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ABSTRACT
Weak Cayley Table Groups of Crystallographic Groups

Rebeca Ann Paulsen
Department of Mathematics, BYU
Doctor of Philosophy

Let G be a group. A weak Cayley table isomorphism ¢ : G — G is a bijection satisfying
two conditions: (i) ¢ sends conjugacy classes to conjugacy classes; and (ii) ¢(g1)¢(g2) is con-
jugate to p(g192) for all g1, go € G. The set of all such mappings forms a group W(G) under
composition. We study W(G) for fifty-six of the two hundred nineteen three-dimensional
crystallographic groups G as well as some other groups. These fifty-six groups are related to
our previous work on wallpaper groups [HP].

Keywords: crystallographic groups, automorphisms, weak Cayley table isomorphisms
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CHAPTER 1. INTRODUCTION

Let G and H be groups. As defined in [JS, Hu|, a weak Cayley table morphism is a function
¢ : G — H satisfying two conditions: (i) for g,¢" € G, v(g9)¢(¢’) is conjugate to ¢(gg’); and
(i) ¢ is conjugate to ¢ in G if and only if ¢(g) is conjugate to p(¢’) in H. A weak Cayley
table isomorphism is a bijective weak Cayley table morphism. In the situation where ¢ is
bijective and G = H, ¢ is a generalization of an automorphism, and we call these mappings
weak Cayley table maps or wcts. The set of all such mappings ¢ : G — G forms the weak
Cayley table group W(G) = VW under composition and we note that the automorphism group
Aut(G) of G is a subgroup of W(G). The inverse map ¢ : g — g~ ' is also an element in W.
We define Wy = (Aut(G), ), and we call the wets in this subgroup trivial. If W = W, we
say W(G) is trivial.

Although this will not be relevant to this thesis, we now explain where this idea comes
from. If G ={g1 =1, 9o, ...}, then the weak Cayley table of G is the |G| x |G| matrix whose
tj entry is the conjugacy class of g;g;. Two finite groups have the same weak Cayley table if
and only if they have the same 1- and 2-characters, in the sense of Frobenius [JMS]. Here,
for a complex character Y, the corresponding 1-character is y") = x, and the 2-character is
x? :G? = C,x?P(z,y) = x()x(y) — x(zy). The group W(G) is the group of symmetries
of the weak Cayley table of G [JMS]. We note that the notion of a k-character only makes
sense in the situation where G is finite; however, the weak Cayley table is defined for any
group, and W(G) makes sense for any group.

Given a group G one would like to determine whether or not W(G) is trivial and to
find the non-trivial wets in W\ Wy. Previous research has determined the weak Cayley table
groups of various finite and infinite groups. For example, dihedral groups, symmetric groups,
most finite irreducible Coxeter groups, most alternating groups, and PSL(2,p") all have
trivial weak Cayley table groups [Hu, HN, HN2]. In [HP] we studied the weak Cayley table

groups of the seventeen two-dimensional crystallographic groups, also known as wallpaper



groups or plane groups. We found that thirteen wallpaper groups have trivial weak Cayley
table groups while four have non-trivial weak Cayley table groups. In that paper we were
able to generalize one of these results to show that if G = A %y C, (here A is abelian, p is an
odd prime, and 6 is not trivial) then W(G) is non-trivial.

In this thesis we study the weak Cayley table groups of some of the three-dimensional
crystallographic groups. Elements of an n-dimensional crystallographic group, also known as
a space group, are isometries that act on Euclidean space [E™. There are 219 three-dimensional
space groups, up to isomorphism. As explained in [CFHT], 184 of these space groups consist
of isometries that preserve one direction (up to orientation) and consequently, the space
group can be given a fibration. (See §4.4 for a definition.) If a three-dimensional space group
can be fibered, then the action of the space group on the set of fibers, a subspace isomorphic
to [E2, gives the action of some wallpaper group on E2. Thus there is a way to associate any
of these 184 space groups to some wallpaper group.

In this thesis we chose to study the fifty-six space groups that correspond to one of the
four wallpaper groups that have non-trivial weak Cayley table groups. We found that twenty
have trivial weak Cayley table groups while thirty-six of them have non-trivial weak Cayley
table groups.

Several of the groups examined here have cyclic quotients. Our study of these cases
motivated us to study the general case where a group G contains an abelian normal subgroup
A such that G/A is cyclic. We were able to prove that if 2 < |G/A| < oo and if the

conjugation action of G/A on A is faithful, then W(G) will be non-trivial (see Theorem 3.3).

