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abstract

Weak Cayley Table Groups of Crystallographic Groups

Rebeca Ann Paulsen
Department of Mathematics, BYU

Doctor of Philosophy

Let G be a group. A weak Cayley table isomorphism ϕ : G→ G is a bijection satisfying
two conditions: (i) ϕ sends conjugacy classes to conjugacy classes; and (ii) ϕ(g1)ϕ(g2) is con-
jugate to ϕ(g1g2) for all g1, g2 ∈ G. The set of all such mappings forms a group W(G) under
composition. We study W(G) for fifty-six of the two hundred nineteen three-dimensional
crystallographic groups G as well as some other groups. These fifty-six groups are related to
our previous work on wallpaper groups [HP].
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Chapter 1. Introduction

Let G and H be groups. As defined in [JS, Hu], a weak Cayley table morphism is a function

ϕ : G→ H satisfying two conditions: (i) for g, g′ ∈ G, ϕ(g)ϕ(g′) is conjugate to ϕ(gg′); and

(ii) g is conjugate to g′ in G if and only if ϕ(g) is conjugate to ϕ(g′) in H. A weak Cayley

table isomorphism is a bijective weak Cayley table morphism. In the situation where ϕ is

bijective and G = H,ϕ is a generalization of an automorphism, and we call these mappings

weak Cayley table maps or wcts. The set of all such mappings ϕ : G → G forms the weak

Cayley table groupW(G) =W under composition and we note that the automorphism group

Aut(G) of G is a subgroup of W(G). The inverse map ι : g 7→ g−1 is also an element in W .

We define W0 = 〈Aut(G), ι〉, and we call the wcts in this subgroup trivial. If W = W0 we

say W(G) is trivial.

Although this will not be relevant to this thesis, we now explain where this idea comes

from. If G = {g1 = 1, g2, . . .}, then the weak Cayley table of G is the |G| × |G| matrix whose

ij entry is the conjugacy class of gigj. Two finite groups have the same weak Cayley table if

and only if they have the same 1- and 2-characters, in the sense of Frobenius [JMS]. Here,

for a complex character χ, the corresponding 1-character is χ(1) = χ, and the 2-character is

χ(2) : G2 → C, χ(2)(x, y) = χ(x)χ(y) − χ(xy). The group W(G) is the group of symmetries

of the weak Cayley table of G [JMS]. We note that the notion of a k-character only makes

sense in the situation where G is finite; however, the weak Cayley table is defined for any

group, and W(G) makes sense for any group.

Given a group G one would like to determine whether or not W(G) is trivial and to

find the non-trivial wcts inW\W0. Previous research has determined the weak Cayley table

groups of various finite and infinite groups. For example, dihedral groups, symmetric groups,

most finite irreducible Coxeter groups, most alternating groups, and PSL(2, pn) all have

trivial weak Cayley table groups [Hu, HN, HN2]. In [HP] we studied the weak Cayley table

groups of the seventeen two-dimensional crystallographic groups, also known as wallpaper
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groups or plane groups. We found that thirteen wallpaper groups have trivial weak Cayley

table groups while four have non-trivial weak Cayley table groups. In that paper we were

able to generalize one of these results to show that if G = Aoθ Cp (here A is abelian, p is an

odd prime, and θ is not trivial) then W(G) is non-trivial.

In this thesis we study the weak Cayley table groups of some of the three-dimensional

crystallographic groups. Elements of an n-dimensional crystallographic group, also known as

a space group, are isometries that act on Euclidean space En. There are 219 three-dimensional

space groups, up to isomorphism. As explained in [CFHT], 184 of these space groups consist

of isometries that preserve one direction (up to orientation) and consequently, the space

group can be given a fibration. (See §4.4 for a definition.) If a three-dimensional space group

can be fibered, then the action of the space group on the set of fibers, a subspace isomorphic

to E2, gives the action of some wallpaper group on E2. Thus there is a way to associate any

of these 184 space groups to some wallpaper group.

In this thesis we chose to study the fifty-six space groups that correspond to one of the

four wallpaper groups that have non-trivial weak Cayley table groups. We found that twenty

have trivial weak Cayley table groups while thirty-six of them have non-trivial weak Cayley

table groups.

Several of the groups examined here have cyclic quotients. Our study of these cases

motivated us to study the general case where a group G contains an abelian normal subgroup

A such that G/A is cyclic. We were able to prove that if 2 < |G/A| < ∞ and if the

conjugation action of G/A on A is faithful, thenW(G) will be non-trivial (see Theorem 3.3).

1.1 Properties of weak Cayley table isomorphisms

The following properties of weak Cayley table isomorphisms in W(G) will be helpful as we

determine W(G). In this section, G,H and K are groups. For g, g′ ∈ G we will write g is

conjugate to g′ in G as g ∼G g′, or g ∼ g′ if the context is clear. We will write gG to denote

the conjugacy class of g ∈ G.

2



Recall that a wct ϕ by definition satisfies ϕ(gG) = ϕ(g)H for all g ∈ G. We will say that

ϕ preserves conjugacy classes when we refer to this property of wcts.

Proposition 1.1. Let ϕ : G→ H be a weak Cayley table isomorphism. Then

(i) ϕ maps the identity in G to the identity in H : ϕ(1G) = 1H .

(ii) ϕ respects inverses: ϕ(g−1) = ϕ(g)−1.

(iii) ϕ−1 : H → G is a weak Cayley table isomorphism.

(iv) For the centers of groups we have: ϕ(Z(G)) = Z(H).

(v) ϕ maps involutions to involutions: g2 = 1 implies ϕ(g)2 = 1.

(vi) ϕ maps normal subgroups to normal subgroups: N EG implies ϕ(N) EH.

(vii) If N E G and ϕ(N) = M, then ϕ maps cosets of N to cosets of M. In other words,

ϕ(Ng) = ϕ(N)ϕ(g) for all g ∈ G.

(viii) Let N E G. Then ϕ induces a map ϕ̄ : G/N → H/ϕ(N) which is also a weak Cayley

table isomorphism.

Proof. Proofs of these same results in the case where G and H are finite can also be found

in [JMS, p. 398]. (i) Let ϕ(α) = 1. Then ϕ(α ·α) ∼ 1. Then ϕ(α2) = 1. Since ϕ is a bijection

this implies α2 = α; thus α = 1.

(ii) Here 1 = ϕ(g · g−1) ∼ ϕ(g)ϕ(g−1) implies ϕ(g−1) = ϕ(g)−1.

(iii) First we note that since ϕ preserves conjugacy classes it is clear that ϕ−1 also preserves

conjugacy classes. It remains to show that ϕ−1 respects the group operation, up to conjugacy.

Let f, g ∈ H. Since ϕ is bijective, there exists some f ′, g′ ∈ G such that f = ϕ(f ′) and

g = ϕ(g′). Using ϕ(f ′)ϕ(g′) ∼ ϕ(f ′g′), we have

ϕ−1(fg) = ϕ−1(ϕ(f ′)ϕ(g′)) ∼ ϕ−1(ϕ(f ′g′)) = f ′g′ = ϕ−1(f)ϕ−1(g).
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(iv) For g ∈ G, we have |gG| = |ϕ(gG)| = |ϕ(g)H |. The first equality follows from the

bijectivity of ϕ and the second is a consequence of ϕ preserving conjugacy classes. It follows

that |gG| = 1 if and only if |ϕ(g)H | = 1, i.e. g ∈ Z(G) if and only if ϕ(g) ∈ Z(H).

(v) Here 1 = g2 implies ϕ(1) = ϕ(g · g) ∼ ϕ(g)ϕ(g). So ϕ(g)2 = 1.

(vi) Since ϕ preserves conjugacy classes, (i) implies that ϕ will map a normal subgroup to a

union of conjugacy classes that contains 1. By the definition of a weak Cayley table map this

union is closed under the group operation and by (ii) we have inverses, thus it is a normal

subgroup.

(vii) Let x, y ∈ G satisfyNx = Ny and so xy−1 ∈ N. Then ϕ(xy−1) ∈M implies ϕ(x)ϕ(y−1) =

ϕ(x)ϕ(y)−1 ∈M and thus Mϕ(x) = Mϕ(y).

(viii) Let ϕ(N) = M. Using (vii) we define ϕ̄ : G/N → H/M by ϕ̄ : Ng 7→ Mϕ(g). First

we will show that ϕ̄ maps conjugacy classes to conjugacy classes. Let Ng,Nh ∈ G/N and

suppose Ng ∼G/N Nh. It follows that g ∼G hn for some n ∈ N. Since ϕ preserves conjugacy

classes, this gives ϕ(g) ∼H ϕ(nh) ∼H ϕ(n)ϕ(h). It follows that

ϕ(N)ϕ(g) ∼H/M ϕ(N)ϕ(n)ϕ(h) = ϕ(N)ϕ(h).

In other words, ϕ̄(Ng) ∼H/M ϕ̄(Nh).

Now we show that that the converse also holds, i.e. that ϕ̄(Ng) ∼H/M ϕ̄(Nh) implies that

Ng ∼G/N Nh. We assume ϕ̄(Ng) ∼H/M ϕ̄(Nh), in other words, ϕ(N)ϕ(g) ∼H/M ϕ(N)ϕ(h).

It follows that for some n ∈ N, ϕ(g) ∼H ϕ(n)ϕ(h) ∼H ϕ(nh). Since ϕ preserves conjugacy

classes, this implies g ∼G nh, thus Ng ∼G/N Nnh = Nh.

Lastly we show that for Nx,Ny ∈ G/N, ϕ̄(Nx · Ny) ∼H/M ϕ̄(Nx) · ϕ̄(Ny). We have

ϕ(xy) ∼H ϕ(x)ϕ(y) which implies that ϕ(N)ϕ(xy) ∼H/M ϕ(N)ϕ(x)ϕ(y). Therefore,

ϕ̄(Nx ·Ny) = ϕ̄(Nxy) = ϕ(N)ϕ(xy) ∼H/M ϕ(N)ϕ(x)ϕ(y) = ϕ̄(Nx)ϕ̄(Ny),

which shows that ϕ̄ is a weak Cayley table map.

Lemma 1.2. Let ϕ1 : G → H, ϕ2 : H → K be weak Cayley table morphisms. Then

ϕ2 ◦ ϕ1 : G→ K is also a weak Cayley table morphism.
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Proof. Since ϕ1 and ϕ2 preserve conjugacy classes, it is clear that ϕ1 ◦ ϕ2 also preserves

conjugacy classes. It remains to show that ϕ1 ◦ ϕ2 respects the group operation, up to

conjugacy. Let g, h ∈ G. Since ϕ2(g · h) ∼ ϕ2(g)ϕ2(h) and ϕ1 preserves conjugacy classes,

we have

(ϕ1 ◦ ϕ2)(g · h) ∼ ϕ1(ϕ2(g)ϕ2(h)).

The above is conjugate to (ϕ1 ◦ϕ2)(g) · (ϕ1 ◦ϕ2)(h) because ϕ1 respects the group operation

up to conjugacy.

This result, together with Proposition 1.1 (iii), shows that W(G) is a group.

Lemma 1.3. The inverse map ι : g 7→ g−1 is in the center of W(G).

Proof. Let g, h ∈ G. It is clear that g ∼ h if and only if g−1 ∼ h−1, thus ι preserves

conjugacy classes. We also have

ι(gh) = h−1g−1 ∼ g−1h−1 = ι(g)ι(h).

We conclude that ι ∈ W(G).

The fact that ι commutes with any ϕ ∈ W follows from Proposition 1.1 (ii): (ϕ◦ι)(g) =

ϕ(g−1) = ϕ(g)−1 = (ι ◦ ϕ)(g).

An anti-automorphism is a bijective map α : G→ G that satisfies α(gh) = α(h)α(g) for

all g, h ∈ G. Let α be an anti-automorphism of G and let ψ = ι ◦ α. Then for any g, h ∈ G,

ψ(gh) = α(gh)−1 = (α(h)α(g))−1 = α(g)−1α(h)−1 = ψ(g)ψ(h).

Thus ψ is an automorphism. It follows that any anti-automorphism is the composition of an

automorphism with the inverse map. By Lemma 1.2 an anti-automorphism is a wct. This

shows that W0(G) is the group of all automorphisms and anti-automorphisms of G.
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Chapter 2. Preliminary results

2.1 Commutators and commutator subgroups

For a, b ∈ G we will write ab = b−1ab. Also, we define the commutator (a, b) = a−1b−1ab =

a−1ab. For subgroups H,K ≤ G, we define [H,K] = 〈(h, k) : h ∈ H, k ∈ K〉.

Throughout this thesis, whenever we have a group G that contains a normal abelian

subgroup A then we will let F denote a set of coset representatives for G/A. We will also

assume that A is countably generated with generators x1, x2, · · · .

In what follows we will frequently use the Witt-Hall identities, which can be found in

[MKS, p. 290]. These are

(a, b) =(b, a)−1; (2.1)

(a, b · c) =(a, c) · (a, b) · ((a, b), c) (2.2)

=(a, c) · (a, b)c; (2.3)

(a · b, c) =(a, c) · ((a, c), b) · (b, c) (2.4)

=(a, c)b · (b, c). (2.5)

Definitions For G a group with an abelian normal subgroup A = 〈x1, x2, · · · 〉 we define

K = 〈(xi, h) : i ∈ {1, 2, · · · }, h ∈ F}〉.

We will show later that K does not depend on F. For g ∈ G, we define

Kg = 〈(xi, g) : i ∈ {1, 2, · · · }〉.

We will see that an equivalent definition of K is K = {(a, h) : a ∈ A, h ∈ F}, and also

that an equivalent definition of Kg is Kg = {(a, g) : a ∈ A}. It will frequently be helpful

to think of Kg this way. To show that the definitions are equivalent, we will first prove a

lemma.
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Lemma 2.1. Let G be a group with an abelian subgroup AEG. For a, b ∈ A, g ∈ G we have

(ab, g) = (a, g) · (b, g).

It follows that for k ∈ Z, (a, g)k = (ak, g).

Proof. First we note that since A is normal, (a, g) = a−1ag ∈ A. Since A is abelian,

((a, g), b) = 1. Then by Eq. (2.4) we have

(a · b, g) = (a, g) · ((a, g), b) · (b, g) = (a, g) · (b, g).

The second statement can be proven for k ∈ N by letting b = a and applying an inductive

argument. Putting b = a−1 we see that (a, g)−1 = (a−1, g) and thus for k ∈ Z we have

(a, g)k = (ak, g).

We are now ready to prove the equivalence of the two definitions of Kg and K.

Lemma 2.2. An equivalent definition of Kg is Kg = {(a, g) : a ∈ A}. An equivalent

definition of K is K = {(a, h) : a ∈ A, h ∈ F}.

Proof. Since Kg is generated by commutators of the form (xi, g) where 〈x1, x2, · · · 〉 = A,

an arbitrary element of Kg is a word in {(xi, g) : i ∈ N}. By Lemma 2.1, this word can be

written as the commutator (a, g) where a is a word in {x±1i : i ∈ N}. It follows that the two

definitions of Kg are equivalent. The same argument shows that the two definitions of K

are equivalent.

Clarification about notation: In Lemma 2.3 below we show that Kf = Kaf for any a ∈ A.

It follows that each Kf subgroup corresponds to a coset Af ∈ G/A. Thus, whenever possible,

we may denote each Kg subgroup by Kf where f ∈ F and Af = Ag. However, in general,

when we write Kg that does not necessarily imply that g ∈ F.

Lemma 2.3. Let G be a group with normal abelian subgroup A. If f1 and f2 are in the same

coset of G/A (i.e. Af1 = Af2) then for a ∈ A we have (a, f1) = (a, f2). This implies that

Kf1 = Kf2 . In other words, Kf does not depend on which coset representative is used. This

also shows that K = [A,G].

7



Proof. Assume Af1 = Af2. Then f2 = bf1 for some b ∈ A. Then by Eq. (2.2), for a ∈ A,

(since A is abelian),

(a, f2),= (a, bf1) = (a, f1)(a, b)((a, b), f1) = (a, f1),

and the result follows by Lemma 2.2.

In Lemmas 2.4 through 2.11 we prove results about commutators and Kf subgroups that

will be helpful in various upcoming proofs.

Lemma 2.4. Let G be a group with normal abelian subgroup A. If G/A is abelian, then for

f, g ∈ G and a ∈ A, (a, f)g = (ag, f).

Proof. Since G/A is abelian, f g = bf for some b ∈ A. Thus

(a, f)g = (ag, f g) = (ag, bf) = (ag, f).

The last equality follows from Lemma 2.3.

Lemma 2.5. Let G be a group with normal abelian subgroup A. For f ∈ F we have Kf ≤

K ≤ A. Additionally, K EG. If G/A is abelian, then Kf EG.

Proof. It is clear from the definition of Kf and K that Kf ≤ K. By Lemma 2.2 any

element of K can be written as (a, f) for some a ∈ A, f ∈ F. Since A E G the commutator

(a, f) = a−1af ∈ A, thus K ≤ A.

Now we show that KEG. An arbitrary element of K is (b, h) for some b ∈ A, and h ∈ G.

For g ∈ G, we have hg ∈ Ah̃ for some h̃ ∈ F. Then by Lemma 2.3,

(b, h)g = (bg, hg) = (bg, h̃),

which is contained in K by Lemma 2.2. Thus any conjugate of an element of K is in K,

proving K EG.

To prove the second statement we now assume G/A is abelian. Let a ∈ A so (a, f) is an

arbitrary element of Kf by Lemma 2.2. By Lemma 2.4, a conjugate of a commutator (a, f)h

can be written as (ah, f) which is also in Kf , thus Kf EG.
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Lemma 2.6. Let G be a group with normal abelian subgroup A. Let f ∈ G. Any commutator

of the form (a, f) with a ∈ A can be written as (b, f−1) where b = (af )−1. This implies that

Kf = Kf−1 .

Proof. We have

(a, f) =f−1f(a−1f−1af)

=f−1(fa−1f−1a)f

=(f−1, a)f

=(f−1, af )

=(f−1, b−1) because af = b−1

=(b−1, f−1)−1 by Eq. (2.1)

=(b, f−1) by Lemma 2.1.

It follows by Lemma 2.2 that Kf = Kf−1 .

If H ≤ G then CG(H) will denote the centralizer of H in G.

Lemma 2.7. Let G be a group with normal abelian subgroup A. Assume that G/A is abelian.

Let f, h ∈ G and let a ∈ A. Then

((a, f), h) = ((a, h), f).

This implies that h ∈ CG(Kf ) if and only if f ∈ CG(Kh).

Proof. We have

((a, f), h) = (a, f)−1(a, f)h

= (a−1, f)(ah, f) by Lemmas 2.1 and 2.4

= (a−1ah, f) by Lemma 2.1

= ((a, h), f).

The second statement can be deduced by using the definition of Kf found in Lemma 2.2 and

noting that if ((a, f), h) = 1 for all a ∈ A then ((a, h), f) = 1 for all a ∈ A. The converse

9



follows from a similar argument.

Lemma 2.8. Let G be a group with normal abelian subgroup A. Assume that G/A is abelian.

Let f ∈ G. Let j, k ∈ N. If j | k then Kfj ≥ Kfk .

Proof. We proceed by proving these statements:

(i) For h ∈ G, Kfh ≤ KfKh.

(ii) For n ∈ N, Kfn ≤ KfKfn−1 ;

(iii) For n ∈ N, Kfn ≤ Kf .

Recall that by Lemma 2.2 an arbitrary element of Kg is (a, g) for a ∈ A. We will use this

throughout the proof.

We first prove (i). Since G/A is abelian we have hf ∈ Afh, thus by Lemma 2.3 and Eq.

(2.3) we have

(a, fh) = (a, hf) = (a, f)(a, h)f .

By Lemma 2.5 Kh is normal thus (a, h)f ∈ Kh. This shows that (a, fh) (i.e. an arbitrary

element of Kfh) is a product of a commutator in Kf and a commutator in Kh, proving (i).

To prove (ii) we apply (i) with h = fn−1. We prove (iii) by induction. When n = 1 there is

nothing to prove. We assume inductively that it is true for n = k−1, i.e. Kfk−1 ≤ Kf . Thus

we have Kfk ≤ KfKfk−1 ≤ KfKf = Kf where the first containment follows from (ii) and

the second containment follows by our inductive assumption. Thus (iii) is true for n = k.

Now to prove Lemma 2.8 we apply (iii), supposing that n = k/j (so k = nj) and replacing

f in (iii) with f j. This gives

K(fj)n ≤ Kfj i.e. Kfjn ≤ Kfj i.e. Kfk ≤ Kfj .

Lemma 2.9. Let G be a group with normal abelian subgroup A. Assume G/A be abelian.

Let f ∈ F, f /∈ A, satisfy fn ∈ A for some n ∈ N. (Assume f i /∈ A for all 1 ≤ i < n.) Let

m ∈ N. If gcd(m,n) = d then Kfm = Kfd .

Proof. We have gcd(m,n) = d, thus (by Bezout’s identity) there exists m′ ∈ Z such that

mm′ ≡ dmod n. It follows that Kfmm′ = Kfd . Now we apply Lemma 2.8 twice, (noting that

10



d |m):

Kfd ≥ Kfm ≥ Kfmm′ = Kfd .

We conclude that Kfd = Kfm .

Lemma 2.10. Let G be a group with normal abelian subgroup A. Let g1, g2 ∈ G and suppose

g1, g2 ∈ Af for some f ∈ F. Then g1g
−1
2 ∈ Kf if and only if there exists α ∈ A such that

g2 = gα1 .

Proof. Let g1 = af and g2 = bf for some a, b ∈ A. Note that g1g
−1
2 = (af) · (bf)−1 = ab−1.

Then by Lemma 2.6 and Lemma 2.2,

g1g
−1
2 = ab−1 ∈ Kf ⇐⇒ a−1b ∈ Kf−1

⇐⇒ there exists α ∈ A such that a−1b = (α, f−1)

⇐⇒ there exists α ∈ A such that

bf = a(a−1b)f = a(α−1fαf−1)f = afα = (af)α.

Lemma 2.11. Let G′ = [G,G] denote the commutator subgroup of a group G and let ϕ ∈

W(G). If c ∈ G′ is a commutator, then ϕ(c) is also a commutator. In particular, ϕ(G′) = G′.

In other words, a ∈ G′ if and only if ϕ(a) ∈ G′. Also, ϕ(K) = K.

Proof. Let c ∈ G′; thus c = g−1gh for some g, h ∈ G. Then since ϕ preserves conjugacy

classes, there exists some f ∈ G such that

ϕ(c) = ϕ(g−1 · gh) ∼ ϕ(g−1)ϕ(gh) = ϕ(g)−1ϕ(g)f = (ϕ(g), f). (2.6)

This shows that ϕ(c) is conjugate to a commutator. Since the conjugate of a commutator

is a commutator, ϕ(c) is a commutator. To prove the converse, we note that ϕ−1 ∈ W(G);

thus ϕ−1 will also map a commutator to a commutator. Thus if we assume ϕ(c) ∈ G′, then

ϕ−1(ϕ(c)) = c ∈ G′. We have shown that ϕ(G′) = G′.

By Lemma 2.2 we have K = 〈(a, h) : a ∈ A, h ∈ F 〉. Then using Eq. (2.6) with g = a ∈ A

we see that ϕ sends any generator (a, h) of K to the commutator (ϕ(a), f) for some f ∈ G.

11



By Lemma (2.3) we may assume f ∈ F. Since ϕ is a bijection, the set {(a, h) : a ∈ A, h ∈ F}

is mapped to itself. It follows that ϕ(K) = K.

2.2 Maps defined using C and F

The non-trivial wcts described in Theorems 3.3, 5.1, 5.2, 5.3, 5.4, 5.7, 5.8, and 5.9 may

be defined as bijections that conjugate group elements in certain cosets of G/A by a fixed

element but fix elements in other cosets. This motivates the following definitions:

Definitions For λ ∈ G and C ⊆ G/A, we define a map τ(λ,C) : G→ G as follows:

τ(λ,C) :


g 7→ gλ if Ag ∈ C,

g 7→ g if Ag ∈ F,

(2.7)

where F = (G/A) \ C. When C has been made clear we may simply write τλ to denote the

function. We define P ⊆ G/A to be

P = {Af ∈ G/A : Af = Af1 · Af2 for some Af1 ∈ C, Af2 ∈ F}.

Lastly we define I =
⋂
Af∈P

Kf . We note that P and I are determined by C, thus we may

write P(C) and I(C) when we want to distinguish between P subsets (or I subgroups) that

correspond to different C subsets.

The non-trivial wcts defined in this thesis are all τ(λ,C) maps such that the cosets of G/A

in either C or F form a proper subgroup N ≤ G/A. Note that by composing τ(λ,C) ∈ W

with the inner automorphism Iλ−1 : g 7→ gλ
−1

we effectively interchange C and F. Thus, it

is somewhat of an arbitrary choice whether to put N = C or N = F. However, for most of

the τλ maps we define in this thesis we found it advantageous to put N = F, as this made

it easier to prove that τλ ∈ W or to prove that τλ ∈ W \W0.

The following theorem gives sufficient conditions for a τ(λ,C) map to be a wct.

Theorem 2.12. Let G be a group with an abelian normal subgroup A. Suppose τ(λ,C) :

G→ G is a map of the form given in Eq. (2.7) and that τλ(Af) = Af for all Af ∈ G/A. (In
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Lemma 2.13 we show that the latter requirement is satisfied if G/A is abelian or if λ ∈ A.)

If we have (λ, g−1) ∈ I for every g ∈ G such that Ag ∈ C, then τλ ∈ W(G).

Proof. Note that since τλ acts by conjugation, for any conjugacy class C in G we have

τλ(C) = C. Therefore it is clear that τλ preserves conjugacy classes. By assumption τλ(Af) =

Af for all Af ∈ G/A. This implies that τλ(C) = C. It follows that τλ is a bijection. Then to

prove that τ(λ,C) ∈ W(G) it remains to show that for any g1, g2 ∈ G we have τλ(g1)τλ(g2) ∼

τλ(g1g2).

Case 1: Ag1, Ag2 ∈ C : Then

τλ(g1)τλ(g2) = gλ1g
λ
2 = (g1g2)

λ


= τλ(g1g2) if Ag1g2 ∈ C

∼ τλ(g1g2) if Ag1g2 ∈ F.

Case 2: Ag1, Ag2 ∈ F : Then

τλ(g1)τλ(g2) = g1g2


= τλ(g1g2) if Ag1g2 ∈ F

∼ τλ(g1g2) if Ag1g2 ∈ C.

Case 3: Ag1 ∈ C and Ag2 ∈ F :

We have τλ(g1)τλ(g2) = gλ1g2 and we wish to show this is conjugate to g1g2. (Whether

Ag1g2 is in C or F, this suffices.) By hypothesis τλ(Af) = Af for all Af ∈ G/A, thus

τλ(g1) ∈ Ag1 so gλ1g2 ∈ Ag1g2. Lemma 2.10 asserts that to show gλ1g2 ∼ g1g2 it suffices to

show that (gλ1g2)(g1g2)
−1 ∈ Kg1g2 . We simplify this product:

(gλ1g2) · (g1g2)−1 = gλ1g2 · g−12 g−11 = gλ1 · (g2g−12 ) · g−11 = λ−1g1λg
−1
1 = (λ, g−11 ).

We are assuming that (λ, g−11 ) ∈ I, which, by the definitions of I and P, implies (since

Ag1g2 ∈ P) that (λ, g−11 ) ∈ Kg1g2 . Thus by Lemma 2.10 we conclude that g1g2 ∼ gλ1g2 which

proves this case.

Case 4: g1 satisfies Ag1 ∈ F while g2 satisfies Ag2 ∈ C :

Since τ(g1)τ(g2) = g1g
λ
2 ∼ gλ2g1 this case reduces to Case 3 so we are done.
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Lemma 2.13. Let G be a group with subgroup AEG. Let f, λ ∈ G. If G/A is abelian or if

λ ∈ A, then fλ ∈ Af.

Proof. Let g = fλ. Then Ag = AfAλ. If G/A is abelian or if Aλ = A, then Ag = Af, i.e.

g = fλ ∈ Af.

When IEG, the key hypothesis in Theorem 2.12 that (λ, g−1) ∈ I can be rephrased more

simply as (λ, g) ∈ I. (By Lemma 2.5, I E G when G/A is abelian.) The equivalence of the

two is shown by the following result:

Lemma 2.14. Let G be a group with an abelian subgroup AEG. Let g ∈ G and a ∈ A. Let

N EG. Then (a, g) ∈ N if and only if (a, g−1) ∈ N.

Proof. We have

(a, g) =((ag)−1, g−1) by Lemma 2.6

=(ag, g−1)−1 by Lemma 2.1

=((a, g−1)g)−1.

Every group G we consider in this thesis has an abelian normal subgroup A such that

G/A is abelian. Thus by Theorem 2.12 and Lemma 2.13, to show that τ(λ,C) ∈ W(G),

it suffices to show that (λ, g−1) ∈ I for every g ∈ G such that Ag ∈ C. For the groups we

are studying, there are infinitely many such group elements g, so it is not practical to check

each (λ, g) one by one. The following two corollaries give us sufficient conditions to satisfy

(λ, g−1) ∈ I that can be verified easily. Corollary 2.15 (ii) and Corollary 2.16 (ii) will be

applied repeatedly in Ch. 5.

Corollary 2.15. Let G be a group with an abelian normal subgroup A and let λ ∈ A. Let

τ(λ,C) : G→ G where τλ(Af) = Af for all Af ∈ G/A.

(i) If (λ, f−1) ∈ I for all f ∈ F such that Af ∈ C, then τ(λ,C) ∈ W(G). (Rather than

verifying that (λ, g−1) ∈ I for every g ∈ Af ∈ C (as required by Theorem 2.12), it

suffices to show (λ, f−1) ∈ I where f ∈ F satisfies Af ∈ C. )
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(ii) If λ ∈ I and IEG then τ(λ,C) ∈ W(G).

Proof. Lemma 2.3 states that when λ ∈ A, for any g ∈ Af we have (λ, g−1) = (λ, f−1).

Thus (λ, f−1) ∈ I implies (λ, g−1) ∈ I for all g ∈ Af ∈ C. Statement (i) then follows from

Theorem 2.12.

Now to prove (ii), assume λ ∈ I. Then for any g ∈ G (since I is normal by hypothesis) we

have λ−1λg
−1

= (λ, g−1) ∈ I as well. This holds in particular when g ∈ Ag ∈ C, as required

for Theorem 2.12. Then by that result we have τλ ∈ W(G).

Corollary 2.16. Let G be a group with an abelian normal subgroup A and let τ(λ,C) : G→

G be a map of the form given in Eq. (2.7). Suppose that λ commutes with every element

f ∈ F such that Af ∈ C.

(i) If (λ, a) ∈ I for all a ∈ A then τ(λ,C) ∈ W(G). Equivalently, (λ, xi) ∈ I for all

generators xi of A, 1 ≤ i ≤ n, implies τ(λ,C) ∈ W(G).

(ii) If we have Kλ ≤ I then τ(λ,C) ∈ W(G).

Proof. This follows from Theorem 2.12. Note that since λ commutes with every f ∈ F

such that Af ∈ C, we have τλ(Af) = Af for all Af ∈ G/A. Thus to show τλ ∈ W(G) is

suffices to show that (λ, g−1) ∈ I for every g ∈ G such that Ag ∈ C.

We first prove (i). Let f ∈ F satisfiy Af ∈ C. For g ∈ Af we can write g = a−1f for

some a ∈ A. By hypothesis λ commutes with f, thus (λ, f−1) = 1. Then using Eq. (2.2) we

have

(λ, g−1) =(λ, f−1a)

=(λ, a) · (λ, f−1) · ((λ, f−1), a)

=(λ, a).

By assumption (λ, a) ∈ I for all a ∈ A therefore (λ, g−1) ∈ I for all g ∈ Af ∈ C. By Theorem

2.12, τλ ∈ W(G). The second statement in (i) follows from Lemma 2.1.
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To prove (ii) we will show that (λ, a) ∈ I for a ∈ A and then our result follows from

(i). Recall Kλ = 〈(a, λ) : a ∈ A〉 by Lemma 2.2, thus an arbitrary element of Kλ can be

written as (a, λ) for a ∈ A. We are assuming Kλ ≤ I thus we have (a, λ) and its inverse (λ, a)

contained in I, so we are done.
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Chapter 3. Generally applicable results

In this chapter we include results that may be applied to groups that are not necessarily

crystallographic.

3.1 Sufficient conditions for a WCT to be non-trivial

Theorem 3.1. Let G be a group with an abelian normal subgroup A. Assume that the

conjugation action of G/A on A defined by a · (Ag) = ag is faithful. Let τ(λ,C) ∈ W(G) be

a wct of the form given in Eq. (2.7). Also assume that F and C are not empty.

(i) If λ /∈ A then τ(λ,C) is not an automorphism, i.e. τ(λ,C) ∈ W(G) \ Aut(G).

(ii) If |G/A| ≥ 3 then τ(λ,C) is not an anti-automorphism, i.e. either τ(λ,C) ∈ Aut(G)

or τ(λ,C) ∈ W(G) \W0(G).

Proof. We prove (i) by contradiction. Suppose that τλ is an automorphism, and let a ∈ A

satisfy (a, λ) 6= 1. (Since the conjugation action of G/A is faithful and λ /∈ A we know such

an a exists.) Let τλ = τ(λ,C). We consider two cases:

Case 1: A ∈ F : Then for f ∈ Af ∈ C we have

afλ = τλ(a)τλ(f) = τλ(a · f) = (af)λ = aλfλ.

Case 2: A ∈ C : Then for f ∈ Af ∈ F we have

aλf = τλ(a)τλ(f) = τλ(a · f) = af.

In either case we arrive at a = aλ, contradicting (a, λ) 6= 1. We conclude that τλ is not an

automorphism, proving (i).

To prove (ii) we assume that |G/A| ≥ 3 thus (since C and F each contain at least one

coset) C or F contains at least two cosets. We consider two cases with A ∈ F and two

cases with A ∈ C. In all four cases we assume by way of contradiction that τ(λ,C) is an
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anti-automorphism and use the fact that the action of G/A on A is faithful (i.e. af = a for

all a ∈ A implies f ∈ A) to arrive at a contradiction.

Case 1: F = {A} : Let a ∈ A and let f ∈ G satisfy Af ∈ C. Note Af−1 ∈ C. (We do not

assume Af and Af−1 are distinct.) Since we assume τλ is an anti-automorphism. Then for

a ∈ A,

a = τλ(a) = τλ(af · f−1) = τλ(f
−1)τλ(af) = (f−1)λ(af)λ = (f−1af)λ = afλ.

This implies that fλ commutes with a for all a ∈ A. Since the action of G/A is faithful we

conclude fλ ∈ A, i.e. λ ∈ Af−1. This must hold for all Af ∈ C, which is a contradiction

since |C| ≥ 2 in this case.

Case 2: A ∈ F and |F| ≥ 2 : Let g ∈ G satisfy g /∈ A,Ag ∈ F. Let a ∈ A. Assuming that

τλ is an anti-automorphism, we have

ag = τλ(a · g) = τλ(g)τλ(a) = g · a.

This shows that g commutes with any a ∈ A, which by the faithfulness of the action of G/A

on A, indicates g ∈ A, a contradiction.

Case 3: C = {A} : Let a ∈ A and let h ∈ G satisfy Ah ∈ F. Note Ah−1 ∈ F. Again we

assume τλ is an anti-automorphism, and so we have

aλ = τλ(a) = τλ(ah · h−1) = τλ(h
−1)τλ(ah) = h−1 · ah = ah.

