Eu(1,1,8)" sup Ewy(0,t,8)" T + Cp, + sup Ny, (t).
V. s<t<T V s<t<T s<t<T t>s

Then the desired result follows by induction hypothesis and the same reasoning as above. [

APPENDIX B. APPROXIMATE CONTROLLABILITY AND TOPO-

LOGICAL IRREDUCIBILITY

The approximate controllability of the Navier-Stokes system by a degenerate (low modes, or finite
dimensional) force was first proved by Agrachev and Sarychev [1, 2] in the case when there is
no fixed external force. It was later realized that their proof still works if one add an additional
body force f, whether it is time dependent or not. However, since we cannot locate any existing
literature regarding the proof for the case that f is time dependent, we supply a proof here. The
idea is taken from [35], where the case when f is time independent was proved. When the fixed
body force is time dependent, the system becomes non-autonomous, and the notion of semigroups
in [35] needs to be replaced by the evolution solution operators that depend on the initial time.
And modifications are needed to adapt the proofs in [35] to the current non-autonomous setting.
The key ideas of scaling and saturation are exactly the same as that in [35].

Consider the controlled Navier-Stokes equation
d
Ow(z,t) — vAw(z,t) + B(Kw,w)(x,t) = f(x,t) + ch(t)gk, w(z,s) = wo(x), (B.1)
k=1

where t > s > 0 and {g;}¢_, is from (2.4). Denote the solution of the above equation by w; ,(wp, c-
g), where ¢ = (c1,¢2,-++ ,¢q) : R — R is piecewise constant and g = (g1, 92, -+ ,94) € H%. The

approximate controllability of equation (B.1) means that for any v1,ve € H, t > s and £ > 0, there
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is a piecewise constant control ¢ : [s,t] — R? such that
lwss(vr, e g) — v < e. (B.2)

We assume the initial time s = 0 but keep in mind that the equation (B.1) is non-autonomous since

f(x,t) depends on t. Denote the solution operator of equation (B.1) by
¢ Two = ws i (wo, ¢ - g).
It follows from the uniqueness that
D lwo = 0P wo, Vs <u <t

Also for vy,v9 € H define sztvl as the ray starting from wv;

REvi =v1 + (t—s)vz, s<t. (B.3)
Let

Fo={®7:ceR,0<s<t} (B.4)
and define the accessibility sets

Ap, (v, to,t) := {(I)?;_ht”'(b%o,n” e Fyfor 1<l<mand 0<ty<ty <- - <tpm_1 <t}
(B.5)
Then equation (B.1) is approximate controllable (B.2) if A, (v,t) = H for every v € H and ¢t > 0.

Here Ap,(v,t) is the closure of Ap,(v,t) in H.

B.1 TwoO SCALING ESTIMATES

The following two scaling limits play an important role in establishing the approximate control-
lability of system (B.1). The first one indicates that we can approach the set of points of the
form wg 4 tc- g,t > 0, in a very short amount of time. The second scaling limit shows that one
can generate new directions by pushing the control directions obtained in the first scaling into the
system through the nonlinear term, to approach points in the form wy —tB(Kc-g,c-g),t > 0. The
approximate controllability will follow from iterating the two scaling arguments to generate a much

richer collection of new directions and a saturating process that will be given in the next section.
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Proposition B.1. For any wo € H, ¢ € R?, and s,t > 0, one has

. Ac c:
lim H(I) I, wy— R ngH =0 B.6
Artoo Il S5+ 0.¢ ’ (B:6)
. —A\2c. A2c. —B(Kc-g,c
lim ||[RY €990 |, RN 9wy — Ry PEe0eD |l = 0. (B.7)
Aotoo || 0% &Stz 0% ’

Proof. Let mn be the orthogonal projection on the set of Fourier modes {ex} with |[k| < N and

Ry = RS??TNU]O, wy = @;\Zj}r . wo. Note that S = w) — Ry satisfies the equation
; s+t

0,5 = % (VAS — B(KS, S) + f(s +1) + vARy + B(KRy, Ry) — B(Kw, Ry) — B(KRx,wy)) .
Taking H inner product with 25, and using standard estimates for the nonlinear term, we have
A|S]1* < —2v||S 1T + 2/ flloclIS T + 20| Ru [l |STx + CIRNIZIS] + Cllwll [ Rul IS
< JlwnlFIS17 + CAUIFIIZ + 1B lli +1)
< oAl FI1S11* + ON*(|fwo|* + t*]le - gl|f + 1)
It then follows from Gronwall’s inequality that

tq
1S(8)1* <|lwo — mnwol|® exp (/0 AIIMA(T)II?dT)

CN4 ! 4 4 4 ! 1 2
+— O(HZUOH +rlle-glli +1) exp ylwoa(r)llidr | dr. (B.8)