1.1 PROPERTIES OF WEAK CAYLEY TABLE ISOMORPHISMS

The following properties of weak Cayley table isomorphisms in W(G) will be helpful as we
determine W(G). In this section, G, H and K are groups. For ¢g,¢ € G we will write g is
conjugate to ¢’ in G as g ~¢ ¢, or g ~ ¢ if the context is clear. We will write ¢¢ to denote

the conjugacy class of g € G.



Recall that a wct ¢ by definition satisfies p(g%) = p(g) for all g € G. We will say that

© preserves conjugacy classes when we refer to this property of wcts.
Proposition 1.1. Let ¢ : G — H be a weak Cayley table isomorphism. Then

(1) © maps the identity in G to the identity in H : ¢(lg) = 1g.

(11) @ respects inverses: (g7 = p(g) .

(1) o' H — G is a weak Cayley table isomorphism.

(iv) For the centers of groups we have: p(Z(G)) = Z(H).

(v) @ maps involutions to involutions: g* = 1 implies p(g)* = 1.

(vi) @ maps normal subgroups to normal subgroups: N <G implies ¢(N) < H.

(vii) If N Q G and p(N) = M, then ¢ maps cosets of N to cosets of M. In other words,

©(Ng) = o(N)p(g) forall g € G.

(viii) Let N < G. Then ¢ induces a map ¢ : G/N — H/p(N) which is also a weak Cayley

table 1somorphism.

Proof.  Proofs of these same results in the case where G and H are finite can also be found
in [JMS, p. 398]. (i) Let p(a) = 1. Then p(a-a) ~ 1. Then p(a?) = 1. Since ¢ is a bijection
this implies o? = «a; thus o = 1.

(i) Here 1 = ¢(g - g7") ~ ¢(9)¢(g™") implies p(g71) = ¢(g) ™"

(ii7) First we note that since ¢ preserves conjugacy classes it is clear that ¢~! also preserves
conjugacy classes. It remains to show that ¢! respects the group operation, up to conjugacy.

Let f,g € H. Since ¢ is bijective, there exists some f’, ¢’ € G such that f = ¢(f) and

g =(g). Using o(f")e(g") ~ ¢(f'g’), we have

e ' (fg) = e f)elg)) ~ e e(f'g) = Fg = (e ' (9).



(iv) For g € G, we have [g¢] = |o(g%)] = |o(9)¥|. The first equality follows from the
bijectivity of ¢ and the second is a consequence of ¢ preserving conjugacy classes. It follows
that |¢%| = 1 if and only if |p(g)| =1, i.e. g € Z(G) if and only if p(g) € Z(H).

(v) Here 1 = g* implies (1) = ¢(g- g) ~ ¢(9)¢(g). So »(g)* = 1.

(vi) Since ¢ preserves conjugacy classes, (i) implies that ¢ will map a normal subgroup to a
union of conjugacy classes that contains 1. By the definition of a weak Cayley table map this
union is closed under the group operation and by (i7) we have inverses, thus it is a normal
subgroup.

(vii) Let z,y € G satisfy Nz = Ny and so xy~' € N. Then p(zy~') € M implies p(z)p(y~!) =
p(z)p(y)~ € M and thus My(z) = Me(y).

(viii) Let ¢(N) = M. Using (vii) we define ¢ : G/N — H/M by ¢ : Ng — Mp(g). First
we will show that ¢ maps conjugacy classes to conjugacy classes. Let Ng, Nh € G/N and
suppose Ng ~qg/n Nh. It follows that g ~g hn for some n € N. Since ¢ preserves conjugacy

classes, this gives ¢(g) ~g @(nh) ~g ¢(n)p(h). It follows that

o(N)p(g) ~rmr p(N)p(n)p(h) = o(N)p(h).

In other words, @(Ng) ~u/m @(NR).

Now we show that that the converse also holds, i.e. that @(Ng) ~pg/n @(INh) implies that
Ng ~g/n Nh. We assume @(Ng) ~p/nr @(Nh), in other words, ¢(N)@(g) ~um o(N)p(h).
It follows that for some n € N, ¢(g) ~u ¢(n)p(h) ~u @(nh). Since ¢ preserves conjugacy
classes, this implies g ~g nh, thus Ng ~g/y Nnh = Nh.

