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abstract

Modeling a Human Family Network

Rebecca Jo Flores
Department of Mathematics, BYU

Master of Science

We propose a model that generates a family network based on real-world family network
data. We use this model to study the extent to which distances to union and the number
of children characterize family networks. To determine how accurate our model is we use
persistent homology to identify and compare the structure of our modeled family networks to
real-world family networks. To accomplish this, we introduce the notion of a network’s per-
sistence curve, which encodes the network’s set of persistence intervals. Using the bottleneck
distance allows us to measure the difference in the homological structure between any pair
of networks. We also study how the distribution of distance to union and the distribution of
children build family networks. What we find is that these two features of distance to union
and number of children allow us to fairly accurately recreate family networks at least at the
level of their persistent homology.

Keywords: family networks, persistent homology, persistence curves, bottleneck distance
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Chapter 1. Introduction

The main objective of network science is to describe the structure of real-world networks

and how that structure can lead to predictive models of the networks’ behavior. One of the

original surprises in this area was that many different kinds of networks, including various

social, biological, and technological networks, had similar features such as degree distribu-

tions, the small-world property, hierarchical and community structure, etc. This suggests

that there are similar mechanisms at work in the formation of diverse networks, or at least

that these mechanisms result in similar statistical network features.

Although real-world networks often share similar features, their topologies (i.e., a net-

work’s underlying graph structure) are not identical. How the structure of real-world net-

works differs is complicated by both the size and the complexity of these networks. Most

measures derived to distinguish one network from another need to scale well to handle the

sheer size of these networks. Complexity, or the irregular structure of network links, similarly

complicates comparing network structure as even similar networks (e.g., two social networks)

can have widely varying structural features at many different scales.

In this thesis, we consider the use of persistent homology to compare the structure of

various human family networks. Simply put, persistent homology is a method of representing

holes or gaps in the structure of a network. This method is particularly useful as a tool for

describing the structure of a network as it provides a way to measure how significant any

particular hole is to the overall network structure. The basic idea involves “filling in” the

network with simplices (points, edges, triangles, tetrahedra, etc.) and keeping track of how

the network changes as we do so (see Chapter 3 for details).

The advantage of persistent homology is that it allows one to compare the holes across

two networks without requiring a correspondence between the individual vertices or edges

of the networks. This effectively deals with the two issues of size and complexity when

comparing networks. This has also led to applications in a wide variety of fields such as

1



geology [1], neuroscience [2], and even music theory [3]. These particular analyses reveal

another benefit of using persistent homology: in each case the structural holes identified by

persistent homology can be pulled back to recognizable features of the underlying networks.

For example, Robins et al. have shown that the holes found using persistent homology

correspond to percolating spheres through porous material [1]. In [2], structural holes arise

when several groups of neurons are strongly connected sequentially, but out-of-sequence pairs

are only weakly connected. Persistent homology provides a way to identify and classify these

different sequences as well as quantify the strength of these connections. Structural holes or

gaps can also represent abstract concepts, such as in [3] where holes are shown to correspond

to the atonality in music compositions.

Persistent homology has been used to distinguish the structure of real-world networks

including real and theoretical networks. In [16], Carstens and Horadam studied collaboration

networks and showed that persistent homology could distinguish such networks from similar

but randomly generated networks. Likewise, persistent homology is shown to distinguish

model networks, biological networks, and user-interaction networks from each other in [15].

Here, we consider the use of persistent homology in distinguishing the structure of real-

world networks, specifically human family networks. A lot of study has been done on the

structure of social networks, but the structure of family networks is much less studied.

Recent studies consider methods for constructing family networks from documents [7, 8],

mating patterns [9], kinship models [10, 11], recent common ancestors [12, 13], and structured

population modeling [14].

Using a proposed model to generate family networks, a specific goal of this thesis is to

determine the extent to which persistent homology allows us to identify and compare real

and modeled family networks (see Chapter 7). Holes or gaps found in family networks are

likely quite different than those found in other networks such as social networks. Due to

cultural, genetic, and potentially other reasons, unions in family networks typically form

at specific distances. That is, distances between individuals who form unions, that may or
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may not result in children, are typically not too small or too large (see Chapter 2). This

differs from social networks where social connections form at nearly any distance. Often

these distances are very small as any two friends of the same individual may also become

friends. This triadic closure is the formation of a friendship at a distance of 2 and is one of

the major mechanisms of network growth in social networks, but not in family networks.

Network growth causes differences in network topology, which can be detected using

persistent homology. Here we introduce a new method for representing persistent homology,

which we call a persistence curve, and use this to study these structural similarities and

differences (see Chapter 7). What we find is that the persistence curves of real family

networks are similar to the persistence curves of modeled family networks. In fact, the

persistence curves of subsets of real family networks, i.e., sampled family networks, are also

similar to the persistence curves of modeled family networks. This suggests that even with

incomplete data, family networks can be identified by their persistence curves. We introduce

another tool for comparing persistent homology, the bottleneck distance. This is also capable

of distinguishing these family networks, though it is more difficult to compute. An open

area of research is understanding whether persistent homology can be used to distinguish

other types of networks, e.g., social and biological networks, technological and information

networks, or family and social networks, etc.

This thesis is organized as follows: In Chapter 2, we describe family networks and how

they differ from social networks. In Chapter 3, we define the persistent homology of a network

and introduce the notion of persistence curves. In Chapter 4, we define the bottleneck

distance and show how both this distance and persistence curves can be used to compare

networks. In Chapter 5, we describe the model we propose to generate family networks. In

Chapter 6, we describe the family network data sets we use in our study and give our results

in Chapter 7. We conclude by summarizing our results and future directions of this research.
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Chapter 2. Background

The topology of a network, which is the network’s structure of connections, is typically

represented by a graph. A graph G = (V,E) is composed of a finite vertex set V and

edge set E. The vertex set V represents the elements of the network, while the edges E

represent the links, or relationships, between these network elements. In social networks,

such as Facebook and Twitter, the network elements are individuals and the edges represent

friends and followers, respectively. In information networks, such as the World Wide Web,

the network elements are web pages and the edges are the hyperlinks between them. Of

particular interest in this thesis are family networks, in which elements represent individual

people and edges represent familial relationships.

If a graph G = (V,E) represents a family network, we let V = {1, 2, . . . , n} be the

individuals within the network. The edges E in a family network are of two types: parent-

child edges EPC and union edges EU , where a single edge is either a parent-child edge or a

union edge, but not both. For the sake of simplicity, the edges E = EPC ∪EU are considered

to be undirected. That is, each edge indicates an undirected relationship either between

parent and child or between couples. We use the comprehensive term couple to include

all partners, marriages, cohabitants, etc. that may or may not have children. In the family

networks we consider, union edges exist between all couples, and we will refer to such couples

as unions.

The structure of a family network is often thought of or referred to as being “tree-like.”

Formally, a tree is a connected graph that does not have any cycles. A cycle refers to a

sequence of vertices 1, 2, . . . ,m such that there is an edge {i, i+1} ∈ E between individuals

i and i+1 for i = 1, 2, . . . ,m− 1 and m = 1. This idea that a family is tree-like presumably

comes from the fact that a family network is often constructed from an individual, their

parents, their grandparents, and so on, ignoring all other edges. The result is a family tree.

However, a common example of a cycle in a family network is the triangle consisting of two
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(a) (b) (c)

Figure 2.1: Familial cycles are cycles found within a union and their children. Union edges
are shown in red and parent-child edges are shown in blue. Every child and their two parents
form a trivial cycle as seen in (a). Two children and two parents form trivial cycles and a
cycle of length 4 as seen in (b). Families with more than two children form only trivial cycles
or cycles of length 4 as seen in (c).

parents and a child, with the two parent-child edges and one union edge that connects them

(see Figure 2.1a). Because of the frequency of such cycles and the fact that they are the

smallest possible cycles in a family network, we refer to them as trivial cycles. The only

other possible familial cycle, or cycle found within a union and their children, is a cycle of

length four, consisting of two parents and two children (see Figure 2.1b).

