Quality attributes of dried milk products packaged for long-term storage

Michelle A. Lloyd
foodmichelle@gmail.com

J. Zou
jiping_zou@byu.edu

H. Farnsworth

Oscar A. Pike
oscar_pike@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Food Science Commons, and the Nutrition Commons

BYU ScholarsArchive Citation
Lloyd, Michelle A.; Zou, J.; Farnsworth, H.; and Pike, Oscar A., "Quality attributes of dried milk products packaged for long-term storage" (2002). Faculty Publications. 40.
https://scholarsarchive.byu.edu/facpub/40

This Poster is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
INTRODUCTION

Many studies have evaluated the quality of NFDM stored for up to one year (Ford, 1983; Hurrell, 1983; deBoer, 1984; Okamoto, 1985; Parris, 1989). The industry standard for shelf-life of NFDM milk is 18-24 months, but some studies have shown that NFDM can last much longer under proper conditions (Henry, 1947; Driscoll, 1985). Various manufacturers of dried milk products have packaged product in No. 10 cans in a reduced oxygen environment to lengthen shelf-life. The objective of this research was to determine the variation in quality between 10 brands of dried milk products packaged for long-term storage.

METHODOLOGY

Sample
Ten brands of dried milk products (5 instant NFDM, 3 regular NFDM, and 2 whey beverages) packaged in No. 10 cans were obtained from retail distributors. Presenting 7 manufacturers in 4 states. Product codes indicated the samples were less than 1 year old, except brand J (2 years), and brands A and C (unintentional). Duplicate samples of each brand were evaluated.

Headspace Oxygen and Water Activity

Headspace oxygen was measured using the 3500 Series Headspace Oxygen Analyzer (Buchi Instruments, Inc., Flavina, FL). Water activity was measured using an Aquapel CX-2 (Decagon Devices, Inc., Pullman, WA).

Can Seam Evaluation

Can seams were evaluated by an experienced evaluator. Seams were given an overall rating of excellent, good, fair, and poor by an experienced evaluator.

Sensory Analysis

Sensory analysis was conducted at the BYU Sensory Laboratory using standard procedures. Samples were pre-identified to 9% users and served in a randomized manner to a 50-member consumer panel in 4 visits. Panelists evaluated aroma, flavor, and overall acceptability using a 9-point hedonic scale.

Vitamin Determination

Vitamin analyses were conducted using an Agilent Model 1100 high-performance liquid chromatographic (HP LC) (Agilent Technologies, Palo Alto, CA) equipped with a C18 reverse phase column (Phenomenex, Torrence, CA) and a fluorescence detector (Agilent 1100 Series) using the Recommend Procedures of the USFDA (Gomis, 2000). Determinations were carried out under subdued light.

Data Analysis

Statistical analysis was performed for significance using Statistical Analysis System software (SAS Institute, Cary, NC). A mixed-model analysis of variance (PROC MIXED) with Fisher’s LSD was used for the sensory data. PROC GUM with Duncan’s Multiple Range Test was used for the water activity and vitamin data. Significant differences were defined as p<0.05.

RESULTS

Headspace Oxygen, Seams, and Water Activity

Headspace oxygen (Fig. 1) varied widely from brand to brand, influenced by oxygen removal method and can-seam quality (Fig. 2). Cans with higher than expected oxygen levels also had poor seams. Oxygen absorbers reduced the headspace oxygen better than a nitrogen flush, as long as the seams were hermetic.

The water activity varied from 0.14-0.28 (Fig. 3), but all values were in a typical range, corresponding to 3%–5% moisture (Wastafa, 1999).

Sensory Results

There were significant differences in aroma, flavor, and overall acceptability between the samples (Fig. 4). The brand that scored highest in overall acceptability had a poor can seam, suggesting that quality would not last over an extended storage time.

Regular NFDM samples had a mean flavor score significantly higher than the instant NFDM, but there were no significant differences in overall acceptability (Fig. 5). The whey beverages scored significantly lower than the other samples in flavor and overall acceptability.

Vitamin Content

Thiamin content (Fig. 6) was not significantly different between brands, with the exception of one of the whey beverages, which was extremely high at 17.0 µg/g. The other samples were closer to the USDA Nutrient Database value of 4.13 µg/g.