Lastly we show that for Nz, Ny € G/N, ¢(Nx - Ny) ~ym ¢(Nzx) - ¢(Ny). We have

o(zy) ~u ¢(x)p(y) which implies that ¢(N)p(xy) ~u/m ©(N)e(x)e(y). Therefore,
PNz - Ny) = ¢(Nay) = o(N)e(xy) ~mjm (N)e(r)p(y) = ¢(Nz)p(Ny),

which shows that ¢ is a weak Cayley table map. O]

Lemma 1.2. Let ¢ : G — H, v : H — K be weak Cayley table morphisms. Then

poo w1 : G — K is also a weak Cayley table morphism.



Proof. Since 1 and 9 preserve conjugacy classes, it is clear that ¢; o o also preserves
conjugacy classes. It remains to show that ¢; o ¢ respects the group operation, up to
conjugacy. Let g,h € G. Since @3(g - h) ~ @a(g)p2(h) and ¢ preserves conjugacy classes,

we have

(1 092)(g - h) ~ p1(pa(g)pa(h)).

The above is conjugate to (¢10v2)(g) - (10 ¥2)(h) because 1 respects the group operation

up to conjugacy. ]
This result, together with Proposition 1.1 (iii), shows that W(G) is a group.
Lemma 1.3. The inverse map 1 : g+ g~ is in the center of W(G).

Proof. Let g,h € G. It is clear that g ~ h if and only if g' ~ h~!, thus ¢ preserves

conjugacy classes. We also have
W(gh) =h"'g  ~ g 'ht = u(g)u(h).

We conclude that « € W(G).
The fact that ¢ commutes with any ¢ € W follows from Proposition 1.1 (ii): (¢ot)(g) =
plg™) = elg)™" = (o @)(g)- O
An anti-automorphism is a bijective map « : G — G that satisfies a(gh) = a(h)a(g) for

all g,h € G. Let a be an anti-automorphism of G and let ) = 1 o . Then for any g, h € G,

U(gh) = a(gh)™" = (a(h)a(g)) ™" = alg) 'a(h)™" = ¥(g)v(h).

Thus ¢ is an automorphism. It follows that any anti-automorphism is the composition of an
automorphism with the inverse map. By Lemma 1.2 an anti-automorphism is a wct. This

shows that Wy(G) is the group of all automorphisms and anti-automorphisms of G.



CHAPTER 2. PRELIMINARY RESULTS

2.1 COMMUTATORS AND COMMUTATOR SUBGROUPS

For a,b € G we will write a® = b~tab. Also, we define the commutator (a,b) = a~1b~tab =
a~ta’. For subgroups H, K < G, we define [H, K| = ((h,k) : h € H,k € K).

Throughout this thesis, whenever we have a group G that contains a normal abelian
subgroup A then we will let F' denote a set of coset representatives for G/A. We will also

assume that A is countably generated with generators xy, zo, - - - .

In what follows we will frequently use the Witt-Hall identities, which can be found in

[IMKS, p. 290]. These are

(a,b) =(b,a)™"; (2.1)
(a,b-c) =(a,c)-(a,b)-((a,b),c) (2.2)
=(a,c) - (a,b) (2.3)

(a-b,¢) =(a,c) - ((a,c), b) - (bc) (2.4)
—(a,c)’ - (b, c). (2.5)

Definitions For G a group with an abelian normal subgroup A = (1,9, --) we define
K = {((xz;,h) : 1€{1,2,---}, h € F}).
We will show later that K does not depend on F. For g € GG, we define
Ky = ((z0g) i €{1,2,-}).

We will see that an equivalent definition of K is K = {(a,h) : a € A,h € F'}, and also
that an equivalent definition of K, is K, = {(a,g) : a € A}. It will frequently be helpful
to think of K, this way. To show that the definitions are equivalent, we will first prove a

lemma.



Lemma 2.1. Let G be a group with an abelian subgroup A< G. For a,b € A, g € G we have

(ab, g) = (a,9) - (b, 9).
It follows that for k € Z, (a, g)* = (a*, g).

Proof.  First we note that since A is normal, (a,g) = a 'a’ € A. Since A is abelian,

((a,g),b) = 1. Then by Eq. (2.4) we have

(a - b, g) = (aag) ’ ((a7g)7b) ’ (ba g) = (aag) ’ (b7 g)

The second statement can be proven for k € N by letting b = a and applying an inductive

1

argument. Putting b = a™! we see that (a,g)™' = (a™',g) and thus for k¥ € Z we have

(a,9)F = (a*, g). 0

We are now ready to prove the equivalence of the two definitions of K, and K.