Although familial cycles are ubiquitous in family networks, they are not the only cycles

that can form. Going far enough through an individual’s ancestors, it is often possible to find

a nearest common ancestor, i.e., a common ancestor of one’s father and mother. If such an

ancestor exists, then the family network has a nontrivial cycle. We refer to this as a common

ancestor cycle, which consists of only parent-child edges. Other nontrivial cycles are possible

in family networks via unions. For example, double cousins, which occur when two siblings

from one family form unions with two siblings from another family. The result is a mixed

cycle, or a cycle that contains both union and parent-child edges. In family networks, union

and parent-child edges can combine in any number of ways to create complex nontree-like

structures (see Figure 2.2 left).

A feature that is potentially unique to family networks is that union edges typically form

at specific distances within these networks. Here the distance d(i, j) between i and j is the

shortest distance between these individuals if such a path exists, otherwise it is infinite. In

the family networks we study (see Chapter 6), if a union edge {i, j} forms between a couple,
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Tikopia Family Network Residence Hall Social Network

Figure 2.2: Left: The largest connected component of the Tikopia family network consisting
of 288 individuals is shown [4]. Parent-child edges are shown in blue and union edges are
shown in red. Right: The largest connected component of the Residence Hall social network
consisting of 217 individuals is shown [5].

the distance between individuals i and j prior to this formation is normally not very small,

relatively speaking. Although there are cultural, genetic, and other reasons for this, one

of the natural consequences of this behavior is that family networks do not typically have

small, nonfamilial cycles, but potentially very large, extended cycles.

This phenomena can be seen in Figure 2.3. Shown left in orange is the probability dis-

tribution of the nonfamilial cycle lengths of the San Marino family network, a genealogical

network of the population of the Republic of San Marino from the 15th to the end of the

19th century [4]. In this network, which consists of 28, 586 individuals, there are 7, 146

familial cycles of length three and 8, 636 familial cycles of length four. These are omitted

in the figure so we can observe the nonfamilial cycle length distribution. In blue, is the

probability distribution of all cycle lengths found in the Deezer Europe social network con-

sisting of 28, 281 individuals [6]. Deezer is an online music streaming platform whose social

network represents users in Europe and mutual user-follower relationships. Noticeably, the

San Marino network has relatively few nonfamilial cycles under length ten but quite a few

cycles with lengths greater than thirty. In contrast, the Deezer social network has a much

tighter distribution of cycles ranging from roughly five to fifteen in length.

To understand the extent to which these distributions are related to the local structure of
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Figure 2.3: Left: The probability distribution of the nonfamilial cycle lengths in the San
Marino (SM) family network are shown in orange. The probability distribution of all cycle
lengths is shown in blue for the Deezer Europe (DE) social network. Center: Shown in
orange is again the cycle length distribution of the San Marino family network. In red
is the probability distribution of the cycle lengths averaged over ten realizations of the
configuration model on the San Marino network. Right: Shown in blue is again the cycle
length distribution of the Deezer social network. In green is the probability distribution of
the cycle lengths averaged over ten realizations of the configuration model on the Deezer
social network.

the associated networks, we compare this to the cycle distribution of the associated config-

uration models. The configuration model is a method for generating random networks from

a given degree sequence. Taking the degree sequences from both the San Marino family and

Deezer social networks, we create ten versions of these networks each with the same degree

sequences. The result of averaging the cycle length distributions of these versions of the

San Marino and Deezer networks is shown in Figure 2.3 (center and right in red and green,

respectively). While the cycle distribution for the San Marino network is quite different

than what the configuration model predicts, the Deezer social network is quite similar to

the distribution predicted by its configuration model. This suggests that much of the cycle

structure in the Deezer social network is dominated by local interactions, whereas the cy-

cles in the San Marino family network are affected by nonlocal mechanisms. This includes,

presumably, the nonlocal distance to union phenomena described above.

Examining the cycle distributions emphasizes the role of cycles in distinguishing family

networks from social or other real-world networks. However, the distribution alone fails to

capture information on how the cycles interact or relate to each other. Tools from persistent

homology allow us to identify cycles that fundamentally represent the entire distribution of

7



cycles. In turn, this provides a way to describe and measure the relationship between any

two cycles. This allows us to obtain the cycle structure of the network as a rich mathematical

object, in place of the simple enumeration of the cycle distribution.

Chapter 3. Persistent Homology of

Networks

Persistent homology provides a method for studying cycles in a network. For the purposes of

this thesis, a brief explanation will be given here. We start with a network G = (V,E) and

the distance d(i, j) as defined in Chapter 2. We then create the distance matrix D(G) = [dij]

where the entry dij = d(i, j) is the length of the shortest path between individuals i and j.

For each distance value δ that appears in the distance matrix D(G), we form a simplicial

complex Gδ as follows:

The set of 0-simplices is the set of vertices of G. The set of 1-simplices Eδ is the set

of edges {i, j} such that d(i, j) ≤ δ. Likewise, the set of n-simplices consists of n-simplices

[a0 a1 . . . an] such that d(ai, aj) ≤ δ for 0 ≤ i < j ≤ n. We note the following important

properties of this construction. First, for δ < ϵ, Gδ is a subcomplex of Gϵ. Next, for δ ≥ 1,

G can be identified with a subcomplex of Gδ. Finally, we assume G = (V,E) is finite and let

M be the maximum value of d(i, j), then for all δ ≥ M , Gδ = GM . We extend this definition

of Gδ for all i ∈ Z, i ≥ 0, as follows: Given i, let δi be the greatest entry of D(G) such that

δi ≤ i. Then let Gi = Gδi .

Example 3.1. (Hexagonal Network) Consider the hexagonal network G = (V,E) with

six vertices, forming a single cycle, shown in Figure 3.1b. This network has the distance

matrix

D(G) =


0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

 .

8



(a) G0 (b) G1 = G (c) G2 (d) G3

Figure 3.1: The hexagonal network from Example 3.1 is filled in as i varies from 0 to 3. This
produces the graphs G0, G1, G2, G3 shown left to right.

For the values i = 0, 1, 2, 3, we form four simplicial complexes, G0, G1, G2, and G3 as shown

in Figure 3.1. For i = 0, E0 is empty. Furthermore, since there are no edges, there can be no

higher dimensional simplices either. Thus, G0 consists of six vertices. For i = 1, E1 contains

the six edges that form the network’s single cycle, so G1 has the same vertices and edges

as G. This graph has no trivial cycles, so G1 contains no simplices of dimension greater

than 1. For i = 2, E2 gains six additional edges. We also now have eight trivial cycles.

Each of these is the boundary of a 2-simplex, so G2 contains these eight 2-simplices as well.

However, no subset of these 2-simplices forms the boundary of a 3-simplex, so G2 has no

simplices of dimension greater than 2. For i = 3, E3 contains all possible edges between the

vertices of G, so all possible trivial cycles are present. Additionally, all possible 2-simplices,

and hence all possible n-simplices, are also present in G3. In particular, G3 is a 6-simplex

with its boundary. Since 3 is the largest value we see in the distance matrix, then Gi = G3

for i ∈ Z, i > 3.