We have aλ = ah for arbitrary a ∈ A. The faithful action of G/A tells us that Aλ = Ah so

λ ∈ Ah. This must be true for all Ah ∈ F, which is a contradiction since we have |F| ≥ 2 in

this case.

Case 4: A ∈ C and |C| ≥ 2 : Let a ∈ A. Let f ∈ G, f /∈ A satisfy Af ∈ C. Assuming that

τλ is an anti-automorphism gives

(af)λ = τλ(a · f) = τλ(f)τλ(a) = fλaλ = (fa)λ.

This shows that f commutes with any a ∈ A thus we must have f ∈ A, a contradiction.
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Theorem 3.2. Let N be a normal subgroup in a group G. Assume that τ ∈ W(G) satisfies

τ(N) = N and suppose it induces the map τ : G/N → G/N. If τ is a non-trivial wct then τ

is also a non-trivial wct.

Proof. We prove the contrapositive: If τ is a trivial wct then τ is also a trivial wct. We

consider two cases: either τ is an automorphism or τ is an anti-automorphism.

First we suppose that τ ∈ Aut(G), i.e. for g1, g2 ∈ G we have τ(g1g2) = τ(g1)τ(g2). It

follows that

τ(g1N · g2N) = τ(g1g2N) = τ(g1N)τ(g2N),

thus τ is an automorphism.

The second case follows from a similar argument. If τ is an anti-automorphism then for

g1, g2 ∈ G we have τ(g1g2) = τ(g2)τ(g1). In this case,

τ(g1N · g2N) = τ(g1g2N) = τ(g2N)τ(g1N),

thus τ is an anti-automorphism. In either case, τ is a trivial wct.

3.2 Groups with cyclic quotients

Theorem 3.3. Let G be a group with an abelian normal subgroup A such that G/A ∼= Cn

where 2 < n ∈ N. Assume that the conjugation action of G/A on A defined by a · (Ag) = ag

is faithful. Then W(G) 6=W0(G).

Proof. Suppose that G/A = 〈Aρ〉 where ρ ∈ G satisfies ρn ∈ A. Without loss, we put

F = {ρj : 0 < j ≤ n}. Accordingly we will write G/A = {Aρj : 0 < j ≤ n}.

Let q be a prime divisor of n and let m ∈ N satisfy qm | n and qm+1 - n. Let c = n/qm

(thus c is relatively prime to q and n = cqm). Fix 1 ≤ k ≤ m. Note that there exists an

index qk subgroup 〈Aρqk〉 ≤ G/A. Let N = n/qm−k+1 = cqk−1. Let F = 〈Aρqk〉 and let

C = (G/A) \F. We will show that τ(ρN ,C) ∈ W(G) \W0(G). To prove τ(ρN ,C) ∈ W(G) we
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will use Corollary 2.16 (ii). It is clear that ρN commutes with every element of F. By the

corollary it suffices to show that KρN ≤ I.

Since F is a subgroup of G/A, we have P(C) = C thus

I =
⋂
Af∈C

Kf .

Note that F = {Aρj ∈ G/A : qk | j}. Therefore its complement

C = {Aρj ∈ G/A : qk - j}

= {Aρj ∈ G/A : gcd(j, qk) ∈ {1, q, q2, . . . , qk−1}} since q is prime

= {Aρj ∈ G/A : gcd(j, qm) ∈ {1, q, q2, . . . , qk−1}} since k ≤ m

= {Aρj ∈ G/A : gcd(j, qm) | qk−1}

= {Aρj ∈ G/A : gcd(j, n) | cqk−1} since n = cqm

= {Aρj ∈ G/A : gcd(j, n) | N} since N = cqk−1

= {Aρj ∈ G/A : Kρgcd(j,n) ≥ KρN} by Lemma 2.8

= {Aρj ∈ G/A : Kρj ≥ KρN} by Lemma 2.9.

This shows that KρN is contained in Kρj for all Aρj ∈ P, thus KρN ≤ I as desired. By

Corollary 2.16 (ii), τρN is a wct. By Theorem 3.1 this map is a non-trivial wct.

The next result uses notation for crystallographic groups that will be explained in §4.2.

Corollary 3.4. The following seventeen space groups have non-trivial wct groups: G143, G144,

G146, G75, G76, G77, G79, G80, G81, G82, G147, G148, G168, G169, G171, G173, and G174.

Proof. Groups G143, G144, and G146 satisfy G/A ∼= C3.

Groups G75, G76, G77, G79, G80, G81, and G82 satisfy G/A ∼= C4.

Groups G147, G148, G168, G169, G171, G173, and G174 satisfy G/A ∼= C6.

The result follows from Theorem 3.3.
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Chapter 4. Three-dimensional space groups

A lattice in n-dimensional Euclidean space En is a subgroup L of En isomorphic to Zn [E, p.

25]. The set of translation symmetries of L is a group (under composition) that is isomorphic

to Zn. We will denote this group as A. An n-dimensional crystallographic point group P is

a finite group of symmetries of L that fix one point in En [E, p. 90]. An n-dimensional

crystallographic group, or space group G is an extension of A by the point group P [Ja,

p.127], [E, p. 155]. In other words, we have the short exact sequence

1 −→ A −→ G −→ P −→ 1.

Thus, P is isomorphic to G/A and A has finite index in G [E, p. 154]. Consequently, a space

group element g ∈ G acts on v ∈ En in a manner that such that g(v) = p(v) + t for some

p ∈ P and some t ∈ En. [Ja, p. 108], [E, p. 153].

The symmetries in a crystallographic point group of a three-dimensional space group may

include inversions, rotations, improper rotations, and reflections [I], [E], [Ja]. Inversions and

reflections in a crystallographic point group have order 2. The crystallographic restriction

states that for n ∈ {2, 3}, the symmetries of a lattice in En must have order 1, 2, 3, 4, or 6

[L]. A consequence of this restriction, together with the fact that only seven distinct lattice

structures exist that tile E3, is that there exist 219 three-dimensional space groups [Ja, p.

119]. The International Union of Crystallography (IUC) has assigned each three-dimensional

space group a number from 1 to 230 [I]. (There are 11 isomorphic pairs that are numbered

separately.)

4.1 Space group elements

There are seven types of elements in three-dimensional space groups. These are: translations,

reflections, glide reflections, rotations, screw rotations, inversions, and improper rotations

(also known as rotoinversions) [E], [I]. We may think of these group elements as symmetries
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of an arrangement of atoms in a crystal in E3. They are also isometries of E3, meaning they

are bijections that preserve distances.

A translation is an orientation-preserving isometry that maps a vector v to v + a for

some fixed a ∈ L. It is easy to see that any two translations commute, and it is also true

that any conjugate of a translation is a translation. Thus the set of translations is a normal

abelian subgroup of the crystallographic group [E, p. 153]. We will denote the translation

subgroup A because it is abelian. For a three-dimensional space group, A ∼= Z3 and there

is a standard choice of standard generators which we denote as x, y, and z. Note that each

non-trivial translation in a crystallographic group has infinite order. There is a one-to-one

correspondence between the elements in A and the points on the lattice L, and this will be

useful in the proofs of Theorems 6.1 and 6.21.

A reflection is an order 2, orientation-reversing isometry. Let s be a reflection in E3, thus

it is a reflection across a plane P(s), the mirror plane of s. Suppose that P(s) is a plane

that contains the origin and let uP(s) = u be a unit normal vector to P(s). Then for v ∈ E3,

s maps v to the vector v − 2(v · u)u. Note that for any vector w ∈ P(s), w · u = 0 so

s(w) = w. Thus s fixes every vector in its mirror plane, P(s).

A glide reflection γ reflects across a plane P(γ) and then translates in a direction parallel

to some vector in P(γ). A glide reflection fixes P(γ) but not the vectors in P(γ). A glide

reflection is orientation-reversing. The distance of the translation is half of a unit vector

in L, or some multiple of that distance. The square of a glide reflection is a non-trivial

translation. Hence, glide reflections have infinite order. If a reflection s commutes with a

translation x then their product xs is one example of a glide reflection [Ja, p. 109-10].

In a three-dimensional space group, a rotation ρ is a finite order, orientation-preserving

isometry that fixes every point on a line in E3. This line is the axis of rotation and if ρ 6= Id

then this axis is unique. Suppose ρ is rotation about a line ` that contains the origin, with

turning angle θ. (If |ρ| = m then θ = 2πk/m where gcd(k,m) = 1.) Then ρ(v) = w implies

that |v| = |w| and also that the distance from v to the line ` is equal to the distance from
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w to `. By the crystallographic restriction, ρ must have order 1, 2, 3, 4, or 6.

A screw rotation r is a rotation about an axis ` together with translation in the direction

of `. Thus it fixes the line ` but it does not fix the vectors in `. Like translations and rotations,

a screw rotation is orientation-preserving. If θ is the turning angle of a screw rotation r in E3,

then by the crystallographic restriction, θ ∈ {π/3, π/2, 2π/3, π, 2π} and r2π/θ is a nontrivial

translation in A in the direction of `, [Ja, p. 109-10]. Hence, screw rotations have infinite

order. If a rotation ρ commutes with a translation x then their product xρ is one example

of a screw rotation.

An inversion through a point p is an order 2, orientation-reversing isometry that maps a

vector v to 2p− v. It follows that p is the only point fixed by the inversion. Inversions are

also known as point inversions or point reflections. Inversions that fix the origin are known

as central inversions [Ja, p. 71].

Lastly we have improper rotations, which are also referred to as rotoreflections or ro-

toinversions. The latter two designations are indicative of the fact that there are two ways

to think of this symmetry element. The first is to consider it a rotation with turning an-

gle θ through an axis `, followed by a reflection across a plane P perpendicular to `. The

second is to consider it a rotation with turning angle θ ± π through an axis `, followed by

an inversion through the point where ` intersects P . By the crystallographic restriction,

θ ∈ {π/3, π/2, π}, however when θ = π then this symmetry could be regarded as a point

inversion. Thus an improper rotation that is not an inversion will have order 4 or order 6

[Ja, p. 70].

We prove a lemma about the cardinality of conjugacy classes in a crystallographic group.

Lemma 4.1. Let G be a crystallographic group with translation subgroup A.

(i) If a ∈ A then |aG| ≤ |G/A|.

(ii) If h ∈ G \ A then |hG| =∞.
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Proof. Recall AEG. To prove (i) we note that every g ∈ G can be written g = bf for some

b ∈ A, f ∈ F. Therefore,

aG = {ag : g ∈ G} = {abf : b ∈ A, f ∈ F} = {af : f ∈ F}.

Since there are at most |G/A| elements in F, we have |aG| ≤ |G/A|.

To prove (ii) we note that the conjugation action of G/A on elements of A is faithful.

Thus for fixed h ∈ G there exists some b ∈ A (depending on h) such that (h, b) 6= 1. Note

that for k ∈ Z, hbk = hh−1b−khbk = h(h, bk). Thus

hG = {hg : g ∈ G} ⊇ {hbk : k ∈ Z} = {h(h, bk) : k ∈ Z} = {h(h, b)k : k ∈ Z},

where the last equality follows from Lemma 2.1. Since 1 6= (h, b) ∈ A and therefore has

infinite order, we see that hG contains an infinite number of elements in the Ah coset.

4.2 Naming conventions

There are at least ten different naming systems or naming conventions commonly used to

identify space groups and their point groups. In our previous work [HP] we used Hermann-

Mauguin notation to represent the seventeen wallpaper groups. Here we will continue to

use Hermann-Mauguin notation when referring to a wallpaper group and we will also use it

when identifying the crystallographic point group of a space group. However, when referring

to a three-dimensional space group we will identify it by the number assigned to it by

The International Union of Crystallography. (Recall that IUC has assigned each three-

dimensional space group a number from 1 to 230.) We will write the group represented by

IUC number n as “Gn.”

4.3 The four wallpaper groups

In [HP] we find that the wallpaper groups that have non-trivial wct groups are p3, p4, p6,

and p2mm. In this section we will briefly describe these four groups. A wallpaper group is
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a 2-dimensional crystallographic group. We think of a wallpaper pattern corresponding to

a wallpaper group G as a subset of E2. The action of the group elements on E2 leaves the

pattern unchanged. The translation subgroup A = 〈x, y〉 is a finite index normal subgroup

A ∼= Z2. We think of x as horizontal translation (to the right) and y as either vertical

translation upwards for groups p4 or p2mm or translation at an angle of π/3 from the

horizontal for groups p3 and p6. The other generators of G will be denoted ρ (for a rotation)

and σ (for a reflection).

Each of these four groups are a semi-direct products, G = A oθ P where P is the

corresponding crystallographic point group. For p3, the point group contains only order 3

rotations and is isomorphic to C3. For p4, the point group contains only two order 4 rotations

and one order 2 rotation. It is isomorphic to C4. Similarly, p6 has point group isomorphic

to C6 and contains rotations of order 6, 3, and 2. The point group for p2mm contains two

reflections and their product, an order 2 rotation. It is isomorphic to C22 .

The group presentations we used as we studied these groups are:

p3 : 〈x, y, ρ | (x, y), xρ = x−1y, yρ = x−1, ρ3〉;

p4 : 〈x, y, ρ | (x, y), xρ = y, yρ = x−1, ρ4〉;

p6 : 〈x, y, ρ | (x, y), xρ = y, yρ = x−1y, ρ6〉;

p2mm : 〈x, y, ρ,σ | (x, y), ρ2, σ2, (ρ, σ), xρ = x−1, yρ = y−1, xσ = x, yσ = y−1〉.

4.4 The fifty-six groups

If G is a group that acts on En, then a fibration of G is determined by a decomposition of

En as a direct product: En = En−1 × E1 such that for all x ∈ En−1, g ∈ G, there exists an

x′ ∈ En−1 such that g({x} × E1) = {x′} × E1. In the case where n = 3, the action of G on

the subspace E2 corresponds to the action of some wallpaper group on E2. In this situation,

[CFHT] say that the space group G can be obtained as a fibration over the corresponding

wallpaper group.
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In [CFHT] Conway et al. show which three-dimensional space groups may be obtained

as a fibration over some wallpaper group, i.e. a two-dimensional crystallographic group or

plane group. For each plane group they list all fibrations that exist over it and the space

group that corresponds to each fibration. Accordingly, we focus our attention on the fifty-six

space groups that may be obtained as a fibration over one of these four wallpaper groups,

i.e. the wallpaper groups described in the previous section. These fifty-six groups are listed

in Tables 4.1, 4.2, 4.3, 4.4, and 4.5.

4.5 Twelve crystallographic point groups

This section has been taken from Table 10.1.2 which begins on page 752 of [I]. It will be

convenient to partition the fifty-six space groups according to their crystallographic point

group. There exist thirty-two crystallographic point groups in E3 but only twelve of those

will be of interest to us in this thesis. These twelve groups are (using Hermann-Mauguin

notation):

2
m
, 222, mm2, 2

m
2
m

2
m
, 4, 4, 4

m
, 3, 3, 6, 6, and 6

m
.

Here we will give a description of the non-identity elements that are contained in each of

these point groups.

The point groups 2
m
, 222, and mm2 are isomorphic to C22 . The point group 2

m
contains

a rotation, a reflection, and an inversion. The point group 222 contains three rotations.

The point group mm2 contains one rotation and two reflections. The point group 2
m

2
m

2
m

is isomorphic to C32 . This point group contains one inversion, three rotations, and three

reflections. These four point groups correspond to space groups that may be obtained from

the wallpaper group p2mm.

The next three point groups listed, 4,4, and 4
m

correspond to space groups that may

be obtained from the wallpaper group p4. They are isomorphic to C4, C4, and C4 × C2,

respectively. The point group 4 contains three rotations. The point group 4 contains two
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improper rotations as well as one rotation. The point group 4
m

contains three rotations, two

improper rotations, one reflection and one inversion.

Point groups 3 and 6 correspond to space groups that may be obtained from p3. They

are isomorphic to C3 and C6, respectively. The point group 3 contains two rotations. The

point group 6 consists of two rotations, two improper rotations, and one reflection.

The point groups 3,6, and 6
m

correspond to space groups that may be obtained from p6.

The first two are isomorphic to C6. The point group 3 consists of two improper rotations,

two rotations, and one inversion. The point group 6 contains five rotations. Lastly we have

the point group 6
m

which is isomorphic to C6 × C2. This point group contains five rotations,

four improper rotations, one reflection, and one inversion.

4.6 Choosing generators for group presentations

From [SHC, SCC] we have irreducible representations for each of the 219 three-dimensional

space groups. These are 4 × 4 orthogonal matrices over Q. For each space group, [SHC]

gives a sequence of matrices that generates a group isomorphic to that space group. Using

Magma, [BCP] we use these matrices to find presentations for the fifty-six space groups of

interest to us. For twenty-nine of the fifty-six groups we examined, the matrices we use

to define group generators for the presentations are simply the set of matrices given in the

file. (Such groups will not be mentioned in the discussion below.) However for twenty-seven

space groups there are advantages to using other generators, which will be explained here.

We denote the ith matrix in the set corresponding to a space group as Mi.

For Groups 75, 76, and 77 we define: ρ = M2; x = M3; y = M4; z = M5.

For Groups 79 and 80 we define: ρ = M2; x = M3; y = M−1
3 M4; z = M5.

For Group 81 we define: ρ = M−1
2 ; x = M3; y = M4; z = M5.

For Group 82 we define: ρ = M2; x = M3; y = M3M
−1
4 ; z = M5.

For Groups 83, 84, 85, and 86 we define: ρ = M2; t = M3; x = M4; y = M5; z = M6.

For Groups 87 and 88 we define: ρ = M2; t = M3; x = M4; y = M−1
4 M5; z = M6.
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For Groups 147, 168, 169, and 173, define: ρ = M−1
1 M2; x = M3; y = M3M4; z = M5.

For Group 148 we define: ρ = M−1
1 M2; x = M3; y = M−1

3 M4; z = M5.

For Group 171 we define: ρ = M−1
1 M2M5; x = M3; y = M3M4; z = M5.

For Groups 175 and 176, define: ρ = M−1
1 M2; t = M3; x = M4; y = M4M5; z = M6.

For Groups 143 and 144 we define: ρ = M1; x = M2; y = M2M3; z = M4.

For Group 146 we define: ρ = M1; x = M2; y = M−1
2 M3; z = M4.

For Group 174 we define: ρ = M1; s = M2; x = M3; y = M3M4; z = M5.

In the first twenty-one groups listed above (including Groups 175 and 176), we use the

single generator ρ in our presentations instead of the two generators M1 and M2. By doing

so we reduce the number of generators in the presentation, a helpful simplification. We will

show that in all cases, this does not yield a proper subgroup of the space group, therefore

nothing is lost in this simplification. It suffices to show that M1 and M2 are contained in

〈ρ, x, y, z〉. (Note that for Groups numbered 88 or lower we have M2 = ρ±1 thus we need

only show that M1 ∈ 〈ρ, x, y, z〉.)

In Groups 75, 76, 79, 81, 82, 83, 85, and 87 we have M1 = ρ2. In Groups 77 and 84 we

have M1 = z−1ρ2. In Group 80 we have M1 = x−2yzρ2. In Group 86 we have M1 = x−1z−1ρ2.

In Group 88 we have M1 = yρ2. In Groups 147, 148, 168, 169, and 175 we have M1 = ρ2 and

M2 = ρ3. In Group 171 we have M1 = ρ2 and M2 = z−1ρ3; in Groups 173 and 176 we have

M1 = z−1ρ2 and M2 = z−1ρ3.

In most of the twenty-five groups listed above we have defined y as a product of matrices.

This is so that specific relations would be included in the group presentations. (This is also

the reason ρ is defined as M−1
2 in Group 81.) For spacegroups numbered between 75 and

88, these relations are xρ = yzδ for δ ∈ {−1, 0, 1} and yρ = x−1. For spacegroups numbered

between 147 and 176 (except 174) these relations are xρ = y and yρ = x−1yzδ, for δ ∈ {0, 2}.

For spacegroups numbered between 143 and 146 and also for group 174 these relations are

xρ = x−1y and yρ = x−1. Taking a quotient of the space group mod 〈z〉 (this subgroup is

normal in all twenty-five of these space groups) these relations are identical to the relations
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found in the presentation of wallpaper groups of type p3, p4 or p6 in our previous work,

[HP]. This consistency will be particularly helpful when applying Theorem 3.2.

For Group 13 we define: r = M1; t = M2; x = M3; y = M4; z = M−1
5 . For merely aesthetic

reasons we chose to use the inverse of M5 instead of M5. This affects only one change in the

group presentation: it gives (rt)2 = z rather than (rt)2 = z−1.

For Group 39 we define: p = M−1
4 M5M1; s = M2; x = M3; y = M4; z = M5. The simplest

way to define p would be to choose p = M1. This would result in the group presentation

for Group 39 including the relations (p, s) = (ps)2 = y2z−1. The relation (ps)2 = y2z−1 /∈

Z(G) = 〈z〉 is problematic because it does not satisfy the hypotheses of Proposition 6.13.

By defining p = M−1
4 M5M1 we have the nicer group relations (p, s) = 1 and (ps)2 = z.

With (ps)2 in the center of the group the proposition is applicable, which is a significant

advantage.

4.7 The group presentations

According to Table 1 in [CFHT], there are thirty-one space groups that can be obtained

as a fibration over a wallpaper group of type p2mm. These thirty-one groups are listed in

Tables 4.1 and 4.2.

The three groups G10, G12, and G13 have presentations of the form

G = 〈x, y, z, r, t | (x, y), (y, z), (x, z), r2, t2, (rt)2 = αrt, (4.1)

xr = x−1yδ, (y, r), zr = z−1, (xt)2, (yt)2, (zt)2〉,

where αrt ∈ A = 〈z〉 and δ ∈ {0, 1}.

The four groups G16, G17, G21, and G22 have presentations of the form

G = 〈x, y, z, p, r | (x, y), (y, z), (x, z), p2 = αp, r
2, (pr)2, (4.2)

xp = x−1zδ, yp = y−1zδ, (z, p), xr = x−1yγ, yr = yz−δ, zr = z−1〉,

where αp,∈ A = 〈z〉 and δ, γ ∈ {0, 1}.
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The six groups G25, G26, G27, G38, G39, and G42 have presentations of the form

G = 〈x, y, z, p, s | (x, y), (y, z), (x, z), p2 = αp, s
2 = αs, (p, s), (4.3)

xp =x−1zδ, yp = y−1zγ, (z, p), (x, s), ys = y−1zγ, (z, s)〉,

where αp, αs,∈ A = 〈x, y, z〉 and δ, γ ∈ {0, 1}.

Table 4.1: Parameters in the presentations of some space groups G with point groups 2
m
,222,

or mm2
Point Group Equation
group number number αrt αp αs δ γ
2/m 10 (4.1) 1 0
2/m 12 (4.1) 1 1
2/m 13 (4.1) z 0
222 16 (4.2) 1 0 0
222 17 (4.2) z 0 0
222 21 (4.2) 1 0 1
222 22 (4.2) 1 1 0

mm2 25 (4.3) 1 1 0 0
mm2 26 (4.3) z z 0 0
mm2 27 (4.3) 1 z 0 0
mm2 38 (4.3) 1 1 0 1
mm2 39 (4.3) z 1 0 1
mm2 42 (4.3) 1 1 1 1

The fourteen groups G47, G49, G50, G51, G53, G54, G55, G57, G63, G64, G65, G66, G67, and G68

have presentations of the form

G = 〈x,y, z, p, r, t| (x, y), (y, z), (x, z), p2 = αp, r
2 = αr, t

2, (pr)2 = αpr, (pt)
2 = αpt, (4.4)

(rt)2 = αrt, x
p = x−1, yp = y−1, (z, p), xr = x−1yδ, (y, r), zr = z−1, (xt)2, (yt)2, (zt)2〉,

where αp ∈ 〈z〉, αr ∈ 〈y〉, αpr, αpt, αrt ∈ A = 〈x, y, z〉 and δ ∈ {0, 1}.

The four groups G69, G72, G73, and G74 have presentations of the form

G = 〈x, y, z, p, r, t| (x, y), (y, z), (x, z), p2 = αp, r
2 = αr, t

2, (pr)2 = αpr, (pt)
2 = αpt, (4.5)

(rt)2 = αrt, x
p = x−1z, yp = y−1z1−δ, (z, p), xr = x−1yδ, yr = yzδ−1, zrz, (xt)2, (yt)2, (zt)2〉,

where αp ∈ 〈z〉, αr ∈ 〈y〉, αpr, αpt, αrt ∈ A = 〈x, y, z〉 and δ ∈ {0, 1}.
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Table 4.2: Parameters in the presentations of some space groups with point group 2
m

2
m

2
m

Group Equation
number number αp αr αpr αpt αrt δ

47 (4.4) 1 1 1 1 1 0
49 (4.4) 1 1 1 1 z−1 0
50 (4.4) 1 1 1 x−1y−1 x−1 0
51 (4.4) 1 1 x−1 x−1 1 0
53 (4.4) z 1 1 x−1 x−1z−1 0
54 (4.4) 1 1 x−1 x−1 z−1 0
55 (4.4) 1 y x 1 x−1 0
57 (4.4) z y 1 1 z−1 0
63 (4.4) z 1 1 1 z−1 1
64 (4.4) z y 1 y−1 z−1 1
65 (4.4) 1 1 1 1 1 1
66 (4.4) 1 1 1 1 z−1 1
67 (4.4) 1 y 1 y−1 1 1
68 (4.4) 1 1 x−2y x−2y z−1 1
69 (4.5) 1 1 1 1 1 0
72 (4.5) 1 y x2y−1z−1 1 x−2yz 1
73 (4.5) z y x−2yz x−2yz z−1 1
74 (4.5) 1 y 1 y−1 1 1

In [CFHT] they find that there are thirteen space groups that can be obtained as a

fibration over a wallpaper group of type p4. These thirteen groups are listed in Table 4.3.

The seven groups G75, G76, G77, G79, G80, G81, and G82 have presentations of the form

G = 〈x, y, z, ρ | (x, y), (y, z), (x, z), ρ4 = αρ, x
ρ = yzδ, yρ = x−1, zρ = zγ〉, (4.6)

where αρ ∈ A = 〈z〉, δ ∈ {−1, 0, 1}, and γ ∈ {−1, 1}.

The six groups G83, G84, G85, G86, G87, and G88 have presentations of the form

G = 〈x, y, z, ρ, t | (x, y), (y, z), (x, z), ρ4 = αρ, t
2, (ρ, t) = η, (4.7)

xρ = yzδ, yρ = x−1, (z, ρ), (xt)2, (yt)2, (zt)2〉,

where αρ ∈ 〈z〉, η ∈ A = 〈x, y, z〉 and δ ∈ {0, 1}.

There are four space groups that can be obtained from a wallpaper group of type p3

[CFHT]. These are groups G143, G144, G146, and G174. The first three have a point group 3.
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Table 4.3: Parameters in the presentations of groups with point groups 4,4, or 4
m

Point Group Equation
group number number αρ η δ γ

4 75 (4.6) 1 0 1
4 76 (4.6) z 0 1
4 77 (4.6) z2 0 1
4 79 (4.6) 1 1 1
4 80 (4.6) z 1 1

4 81 (4.6) 1 0 -1
4 82 (4.6) 1 -1 -1

4/m 83 (4.7) 1 1 0
4/m 84 (4.7) z2 z−1 0
4/m 85 (4.7) 1 x−1 0
4/m 86 (4.7) z2 y−1z−1 0
4/m 87 (4.7) 1 1 1
4/m 88 (4.7) z x−2yz 1

Group G174 has point group 6. The space groups G143, G144, and G146 have presentations of

the form

G = 〈x, y, z, ρ | (x, y), (y, z), (x, z), ρ3 = αρ, x
ρ = x−1yzδ, yρ = x−1, (z, ρ)〉, (4.8)

where αρ ∈ 〈z〉 and δ ∈ {0, 2}.

Table 4.4: Parameters in the presentations of groups with point group 3
Group Equation
number number αρ δ

143 (4.8) 1 0
144 (4.8) z 0
146 (4.8) 1 2

The group G174 has presentation

G = 〈x, y, z, ρ, s | (x, y),(y, z), (x, z), ρ3, s2, (ρ, s),

xρ = x−1y, yρ = x−1, (z, ρ), (x, s), (y, s), zs = z−1〉. (4.9)

We again refer to [CFHT] to determine which space groups may be obtained from the

wallpaper group of type p6. According to Table 1 there are eight such groups. These are
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listed in Table 4.5. G168, G169, G171, G173 which have point group 6 ∼= C6.

The six groups G147, G148, G168, G169, G171, and G173 have presentations of the form

G = 〈x, y, z, ρ | (x, y), (y, z), (x, z), ρ6 = αρ, x
ρ = y, yρ = x−1yzδ, zρ = zγ〉, (4.10)

where αρ ∈ A = 〈z〉, δ ∈ {0, 2}, and γ ∈ {−1, 1}.

The two groups G175 and G176 have presentations of the form

G = 〈x, y, z, ρ, t | (x, y), (y, z), (x, z), ρ6 = αρ, t
2, (ρ, t) = η, (4.11)

xρ = y, yρ = x−1y, (ρ, z), (xt)2, (yt)2, (zt)2〉,

where αρ, η ∈ 〈z〉.

Table 4.5: Parameters in the presentations of groups with point groups 3,6, or 6
m

Point Group Equation
group number number αρ η δ γ

3 147 (4.10) 1 0 -1
3 148 (4.10) 1 2 -1
6 168 (4.10) 1 0 1
6 169 (4.10) z 0 1
6 171 (4.10) z2 0 1
6 173 (4.10) z3 0 1

6/m 175 (4.11) 1 1
6/m 176 (4.11) z3 z−1
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Chapter 5. Space groups with non-trivial

WCT groups

5.1 Groups having point group 3 or 6

The following applies to G143, G144, and G146.

Theorem 5.1. Let G be a group with presentation of the form given in Eq. (4.8). Then

τ(ρ,C), with C = {Aρ,Aρ2}, is a non-trivial wct map.

Proof. For this map we have P = {Aρ,Aρ2} and so by Lemma 2.6 we have I = Kρ. It is

clear that ρ commutes with every element of F, thus we may apply Corollary 2.16 (ii). Since

I = Kρ, we see that τρ is a wct map.

We may use Theorem 3.2 to verify that τρ is a non-trivial wct. Note that Z(G) = 〈z〉EG.

The quotient

G/Z(G) = 〈x, y, ρ | (x, y), ρ3, xρ = x−1y, yρ = x−1〉,

is a wallpaper group of type p3. Now τρ induces a map on the quotient G/Z(G) :

τρ


g 7→ gρ if Ag ∈ C = {Aρ,Aρ2},

g 7→ g if Ag ∈ F = {A}.

This is precisely the non-trivial wct that exists in the wallpaper groups of type p3 [HP]. It

follows by Theorem 3.2 that τρ ∈ W(G) \W0(G).

The following applies to G174.

Theorem 5.2. Let G be a group with presentation of the form given in Eq. (4.9). The

following are non-trivial wct maps:

(i) τ(ρ,C1),C1 = {Aρ,Aρ2, Aρs,Aρ2s}; and

(ii) τ(s,C2),C2 = {As,Aρs,Aρ2s}.
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Proof. For the map τρ we have P(C1) = {Aρ,Aρ2, Aρs,Aρ2s} and applying Lemma 2.6 we

have I(C1) = Kρ ∩ Kρs. Now the relations in the presentation of G give Kρ = 〈x2y−1, xy〉

and Kρs = 〈x2y−1, xy, z2〉, therefore I(C1) = Kρ. Since F = 〈ρ, s〉 is an abelian subgroup of

G, we see that ρ commutes with every element of F. By Corollary 2.16 (ii) we conclude that

τρ ∈ W(G).

Now 〈z, s〉EG. (In fact, G = 〈x, y, ρ〉 × 〈z, s〉.) Consider the quotient G/〈z, s〉 :

G/〈z, s〉 = 〈x, y, ρ | (x, y), ρ3, xρ = x−1y, yρ = x−1〉.

This is the wallpaper group p3. The map τρ induces a map on the quotient τρ : G/〈z, s〉 →

G/〈z, s〉 defined as

τρ :


g 7→ gρ if Ag ∈ C = {Aρ,Aρ2},

g 7→ g if Ag ∈ F = {A}

which we know to be a non-trivial map [HP]. It follows by Theorem 3.2 that τ(ρ, C) is also

a non-trivial wct.

We now consider the map τs. We will show that this is a wct by applying Corollary 2.16

(ii). We have F = 〈ρ, s〉, an abelian subgroup of G, thus s commutes with every element of

F. For this map we have P = Ks ∩Kρs ∩Kρ2s. The relations in the group presentation give

us Kρs = Kρ2s = 〈x2y−1, xy, z2〉 and Ks = 〈z2〉. Therefore I(C2) = Ks. By Corollary 2.16 (ii)

we conclude that τs ∈ W(G). By Theorem 3.1 τs ∈ W(G) \W0(G).

5.2 Groups having point group 4,4, or 4
m

The following two theorems apply to space groups with point group 4 or 4.

Theorem 5.3. Let G be a group with a presentation of the form given in Eq. (4.7). Then

for λ ∈ 〈x, y, ρ〉, the map τ(λ, {Aρ,Aρ3}) is a non-trivial wct.

Proof. For this map P = {Aρ,Aρ3}. By Lemma 2.6 Kρ = Kρ3 , thus we have I = Kρ. For

any λ ∈ 〈x, y〉 ≤ A we clearly have (λ, ρ) and (λ, ρ3) contained in Kρ = Kρ3 = I. Thus by

35



Lemma 2.14 and Corollary 2.15 (i), τλ is a wct.

For λ = ρ we may apply Corollary 2.16 (ii) since ρ commutes with every element of F.

Clearly we have Kλ ≤ I; thus τρ is also a wct.

Notice that Z = 〈z〉EG; thus we may consider the quotient

G/Z = 〈x, y, ρ | (x, y), ρ4, xρ = y, yρ = x−1〉.

This is a wallpaper group of type p4. The map τλ induces a map on the quotient, τλ :

G/Z → G/Z defined as

τλ : (g) =


gλ if Ag ∈ {Aρ,Aρ3},

g if Ag ∈ {A,Aρ2},

which we know to be a non-trivial wct [HP]. It follows by Theorem 3.2 that τλ is also a

non-trivial wct.

Theorem 5.4. Let G be a group with a presentation of the form given in Eq. (4.7). For these

groups we have Kρ = 〈xy, x−1yzδ〉, with δ ∈ {0, 1}. Then for λ ∈ Kρ the map τ(λ,C),C =

{Aρ,Aρ3, Aρt, Aρ3t} is a non-trivial wct.

Proof. From the relations in the presentation of the group one can check thatKρ = 〈xy, x−1yzδ〉.

Now for this map we have P = {Aρ,Aρ3, Aρt, Aρ3t} and so

I = Kρ ∩ Kρ3 ∩Kρt ∩Kρ3t = Kρ ∩Kρt,

the last equality being justified by Lemma 2.6. Note also that IEG since it is the intersection

of normal subgroups by Lemma 2.5.