Lemma 2.2. An equivalent definition of K, is K, = {(a,9) : a € A}. An equivalent
definition of K is K = {(a,h) : a € A,h € F}.

Proof.  Since K|, is generated by commutators of the form (z;,g) where (x,xs,---) = A,
an arbitrary element of K, is a word in {(z;,¢) : ¢ € N}. By Lemma 2.1, this word can be
written as the commutator (a, g) where a is a word in {z;' : i € N}. It follows that the two
definitions of K, are equivalent. The same argument shows that the two definitions of K

are equivalent. ]

Clarification about notation: In Lemma 2.3 below we show that K; = K, for any a € A.
It follows that each K ; subgroup corresponds to a coset Af € G/A. Thus, whenever possible,
we may denote each K, subgroup by K; where f € F' and Af = Ag. However, in general,

when we write K, that does not necessarily imply that g € F.

Lemma 2.3. Let G be a group with normal abelian subgroup A. If fi and fy are in the same
coset of G/A (i.e. Afi = Afy) then for a € A we have (a, fi) = (a, f2). This implies that
Ky = Ky,. In other words, Ky does not depend on which coset representative is used. This

also shows that K = [A, G].



Proof. Assume Af; = Afy. Then fo = bf; for some b € A. Then by Eq. (2.2), for a € A,

(since A is abelian),

<a7f2)7: (a7 bf1> = (CL, fl)(CL?b)((a?b)?fl) = (a7 fl)y

and the result follows by Lemma 2.2. O]
In Lemmas 2.4 through 2.11 we prove results about commutators and Ky subgroups that

will be helpful in various upcoming proofs.

Lemma 2.4. Let G be a group with normal abelian subgroup A. If G/A is abelian, then for
f,g€ G anda € A, (a,f)? = (a9, f).

Proof. Since G/A is abelian, f9 =bf for some b € A. Thus

(a, [)? = (0%, f7) = (a?,0f) = (a’, [).

The last equality follows from Lemma 2.3. O]

Lemma 2.5. Let G be a group with normal abelian subgroup A. For f € F we have K; <
K < A. Additionally, K < G. If G/A is abelian, then Ky 1 G.

Proof. It is clear from the definition of Ky and K that K; < K. By Lemma 2.2 any
element of K can be written as (a, f) for some a € A, f € F. Since A <G the commutator
(a,f) =atal € A, thus K < A.

Now we show that K JG. An arbitrary element of K is (b, h) for some b € A, and h € G.

For g € G, we have h¥9 € Ah for some h € F. Then by Lemma 2.3,
(b, h)? = (b9, h9) = (b7, h),

which is contained in K by Lemma 2.2. Thus any conjugate of an element of K is in K,
proving K J@G.

To prove the second statement we now assume G/A is abelian. Let a € A so (a, f) is an
arbitrary element of K; by Lemma 2.2. By Lemma 2.4, a conjugate of a commutator (a, f)"

can be written as (a", f) which is also in K, thus K; < G. O



Lemma 2.6. Let G be a group with normal abelian subgroup A. Let f € G. Any commutator
of the form (a, f) with a € A can be written as (b, f~') where b = (a/)~'. This implies that

K= K¢,
Proof. We have

(a, f) =" fla™ faf)
=f"(fa” fla)f

=(f a)f
=/ a)
=(fHo Y because a/ = b~
=@~ )™ by Eq. (2.1)
=, f 1 by Lemma 2.1.
It follows by Lemma 2.2 that Ky = Ky-1. O]

If H < G then Cg(H) will denote the centralizer of H in G.

Lemma 2.7. Let G be a group with normal abelian subgroup A. Assume that G/A is abelian.

Let f,h € G and let a € A. Then

((a, ), h) = ((a, h), f)-

This implies that h € Cq(Ky) if and only if f € Ca(K}).
Proof. We have

((a, f),h) = (a, /)" (a, f)"

= (", f)(a", f) by Lemmas 2.1 and 2.4
= (a'd", f) by Lemma 2.1
= ((a, h), f)-

The second statement can be deduced by using the definition of Ky found in Lemma 2.2 and

noting that if ((a, f),h) = 1 for all a € A then ((a,h), f) = 1 for all @ € A. The converse



follows from a similar argument. O]

Lemma 2.8. Let G be a group with normal abelian subgroup A. Assume that G /A is abelian.