The persistent homology of the network G measures how the homology of Gi changes

as i increases. If certain features can be identified across multiple values of i, we say they

persist. Intuitively, features that arise from the actual network structure should persist for

many values of i, while features that arise because of measurement error, or “noise”, should

only appear sporadically. Here we use Hp(Gi) to denote the dimension-p homology of Gi

with coefficients in Z2 and note that Hp(X) is a vector space of Z2. We likewise use H(X) to

denote the total homology of X with coefficients in Z2. This allows us to give the following

definition:

9



Definition 3.2. (pth Persistent Homology) For a network G, and integers i, j with

0 ≤ i ≤ j, let the function ϕi,j : Hp(Gi) → Hp(Gj) be the linear map induced by the inclusion

Gi → Gj. The pth persistent homology of G, PHp(G) is the pair ({Hp(Gi)}i≥0, {ϕi,j}0≤i<j).

Our analysis in Chapters 4 and 7 only requires the first few dimensions of persistent

homology to distinguish the networks we consider. As such, we will provide equivalent defi-

nitions for PH0, PH1, and PH2 using network concepts. We also illustrate these definitions

on the hexagonal network in Example 3.1. While the equivalent definitions will rely on a

choice of bases for Hp(Gi), the Fundamental Theorem of Persistent Homology [17] ensures

that bases can be chosen for each Hp(Gi) in a compatible fashion. That is, we can ensure

that the basis elements of Hp(Gi) are mapped forward to either basis elements or 0; and

that no two basis elements are sent to the same basis element. There may be many such

compatible bases, but our analysis is independent of the choice of compatible bases.

Definition 3.3. (Births and Deaths) Let G = (V,E) be a network with corresponding

simplicial complexes G0, G1, G2, · · · . The pth persistent homology of G provides maps ϕi,j

between the pth homology of Gi and the pth homology of Gj. Suppose that basis elements

have been chosen for each Hp(Gi) so that if α is a basis element of Hp(Gi), ϕi,j(α) is either

trivial in Hp(Gj) or a basis element of Hp(Gj). The birth of a basis element α ∈ Hp(Gj) is

the minimum index i such that α = ϕi,j(α̂) for some basis element α̂ ∈ Gi. The death of α

is the minimum index k such that ϕj,k(α) is trivial.

To improve our intuition, instead of considering α ∈ Hp(Gj), we can choose a represen-

tative object in Gj. We will demonstrate how to choose such representatives for H0, H1, and

H2 in the following definitions. Given such representatives, though, the maps ϕi,j and ϕj,k

correspond to the inclusion maps Gi ⊂ Gj ⊂ Gk. Choosing a compatible basis ensures that

we can choose a single representative object that corresponds to α ∈ Hp(Gj), α̂ ∈ Hp(Gi),

and ϕj,k(α) ∈ Hp(Gk). The birth of α is then just the first Gi in which the representative

exists, and the death of α is the first Gk in which the representative is null-homotopic. The
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representative is null-homotopic if it is the sum of trivial point pairs in H0, the sum of trivial

cycles in H1, or the sum of trivial surfaces in H2.

Definition 3.4. (Representing Persistent Homology: Dimension 0) Let G = (V,E)

be a network with n distinct vertices, V = {1, 2, . . . , n}, forming k connected components.

H0(G0) ∼= Zn
2 , so we may identify the basis for H0(G0) with the set of all n vertices. Likewise,

we may choose k vertices, one from each connected component, to represent the basis for

H0(Gi) ∼= Zk
2 for i ≥ 1. Thus, we will refer to the vertices of G as elements of PH0(G).

Example 3.5. We now consider PH0(G) for the hexagonal network G in Example 3.1, with

G0, G1, G2, and G3 as given in that example. Recall that G has six distinct vertices forming

one connected component. If we take any numbering of the vertices, V = {1, 2, 3, 4, 5, 6},

then H0(G0) ∼= Z6
2, which is equivalent to the vector space over Z2 with basis V . For i > 0,

H0(Gi) ∼= Z2, which is equivalent to the vector space over Z2 with basis {1}. For any v ∈ V ,

and since i = 0 is the first time we see v, we call this the birth of v. At i = 1, and since

we have removed all vertices except 1 from the basis, we say this is the death of those five

0-simplices (see Figure 3.1a-d). Since 1 will always be in the basis for Gi, the death of 1 is

said to be ∞.

Definition 3.6. (Representing Persistent Homology: Dimension 1) Let G = (V,E)

be a network with one connected component. For each i ≥ 0, we can identify the basis of

H1(Gi) with a set Ci of cycles in Gi. The Fundamental Theorem of Persistent Homology

allows us to choose these cycles so that if σ is a cycle in Ci, then exactly one of the following

is true for any integer j ≥ 0:

(i) σ does not exist in Gj, in which case j < i;

(ii) σ is trivial or null-homotopic in Gj, in which case i < j;

(iii) σ is a cycle in Cj.

Thus, we will refer to the cycles in
⋃

i≥0Ci as the elements of PH1(G).

11



(a) G2 trivial cycles
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Figure 3.2: A visual depiction of 2-simplices and null-homotopic cycles in G2 for the hexag-
onal network. Left: Four 2-simplices: [1 2 3], [3 4 5], [1 5 6], and [1 3 5]. Center:
A non-trivial, but null-homotopic cycle, 1, 2, 3, 5, 1 filled in by two 2-simplices [1 2 3] and
[1 3 5]. Right: All eight 2-simplices represented as the faces of a regular octahedron.

We note that C0 is always empty, since there are no edges in G0, and rank(H1(Gi)) = |Ci|

for all i ≥ 0. Because of the construction of Gi, all elements of PH1(G) will be present in G1.

One can think of the elements of PH1(G) as representing “large” cycles. More specifically,

if a cycle σ is contained in
⋂

s≤i≤t Ci, then it must have a diameter of at least t and at least

one pair of consecutive vertices distance s apart.

Example 3.7. We now consider PH1(G) for the hexagonal network G in Example 3.1. In

Figure 3.1a and 3.1b we see that G0 has no cycles, G1 has exactly one cycle, and the cycle

in G1 is non-trivial. In Figures 3.2a and 3.2b, we have indicated some of the cycles in G2,

namely the cycles 1,2,3,1; 3,4,5,3; 1,5,6,1; and 1,3,5,1 in Figure 3.2a and the cycles 1,2,3,5,1

in Figure 3.2b. In fact, Figure 3.2c shows us that G2 is an octahedron and therefore every

cycle in G2 is either trivial or null-homotopic. Finally, G3 contains even more cycles than

G2, such as 1,3,6,1; but these are all null-homotopic since G3 also contains every possible

2-simplex for six nodes. Therefore, PH1(G) consists of only one cycle, 1,2,3,4,5,6,1; which

appears in G1, so we say that t = 1 is the birth of the cycle. The cycle is null-homotopic in

G2, so t = 2 is the death of the cycle.

We now turn our attention to PH2(G), but in order to represent PH2(G) we need to

introduce some new structure for the induced networks. A triangle [a b c] in Gi is a set of

three vertices, a, b, and c, that form a trivial cycle in Gi. That is, the edges {a, b}, {b, c},
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and {a, c} are all present in Gi. A closed surface in Gi is a set of distinct triangles so that

for each [a b c] in the set there is exactly one other triangle [a b d] also in the set. A

closed surface in Gi is trivial if the corresponding set of 2-simplices is null-homotopic in Gi.

That is, the closed surface is “filled in” by some collection of 3-simplices in Gi. For example,

the octahedron in Figure 3.2c is a non-trivial closed surface. However, if we were to add

the edge {1, 4} and all corresponding 3-simplices, the octahedron would be filled in by four

tetrahedra: [1 3 4 5], [1 2 4 3], [1 6 4 2], and [1 5 4 6].