Riboflavin content (Fig. 7) varied between the brands, from 7.0-15.5 µg/g, which was somewhat lower than the USDA Nutrient Database value of 17.43 µg/g.

All of the products claimed to have been fortified with vitamin A, yet it was detected in only 4 of the 10 brands (Fig. 6). Those brands containing vitamin A were near or at the target fortification level of 2000-3000 IU/L, quart.

CONCLUSIONS

There is wide variation in sensory and nutritional quality of dried milk when packaged at the retail level. Various products were found in long-term storage.

Good manufacturing practices must be observed to optimize product quality, giving careful attention to can seam quality, product labeling, and vitamin fortification levels. Consumers would be well advised to evaluate several brands of dried milk products prior to large quantity purchases.

ACKNOWLEDGEMENTS

The authors appreciate the funding for this research provided by the Puratos and the contributions of the following individuals: Devin Rose, Stephen Bevan, Karen Ellsworth, Tyler Christ, Marisa Friederich, Andrew McEwan, Nate Vannoy, Lynn Ogden, and Dennis Farnsworth.

Presented at the Annual Meeting of the Institute of Food Technologists in Anaheim, CA June 2002

REFERENCES


http://www.nal.usda.gov/fnic/cgi

M.A. Lloyd (michelle_lloyd@byu.edu), J. Zou, H. Farnsworth, and O.A. Pike
Department of Nutrition, Dietetics and Food Science Brigham Young University Provo, UT 84602

Quality attributes of dried milk products packaged for long-term storage

There is wide variation in sensory and nutritional quality of dried milk when packaged at the retail level. Various products were found in long-term storage.

Good manufacturing practices must be observed to optimize product quality, giving careful attention to can seam quality, product labeling, and vitamin fortification levels. Consumers would be well advised to evaluate several brands of dried milk products prior to large quantity purchases.

ACKNOWLEDGEMENTS

The authors appreciate the funding for this research provided by the Puratos and the contributions of the following individuals: Devin Rose, Stephen Bevan, Karen Ellsworth, Tyler Christ, Marisa Friederich, Andrew McEwan, Nate Vannoy, Lynn Ogden, and Dennis Farnsworth.

Presented at the Annual Meeting of the Institute of Food Technologists in Anaheim, CA June 2002

ABSTRACT

There is a market for dehydrated foods, such as nonfat dry milk (NFDM), that are packaged for long-term storage for use in natural disasters or other emergencies. This research was conducted to determine the sensory and nutritional qualities of dried milk products packaged in No. 10 cans for long-term storage.

Wide variation was found between brands in headspace oxygen (0.023-0.284), which could have a significant effect on the shelf-life of dried milk. Manufacturers and distributors of dried milk products packaged in cans for long-term storage need to observe good manufacturing practices to optimize sensory and nutritional quality, giving careful attention to can-seam quality, product labeling, and vitamin fortification levels.

RESULTS

The variety of flavors and overall acceptability was significantly different between brands. There were significant differences in the thiamin content between brands, with the exception of one of the whey beverages, which was extremely high at 17.0 µg/g. The other samples were closer to the USDA Nutrient Database value of 4.13 µg/g.

Vitamin A was detected in only 4 of the 10 brands, those brands containing vitamin A were near or at the target fortification level of 2000-3000 IU/L, quart.

CONCLUSIONS

There is wide variation in sensory and nutritional quality of dried milk when packaged at the retail level. Various products were found in long-term storage.

Good manufacturing practices must be observed to optimize product quality, giving careful attention to can-seam quality, product labeling, and vitamin fortification levels. Consumers would be well advised to evaluate several brands of dried milk products prior to large quantity purchases.

ACKNOWLEDGEMENTS

The authors appreciate the funding for this research provided by the Puratos and the contributions of the following individuals: Devin Rose, Stephen Bevan, Karen Ellsworth, Tyler Christ, Marisa Friederich, Andrew McEwan, Nate Vannoy, Lynn Ogden, and Dennis Farnsworth.

Presented at the Annual Meeting of the Institute of Food Technologists in Anaheim, CA June 2002