We will use Corollary 2.15 (i) to show that τλ is a wct. Accordingly, we need to show

that {(λ, f−1) | f ∈ {ρ, ρ3, ρt, ρ3t}} ⊆ I. By Lemmas 2.3 and 2.14, it suffices to show that

(λ, ρ) and (λ, ρt) are contained in I = Kρ ∩ Kρt. Obviously (λ, ρ) ∈ Kρ and (λ, ρt) ∈ Kρt.
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It is also easy to see that (λ, ρt) ∈ Kρ since λ ∈ Kρ and by Lemma 2.5 Kρ is normal, thus

(λ, ρt) = λ−1λρt is a product of two elements in Kρ. It remains to show that (λ, ρ) ∈ Kρt.

First we prove a lemma.

Lemma 5.5.

For b ∈ A, (bρ
2

, ρ) = (b, ρ)−1. (5.1)

Proof. From the relations in the group presentation we have Kρ2t = 〈zδ, z2〉. Since (z, ρ) = 1

this implies that ρ ∈ CG(Kρ2t). It follows by Lemma 2.7 that ρ2t ∈ CG(Kρ). In other words,

for b ∈ A, (b, ρ)ρ
2t = (b, ρ). By Lemma 2.4 the left hand side is (bρ

2
, ρ)t. Recall that for α ∈ A

we have αt = α−1 and so we have (bρ
2
, ρ)−1 = (b, ρ), which proves the lemma.

Now we will show that (λ, ρ) ∈ Kρt by showing that (λ, ρ) can be written as a commutator

(c, ρt) for some c ∈ A. Let λ = (a, ρ) for some a ∈ A. Let b = aρ
−1

so that λ = (bρ, ρ). Then

(λ, ρ) = ((a, ρ), ρ) = (aρ · a−1, ρ)

= (aρ, ρ)(a−1, ρ) by Lemma 2.1

= (bρ
2

, ρ)(bρt, ρ) aρ = bρ
2

and a−1 = bρt

= (b, ρ)−1(bρt, ρ) using Eq. (5.1)

= (b, ρ)−1(b, ρ)ρt by Lemma 2.4

= ((b, ρ), ρt).

We conclude that τλ is a wct.

Now we show that τxy and τx−1yzδ are non-trivial wcts:

τxy(ρ) · τxy(ρ) = x−2y−2ρ2 6= ρ2 = τxy(ρ
2).

τx−1yzδ(ρ)τx−1yzδ(ρ) = x2y−2z−2δρ2 = (x2z−δρ)2 6= ρ2 = τx−1yzδ(ρ
2).
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5.3 Groups having point group 3,6 or 6
m

Proposition 5.6. We define α = xy, and β = x−2y. For groups having a presentation of

the form given in Eq. (4.10) (and assuming that δ = 0 or γ = −1) we have

Kρ = Kρ5 =〈x, y, z1−γ〉;

Kρ2 = Kρ4 =〈α, βzδ〉;

Kρ3 =〈x2, y2, z1−γ〉.

For groups having a presentation of the form given in Eq. (4.11) we have

Kρ = Kρ5 = 〈x, y〉;

Kρ2 = Kρ4 = 〈α, β〉;

Kρ3 = 〈x2, y2〉;

Kt = 〈x2, y2, z2〉

Kρt = Kρ5t = 〈α, β, z2〉;

Kρ2t = Kρ4t = 〈x, y, z2〉;

Kρ3t = 〈z2〉.

Each of these subgroups is normal.

Proof. From the given presentations and the definition of the Kf subgroups one can

calculate the Kf subgroups to be as given above. Lemma 2.6 may also be applied. Since

G/A is abelian, we know by Lemma 2.5 that the Kf subgroups are normal.

The following applies to G147, G148, G168, G169, G171, and G173.

Theorem 5.7. Assume λ 6= 1. Let α = xy, and β = x−2y. Groups with presentations of the

form described in Eq. (4.10) with δ = 0 or γ = −1 have the following non-trivial wct maps:

(i) For λ ∈ 〈x2, y2, ρ3〉, τ(λ,C1),C1 = {A,Aρ2, Aρ4}; and

(ii) For λ ∈ 〈α, βzδ, ρ2〉, τ(λ,C2),C2 = {A,Aρ3}.
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Proof. We will use Corollaries 2.15 and 2.16 to show that these two maps are wcts. For the

first map τ(λ,C1) we have P(C1) = {Aρ,Aρ3, Aρ5}. By Proposition 5.6, Kρ3 ⊆ Kρ = Kρ5 ,

thus I(C1) = Kρ3 . Since x2 and y2 are contained in Kρ3 = I(C1), by Corollary 2.15 (ii)

τ(x2,C1) and τ(y2,C1) are wct maps. Now clearly ρ3 commutes with every element of F and

Kρ3 is contained in I(C1). Then by Corollary 2.16 (ii), τ(ρ3,C1) is also a wct map.

For the second map τ(λ,C2) we have P(C2) = {Aρ,Aρ2, Aρ4, Aρ5}. By Proposition 5.6

Kρ2 = Kρ4 ⊆ Kρ = Kρ5 , thus I(C2) = Kρ2 . Since α and βzδ are in Kρ2 = I(C2), by Corollary

2.15 (ii) τ(α,C2) and τ(βzδ,C2) are wct maps. Of course ρ2 commutes with every element

of F and Kρ2 is contained in I(C2), so by Corollary 2.16 (ii) τ(ρ2,C2) is also a wct map.

Note that 〈z〉EG. The image of these maps in G/〈z〉 are the non-trivial wcts in wallpaper

group p6. By Theorem 3.2 these maps are also non-trivial wcts.

The following applies to G175 and G176.

Theorem 5.8. Assume λ 6= 1. Let α = xy, β = x−2y. Groups with presentations of the form

described in Eq. (4.11) have following non-trivial wcts maps:

(i) For λ ∈ 〈x2, y2〉, τ(λ,C1),C1 = {A,Aρ2, Aρ4, Aρt, Aρ3t, Aρ5t}; and

(ii) For λ ∈ 〈α, β〉, τ(λ,C2),C2 = {A,Aρ3, At, Aρ3t}.

Additionally, if η = 1 (which is the case for G175), then τ(ρ3,C1) and τ(ρ2,C2) are non-trivial

wcts.

Proof. We will use Corollaries 2.15 and 2.16 to show that these two maps are wcts. For the

first map τ(λ,C1) we have P(C1) = {Aρ,Aρ3, Aρ5, At, Aρ2t, Aρ4t} thus by Proposition 5.6

I(C1) = 〈x, y〉 ∩ 〈x2, y2〉 ∩ 〈x2, y2, z2〉 ∩ 〈x, y, z2〉 = 〈x2, y2〉 = Kρ3 .

Since x2 and y2 are contained in Kρ3 = I(C1), by Corollary 2.15 (ii), τ(x2,C1) and τ(y2,C1)

are wcts.
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For the second map, τλ we have P(C2) = (G/A) \ {A,Aρ3, At, Aρ3t}; thus by Proposition

5.6

I(C2) = 〈x, y〉 ∩ 〈α, β〉 ∩ 〈α, β, z2〉 ∩ 〈x, y, z2〉 = 〈α, β〉 = Kρ2 .

Since α and β are contained in Kρ2 = I(C2), by Corollary 2.15 (ii) τ(α,C2) and τ(β,C2) are

wcts.

Now we consider the maps τ(ρ3,C1) and τ(ρ2,C2). Here F consists of elements ρjtk for

j ∈ {0, 1, 2, 3, 4, 5} and k ∈ {0, 1}. Since we are assuming η = 1 it is clear that ρ2, ρ3 ∈ F

commute with every element of F. Thus by Corollary 2.16 (ii), since I(C1) = Kρ3 and

I(C2) = Kρ2 we know that τ(ρ3,C1) and τ(ρ2,C2) are wct maps.

Next we show that τx2 , τy2 , τα, and τβ are not homomorphisms:

τx2(ρ) · τx2(ρ) = ρ · ρ 6= x−2y−2ρ2 = τx2(ρ · ρ);

τy2(ρ) · τy2(ρ) = ρ · ρ 6= x2y−4ρ2 = τy2(ρ · ρ);

τα(ρ) · τα(ρ2) = ρ · ρ2 6= α−2ρ3 = τα(ρ · ρ2);

τβ(ρ) · τβ(ρ2) = ρ · ρ2 6= β−2ρ3 = τβ(ρ · ρ2).

It follows by Theorem 3.1 (ii) that these are non-trivial wcts. This theorem also tells us

(since ρ2, ρ3 /∈ A) that τρ2 and τρ3 are non-trivial wcts.

5.4 Some groups that have point group 2
m ,mm2, or 2

m
2
m

2
m

Theorem 5.9. The following are non-trivial wcts:

(i) For G10 : τ(r, {Ar,At}) and τ(rt, {Art, At});

(ii) For G25, G26, G27, G38, G39, and G42 : τ(ps, {Ap,Aps}) and τ(s, {Ap,As});

(iii) For G47 : τ(prt, {Aprt, At, Ap,Ar});

(iv) For G47 and G51 : τ(rt, {Art, At, Apr, Ap});

(v) For G47, G55, and G65 : τ(pt, {Apt, At, Ar,Apr}).
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Proof. Note that each of these maps are of the form given in Eq. (2.7). To show that such

a map (a τ(λ,C) map) is a wct of the indicated space group, Corollary 2.16 (ii) asserts that

it suffices to show that two conditions are met. The first is that (λ, f) = 1 for every f ∈ F

such that Af ∈ C. The second is that Kλ ≤ I. Also note that for each of the maps here,

I =
⋂
Af∈CKf . The relations in the presentations of each of these groups show that the first

condition is met. Proposition A.1 gives the Kf subgroups for each of these groups and shows

that the second condition (the containment of Kλ) is also met. Thus we conclude that each

of these maps are wcts. By Theorem 3.1 they are non-trivial wcts.
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Chapter 6. To determine W(G)

6.1 Method

For the thirty-one groups listed in Tables 4.1 and 4.2 we will determine a set of generators

of W(G). We do so in six steps which we also used in [HP]. These are:

Step one: For an arbitrary wct ϕ, we show that ϕ|A is an automorphism.

Step two: We show that we may compose ϕ with trivial weak Cayley table maps so that

ϕ|A is the identity map on A.

Step three: We show that we may again compose ϕ with trivial wcts so that ϕ fixes each

coset in G/A.

Step four: We determine elements of W(G) that we may compose ϕ with so as to have

ϕ(t) = t for all t ∈ F.

Step five: We show that for t ∈ F there is an f ∈ F such that ϕ(at) = af t for a ∈ A.

Step six: We determine elements of W(G) that we may compose ϕ with so as to have

ϕ = Id.

In our work here we found it advantageous to combine steps two and three. Note that The-

orem 6.1 shows that step one is true for any crystallographic group and similarly, Theorem

6.21 shows that step five is true for any crystallographic group. Also note also that in steps

two, three, four, and six we frequently will compose with inner automorphisms. We will

denote the automorphism that conjugates each group element by g ∈ G as Ig.

6.2 Step one

Here we show that step one is true for any n-dimensional crystallographic group.
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Theorem 6.1. Let G be a crystallographic group with translation subgroup A ∼= Zn for

n ∈ N. Let ϕ ∈ W(G). Then ϕ|A is an automorphism.

Proof. By Lemma 4.1, the only elements of G that have finite conjugacy classes are in A.

Since ϕ preserves conjugacy classes and is bijective, ϕ maps finite conjugacy classes to finite

conjugacy classes. We therefore have ϕ(A) = A. Because A is abelian, in this proof we will

denote the group operation for A additively. Also, to denote the conjugation action of g ∈ G

on a ∈ A we will write g(a).

Let a, b ∈ A. Using the fact that ϕ respects inverses, we have

ϕ(a+ b) ∼ ϕ(a) + ϕ(b); (6.1)

ϕ(b) = ϕ(a+ b− a) ∼ ϕ(a+ b)− ϕ(a); (6.2)

ϕ(a) = ϕ(a+ b− b) ∼ ϕ(a+ b)− ϕ(b). (6.3)

Eq. (6.1) implies there exists some g1 ∈ G such that ϕ(a + b) = g1(ϕ(a) + ϕ(b)). Similarly,

Eq. (6.2) implies there exists some g2 ∈ G such that g2(ϕ(b)) = ϕ(a + b) − ϕ(a) and Eq.

(6.3) implies there exists some g3 ∈ G such that g3(ϕ(a)) = ϕ(a + b) − ϕ(b). Solving for

ϕ(a+ b) we have the following three equations:

ϕ(a+ b) = g1(ϕ(a) + ϕ(b)); (6.4)

= ϕ(a) + g2(ϕ(b)); (6.5)

= ϕ(b) + g3(ϕ(a)). (6.6)

Recall that every element of A corresponds to a translation in Euclidean n−space, n ∈ N,

and thus to a point on the lattice L. We may think of a ∈ A translating the lattice L by a

distance of |a| and so it follows that c ∈ aG will also translate by a distance of |a|. Thus for

g ∈ G, we can think of g(a) as being some point on an (n−1)-sphere of radius |a| centered at

the origin. From this we see that Eq. (6.4) indicates that ϕ(a+ b) lies on an (n− 1)-sphere

of radius |ϕ(a) + ϕ(b)| centered at the origin. Next we see that Eq. (6.5) indicates that

ϕ(a+ b) lies on an (n− 1)-sphere of radius |ϕ(b)| centered at ϕ(a). Lastly Eq. (6.6) implies
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ϕ(a+ b) lies on an (n− 1)-sphere of radius |ϕ(a)| centered at ϕ(b).

Therefore ϕ(a + b) lies in the intersection of these three spheres. By Lemma 6.2 this

intersection is ϕ(a) + ϕ(b). In other words, ϕ(a+ b) = ϕ(a) + ϕ(b).

Lemma 6.2. Let a 6= 0 and b 6= 0 be vectors in En. Let S0 be an (n − 1)-sphere of radius

||a + b|| centered at the origin. Let Sa be an (n− 1)-sphere of radius ||b|| with center a and

similarly let Sb be an (n − 1)-sphere of radius ||a|| with center b. Then the intersection of

the three spheres is one point, namely a + b.

Proof. Clearly a+b is contained in each of Sa,Sb, and S0 thus we have {a+b} ⊆ Sa∩Sb∩S0.

It remains to show the reverse containment: Sa ∩ Sb ∩ S0 ⊆ {a + b}.

We note that if a + b = 0, then S0 = {0} so S0 ∩ Sa ∩ Sb = {0} is one point, proving

this case. So now we assume a + b 6= 0.

We have S0 = {x ∈ En : ||x||2 = ||a + b||2}, Sa = {x ∈ En : ||(x − a)||2 = ||b||2}, and

Sb = {x ∈ En : ||x − b||2 = ||a||2}. Also, let P be the hyperplane that is tangent to S0 at

the point a + b.

Figure 6.1: The spheres S0,Sa,Sb with the plane P in E2
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Now any x ∈ S0 must satisfy

x · x− (a + b) · (a + b) = 0. (6.7)

Also, any x ∈ Sa must satisfy

(x− a) · (x− a)− b · b = 0. (6.8)

Any x ∈ S0 ∩ Sa must satisfy both of these equations. Subtracting Eq. (6.7) from Eq. (6.8)

and expanding we have

(x · x− 2a · x + a · a)− b · b− (x · x− (a · a + 2a · b + b · b)) = 0.

Canceling gives

(−2a · x + a · a) + (a · a + 2a · b) = 0.

Simplifying and dividing by 2 gives

a · ((a + b)− x) = 0.

Using x ∈ S0 ∩ Sb, a similar argument gives

b · ((a + b)− x) = 0.

It follows that any x ∈ S0 ∩ Sa ∩ Sb satisfies

(a + b) · ((a + b)− x) = 0,

The set of all x that satisfy this equation is the hyperplane that has normal vector a + b

and contains the point a + b. This is the plane P that is tangent to S0 at the point a + b.

Recall that we also have x ∈ S0, thus x ∈ P ∩ S0. Of course, this intersection is just one

point (the point of tangency), which is a + b.

6.3 Steps two and three

In this section we will prove results useful for proving step two and step three. These results

will be applied in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and
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4.2.

Definition For a group G with abelian normal subgroup A we define the set

C2 = C2(G) = {a ∈ A : aG = {a, a−1}}.

Proposition 6.3. In Table 6.1 we have the C2 subsets for the space groups that have a

presentation of the form given in Eqs. (4.1), (4.2), (4.3), (4.4), or(4.5).

Table 6.1: C2 for thirty-one groups
Group

number(s) C2

10, 13 〈x, z〉 ∪ 〈y〉
12 〈x2y−1, z〉 ∪ 〈y〉

16, 17 〈x〉 ∪ 〈y〉 ∪ 〈z〉
21 〈x2y−1〉 ∪ 〈y〉 ∪ 〈z〉
22 〈x2z−1〉 ∪ 〈y2z−1〉 ∪ 〈z〉

25, 26, 27 〈x〉 ∪ 〈y〉
38, 39 〈x〉 ∪ 〈y2z−1〉

42 〈x2z−1〉 ∪ 〈y2z−1〉
47-57 〈x〉 ∪ 〈y〉 ∪ 〈z〉
63-68 〈x2y−1〉 ∪ 〈y〉 ∪ 〈z〉

69 〈x2z−1〉 ∪ 〈y2z−1〉 ∪ 〈z〉
72-74 〈x2y−1z−1〉 ∪ 〈y〉 ∪ 〈z〉

Proof. This follows from the relations found in the presentation of the respective groups.

(For brevity we write “47-57” to represent groups G47, G49, G50, G51, G53, G54, G55, and G57

(note we are not including G48 and G56); we write “63-68” to represent G63, G64, G65, G66,

G67, and G68.)

Lemma 6.4. Let G be a crystallographic group. Let ϕ ∈ W(G) and a ∈ A. Let g ∈ G satisfy

g2 ∈ A. Then

ag = a−1 implies that ϕ(a)ϕ(g) = ϕ(a)−1.

Proof. By Theorem 6.1 we know that ϕ|A is a homomorphism thus for k ∈ Z, ϕ(ak) = ϕ(a)k.

Then ϕ(ak · g) ∼ ϕ(a)kϕ(g). Squaring both sides we have

ϕ(g2) = ϕ(akg·akg) ∼ ϕ(a)kϕ(g)ϕ(a)kϕ(g) = ϕ(a)kϕ(g)2(ϕ(a)k)ϕ(g) = ϕ(g)2(ϕ(a)ϕ(a)ϕ(g))k.
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Since g2 ∈ A its image ϕ(g2) has finitely many conjugates, thus ϕ(a)ϕ(a)ϕ(g) = 1, in other

words, ϕ(a)ϕ(g) = ϕ(a)−1.

Proposition 6.5. Let G be a crystallographic group. Let ϕ ∈ W(G). Then

(i) Z(G) ∩C2 = {1}.

(ii) ϕ(C2) = C2.

(iii) ϕ(〈C2〉) = 〈C2〉.

(iv) Let j ∈ N. If there exists a set B = {βi}ji=1 ⊆ C2 such that C2 =
⋃j
i=1〈βi〉 and

〈C2〉 is a free abelian group of rank j with generating set B, then for β ∈ B we have

ϕ(β) ∈ {a ∈ A : a ∈ B or a−1 ∈ B}.

Proof. Statement (i) is clear since a−1 = a ∈ A is only possible if a is the identity. Now to

prove (ii) we recall that ϕ maps conjugacy classes to conjugacy classes bijectively, therefore

any nontrivial element in C2 is mapped to a conjugacy class containing exactly two elements

of A. By Proposition 1.1 (ii), ϕ also respects inverses, thus we conclude that ϕ(C2) = C2.

By Theorem 6.1 ϕ|A is an automorphism of A thus (iii) follows immediately from (ii).

To prove (iv), we will assume there exists B = {βi}ji=1 ⊆ C2 such that C2 =
⋃j
i=1〈βi〉

and 〈C2〉 is a free abelian group of rank j with generating set B. Let β ∈ B. As β ∈ C2,

we have ϕ(β) ∈ C2 by (ii). Our assumption that C2 =
⋃j
i=1〈βi〉 implies that ϕ(β) = βki for

some 1 ≤ i ≤ j and k ∈ Z. Since ϕ|A is an automorphism of A, we see that (iii) implies ϕ(B)

must be a free generating set for 〈C2〉. We therefore must have ϕ(β) = βki for k ∈ {1,−1}

and we are done.

The following applies to G10, G12, and G13. This result is analogous to (i) and (ii) of

Proposition 6.9 (which does not apply to these three groups because here C2 is not a union

of cyclic subgroups).

Proposition 6.6. Let G be a crystallographic group with presentation of the form given in

Eq. (4.1). (Therefore A = 〈x, y, z〉.) Let ϕ ∈ W(G). Then ϕ(y) ∈ {y, y−1} and ϕ(Af) = Af

for all f ∈ F.
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Proof. The generators used in the group presentation are x, y, z, r, t and we define F =

{r, rt, t, 1}. Every element in the At coset is an involution, and this is not the case for any

other coset. This implies ϕ(At) = At, and therefore ϕ(Art) ∈ {Ar,Art}.

By Proposition 6.5 (ii) we know ϕ(C2) = C2 and here C2 is the union of a free abelian

subgroup of rank two and a cyclic subgroup. Since ϕ|A is a bijective homomorphism, it must

preserve this structure and in particular, it must map the cyclic subgroup to itself. The

cyclic subgroup contained in C2 is 〈y〉. We may therefore assume ϕ(y) = yδ for δ ∈ {−1, 1}.

Now (rt)2 ∈ A and yrt = y−1, thus by Lemma 6.4 we have ϕ(y)ϕ(rt) = ϕ(y)−1, i.e.

(yδ)ϕ(rt) = y−δ. If ϕ(rt) ∈ Ar we would have a contradiction since y commutes with every

element in Ar. We conclude that ϕ(Art) = Art and thus ϕ(Ar) = Ar.

The following corollary applies to G21, G63, G64, G65, G66, G67, and G68.

Corollary 6.7. Let G be a crystallographic group with translation subgroup A = 〈x, y, z〉 ∼=

Z3 and C2 = 〈x2y−1〉 ∪ 〈y〉 ∪ 〈z〉. Let ϕ ∈ W(G). For β ∈ {x2y−1, y} we have ϕ(β) ∈

{(x2y−1)±1, y±1}. We also have ϕ(z) ∈ {z, z−1}.

Proof. By Proposition 6.5 (iv) with B = {x2y−1, y, z} we have

{ϕ(x2y−1), ϕ(y), ϕ(z)} ⊆ {(x2y−1)±1, y±1, z±1}.

Now since ϕ|A is a homomorphism,

ϕ(x2y−1)ϕ(y) = ϕ(x2y−1 · y) = ϕ(x2) = ϕ(x)2

must be a square of an element in A. The bijectivity of ϕ requires ϕ(x2y−1)ϕ(y) to be a

product of two distinct elements in {(x2y−1)±1, y±1, z±1}. In order for this product to be

a square, one of the two factors must be in {(x2y−1)±1} and the other must be in {y±1}.

In other words, ϕ(x2y−1)ϕ(y) cannot be a square if either of ϕ(x2y−1) or ϕ(y) is in {z±1}.

Therefore by bijectivity we must have ϕ(z) ∈ {z±1}.

The following applies to G25, G26, G27, G38, G39, and G42.
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Lemma 6.8. Let G be a group with presentation of the form given in Eq. (4.3). We define

F = {1, p, s, ps}. Let ϕ ∈ W(G). Then

(i) Z(G) = 〈z〉.

(ii) a ∈ C2 if and only if both ap = a−1 and a ∈ {as, aps}.

(iii) C2 is the union of two cyclic groups.

(iv) 〈C2〉 ∩ Z(G) = 1.

(v) ϕ(z) ∈ {z±1}.

(vi) There exists an outer automorphism ψι : G→ G such that

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1).

Composing ϕ with this map if necessary we may assume that ϕ(z) = z.

Proof. The relations given in the group presentation indicate that for i, j, k ∈ Z we have

(xiyjzk)p = x−iy−jzu where u ∈ {k, j + k, i+ j + k}. This shows that for a ∈ A,

if ap = a, then a ∈ 〈z〉. (6.9)

It follows that Z(G) ⊆ {a ∈ A : (a, p) = 1} = 〈z〉. The reverse inclusion is clear since the

relations in the presentation of G state that z commutes with x, y, p and s. This proves (i).

Recall that C2 is the set of elements a ∈ G such that aG = {a, a−1}. Therefore, 1 6= a ∈ C2

is inverted by the action of two of the elements of F and fixed by the action of the other two

elements of F, one of which is of course the identity. Eq. (6.9) shows that p cannot be the

non-identity element of F that fixes a ∈ C2, since any element fixed by p is central and by

Proposition 6.5 (i), the only central element contained in C2 is the identity. Hence we have

(ii).

Statement (iii) follows from (ii). The set of elements fixed by s is a cyclic subgroup and

the set of elements fixed by ps is another cyclic subgroup. Any element in one of these two
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cyclic subgroups is inverted by p. Therefore, C2 is comprised of the union of these two cyclic

subgroups The relations in the presentation of G determine which elements generate the two

cyclic subgroups. (Refer to Table 6.1.)

To prove (iv) we use the facts given in Proposition 6.3, specifically, the generators of the

cyclic subgroups that comprise C2. Thus we see that for groups G25, G26, and G27, we have

〈C2〉 = 〈x, y〉. For groups G38 and G39, we have 〈C2〉 = 〈x, y2z−1〉. For group G42, we have

〈C2〉 = 〈x2z−1, y2z−1〉. Each of these subgroups intersects the cyclic subgroup 〈z〉 = Z(G)

trivially.

We will show that ϕ(z) ∈ {z, z−1} results from the fact that ϕ|A is a bijective homomor-

phism. We have ϕ(Z(G)) = Z(G), by Proposition 1.1 (iv), thus ϕ(z) ∈ 〈z〉. Let ϕ(z) = zk

for some k ∈ Z, then as ϕ|A is a homomorphism 〈ϕ(z)〉 = 〈zk〉. If k /∈ {±1} then 〈ϕ(z)〉

would be a proper subgroup of 〈z〉, contradicting the surjectivity of ϕ. This proves (v).

The map ψι satisfies the relations in each of the six presentations of these groups thus it

is in Aut(G). Since ψι(z) = z−1, and ϕ(z) ∈ {z, z−1} by (v), we therefore have (vi).

Definition Let j ∈ N. Given a set B = {βi}ji=1 ⊆ A and f ∈ F we define

Inv(B, f) = {β ∈ B : βf = β−1}.

When B is understood then we may write Inv(B, f) simply as Inv(f).

The following proposition applies to twenty-eight of the thirty-one groups listed in Tables

4.1 and 4.2. (It does not apply to G10, G12, and G13.) Result (iii) applies to the twenty-four

groups that have presentations of the form given in Eqs. (4.3), (4.4), or (4.5). Result (iv)

applies only to the eighteen groups listed on Table 4.2.

Proposition 6.9. For m,n ∈ N, such that 2 ≤ m ≤ n let G be a group with normal abelian

subgroup A ∼= Zn and G/A ∼= Cm
2 . Suppose that for some 2 ≤ j ≤ n there exists a set

B = {βi}ji=1 ⊆ C2 such that C2 =
⋃j
i=1〈βi〉. Assume also that B is a free generating set

for 〈C2〉 ∼= Zj. Lastly we assume that the action of G/A on B defined by β · (Ag) = βg is
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well-defined and faithful, so that βg1 = βg2 holds for all β ∈ B if and only if Ag1 = Ag2. Let

ϕ ∈ W(G).

(i) For f, g ∈ F, if ϕ(Af) = Ag, then |Inv(B, f)| = |Inv(B, g)|.

(ii) ϕ(β) ∈ βG for all β ∈ B if and only if ϕ(Af) = Af for all f ∈ F.

(iii) If j = m and ϕ(β) ∈ βG for all β ∈ B, then there exists If for some f ∈ F so that

(If ◦ ϕ)|〈C2〉 = Id.

(iv) If j = m = n and ϕ(β) ∈ βG for all β ∈ B, then there exists If for some f ∈ F so

that (If ◦ ϕ)|A = Id.

Proof. We prove (i) using Lemma 6.4. Let f, g ∈ F. Fix β ∈ Inv(f), so that βf = β−1. By

the Lemma, ϕ(β)ϕ(f) = ϕ(β)−1. By assumption ϕ(Af) = Ag, thus the action of ϕ(f) on A

must be equal to the action of g on A so we have ϕ(β)g = ϕ(β)−1. By Proposition 6.5 (iv)

we have ϕ(β) ∈ {(β′)±1} for some β′ ∈ B. As ϕ respects inverses we see that the statement

ϕ(β) ∈ {(β′)±1} implies (β′)g = (β′)−1. Thus β′ ∈ Inv(g). Since ϕ is bijective, this shows

that for every β ∈ Inv(f) there exists a β′ ∈ Inv(g) and therefore |Inv(f)| ≤ |Inv(g)|. To

prove that |Inv(f)| ≥ |Inv(g)| we note that ϕ ∈ W(G) implies ϕ−1 ∈ W(G), ϕ−1(Ag) = Af

and apply the previous argument. Therefore |Inv(f)| = |Inv(g)|, proving (i).

We prove (ii). (=⇒) Suppose contrapositively that ϕ(f1) ∈ Af2 for some f1, f2 ∈ F,

with f1 6= f2. Since f1 6= f2, by interchanging f1 and f2 if necessary we may assume there

exists some β ∈ B such that β ∈ Inv(f1), β /∈ Inv(f2); thus βf2 = β but βf1 = β−1.

Using ϕ(f1) ∈ Af2 and applying Lemma 6.4 to the statement βf1 = β−1, we have ϕ(β)f2 =

ϕ(β)ϕ(f1) = ϕ(β)−1. This shows ϕ(β) is inverted by the action of f2, although we know β and

its inverse are not (because β /∈ Inv(f2)). From this we conclude that ϕ(β) /∈ {β±1} = βG.

(⇐=) Conversely, assume that ϕ(Af) = Af for all f ∈ F and suppose to the contrary

that there exists β ∈ B such that ϕ(β) /∈ βG. By Proposition 6.5 (iv) we know ϕ(β) ∈

(β̂)G = {β̂±1} for some β̂ ∈ B. In other words, ϕ permutes the conjugacy classes in the
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collection {βG : β ∈ B}. Define the subset B′ ⊆ B to be

B′ = {β ∈ B : ϕ(βG) 6= βG},

and define a function λ : B′ → N to be

λ : β 7→ |{f ∈ F : β ∈ Inv(f)}|.

(Note that the codomain of λ does not include zero because λ(β) = 0 means β commutes

with every element of F, which would imply β is central, a contradiction.) Choose β1 ∈ B′

so that λ(β1) is maximal, i.e. λ(β1) = max{λ(β) : β ∈ B′}. Let ϕ(βG1 ) = βG2 . Note that

β2 ∈ B′ (because ϕ is bijective) and thus λ(β1) ≥ λ(β2). In other words, β1 is inverted by at

least as many elements of F as β2 is. This, combined with the fact that the action of G/A

on B is faithful, ensures that there exists an h ∈ F such that β1 ∈ Inv(h) but β2 /∈ Inv(h).

We will show that β1 ∈ Inv(h) implies that β2 ∈ Inv(h), thus arriving at a contradiction.

We have β1 ∈ Inv(h) i.e. βh1 = β−11 , and applying Lemma 6.4 to this equation gives

ϕ(β1)
ϕ(h) = ϕ(β1)

−1. Since ϕ respects inverses, β
ϕ(h)
2 = β−12 . We are assuming ϕ(Ah) = Ah

so we know ϕ(h) ∈ Ah, thus βh2 = β−12 . This shows that β2 ∈ Inv(h), giving the needed

contradiction.

Before we can prove (iii) we will first need to prove that when j = m, the collection

{Inv(f)}f∈F is P(B), the power set of B. By definition {Inv(f)}f∈F is a subset of the power

set of B, thus it suffices to show that the cardinality of {Inv(f)}f∈F is at least |P(B)|. We

will use the fact that G/A acts faithfully on B. If f, g ∈ F and f 6= g, then j = m shows

that there exists some β ∈ B such that βf 6= βg thus Inv(f) 6= Inv(g). This shows that

|{Inv(f) : f ∈ F}| ≥ |F | = |G/A| = 2m = 2j = |P(B)|.

We are now ready to prove (iii). By assumption we have j = m and ϕ(βi) ∈ βGi =

{βi, β−1i } for 1 ≤ i ≤ j. Thus there exists some subset BInv = {β ∈ B : ϕ(β) = β−1},

but also, ϕ fixes all elements in B \BInv. Since {Inv(f)}f∈F is the power set of B, we know

there exists an f ∈ F such that Inv(f) = BInv. In other words, there exists an f ∈ F such

that (ϕ ◦ If ) : βi 7→ βi for 1 ≤ i ≤ n. Composing we have ϕ|B = Id and since ϕ|A is a
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homomorphism and B is a generating set for 〈C2〉, we now have ϕ|〈C2〉 = Id and we are

done.

Lastly we show that statement (iv) follows from (iii) when n = j = m. Recall that

both A and 〈C2〉 are free abelian groups and j = n means that rank(〈C2〉) = rank(A). It

follows that 〈C2〉 has finite index in A so we may write |A : 〈C2〉| = ` for some ` ∈ N. Let

A = 〈x1, x2, . . . , xn〉. Note that for every generator xi we have x`i ∈ 〈C2〉, and so by (iii) we

may assume ϕ(x`i) = x`i . Since ϕ|A is a homomorphism, we have

ϕ(xi)
` = ϕ(x`i) = x`i ,

which can only be true if ϕ(xi) = xi, since A ∼= Zn. This is true for all generators xi of A,

proving (iv).

The following is a corollary to Proposition 6.9 and it applies to G25, G26, G27, G38, G39,

and G42.

Corollary 6.10. Let G be a group with a presentation of the form given in Eq. (4.3). Define

F = {1, p, s, ps}. Let ϕ ∈ W(G). Then

(i) ϕ(Ap) = Ap.

(ii) If ϕ(Af) = Af for all f ∈ F and ϕ(z) = z, then composing with inner automorphisms

as necessary we may assume that ϕ|A = Id.

Proof. By Lemma 6.8 (iii) there exist β1, β2 ∈ C2 so that C2 = 〈β1〉 ∪ 〈β2〉. To prove (i)

we apply Proposition 6.9 (i) with B = {β1, β2}. For these groups we have |Inv(p)| = 2 but

|Inv(s)| = |Inv(ps)| = 1. Thus ϕ must map the Ap coset to itself.

To prove (ii) we assume that ϕ(Af) = Af for all f ∈ F and we apply Proposition 6.9 (ii).

This gives ϕ(β) ∈ βG for all β ∈ B. Then applying Proposition 6.9 (iii) we know there exist

inner automorphisms so that composing ϕ with these automorphisms we have ϕ|〈C2〉 = Id.

Now by hypothesis ϕ(z) = z so, since ϕ|A is an isomorphism, we have ϕ|〈C2,z〉 = Id. We will
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show that 〈C2, z〉 is a finite index subgroup of A. Since ϕ|A is an isomorphism, this implies

that ϕ|A = Id.

By Lemma 6.8 (i), we have Z(G) = 〈z〉 and by Proposition 6.5 (i), 〈z〉 intersects 〈C2〉

trivially. Statement (iii) of Lemma 6.8 indicates that 〈C2〉 has rank two. Thus 〈C2, z〉 has

rank three, which implies it has finite index in A, and we are done.

The following is a corollary to Proposition 6.9 and it applies to the space groups numbered

between 47 and 74 which are listed in Table 4.2.