Definition 3.8. (Representing Persistent Homology: Dimension 2) Let G = (V,E)

be a network with one connected component. For each i ≥ 0, we can identify the basis

for H2(Gi) with a set Si of non-trivial closed surfaces in Gi. The Fundamental Theorem of

Persistent Homology allows us to choose these representatives so that if σ is a closed surface

in Si, then exactly one of the following is true for any integer j ≥ 0

(i) σ does not exist in Gj, in which case j < i,

(ii) σ is trivial in Gj, in which case i < j,

(iii) σ is a cycle in Sj.

Thus we will refer to the closed surfaces in
⋃

i≥0 Si as the elements of PH2(G).

The geometric intuition for PH2(G) is similar to that of PH1(G) in identifying large

‘voids’ in G. If σ ∈
⋂

s≤i≤t Si, then σ is a closed surface with diameter at least t. The value

of s is harder to describe, but is related to the density of vertices.

Example 3.9. We now consider PH2(G) for the hexagonal graph G in Example 3.1. Recall

from Example 3.7 that G0 and G1 have no trivial cycles, and therefore contain no closed

surfaces. We can see in Figure 3.2 that G2 has exactly one closed surface and it must be

non-trivial, since there are no 3-simplices. Finally, G3 has many closed surfaces, but because

it contains every possible 3-simplex on six nodes, these are all trivial. Therefore, PH2(G)

consists of only one closed surface, which appears in G2, so we say t = 2 is the birth of the

surface. The closed surface is trivial in G3, so this is the death of the surface.
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Definition 3.10. (Persistence Intervals) Given an element σ (vertex, cycle, or closed

surface) of the persistent homology of a network G, the birth of σ is the smallest integer i

so that σ ∈ Gi. The death of σ is the largest integer j so that σ ∈ Gj−1 and σ is trivial

in Gk for k ≥ j, if such an integer exists. Otherwise, the death of σ is said to be ∞. The

persistence interval for σ with birth a and death b, is [a, b). This represents the set of all

parameter values i for which the equivalence class of σ is a non-trivial element of H(Gi).

The persistence of σ in this case is b− a.

Example 3.11. We now finish our consideration of the persistent homology of G from

Example 3.1. Recall from Example 3.5 that PH0(G) has six elements. These all have birth

t = 0. Five of these have a death of t = 1, and one of these has a death of ∞. Therefore, the

persistence intervals for PH0(G) are [0, 1)× 5, [0,∞). From Example 3.7, we know PH1(G)

has one element, with birth t = 1 and death t = 2. Therefore, the persistence interval for

that element is [1, 2). Note that the diameter of the cycle is 3 and every pair of consecutive

vertices is distance 1 apart. From Example 3.9, PH2(G) has one element, with birth t = 2

and death t = 3. Therefore the persistence interval for that element is [2, 3). Note that the

diameter of the corresponding set of vertices is 3 in G.

Given the representatives chosen in Definitions 3.4, 3.6, 3.8, and 3.10, we have the follow-

ing three observations regarding the persistent homology of a finite, undirected, unweighted

graph G:

(i) If G has n nodes, then PH0(G) will have exactly n intervals, with exactly one [0,∞)

interval for each connected component and the rest will be [0, 1) intervals.

(ii) In dimension 1, PH1(G) describes the number and sizes of the non-trivial cycles in the

original network. The intervals will all be of the form [1, b) for some integer b > 1. The

value of b is related to the diameter of the corresponding cycle. In the networks we have

studied, we note that a persistence interval [1, b) in PH1(G) corresponds to a simple cycle

with between 3b− 2 and 3b nodes, inclusive.

(iii) In dimension 2, the voids we detect in PH2(G) indicate non-trivial intersections of cy-
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cles. Though we do not have a precise formula, we can say that when large cycles intersect

non-trivially we obtain voids with high persistence values.

Chapter 4. Comparing Networks

In this chapter, we demonstrate how methods based on persistent homology can be used to

compare different networks. The two methods we introduce in this thesis are based on using

(a) the bottleneck distance and (b) persistence curves of a given set of networks. Both (a)

and (b) rely on first computing persistence intervals and then analyzing the differences in

these intervals.

The two networks we consider throughout this section to demonstrate these methods are

the Tikopia family network from Figure 2.2 (left) and the hexagonal network from Figure

3.1. The persistence intervals for these networks is given in Table 4.1, respectively.

4.1 Persistence Diagrams and Bottleneck Distance

One common way to represent persistence intervals is to plot them as points in R×(R∪{∞}),

which is usually called a persistence diagram. While this does not indicate how often a given

persistence interval occurs, it does provide information on what kind of persistence intervals

occur for a given network.

Dimension
Interval Type and Persistence
Tikopia Hexagon

Dimension 0 [0,∞)× 8, [0, 1)× 286 [0,∞)× 1, [0, 1)× 1

Dimension 1
[1, 2)× 16, [1, 3)× 19, [1, 4)× 5,
[1, 5)× 3, [1, 6)× 2, [1, 7)× 1

[1, 2)× 1

Dimension 2
[2, 3)× 4, [3, 4)× 11, [4, 5)× 12,
[5, 6)× 4, [6, 7)× 5, [7, 8)× 1, [8, 9)× 1

[2, 3)× 1

Table 4.1: The persistence intervals of the Tikopia family network and the hexagon network
are shown. Here the notation [a, b)×k indicates that the network has k persistence intervals
[a, b). The corresponding persistence diagrams are shown in Figure 4.1 and the corresponding
persistence curve for the Tikopia network is shown in Figure 4.2.
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Definition 4.1. Let PHp(G) be the pth persistent homology of a networkG. The persistence

diagram for PHp(G) is a multiset of points in R× (R ∪ {∞}) defined as follows:

• For each σ ∈ PHp(G) with persistence interval [a, b), we include one copy of the point

(a, b).

• For each c ∈ R, we include infinitely many copies of the point (c, c).

Note that we include the points (a, a) to represent features in G that are considered trivial

in PHp(G), such as cycles consisting of exactly three vertices. This inclusion is necessary for

us to define a meaningful metric on the space of persistence diagrams. The metric we use

here is called the bottleneck distance.

Definition 4.2. (Bottleneck Distance) Let S1 and S2 be persistence diagrams for two

networks G and H, respectively. Let η range over the set of bijections from S1 to S2, then

the bottleneck distance between S1 and S2 is

dB(S1, S2) = inf
η

sup
x∈S1

∥x− η(x)∥∞.

The Fundamental Theorem of Persistent Homology [17] ensures that if two graphs are

isomorphic, the corresponding persistence diagrams will be equal, and thus the bottleneck

distance will be 0. However, it is possible for non-isomorphic graphs to have identical persis-

tence diagrams. For example, let G be the graph given by V = Z, E = {{a, a+ 1}, a ∈ Z},

and let H be the graph given by V = N, E = {{a, a + 1}, a ∈ N}. These graphs are non-

isomorphic, but the persistence diagram for either graph will consist of one point of the form

(0,∞), and infinitely many copies of the points (0, 1) and (c, c) for c ∈ R.

Example 4.3. Notice that the persistence intervals for the Tikopia family network (see Table

4.1) include, as a subset, the persistence intervals from the hexagonal network we considered

in Example 3.11. We can form a bijection between the persistence diagrams of the Tikopia

and hexagonal network by identifying the non-trivial intervals from the hexagonal network
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Hexagonal Network PD Tikopia Network PD Bottleneck Bijection

Figure 4.1: Left: The persistence diagram (PD) of the hexagonal network in Figure 3.1 is
shown. Center: The persistence diagram of the Tikopia Family network in Figure 2.2 (left)
is shown. Right: A bottleneck bijection between the persistence intervals of the hexagonal
and Tikopia family network is shown. Orange lines show which points are matched to points
of the form (a, a) where a ∈ R.

with those of the Tikopia network. We then map any additional intervals from the Tikopia

network of the form [a, b) to the trivial interval [a+b
2
, a+b

2
).

