Effects of long-term storage on quality of regular and quick rolled oats

M. B. McEwan
mcewan.m@gmail.com

Lynn V. Ogden

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Food Science Commons, and the Nutrition Commons

Original Publication Citation

BYU ScholarsArchive Citation
McEwan, M. B.; Ogden, Lynn V.; and Pike, Oscar A. "Effects of long-term storage on quality of regular and quick rolled oats" (2003). All Faculty Publications. 39.
https://scholarsarchive.byu.edu/facpub/39

This Poster is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
M. B. McEwan, Lynn V. Ogden, and Oscar A. Pike
ABSTRACT

There exists a need for food packaging for long-term storage, for such uses as emergency relief efforts, military ration, and personal storage. The objective of this research was to investigate the quality of regular and quick rolled oats, commercially packaged in cans for long-term storage.

METHODOLOGY

Samples

Twenty-eight samples of rolled oats were collected from ten research laboratories and were obtained under conditions that ensured the highest sensory, flavor, texture, shelf-life, and overall acceptability over a 20-year period. The oat samples varied with respect to time and oxygen level of storage, which was determined by the storage conditions at the time of collection. The sensory scores of the samples were compared to those of the samples stored under controlled conditions at the time of collection.

RESULTS

Vitamin Content

Vitamin E content varied between brands with values ranging from 0.02 to 0.18 μg/g. Though the headspace analysis revealed that the headspace oxygen levels varied significantly among brands, with values ranging from 0.02 to 0.18 μg/g. Approximately half of the samples had total local limits similar to this level, indicating that it is possible to store rolled oats such that their loss of vitamin E occurs.

CONCLUSIONS

There was a loss of some aspects of quality over time, but all samples were considered acceptable. Manufactures must observe good manufacturing practices to ensure the longest possible shelf life and consumer acceptance. The results of this study provide guidelines for the development of long-term food storage plans.

REFERENCES

ACKNOWLEDGEMENTS

The authors appreciate the funding for this research provided by the Fulbright Grant and the contributions of the following individuals: Kevin Rose, Amy Sloan, Lisa Born, Lisa Chastanet, Karen Ford, Emily Lloyd, Theresa Gisolf, Melissa Huling and Jinping Zou.

Presented at the Annual Meeting of the Institute of Food Technologists in Chicago, IL. July 2015

M. McEwan, L. V. Ogden and O.A. Pike

Department of Nutrition, Dietetics and Food Science

Brigham Young University

Provo, UT 84602

ABSTRACT

There exists a need for food packaging for long-term storage, for such uses as emergency relief efforts, military ration, and personal storage. The objective of this research was to investigate the quality of regular and quick rolled oats, commercially packaged in cans for long-term storage.

METHODOLOGY

Samples

Twenty-eight samples of rolled oats were collected from ten research laboratories and were obtained under conditions that ensured the highest sensory, flavor, texture, shelf-life, and overall acceptability over a 20-year period. The oat samples varied with respect to time and oxygen level of storage, which was determined by the storage conditions at the time of collection. The sensory scores of the samples were compared to those of the samples stored under controlled conditions at the time of collection.

RESULTS

Vitamin Content

Vitamin E content varied between brands with values ranging from 0.02 to 0.18 μg/g. Though the headspace analysis revealed that the headspace oxygen levels varied significantly among brands, with values ranging from 0.02 to 0.18 μg/g. Approximately half of the samples had total local limits similar to this level, indicating that it is possible to store rolled oats such that their loss of vitamin E occurs.

CONCLUSIONS

There was a loss of some aspects of quality over time, but all samples were considered acceptable. Manufactures must observe good manufacturing practices to ensure the longest possible shelf life and consumer acceptance. The results of this study provide guidelines for the development of long-term food storage plans.

REFERENCES

ACKNOWLEDGEMENTS

The authors appreciate the funding for this research provided by the Fulbright Grant and the contributions of the following individuals: Kevin Rose, Amy Sloan, Lisa Born, Lisa Chastanet, Karen Ford, Emily Lloyd, Theresa Gisolf, Melissa Huling and Jinping Zou.

Presented at the Annual Meeting of the Institute of Food Technologists in Chicago, IL. July 2015

M. McEwan, L. V. Ogden and O.A. Pike

Department of Nutrition, Dietetics and Food Science

Brigham Young University

Provo, UT 84602