Corollary 6.11. Let G be a group with a presentation of the form given in Eqs. (4.4) or

(4.5). We write the presentation of G using generators x, y, z, p, r, t and we define F =

{p, r, pr, prt, rt, pt, t, 1}. Let ϕ ∈ W(G). Then we have

(i) ϕ(At) = At.

(ii) For f ∈ {p, r, pr} we have ϕ(Af) = Ag for some g ∈ {p, r, pr}.

(iii) For f ∈ {prt, rt, pt} we have ϕ(Af) = Ag for some g ∈ {prt, rt, pt}.

Proof. For these groups we have

|Inv(t)| = 3; |Inv(p)| = |Inv(r)| = |Inv(pr)| = 2; |Inv(prt)| = |Inv(rt)| = |Inv(pt)| = 1.

Applying statement (i) of Proposition 6.9 gives the result.

In step three it is often helpful to consider which cosets contain elements of order 2 since

cosets containing involutions may only be mapped to cosets that contain involutions. When

f ∈ F has order 2 it is clear that Af contains order 2 elements. However, it is possible

to have f 2 6= 1 and yet have involutions in Af. The following Lemma makes it easy to

determine whether or not a given coset contains involutions. (Note that it only applies to

groups having presentations of the form given in Eqs. (4.1), (4.4), or (4.5).)

Lemma 6.12. Let G be a group with an abelian normal subgroup A and suppose t ∈ G

satisfies t2 = 1 and at = a−1 for any a ∈ A. Let f ∈ F and assume f 2 ∈ A. Then the Af

coset contains elements of order 2 if and only if f 2 ∈ Kft.
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Proof. Let a ∈ A. Note that as f 2 ∈ A, af−1
= af . Then

(af)2 = 1⇐⇒ afaf = aaf (f 2) = 1

⇐⇒ f 2 = a−1(af )−1 = a−1aft = (a, ft).

This shows that there exists an a ∈ A such that (af) has order 2 if and only if there exists

an a ∈ A such that f 2 = (a, ft). By Lemma 2.2 this is equivalent to f 2 ∈ Kft.

6.4 Step four

In this section we will prove results useful for proving step 4. These results will be applied

in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and 4.2.

The following applies to G25, G26, G27, G38, G39, and G42.

Proposition 6.13. Let G be a group with a presentation of the form given in Eq. (4.3).

We define F = {1, p, s, ps}. Let ϕ ∈ W(G) and suppose that ϕ|A = Id and ϕ(p) = p. Then

ϕ(f) = f for all f ∈ F.

Proof. We will prove two results and then use them to prove the proposition.

Claim 1: For b ∈ A, if bs = bps = b−1, then b = 1.

To prove this we first note that bs = bps implies that b commutes with p and therefore

bG = {b, b−1}, so b ∈ C2. By Lemma 6.8 (iii) we know that C2 is the union of two cyclic

subgroups that intersect trivially. By Lemma 6.8 (ii) we know one cyclic subgroup contains

all elements of C2 that are inverted by the action of ps, and the other contains all elements of

C2 that are inverted by the action of s. It follows that the only element of C2 (and therefore

any element of A) that is inverted by both s and ps is the identity. This proves Claim 1.

Claim 2: For f ∈ F we have f 2 ∈ Z(G).

Now recall that for f ∈ F we have defined αf = f 2. We have Z(G) = 〈z〉 by Lemma 6.8 (i),

and the relations in the presentation of G state that αp, αs and αps = αpαs are all contained

in 〈z〉. (See Table 4.1.) This proves Claim 2.
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We now show that ϕ|A = Id and ϕ(p) = p imply that ϕ(f) = f for all f ∈ F. By

Proposition 6.9 (ii) we have ϕ(Af) = Af for all f ∈ F. Therefore ϕ(ps) = bps and ϕ(s) = cs

for some b, c ∈ A.

Squaring both sides of ϕ(ps) = bps we have

αps = ϕ(αps) = ϕ((ps)2) ∼ (bps)2 = bbpspsps = bbpsαps.

Since αps is central, conjugacy implies equality; therefore αps = bbpsαps and so bps = b−1. We

also have ϕ(p−1 · ps) ∼ p−1bps and squaring both sides of this relation gives

αs = ϕ(αs) = ϕ(s2) ∼ (p−1bps)2 = (bps)2 = bpsbps = bpbpss2 = bpbpsαs.

Again, conjugacy implies equality since αs is central, so we have

αs = bpbpsαs thus (bp)−1 = bps and so b−1 = bs.

We have shown that bs = bps = b−1 so we must have b = 1, i.e. ϕ(ps) = ps.

Similarly, squaring both sides of ϕ(s) = cs we have

αs = ϕ(s2) ∼ (cs)2 = ccss2 = ccsαs.

Conjugacy again implies equality so αs = ccsαs thus cs = c−1. We also have ϕ(p · s) ∼ pcs =

cpps and squaring both sides gives

αps = ϕ((ps)2) ∼ (cpps)2 = cp(cp)pspsps = cpcsαps.

Again we may assume we have equality so αps = cpcsαps thus (cp)−1 = cs and conjugating

both sides by p gives c−1 = cps. We have shown that cs = cps = c−1 so c = 1, and thus

ϕ(s) = s.

The following proposition applies to groups G10, G12, G13, and also the eighteen groups

listed in Table 4.2. However, this result is not useful for the ten groups where K =

〈x2, y2, z2〉. It is only useful when 〈x2, y2, z2〉 � K, which is the case in the eleven groups

G12, G63, G64, G65, G66, G67, G68, G69, G72, G73, and G74.

Proposition 6.14. Let G be a group with a normal abelian subgroup A = 〈x1, x2, . . .〉.
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Suppose there exists t ∈ F such that t2 = 1 and (at)2 = 1 for all a ∈ A. Let f ∈ F and

assume ft ∈ F. Let αf = f 2 and similarly αft = (ft)2. Assume αf , αft ∈ C2. Let ϕ ∈ W(G)

and assume ϕ|A = Id and ϕ(Af) = Af. Given c ∈ A, if we have (c, f) /∈ 〈x21, x22, . . .〉, then

ϕ(t) 6= ct.

Proof. We will prove the contrapositive:

If ϕ(t) = ct for some c ∈ A, then (c, f) ∈ 〈x21, x22, . . .〉.

Note that for a ∈ A we have aft = atf , which is a consequence of the relation at = a−1 for

all a ∈ A. Also note that af
−1

= af and at
−1

= at since f 2, t2 ∈ A. We will use these two

facts throughout this proof.

Let ϕ(f) = bf for some b ∈ A. Squaring both sides gives

αf = ϕ(αf ) = ϕ(f · f) ∼ bfbf = bbff 2 = bbfαf .

Since αGf = {α±1f }, we see that αf ∼ bbfαf implies that bbf = αif for i ∈ {−2, 0}. Conjugating

by t and solving for bft we have bft = bα−if .

Recall that by assumption ϕ(t) = ct for some c ∈ A, thus we have ϕ(f · t) ∼ bfct.

Squaring both sides of this relation gives

αft = ϕ(αft) = ϕ(ft · ft) ∼ bfct bfct = bcfbftct(ft)2 = bcfbftctαft.

Since αGft = {α±1ft } we have bcfbftct = αjft for j ∈ {0,−2}. Using bft = bα−if and algebraically

rearranging we have

cfct = b−1(bα−if )−1αjft = b−2αifα
j
ft.

Since i and j are either 0 or −2, this shows that cfct = (c, f) is the square of an element in

A, i.e. (c, f) ∈ 〈x21, x22, . . .〉.

The following applies to G63, G64, G65, G66, G67, and G68.

Corollary 6.15. Let G be a group with a presentation of the form given in Eq. (4.4)

(hence we write the presentation of G with generators x, y, z, p, r, and t), and assume that
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δ = 1, αr ∈ 〈y〉, and αrt ∈ 〈z〉. Let ϕ ∈ W(G) and suppose that ϕ|A = Id and ϕ(Ar) = Ar.

Then ϕ(t) 6= xt.

Proof. We will use Proposition 6.14 which states that if (x, r) /∈ 〈x2, y2, z2〉 then ϕ(t) 6= xt.

To justify applying the proposition we note that by Proposition 6.3 we have C2 = 〈x2y−1〉 ∪

〈y〉 ∪ 〈z〉, thus αr, αrt ∈ C2. We have (x, r) = x−2y which is not a square. Therefore, by the

proposition, ϕ(t) 6= xt.

The following applies to G72, G73, and G74.

Corollary 6.16. Let G be a group with a presentation of the form given in Eq. (4.5)

(hence we write the presentation of G with generators x, y, z, p, r, and t), and assume that

αp ∈ 〈z〉, αpt ∈ 〈x2y−1z−1〉 ∪ 〈y〉 and δ = 1. Let ϕ ∈ W(G) and suppose that ϕ|A = Id and

ϕ(Ap) = Ap. Then ϕ(t) 6= xt.

Proof. To prove this is a straightforward application of Proposition 6.14. By Proposition

6.3 we have C2 = 〈x2y−1z−1〉∪〈y〉∪〈z〉. Thus we have αp, αpt ∈ C2. Then by the proposition,

since

(x, p) = x−2z /∈ 〈x2, y2, z2〉

we conclude ϕ(t) 6= xt.

Proposition 6.17. Let G be a group with abelian normal subgroup A and let |G/A| = n ∈ N.

Let ϕ ∈ W(G) and assume ϕ|A = Id. Fix f ∈ F such that α = f 2 ∈ A. Let ϕ(f) = bf for

some b ∈ A. Then

(i) bf = b−1.

Furthermore, suppose there exists t ∈ F such that at = a−1 for all a ∈ A and (ft)2 ∈ A.

Assume we have ϕ(t) = t. Let αft = (ft)2. Then

(ii) αft ∼ b2αft, in other words, b2αft ∈ αGft.

From the above we immediately have these two statements:
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(iii) If αft ∈ C2 (i.e. αGft = {αft, α−1ft }), then b ∈ {1, α−1ft };

(iv) If ft has order 2, then b = 1, i.e. ϕ(f) = f.

Proof. For any k ∈ Z we have ϕ(αk · f) ∼ αkbf. Note that α commutes with f and thus

also with bf. Then squaring both sides we have

α2k+1 = ϕ(α2kf 2) ∼ α2kbfbf = α2kb(αf−1)bf = α2kbαbf = α2k+1bbf . (6.10)

Let γ = bbf and note that to prove bf = b−1 it suffices to show that γ = 1. Now Eq. (6.10)

becomes α2k+1 ∼ α2k+1γ. This implies that for any j ∈ Z,

α(2k+1)j ∼ (α2k+1γ)j = α(2k+1)jγj.

We note that α and γ are fixed, but the stated conjugacy must hold for any j, k ∈ Z. Recall

n = |G/A| and put (2k + 1)j = 3n. (For each j ∈ {1, 3, 9, . . . , 3n} there is a corresponding

value of k so as to ensure (2k + 1)j = 3n.) Thus we have

α3n ∼ α3nγj. (6.11)

Eq. (6.11) thus yields the following n+ 1 statements:

α3n ∼α3nγ1;

α3n ∼α3nγ3;

α3n ∼α3nγ9;

...

α3n ∼α3nγ3
n

.

Now if γ 6= 1 then this implies that |(α3n)G| ≥ n+ 1. Since α3n ∈ A and n = |G/A| this is a

contradiction. We conclude that γ = 1 and so bf = b−1.

It follows that b commutes with ft. Now since ϕ(t) = t we have ϕ(f · t) ∼ bft. Squaring

both sides gives (ft)2 ∼ (bft)2 = b2(ft)2, i.e. αft ∼ b2αft.

Proposition 6.18. Let G be a group. Let f1, f2, t ∈ G and assume t2 = 1. Let α1 = (f1t)
2

and α2 = (f2t)
2. Let ϕ ∈ W(G.)
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(i) For i ∈ {1, 2}, if ϕ(fi) = α−1i fi then (It ◦ ι ◦ ϕ)(fi) = fi.

(ii) If fit has order 2 then It ◦ ι acts trivially on fi, and also on t.

(iii) If ϕ(f1f2) ∼ f1f2 � α−11 f1f2 and ϕ(f2) = f2 then ϕ(f1) 6= α−11 f1.

Proof. A straightforward calculation proves (i):

(It ◦ ι ◦ ϕ)(fi) =(It ◦ ι)(α−1i fi)

=(It ◦ ι)((fit)−2fi)

=(It ◦ ι)(tf−1i tf−1i fi)

=(It ◦ ι)((f−1i )t)

=fi.

The first statement in (ii) follows from (i) with αi = 1. It is also clear that It ◦ ι acts trivially

on t since t = t−1 and since It(t) = t.

To prove (iii) we assume that ϕ(f1f2) ∼ f1f2 and ϕ(f2) = f2. Now suppose to the

contrary that ϕ(f1) = α−11 f1. Then

f1f2 ∼ ϕ(f1 · f2) ∼ α−11 f1 · f2,

which contradicts f1f2 � α−11 f1f2 and we are done.
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Proposition 6.19. The following maps are automorphisms of the indicated groups. (One

can show that these are outer automorphisms.)

G10, G13 : ψx : (x, y, z, r, t) 7→(x, y, z, xr, xt),

G10, G12, G13 : ψy : (x, y, z, r, t) 7→(x, y, z, r, yt),

G10, G12, G13 : ψz : (x, y, z, r, t) 7→(x, y, z, zr, zt),

G16, G17 : ψx : (x, y, z, p, r) 7→(x, y, z, xp, xr),

G22 : ψx : (x, y, z, p, r) 7→(x, y, z, xy−1p, xr),

G16, G17, G21 : ψy : (x, y, z, p, r) 7→(x, y, z, yp, r),

G16, G17, G21, G22 : ψz : (x, y, z, p, r) 7→(x, y, z, p, zr),

G25, G26, G27, G38, G39 : ψx : (x, y, z, p, s) 7→(x, y, z, xp, s),

G25, G26, G27 : ψy : (x, y, z, p, s) 7→(x, y, z, yp, ys),

G47, G49, G50, G51, G53, G54, G55, G57 : ψx : (x, y, z, p, r, t) 7→(x, y, z, xp, xr, xt),

All groups listed in Table 4.2 except G69 : ψy : (x, y, z, p, r, t) 7→(x, y, z, yp, r, yt),

All groups listed in Table 4.2 : ψz : (x, y, z, p, r, t) 7→(x, y, z, p, zr, zt).

Proof. This follows from the relations in the respective group presentations.

6.5 Step five

Here we prove Theorem 6.21 which shows that step five is true for any n-dimensional crys-

tallographic group. We begin with a lemma.

Lemma 6.20. Let G be a group with a normal abelian subgroup A. Let ϕ ∈ W(G). Suppose

that ϕ|A = Id and t ∈ G satisfies ϕ(t) = t. Let a, b ∈ A. If ϕ(at) = bt then a ∼ b.

Proof. Given the hypotheses we have

a ∼ at = ϕ(at) = ϕ(t−1 · at) ∼ ϕ(t−1) · ϕ(at) = t−1bt ∼ b.
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Recall that F is a set of coset representatives for G/A. In the situation of Lemma 6.20,

we will write ϕ(at) = arat, where ra ∈ F.

Theorem 6.21. Let G be a crystallographic group with translation subgroup A ∼= Zn for

n ∈ N. Let ϕ ∈ W(G) and suppose that ϕ|A = Id and t ∈ F satisfies ϕ(t) = t. Then there is

an f ∈ F such that ϕ(at) = af t for all a ∈ A.

Proof. From Proposition 1.1 (vii), we see that ϕ(At) = At. Now, for a, b ∈ A, we have

ab−1 = at(bt)−1 = ϕ(at · (bt)−1) ∼ arat · t−1(brb)−1 = ara(brb)−1.

Thus, there is some f ∈ F such that ab−1 = (ara(brb)−1)f , so that letting α = raf, β = rbf,

this may be rewritten as ab−1 = aα(b−1)β. Thus we have

a(a−1)α = b(b−1)β. (6.12)

Recall that every element of A corresponds to a translation in Euclidean n−space, and

thus to a point on the lattice L. Let va denote the point on L that corresponds to a ∈ A. For

a ∈ A, let Sa denote the (n − 1)-sphere in En that contains the origin and that is centered

at va, and let Ta = {va(a−1)f : f ∈ F}. Then, Ta consists of |aG| points that lie on Sa. Note

that the origin is in Ta for all a ∈ A.

Lemma 6.22. (i) If |Ta ∩ Tb| = 1 then there is a δ ∈ F such that ara = aδ, brb = bδ.

(ii) If the origin, va, and vb are collinear, then there is a δ ∈ F such that ara = aδ, brb = bδ.

Proof.

(i) If |Ta∩Tb| = 1, then Ta∩Tb = {0} and so from Eq. (6.12), we get a(a−1)α = b(b−1)β = 1,

so that a = aα, b = bβ. From this we obtain af
−1

= ara , bf
−1

= brb , so that we can let

δ = f−1.

(ii) We may assume that a 6= b. By hypothesis the origin, va, and vb are collinear, in other

words, the centers of the (n − 1)-spheres Sa, Sb are on the line through these points.

Since a 6= b, we have Sa 6= Sb, and this together with collinearity tells us that the
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radius of Sa is not equal to the radius of Sb. Therefore, Sa 6= Sb implies that Sa ∩ Sb

consists of just the origin (remembering that the origin is common to Sa and Sb.) Thus

we have |Ta ∩ Tb| = 1, as in (i), which then gives the result.

Lemma 6.23. Let b ∈ A satisfy |bG| = |G/A|. Then, for all a ∈ A there is a unique

f = fa,b ∈ F such that ϕ(at) = af t, ϕ(bt) = bf t.

Proof. If the origin, va, and vb are collinear, then the existence of such a δ ∈ F follows

from Lemma 6.22 (ii), while the uniqueness follows from |bG| = |F |.

Now, assume that the origin, va, and vb are not collinear. If |Ta∩Tb| = 1, then by Lemma

6.22 (i), there is a δ ∈ F such that ara = aδ, brb = bδ, and the fact that δ is unique follows

from |bG| = |F |. So, now assume that |Ta ∩ Tb| > 1. Note that for 2 ≤ k ∈ N, the origin, vb,

and vbk are collinear. Then, by Lemma 6.22 (ii) applied to b and bk, there is some h ∈ F

such that brb = bh and (bk)rbk = (bk)h. Since |bG| = |F | this element h is unique. Since Ta is

finite, there is some 1 < k ∈ N such that |Ta ∩ Tbk | = 1; then by Lemma 6.22 (i) we have

h′ ∈ F with (bk)rbk = (bk)h
′
, ara = ah

′
. Since |bG| = |F | we again see that h, h′ are unique, so

that h = h′. Thus we have ara = ah and brb = bh, as required.

Now let a, b, c ∈ A, where b satisfies |bG| = |F |. Then, by Lemma 6.23 there are unique

f, h ∈ F such that ϕ(at) = af t, ϕ(bt) = bf t and ϕ(bt) = bht, ϕ(ct) = cht. Since f, h are unique

and ϕ(bt) = bf t, ϕ(bt) = bht we must have f = h; it follows (by fixing a and varying c) that

for all d ∈ A we must have ϕ(dt) = df t for this value of f ∈ F that is completely determined

by an element b such that |bG| = |F |. This concludes the proof of Theorem 6.21.

6.6 Step six

In this section we will prove results useful for proving step six. These results will be applied

in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and 4.2.

Lemma 6.24. Let G be a group with a normal abelian subgroup A. Assume that G/A is

abelian. Let n = |G/A|. Let a ∈ A and f ∈ F. If f ∼ a2kf for all k ∈ Z such that 0 ≤ k ≤ n,
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then a2m ∈ Kf for some 1 ≤ m ≤ n.

Proof. By Proposition C.2 we have

fG =
⋃
h∈F

Kff
h =

⋃
h∈F

Kf (h, f
−1)f.

Thus f ∼ a2kf implies that a2k ∈ Kf (h, f
−1) for some h ∈ F. In other words, there exists an

h ∈ F for every 0 ≤ k ≤ n so that a2k ∈ Kf (h, f
−1). Since there are at most n choices for

h there must be some h ∈ F and some j ∈ Z such that a2j, a2(j+m) ∈ Kf (h, f
−1) for some

1 ≤ m ≤ n. It follows that a2m ∈ Kf .

Definition Let G be a space group and let F be a set of coset representatives for G/A.

For f ∈ F, f 6= 1, we define the set

Rf = {h ∈ F : f ∼ (h, α)f for all α ∈ C2}.

Recall that given a set B ⊆ A we have the following definition of the subset Inv(f):

Inv(B, f) = {β ∈ B : βf = β−1}.

The following proposition applies to the thirty-one groups listed in Tables 4.1 and 4.2.

Proposition 6.25. Let j, n ∈ N. Let G be a group with normal subgroup A ∼= Zn where G/A

is abelian and finite. Suppose that there exists B = {βi}ji=1 ⊆ C2 ⊆ 〈B〉 ∼= Zj.

Assume that the action of G/A on B defined by β · (Ag) = βg is well-defined and faithful.

Let 1 6= f ∈ F and assume that rank(Kf ) = |Inv(B, f)|. Then

h ∈ Rf if and only if Inv(B, h) ⊆ Inv(B, f).

Proof. (=⇒) We assume h ∈ Rf . Note that if h = 1, then Inv(h) = ∅ so Inv(h) ⊆ Inv(f)

is satisfied. Thus we may assume that h 6= 1. This implies that Inv(h) is not empty because

G/A acts faithfully on B. We will show that β ∈ Inv(h) and f ∼ (h, α)f for all α ∈ C2

together imply that β ∈ Inv(f).

Suppose to the contrary that β /∈ Inv(f). As β ∈ C2 its only conjugates are itself and

its inverse. It follows that β commutes with f. Since β ∈ Inv(h) we have (h, β) = β2.
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Then for any k ∈ Z we have (h, βk) = β2k and note that βk ∈ C2. We are assuming

f ∼ (h, α)f for all α ∈ C2, so in particular we have f ∼ (h, βk)f = β2kf. By Lemma 6.24

we have β2m ∈ Kf for some m ∈ N. Now βi ∈ Inv(f) implies that β2
i ∈ Kf and therefore

{β2
i : βi ∈ Inv(f)} ⊆ Kf . However, recall that by assumption, β commutes with f ; thus β2m

commutes with f and so β2m /∈ 〈β2
i : βi ∈ Inv(f)〉. The fact that rank(〈B〉) = j implies that

the subgroup generated by β2m and {β2
i : βi ∈ Inv(f)} would be a subgroup of Kf with rank

1 + |Inv(f)|, a contradiction.

(⇐=) Assume that Inv(h) ⊆ Inv(f). We need to show that f ∼ (h, α)f for all α ∈ C2. For

α ∈ C2 which commutes with h there is nothing to show so we may assume that αh = α−1.

We have α ∈ C2 ⊆ 〈B〉, therefore we may write α = βk11 β
k2
2 · · · β

kj
j for some k1, k2, . . . , kj ∈ Z.

Notice that for each βi /∈ Inv(h) we must have ki = 0, in order to satisfy αh = α−1. This

is true because 〈B〉 is a free group of rank j. This shows that α ∈ 〈Inv(h)〉. By hypothesis

Inv(h) ⊆ Inv(f), so α ∈ 〈Inv(f)〉. We thus have αf = α−1 and so (h, α) = (f, α). Then

f ∼ fαf = (f−1α−1)f(αf) = (f, a)f = (h, α)f.

This shows h ∈ Rf .

Corollary 6.26. Let G ∈ {G10, G12, G13}. We write the presentation of G using generators

x, y, z, r, t and we define F = {r, t, rt, 1}. For these groups we have

Rt = F ; Rr = {1, r}; Rrt = {1, rt}.

Proof. For G10 and G13 we have C2 = 〈x, z〉 ∪ 〈y〉. Without loss of generality, let B =

{x, y, z}. Then Inv(t) = B, Inv(r) = {x, z}, and Inv(rt) = {y}. The result follows from

Proposition 6.25.

For G12 we have C2 = 〈x2y−1, z〉 ∪ 〈y〉. Without loss of generality, let B = {x2y−1, y, z}.

Then Inv(t) = B, Inv(r) = {x2y−1, z}, and Inv(rt) = {y}. The result follows from Proposi-

tion 6.25.
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Corollary 6.27. Let G ∈ {G16, G17, G21, G22}. These presentations use generators x, y, z, p, r,

and we define F = {p, r, pr, 1}. For these groups we have

Rp = {1, p}; Rr = {1, r}; Rpr = {1, pr}.

Proof. For G16 and G17 we have C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality, let

B = {x, y, z}. Then Inv(p) = {x, y}, Inv(r) = {x, z}, and Inv(pr) = {y, z}. The result

follows from Proposition 6.25.

For G21 we have C2 = 〈x2y−1〉∪〈y〉∪〈z〉. Without loss of generality, let B = {x2y−1, y, z}.

Then Inv(p) = {x2y−1, y}, Inv(r) = {x2y−1, z}, and Inv(pr) = {y, z}. The result follows from

Proposition 6.25.

For G22 we have C2 = 〈x2z−1〉 ∪ 〈y2z−1〉 ∪ 〈z〉. Without loss of generality, let B =

{x2z−1, y2z−1, z}. Then Inv(p) = {x2z−1, y2z−1}, Inv(r) = {x2z−1, z}, and Inv(pr) = {y2z−1, z}.

The result follows from Proposition 6.25.

Corollary 6.28. Let G ∈ {G25, G26, G27, G38, G39, G42}. We write the presentation of G

using generators x, y, z, p, s, and we define F = {p, s, ps, 1}. For these groups we have

Rp = {1, p, ps, s}; Rs = {1, s}; Rps = {1, ps}.

Proof. For G25, G26, and G27 we have C2 = 〈x〉 ∪ 〈y〉. Without loss of generality, let

B = {x, y}.

For G38 and G39 we have C2 = 〈x〉 ∪ 〈y2z−1〉. Without loss of generality, let B =

{x, y2z−1}.

ForG42 we have C2 = 〈x2z−1〉∪〈y2z−1〉.Without loss of generality, letB = {x2z−1, y2z−1}.

In all cases, Inv(p) = B. On the other hand, Inv(s) and Inv(ps) each contain exactly one

element of B and Inv(s) 6= Inv(ps.) The result follows from Proposition 6.25.

Corollary 6.29. Let G be a group with a presentation of the form given in Eqs. (4.4) or

(4.5). These presentations use generators x, y, z, p, r, t, and we define F = {p, r, pr, prt, rt, pt, t, 1}.

For these groups we have
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Rt = F ;

Rp = {1, p, prt, rt}; Rpt = {1, pt};

Rr = {1, r, prt, pt}; Rrt = {1, rt};

Rpr = {1, pr, rt, pt}; Rprt = {1, prt}.

Proof. For groups with a presentation of the form given in Eq. (4.4) with δ = 0 we have

C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality, let B = {x, y, z}.

For groups with a presentation of the form given in Eq. (4.4) with δ = 1 we have

C2 = 〈x2y−1〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality, let B = {x2y−1, y, z}.

For groups with a presentation of the form given in Eq. (4.5) with δ = 0 we have

C2 = 〈x2z−1〉 ∪ 〈y2z−1〉 ∪ 〈z〉. Without loss of generality, let B = {x2z−1, y2z−1, z}.

For groups with a presentation of the form given in Eq. (4.5) with δ = 1 we have

C2 = 〈x2y−1z−1〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality, let B = {x2y−1z−1, y, z}.

In all cases

� Inv(prt) is contained in Inv(p) ∩ Inv(r);

� Inv(rt) is contained in Inv(p) ∩ Inv(pr);

� Inv(pt) is contained in Inv(r) ∩ Inv(pr);

� for f ∈ F we have Inv(f) ⊆ Inv(t).

The result follows from Proposition 6.25.

Here we make a comment that applies to the eight space groups with presentation of

the form given in Eq. (4.4) with δ = 0. For these groups we have C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. A

consequence of this is that the definition of Rf is equivalent to

{h ∈ F : f ∼ (h, α)f for all α ∈ A},

67



as we now show.

Proof of the equivalence: Note that for any crystallographic group we have C2 ⊆ A. It

follows that the set {h ∈ F : f ∼ (h, α)f for all α ∈ A} is contained in Rf . We will show

that the reverse containment holds when G is a group with presentation of the form given

in Eq. (4.4) with δ = 0.

h ∈ Rf =⇒ Inv(h) ⊆ Inv(f) by Proposition 6.25

=⇒ Kh ≤ Kf by Lemma 6.30,

=⇒ for a ∈ A, (h, a) ∈ Kf ,

=⇒ f ∼ (h, a)f for a ∈ A by Lemma 2.10.

Lemma 6.30. Let G be a group with presentation of the form given in Eq. (4.4) with δ = 0.

Thus we have A = 〈x, y, z〉 and C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Let B = {x, y, z}. Let h, f ∈ F. If

Inv(B, h) ⊆ Inv(B, f) then Kh ≤ Kf .

Proof. By definition we know that Kh is generated by commutators of the form (β, h)

for β ∈ B. To show Kh ≤ Kf it suffices to show that (β, h) ∈ Kf . We have two cases to

consider: either β ∈ Inv(h) or β /∈ Inv(h). Note that for g ∈ F we have (β, g) ∈ {β−2, 1}

and (β, g) = β−2 if and only if β ∈ Inv(g). Therefore for β ∈ Inv(h) we have (β, h) = β−2 =

(β, f) ∈ Kf since by assumption β ∈ Inv(h) implies β ∈ Inv(f). For β /∈ Inv(h) we have

(β, h) = 1 ∈ Kf .

In general however, the set {h ∈ F : f ∼ (h, α)f for all α ∈ A} will be a subset of Rf .

Example: For G ∈ {G63, G64, G65, G66}, we have Rp = {1, prt, rt, p}. On the other hand,

{h ∈ F : p ∼ (h, α)p for all α ∈ A}

does not include prt since (prt, x) = x2y−1 and p � x2y−1p.

Lemma 6.31. Let G be a crystallographic group and assume C2 6= {1}. Let ϕ ∈ W(G) and

assume that ϕ|A = Id. Suppose that for some f ∈ F we have ϕ(f) = f. Then there exists

some h ∈ Rf such that ϕ(af) = ahf for all a ∈ A.
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Proof. We know by Theorem 6.21 that there exists some h ∈ F such that ϕ(af) = ahf for

all a ∈ A. Then

f = ϕ(a−1 · af) ∼ a−1(a)hf = (a, h)f.

Since this must hold in particular for a ∈ C2 we must have h ∈ Rf .

Definition For f ∈ F, f 6= 1, we define the set

Sf = {h ∈ F : af ∼ ahf for all a ∈ A}.

Lemma 6.32. Let f, h ∈ F and assume f 6= 1.

(i) If (f, h) ∈ Kf , then h ∈ Sf .

(ii) If Kh ≤ Kf , then h ∈ Sf .

(iii) If h1, h2 ∈ Sf , then the element in F representing the coset Ah−11 h2 is in Sf .

(iv) Sf is a set of coset representatives for a subgroup of G/A.

Proof. Let a ∈ A. Assume (f, h) ∈ Kf . First we show that af ∼ (f, h)ahf :

af ∼ fa ∼ (fa)h = fhah ∼ (fhah)f = f−1fhahf = (f, h)ahf.

By Lemma 2.10, (f, h) ∈ Kf implies ahf ∼ (f, h)ahf. Thus by transitivity af ∼ ahf and so

h ∈ Sf , proving (i).

Next, suppose that Kh ≤ Kf ; thus for a ∈ A, we have (a, h) ∈ Kf . Then by Lemma 2.10,

af ∼ (a, h)af = a−1ahaf = ahf,

and so h ∈ Sf , proving (ii).

To prove (iii), suppose that h1, h2 ∈ Sf . We will show that there exists c ∈ A such that

ch−11 h2 ∈ Sf . By definition of Sf for a ∈ A, we have af ∼ ah1f and af ∼ ah2f.

Taking a = bh
−1
1 these two assertions become respectively

bh
−1
1 f ∼ bh

−1
1 h1f = bf and bh

−1
1 f ∼ bh

−1
1 h2f.
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Again using transitivity we have bf ∼ bh
−1
1 h2f , in other words, there exists some h ∈ F such

that h = ch−11 h2 for some c ∈ A and bf ∼ bhf for all b ∈ A. This proves (iii). The fourth

statement follows from (iii) and from the fact that 1 ∈ Sf .

Theorem 6.33. Let G be a group with abelian normal subgroup A such that G/A abelian.

Let ϕ ∈ W(G) and assume ϕ|A = Id. Let f ∈ F and let g ∈ G satisfy fg ∈ F or gf ∈ F.

Let γ ∈ F be the coset representative for the Afg coset (i.e. γ = fg or γ = gf). Suppose

ϕ(f) = f, ϕ(g) = g, and ϕ(γ) = γ. (We also assume that 1 /∈ {f, g, γ}.)

Then there is an h ∈ Rf ∩ Sγ such that ϕ(af) = ahf for all a ∈ A.

Proof. We have ϕ(f) = f, so by Lemma 6.31 we know there exists an h ∈ Rf such that for

a ∈ A we have ϕ(af) = ahf. It remains to show that h ∈ Sγ.

Case 1: γ = fg : Then for a ∈ A we have

aγ = ϕ(a)ϕ(γ) ∼ ϕ(a · γ) = ϕ(a · fg) = ϕ(af · g) ∼ ahfg = ahγ.

Case 2: γ = gf : (Here we will use the fact that G/A is abelian, thus agh = ahg.) Then for

a ∈ A,

aγ ∼ ϕ(a · γ) = ϕ(a · gf) = ϕ(g · agf) ∼ gaghf = ahgf = ahγ.

In both cases we arrive at aγ ∼ ahγ for all a ∈ A, which shows that h ∈ Sγ.

Corollary 6.34. Let G be a group with presentation of the form given in Eqs. (4.4) or (4.5).

These presentations use generators x, y, z, p, r, t, and we define F = {p, r, pr, prt, rt, pt, t, 1}.

Let ϕ ∈ W(G) and suppose that ϕ|A = Id and ϕ(t) = t. Fix f ∈ {prt, rt, pt} and suppose

ϕ(f) = f and ϕ(ft) = ft. Then f /∈ Sft implies that ϕ|Af = Id.

Proof. Recall that t2 = 1; thus for f ∈ {prt, rt, pt} we have ft ∈ F \ {1}. Therefore

we may apply Theorem 6.33 which asserts that for a ∈ A we have ϕ(af) = ahf for some

h ∈ Rf ∩ Sft. To show ϕ|Af = Id it suffices to show this intersection is {1}. Now Corollary

6.29 indicates that for f ∈ {prt, rt, pt} we have Rf = {1, f}. Since f /∈ Sft by assumption,

we see Rf ∩ Sft = {1} so we are done.
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Theorem 6.35. Let G be a group with abelian normal subgroup A. Let ϕ ∈ W(G). Assume

ϕ|A = Id and let ϕ(f) = f for some f ∈ F \ {1}.

(i) Suppose that ϕ|Ag′ = Id for some Ag′ ∈ (G/A) \ {Af−1}. Let g ∈ Ag′ satisfy fg ∈

F \ {1}. Then there exists h ∈ Rf ∩Rfg so that for a ∈ A we have ϕ(af) = ahf.

(ii) Suppose that for j ∈ Z, there are cosets Ag′1, Ag
′
2, . . . , Ag

′
j in G/A such that ϕ|Ag′i = Id

for 1 ≤ i ≤ j. Let gi ∈ Ag′i satisfy fgi ∈ F \{1} for 1 ≤ i ≤ j. If Rf ∩
⋂j
i=1Rfgi = {1},

then ϕ|Af = Id.