This mapping is shown in Figure 4.1 (right). Here, [1, 7) is mapped to [4, 4). As this

pair of points is farther apart than any other pair in this bijection, the bottleneck distance

for the two networks is at most three, since we take an infimum over all possible bijections.

Conversely, there is no interval in the hexagonal persistence diagram that is closer to [1, 7)

than 3, so the bottleneck distance is at least three. Therefore, we can conclude that the

bottleneck distance for these two persistence diagrams is exactly 3.

Suppose that two networks, each of which is connected, admit isometric embeddings

in Rn. The Stability Theorem [18] guarantees that if the Hausdorff distance between the

embeddings is δ, then the bottleneck distance for the corresponding persistence diagrams

is at most δ. Therefore, if we find a significant difference between two networks using the

bottleneck distance, that difference is significant in the underlying network structure. For

example, if the PH1 persistence diagrams differ by δ, then any attempt to pair up cycles in

the networks must include at least one pair of cycles for any isometric embedding that are

δ apart in that embedding. In Chapter 7, we apply this idea to family networks.
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4.2 Persistence Curves

For the data we consider, persistence diagrams obfuscate a key difference that we deem

important: the number of persistence intervals. For a simple example of this, consider

networks of the form V = {1, 2, . . . , n} with edges of the form {i, i + 1} for 1 ≤ i < n. For

n ≥ 2, any network of this type will have persistence intervals [0, 1)× (n− 1) and [0,∞)× 1.

However, when plotting the persistence diagram we will only ‘see’ two points: (0, 1) and

(0,∞).

To address this limitation, we introduce the notion of a persistence curve as a new way to

visualize the persistent homology of a network (see Definition 4.4). The difference between

the persistence curve and the persistence diagram of a network is that the persistence curve

also includes the number of intervals of a particular type. To create a persistence curve we

first compute a network’s persistence intervals, then sort the intervals of a given dimension

by their persistence into a bar graph. For instance, in dimension-one the Tikopia family

network has thirteen [1, 2) intervals, nineteen [1, 3) intervals, etc., which are sequentially

stacked as shown in Figure 4.2 (left) to create what we will call a barcode. To create the

associated persistence curve we connect the endpoints of each subsequent bar as shown in

Figure 4.2 (right).

In dimension-one, the birth times of our intervals will all start at 1, as our networks are

unweighted, undirected, and connected. This means that for this dimension the resulting

bar graph is also a plot of the death times for each interval. For the other higher dimensions,

which have varied birth times, we also plot the lengths of the intervals, but for simplicity we

start at 1 as in dimension-one.

A formal definition of a network’s persistence curves is the following:

Definition 4.4. (Persistence Curves) Let G = (V,E) be a network with nonempty vertex

and edge sets. Then let {[aj, bj)} be the set of all persistence intervals for each σj ∈ PHn(G)

where j ∈ N. For all n ∈ N, the persistence curve PHn(G) is the linear interpolation of the

set of points {(bj − (aj − 1), j)} where bj−1 − (aj−1 − 1) ≤ bj − (aj − 1).
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Tikopia Network Barcode Tikopia Network Persistence Curve

Figure 4.2: Left: The barcode of the Tikopia family network in dimension-one is shown.
The individual bars are formed from the persistence intervals given in Table 4.1. Right: The
associated persistence curve is shown.

Visualizing the data in this way allows us to compare the persistent homology of different

networks in a similar fashion to persistence diagrams while retaining different information.

In particular, we can see how many intervals there are of a given persistence, whereas the

persistence diagram only indicates the presence of such an interval. We will typically plot

persistence curves of multiple networks on the same axes to give a preliminary idea of what

differences exist in the persistent homology of different networks (see Chapter 7).

Chapter 5. Model of a Human Family

Network

The main goal of this thesis is to create a model that can generate a realistic family network.

Specifically, using data from a real-world family network, our goal is to create a family

network with similar local and global features. The hope is that our model will give insight

as to what characterizes family networks. We hypothesize that (i) the distance at which

unions form and (ii) the number of children each union has are fundamental features that

determine the structure of family networks. As such, the model we propose uses these two

features to model the growth of a human family.

19



5.1 Model Parameters

Given a real-world family network F = (V,E), our model seeks to create a family network

MF = (VF , EF ) that mimics the features of the real family network. The features we seek to

recreate are the network’s (i) distribution of union distances U = U(F ) and (ii) distribution

of the number of children per union C = C(F ).

As defined in Chapter 2, union distances are found by computing the shortest path

between two given vertices that form a union. This path is found by deleting the union

edge between the two vertices and all of their parent-child edges, so that the shortest path is

found outside the immediate family via other parent-child edges. The idea is that this path

gives the shortest distance between the pair before their union is formed. If there is no path

connecting the two vertices, the distance is defined to be infinite. The finite union distances

are collected to form the distribution U , where P (U = d) is the probability that a randomly

selected union in F will have a distance d < ∞. The number of infinite distances are also

counted and converted into the parameter d∞, equal to the number of union distances in F

that are infinite. A finite union distance indicates that the couple has a common ancestor,

whereas an infinite union distance indicates that the couple does not have a common ancestor

in the family network.

The second distribution we determine is the network’s distribution of children C, which

is found by counting the number of children each union shares. Here, the distribution C has

the property that P (C = k) is the probability that a randomly selected union in F has k

children. Based on the data we consider, it is possible for only one person in a union to have

children (e.g., second marriages where only one spouse previously had children), but we have

chosen to focus on children that both people in a given union are linked to via parent-child

edges. Although this leaves out some children in the real-world family networks we consider,

the number of children that are not counted using this convention is typically very small,

and this simplification has little effect on the networks our model creates.

In addition to these network parameters and distributions, two union probabilities are
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(a) g0 (b) g1 (c) g2

Figure 5.1: An example of a growing family network is shown. The dashed, curved lines
represent the initial distances of the initial set of n0 vertices in g0. Union edges are shown in
red and parent-child edges are shown in blue. Left: The initial generation g0 of the network
with n0 = 5 vertices is shown in light blue. Middle: The unions formed in g0 have children
(represented by green vertices) creating the next generation g1. Right: A non-connected
vertex (shown in yellow) is added to the network and unions are formed among g1. These
unions then have children (represented by orange vertices) to create the next generation g2.
The network continues to build generationally until all g generations are formed.

computed using the real-world family network F . The first is the probability a vertex forms

a union, punion ∈ [0, 1]. This is found by taking the number of union edges multiplied by 2

and dividing by the total number of vertices in VF . The number punion gives us the fraction

of vertices in the network that form a union. The next probability we determine is the

probability p∞ ∈ [0, 1] that a vertex is not initially connected to the network. These non-

connected vertices are vertices that have formed a union with another vertex in the family

network, but are not children of any other vertex in the network; their only initial link to

the network is through their union edge. Thus, the number p∞ is the fraction of the vertices

VF that are non-connected in MF .

In our model, the growth of a family happens generationally. One can think of a family

starting with a single couple or union that we’ll call the initial generation g0. This couple

then has children to create a new generation g1. Those children then form unions with

others and have their own children to create the next generation g2. This continues for

several generations (Figure 5.1 gives an example of this process).