Standard energy estimates [48] yield

b1 1
[ Sl <. (5 + lewal + ool )
0

where C := C(]| f]|co, t) is independent of A\. Now choosing N large to make the first term in the sum

in (B.10) small and then letting A — oo to make the second term small, we find that ||S(¢)|| — 0

as A — oo. The limit (B.6) follows once we note that

[#22, wy — RE ]| < 15(0) ) + o — mxva|
STX

_ e 22 2,
The proof of (B.7) is similar. Let Ry = R, f(lccg’c g)wng, Wy = RO){ Cg‘bg gt RS 1 Ywo and
’ EBY ’ A2 DY

S = W), — Rn. Note that S solves the equation

1
S ZF(VAS — B(KS,S) + vARN + B(KRN,RN) — B(KWy, Rn) — B(KRN, Wy) + f(s + t))
1
- X(B(ICS,C -g)+ B(Kc-g,8)+ B(KRn,c-g)+ B(Kc- g,RN)>. (B.9)

Taking H inner product with 2S5, we find through standard estimates on the nonlinear term that
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ailIS|* < (— 2v||SI1T + 2v[SIh Rl + CISIIRNIE + CUS WAl IR N[ + ||f||oo||SH>

< (e gllalISI? + fe- g||2\|RN||2usn)

C

< sz (THIRNIE +1FI) + SgISIPIWALR + 5 (1 + RN IB)ISI?

4

Q>’Q+>*~
2\ |

C
[SIPIWAIR +

(L Nlwol* + )18

s (L [lwoll”) + pl

1 5  C(t)N* 5  C(t)N*
< (it + S5 ) s+ SG

where C(t) is continuously increasing in ¢ but does not depend on A, N. Again by Gronwall’s

inequality, one has

IS <l ~ munl e ([ t (ol + C(ij) o)

N*: /OtC(r) exp (/t <)\12||W)\(7')H% + C(TA)N4> d7> dr. (B.10)

Note that W, satisfies the equation

Wy = (VAW)\ — B(KWx, Wy) — AB(KWh, ¢+ g) — AB(Kc - g, Wy) + vAc- g

2
—MB(Kc-g,c-g) —|—f(s+t)>.

Taking H inner product with W, and using standard estimates on the nonlinear term we find

B < i( — W+ ACe - gllaWAIR + vl gllslWall+ X2CTle- gI3IWAl + 1l WAl
< WA+ 2+ A+ DA (B.11)
Gronwall’s inequality implies that
WA < 5O D g 2
Using this estimate and integrating (B.11), it follows that

C t
S [ IO <l + S0% A+ 1) [ SFOD g

which remains bounded as A — oo with other parameters remaining fixed. Therefore we can choose
N large but less than A to make the first term in the sum in (B.10) small and then choose some

Ao > N such that the second term is small for all A > Ay, which implies

lim [|S(1)] = 0.
A—00
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The conclusion of (B.7) then follows once we note that

-A2c A2 —B(Kc-g,c
HRO& C%S,HA%RO,?@”O — Ry ( cgcg)wOH < IS + llwo — mvwoll.

The proof is complete. O

B.2 SATURATION

The saturation argument was introduced in [35] to deal with the multiple time scales when iter-
atively using the previous two scaling arguments. Recall the definition of the set Fj as in (B.3).

Define the time relaxed set of accessible points as

Ap,(v,tg, < t) = {7 0 v e Fyfor 1<l<mand 0<ty) < <ty_1 <ty < th

tm—1,tm ’

(B.12)

Let Xo = {c-g:c € R%} and define inductively for k& > 1
Xy = Span{Xk_l U{B(Kg,g): g€ Xp_1} } and Xoo = Ups1 X5 (B.13)
Also let Gy = {Rit 1g € Xp,s < t} U Fy, where R, is defined as in (B.3). Then define for k& > 1
G = {Rgt g€ Xp,s < t} U Fp. (B.14)

Let S ={V: VU € Gy, for some k or ¥ € Fy}. Given F,G € S, G is said to subsume F, denoted by
F<G,if

Ap(v,tp,<tp+t) C Ag(v,tg,<tg+1t), forallve H,t > 0,tp,tg > 0.

They are called equivalent if both F' < G and G < F, which we denote by F' ~ G. The following
lemma taken from [35] gives a useful characterization of subsuming relations. For any sequence of

reals t; > 0, we denote t®) .= Z,’f:l t; and make the convention that 0 = .

Lemma B.2. Let F;G C S, then F < G if and only if for any given ¥V € F, v € H, and

e>0,t>0,tp, tg >0, there exists ®L,---  ®™ € G and positive times t; such that tm) <t and
1
HQZ;"Ft(m_I)th‘Ft(m) e (Pt(;,tg—‘rt(l)v — \IlthtF+th < €. (B15)

Furthermore, for any family F* C S such that F* < G for each i, one has G ~ U; F' U G.