Proof. By Lemma 6.31 we know there exists an h ∈ Rf such that for all a ∈ A we have

ϕ(af) = ahf. Then for all α ∈ C2 we have ϕ(g) = g, since g ∈ Ag′, so

fg = ϕ(f)ϕ(g) ∼ ϕ(α−1αf · g) = ϕ(α−1f · αfg) ∼ (α−1)hf · αfg = (α−1)hαfg = (h, α)fg;

This shows h ∈ Rfg, proving (i). The second statement follows from applying the first

statement j times.

The following applies to space groups G16, G17, G21, and G22.

Corollary 6.36. Let G be a group with presentation of the form given in Eq. (4.2). These

presentations use generators x, y, z, p, r, and we define F = {1, p, r, pr}. Let ϕ ∈ W(G) and

assume ϕ|A = Id. Let f ∈ F \ {1}. Suppose that for some g ∈ G such that fg ∈ F \ {1, f}

we have ϕ|Ag = Id. Then

ϕ(f) = f implies that ϕ|Af = Id.

Proof. We will apply Theorem 6.35 (i) and use the fact that by Corollary 6.27, Rf = {1, f}

for all f ∈ F. Since fg ∈ F \{1, f} the cosets Af and Afg are distinct, thus Rf ∩Rfg = {1}.

The result follows directly.

The following applies to space groups G25, G26, G27, G38, G39, and G42.

Corollary 6.37. Let G be a group with presentation of the form given in Eq. (4.3). These

presentations use generators x, y, z, p, s, and we define F = {p, ps, s, 1}. Let ϕ ∈ W(G) and
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suppose that ϕ|A = Id , and ϕ(f) = f for all f ∈ F. Then

ϕ|Aps = ϕ|As = Id implies that ϕ = Id.

Proof. Note that |G/A| = 4 and so it suffices to show that ϕ|Ap = Id. We assume that

ϕ|Aps = ϕ|As = Id and apply Theorem 6.35 (ii). Then since ϕ(p) = p and Rps ∩ Rs = {1}

by Corollary 6.28, the theorem implies ϕ|Ap = Id.

Corollary 6.38. Let G be a group with presentation of the form given in Eqs. (4.4) or (4.5).

These presentations use generators x, y, z, p, r, t, and we define F = {p, r, pr, prt, rt, pt, t, 1}.

Let ϕ ∈ W(G) and suppose that ϕ|A = Id , and ϕ(f) = f for all f ∈ F. Then

(i) ϕ|At = Id implies that ϕ = Id,

(ii) ϕ|Aprt = ϕ|Art = ϕ|Apt = Id implies that ϕ = Id.

Proof. We will use the following results that follow from Corollary 6.29.

For f ∈ F \ {1, t},Rf ∩Rft = {1}. (6.13)

For f1, f2 ∈ {prt, rt, pt},Rf1 ∩Rf2 = {1}. (6.14)

First we prove that ϕ|At = Id implies that ϕ = Id. It suffices to show that for f ∈

{p, r, pr, prt, rt, pt}, ϕ(af) = ahf implies that h = 1. We apply Theorem 6.35 (i), using

ϕ|At = Id and ϕ(f) = f. Then by the theorem we have h ∈ Rf ∩ Rft. By Eq. (6.13) this

intersection is {1}, so we conclude ϕ|Af = Id.

Now assume that ϕ|Aprt = ϕ|Art = ϕ|Apt = Id. To prove this implies ϕ = Id it suffices

to show that ϕ|Af = Id for f ∈ {p, r, pr, t}. We proceed by first showing that this holds

for f ∈ {p, pr}. We will apply Theorem 6.35 (ii), using ϕ(p) = p and ϕ|Art = ϕ|Aprt = Id.

Since Rprt ∩ Rrt = {1} by Eq. (6.14), the theorem implies ϕ|Ap = Id. Similarly, by using

ϕ(pr) = pr with ϕ|Apt = ϕ|rt = Id, and Rpr ∩Rrt ∩Rpt = {1} by Eq. (6.14), Theorem 6.35

(ii) gives ϕ|Apr = Id.
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Now that we have ϕ|Ap = ϕ|Apr = Id, we use this to apply the theorem a third time.

Using ϕ(t) = t and since Eq. (6.14) gives Rpt ∩ Rprt = {1}, we have ϕ|At = Id. From (i),

this implies ϕ = Id.
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Chapter 7. W(G) of space groups with point

group 2
m ,222, or mm2

7.1 Groups 10 through 13

Lemma 7.1. The following results will be useful as we determine the step 2 automorphisms

which can be found in G10, G12, and G13.

(i) The group of automorphisms of Z2 is GL(2,Z). It is generated by

a =

1 1

0 1

 , b =

 1 0

−1 1

 , and c =

−1 0

0 1

 .

(ii) The set of all matrices

 i j

k `

 ∈ GL(2,Z) such that j ∈ 2Z is an index three subgroup

of GL(2,Z) and it is generated by

a2 =

1 2

0 1

 , b =

 1 0

−1 1

 , and c =

−1 0

0 1

 .

(iii) The set of all matrices

 i j

k `

 ∈ GL(2,Z) such that k ∈ 2Z is an index three subgroup

of GL(2,Z) and it is generated by

(a2)T =

1 0

2 1

 , bT =

1 −1

0 1

 , and c =

−1 0

0 1

 .

Proof. We know SL(2,Z) is an index two subgroup of GL(2,Z) and it is generated by a and

b [N]. Since c has determinant −1, these three matrices generate GL(2,Z), thus we have (i).

Let H denote the subset of interest in (ii), i.e. the subset of matrices

 i j

k `

 ∈ GL(2,Z)

such that j is even. We verify that this subset is a subgroup by checking that it contains
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inverses and is closed under multiplication. Let ε = i`− kj ∈ {±1}. Then i j

k `


−1

= ε

 ` −j

−k i

 ∈ H.
Also, for some m,n, p ∈ Z, i j

k `


 i′ j′

k′ `′

 =

m ij′ + j`‘

n p

 ∈ H.
It is apparent that a2, b, c ∈ H, so 〈a2, b, c〉 ≤ H. Using Reidemeister-Schreier’s algorithm

as implemented in Magma [BCP],[MKS], (see Appendix B), we verified that 〈a2, b, c〉 is an

index three subgroup of GL(2,Z). Since three is prime, evidently 〈a2, b, c〉 is not a proper

subgroup of H, proving (ii).

Statement (iii) follows from (ii) and from the fact that for matrices B,C we have

(B−1)T = (BT )−1 and (BC)T = CTBT .

We will now apply steps one through six to the group G10 to determine a set of generators

of W(G10). Let ϕ ∈ W(G10). By Proposition 6.6 we have ϕ(Af) = Af for all f ∈ F and

ϕ(y) ∈ {y, y−1}. If we have ϕ(y) = y−1 then we may compose with It and now we may

assume that ϕ(y) = y. Since C2 = 〈x, z〉 ∪ 〈y〉, Proposition 6.5 (ii) gives ϕ(〈x, z〉) = 〈x, z〉.

Thus ϕ|〈x,z〉 is an automorphism of a free abelian group of rank 2. The set of all such maps

is GL(2,Z). Let ξ : 〈x, z〉 → 〈x, z〉 be one such automorphism. Then

ψξ : (x, y, z, r, t) 7→ (ξ(x), y, ξ(z), r, t)

determines an automorphism of G10 as it satisfies all the relations in the presentation of

G10. By Lemma 7.1 we know GL(2,Z) can be generated by three matrices, therefore there

exist three corresponding automorphisms that generate all the automorphisms that are of
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the form described by ψξ. These are:

ψ1 : (x, y, z, r, t) 7→ (x, y, xz, r, t);

ψ2 : (x, y, z, r, t) 7→ (xz−1, y, z, r, t);

ψ3 : (x, y, z, r, t) 7→ (x−1, y, z, r, t).

Composing with these three outer automorphisms, we can ensure that ϕ|〈x,z〉 = Id. Since we

also have ϕ(y) = y we now have ϕ|A = Id.

By Proposition 6.19 we may compose with outer automorphisms ψx, ψy, and ψz as nec-

essary so as to have ϕ(t) = t. Since r2 = (rt)2 = 1, Proposition 6.17 gives ϕ(r) = r and

ϕ(rt) = rt; thus we have ϕ(f) = f for all f ∈ F.

Applying Theorem 6.21 with Lemma 6.31 we have for all a ∈ A,ϕ(art) = ahrt for some

h ∈ {1, rt}. If h = 1, then we are done. If h = rt then we may compose with It ◦ ι. Since

(rt)2 = (rt, t) = 1,

(It ◦ ι)(artrt) = It(rt(a
−1)rt) = rtart = art,

we now have ϕ|Art = Id.

Now by Lemma 6.31, for some h ∈ Rr = {1, r}, a ∈ A, we have ϕ(ar) = ahr. If h = r we

may compose with the non-trivial wct τ(r, {Ar,At}) so that ϕ|Ar = Id. (Theorem 5.9 proves

τr is non-trivial.) Note that Corollary 6.26 gives Rt ∩Rrt ∩Rr = {1}. We use this to apply

Theorem 6.35 (ii). We have ϕ(t) = t and ϕ|Art = ϕ|Ar = Id. Then by the theorem we have

ϕ|At = Id; and therefore ϕ = Id.

We have shown that

Theorem 7.2. For crystallographic group G10, the group W(G) is generated by the inverse
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map ι, the inner automorphisms,

ψ1 : (x, y, z, r, t) 7→ (x, y, xz, r, t),

ψ2 : (x, y, z, r, t) 7→ (xz−1, y, z, r, t),

ψ3 : (x, y, z, r, t) 7→ (x−1, y, z, r, t),

ψx : (x, y, z, r, t) 7→ (x, y, z, xr, xt),

ψy : (x, y, z, r, t) 7→ (x, y, z, r, yt),

ψz : (x, y, z, r, t) 7→ (x, y, z, zr, zt),

and the non-trivial wct τr. Thus we have W(G) = 〈W0(G), τr〉.

Let ϕ ∈ W(G12). By Proposition 6.6 we have ϕ(Af) = Af for all f ∈ F and ϕ(y) ∈

{y, y−1}. Composing with It if necessary we have ϕ(y) = y. By Proposition 6.5 (ii) we know

that ϕ(〈x2y−1, z〉) = 〈x2y−1, z〉. In other words, ϕ|〈x2y−1,z〉 is an automorphism of a free

abelian group of rank 2. We may write ϕ(x2y−1) = (x2y−1)izj and ϕ(z) = (x2y−1)kz` for

i, j, k, ` ∈ Z, and thus ϕ|A corresponds to the matrix

 i j

k `

 ∈ GL(2,Z), relative to the

basis x2y−1, z. Now by Proposition A.1,

Kr = 〈x2y−1, z2〉, Kt = 〈x2, y2, z2〉 and Krt = 〈y〉;

thus we have K = 〈x2, y, z2〉. By Lemma 2.11, ϕ(K) = K. Then since x2y−1 ∈ K,

ϕ(x2y−1) = (x2y−1)izj ∈ K = 〈x2, y, z2〉,

so j is even.

Let ξ : 〈x2y−1, z〉 → 〈x2y−1, z〉 be the automorphism given by

ξ : (x2y, z) 7→ ((x2y−1)izj, (x2y−1)kz`).

Thus ξ corresponds to a matrix

 i j

k `

 in the subgroup of GL(2,Z) of matrices with j
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even. The map

ψξ : (x2y−1, y, z, r, t) 7→ (ξ(x2y−1), y, ξ(z), r, t)

= (x, y, z, r, t) 7→ (xiy(1−i)/2zj/2, y, xkz`, r, t)

determines an automorphism of G12 because it satisfies the relations in the presentation of

G12. By Lemma 7.1 (ii) we know that the set of matrices

 i j

k `

 in GL(2,Z) with j even

is a subgroup of GL(2,Z) and that it can be generated by three matrices. Therefore there

exist three corresponding automorphisms that generate all the automorphisms that are of

the form described by ψξ. These are:

ψ4 : (x, y, z, r, t) 7→ (xz, y, z, r, t);

ψ5 : (x, y, z, r, t) 7→ (x, y, x−2yz, r, t);

ψ6 : (x, y, z, r, t) 7→ (x−1y, y, z, r, t).

Composing with these three outer automorphisms gives ϕ|〈x2y−1,z〉 = Id. Since we also have

ϕ(y) = y and 〈y〉 × 〈x2y−1, z〉 has finite index in A, we conclude that ϕ|A = Id.

By Proposition 6.19 we may compose with outer automorphisms if necessary so as to

have ϕ(t) ∈ {t, xit} for some i ∈ Z. Composing with Ix can ensure ϕ(t) ∈ {t, xt}. However,

Proposition 6.14 implies that since ϕ(Ar) = Ar and (x, r) = x−2y /∈ 〈x2, y2, z2〉, we cannot

have ϕ(t) = xt. Thus we have ϕ(t) = t.

Since r2 = (rt)2 = 1, Proposition 6.17 gives ϕ(r) = r and ϕ(rt) = rt; thus we have

ϕ(f) = f for all f ∈ F.

Applying Theorem 6.21 with Lemma 6.31 for all a ∈ A, we have ϕ(art) = ahrt for some

h ∈ {1, rt}. If h = rt then we may compose with It ◦ ι. Since

(It ◦ ι)(artrt) = It(rt(a
−1)rt) = rtart = art,

we now have ϕ|Art = Id.

By Lemma 6.31, for all a ∈ A we have ϕ(ar) = ahr for some h ∈ Rr where Rr = {1, r}
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by Corollary 6.26. Suppose that h = r. Then

x2y−1t ∼ ϕ(x(xy−1) · t) = ϕ(xr · x−1rt) ∼ ϕ(xr)ϕ(x−1rt) = xrr · x−1rt = xr(x−1)rt = t.

However, x2y−1t /∈ tG = 〈x2, y2, z2〉t. This contradiction implies that h 6= r; thus ϕ|Ar = Id.

Now by Corollary 6.26 we have Rt ∩Rrt ∩Rr = {1}. We use this to apply Theorem 6.35

(ii). Since ϕ|Art = ϕ|Ar = Id and ϕ(t) = t, by the theorem it follows that ϕ|At = Id and

therefore ϕ = Id..

We have shown that

Theorem 7.3. For crystallographic group G12, the group W(G) is generated by the inverse

map ι, the inner automorphisms and

ψ4 : (x, y, z, r, t) 7→ (xz, y, z, r, t);

ψ5 : (x, y, z, r, t) 7→ (x, y, x−2yz, r, t);

ψ6 : (x, y, z, r, t) 7→ (x−1y, y, z, r, t);

ψy : (x, y, z, r, t) 7→ (x, y, z, r, yt);

ψz : (x, y, z, r, t) 7→ (x, y, z, zr, zt).

Thus we have W(G) =W0(G).

Let ϕ ∈ W(G13). By Proposition 6.6 we have ϕ(Af) = Af for all f ∈ F and ϕ(y) ∈

{y, y−1}. If we have ϕ(y) = y−1 then composing with It we may assume that ϕ(y) = y.

Since C2 = 〈x, z〉 ∪ 〈y〉, by Proposition 6.5 (ii) we have ϕ(〈x, z〉) = 〈x, z〉. In other words,

ϕ|〈x,z〉 is an automorphism of a free abelian group of rank 2. We may write ϕ(x) = xizj and

ϕ(z) = xkz` for i, j, k, ` ∈ Z, and so ϕ|A corresponds to the matrix

 i j

k `

 ∈ GL(2,Z). Now

for this group we have G′ = 〈x2, y2, z〉 and by Lemma 2.11 ϕ(G′) = G′. Then since z ∈ G′,

ϕ(z) = xkz` ∈ G′ = 〈x2, y2, z〉

so k is even.
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Let ξ : 〈x, z〉 → 〈x, z〉 be the automorphism determined by

ξ : (x, z) 7→ (xizj, xkz`).

Thus ξ corresponds to a matrix

 i j

k `

 in the subgroup of GL(2,Z) of matrices with k

even. For a ∈ A, the map

ψξ,a : (x, y, z, r, t) 7→ (ξ(x), y, ξ(z), ar, t)

determines an automorphism of G13 if it satisfies the relations in the presentation of G13.

(The pertinent relations here are r2 = 1 and (rt)2 = z.) Accordingly, we require (ar)2 = 1

(which implies ar = a−1) and (art)2 = aartz = ξ(z), i.e. a2z = xkz`. Equivalently, we

require that a = xk/2z(`−1)/2. By Lemma 7.1 (iii) we know that the set of matrices

 i j

k `


in GL(2,Z) with k even is a subgroup of GL(2,Z) and that it can be generated by three

matrices. Therefore there exist three corresponding automorphisms that generate all the

automorphisms that are of the form described by ψξ. These are:

ψ7 : (x, y, z, r, t) 7→ (x, y, x2z, xr, t);

ψ8 : (x, y, z, r, t) 7→ (xz−1, y, z, r, t);

ψ9 : (x, y, z, r, t) 7→ (x−1, y, z, r, t).

Composing with these three outer automorphisms, we can ensure that ϕ|〈x,z〉 = Id. Since we

also have ϕ(y) = y we conclude that ϕ|A = Id.

By Proposition 6.19 we may compose with outer automorphisms ψx, ψy, and ψz if neces-

sary so as to have ϕ(t) = t. Since r2 = 1 and (rt)2 = z−1, Proposition 6.17 gives ϕ(r) ∈ {r, zr}

and ϕ(rt) = rt. If ϕ(r) = zr then composing with It ◦ ι we have ϕ(r) = r. (Notice that

we still have ϕ(rt) = rt as (rt)t = (rt)−1. Another way to see this is to realize that after

composing with It ◦ ι the hypotheses of Proposition 6.17 are still met; thus we still have

ϕ(rt) = rt. ) Thus we now have ϕ(f) = f for all f ∈ F.
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Let i, j, k ∈ Z. For G = G13 we have

(xiyjzkr)G = 〈x2, z2〉xiyjzkr ∪ 〈x2, z2〉xiy−jzk−1r.

From this we see that yzr � (yz)tr = y−1z−1r;, thus t /∈ Sr. By Lemma 6.32 (iv) we conclude

Sr = {1, r}. By Corollary 6.26 Rrt = {1, rt}. We use this to apply Theorem 6.33 to the Art

coset. Since Rrt ∩ Sr = {1} we must have ϕ|Art = Id.

Next we use a similar argument to show that ϕ|Ar = Id. We have

(xiyjzkrt)G = 〈y2〉xiyjzkrt ∪ 〈y2〉x−iyjz−k−1rt.

Therefore zrt � ztrt = z−1rt which shows that t /∈ Srt; so by Lemma 6.32 (iv) we have

Srt = {1, rt}. Corollary 6.26 gives Rr = {1, r}, and so Rr ∩ Srt = {1}. By Theorem 6.33 we

conclude ϕ|Ar = Id.

Note that we have Rr ∩ Rrt = {1} by Corollary 6.26. We use this to apply Theorem

6.35 (ii), using the fact that ϕ|Ar = ϕ|Art = Id and ϕ(t) = t. Then by the theorem we have

ϕ|At = Id and therefore ϕ = Id.

We have shown that

Theorem 7.4. For crystallographic group G13, the group W(G) is generated by the inverse

map ι, the inner automorphisms, and

ψ7 : (x, y, z, r, t) 7→ (x, y, x2z, xr, t);

ψ8 : (x, y, z, r, t) 7→ (xz−1, y, z, r, t);

ψ9 : (x, y, z, r, t) 7→ (x−1, y, z, r, t);

ψx : (x, y, z, r, t) 7→ (x, y, z, xr, xt);

ψy : (x, y, z, r, t) 7→ (x, y, z, r, yt);

ψz : (x, y, z, r, t) 7→ (x, y, z, zr, zt).

Thus we have W(G) =W0(G).
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7.2 Groups 16 through 22

Let ϕ ∈ W(G16). By Proposition 6.3 we have C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. By Proposition 6.5 (iv)

for β ∈ B = {x, y, z} we have ϕ(β) ∈ {x±1, y±1, z±1}. Composing ϕ with either

ψ1 : (x, y, z, p, r) 7→(y, z, x, pr, p) or

ψ2
1 : (x, y, z, p, r) 7→(z, x, y, r, pr)

we may assume we have ϕ(x) ∈ {x±1}. Then composing ϕ with

ψ2 : (x, y, z, p, r) 7→ (x, z, y, r, p)

we have ϕ(β) ∈ βG for all β ∈ {x, y, z}. Composing with Ip and Ipr if necessary we have

ϕ(x) = x and ϕ(y) = y. To arrive at ϕ(z) = z we may compose with Ip composed with

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r). (7.1)

We may now assume that ϕ|A = Id.

By Proposition 6.9 (ii) we have ϕ(Af) = Af for all f ∈ F. Thus we have ϕ(p) = ap for

some a ∈ A. Squaring both sides we have 1 = ϕ(p2) ∼ (ap)2 = aap, thus ap = a−1. We may

therefore assume a ∈ 〈x, y〉. By Proposition 6.19 the following are outer automorphisms:

ψx : (x, y, z, p, r) 7→(x, y, z, xp, xr) and

ψy : (x, y, z, p, r) 7→(x, y, z, yp, r).

Composing ϕ with these maps we may then assume that we have ϕ(p) = p.

Let ϕ(r) = br. Squaring both sides we have 1 = ϕ(r2) ∼ (br)2 = bbr; thus br = b−1. We

also have ϕ(p · r) = pbr, and squaring both sides we have

1 = ϕ((pr)2) ∼ (pbr)2 = pbrpbr = bpbr = bpb−1,

so that bp = b, which implies b ∈ 〈z〉. Composing with

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr),

we have ϕ(r) = r.
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We have by Lemma 6.31 and Corollary 6.27 that ϕ(ap) = ahp for some h ∈ {1, p}. Note

that (ψι ◦ ι)(ap) = ψι(pa
−1) = pa = app, thus if we have h = p, then composing with this

anti-automorphism we have arranged to have ϕ|Ap = Id. Since ϕ(r) = r, Corollary 6.36

gives ϕ|Ar = Id.

Let ϕ(pr) = cpr for some c ∈ A. This gives ϕ(pr · p) ∼ cr and ϕ(pr · r) ∼ cp. Squaring

both sides of each of these equations gives the following:

1 ∼ (cpr)2 = ccpr which implies cpr = c−1;

1 ∼ (cr)2 = ccr which implies cr = c−1;

1 ∼ (cp)2 = ccp which implies cp = c−1.

This shows c−1 = cp = cr = cpr, thus c = 1. We now have ϕ(pr) = pr and therefore by

Corollary 6.36 ϕ|Apr = Id, so that ϕ = Id.

We have shown

Theorem 7.5. For crystallographic group G16, the group W(G) is generated by the inverse

map ι, the inner automorphisms, and

ψ1 : (x, y, z, p, r) 7→ (y, z, x, pr, p),

ψ2 : (x, y, z, p, r) 7→ (x, z, y, r, p),

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r),

ψx : (x, y, z, p, r) 7→ (x, y, z, xp, xr),

ψy : (x, y, z, p, r) 7→ (x, y, z, yp, r),

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr).

Thus we have W(G) =W0(G).

Let ϕ ∈ W(G17). Since Ar and Apr contain elements of order 2 but Ap does not, we

must have ϕ(Ap) = Ap. If we have ϕ(Ar) = Apr then we may compose ϕ with

ψ3 : (x, y, z, p, r) 7→ (y, x, z, p, p−1r), (7.2)

83



and now we have ϕ(Af) = Af for all f ∈ F. By Proposition 6.9 (ii) we have ϕ(β) ∈ {β±1}

for all β ∈ {x, y, z}. Composing with Ip and Ipr if necessary we have ϕ(x) = x and ϕ(y) = y.

To arrive at ϕ(z) = z we may compose with Ip composed with

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p−1, r). (7.3)

We may now assume that ϕ|A = Id.

Let ϕ(r) = br. Squaring both sides we have 1 = ϕ(r2) ∼ (br)2 = bbr, so br = b−1; thus we

have b ∈ 〈x, z〉. By Proposition 6.19 the following maps are outer automorphisms:

ψx : (x, y, z, p, r) 7→(x, y, z, xp, xr) and

ψz : (x, y, z, p, r) 7→(x, y, z, p, zr).

Composing ϕ with these maps as necessary we have ϕ(r) = r.

Let ϕ(p) = ap for some a ∈ A. Then ϕ(p · r) ∼ apr, and squaring both sides we have

1 ∼ aapr. This implies that a ∈ 〈y, z〉. Squaring both sides of ϕ(p) = ap we have z = ϕ(p2) ∼

(ap)2 = aapz, thus aap ∈ {1, z−2}. This gives a ∈ 〈x, y〉 ∪ 〈x, y〉z−1. Since we also have

a ∈ 〈y, z〉, we conclude that a ∈ 〈y〉 ∪ 〈y〉z−1. Then composing ϕ with

ψy : (x, y, z, p, r) 7→ (x, y, z, yp, r), (7.4)

we can arrange to have ϕ(p) ∈ {p, z−1p}. Note zp ∼ (zp)r = z−2p, thus ϕ(zp) ∼ ϕ(z−2p).

However, if we have ϕ(p) = z−1p, then

ϕ(z · p) ∼ z · z−1p = p,

while

ϕ(z−2 · p) ∼ z−2 · z−1p = z−3p.

Since pG = 〈x2, y2〉p ∪ 〈x2, y2〉z−1p, we see p � z−3p which is a contradiction. We therefore

must have ϕ(p) = p.

We have by Lemma 6.31 and Corollary 6.27 that ϕ(ap) = ahp for some h ∈ {1, p}. Note

that (ψι ◦ ι)(ap) = ψι(p
−1a−1) = pa = app, thus if we have h = p then composing with this
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anti-automorphism we may assume we have ϕ|Ap = Id. We have ϕ(r) = r, thus by Corollary

6.36, ϕ|Ar = Id.

Let ϕ(pr) = cpr. Squaring both sides we have 1 ∼ (cpr)2 = ccpr so cpr = c−1; thus

c ∈ 〈y, z〉. We also have r = ϕ(p−1 · pr) ∼ p−1cpr = cpr. Squaring both sides this is

1 ∼ (cpr)2 = (ccr)p, which implies cr = c−1; thus c ∈ 〈x, z〉. Combining these results we have

c ∈ 〈z〉. Now ϕ(pr ·r) ∼ cp, and squaring both sides we have z ∼ ccpz = c2z, so c2 ∈ {1, z−2}.

Thus we have c ∈ {1, z−1}. Suppose that c = z−1. Then using ϕ|A = ϕ|Ap = ϕ|Ar = Id we

have

xz−1pr = ϕ(x · pr) = ϕ(xp · r) ∼ xpr.

Proposition C.2 gives (xpr)G = 〈y2, z2〉xpr ∪ 〈y2, z2〉x−1zpr which implies xpr � xz−1pr.

This is a contradiction. We therefore must have c = 1 i.e. ϕ(pr) = pr. Corollary 6.36 then

gives ϕ|Apr = Id and thus ϕ = Id.

We have shown

Theorem 7.6. For crystallographic group G = G17, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ3 : (x, y, z, p, r) 7→ (y, x, z, p, p−1r);

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p−1, r);

ψx : (x, y, z, p, r) 7→ (x, y, z, xp, xr);

ψy : (x, y, z, p, r) 7→ (x, y, z, yp, r);

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr).

Thus we have W(G) =W0(G).

Let ϕ ∈ W(G21). Proposition 6.3 gives C2 = 〈x2y−1〉 ∪ 〈y〉 ∪ 〈z〉. By Corollary 6.7 we

have ϕ(z) ∈ zG. By Lemma 6.4 it follows that ϕ(Ap) = Ap. Composing ϕ with

ψ4 : (x, y, z, p, r) 7→ (x, x2y−1, z, p, pr)
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we may assume we have ϕ(β) ∈ βG for all β ∈ B = {x2y−1, y, z}. Composing ϕ with Ip and

Ipr if necessary we have ϕ(x2y−1) = x2y−1 and ϕ(y) = y. To arrive at ϕ(z) = z we may

compose with Ip composed with

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r).

We now have ϕ(β) = β for β ∈ B, and since 〈B〉 = 〈C2〉 and ϕ|A is a homomorphism, we

have ϕ|〈C2〉 = Id. Since 〈C2〉 has finite index in A and we conclude that ϕ|A = Id. Now by

Proposition 6.9 (ii) we have ϕ(Af) = Af for all f ∈ F.

Let ϕ(pr) = cpr for some c ∈ A. Squaring both sides gives 1 ∼ ccpr i.e. cpr = c−1 thus

c ∈ 〈y, z〉. By Proposition 6.19 the maps below define outer automorphisms.

ψy : (x, y, z, p, r) 7→ (x, y, z, yp, r) and

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr).

Composing ϕ with these automorphisms we may assume we have ϕ(pr) = pr. We have

by Lemma 6.31 and Corollary 6.27 that ϕ(apr) = ahpr for some h ∈ {1, pr}. Note that

(ψι ◦ ι)(apr) = ψι(pra
−1) = pra = aprpr, thus if we have h = pr then composing ϕ with this

anti-automorphism we may assume we have ϕ|Apr = Id.

Let ϕ(p) = ap for some a ∈ A. Squaring both sides we have 1 ∼ aap so ap = a−1 thus

a ∈ 〈x, y〉. Squaring both sides of ϕ(p · pr) ∼ ap · pr gives 1 ∼ aar, so ar = a−1, thus

a ∈ 〈x2y−1, z〉. Therefore we have a ∈ 〈x2y−1〉. Composing ϕ with the inner automorphism

Ix : (x, y, z, p, r) 7→ (x, y, z, x−2p, x−2yr)

we may assume that we have ϕ(p) = p and by Corollary 6.36 ϕ|Ap = Id.

Let ϕ(r) = br for some b ∈ A. This gives ϕ(r · p) ∼ bpr and ϕ(r · pr) ∼ bp. Squaring both
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sides of each of these equations gives the following:

1 ∼ (br)2 = bbr which implies br = b−1;

1 ∼ (bpr)2 = bbpr which implies bpr = b−1;

1 ∼ (bp)2 = bbp which implies bp = b−1.

This shows b−1 = bp = br = bpr and so we must have b = 1. We now have ϕ(r) = r and

therefore by Corollary 6.36, ϕ|Ar = Id and thus ϕ = Id.

We have shown that

Theorem 7.7. For crystallographic group G = G21, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ4 : (x, y, z, p, r) 7→ (x, x2y−1, z, p, pr);

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r);

ψy : (x, y, z, p, r) 7→ (x, y, z, yp, r);

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr).

Thus we have W(G) =W0(G).

Let ϕ ∈ W(G22). We have ϕ(Ap) ∈ {Ap,Ar,Apr}. Note that the following automor-

phisms permute these three cosets:

ψ5 : (x, y, z, p, r) 7→ (xy−1, x, x2z−1, pr, p);

ψ6 : (x, y, z, p, r) 7→ (y, x, z, p, pr).

Thus by composing ϕ with these maps we can assume we have ϕ(Af) = Af for all f ∈ F.

Note that by Proposition 6.3 we have C2 = 〈x2z−1〉∪ 〈y2z−1〉∪ 〈z〉. Then by Proposition 6.9

(ii) we have ϕ(β) ∈ βG for all b ∈ B = {x2z−1, y2z−1, z}. Composing ϕ with Ip and Ir as

necessary we have ϕ(x2z−1) = x2z−1 and ϕ(y2z−1) = y2z−1. Now we have the automorphism

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r)
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and note that

Ip ◦ ψι : (x2z−1, y2z−1, z) 7→ (x2z−1, y2z−1, z−1).

If we have ϕ(z) = z−1 then composing with Ip ◦ ψι we have we have ϕ(β) = β for all β ∈ B.

Using the fact that ϕ|A is a homomorphism gives ϕ|〈C2〉 = Id and since and 〈C2〉 has finite

index in A, it also gives ϕ|A = Id.

Let ϕ(p) = ap for some a ∈ A. Squaring both sides we have 1 ∼ aap thus ap = a−1. This

implies a ∈ 〈xy−1, xyz−1〉 = 〈xy−1, y2z−1〉. By Proposition 6.19 the map below defines an

outer automorphism:

ψx : (x, y, z, p, r) 7→ (x, y, z, xy−1p, xr). (7.5)

Composing ϕ with ψx and with

I−1y : (x, y, z, p, r) 7→ (x, y, z, y2z−1p, zr), (7.6)

we may assume that ϕ(p) = p. Now by Lemma 6.31 and Corollary 6.27 that ϕ(ap) = ahp for

some h ∈ {1, p}. If we have h = p then we may compose ϕ with

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r)

and then with ι. Since (ψι ◦ ι)(ap) = ψι(pa
−1) = pa = app, composing ϕ with this anti-

automorphism we now have ϕ|Ap = Id.

Let ϕ(r) = br for some b ∈ A. Squaring both sides gives 1 ∼ bbr, thus b ∈ 〈x, z〉. We also

have ϕ(p · r) ∼ pbr = bppr and squaring both sides of this relation gives 1 ∼ (bppr)2 = bpbr.

This implies b ∈ 〈y, z〉, thus we must have β ∈ 〈z〉. Composing ϕ with the automorphism

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr)

we now have ϕ(r) = r and so by Corollary 6.36 ϕ|Ar = Id.

Let ϕ(pr) = cpr for some c ∈ A. This gives ϕ(pr · p) ∼ cr and ϕ(pr · r) ∼ cp. Squaring
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both sides of each of these relations gives the following:

1 ∼ (cpr)2 = ccpr which implies cpr = c−1;

1 ∼ (cr)2 = ccr which implies cr = c−1;

1 ∼ (cp)2 = ccp which implies cp = c−1.

This shows c−1 = cp = cr = cpr, thus c = 1. We now have ϕ(pr) = pr and therefore by

Corollary 6.36, ϕ|Apr = Id and thus ϕ = Id.

We have shown that

Theorem 7.8. For crystallographic group G = G22, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ5 : (x, y, z, p, r) 7→ (xy−1, x, x2z−1, pr, p);

ψ6 : (x, y, z, p, r) 7→ (y, x, z, p, pr);

ψι : (x, y, z, p, r) 7→ (x−1, y−1, z−1, p, r);

ψx : (x, y, z, p, r) 7→ (x, y, z, xy−1p, xr);

ψz : (x, y, z, p, r) 7→ (x, y, z, p, zr).

Thus we have W(G) =W0(G).

7.3 Groups 25 through 42

Let ϕ ∈ W(G25). By Lemma 6.8 (vi) composing ϕ with ψι if necessary we may assume

ϕ(z) = z. By Corollary 6.10 (i) we have ϕ(Ap) = Ap. If ϕ(As) = Aps we may compose ϕ

with

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

and now we have ϕ(Af) = Af for all f ∈ F. Then by Corollary 6.10 (ii), by composing ϕ

with inner automorphisms as necessary we have ϕ|A = Id.
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Let ϕ(p) = ap for some a ∈ A. Note p has order 2 thus ap must have order 2 which

implies a ∈ 〈x, y〉. By Proposition 6.19 the maps below determine outer automorphisms:

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s) and

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys).

Composing ϕ with these maps we can ensure that ϕ(p) = p. Then by Proposition 6.13 we

have ϕ(f) = f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. Suppose we have h = s, thus

ϕ(as) = ass = sa. Now composing ϕ with

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1)

and then composing again with ι, we now have ϕ|A∪As = Id. By Lemma 6.31, for all a ∈ A

we have ϕ(aps) = ahps for some h ∈ Rps = {1, ps}. Composing ϕ with the non-trivial wct

τ(ps, {Ap,Aps}) we now have ϕ|Aps = Id. (Theorem 5.9 proves τps is non-trivial.)