Our model replicates this growth on a larger scale by creating several unions in each

21



Model Parameters
U Distribution of finite union distances
d∞ Number of infinite distances
C Distribution of number of children

punion Probability of forming a union
p∞ Probability of an infinite union
n0 Initial number of vertices
g Number of generations

Table 5.1: Given a real-world family network F = (V,E), the model creates the family
network MF = (VF , EF ) using the parameters shown.

generation. Thus, the last parameters needed for the model are the number of initial vertices

n0 > 0, and the generations g > 0 simulated in the network. These parameters determine

the initial size and number of generations, respectively, in the resulting model of the family

network MF = (VF , EF ). (More details about how these two parameters are chosen is given

in Chapter 6).

Table 5.1 summarizes the model parameters and distributions as described above.

5.2 Initialize Modeled Family Network

Given a family network F = (V,E), the model begins with an empty graph G = G(F )

and adds n0 initial vertices with no edges between these vertices. This set of vertices rep-

resents the initial generation g0 of the modeled family network MF . The n0 × n0 distance

matrix D0(G) = [d0ij] is then created. Unlike the distance matrix D(G) that was defined in

Chapter 3, D0(G) stores initial distances between each of the n0 vertices. These distances

are determined using the distribution U = U(F ). For each pair of vertices i and j in the

initial generation, we choose the distance dij using a list of all possible finite distances to

randomly select a distance value d > 0 for each entry dij in D0(G). Thus, the ijth entry

of the resulting symmetric matrix represents the distance between vertices i and j in the

initial generation. These distances are used later in the model to determine if a given pair

of vertices will form a union, and each distance is updated as the network grows with each
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generation (see Section 5.3). That is, the distance matrix Dµ stores all previous distances

and gets larger with each generation for 0 < µ < g.

The probability of each possible distance is found by first considering the distribution of

finite union distances U . The probability mass function P (U = d) gives the probability that

a randomly selected union will have distance d < ∞. However, this distribution is restricted

to the distances found in the original family network F . Thus, specific distance(s) s could

be missing from the data since no pair of vertices in F form a union at that distance (see

Figure 5.2a). This means our model would penalize that specific union distance s from ever

occurring. In our model, it is possible for vertices to be a distance s apart, and using the

distribution P (U = d) would impede those vertices from ever forming a union together. As

this is somewhat unrealistic, we will use a smoothing technique to incorporate any distance

between the minimum and maximum distances found in F by creating a probability density

function (PDF) associated with the union distance distribution.

To calculate this PDF of the union distribution, we use a kernel density estimator (KDE).

For (x1, x2, ..., xn) independent and identically distributed samples, which come from the

union distribution U , the KDE is f̂(x;h) = 1
nh

∑n
i=1K(x−xi

h
), where n is the number of

samples, h > 0 is the bandwidth, and K(x) is the kernel function [19]. Here, the bandwidth

h acts as a smoothing parameter. A larger bandwidth h leads to a very smooth, or high-

bias, density distribution. A smaller bandwidth h leads to an unsmooth, or high-variance,

density distribution [20]. In our model, we set h = 1 to balance the bias and variance of

the distribution. In most of the data we consider, the finite distances are approximately

normally distributed (see Figure 5.2a for an example), so a Gaussian kernel is used for the

kernel density estimation. That is, K(x) = ϕ(x), where ϕ(x) is the standard normal density

function.

After using the KDE to estimate the PDF, spline interpolation is used to fit the curve.

We then find the probability of each distance d by integrating around each distance using

the interval [d − 0.5, d + 0.5]. For example, to find the probability of distance d = 4, we
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integrate the fitted curve over the interval 3.5 to 4.5. Doing this for each distance, we create

the probability distribution Û = Û(F ), where P (Û = d) is the probability of a finite distance

d, given by ∫ d+0.5

d−0.5

f̂(x;h)dx,

where minU ≤ d ≤ (maxU + 1) and minU is the smallest union distance in F and maxU

is the largest union distance in F (see Figure 5.2b). The probability of an infinite distance,

d∞, is added to the distribution of finite distance probabilities Û , and all probabilities are

normalized to create the distribution Ū = Ū(F ). That is, P (Ū = d) is the probability of

the finite or infinite distance d, including any missing distances s, in the family network F .

Thus, we have the probability

P (Ū = d) = λ[P (Û = d) + d∞],

where λ =
[(∑maxU

d=minU

∫ d+0.5

d−0.5
f̂(x;h)dx

)
+ d∞

]−1

is a normalizing factor.

A similar process also produces a probability distribution of the number of children each

union can have. That is, the PDF of the children distribution C is estimated using the KDE

ĝ(x;h) = 1
nh

∑n
i=1K(x−xi

h
), where (x1, x2, ..., xn) are independent and identically distributed

samples from C, h = 1, and K(x) = ϕ(x). Using spline interpolation to integrate over each

interval to compute the probability of possible number of children, the children probability

distribution C̄ = C̄(F ) is created. Thus, P (C̄ = k) is the probability of k children for a

given union in the family network F , which is given by

∫ k+0.5

k−0.5

ĝ(x;h)dx.
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Figure 5.2: Left: The discrete distribution of finite union distances U for the Tikopia family
network is shown. Right: Using the KDE to estimate the PDF of the union distance dis-
tribution, we interpolate any missing distances to create the probability distribution Û by
integrating the fitted curve shown.

5.3 Adding Generations to Network

After establishing the initial generation g0 of the graph with the distance matrix D0(G)

(as described in Section 5.2), unions are formed and children are added to create the next

generation. However, before unions are formed among the current generation of vertices,

more vertices are added to the graph using the probability of non-connected vertices p∞ (see

Figure 5.1c). These added vertices form unions with randomly selected vertices from the

current generation by creating a new union edge, each resulting in an infinite union distance.

Each infinite-distance union is added to a list of new unions. Then, pairs of the remaining

vertices in the current generation are selected based on the probability of their distance in

Ū and a new union edge is created between each selected pair until the number of vertices

in the list of new unions matches the fraction punion. Because of this probability punion, not

every vertex will be paired as a union.

Once unions are formed, each union is randomly assigned a number of children based

on the probability distribution C̄. Vertices for these children are created and linked to each

parent in the union via a parent-child edge. We note that not every union will have children,

since k = 0 children is a possibility.

After all the parent-child relationships are established in the next generation, the dis-

tances between all vertices in the network are updated in the distance matrix Dµ(G), where
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0 < µ < g. For example, after the vertices in g0 form unions and have children, the genera-

tion g1 is established and the distance matrix D0(G) is updated and becomes D1(G). This

updated matrix includes all the n0 vertices from g0 and the added non-connected vertices

and the total number of added children. Thus, D1(G) is an n1 × n1 matrix, where n1 is the

total number of nodes in the graph G after the generation g1.

Forming unions, adding children, and updating the distance matrix is repeated until all

g generations are created. Thus, the graph G = G(F ) becomes the modeled family network

MF = (VF , EF ) after g generations.

Chapter 6. Data

To test our model, we use the Tikopia and San Marino family networks from [4]. The

Tikopia family network consists of 294 individuals from the island of Tikopia in Polynesia.

As explained in Chapter 2, the San Marino network consists of 28,586 individuals from the

Republic of San Marino, enclaved by Italy, from the 15th to the end of the 19th century. The

finite union distance and children distributions for the Tikopia family network are shown in

red in the bottom right corner of Figures 7.2 and 7.3 respectively. The Tikopia family network

also has d∞ = 47 infinite-distance unions, the probability of forming a union punion = 0.65,

and the probability of forming an infinite union p∞ = 0.21. The finite union distance and

children distributions for the San Marino family network are shown in red in the bottom

right corner of Figures 7.8 and 7.9 respectively. The San Marino family network also has

d∞ = 4, 316 infinite-distance unions, the probability of forming a union punion = 0.57, and

the probability of forming an infinite union p∞ = 0.17.