Proof. If F' < G then (B.15) follows from the definition. We now assume that the characterization

(B.15) is true and to show Ap(v,tp,<tp+t) C Ag(v,tg,<tg+t) for any v € H, t > 0, and

tg,tp > 0. Let u € Ap(v,tp, < tp +t), then there are ®!,--- ,®" € Gand t; > 0,5 =1,---,m
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with ¢(m) < t such that

—_— m o« .. 1 —_ Z
U= O ) et P H Ot (=1 ot V-
=1

The proof proceeds by induction on m > 1. If m = 1, then by (B.15), for any € > 0, t¢ > 0, there

exist Ul ... | U" € G and positive times 73,1 < i < n with 7(® < t(1) such that
n n
H qj;g+7(i71),tc+7(i>v —Uul| = H \I/;G+T(i,1>7tc+7_<i)?} — @tF’tF_;'_t(l) < €.
i=1 i=1
Hence u € Ag(v,tp, < tp +t()). Suppose that m > 2. By continuity of <I>t Ltlm—1) ¢ g glm)» ODC has
the existence of § > 0 such that for w € H, if
m—1
i
w — H q)tp-f—t(i_l),tp-i-t(i)v <6,
i=1
then
m—1
m _ m m %
Hq)tp+t<m—1>,tF+t<m>w - “H = | Ptpttm— tpptom W — R yn1) gy gom) H Q- gtV
i=1
<e/2. (B.16)
By the induction hypothesis, we know that
m—1
H (I)iF+t<i*1>,tp+t(i>U € Ag(v,tg, < tg +tim=D).
i=1
., =1 —K .- . . .
So there exist ¥',--- , ¥ € G and positive times r;,1 <17 < K with r(K) < ¢(m=1) guch that
K ) m—1
. ,
1% srt-0tgrrv = [T @6, svimn 4| <0 (B.17)
i=1 i=1
Also from the characterization (B.15), one has the existence of ¥!,--- ¥’ € G and positive times
si, 1 <4< J with s(J) < t(m) — ¢(m=1) qych that
K K
s
tc+r<K) o +rE) 450 H \IltGJrT(’ Dtg+r@U — q’tFth (m=1) ¢yt (m) H Wi gqri-1) g r V]| < £/2.
=1 =1 =1
By setting r(K+9) = (K) 4 () and [ = U for 1 <i < J, we have r(/tK) < ¢(m) and
J+K K
.1 .1
H \IltG+T(i71),tG+T(i)v - Q)g‘-i't('mil),tp-f—t(m) H \Ith+T(i71),tG+T<i)U < 6/2
i=1 i=1
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Now by the triangle inequality, estimates (B.16) and (B.17),

J+K K
— —
H \I/th_r(ifl),tc.y_r(i)v —u|l < H \I}tc_;'_r(ifl)’tc_;'_r(i)v —u
=1 i=1
J+K K .
— . .
+ H Yig4rG- sV = (I)tF+t(m‘1),tp+t<m) H W= g 4r Y
=1 i=1

<e/2+¢e/2=c¢.

Hence u € Ag(v,tg,<tg+t) and F < G as desired.
If F* C S such that F* < G for each i, then G ~ U;F" U G by noting that G < U; F* U G since

G is a subset and U;F* U G < G by characterization (B.15). The proof is complete. O

Corollary B.3. For Gy and X as defined in (B.14) and (B.13), we have

(R g€ Xas <t} < R (B.18)

Proof. Note that the ray semigroups Rg,t as defined in (B.3) are time homogeneous Rg’t = R&tf 5
Hence we are free to choose any initial time we want. Now it follows from the scaling (B.6) and
Lemma B.2 that Gy < Fp. It also follows from the second scaling (B.7) and Lemma B.2 that
G < G-y for each k > 1. Therefore G}, < Fp for each k > 0. This implies that Up>oGr < Fo.
Hence

{Rit 19 € Xoo, s St} < {Rﬁ,t g€ Xoo, St}UFo < Fp.
The proof is complete. 0

The following lemma, which is essentially Lemma 3.7 in [35], allows us to pass the time relaxed

accessible points Ap, (v, g, < t) in (B.12) to exact time accessible points Ag, (v, o,t) as in (B.5).

Lemma B.4. Suppose F' C S and V' C H is open with the property that

V C Ap(v,tg, < tg+1t), forallve V,ty > 0,t > 0.

Then

V C Ap(v,ti,t1 +t), forallve V,t; >0,t> 0.