By Corollary 6.37, since ϕ|As∪Aps = Id we conclude ϕ = Id.

We have shown that

Theorem 7.9. For crystallographic group G = G25, W(G) is generated by the inverse map

ι, the inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p, s),

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s),

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys),

and the non-trivial wct τps. Thus we have W(G) = 〈W0(G), τps〉.

Let ϕ ∈ W(G26). By Lemma 6.8(vi), composing ϕ with ψι if necessary we have ϕ(z) = z.

By Corollary 6.10 (i) we have ϕ(Ap) = Ap. Next we note that the As coset contains no
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involutions but there are involutions in Aps. Thus we see that ϕ(As) 6= Aps. Therefore

we have ϕ(Af) = Af for all f ∈ F. By Corollary 6.10 (ii), by composing ϕ with inner

automorphisms as necessary we have ϕ|A = Id.

Let ϕ(p) = ap for some a ∈ A. Squaring both sides gives (since z ∈ Z(G)) we have

z = (ap)2 = aapz, thus ap = a−1. This implies a ∈ 〈x, y〉. By Proposition 6.19 the following

maps define outer automorphisms:

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s) and

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys).

By composing with these maps we can ensure that ϕ(p) = p. Then by Proposition 6.13 we

have ϕ(f) = f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. Suppose we have h = s, thus

ϕ(as) = ass = sa. composing ϕ with

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1),

and then with ι, we now have ϕ|A∪As = Id. By Lemma 6.31, for all a ∈ A we have ϕ(aps) =

ahps for some h ∈ Rps = {1, ps}. Composing ϕ with the non-trivial wct τ(ps, {Ap,Aps})

we now have ϕ|Aps = Id. (Theorem 5.9 proves τps is non-trivial.) By Corollary 6.37, since

ϕ|As∪Aps = Id we conclude ϕ = Id.

We have shown that

Theorem 7.10. For crystallographic group G = G26 W(G) is generated by the inverse map

ι, the inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1),

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s),

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys),

and the non-trivial wct τps. Thus we have W(G) = 〈W0(G), τps〉.
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Let ϕ ∈ W(G27). By Lemma 6.8 (vi) composing ϕ with ψι if necessary we may assume

ϕ(z) = z. By Corollary 6.10 (i) we have ϕ(Ap) = Ap. If ϕ(As) = Aps we may compose ϕ

with

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

and now we have ϕ(Af) = Af for all f ∈ F. Then by Corollary 6.10 (ii), by composing ϕ

with inner automorphisms as necessary we have ϕ|A = Id. Let ϕ(p) = ap for some a ∈ A.

Note p has order 2 thus ap must have order 2 which implies a ∈ 〈x, y〉. By Proposition 6.19

the maps below determine outer automorphisms:

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s) and

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys).

By composing ϕ with these maps we can assume that ϕ(p) = p. Then by Proposition 6.13

we have ϕ(f) = f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. Suppose we have h = s, thus

ϕ(as) = ass = sa. composing with ι composed with

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1)

we now have ϕ|A∪As = Id. By Lemma 6.31, for all a ∈ A we have ϕ(aps) = ahps for some

h ∈ Rps = {1, ps}. Composing ϕ with the non-trivial wct τ(ps, {Ap,Aps}) we now have

ϕ|Aps = Id. (Theorem 5.9 proves τps is non-trivial.)

We have shown that

Theorem 7.11. For crystallographic group G = G27, the group W(G) is generated by the

92



inverse map ι, the inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p, s−1),

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s),

ψy : (x, y, z, p, s) 7→ (x, y, z, yp, ys),

and the non-trivial wct τps. Thus we have W(G) = 〈W0(G), τps〉.

Let ϕ ∈ W(G38). By Lemma 6.8 (vi), composing ϕ with ψι if necessary we have ϕ(z) = z.

By Proposition 6.3, C2 = 〈x〉 ∪ 〈y2z−1〉, thus by Proposition 6.5 (iv) we have ϕ(y2z−1) ∈

{x±1}, (y2z−1)±1}. Now consider that

ϕ(y)2 = ϕ(y2) = ϕ(y2z−1 · z) = ϕ(y2z−1)ϕ(z) = ϕ(y2z−1)z.

The left hand side is a square but if ϕ(y2z−1) ∈ {x, x−1} then the right hand side would

not be a square. We conclude ϕ(y2z−1) ∈ (y2z−1)G. Then by Proposition 6.9 (ii) we have

ϕ(Af) = Af for all f ∈ F and by Corollary 6.10 (ii), composing with inner automorphisms

if necessary, we have ϕ|A = Id.

Let ϕ(p) = ap for some a ∈ A. Note p has order 2 thus ap must have order 2 which

implies a ∈ 〈x, y2z−1〉. By composing ϕ with the automorphisms below we can ensure that

ϕ(p) = p.

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s) and

Iy : (x, y, z, p, s) 7→ (x, y, z, y−2zp, y−2zs).

(Note ψx is an outer autmorphism by Proposition 6.19.) Then by Proposition 6.13 we have

ϕ(f) = f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. Suppose we have h = s, thus
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ϕ(as) = ass = sa. composing with ι composed with

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p, s)

we now have ϕ|A∪As = Id. By Lemma 6.31, for all a ∈ A we have ϕ(aps) = ahps for some

h ∈ Rps = {1, ps}. Composing ϕ with the non-trivial wct τ(ps, {Ap,Aps}) we now have

ϕ|Aps = Id. (Theorem 5.9 proves τps is non-trivial.) By Corollary 6.37, since ϕ|As∪Aps = Id

we conclude ϕ = Id.

We have shown that

Theorem 7.12. For crystallographic group G = G38, W(G) is generated by the inverse map

ι, the inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p, s),

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s),

and the non-trivial wct τps. Thus we have W(G) = 〈W0(G), τps〉.

Let ϕ ∈ W(G39). By Lemma 6.8 (vi), composing ϕ with ψι if necessary we have ϕ(z) = z.

By Corollary 6.10 (i) we have ϕ(Ap) = Ap. Since As contains involutions but Aps does not,

ϕ(As) = Aps is not possible thus we have ϕ(Af) = Af for all f ∈ F. Then by Corollary

6.10 (ii), composing with inner automorphisms if necessary, we have ϕ|A = Id.

Let ϕ(p) = ap for some a ∈ A. Squaring both sides of this equation we have

z = ϕ(z) = ϕ(p2) ∼ (ap)2 = aapp2 = aapz.

Since z ∈ Z(G) we have equality, i.e. z = aapz thus ap = a−1. This tells us a ∈ 〈x, y2z−1〉.

By composing with the maps below we can ensure that ϕ(p) = p.

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s) and

Iy : (x, y, z, p, s) 7→ (x, y, z, y−2zp, y−2zs).

94



(By Proposition 6.19 ψx is an outer autmorphism.) Then by Proposition 6.13 we haveϕ(f) =

f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. If h = s then we may compose with

the non-trivial wct τ(s, {Ap,As}) and now we have ϕ|As = Id.

By Lemma 6.31, for all a ∈ A we have ϕ(aps) = ahps for some h ∈ Rps = {1, ps}. Com-

posing if necessary with the non-trivial wct τ(ps, {Ap,Aps}) we may assume that ϕ|Aps = Id.

(Theorem 5.9 proves τs and τps are non-trivial.) We note that τps = ι ◦ ψι ◦ τs, therefore

τps will not be listed as a generator of W(G). By Corollary 6.37, since ϕ|As∪Aps = Id and

Rps ∩ ∫ = 1, we conclude ϕ|Ap = Id.

We have shown that

Theorem 7.13. For crystallographic group 39, W(G) is generated by the inverse map ι, the

inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s),

ψx : (x, y, z, p, s) 7→ (x, y, z, xp, s),

and the non-trivial wct τs. Thus we have W(G) = 〈W0(G), τs〉.

Let ϕ ∈ W(G42). By Lemma 6.8 (vi), composing ϕ with ψι if necessary we may assume

ϕ(z) = z. By Corollary 6.10 (i) we have ϕ(Ap) = Ap. If ϕ(As) = Aps we may compose ϕ

with the outer automorphism

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

and now we have ϕ(Af) = Af for all f ∈ F. Then by Corollary 6.10 (ii), by composing with

inner automorphisms as necessary we have ϕ|A = Id.

Let ϕ(p) = bp for some b ∈ A. Note p has order 2 thus bp also has order 2 which implies

b ∈ 〈xy−1, xyz−1〉. Note that 〈xy−1, xyz−1〉 has index 2 in 〈x2z−1, y2z−1〉, thus by composing
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ϕ with the inner automorphisms

Ix : (x, y, z, p, s) 7→ (x, y, z, x−2zp, s)

and Iy : (x, y, z, p, s) 7→ (x, y, z, y−2zp, y−2zs),

we may assume that ϕ(p) ∈ {p, xy−1p}. Suppose that ϕ(p) = xy−1p and let ϕ(s) = as for

some a ∈ A. Then

ϕ(p · s) ∼ xy−1pas = xy−1apps.

Since s and ps have order 2, as and xy−1apps also have order 2. We have |as| = 2 which

implies a ∈ 〈y2z−1〉 and so we have ap = a−1. Also, xy−1apps has order 2, which implies it

is contained in the subgroup 〈x2z−1〉. Thus we conclude that xy−1ap = xy−1a−1 ∈ 〈x2z−1〉.

This indicates that a ∈ 〈y2z−1〉 ∩ 〈x2z−1〉xy−1 which is empty. This is a contradiction

thus ϕ(p) = xy−1p is not possible. We may assume therefore that ϕ(p) = p, and now by

Proposition 6.13 we have ϕ(f) = f for all f ∈ F.

Now by Corollary 6.28 we have Rf = {1, f} for f ∈ {s, ps}. By Lemma 6.31, for all

a ∈ A we have ϕ(as) = ahs for some h ∈ Rs = {1, s}. Suppose we have h = s, thus

ϕ(as) = ass = sa. composing ϕ with ι and then with the automorphism

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p−1, s−1)

we now have ϕ|A∪As = Id. By Lemma 6.31, for all a ∈ A we have ϕ(aps) = ahps for some

h ∈ Rps = {1, ps}. Composing ϕ with the non-trivial wct τ(ps, {Ap,Aps}) we now have

ϕ|Aps = Id. (Theorem 5.9 proves τps is non-trivial.) By Corollary 6.37, since ϕ|As∪Aps = Id

we conclude ϕ = Id.

We have shown that

Theorem 7.14. For crystallographic group G = G42, the group W(G) is generated by the

inverse map ι, the inner automorphisms,

ψι : (x, y, z, p, s) 7→ (x−1, y−1, z−1, p, s),

ψ1 : (x, y, z, p, s) 7→ (y, x, z, p, ps),

96



and the non-trivial wct τps. Thus we have W(G) = 〈W0(G), τps〉.
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Chapter 8. The wct groups of space groups

having point group 2
m

2
m

2
m

8.1 Groups 47 through 57

Let ϕ ∈ W(G47). By Proposition 6.3 C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality,

let B = {x, y, z}. By Proposition 6.5 (iv) we have {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. If

ϕ(x) ∈ {y±1} then we may compose ϕ with the automorphism

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t)

so that ϕ(x) ∈ xG. Alternatively, if ϕ(x) ∈ {z±1} then we may compose ϕ with the auto-

morphism

ψ2 : (x, y, z, p, r, t) 7→ (z, y, x, pr, r, t)

so that ϕ(x) ∈ xG. If ϕ(y) ∈ {z±1} then we may compose ϕ with the automorphism

ψ3 : (x, y, z, p, r, t) 7→ (x, z, y, r, p, t),

so that we may now assume that ϕ(β) ∈ βG for all β ∈ B. Applying Proposition 6.9 (iv)

we may compose with inner automorphisms so that ϕ|A = Id and by (ii) we also have

ϕ(Af) = Af for all f ∈ F. By Proposition 6.19 we may compose with automorphisms

ψx, ψy, and ψz in order to arrange that ϕ(t) = t. Then by Proposition 6.17, since every

element of F has order 2 we have ϕ(f) = f for all f ∈ F.

Now by Lemma 6.31 for a ∈ A we have ϕ(at) = aht for some h ∈ Rt. We have Rt = F by

Corollary 6.29. Since 〈Aprt, Art, Apt〉 = G/A, we see that composing with the non-trivial

wcts τ(prt, {Aprt, At, Ap,Ar}), τ(rt, {Art, At, Apr, Ap}), and τ(pt, {Apt, At, Ar,Apr}), we

can assume that we have ϕ|At = Id. (Theorem 5.9 proves these three functions are non-

trivial wcts.) We note that τrt = ψ1 ◦ψ2 ◦ τprt ◦ψ2 ◦ψ1 and τpt = ψ1 ◦ψ3 ◦ τprt ◦ψ3 ◦ψ1 so we

will only include τprt when we list the generators of the wct group. Applying Corollary 6.38

we have ϕ = Id.
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We have shown that

Theorem 8.1. For crystallographic group G = G47, the group W(G) is generated by the

inverse map ι, the inner automorphisms,

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t),

ψ2 : (x, y, z, p, r, t) 7→ (z, y, x, pr, r, t),

ψ3 : (x, y, z, p, r, t) 7→ (x, z, y, r, p, t),

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt),

and that W(G) = 〈W0(G), τprt〉.

Proposition 8.2. For group 49 we have

Sp = Sr = Spr = St = F ; Sprt = {1, prt, rt, p};

Srt = {1, prt, rt, p}; Spt = {1, pt, p, t}.

Proof. This follows from Lemma 6.32 and Proposition C.4.

Let ϕ ∈ W(G49). By Proposition 6.3 C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality,

let B = {x, y, z}. By Proposition 6.5 (iv) we have {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. By

Proposition C.4 we have G′ = 〈x2, y2, z〉, thus by applying Lemma 2.11 we conclude ϕ(z) ∈

{z±1}. If ϕ(x) ∈ {y±1} then we may compose ϕ with the automorphism ψ1 : (x, y, z, p, r, t) 7→

(y, x, z, p, pr, t) and now ϕ(x) ∈ xG and ϕ(y) ∈ yG. Applying Proposition 6.9 (iv) we may

compose ϕ with inner automorphisms so that ϕ|A = Id and by (ii) we have ϕ(Af) = Af for

all f ∈ F. By Proposition 6.19 we may compose ϕ with ψx, ψy, and ψz so that we may have

ϕ(t) = t.

The elements of F that have order 2 (besides t) are p, r, pr, and pt. By Proposition 6.17 we

must have ϕ(pt) = pt, ϕ(rt) = rt, ϕ(prt) = prt, and ϕ(p) = p. Recall that (prt)2 = (rt)2 =
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z−1, so by Proposition 6.17 ϕ(pr) ∈ {pr, zpr} and ϕ(r) ∈ {r, zr}. If we have ϕ(r) = zr then

by Proposition 6.18 (i) we may compose ϕ with It ◦ ι so as to have ϕ(r) = r. Now by (ii) we

have ϕ(f) = f for all f ∈ F −{pr}. Note that ϕ(pr · r) = ϕ(p) = p and we also have p � zp

by Proposition C.4. Therefore by Proposition 6.18 (iii) ϕ(r) = r implies ϕ(pr) 6= zpr thus

ϕ(pr) = pr. Thus we have ϕ(f) = f for all f ∈ F.

We now apply Theorem 6.33 three times. We will use the following facts from Proposition

8.2: prt /∈ Spt; rt /∈ Spt, and pt /∈ Srt. Also recall that by Corollary 6.29 Rf = {1, f} for

f ∈ {prt, rt, pt}. Now since p commutes with r we have r ·prt = pt. Then since Rprt∩Spt = 1

Theorem 6.33 implies ϕ|Aprt = Id. Since r2 = 1 we have pr · rt = pt and Rrt ∩ Spt = 1 so

the theorem implies ϕ|Art = Id. Since p commutes with r we have pr · pt = rt so since

Rpt ∩ Srt = 1 we have ϕ|Apt = Id. It follows by Corollary 6.38 that ϕ = Id.

We have shown that

Theorem 8.3. For crystallographic group G = G49, the group W(G) is generated by the

inverse map ι, the inner automorphisms and

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t),

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt),

and that W(G) =W0(G).

Proposition 8.4. For group 50 we have

Sp = Sr = Spr = St = F ; Sprt = {1, prt};

Srt = {1, rt}; Spt = {1, pt}.

Proof. This follows from Lemma 6.32 and Proposition C.5.

Let ϕ ∈ W(G50). By Proposition 6.3, C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. We apply Proposition 6.5

(iv), with B = {x, y, z} and we conclude {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. Proposition
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C.5 gives G′ = 〈x, y, z2〉 so by Lemma 2.11 we have ϕ(z) ∈ {z±1}. If ϕ(x) ∈ {y±1} then we

may compose with the automorphism

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t)

and now ϕ(x) ∈ xG and ϕ(y) ∈ yG. By Proposition 6.9 (iv) we may now compose with inner

automorphisms so that ϕ|A = Id and by (ii) ϕ(Af) = Af for all f ∈ F. By Proposition 6.19

we may compose with ψx, ψy, and ψz in order to ensure ϕ(t) = t.

We have (rt)2 = x−1, thus by Proposition 6.17 we conclude that ϕ(r) ∈ {r, xr}. If we

have ϕ(r) = xr we consider the map It which maps r to xr. Then composing with It ◦ ι we

may assume that we have ϕ(r) = r.

Since p, r, and pr are involutions, we may conclude by Proposition 6.17 that ϕ(pt) =

pt, ϕ(rt) = rt, and ϕ(prt) = prt.

Now let ϕ(p) = bp for some b ∈ A. We have (pt)2 = x−1y−1 thus applying the Proposition

again we see that b2x−1y−1 ∈ {xy, xy−1, x−1y, x−1y−1} which gives b2 ∈ {x2y2, x2, y2, 1} thus

b ∈ {1, x, y, xy}. However we also have bp = ϕ(pt · t) ∼ pt · t = p. Since pG = 〈xy, xy−1〉p we

see b ∈ {x, y} would give a contradiction, thus we have b ∈ {1, xy}.

Let ϕ(pr) = cpr. We again apply Proposition 6.17. Since (prt)2 = y−1 we see that

c ∈ {1, y}. Now p ∼ bp = ϕ(pr · r) ∼ cp but yp � p, therefore we must have ϕ(pr) = pr.

Lastly, pr = ϕ(p · r) ∼ bpr and (pr)G = 〈y, z2〉pr so b = xy gives a contradiction thus

ϕ(p) = p. We have shown that we can assume ϕ(f) = f for all f ∈ F.

We will now apply Theorem 6.33 twice to the At coset. By the theorem, ϕ(at) = aht for

some h ∈ Rt ∩ Srt and also ϕ(at) = aht for some h ∈ Rt ∩ Spt. Combining these we have

h ∈ Rt ∩ Srt ∩ Spt. Proposition 8.4 states that Srt = {1, rt} and Spt = {1, pt}. We conclude

that h = 1, i.e. ϕ|At = Id. We apply Corollary 6.38 and now we have ϕ = Id.

We have shown that

Theorem 8.5. For crystallographic group G = G50, the group W(G) is generated by the
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inverse map ι, the inner automorphisms and

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t),

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Thus, W(G) =W0(G).

Proposition 8.6. For group 51 we have

Sr = Srt = St = F ;

Sp = Sprt = {1, p, rt, prt};

Spr = Spt = {1, pr, rt, pt};

Proof. This follows from Lemma 6.32 and Proposition C.6.

Let ϕ ∈ W(G51). Note that by Lemma 6.12, Apr and Apt are the only cosets that

do not contain elements of order 2. This together with Corollary 6.11 gives ϕ(Apr) =

Apr, ϕ(Apt) = Apt, and ϕ(At) = At. Note that 〈Apr,Apt, At〉 = G/A. Since G/A is abelian

ϕ is a homomorphism we conclude that ϕ(Af) = Af for all f ∈ F. Then by Proposition

6.9 (ii) and (iv), we may now compose ϕ with inner automorphisms so that ϕ|A = Id. By

Proposition 6.19 we may compose with ψx, ψy, and ψz so as to have ϕ(t) = t.

We now consider that p, r, prt, and rt all have order 2 thus by Proposition 6.17 we have

ϕ(f) = f for all f ∈ {pt, rt, pr, r}. Applying the proposition again, since (pt)2 = (pr)2 =

x−1 we have ϕ(p) ∈ {p, xp} and ϕ(prt) ∈ {prt, xprt}. If we have ϕ(prt) = xprt then by

Proposition 6.18 (i),composing with It ◦ ι we have ϕ(prt) = prt. By (ii) we have ϕ(f) = f

for all f ∈ F − {p}. Now by Proposition C.6 we have (rt)G = 〈y2〉rt thus rt � xrt. We use

this as we apply Proposition 6.18 (iii). Since ϕ(p ·prt) = p ·prt � xrt, it follows by (iii) that

ϕ(prt) = prt implies ϕ(p) 6= xp therefore we conclude ϕ(p) = p. Thus we now have ϕ(f) = f

for all f ∈ F.
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Since pt /∈ Sp and prt /∈ Spr, we may apply Corollary 6.34 with f ∈ {pt, prt} which

gives ϕ|Apt∪Aprt = Id. Now Lemma 6.31 gives ϕ(art) = ahrt for some h ∈ Rrt = {1, rt}. If

h = rt we may compose with τ(rt, {Art, At, Apr, Ap}) so as to have ϕ|Art = Id. (Theorem

5.9 proves τrt is a non-trivial wct.) We now have ϕ(g) = g for all g ∈ Aprt∪Art∪Apt, thus

by Corollary 6.38 that ϕ = Id.

We have shown that

Theorem 8.7. For crystallographic group G = G51, the group W(G) is generated by the

inverse map ι, the inner automorphisms,

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt),

and τrt. Thus W(G) = 〈W0(G), τrt〉.

Proposition 8.8. For group 53 we have

Spr = St = F ; Sp = {1, p, prt, rt};

Sr = {1, r, prt, pt}; Sprt = {1, pr, prt, t};

Srt = {1, rt}; Spt = {1, pt}.

Proof. This follows from Lemma 6.32 and Proposition C.7.

Let ϕ ∈ W(G53). Corollary 6.11 tells us ϕ(At) = At and ϕ(Ap) ∈ {Ap,Ar,Apr}. However

by Lemma 6.12, Ap contains no elements of order 2 and Ar and Apr do, thus we have

ϕ(Ap) = Ap. Similarly Aprt contains elements of order 2 but Apt and Art do not thus by

Corollary 6.11 ϕ(Aprt) = Aprt. We know ϕ is a homomorphism as G/A is abelian. Since

〈Ap,At, Aprt〉 = G/A, we conclude ϕ(Af) = Af for all f ∈ F. Now by Proposition 6.9 (ii)

and (iv), we may compose with inner automorphisms so that ϕ|A = Id. By Proposition 6.19

we may compose ϕ with ψx, ψy, and ψz as necessary so we may now assume ϕ(t) = t.
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We now apply Proposition 6.17 with f = p using the fact that (pt)2 = x−1 to deduce

that ϕ(p) ∈ {p, xp}. If we have ϕ(p) = xp then we may compose ϕ with It ◦ ι and now we

have ϕ(p) = p.

Again applying the proposition we see that since r, pr, and prt have order 2, we must have

ϕ(rt) = rt, ϕ(prt) = prt, and ϕ(pr) = pr, and since p2 = z we must have ϕ(pt) ∈ {pt, z−1pt}.

However if ϕ(pt) = z−1pt then

t = ϕ(p−1 · pt) ∼ p−1z−1pt = z−1t.

However, tG = 〈xz, x−1z, y2〉t which does not contain z−1t, thus we have a contradiction. We

conclude that ϕ(pt) = pt.

Using Proposition 6.17 with f = r and thus δ = (rt)2 = x−1z−1 we see that ϕ(r) = br

implies that b ∈ {1, x, z, xz}. However ϕ(r) must also satisfy

t = ϕ(r · rt) ∼ br · rt = bt,

yet tG = 〈xz, x−1z, y2〉t does not contain xt nor zt. We also have

pr = ϕ(p · r) = pbr = bppr,

but (pr)G = 〈y2, z〉pr which does not contain (xz)ppr = x−1zpr. Thus we must have ϕ(r) = r.

We now have ϕ(f) = f for all f ∈ F.

We now apply Theorem 6.33 twice to the At coset. By the theorem, ϕ(at) = aht for some

h ∈ Rt ∩ Srt and also ϕ(at) = aht for some h ∈ Rt ∩ Spt. We conclude h ∈ Rt ∩ Srt ∩ Spt.

Proposition 8.8 states that Srt = {1, rt} and Spt = {1, pt}. We conclude that h = 1, i.e.

ϕ|At = Id. We apply Corollary 6.38 and now we have ϕ = Id.

We have shown that

Theorem 8.9. For crystallographic group G = G53, the group W(G) is generated by the
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inverse map ι, the inner automorphisms and

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Thus W(G) =W0(G).

Proposition 8.10. For group 54 we have

Spt = {1, pt}; Sp = Sprt = Srt = {1, p, prt, rt};

Sr = {1, r, prt, pt}; Spr = {1, pr, rt, pt};

St = F.

Proof. This follows from Lemma 6.32 and Proposition C.8.

Let ϕ ∈ W(G54). By Proposition 6.3 C2 = 〈x〉∪ 〈y〉∪ 〈z〉. We apply Proposition 6.5 (iv),

with B = {x, y, z} and we conclude {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. Now by Corollary

6.11 we have ϕ(At) = At and ϕ(Apr) ∈ {Ap,Ar,Apr}. However, as Ap and Ar each contain

elements of order 2 but by Lemma 6.12, Apr does not, we know ϕ(Apr) = Apr. Since G/A

is abelian, ϕ is a homomorphism thus ϕ(Aprt) = Aprt. By Lemma 6.4 this implies that

ϕ(x) ∈ {x±1} (because y and z commute with every element in Aprt.) Now Proposition C.8

gives G′ = 〈x, y2, z〉 so by Lemma 2.11 we have ϕ(z) ∈ {z±1} thus we have ϕ(β) ∈ βG for

all β ∈ B. By Proposition 6.9 (ii) and (iv) we have ϕ(Af) = Af for all f ∈ F and by

composing with inner automorphisms we have ϕ|A = Id. Now by Proposition 6.19 we may

compose with ψx, ψy, and ψz so that we may assume ϕ(t) = t.

We now apply Proposition 6.17 with f = p using the fact that (pt)2 = x−1 to deduce

that ϕ(p) ∈ {p, xp}. If we have ϕ(p) = xp then we may compose with It ◦ ι and now we have

ϕ(p) = p.

Again applying the proposition we see that since p and r have order 2, we must have

ϕ(pt) = pt and ϕ(rt) = rt. Since (pr)2 = x−1 we must have ϕ(prt) ∈ {prt, xprt}. However if
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ϕ(prt) = xprt then

xprt = ϕ(p · rt) ∼ p · rt,

which contradicts (prt)G = 〈x2〉prt ∪ 〈x2〉xzprt. Therefore ϕ(prt) = prt.

Since (prt)2 = (rt)2 = z−1 Proposition 6.17 indicates we must have ϕ(pr) ∈ {pr, zpr}

and ϕ(r) ∈ {r, zr}. Suppose that ϕ(pr) = zpr. Then

prt = ϕ(pr · t) ∼ zpr · t

which is a contradiction since zprt /∈ (prt)G. We conclude that ϕ(pr) = pr. Lastly, suppose

that ϕ(r) = zr. Then

p = ϕ(p) = ϕ(pr · r) ∼ pr · zr = z−1p.

This contradicts (p)G = 〈x2, y2〉p ∪ 〈x2, y2〉xp thus ϕ(r) = r. We now have ϕ(f) = f for all

f ∈ F.

Note that according to Proposition 8.10 prt /∈ Spr, rt /∈ Sr, and pt /∈ Sp. We therefore

may apply Corollary 6.34 with f ∈ {prt, rt, pt} which gives ϕ|Aprt∪Art∪Apt = Id. Then by

Corollary 6.38 we see that ϕ is the identity map on all of G.

We have shown that

Theorem 8.11. For crystallographic group G = G54, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xr, xt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Therefore W(G) =W0(G).
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Proposition 8.12. For group 55 we have

Sp = Spt = St =F ;

Sr = Sprt = {1, r, prt, pt};

Spr = Srt = {1, pr, rt, pt};

Proof. This follows from Lemma 6.32 and Proposition C.9.

Let ϕ ∈ W(G55). By Corollary 6.11 we have ϕ(Apt) ∈ {Apt, Art, Aprt}. Now by Lemma

6.12, Apt contains elements of order 2 and Art and Aprt do not, thus we know ϕ(Apt) = Apt.

By Proposition 6.3 C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. Without loss of generality, let B = {x, y, z}. By

Proposition 6.5 (iv) we have {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. Now we apply Lemma 6.4

using ϕ(Apt) ∈ Apt. This implies that ϕ(z) ∈ zG (because z is inverted by every element in

Apt but x and y commute with every element in Apt.) If ϕ(x) ∈ yG we may compose ϕ with

the outer automorphism

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t)

and now we have ϕ(β) = β for all β ∈ {x, y, z}. By Proposition 6.9 (ii) ϕ(Af) = Af for all

f ∈ F and by (iv) we may compose ϕ with inner automorphisms so that we have ϕ|A = Id.

By Proposition 6.19 there exist automorphisms ψx, ψy, and ψz and composing ϕ with these

maps we have ϕ(t) = t.

The squares of the elements in F are p2 = (pt)2 = 1, r2 = y, (pr)2 = x, (rt)2 =

x−1, and (prt)2 = y−1. Applying these facts to Proposition 6.17 we have ϕ(p) = p, ϕ(pt) =

pt, ϕ(r) ∈ {r, xr}, ϕ(pr) ∈ {pr, ypr}, ϕ(prt) ∈ {prt, x−1prt}, and ϕ(rt) ∈ {rt, y−1rt}. If we

have ϕ(rt) = y−1rt, then by Proposition 6.18 (i)we may compose ϕ with It ◦ ι so as to ensure

that ϕ(rt) = rt. Then by (ii) we have ϕ(f) = f for all f ∈ F − {r, pr, prt}. We will now

Proposition 6.18 (iii) to show that this implies ϕ(f) = f for all f ∈ {r, pr, prt}. Accordingly,
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we note that by Proposition C.9,

yt � xyt since (xyt)G = 〈xy, xy−1, z2〉t;

y−1pt � pt since (pt)G = 〈z2〉pt;

xp � p since (p)G = 〈xy, xy−1〉p.

Therefore we have

ϕ(r · rt) = ϕ(y · t) ∼ yt � xyt;

thus by Proposition 6.18 (iii) , ϕ(r) 6= xr and so we have ϕ(r) = r. Similarly we have

ϕ(pr · rt) = ϕ(pyt) = ϕ(y−1 · pt) ∼ y−1pt � pt;

thus by the proposition, ϕ(pr) 6= ypr so ϕ(pr) = pr. Lastly, we have

ϕ(prt · rt) = ϕ(px−1) = ϕ(x · p) ∼ xp � p;

thus by the proposition, ϕ(prt) 6= x−1prt i.e. ϕ(prt) = prt and so we now have ϕ(f) = f for

all f ∈ F.

Note that prt /∈ Spr and rt /∈ Sr. Thus we may apply Corollary 6.34 to get ϕ|Aprt∪Art = Id.

Now by Lemma 6.31, for all a ∈ A we have ϕ(apt) = ahpt for some h ∈ {1, pt}. If h = pt

then we may compose with the non-trivial wct τ(pt, {At,Apt, Ar,Apr}) to get ϕ|Apt = Id.

(Theorem 5.9 shows τpt is a non-trivial wct.) By Corollary 6.38 we now have ϕ = Id on all

of G.

We have shown that

Theorem 8.13. For crystallographic group G = G55, the group W(G) is generated by the

inverse map ι, the inner automorphisms,

ψ1 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t),

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xrxt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, ryt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zrzt),
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and τpt. Therefore W(G) = 〈W0(G), τpt〉.

Proposition 8.14. For group 57 we have

Sp = {1, p, prt, rt}; Sr = Sprt = Spt = {1, r, prt, pt};

Spr = {1, pr, rt, pt}; Srt = {1, rt};

St = F.

Proof. This follows from Lemma 6.32 and Proposition C.10.

Let ϕ ∈ W(G57). By Proposition 6.3 C2 = 〈x〉 ∪ 〈y〉 ∪ 〈z〉. We apply Proposition 6.5

(iv), with B = {x, y, z} and we conclude {ϕ(x), ϕ(y), ϕ(z)} ⊆ {x±1, y±1, z±1}. Proposition

C.10 gives G′ = 〈x2, y, z〉 so by Lemma 2.11 we have ϕ(x) ∈ xG. By Corollary 6.11 we have

ϕ(Apt) ∈ {Aprt, Art, Apt}. Since Apt contains elements of order 2 but by Lemma 6.12 Aprt

and Art do not, we have ϕ(Apt) = Apt. Applying Lemma 6.4 to the relation zpt = z−1 we

see that ϕ(z) ∈ yG gives a contradiction. We conclude that ϕ(z) ∈ zG and so ϕ(yG) = yG

as well. By Proposition 6.9 (ii) and (iv) ϕ(Af) = Af for all f ∈ F. and we may compose

ϕ with inner automorphisms so that ϕ|A = Id. By Proposition 6.19 we may compose with

automorphisms ψx, ψy, and ψz as necessary so as to have ϕ(t) = t.

We now apply Proposition 6.17 with f = r using the fact that (rt)2 = z−1 to deduce

that ϕ(r) ∈ {r, zr}. If we have ϕ(r) = zr then we may compose with It ◦ ι and now we have

ϕ(r) = r.

Again applying the proposition we see that since pr and pt have order 2, we must have

ϕ(prt) = prt and ϕ(p) = p. Since (prt)2 = y−1 we have ϕ(pr) ∈ {pr, ypr}; also, r2 = y gives

ϕ(rt) ∈ {rt, y−1rt}. However if ϕ(pr) = ypr then

r = ϕ(p−1 · pr) ∼ p−1 · ypr = y−1r,

and if ϕ(rt) = y−1rt then

r = ϕ(rt · t) ∼ y−1rt · t = y−1r.
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In both cases we arrive at r ∼ y−1r which is a contradiction since rG = 〈x2, z2〉r ∪

〈x2, z2〉y−1zr. Therefore we have ϕ(pr) = pr and ϕ(rt) = rt.

Lastly, since p2 = z the proposition gives ϕ(pt) ∈ {pt, z−1pt}. If ϕ(pt) = z−1pt then

yz−1 · prt ∼ ϕ(yz−1 · prt) = ϕ(r · pt) ∼ rz−1pt = yprt,

which contradicts (yprt)G = 〈x2〉yuprt, u ∈ {0, 1}, thus ϕ(pt) = pt.

We now have ϕ(f) = f for all f ∈ F.

Note that prt /∈ Spr, rt /∈ Sr, and pt /∈ Sp, thus by Corollary 6.34 we have ϕ|Aprt∪Art∪Apt =

Id and so by Corollary 6.38 we now have ϕ = Id.

We have shown that

Theorem 8.15. For crystallographic group G = G57, the group W(G) is generated by the

inverse map ι, the inner automorphisms and

ψx : (x, y, z, p, r, t) 7→ (x, y, z, xp, xrxt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, ryt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zrzt).