One can think of the collection of genealogical data as going backwards in time. For

example, to consider your own genealogical data, you start with yourself and trace back

through your parents, grandparents, great-grandparents, etc. for as far back as possible.

Once the data is collected, you can reverse this process and go forward in time from your

ancestors to you. The model we propose goes forward in time. Starting with a specified
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number of individuals n0 for the initial generation g0, our model adds more individuals to

the network with each generation for g generations.

The combination of the parameters in Table 5.1 determine if the family network we create

will continue indefinitely as g → ∞ or die out. If the family eventually dies out, then the

parameter n0 effectively determines the size of the family network we create as g → ∞. The

larger n0, the larger the resulting family is, on average. For the Tikopia family network, we

found that this family eventually dies out after some number of generations gmax = gmax(n0)

depending on the initial population n0. After some experimentation, we found that n0 = 100

is approximately the correct size at which to initialize our model to grow a network roughly

the size of the actual Tikopia family network. We use n0 = 100 to model the San Marino

family network as well.

As gmax = gmax(n0), the number of g generations the model will run for is dependent

on the size of the original family network and the modeled family network. The model

algorithm has a computational and spacial complexity of O(n2). Thus, as the modeled

network gets bigger with each generation, the model requires more time to make the necessary

computations. The parameter g is set to g = 14 for the Tikopia and San Marino family

networks. This number g = 14 ensures that both the model of the Tikopia and San Marino

family networks grow as much as possible. For example, the Tikopia family network is

relatively small and will eventually stop growing after some number of gmax generations due

to the unavailability of union candidates. After several realizations of the model, we found

that the modeled Tikopia family network grows to a maximum of gmax = 11 generations if

n0 = 100. However, on average, the modeled network will grow for an average of gmax = 9

generations, which means that even when the model continues to run for g = 14 generations,

the network will stop growing around 9 generations. Contrast this to the San Marino network

that is much larger and appears to grow arbitrarily large as g → ∞. The computational

complexity prevents the modeled San Marino network from growing more than g = 12

generations, on average. That is, the San Marino network can grow to only an average of
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9,000 vertices before our simulations terminate. Thus, using a larger g ensures that the

network grows as much as possible.

It is important to note that the family network data we consider does not include a strict

notion of generations nor any temporal factors besides parent-child relations. That is, there

is no immediate way to know which unions and children are from certain generations. In

some sense, the notion of a generation is a useful convention. Our model takes a simplified

approach at generating family networks by not permitting intergenerational coupling or

unions. We also limit each individual or vertex to forming at most one union, and only those

unions can have children. Nonetheless, our results show that these simplifications do not

deter our model from creating what appear to be realistic family networks (see Chapter 7).

In addition to the limitations of the computational and spacial complexity of the model,

the algorithm used to compute persistence intervals is also limited. The program we used,

called Ripser [21], has a computational and spacial complexity of O((n + m)3) where n is

the number of individuals and m is the number of edges in a network. The number n+m is

the number of simplices in the network. In the Tikopia family network, n = 294, m = 441,

and there are n + m = 735 simplices. In the San Marino family network, n = 28, 586;

m = 51, 446; and there are n+m = 80, 032 simplices.

Given our computational capabilities, the San Marino network is much too large for

Ripser to compute persistence intervals. Thus, a sampled subgraph of the network is used

to represent the original data. Starting from a random vertex of degree 1 in the San Marino

network, we used a breadth-first search (BFS) to generate a sampled network that has

1, 502 + 2, 564 = 4, 066 simplices. Here, we chose a vertex of low degree to get at least some

vertices at the boundary of the sampled network and some vertices in the interior. Figure

6.1 right shows this sampled network.

There are some drawbacks to using BFS-sampled networks instead of the complete net-

work. Sampling a network in this way potentially creates a lot of dead ends in the resulting

subgraph. That is, some cycles from the original network are severed in the sampling pro-
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Tikopia Family Network Sampled San Marino
Family Network

Figure 6.1: Left: The Tikopia Family network is shown. This network has 294 vertices, 441
edges, and 735 simplices. Right: The sampled network of the San Marino family network is
shown. This sampled network has 1,502 vertices; 2,564 edges; and 4,066 simplices.

cess. Additionally, this sampling technique does not take into account any communities

found within the original network. Thus, the resulting structure of the sampled network is

limited and potentially missing key factors of the original network. We further address how

these issues affect our results in Section 7.2 and Section 7.3.

Chapter 7. Results

In this chapter, we measure how similar real-world family networks and modeled family

networks are by using target distributions, persistence curves, and bottleneck distances as

described in Chapter 4. For each real-world family network, the Tikopia and San Marino

networks, we made 10 realizations of the model to create several modeled family networks.

We summarize our findings below.

7.1 Tikopia Family Network

A realization of a modeled Tikopia family network is shown in Figure 7.1, and demonstrates

how the network grows with each generation, while emphasizing the largest connected com-

ponent. As discussed, the driving force of our model is the union distance and children
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Modeled Network

Largest Connected Components

Figure 7.1: A modeled Tikopia family network at each generation is shown in the first grid.
The second grid shows the largest connected component of the modeled network at each
generation.
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Distance to Union

Figure 7.2: The union distribution for each generation of a modeled Tikopia Family network
and the original union distribution Ū of the Tikopia Family network (bottom right corner)
is shown.
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Number of Children per Union

Figure 7.3: The children distribution for each generation of a modeled Tikopia Family net-
work and the original children distribution C̄ of the Tikopia Family network (bottom right
corner) is shown.
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distributions. These distributions determine how the modeled network grows. Figures 7.2

and 7.3 show the finite union distance distribution and children distribution of each gener-

ation of a modeled Tikopia family network. At each generation, these distributions roughly

tend towards the target distributions (shown in red), indicating that the model correctly uti-

lizes the various probability parameters. These three figures show that the modeled network

is similar, but not identical, to the original Tikopia family network. Persistence homol-

ogy equips us with mathematical tools to understand the extent of these similarities and

differences.

Figure 7.4 shows how the persistence curves of a modeled Tikopia family network change

with each generation. Persistence curves represent persistence intervals, which describe the

different cycles of a network (see Section 4.2). Most cycles in family networks come from

a combination of ancestor (parent-child) relationships and union relationships. Thus, the

beginning stages of the modeled network, specifically, the initial generation g0 through the

second generation g2, do not have enough height for ancestry relations. So, the persistence

diagrams are computed entirely on union relationships, which means there are not enough

persistence intervals to form nontrivial persistence curves. As such, the persistence curves

in Figure 7.4 begin with generation g3 and continue until the last generation of the modeled

network, generation g11. We see that with each generation, the shape of the persistence

curve of the modeled network becomes more similar to the largest connected component

of the original family network curve. We use the largest connected component to focus on

larger network cycles. The other components of the original network are extraneous as they

contain nontrivial small cycles that do not provide much information to the overall topology

of the network (see left of Figure 6.1).

The biggest difference between the generational curves and the original family network

curve is the number of length 2 intervals. Length 2 intervals represent cycles of length 4-8,

approximately. We find the approximate length of a cycle by multiplying the persistence

interval length by 3. These cycles of this particular size appear in a family network when
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Figure 7.4: The persistence curves for dimension 1 of the original Tikopia family network
(Original Data) and the curves of each generation of a modeled Tikopia family network are
shown.

siblings form unions with other siblings (i.e., double cousins) and when a couple that does not

share a union edge has children. Because our model restricts C̄ children to couples who share

a union edge and because the event of double-cousins has a small probability, our modeled

networks will likely have fewer length 2 persistence intervals than the original network. This,

in turn, signifies a good local fit of our model. Length 3 intervals are essentially the next

generation of the aforementioned phenomenon since union shortcuts will still be missing at

this point. Because of that, our modeled networks will also have fewer length 3 persistence

intervals than the original network.