Let f € G. Let j,k € N. If j|k then Ky > K.

Proof. We proceed by proving these statements:
(i) For h e G, Kp, < K¢Kj,.
(i1) Forne N, K < KpKpn-1;
(i17) Forn e N, K < Kj.
Recall that by Lemma 2.2 an arbitrary element of K, is (a, g) for a € A. We will use this

throughout the proof.

We first prove (i). Since G/A is abelian we have hf € Afh, thus by Lemma 2.3 and Eq.

(2.3) we have
(a, fh) = (a,hf) = (a, f)(a, h) .

By Lemma 2.5 K}, is normal thus (a,h)/ € Kj,. This shows that (a, fh) (i.e. an arbitrary
element of Kyj,) is a product of a commutator in K, and a commutator in K}, proving (i).
To prove (i1) we apply (i) with & = f*~1. We prove (4iz) by induction. When n = 1 there is
nothing to prove. We assume inductively that it is true for n = k —1,i.e. K1 < Ky. Thus
we have K < KjKp-1 < KyKy = Ky where the first containment follows from (4i) and
the second containment follows by our inductive assumption. Thus (¢i7) is true for n = k.
Now to prove Lemma 2.8 we apply (iii), supposing that n = k/j (so k = nj) and replacing
f in (i7) with f7. This gives
Ky < Kprie. Kpn < Kpy e, Kpo < K. O

Lemma 2.9. Let G be a group with normal abelian subgroup A. Assume G /A be abelian.
Let f € F,f & A, satisfy [* € A for some n € N. (Assume i ¢& A for all 1 <i <n.) Let
m € N. If ged(m,n) = d then Kpm = Kja.

Proof. We have ged(m,n) = d, thus (by Bezout’s identity) there exists m’ € Z such that

mm’ = dmod n. It follows that K . = K. Now we apply Lemma 2.8 twice, (noting that

10



d|m):
de Z Kfm Z Kfmm’ - de

We conclude that K i = Kjpm. O

Lemma 2.10. Let G be a group with normal abelian subgroup A. Let g1, g2 € G and suppose

91,92 € Af for some f € F. Then g1g5" € Ky if and only if there exists « € A such that
92 = 97"
Proof. Let gy = af and g, = bf for some a,b € A. Note that gig; " = (af) - (bf)~™" = ab™'.
Then by Lemma 2.6 and Lemma 2.2,
g9, - =ab™t € K < a'b e Ky
<= there exists a € A such that a™'b = (a, f71)

< there exists a € A such that
bf = a(a™b)f = ala faf ) =af* = (af)*. O

Lemma 2.11. Let G' = [G, G] denote the commutator subgroup of a group G and let ¢ €
!

W(G). If c € G' is a commutator, then p(c) is also a commutator. In particular, o(G') = G'.
In other words, a € G' if and only if p(a) € G'. Also, p(K) = K.

Proof. Let ¢ € G; thus ¢ = g~ '¢" for some ¢g,h € G. Then since ¢ preserves conjugacy

classes, there exists some f € G such that

o(c) =g g") ~wlg eld") = vlg) l9) = (¢(9). f). (2.6)

This shows that ¢(c) is conjugate to a commutator. Since the conjugate of a commutator
is a commutator, ¢(c) is a commutator. To prove the converse, we note that ¢! € W(G);
thus ¢! will also map a commutator to a commutator. Thus if we assume o(c) € G’, then

0 (p(c)) = c € G'. We have shown that o(G') = G'.

By Lemma 2.2 we have K = ((a,h) : a € A,h € F). Then using Eq. (2.6) withg =a € A

we see that ¢ sends any generator (a, h) of K to the commutator (¢(a), f) for some f € G.

11



By Lemma (2.3) we may assume f € F. Since ¢ is a bijection, the set {(a,h) : a € A,h € F'}

is mapped to itself. It follows that ¢(K) = K. O

2.2 MAPS DEFINED USING C AND F

The non-trivial wcts described in Theorems 3.3, 5.1, 5.2, 5.3, 5.4, 5.7, 5.8, and 5.9 may
be defined as bijections that conjugate group elements in certain cosets of G/A by a fixed

element but fix elements in other cosets. This motivates the following definitions:

Definitions For A € G and € C G/A, we define a map 7(A,€C) : G — G as follows:

g g if Ag €@,
(A, C) : (2.7)

gr—g if Age T,
where F = (G/A) \ €. When € has been made clear we may simply write 7, to denote the
function. We define P C G/A to be

P ={Af € G/A : Af = Af, - Af, for some Af;, € C, Af, € F}.