Proof. For simplicity we assume that ¢t; = 0 and show that u € Ap(v,0,t) for any given u,v € V

and t > 0. Fix € > 0 such that B(u,e) C V. Pick any ® € F' C S. By continuity we can choose
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0 < €’ < € such that the first exit time

T:= iof {mf (650 | By s 4ew —ul| > 5}} > 0.
weB(u,e’)

(B.19)

T is independent of any initial time ¢y > 0 due to the fact that ®y, ;,4+ is either a ray semigroup as

in (B.3) which is time homogeneous, or ®, 4 ++w is a solution to (B.1) (with a time independent

c¢(t)) that is continuous in (¢, w) independent of ¢y, which follows from the uniform boundedness

of f(z,t), i.e., supseg || f(t)|| < co. By assumption, there exist %!, ... ®%m0 and positive times

r04, 1 < i < mg with romo) < t such that
mo )
ug = H(I)ngl) @V € B(U,EI),
=1 0o
where r(()k) = Zle ro,i- If r(()mo) + T > t, then in view of (B.19) we see that
mo
0,i
(I’,,(()mo)iH‘I) (i-1) ()U o r{mo) p(mo) 4 (mo) H(I) (i-1) (i)” € B(u,¢e),
i=1

since t — r(()mo) < T. This shows u € Ap(v,0,t) as desired.

If r(()mo) + T < t, then there exists an integer n > 1 such that
im0 T <t <™ 4 (n+ DT
Let § :=t — r(()mo) —nT <T. Note that ug € B(u,e’) C V, hence by (B.19) we find that

wy =P Hmo) L mo)_ U0 € B(u,e) C V.

+T
By assumption there exist &b, ... &L ¢ F and positive times r14,1 <4 <my with r;

such that
mi

12 /
Uy = | | o : w1 € B(u,e).
1 r(()mo)+T+r§z—1),Tém0)+T+rgz) 1 ( ) )

=1

Iterating this process, for 2 < k < n, define

wg =®_, (m) (m;) up—1 € B(u,e) C V.
o Ty ) (e

(m1)

<d/n

Then by assumption, there are ®%! ... ®F™ < F and positive times rii 1 < i < my with

r,gmk) < §/n such that
my,

/
ug = wy € B(u,€).
kl(ﬁ (i-1) y~k—1, (mj) ()

pai Zg ory AR+ gy T kT

Now observe that u,, € B(u,&’), so by (B.19) one has

o (mj) un € B(u,e),

Gor; TAnTt
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since

n
o<t— [ r™ ynr| <.
=0

This shows that u € Ap(v,0,t) and completes the proof. O

B.3 APPROXIMATE CONTROLLABILITY AND TOPOLOGICAL IRREDUCIBILITY

In this section we show how the scaling and saturation results in the previous two sections yield the
approximate controllability of the equation (B.1), which in turn implies the topological irreducibility
of the system (2.5).

For each t > 0, let ; = {w € C([0,],R%) : w(0) = 0} equipped with the supremum norm,
be the restricted Wiener space. For any T' > 0 and V € Qp, it can be shown that the solution

wo ¢ (wop, V') of the equation
t t t
w(z, t) — wo(z) — / v Aw(x, t)dt +/ B(Kw, w)(x, t)dt = / Fetdi+g-V.,  (B.20)
0 0 0
where g = (g1, ,94) € H?, is continuous in V. And if we replace c(t) in (B.1) with 9, fot c(t)dt and
set initial data as w(0, x) = wo(x), then the solution ®g{wo = wo+(wo, V) with V(t) = fg c(t)dt.
Proposition B.5 (Approximate Controllability). If Aoc = H (see (3.1) for the definition), then
for any e > 0, wo, w1 € H and t > 0, there exists V € )y such that
[[wo,¢(wo, V) — w1l <e. (B.21)

Proof. Tt follows from [35] that Ao, = H implies X, = H, where X is given as in (B.13). It then

follows from Corollary B.3 that

AF(U,to,S to +t) =H, forallve H,tg >0,t>0.
Lemma B.4 then yields
Ap(v,0,t) = H, for all v € H,t > 0.

In view of the Definition B.5 and B.4, we find that for given wg,w; € H and € > 0, there are

‘131,”- , M e Fypand 0 =ty <ty <ty < - - <ty 1 <ty =t such that
H(I)g::fl,tm o q)g(;,hwo - le < &,
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which is equivalent to saying that the solution ®qjwo with c(t) = 37", il (t) satisfies

i—1otit1)
@G Jwo — w1 < e.

Setting V(t) = fg c(t)dt, we arrive at (B.21). O
A direct consequence is the following topological irreducibility.

Corollary B.6 (Topological Irreducibility). If Ao = H, then the transition operator Py, (see

(2.6)) of equation (2.5) satisfies
PU,t(w(), B(S(wl)) > 07

for all wo,wy € H, § >0 and t > 0.

For a proof of the corollary, see Lemma 4.7 in [35].
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