Larger persistence intervals are not affected by our model’s union assumption because of

stability. That is, persistent homology has a noise factor built in, so if there is only a single

edge missing between two networks, then their persistence should be equal up to a left or

right shift of 1. Correcting for these “small interval” factors, one can see that the shape

of the step curves past length 4 are essentially the same for the modeled and the original

network, indicating a very good fit between the global structure of our model and the original

Tikopia family network.

The difference in number of length 2 intervals is further illustrated in Figure 7.5, which

shows the persistence curves for 10 different realizations of a modeled Tikopia family network.
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Figure 7.5: The persistence curves for dimension 1 of the original Tikopia family network
(Original Data) and the curves of 10 realizations of a modeled Tikopia family network are
shown.

Taking the last generation of each realization, we compute the persistence diagrams and

corresponding persistence curves and plot them with the largest connected component of

the original network’s persistence curves. If we were to shift the curves of the realizations

up to remedy the difference in length 2 intervals, they would more closely follow the original

network’s curves. This shifting would also show that some realizations’ curves are a little

above and a little below the original network’s curve, demonstrating the randomization of

our model around the “true” network.

After finding the persistence curves of 10 realizations of the model, we compute the

bottleneck distance at each generation with the original Tikopia family network for each

realization. Figure 7.6 (right) shows how the average bottleneck distance changes as the net-

work grows with each generation. To have a bottleneck distance less than 1, the compared

networks would essentially be the same. Thus, if there is any difference between the original

and modeled networks, the bottleneck distance is at least 1. In Figure 7.6 (right) we see

that the first three generations have an average bottleneck distance of 3. This is because

the modeled network does not have ancestry-union complexity yet. After generation g3, the
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Figure 7.6: Left: The average size of 10 realizations of the modeled Tikopia family network
at each generation is shown in blue. The size of the original Tikopia family network is shown
in red (note, the data does not indicate how many generations are in the network, so plotting
the point at generation g10 was chosen arbitrarily). Right: The average bottleneck distance
after 10 realizations of each generation between the original Tikopia family network and the
modeled Tikopia Family network is shown.

complexity of the network increases and the average bottleneck distance decreases. Realiza-

tions of the model that made it past 8 generations become more and more similar to the

original Tikopia family network as seen by the continued decrease in bottleneck distance.

Thus, if a modeled network reaches later generations, it will be more similar to the original

Tikopia network. Modeled networks that do not have enough complexity, and in turn cannot

continue to grow for more generations, will not be as realistic as those networks that do.

Figure 7.6 (left) shows the average number of vertices in the network at each generation, in-

cluding the number of vertices in the original family network (shown in red). It is interesting

to note that even though the average size of the modeled family network exceeds the size of

the original family network, especially in later generations, the bottleneck distances tell us

that their underlying structure is similar.
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7.2 San Marino Family Network

The sheer size of the San Marino family network is quite a contrast to the Tikopia family

network. A realization of a modeled San Marino family network is shown in Figure 7.7.

Comparing this to the realization of the Tikopia family network in Figure 7.1, we see that

the modeled San Marino family network grows a lot more in the eleven generations than the

modeled Tikopia family network. As explained in Chapter 6, computational limits prevent

the modeled San Marino family network from growing to the same size as the original family

network. On average, the modeled San Marino family network grows to about 9,000 vertices,

whereas the original San Marino family network has about 28,500 vertices. Despite this,

Figures 7.8 and 7.9 show that the finite union distance distribution and children distribution

are roughly tending towards the target distributions (shown in red). Assuming that the

modeled San Marino network grew large enough, we would expect it to be similar to the

original San Marino family network.

As discussed in Chapter 6, computing persistence curves is too computationally expensive

for large family networks. Thus, after 10 different realizations of a modeled San Marino

family network, we sample each resulting network to get 10 sampled, modeled San Marino

family networks of size 1,200 vertices, on average. We compute the persistence diagrams

and bottleneck distance of each realization with the original, sampled San Marino family

network as shown in Figure 7.10 (right). Section 4.1 and 7.1 explain that if networks are

similar, their bottleneck distance must be small; however, the converse is not true. Thus, we

also compute the persistence curves of the 10 sampled, modeled San Marino family networks

and plot them with the persistence curve of the original, sampled San Marino network to

better understand how similar the sampled, modeled networks are to the original, sampled

network (see left plot of Figure 7.10).

In Figure 7.10 (left), the persistence curves of each realization resemble persistence curves

of family networks. Nonetheless, the cycles found in the sampled, modeled San Marino family

networks differ from the original, sampled San Marino family network. When sampling
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Modeled Network

Largest Connected Components

Figure 7.7: A modeled San Marino family network at each generation is shown in the first
grid. The second grid shows the largest connected component of the modeled network at
each generation.
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Distance to Union

Figure 7.8: The union distribution for each generation of a modeled San Marino Family
network and the original union distribution Ū of the San Marino Family network (bottom
right corner) is shown.
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Number of Children per Union

Figure 7.9: The children distribution for each generation of a modeled San Marino Family
network and the original children distribution C̄ of the San Marino Family network (bottom
right corner) is shown.
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Figure 7.10: Left: The persistence curves for dimension 1 of the original, sampled San Marino
family network (Original Data) and the curves of 10 realizations of a sampled, modeled San
Marino family network at the last generation are shown. Right: The bottleneck distances
between the original, sampled San Marino family network and the 10 realizations of the
sampled, modeled San Marino family network at the last generation are shown.

networks, cycles from the original network are cut off and communities within the network

are not accounted for. As such, we see that sampling has a negative impact on measuring

the accuracy of our model. Thus, we cannot adequately conclude how similar the modeled

San Marino family networks are to the original San Marino network.

7.3 Conclusion and Future Work

Our results suggest that (i) the distance at which unions form and (ii) the number of children

each union has are fundamental features that determine the structure of family networks.

Our model utilizes these features to create realistic family networks. However, we recognize

that there are limitations to these modeled family networks.

As explained in Chapter 6, our model simplifies real-world events by not permitting

intergenerational coupling or unions. More examination of generational factors would lead to

a better understanding of how intergenerational coupling occurs, which would help improve

our model. Additionally, it may be beneficial to allow multiple unions or separation of

unions throughout time. That is, allow an individual to form a union, separate from that

union, and then form another union. Or, allow unions to separate without the formation
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of another union. This would potentially require intergenerational coupling since separation

and reformation would possibly not occur in the same generation.

Moreover, the assignment of children could also be improved. The current model only

allows union pairs to have children; thus limiting the addition of more people to the family

network. Our model could also consider including children of the same immediate family to

be from more than one generation. In the real world, it is possible for a union to have a large

age gap between children. Our current model does not necessarily take this into account due

to the data’s limitation of temporal factors.

Ideally, we would want to model large family networks. Generally, larger networks bet-

ter capture real-world events and are more complete. The computational limitations of our

model and Ripser make studying large family networks difficult. Sampling large networks to

mitigate these limitations has several drawbacks as explained in Chapter 6 and as seen in

Section 7.2. Further study could reveal that BFS is not the best possible algorithm for sam-

pling networks, and that other algorithms would reduce some of the drawbacks mentioned.

Alternately, we could explore other computational capabilities to handle large family net-

works. For example, Ripserer [22] is a pure Julia implementation of the Ripser algorithm,

allowing for much faster computations than the Python package of the algorithm we used.

This alternate program would enable a better study of the San Marino family network and

other larger networks without needing to sample the network.

Our model establishes a foundation for generating modeled family networks. Further

study would lead to even better results and even more insights to the characteristics of

human family networks.
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