Therefore W(G) =W0(G).

8.2 Groups 63 through 68

The following applies to G63, G64, G65, G66, G67, and G68.

Proposition 8.16. Let ϕ ∈ W(G) where G ∈ {G63, G64, G65, G66, G67, G68}.

(i) ϕ(z) ∈ {z, z−1}. Also, for α ∈ {x2y−1, y} we have ϕ(α) ∈ {(x2y−1)±1, y±1}.

(ii) For Af ∈ {At,Ap,Apt} we have ϕ(Af) = Af.

(iii) For Af ∈ {Ar,Apr} we have ϕ(Af) ∈ {Ar,Apr}. Also, for f ∈ {prt, rt} we have

ϕ(Af) ∈ {Aprt, Art}. Finally, ϕ(Ar) = Apr if and only if ϕ(Art) = Aprt.
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Proof. Statement (i) comes directly from Corollary 6.7.

We prove ϕ(Apt) = Apt by using Corollary 6.11. We have ϕ(Apt) ∈ {Aprt, Art, Apt}.

Applying Lemma 6.4 to the relation zpt = z−1 we have ϕ(z)ϕ(pt) = ϕ(z)−1. Since both prt

and rt commute with z we cannot have ϕ(pt) ∈ Aprt ∪ Art.

By Corollary 6.11 we have ϕ(At) = At. Since G/A is abelian ϕ is a homomorphism, thus

ϕ(Ap) = ϕ(Apt ·At) = Apt ·At = Ap, proving (ii). Statement (iii) follows by Corollary 6.11

and the fact that ϕ is a bijective homomorphism.

The following applies to G63, G64, G65, G66, G67, and G68.

Proposition 8.17. Let G be a group with presentation of the form given in Eq. (4.4) with

δ = 1. Let ϕ ∈ W(G) and suppose that ϕ|A = Id and ϕ(Af) = Af for all f ∈ F. Then there

exists an automorphism ψ such that ψ ◦ ϕ satisfies (ψ ◦ ϕ)(t) = t.

Proof. Let ϕ(t) = ct for some c ∈ A. By Proposition 6.19 there exist outer automorphisms

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

and ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Composing with these maps as well as with Ix, we may assume c ∈ {1, x}. By Corollary 6.15

c = x is not possible so we are done.

Proposition 8.18. For group 63 we have

St = Spr = Sprt = F ;

Sp = Srt {1, p, prt, rt};

Sr = Spt = {1, r, prt, pt}.

Proof. This follows from Lemma 6.32 and Proposition C.11.

Let ϕ ∈ W(G63). Here the Aprt coset contains involutions but by Lemma 6.12 the

Art coset does not, therefore we cannot have ϕ(Aprt) = Art. As G/A is abelian, ϕ is a

homomorphism and this together with Proposition 8.16 (ii) and (iii) gives ϕ(Af) = Af for

111



all f ∈ F. Then by Proposition 6.9 (iv) we may compose with inner automorphisms so that

ϕ|A = Id. By Proposition 8.17 we may compose with an automorphism so that ϕ(t) = t.

Five of the seven nontrivial elements in F have order 2, thus by Proposition 6.17 we

have ϕ(f) = f for f ∈ {p, pr, prt, rt}. The proposition also gives ϕ(r) ∈ {r, zr} and ϕ(pt) ∈

{pt, z−1pt}. If we have ϕ(pt) = z−1pt then by Proposition 6.18 (i) we may compose with It ◦ ι

and now we have ϕ(pt) = pt. Then by (ii) we have ϕ(f) = f for f ∈ F−{r}. We will use this

with Proposition 6.18 (iii) to show that ϕ(r) = r as well. One can check that rpt = z−1prt

thus zrpt = prt. By Proposition C.11, (prt)G = 〈x2y−1〉prt, so we have prt � z−1prt. Thus

we have

ϕ(r · pt) = ϕ(z−1 · prt) ∼ z−1 · prt � prt = zrpt.

By Proposition 6.18 (iii) this implies ϕ(r) = r and therefore we now we have ϕ(f) = f for

all f ∈ F.

Notice that pt /∈ Sp, thus by Corollary 6.34 we have ϕ|Apt = Id.

By Proposition 8.18 Spt = {1, r, pt, prt} and by Corollary 6.29Rp = {1, p, rt, prt}. Apply-

ing Theorem 6.33 to the Ap coset we see that since Rp ∩Spt = {1, prt} we have ϕ(ap) = ahp

for all a ∈ A where h ∈ {1, prt}. However if h = prt then

p = ϕ(x−1 · xp) ∼ x−1xprtp = x−2yp.

Since Proposition C.11 gives pG = 〈x2, y2〉p∪〈x2, y2〉z−1p we see that this is a contradiction.

Thus we conclude ϕ|Ap = Id.

Next we apply Theorem 6.35 (ii), using ϕ(t) = t and ϕ|Ap = ϕ|Apt = Id. Since Rt∩Rpt∩

Rp = {1} by Corollary 6.29 then by the theorem it follows that ϕ|At = Id. By Corollary

6.38 ϕ = Id.

We have shown that

Theorem 8.19. For crystallographic group G = G63, the group W(G) is generated by the
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inverse map ι, the inner automorphisms, and

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt), .

Therefore W(G) =W0(G).

Proposition 8.20. For group 64 we have

St = Spr = F ;

Sp = Srt {1, p, prt, rt};

Sr = Sprt = Spt = {1, r, prt, pt};

Proof. This follows from Lemma 6.32 and Proposition C.12.

Let ϕ ∈ W(G64). The Aprt coset contains involutions but by Lemma 6.12 the Art coset

does not, therefore we cannot have ϕ(Aprt) = Art. As G/A is abelian, ϕ is a homomorphism

and this together with Proposition 8.16 (ii) and (iii) gives ϕ(Af) = Af for all f ∈ F. Then

by Proposition 6.9 (iv) we may compose ϕ with inner automorphisms so that ϕ|A = Id. By

Proposition 8.17 we may compose ϕ with an automorphism so that ϕ(t) = t.

Recall that p2 = z, r2 = y, (pr)2 = 1, (rt)2 = z−1, (pt)2 = y−1, and (prt)2 = y−2.

Applying this information to Proposition 6.17 we have ϕ(prt) = prt as well as

ϕ(p) ∈ {p, yp}, ϕ(r) ∈ {r, zr}, ϕ(pr) ∈ {pr, y2pr}, ϕ(rt) ∈ {rt, y−1rt}, ϕ(pt) ∈ {pt, z−1pt}.

By Proposition 6.18 (i), we may compose ϕ with It ◦ ι and now we may assume ϕ(rt) = rt.

Thus by (ii) we now have ϕ(f) = f for f ∈ {prt, rt, t}. We will use Proposition 6.18 (iii)

to show that this implies that ϕ(f) = f for f ∈ {p, r, pr, pt}. To show the hypotheses of the
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proposition are met we note that by Proposition C.12 we have

yt � yzt since (yt)G = 〈x2, yz, yz−1〉yt;

prt � yprt since (prt)G = 〈x2y−1〉prt ∪ 〈x2y−1〉y2prt;

y−1t � y−1z−1t since (y−1t)G = 〈x2, yz, yz−1〉y−1t;

y−1pt � ypt since (ypt)G = 〈z2〉ypt ∪ 〈z2〉zpt.

Now we have

ϕ(r · rt) = ϕ(y · t) ∼ yt � yzt = z(r · rt) and ϕ(rt) = rt,

thus Proposition 6.18 (iii) implies ϕ(r) 6= zr and so ϕ(r) = r. Similarly, as we have

ϕ(p · rt) = prt � yp · rt and ϕ(rt) = rt,

by the proposition we have ϕ(p) 6= yp thus ϕ(p) = p. Now we have (since ptp = (pt)2t = y−1t),

ϕ(pt · p) = ϕ(y−1 · t) ∼ y−1t � z−1y−1t = z−1pt · p and ϕ(p) = p.

By the proposition it follows that ϕ(pt) 6= z−1pt thus ϕ(pt) = pt. Lastly, we have

ϕ(pr · rt) = ϕ(y−1 · pt) ∼ y−1pt � ypt = y2(y−1pt) = y2pr · rt and ϕ(rt) = rt,

and so the proposition gives ϕ(pr) = pr. We now have ϕ(f) = f for all f ∈ F.

By Proposition 8.20, pt /∈ Sp, so Corollary 6.34 gives ϕ|Apt = Id.

Applying Theorem 6.33 to the Ap coset we have ϕ(ap) = ahp for some h ∈ Rp ∩ Spt. By

Corollary 6.29 and Proposition 8.20 this intersection is {1, prt}. However if h = prt then

p = ϕ(x−1 · xp) ∼ x−1xprtp = x−2yp.

Since pG = 〈x2, y2〉p ∪ 〈x2, y2〉yz−1p this is a contradiction, thus ϕ|Ap = Id.

Next we apply Theorem 6.35 (ii), using ϕ(t) = t and ϕ|Ap = ϕ|Apt = Id. Since we have

Rpt ∩ Rp = {1} by Corollary 6.29 the theorem gives ϕ|At = Id. Then by Corollary 6.38

ϕ = Id.

We have shown that
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Theorem 8.21. For crystallographic group G = G64, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Therefore W(G) =W0(G).

Proposition 8.22. For group 65 we have Sf = F for all f ∈ F − {1}.

Proof. Here F is an abelian subgroup of G. It follows that for f ∈ F − {1}, h ∈ F, a ∈ A,

af ∼ (af)h = ahfh = ahf.

Let ϕ ∈ W(G65). Proposition 8.16 (i) we have ϕ(y) ∈ {(x2y−1)±1, y±1}. If ϕ(y) /∈ yG =

{y±1} then we may compose with the outer automorphism

ψ1 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, pr, t),

and now we have ϕ(β) ∈ βG for all β ∈ {x2y−1, y, z}. By Proposition 6.9 (iv) we can

compose with inner automorphisms to get ϕ|A = Id and ϕ(Af) = Af for all Af ∈ G/A. By

Proposition 8.17 we may compose with an automorphism so that ϕ(t) = t.

Now for f ∈ F we have ft ∈ F and (ft)2 = 1. Therefore by Proposition 6.17 we have

ϕ(f) = f for all f ∈ F.

By Lemma 6.31, for a ∈ A we have ϕ(art) = ahrt for some h ∈ Rrt = {1, rt}. If we have

ϕ(art) = artrt then composing with It ◦ ι we have

(It ◦ ι ◦ ϕ)(art) = (It ◦ ι)(artrt) = ((artrt)−1)t = (tr(a−1)rt)t = (a−1rt)t = art.

Thus now we may assume we have ϕ|Art = Id.

By Lemma 6.31, for a ∈ A we have ϕ(apt) = ahpt for some h ∈ Rpt = {1, pt}. If we have

ϕ(apt) = aptpt then composing with the non-trivial wct τ(pt, {Apt, At, Ar,Apr}), we can

assume we have ϕ|Art∪Apt = Id. (Theorem 5.9 shows that τpt is a non-trivial wct.) We apply
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Theorem 6.35 (i) twice using ϕ(t) = t and ϕ|Art = ϕ|Apt = Id. Since Rt∩Rr ∩Rp = {1, prt}

by Corollary 6.29, the theorem indicates that for a ∈ A,ϕ(at) = aht for some h ∈ {1, prt}.

However, if h = prt then

t = ϕ(x−1 · xt) ∼ x−1xprtt = x−2yt,

which is a contradiction since Proposition C.13 gives tG = 〈x2, y2, z2〉t, thus x−2yt � t. It

follows that h = 1, in other words, ϕ(at) = at for all a ∈ A. By Corollary 6.38 we have

ϕ = Id.

We have shown that

Theorem 8.23. For crystallographic group G = G65, the group W(G) is generated by the

inverse map ι, the inner automorphisms,

ψ1 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, pr, t),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt),

and the non-trivial wct τpt. Thus we have W(G) = 〈W0(G), τpt〉.

Proposition 8.24. For group 66 we have

Sp = Sr = Spr = F ;

Sprt = Srt = {1, p, prt, rt};

St = Spt = {1, p, pt, t}.

Proof. This follows from Lemma 6.32 and Proposition C.14.

Let ϕ ∈ W(G66). By Proposition 8.16(i) we have ϕ(y) ∈ {(x2y−1)±1, y±1}. If ϕ(y) /∈ yG =

{y±1} then we compose with the outer automorphism

ψ1 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, pr, t),
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and now we have ϕ(β) ∈ βG for all β ∈ {x2y−1, y, z}. By Proposition 6.9 (iv) we may

compose ϕ with inner automorphisms to get ϕ|A = Id and ϕ(Af) = Af for all Af ∈ G/A.

By Proposition 8.17, composing ϕ with an automorphism gives ϕ(t) = t.

Now for f ∈ {p, prt, rt, pt} we have ft ∈ F and (ft)2 = 1. Therefore by Proposition 6.17

we have ϕ(f) = f for all f ∈ {p, prt, rt, pt}. The proposition also gives ϕ(pr) ∈ {pr, zpr}

and ϕ(r) ∈ {r, zr}. Composing ϕ with It ◦ ι if necessary we can arrange to have ϕ(r) = r,

by Proposition 6.18 (i). By (ii) we now have ϕ(f) = f for f ∈ F − {pr}. We will show that

ϕ(pr) = pr as well by applying (iii). Now Proposition C.14 gives pG = 〈x2, y2〉p, so p � zp.

Thus we have

ϕ(pr · r) = ϕ(p) = p � zp = zpr · r and ϕ(r) = r.

It follows by Proposition 6.18 (iii) that ϕ(pr) = pr and we now have ϕ(f) = f for all f ∈ F.

We now apply Theorem 6.33 three times. We will use the following facts from Proposition

8.24: prt /∈ St, rt /∈ Spt; and pt /∈ Srt. Also recall that by Corollary 6.29 Rf = {1, f} for

f ∈ {prt, rt, pt}. First we will apply the theorem to the Aprt coset. Since (pr)2 = 1 we have

pr · prt = t. Then as Rprt ∩ St = 1 Theorem 6.33 implies ϕ|Aprt = Id. Next we consider the

Art coset. Since r2 = 1 we have pr · rt = pt. We also have Rrt ∩ Spt = 1 so the theorem

implies ϕ|Art = Id. Lastly we apply the theorem to the Apt coset. Since p commutes with r

we have pr ·pt = rt. We also have Rpt∩Srt = 1. By the theorem we conclude that ϕ|Apt = Id.

Now it follows by Corollary 6.38 that ϕ = Id.

We have shown that

Theorem 8.25. For crystallographic group G = G66, the group W(G) is generated by the
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inverse map ι, the inner automorphisms, and

ψ1 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, pr, t),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Therefore W(G) =W0(G).

Proposition 8.26. For group 67 we have

St = Spr = Srt = F ;

Sp = {1, p, prt, rt};

Sr = Spt = Sprt {1, r, prt, pt}.

Proof. This follows from Lemma 6.32 and Proposition C.15.

Let ϕ ∈ W(G67). By Proposition 8.16 (i) we have ϕ(y) ∈ {(x2y−1)±1, y±1}. If ϕ(y) /∈

yG = {y±1} then we compose ϕ with the outer automorphism

ψ2 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, xpr, xy−1t),

and now we have ϕ(β) ∈ βG for all β ∈ {x2y−1, y, z}. By Proposition 6.9 (iv) we may

compose with inner automorphisms to get ϕ|A = Id and by (ii) we have ϕ(Af) = Af for all

Af ∈ G/A. We may now compose ϕ with an automorphism so that ϕ(t) = t, according to

Proposition 8.17.

Recall that p, pr and rt have order 2, thus by Proposition 6.17 we have ϕ(f) = f for

f ∈ {r, prt, pt}. The proposition also gives ϕ(p) ∈ {p, yp}, ϕ(pr) ∈ {pr, y2pr} and ϕ(rt) ∈

{rt, y−1rt}. By Proposition 6.18 (i), composing with It ◦ ι if necessary we may assume

ϕ(pr) = pr. We now have ϕ(f) = f for f ∈ F − {p, rt}, by (ii). Note that Proposition C.15

gives

rG = 〈x2y−1, z2〉r ∪ 〈x2y−1, z2〉y−1r and (ypt)G = 〈z2〉pt ∪ 〈z2〉ypt,
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therefore r � yr and ypt � y2pt. So we have

ϕ(p · pr) = ϕ(r) = r � yr = yp · pr and ϕ(pr) = pr,

thus by Proposition 6.18 (iii) we have ϕ(p) 6= yp so ϕ(p) = p. Similarly we have

ϕ(rt · pr) = ϕ(y2 · pt) ∼ y2pt � ypt = y−1(y2pt) = y−1rt · pr and ϕ(pr) = pr.

Then by Proposition 6.18 (iii) we have ϕ(rt) 6= y−1rt thus ϕ(rt) = rt. We now have ϕ(f) = f

for all f ∈ F.

We apply Theorem 6.33 to the Ap coset, noting that since p has order 2, p · pr = r, and

thus for a ∈ A we have ϕ(ap) = ahp for some h ∈ Rp∩Sr. By Corollary 6.29 and Proposition

8.26 we see this intersection is {1, prt}. However, if h = prt then

zp ∼ ϕ(z · p) = ϕ(x−1z · xp) ∼ x−1z · xprtp = x−1z · x−1yp = x−2yzp.

This is a contradiction since according to Proposition C.15 (zp)G = 〈x2, y2〉zp∪〈x2, y2〉yz−1p.

We conclude that ϕAp = Id.

Proposition 8.26 indicates pt /∈ Sp thus by Corollary 6.34 ϕ|Apt = Id. We therefore may

apply Theorem 6.35 (ii) using ϕ(t) = t, ϕ|Ap = ϕ|Apt = Id. Since Corollary 6.29 indicates

Rpt ∩Rp = {1} the theorem implies that ϕ|At = Id. Then by Corollary 6.38 ϕ = Id.

We have shown that

Theorem 8.27. For crystallographic group G = G67, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ2 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, xpr, xy−1t),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Thus W(G) =W0(G).

119



Proposition 8.28. For group 68 we have

Sp = Sprt = Srt = {1, p, prt, rt}; Spr = {1, pr, rt, pt};

St = {1, p, pt, t}; Spt = {1, pt};

Sr = F.

Proof. This follows from Lemma 6.32 and Proposition C.16.

Let ϕ ∈ W(G68). By Proposition 8.16 (i) we have ϕ(y) ∈ {(x2y−1)±1, y±1}. If ϕ(y) /∈

yG = {y±1} then we compose ϕ with the outer automorphism

ψ3 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, xpr, xt),

and now we have ϕ(β) ∈ βG for all β ∈ {x2y−1, y, z}. By Proposition 6.9 (ii) and (iv) we

may compose with inner automorphisms to get ϕ|A = Id and ϕ(Af) = Af for all Af ∈ G/A.

By Proposition 8.17 we may compose with an automorphism so that ϕ(t) = t.

From the presentation of G we see that p and r have order 2, thus by Proposition 6.17

we have ϕ(pt) = pt and ϕ(rt) = rt. The proposition also gives

ϕ(p) ∈ {p, x2y−1p} and ϕ(prt) ∈ {prt, x2y−1prt}.

By Proposition 6.18 (i) if ϕ(prt) = x2y−1prt then composing with It◦ι we have ϕ(prt) = prt,

and now by (ii) we have ϕ(f) = f for all f ∈ {prt, rt, pt, t}. Note that by Proposition C.16

we have

(rt)G = 〈y〉rt ∪ 〈y〉zrt;

therefore rt � x2y−1rt. Then

ϕ(p · prt) = ϕ(rt) = rt � x2y−1rt = x2y−1p · prt and ϕ(prt) = prt,

and so by Proposition 6.18 (iii) we have ϕ(p) = p.

Now we have ϕ(pt) = pt and ϕ(p) = p so Corollary 6.34 may be applied to the Apt coset.

Since pt /∈ Sp the Corollary gives ϕ|Apt = Id. Next we apply Theorem 6.33 to the Ap coset.

By Corollary 6.29 and Proposition 8.28 we have Rp∩Spt = {1}. The theorem therefore gives
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ϕ|Ap = Id. Using this we may apply Theorem 6.35 (i) using ϕ(prt) = prt and ϕ|Ap = Id.

Since Rprt ∩Rrt = 1 by Corollary 6.29, then according to the theorem ϕ|Aprt = Id.

Now by Proposition 6.17 we have ϕ(r) ∈ {r, zr}. We will use ϕ|Aprt = Id with Proposition

6.18 (iii) to show ϕ(r) 6= zr. By Proposition C.16 we have

(ypt)G = 〈z2〉ypt ∪ 〈z2〉y−1zpt ∪ 〈z2〉x2y−2pt ∪ 〈z2〉x2zpt,

so ypt � yzpt. Thus we have

ϕ(r · x2prt) = ϕ(y · pt) ∼ ypt � yzpt = z(ypt) = zr · x2prt and ϕ(x2prt) = x2prt.

By statement (iii) of the proposition we have ϕ(r) = r.

Now by Proposition 6.17 ϕ(pr) ∈ {pr, zpr}. We will again apply Proposition 6.18 (iii)

to show ϕ(pr) 6= zpr. Proposition C.16 gives

pG = 〈x2, y2〉p ∪ 〈x2, y2〉yp,

therefore p � zp. Thus we have

ϕ(pr · r) = ϕ(p) = p � zp = zpr · r and ϕ(r) = r,

therefore by (iii) we have ϕ(pr) = pr. We now have ϕ(f) = f for all f ∈ F.

Now that we have ϕ(r) = r we may apply Theorem 6.33 to the Art coset. SinceRrt∩St =

{1}, we conclude that ϕ|Art = Id. We have shown that ϕ|Aprt∪Art∪Apt = Id, thus by Corollary

6.38 ϕ = Id.

We have shown that

Theorem 8.29. For crystallographic group G = G68, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ3 : (x, y, z, p, r, t) 7→ (x, x2y−1, z, p, xpr, x−1yt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).
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Thus W(G) =W0(G).

8.3 Groups 69 through 74

Proposition 8.30. For group G69 we have Sf = F for all f ∈ F.

Proof. Fix f ∈ F. For any h ∈ F we have af ∼ (af)h = ahf since F is an abelian subgroup

of G.

Let ϕ ∈ W(G69). By Proposition 6.3 we have C2 = 〈x2z−1〉 ∪ 〈y2z−1〉 ∪ 〈z〉. We apply

Proposition 6.5 (iv) with B = {x2z−1, y2z−1, z} which gives {ϕ(x2z−1), ϕ(y2z−1), ϕ(z)} ⊆

{(x2z−1)±1, (y2z−1)±1, z±1}. Now

ψ1 : (x, y, z, p, r, t) 7→ (xy−1, x, x2z−1pr, p, t) and

ψ2 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t)

determine automorphisms of G69 and note that

ψ1 : x2z−1 7→y−2z ψ2 : x2z−1 7→y2z−1

ψ1 : y2z−1 7→z ψ2 : y2z−1 7→x2z−1

ψ1 : z 7→x2z−1 ψ2 : z 7→z.

In other words, these two automorphisms permute the elements of B. Thus composing with

ψ1 and ψ2 as needed we have ϕ(β) ∈ {β±1} for all β ∈ B. Then by Proposition 6.9 (iv) we

may compose with inner automorphisms to have ϕ|A = Id and by (ii) we have ϕ(Af) = Af

for all f ∈ F.

Let ϕ(t) = ct for some c ∈ A. By Proposition 6.19 the following defines an automorphism:

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zrzt).

Composing ϕ with this map and also with Ix and Iy, as necessary we may assume that

c ∈ {1, x, y, xy}.
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We will use Proposition 6.14 to show that ϕ(t) /∈ {xt, yt, xyt}. To justify using the

proposition we note that αp = αpt = αr = αrt = 1 thus they clearly are contained in C2.

Note also that we have ϕ(Ar) = Ar and ϕ(Ap) = Ap. Then by the proposition,

(x, p) = x−2z /∈ 〈x2, y2, z2〉 therefore ϕ(t) 6= xt;

(y, r) = z−1 /∈ 〈x2, y2, z2〉 therefore ϕ(t) 6= yt;

(xy, r) = x−2z−1 /∈ 〈x2, y2, z2〉 therefore ϕ(t) 6= xyt.

We conclude that ϕ(t) = t. It follows by Proposition 6.17 that since every nontrivial element

of F has order 2, ϕ(f) = f for all f ∈ F.

Now by Lemma 6.31 for a ∈ A we have ϕ(at) = aht for some h ∈ Rt = F. We will assume

h ∈ {p, pr, prt, pt} and show this leads to a contradiction. Note that xh ∈ {(xz−1)±1}. This

gives

x2z−1t ∼ ϕ(x2z−1 · t) = ϕ(xz−1 · xt) ∼ xz−1 · xht = xz−1(xz−1)±1t.

Since tG = 〈x2, y2, z2〉t we see xz−1(xz−1)±1t ∼ t but x2z−1t � t. This contradiction leads

us to conclude that ϕ(at) = aht for some h ∈ {1, r, rt, t}. We will give a similar argument to

show that h /∈ {r, rt}. Assuming h ∈ {r, rt} we have yh ∈ {(yz−1)±1} thus

y2z−1t ∼ ϕ(y2z−1 · t) = ϕ(yz−1 · yt) ∼ yz−1 · yht = yz−1(yz−1)±1t ∼ t,

a contradiction. Therefore we have ϕ(at) = aht for some h ∈ {1, t}. If h = t then we have

ϕ(at) = att = (at)t. Note that since every element at ∈ At has order 2, composing with It ◦ ι

we now ϕ|At = Id and so by Corollary 6.38, ϕ = Id.

We have shown that

Theorem 8.31. For crystallographic group G = G69, the group W(G) is generated by the

123



inverse map ι, the inner automorphisms, and

ψ1 : (x, y, z, p, r, t) 7→ (xy−1, x, x2z−1pr, p, t),

ψ2 : (x, y, z, p, r, t) 7→ (y, x, z, p, pr, t),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zrzt).

Therefore W(G) =W0(G).

Proposition 8.32. For group 72 we have

St = Sp = Spt = F ;

Sr = Sprt = {1, r, prt, pt};

Spr = Srt = {1, pr, rt, pt}.

Proof. This follows from Lemma 6.32 and Proposition C.18.

Let ϕ ∈ W(G72). We have C2 = 〈x−2yz〉 ∪ 〈y〉 ∪ 〈z〉 by Proposition 6.3. We apply

Proposition 6.5 (iv) with B = {x−2yz, y, z} and conclude that for β ∈ B we have ϕ(β) ∈

{(x−2yz)±1, (y)±1, z±1}.

Lemma 6.12 indicates that the Apt coset is unlike Art and Aprt in that Apt contains

elements of order 2. This fact together with Corollary 6.11 gives ϕ(Apt) = Apt and ϕ(At) =

At. Since G/A is abelian ϕ is a homomorphism thus ϕ(Ap) = Ap. By Lemma 6.4 ϕ(x−2yz)

and ϕ(y) are inverted by the action of p therefore {ϕ(x−2yz), ϕ(y)} ⊆ {(x−1yz)±1, y±1} and

so ϕ(z) ∈ {z±1}. If we have ϕ(x−2yz) ∈ {y±1} then we may compose ϕ with

ψ3 : (x, y, z, p, r, t) 7→ (x, x2y−1z−1, z, p, pr, t),

and now we have ϕ(x−2yz) ∈ {(x−2yz)±1} and ϕ(y) ∈ {y±1}. Then by Proposition 6.9

(ii) and (iv), composing ϕ with inner automorphisms if necessary we have ϕ|A = Id and

ϕ(Af) = Af for all f ∈ F.
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Let ϕ(t) = ct for some c ∈ A. By Proposition 6.19 the maps

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt)

andψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt)

determine outer automorphisms. Composing ϕ with these maps and with Ix we may assume

c ∈ {1, x}. By Corollary 6.16 c = x is not possible so we have ϕ(t) = t.

It follows by Proposition 6.17 that since p and pt have order 2, ϕ(p) = p and ϕ(pt) = pt.

The proposition also gives

ϕ(pr) ∈ {pr, ypr}; ϕ(r) ∈ {r, x2y−1z−1r}; ϕ(rt) ∈ {rt, y−1rt}; ϕ(prt) ∈ {prt, x−2yzprt}.

By Proposition 6.18 (i), if ϕ(prt) = x−2yzprt then we may compose with It ◦ ι and now

ϕ(prt) = prt. It follows by (ii) that we now have ϕ(f) = f for all f ∈ {p, prt, pt, t}.

Now we will use Proposition 6.18 (iii) three times to show that this implies ϕ(f) = f for

f ∈ {r, pr, rt} as well. The following facts from Proposition C.18 will be needed to satisfy

the requisite hypotheses:

p � yp and p � y−1p since pG = 〈x2z−1, y2〉p;

t � x2y−1z−1t since tG = 〈x2, y2, z〉t.

Now we have

ϕ(rt · (prt)−1) = ϕ(p) = p � y−1p = y−1rt · (prt)−1 and ϕ(prt)−1 = (prt)−1,

therefore Proposition 6.18 (iii) implies ϕ(rt) = rt.

Next we consider that

ϕ(r−1 · rt) = ϕ(t) = t � x2y−1z−1t = (x2y−1z−1r)−1 · rt and ϕ(rt) = rt.

By the proposition we have ϕ(r−1) = r−1 thus ϕ(r) = r. Lastly we have

ϕ(pr · r−1) = ϕ(p) = p � yp = ypr · r−1 and ϕ(r−1) = r−1,

therefore ϕ(pr) = pr by the proposition. We now have ϕ(f) = f for all f ∈ F.

Now rt /∈ Sr and prt /∈ Spr thus by Corollary 6.34, ϕ|Art∪Aprt = Id. Now by Lemma 6.31
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and Corollary 6.29 we know that for all a ∈ A,ϕ(apt) = ahpt for some h ∈ {1, pt}. Suppose

h = pt. Let γ = x2y−2z−1 and note that ptprt = γr. Then for a, b ∈ A we have

abptγr ∼ ϕ(abptγ · r) = ϕ(abptptprt) = ϕ(apt · bprt) ∼ aptpt · bprt = (ab)ptptprt = (ab)ptγr.

Now if we let a = b = x−1y, the left hand side becomes

abptγr = x−1y(x−1y)ptγr = x−1y(x−1yz)x2y−2z−1r = r,

while the right hand side becomes

(ab)ptγr = (x−2y2)ptγr = x−2y2z2x2y−2z−1r = zr.

By Proposition C.18, rG = 〈x2y−1, z2〉r ∪ 〈x2y−1, z2〉y−1zr therefore r � zr. This contradic-

tion indicates that ϕ(apt) = ahpt is only possible if h = 1. In other words, ϕ|Apt = Id, and

now by Corollary 6.38 ϕ = Id.

We have shown that

Theorem 8.33. For crystallographic group G = G72, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ3 : (x, y, z, p, r, t) 7→ (x, x2y−1z−1, z, p, pr, t),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Thus W(G) =W0(G).

Proposition 8.34. For group 73 we have

Srt = {1, p, prt, rt}; Sprt = {1, r, prt, pt};

Spt = {1, pr, rt, pt}; Sp = {1, p};

Sr = {1, r}; Spr = {1, pr};

St = F.

Proof. This follows from Lemma 6.32 and Proposition C.19.
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Let ϕ ∈ W(G73). We have C2 = 〈x−2yz〉∪〈y〉∪〈z〉 by Proposition 6.3. We apply Proposi-

tion 6.5 (iv) with B = {x−2yz, y, z} : thus for β ∈ B we have ϕ(β) ∈ {(x−2yz)±1, (y)±1, z±1}.

The following maps determine automorphisms of G73 :

ψ4 : (x, y, z, p, r, t) 7→ (xy−1, z, x2y−1z−1, x2z−1pr, p, t), and

ψ5 : (x, y, z, p, r, t) 7→ (x, z, y, x−2yzr, p, x−1yt).

These two automorphisms permute the elements of B and so composing ϕ with ψ4 and ψ5 we

can arrange to have ϕ(β) ∈ {β±1 : β ∈ B}. Then by Proposition 6.9 (iv) we can compose ϕ

with inner automorphisms to have ϕ|A = Id and by (ii) we have ϕ(Af) = Af for all f ∈ F.

Let ϕ(t) = ct for some c ∈ A. By Proposition 6.19 the maps

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

andψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt)

determine outer automorphisms. Composing ϕ with these maps and with Ix we may assume

c ∈ {1, x}. By Corollary 6.16 c = x is not possible so we have ϕ(t) = t.

Now by Proposition 6.17 we have

ϕ(p) ∈ {p, x2y−1z−1p}; ϕ(r) ∈ {r, zr}; ϕ(pr) ∈ {pr, ypr};

ϕ(prt) ∈ {prt, x2y−1z−1prt}; ϕ(rt) ∈ {rt, y−1rt}; ϕ(pt) ∈ {pt, z−1pt}.

By Proposition 6.18 (i), composing with It ◦ ι if necessary we may assume that we have

ϕ(p) = p. We will now use Proposition 6.18 (iii) to show that ϕ(p) = p implies ϕ(prt) = prt.

Note that

(rt)G = 〈y〉rt ∪ 〈y〉zrt.

This gives two pertinent facts. The first is that rt ∼ y−1rt therefore (since ϕ(rt) ∈

{rt, y−1rt}), we have ϕ(rt) ∼ rt. Secondly, we have rt � x−2yzrt. We are now ready to

apply the proposition. We have

ϕ(prt · p−1) = ϕ((rt)p
−1

) ∼ ϕ(rt) ∼ rt � x−2yzrt = (x2y−1z−1)prt ∼ x2y−1z−1prt · p−1.
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The above, together with ϕ(p−1) = p−1, implies that ϕ(prt) = prt, by Proposition 6.18 (iii).

Next we show that ϕ(r) = r if and only if ϕ(pt) = pt. Suppose to the contrary that

ϕ(r) = r and ϕ(pt) = z−1pt. Then (using rpt = x2z−2prt)

x2z−2 · prt ∼ ϕ(x2z−2 · prt) = ϕ(r · pt) ∼ r · z−1pt = zrpt = x2z−1prt.

Since x2z−1prt ∈ (prt)G = 〈x2y−1z−1〉prt∪ 〈x2y−1z−1〉yprt by Proposition C.19, this gives a

contradiction. Now to prove the converse suppose we have ϕ(r) = zr and ϕ(pt) = pt. Then

x2z−2 · prt ∼ ϕ(x2z−2 · prt) = ϕ(r · pt) ∼ zr · pt = x2z−1prt.

We arrive at the same contradiction which proves the biconditional.

We will use this result to show that ϕ|Aprt = Id. To begin, we recall that by Lemma 6.31

and Corollary 6.29 that ϕ(aprt) = ahprt for some h ∈ {1, prt}. Suppose that h = prt. Then

(using prtr = z−1pt) we have

xz−1 · ϕ(pt) ∼ ϕ(xz−1 · pt) = ϕ(xprt · r) ∼ xprtprt · ϕ(r) = x−1yzprt · ϕ(r).

We have two cases to consider. If ϕ(pt) = pt thus ϕ(r) = r, the above is

xz−1pt ∼ x−1yzprt · r = x−1ypt.

Alternatively, if ϕ(pt) = z−1pt thus ϕ(r) = zr, this becomes

xz−2pt ∼ x−1yzprt · zr = x−1yzpt.

As xz−1pt, xz−2pt ∈ (xpt)G = 〈z〉xpt ∪ 〈z〉xy−1pt we see that in both cases we have a

contradiction. Thus h 6= prt and so ϕ|Aprt = Id.

We will use this result to show that ϕ(rt) = rt. Suppose to the contrary that ϕ(rt) =

y−1rt. Then since ϕ respects inverses, Then

xp ∼ ϕ(x · p) = ϕ(xprt · (rt)−1) ∼ xprt(rt)−1y = xy−1p.

However (xp)G = 〈x2z−1, y2〉xp ∪ 〈x2z−1, y2〉xyz−2p thus xp � xy−1p, a contradiction. We

conclude that ϕ(rt) = rt.
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Now suppose that ϕ(pr) = ypr. This gives

y−1ϕ(pt) ∼ ϕ(y−1 · pt) = ϕ(pr · rt) ∼ ypr · rt = pt.

The left hand side is either y−1pt or y−1z−1pt, neither of which is contained in (pt)G =

〈z〉pt ∪ 〈z〉x2y−1pt. This shows that we must have ϕ(pr) = pr.

Next we apply Theorem 6.33 to the Art coset. (Recall that we have ϕ(rt) = rt, ϕ(p) = p

and ϕ(prt) = prt.) Since Rrt ∩ Sprt = {1} by Corollary 6.29 and Proposition 8.34, the

theorem implies that ϕ|Art = Id.

We use this result to show that ϕ(pt) = pt. Suppose to the contrary that ϕ(pt) = z−1pt.

Then (using ptrt = yzpr) we have

x−1·pr ∼ ϕ(x−1·pr) = ϕ(x−1y−1z−1ptrt) = ϕ(pt·x−1y−1z2rt) ∼ z−1pt·x−1y−1z2rt = x−1z−1pr.

This is a contradiction because according to Proposition C.19, (x−1pr)G = 〈yz, yz−1〉x−1pr∪

〈yz, yz−1〉x3zpr, so now we have ϕ(pt) = pt. We have already shown that this implies ϕ(r) =

r, so now we have ϕ(f) = f for all f ∈ F.

Notice that pt /∈ Sp, thus by Corollary 6.34 ϕ|Apt = Id. Then by Corollary 6.38 ϕ = Id.

We have shown that

Theorem 8.35. For crystallographic group G = G73, the group W(G) is generated by the

inverse map ι, the inner automorphisms, and

ψ4 : (x, y, z, p, r, t) 7→ (xy−1, z, x2y−1z−1, x2z−1pr, p, t),

ψ5 : (x, y, z, p, r, t) 7→ (x, z, y, x−2yzr, p, x−1yt),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Therefore W(G) =W0(G).
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Proposition 8.36. For group 74 we have

Spr = St = {1, t, pr, prt}; Sp = {1, p, prt, rt};

Sr = Sprt = Spt = {1, r, prt, pt}; Srt = F.

Proof. This follows from Lemma 6.32 and Proposition C.20.

Let ϕ ∈ W(G74). We have C2 = 〈x−2yz〉 ∪ 〈y〉 ∪ 〈z〉 by Proposition 6.3. We apply

Proposition 6.5 (iv) with B = {x−2yz, y, z}, which tells us that for β ∈ B we have ϕ(β) ∈

{(x−2yz)±1, (y)±1, z±1}.

It is clear that the Art coset contains elements of order 2 (since rt has order 2). By

Lemma 6.12 we find that the Aprt coset also contains elements of order 2 but Apt does not.

This fact together with Corollary 6.11 gives ϕ(Apt) = Apt and ϕ(At) = At. Since G/A is

abelian ϕ is a homomorphism and so ϕ(Ap) = Ap. By Lemma 6.4 ϕ(x−2yz) and ϕ(y) are

inverted by the action of p. It follows that {ϕ(x−2yz), ϕ(y)} ⊆ {(x−1yz)±1, y±1} and thus

ϕ(z) ∈ {z±1}. If we have ϕ(x−2yz) ∈ {y±1} then we may compose ϕ with the automorphism

ψ6 : (x, y, z, p, r, t) 7→ (x−1z, x−2yz, z, p, x−1ypr, x−1t),

and now we have ϕ(x−2yz) ∈ {(x−2yz)±1} and ϕ(y) ∈ {y±1}. Then by Proposition 6.9

(ii) and (iv), composing with inner automorphisms if necessary we have ϕ|A = Id and

ϕ(Af) = Af for f ∈ F.

Let ϕ(t) = ct for some c ∈ A. By Proposition 6.19 the maps

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

and ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt)

determine outer automorphisms. Composing with these functions and with Ix we may assume

c ∈ {1, x}. By Corollary 6.16 c = x is not possible so we have ϕ(t) = t.

It follows by Proposition 6.17 that since p, pr and rt are involutions, ϕ(pt) = pt, ϕ(prt) =

prt, and ϕ(r) = r. The proposition also gives

ϕ(p) ∈ {p, yp}; ϕ(pr) ∈ {pr, y2pr}; ϕ(rt) ∈ {rt, y−1rt}.
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By Proposition 6.18 (i), we may compose ϕ with It ◦ ι if necessary so as to have ϕ(rt) = rt.

Then by (ii) we now have ϕ(f) = f for all f ∈ F − {p, pr}. We will apply Proposition 6.18

(iii) twice in order to show that this implies that ϕ(p) = p and ϕ(pr) = pr as well. To justify

this we will use the following facts from Proposition C.20:

yprt /∈ (prt)G = 〈x2y−1z−1〉prt ∪ 〈x2y−1z−1〉y2prt;

yr /∈ rG = 〈x2y−1, z2〉r ∪ 〈x2y−1, z2〉y−1r.

We have

ϕ(p · rt) = prt � yprt = (yp)(rt) and ϕ(rt) = rt,

thus by the proposition we conclude ϕ(p) 6= yp i.e. ϕ(p) = p.

Similarly, since we have ϕ(p) = p and

ϕ(pr · p) = ϕ(rp) ∼ ϕ(r) = r ∼ rp � yr = (y2pr)(p),

the proposition gives ϕ(pr) = pr. ; We now have ϕ(f) = f for all f ∈ F.

Since pt /∈ Sp and rt /∈ Sr, Corollary 6.34 gives ϕ|Apt∪Art = Id. We now apply Theorem

6.35 (i) using ϕ(p) = p and ϕ|Art = Id. Since Corollary 6.29 gives Rp ∩ Rprt = {1, prt} we

have ϕ(ap) = ahp for some h ∈ {1, prt}. However if h = prt then

zp ∼ ϕ(z · p) = ϕ(x−1z · xp) = x−1z · xprtp = x−1zx−1yzp = x−2yz2p,

which is a contradiction since Proposition C.20 indicates that x−2yz2p ∼ yzp /∈ (zp)G =

〈x2z−1, y2〉zp ∪ 〈x2z−1, y2〉yz−1. We conclude that h = 1 i.e. ϕ|Ap = Id.

Again we apply Theorem 6.35, this time using ϕ(prt) = prt and ϕ|Ap = Id. We also use

Rprt∩Rrt = 1 as given by Corollary 6.29. It follows by the theorem that we have ϕ|Aprt = Id.

Then by Corollary 6.38 ϕ = Id.

We have shown that

Theorem 8.37. For crystallographic group G = G74, the group W(G) is generated by the
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inverse map ι, the inner automorphisms, and

ψ6 : (x, y, z, p, r, t) 7→ (x−1z, x−2yz, z, p, x−1ypr, x−1t),

ψy : (x, y, z, p, r, t) 7→ (x, y, z, yp, r, yt),

ψz : (x, y, z, p, r, t) 7→ (x, y, z, p, zr, zt).

Therefore W(G) =W0(G).
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George Pólya (1924) ”Über die Analogie der Kristallsymmetrie in der Ebene,”

Zeitschrift für Kristallographie, vol. 60, pp. 278–282.

[SHC] Stokes, H. T.; Hatch, D. M.; Campbell, B. J., ISO-IR, ISOTROPY Software Suite,

iso.byu.edu.

[SCC] Stokes, H. T.; Campbell, B. J.; Cordes, R., Tabulation of Irreducible Representations

of the Crystallographic Space Groups and Their Superspace Extensions. Acta Cryst. A.

69 388-395.

133



Appendix A. Kf subgroups

Proposition A.1. Recall that for each f ∈ F we define the subgroup Kf to be

Kf = 〈(x, f), (y, f), (z, f)〉.

Below we have the Kf subgroups for groups that have a presentation of the form given in

Eqs. (4.1), (4.2), (4.3), (4.4), or(4.5).

Table A.1: Kf subgroups for thirty-one groups
Group Kps or Ks or

number(s) Kp Kr Kpr Kprt Krt Kpt

10, 13 〈x2, z2〉 〈y2〉
12 〈x2y−1, z2〉 〈y〉

16, 17 〈x2, y2〉 〈x2, z2〉 〈y2, z2〉
21 〈x2, y2〉 〈x2y−1, z2〉 〈y, z2〉
22 〈x2z−1, y2z−1〉 〈x2, z〉 〈y2, z〉

25, 26, 27 〈x2, y2〉 〈x2〉 〈y2〉
38, 39 〈x2, y2z−1〉 〈x2〉 〈y2z−1〉

42 〈x2z−1, y2z−1〉 〈x2z−1〉 〈y2z−1〉
47-57 〈x2, y2〉 〈x2, z2〉 〈y2, z2〉 〈x2〉 〈y2〉 〈z2〉
63-68 〈x2, y2〉 〈x2y−1, z2〉 〈y, z2〉 〈x2y−1〉 〈y〉 〈z2〉

69 〈x2z−1, y2z−1〉 〈x2, z〉 〈y2, z〉 〈x2z−1〉 〈y2z−1〉 〈z〉
72, 73, 74 〈x2z−1, y2〉 〈x2y−1, z2〉 〈yz, yz−1〉 〈x2y−1z−1〉 〈y〉 〈z〉

Additionally, for groups having t ∈ F we have Kt = 〈x2, y2, z2〉. (For brevity we write

“47-57” to represent groups G47, G49, G50, G51, G53, G54, G55, and G57 and we write “63-68”

to represent G63, G64, G65, G66, G67, and G68.)

Note that G10, G12 and G13 do not contain an element p (nor pr, ps, prt, pt) therefore we

have nothing to write in the cell of the table that corresponds to those Kf subgroups. The

next two rows in the table have blank cells in three places for a similar reason; G16, G17, G21

and G22 do not contain an element s nor t, (nor ps, prt, rt, pt); G25, G26, G27, G38, G39, and

G42 do not contain an element r, pr nor pt.

Proof. This follows from the relations found in the presentation of the respective groups.
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Appendix B. Proof of Lemma 7.1 (Magma)

Below is the code (with its output) that we used to prove that H = 〈a2, b, c〉.

F 〈a, b, c〉 := FreeGroup(3);

G := quo < F|{c∧2, a ∗ b ∗ a ∗ (b ∗ a ∗ b)∧(−1), (a ∗ b ∗ a)∧4, (a ∗ c)∧2, (b ∗ c)∧2,

(c ∗ a)∧2, (c ∗ b)∧2} >;

Index(G, sub < G|a, b >);

2

Index(G, sub < G|a∧2, b, c >);

3
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Appendix C. Commutators and conjugacy

classes for eighteen space groups

Here we list the conjugacy classes for the eighteen groups listed in Table 4.2. We do not

include the conjugacy classes for the elements in A, as those conjugacy classes are not needed

as we determineW(G). Before we list these conjugacy classes, we give some results that were

used to determine them.

The following lemma is applicable to the eighteen groups listed in Table 4.2. This lemma

will be useful when determining certain commutators which are used when determining the

conjugacy classes.

Lemma C.1. Let G be a group with an abelian normal subgroup A such that G/A is abelian.

Let p, r, t ∈ G and suppose that t2 = 1 and that at = a−1 for a ∈ A.

Let U = (p, r), V = (p, t), and W = (r, t). Then we have

(p, pr) =U ; (p, prt) = (p, rt) =U−1V ;

(p, pt) = (t, pt) =V ; (rt, pt) =U−1VW−1;

(r, rt) = (t, rt) =W ; (rt, prt) = (U−1V )r;

(r, pt) =UW ; (pr, rt) = (U−1V )rW ;

(pr, r) =U r; (pr, t) = (pr, prt) = (t, prt) =V rW ;

(r, prt) =U rW ; (pr, pt) =UV rW ;

(pt, prt) =UV rW · V −1.

Proof. Note that G/A abelian implies that every commutator is in A. We apply Eqs. (2.1),

(2.3) and (2.5) and these results follow.

Proposition C.2. Suppose G/A is abelian. Let a ∈ A and f ∈ F. Then

(af)G =
⋃

λ∈(G/A)/〈f〉

Kfa
λ(f, λ)f,
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where f ∈ G/A is the image of f in the quotient so we are taking the union over λ ∈ G such

that λ is a coset representative of the cosets in G/A after taking a quotient over 〈f〉.

Proof. Let b ∈ A. Using 2.3 we have

(af)−1(af)b = (af, b) = (f, b) ∈ Kf ,

thus Kf (af) = Kf (af)b. From this we see that

(af)G =
⋃
λ∈F

Kf (af)λ =
⋃
λ∈F

Kfa
λfλf−1f =

⋃
λ∈F

Kfa
λ(λ, f−1)f.

Next we show that Kf (λ, f
−1) = Kf (f, λ). Let a = (f−1, λ). Clearly (a, f) ∈ Kf . Then

(a, f) =((f−1, λ), f)

=(λ, f−1)f−1(f−1, λ)f

=λ−1fλf−1(f−1f)λ−1f−1λf

=(λ, f−1)(λ, f)

=(λ, f−1)(f, λ)−1 ∈ Kf ,

so that Kf (λ, f
−1) = Kf (f, λ).

Lastly we show that it suffices to take the union over λ ∈ G where λ is a coset rep-

resentative of the quotient (G/A)/〈f〉. In other words, we show that if λ1f = λ2 then

Kfa
λ1(λ1, f

−1) = Kfa
λ2(λ2, f

−1). Using the Witt-Hall Identities we have

aλ1(λ1, f
−1) · (aλ2(λ2, f−1))−1 =aλ1(λ1, f

−1) · (aλ1f (λ1f, f−1))−1

=aλ1(λ1, f
−1) · (f−1, λ1f)(aλ1f )−1

=aλ1(a−1)fλ1(λ1, f
−1) · (f−1, λ1f)

=(a(a−1)f )λ1(λ1, f
−1) · (f−1, f)(f−1, λ1)((f

−1, λ1), f)

=(a−1, f)λ1((f−1, λ1), f).

Since G/A is abelian, Kf is normal and (f−1, λ) ∈ A. Thus (a(a−1)f )λ1((f−1, λ), f) is the

product of two elements of Kf . This shows that the Kf cosets corresponding to λ1〈f〉 and

λ2〈f〉 are the same.
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Proposition C.3. The conjugacy classes in G47 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyjz±kp;

(xiyjzkr)G = 〈x2, z2〉xiy±jzkr;

(xiyjzkpr)G = 〈y2, z2〉x±iyjzkpr;

(xiyjzkprt)G = 〈x2〉xiy±jz±kprt

(xiyjzkrt)G = 〈y2〉x±iyjz±krt

(xiyjzkpt)G = 〈z2〉x±iy±jzkpt

(xiyjzkt)G = 〈x2, y2, z2〉xiyjzkt.

We also have G′ = K = 〈x2, y2, z2〉.

Proof. This follows from Proposition A.1, Proposition C.2, and from the relations in

the presentation of G47. The presentation of G47 is of the form given in Eq. (4.4), with

αp = αr = αpr = αpt = αrt = 1 and δ = 0.

Proposition C.4. For G49 we have the following commutators:

(p, r) = (p, t) = (p, rt) =1;

(t, r) = (pt, r) = (t, pr) = (pt, pr) = (prt, r) = (rt, pt) =z.

Thus G′ = 〈x2, y2, z〉.
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The conjugacy classes in G49 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyjz±kp;

(xiyjzkr)G = 〈x2, z〉xiy±jr;

(xiyjzkpr)G = 〈y2, z〉x±iyjpr;

(xiyjzkprt)G = 〈x2〉xiy±jzkprt ∪ 〈x2〉xiy±jz1−kprt;

(xiyjzkrt)G = 〈y2〉x±iyjzkrt ∪ 〈y2〉x±iyjz1−krt;

(xiyjzkpt)G = 〈z2〉(xiyj)±1zkpt ∪ 〈z2〉(xiy−j)±1zk+1pt;

(xiyjzkt)G = 〈x2, y2, z〉xiyjt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and the relations

in the presentation of G49.

Proposition C.5. For G50 we have the following commutators:

(p, r) =1;

(t, r) = (prt, r) = (pt, r) =x;

(t, pr) = (pt, pr) = (pt, rt) =y;

(t, p) = (rt, p) =xy;

(rt, prt) =xy−1.

Thus G′ = 〈x, y, z2〉.
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The conjugacy classes in G50 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈xy, xy−1〉xiyjz±kp;

(xiyjzkr)G = 〈x, z2〉y±jzkr;

(xiyjzkpr)G = 〈y, z2〉x±izkpr;

(xiyjzkprt)G = 〈x2〉xiyjzkprt ∪ 〈x2〉xi+1yjz−kprt ∪ 〈x2〉xiy−j+1z−kprt ∪ 〈x2〉xi+1y−j+1zkprt;

(xiyjzkrt)G = 〈y2〉xiyjzkrt ∪ 〈y2〉xiyj+1z−krt ∪ 〈y2〉x−i+1yjz−krt ∪ 〈y2〉x−i+1yj+1zkrt;

(xiyjzkpt)G = 〈z2〉xuyvzkpt, u ∈ {i,−i+ 1}, v ∈ {j,−j + 1};

(xiyjzkt)G = 〈x, y, z2〉zkt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G50.

Proposition C.6. For G51 we have the following commutators:

(r, t) = (p, rt) = (pr, pt) = (rt, pt) = (pr, rt) =1;

(r, p) = (t, p) = (r, prt) = (pt, r) = (pr, t) =x.

Thus G′ = 〈x, y2, z2〉.

The conjugacy classes in G51 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyjzkp ∪ 〈x2, y2〉xi+1yjz−kp;

(xiyjzkr)G = 〈x, z2〉y±jzkr;

(xiyjzkpr)G = 〈y2, z2〉xiyjzkpr ∪ 〈y2, z2〉x1−iyjzkpr;

(xiyjzkprt)G = 〈x2〉xiy±jzkprt ∪ 〈x2〉xi+1y±jz−kprt;

(xiyjzkrt)G = 〈y2〉x±iyjz±krt;

(xiyjzkpt)G = 〈z2〉xiy±jzkpt ∪ 〈z2〉x1−iy±jzkpt;

(xiyjzkt)G = 〈x, y2, z2〉yjzkt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G51.
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Proposition C.7. For G53 we have the following commutators:

(t, pr) =1;

(rt, p) = (prt, r) =x;

(r, p) = (pt, pr) = (rt, pt) =z;

(t, p) = (t, r) =xz;

(pt, r) =xz2.

Thus G′ = 〈x, y2, z〉.

The conjugacy classes in G53 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈x, y2〉yjzup, u ∈ {k,−k − 1};

(xiyjzkr)G = 〈x, z2〉yjzkr ∪ 〈x, z2〉y−jzk+1r;

(xiyjzkpr)G = 〈y2, z〉x±iyjpr;

(xiyjzkprt)G = 〈x2〉xi(yjzk)±1prt ∪ 〈x2〉xi+1(yjz−k)±1prt;

(xiyjzkrt)G = 〈y2〉xuyjzvrt, u ∈ {i, 1− i}, v ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉xuyjzkpt ∪ 〈z2〉xuy−jzk+1pt, u ∈ {i, 1− i};

(xiyjzkt)G = 〈x2, y2, z2〉xiyjzkt ∪ 〈x2, y2, z2〉xi+1yjzk+1t

= 〈xz, x−1z, y2〉xiyjzkt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G53.

Proposition C.8. For G54 we have the following commutators:

(p, rt) =1;

(r, p) = (t, p) =x;

(t, r) = (rt, pt) = (pt, pr) =z;

(pt, r) =xz;

(pr, t) = (r, prt) =xz−1.
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Thus we have G′ = 〈x, y2, z〉.

The conjugacy classes in G54 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyjzkp ∪ 〈x2, y2〉xi+1yjz−kp;

(xiyjzkr)G = 〈xz, xz−1〉xiyjzkr ∪ 〈xz, xz−1〉xiy−jzk+1r;

(xiyjzkpr)G = 〈y2, z〉xuyjpr, u ∈ {i, 1− i};

(xiyjzkprt)G = 〈x2〉xiy±jzkprt ∪ 〈x2〉xi+1y±jz1−kprt;

(xiyjzkrt)G = 〈y2〉x±iyjzurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉xiyjzkpt, ∪ 〈z2〉xiy−jzk+1pt ∪ 〈z2〉x1−iyjzk+1pt ∪ 〈z2〉x1−iy−jzkpt;

(xiyjzkt)G = 〈x, y2, z〉yjt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G54.

Proposition C.9. For G55 we have the following commutators:

(p, t) = (r, pt) = (pr, pt) = (rt, pt) =1;

(prt, r) =x2;

(p, r) = (t, r) = (rt, p) = (t, pr) =xy.

It follows that G′ = 〈xy, xy−1, z2〉.

The conjugacy classes in G55 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈xy, xy−1〉xiyjz±kp

(xiyjzkr)G = 〈x2, z2〉xiyjzkr ∪ 〈x2, z2〉xi+1y−1−jzkr;

(xiyjzkpr)G = 〈y2, z2〉xiyjzkpr ∪ 〈y2, z2〉x−1−iyj+1zkpr;

(xiyjzkprt)G = 〈x2〉xiyjz±kprt ∪ 〈x2〉xi+1y1−jz±kprt;

(xiyjzkrt)G = 〈y2〉xiyjz±krt ∪ 〈y2〉x1−iyj+1z±krt;

(xiyjzkpt)G = 〈z2〉x±iy±jzkpt;

(xiyjzkt)G = 〈xy, xy−1, z2〉xiyjzkt.
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Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G55.

Proposition C.10. For G57 we have the following commutators:

(prt, r) =1;

(rt, p) = (t, pr) =y;

(t, p) = (pt, pr) = (rt, pt) =z;

(p, r) =yz−1;

(pt, r) =z2;

(t, r) =yz.

It follows that G′ = 〈x2, y, z〉.

The conjugacy classes in G57 are: For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y〉xizkp ∪ 〈x2, y〉xiz−k−1p;

(xiyjzkr)G = 〈x2, z2〉xiyjzkr ∪ 〈x2, z2〉xiy−j−1zk+1r;

(xiyjzkpr)G = 〈y2, z〉xiyjpr ∪ 〈y2, z〉x−iyj+1pr;

(xiyjzkprt)G = 〈x2〉xiyuz±kprt, u ∈ {j, 1− j};

(xiyjzkrt)G = 〈y2〉xiyjzurt ∪ 〈y2〉x−iyj+1zurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉x±iyjzkpt, ∪ 〈z2〉x±iy−jzk+1pt;

(xiyjzkt)G = 〈x2, y, z〉xit.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G57.

Proposition C.11. For G63 we have the following commutators:

(p, rt) = (pr, t) = (prt, r) =1;

(r, p) = (t, r) = (t, p) = (pt, pr) = (rt, pt) =z;

(pt, r) =z2.
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It follows that G′ = 〈x2, y, z〉.

The conjugacy classes in G63 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuzvp, u ∈ {j, i+ j}, v ∈ {k,−k − 1};

(xiyjzkr)G = 〈x2y−1, z2〉xiyjzkr

∪ 〈x2y−1, z2〉x−iy−jzk+1r;

(xiyjzkpr)G = 〈y, z〉x±ipr;

(xiyjzkprt)G = 〈x2y−1〉(xiyj)±1z±kprt;

(xiyjzkrt)G = 〈y〉x±izurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉xiyj−δ(i+2j)zk+δpt, δ ∈ {0, 1},

∪ 〈z2〉(xiyj−δ(i+2j))−1zk+1−δpt, δ ∈ {0, 1};

(xiyjzkt)G = 〈x2, y2, z〉xiyut, u ∈ {j, i+ j}.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G63.
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Proposition C.12. For G64 we have the following commutators:

(prt, r) =1;

(p, r) = (pt, rt) =yz−1;

(t, p) = (t, r) = (pt, pr) =yz;

(t, pr) = (rt, p) =y2;

(pt, r) =z2.

It follows that G′ = 〈x2, y, z〉.

The conjugacy classes in G64 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuzkp, u ∈ {j, i+ j}

∪ 〈x2, y2〉xiyuz−k−1p, u ∈ {j + 1, i+ j + 1};

(xiyjzkr)G = 〈x2y−1, z2〉xiyjzkr

∪ 〈x2y−1, z2〉xiy−i−j−1zk+1r;

(xiyjzkpr)G = 〈y, z〉x±ipr

(xiyjzkprt)G = 〈x2y−1〉xiyuz±kprt, u ∈ {j, 2− i− j};

(xiyjzkrt)G = 〈y〉x±izurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉x(1−2δ1)iyj+δ1izkpt, δ1 ∈ {0, 1}

∪ 〈z2〉x(2δ2−1)iy1−j−δ2izk+1pt, δ2 ∈ {0, 1};

(xiyjzkt)G = 〈x2, yz, yz−1〉yjzkt, if i is even,

〈x2, y, z〉xt if i is odd.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G64.
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Proposition C.13. Let G = G65. Here F is an abelian subgroup of G, thus G′ = K =

〈x2, y, z2〉.

The conjugacy classes in G65 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuz±kp, u ∈ {j, i+ j};

(xiyjzkr)G = 〈x2y−1, z2〉(xiyj)±1zkr;

(xiyjzkpr)G = 〈y, z2〉x±izkpr;

(xiyjzkprt)G = 〈x2y−1〉(xiyj)±1z±kprt;

(xiyjzkrt)G = 〈y〉x±iz±krt;

(xiyjzkpt)G = 〈z2〉(xiyu)±1zkpt, u ∈ {j,−i− j};

(xiyjzkt)G = 〈x2, y2, z2〉xiyuzkt, u ∈ {j, i+ j}.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G65.

Proposition C.14. For G66 we have the following commutators:

(p, r) = (p, t) = (p, rt) =1;

(t, r) = (prt, r) = (rt, pt) = (pt, pr) = (t, pr) = (pt, r) =z.

It follows that G′ = 〈x2, y, z〉.
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The conjugacy classes in G66 are as follows:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuz±kp, u ∈ {j, i+ j};

(xiyjzkr)G = 〈x2y−1, z〉(xiyj)±1r;

(xiyjzkpr)G = 〈y, z〉x±ipr;

(xiyjzkprt)G = 〈x2y−1〉(xiyj)±1zuprt, u ∈ {k, 1− k};

(xiyjzkrt)G = 〈y〉x±izurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉(xiyj)±1zkpt

∪ 〈z2〉(x−iyi+j)±1zk+1pt;

(xiyjzkt)G = 〈x2, y2, z2〉xiyjzkt

∪ 〈x2, y2, z2〉xiyi+jzk+1t.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G66.

Proposition C.15. For G67 we have the following commutators:

(r, pt) = (r, prt) =1;

(p, r) = (pt, pr) =(pt, rt) = (t, p) = (t, r) = y;

(rt, p) = (t, pr) =y2.

It follows that G′ = K = 〈x2, y, z2〉.
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The conjugacy classes in G67 are:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuzkp, u ∈ {i, i+ j}

∪ 〈x2, y2〉xiyuz−kp, u ∈ {j + 1, i+ j + 1};

(xiyjzkr)G = 〈x2y−1, z2〉xiyuzkr, u ∈ {j,−i− j − 1};

(xiyjzkpr)G = 〈y, z2〉x±izkpr;

(xiyjzkprt)G = 〈x2y−1〉xiyuz±kprt, u ∈ {j, 2− i− j};

(xiyjzkrt)G = 〈y〉x±iz±krt;

(xiyjzkpt)G = 〈z2〉xiyuzkpt, u ∈ {j, 1− i− j}

∪ 〈z2〉x−iyuzkpt, u ∈ {i+ j, 1− j}

(xiyjzkt)G = 〈x2, y, z2〉xizkt.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G67.

Proposition C.16. For G68 we have the following commutators:

(p, rt) =1;

(t, r) = (rt, pt) = (pt, pr) =z;

(p, r) = (p, t) =x−2y;

(r, pt) =x−2yz−1;

(pr, t) = (r, prt) =x2y−1z−1.

It follows that G′ = 〈x2, y, z〉.

The conjugacy classes in G68 are:
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For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2, y2〉xiyuzkp, u ∈ {j, i+ j},

∪ 〈x2, y2〉xiyuz−kp, u ∈ {j + 1, i+ j + 1};

(xiyjzkr)G = 〈x2y−1, z2〉xiyuzvr, u ∈ {j,−i− j}, v ∈ {k, k − 1};

(xiyjzkpr)G = 〈y, z2〉xuzvpr, u ∈ {i, 2− i}, v ∈ {k, k − 1};

(xiyjzkprt)G = 〈x2y−1〉(xiyj)±1zuprt, u ∈ {k, 1− k};

(xiyjzkrt)G = 〈y〉x±izurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z2〉xiyjzk(y−i−2jz)δpt, δ ∈ {0, 1},

∪ 〈z2〉x2−iy−j−1zk(yi+2jz)δpt, δ ∈ {0, 1};

(xiyjzkt)G = 〈x2, y, z〉xit.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G68.

Proposition C.17. The following pertains to G69.

Here F is an abelian subgroup of G, thus G′ = K = 〈x2, y2, z〉.

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2z−1, y2z−1〉xiyjzup, u ∈ {k,−i− j − k}

∪ 〈x2z−1, y2z−1〉xiy−jzup, u ∈ {j + k,−i− k};

(xiyjzkr)G = 〈x2, z〉xiyjzur, u ∈ {k,−i− j − k}

∪ 〈x2, z〉xiy−jzur, u ∈ {j + k,−i− k};

(xiyjzkpr)G = 〈y2, z〉x±iyjpr;

(xiyjzkprt)G = 〈x2z−1〉(xiyj)±1zuprt, u ∈ {k, 1− k};

(xiyjzkrt)G = 〈y2z−1〉x±izurt, u ∈ {k, 1− k};

(xiyjzkpt)G = 〈z〉x±iy±jpt;

(xiyjzkt)G = 〈x2, y2, z2〉xiyjzut, u ∈ {k, j + k, i+ k}.
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Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G69.

Proposition C.18. For G72 we have the following commutators:

(p, t) = (pt, rt) = (pt, pr) = (pt, r) = (pt, prt) = 1;

(p, r) = (t, r) = (t, pr) = (rt, p) = x2z−1;

(r, pr) = (rt, prt) = x2y−2z−1;

(rt, pr) = y2.

It follows that G′ = K = 〈x2, y, z〉.

The conjugacy classes in G72 are:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2z−1, y2〉(xiyjzk)±1p

∪ 〈x2z−1, y2〉(xiyi+jzk)±1p;

(xiyjzkr)G = 〈x2y−1, z2〉xiyjzur, u ∈ {k, i+ k}

∪ 〈x2y−1, z2〉x−iy−j−1zur, u ∈ {k + 1, i+ k + 1};

(xiyjzkpr)G = 〈yz, yz−1〉xiyjzupr, u ∈ {k, i+ k}

∪ 〈yz, yz−1〉x−i−2yjzupr, u ∈ {k + 1, i+ k + 1};

(xiyjzkprt)G = 〈x2y−1z−1〉xiyjzuprt, u ∈ {k,−i− k}

∪ 〈x2y−1z−1〉x−iy1−jzuprt, u ∈ {−k, i+ k};

(xiyjzkrt)G = 〈y〉xizurt, u ∈ {k,−i− k}

∪ 〈y〉x2−izurt, u ∈ {i+ k − 1,−k − 1};

(xiyjzkpt)G = 〈z〉(xiyu)±1pt, u ∈ {j,−i− j};

(xiyjzkt)G = 〈x2, y2, z〉yjt if i is even,

or 〈x2, y, z〉xt if i is odd.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the
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relations in the presentation of G72.

Proposition C.19. For G73 we have the following commutators:

(p, r) =x−2y2; (p, t) =x−2y;

(t, r) = yz; (pr, r) =x2;

(rt, p) = (prt, rt) = y; (rt, pr) = y2z;

(pt, r) =x2y−1z; (pr, t) =x2y−2z−1;

(pt, pr) = (rt, pt) = z; (r, prt) = (pt, prt) =x2y−1z−1.

Therefore G′ = K = 〈x2, y, z〉.

The conjugacy classes in G73 are:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2z−1, y〉xizkp ∪ 〈x2z−1, y〉xiz−i−k−1p if i is even,

〈x2z−1, y2〉xiyjzkp ∪ 〈x2z−1, y2〉xiyj+1z−i−k−1p; if i is odd;

(xiyjzkr)G = 〈x2y−1, z2〉xiyjzur, u ∈ {k, i+ k + 1}

∪ 〈x2y−1, z2〉xiy−1−i−jzur, u ∈ {i+ k, 1 + k};

(xiyjzkpr)G = 〈y, z〉xupr, u ∈ {i, 2− i}, if i is even,

〈yz, yz−1〉xiyjzk(x2−2iz)δpr, δ ∈ {0, 1} if i is odd;

(xiyjzkprt)G = 〈x2y−1z−1〉xiyuzvprt, u ∈ {j, 1− i− j}, v ∈ {k,−i− k};

(xiyjzkrt)G = 〈y〉xizurt, u ∈ {k, 1− i− k}

∪ 〈y〉x−izurt, u ∈ {i+ k, 1− k};

(xiyjzkpt)G = 〈z〉xiyupt, u ∈ {j,−i− j}

∪ 〈z〉x2−iyupt, u ∈ {i+ j − 1,−1− j};

(xiyjzkt)G = 〈x2, y, z〉xit.

Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of G73.
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Proposition C.20. For G74 we have the following commutators:

(r, prt) = (r, pt) = (prt, pt) =1;

(p, r) = (t, p) = (pr, r) = (t, r) = (pt, pr) = (pt, rt) =y;

(rt, p) = (t, pr) = (prt, rt) =y2;

(rt, pr) =y3.

Therefore G′ = K = 〈x2, y, z〉.

The conjugacy classes in G74 are:

For i, j, k ∈ Z,

(xiyjzkp)G = 〈x2z−1, y2〉xiyuzkp, u ∈ {j, i+ j}

∪ 〈x2z−1, y2〉xiyuz−i−kp, u ∈ {i+ j + 1, j + 1};

(xiyjzkr)G = 〈x2y−1, z2〉xiyuzvr, u ∈ {j,−i− j − 1}, v ∈ {k, i+ k};

(xiyjzkpr)G = 〈yz, yz−1〉x±1yjzkpr

∪ 〈yz, yz−1〉x±iyj+1zi+kpr;

(xiyjzkprt)G = 〈x2y−1z−1〉xiyuzvprt, u ∈ {j, 2− j − i} v ∈ {k,−i− k};

(xiyjzkrt)G = 〈y〉(xizu)±1rt, u ∈ {k,−i− k};

(xiyjzkpt)G = 〈z〉xiyupt, u ∈ {j, 1− i− j}

∪ 〈z〉x−iyupt, u ∈ {i+ j, 1− j};

(xiyjzkt)G = 〈x2, y, z2〉zkt if i is even,

〈x2, yz, yz−1〉xyjzkt if i is odd.

Proof. This follows from Proposition A.1, Proposition C.2, and from the relations in the

presentation of G74.
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