Lastly we define J = ﬂ K. We note that P and J are determined by €, thus we may
AfeP
write P(€) and J(€C) when we want to distinguish between P subsets (or J subgroups) that

correspond to different € subsets.

The non-trivial wets defined in this thesis are all 7(\, €) maps such that the cosets of G/A
in either € or F form a proper subgroup N < G/A. Note that by composing 7(X,C) € W
with the inner automorphism I,-1 : g — g’\f1 we effectively interchange € and F. Thus, it
is somewhat of an arbitrary choice whether to put N = € or N = F. However, for most of
the 7\ maps we define in this thesis we found it advantageous to put N = JF, as this made
it easier to prove that 7, € W or to prove that 7, € W\ W.

The following theorem gives sufficient conditions for a 7(A, €) map to be a wct.

Theorem 2.12. Let G be a group with an abelian normal subgroup A. Suppose T(A,C) :
G — G is a map of the form given in Eq. (2.7) and that T\(Af) = Af for all Af € G/A. (In
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Lemma 2.13 we show that the latter requirement is satisfied if G/A is abelian or if A € A.)

If we have (A, g7') € J for every g € G such that Ag € C, then 7, € W(G).

Proof.  Note that since 7, acts by conjugation, for any conjugacy class C' in G we have
TA(C) = C. Therefore it is clear that 7, preserves conjugacy classes. By assumption 75 (Af) =
Af for all Af € G/A. This implies that 7,(C) = C. It follows that 7, is a bijection. Then to

prove that 7(\, €) € W(G) it remains to show that for any g, go € G we have 7(g1)7r(g2) ~
2 (9192)-

Case 1: Agy, Agy € C: Then

N T/\(QIQQ) if Agigo € C

2 (91)7(92) = 9195 = (9192)
~ T(g192) if Agrgo € F.

Case 2: Agy, Ago € F: Then

= 7')\(9192) if Agigo € F
A(91)TA(92) = G192

~Ta(g192) if Agigs € C.
Case 3: Agy € Cand Ag, € F:
We have 7(g1)7x(92) = 9792 and we wish to show this is conjugate to g;g». (Whether
Agi1go is in € or F, this suffices.) By hypothesis 7\(Af) = Af for all Af € G/A, thus
72(g1) € Agy s0 g}g2 € Agigo. Lemma 2.10 asserts that to show g1gs ~ g19» it suffices to

show that (g7g2)(g192) "' € K,,4,- We simplify this product:

(9192) * (9192) " = 9192 95 9 = g0 (9292") 91" = A" gidgr ' = (A gi').
We are assuming that (\,g;') € J, which, by the definitions of J and P, implies (since
Agigs € P) that (N, g;") € Ky,4,. Thus by Lemma 2.10 we conclude that g;g, ~ g;g» which
proves this case.
Case 4: ¢, satisfies Ag; € F while g, satisfies Agy € C:

Since 7(g1)7(g2) = 9195 ~ g5 g1 this case reduces to Case 3 so we are done. ]
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Lemma 2.13. Let G be a group with subgroup A < G. Let f, A € G. If G/A is abelian or if
A€ A, then f» € Af.

Proof. Let g = f». Then Ag = Af4* If G/A is abelian or if A\ = A, then Ag = Af, i.e.
g=freAf. 0

When J<G, the key hypothesis in Theorem 2.12 that (A, g~!) € J can be rephrased more
simply as (), ¢g) € J. (By Lemma 2.5, J < G when G/A is abelian.) The equivalence of the

two is shown by the following result:

Lemma 2.14. Let G be a group with an abelian subgroup A G. Let g € G and a € A. Let
N <G. Then (a,g) € N if and only if (a,g7") € N.

Proof. We have

(a,9) =((a)"",g7") by Lemma 2.6
=(a%, g~ ") by Lemma 2.1
=((a,g "))~ 0

Every group G we consider in this thesis has an abelian normal subgroup A such that
G/A is abelian. Thus by Theorem 2.12 and Lemma 2.13, to show that 7(\, €) € W(G),
it suffices to show that (\,g7!) € J for every g € G such that Ag € €. For the groups we
are studying, there are infinitely many such group elements g, so it is not practical to check
each (A, g) one by one. The following two corollaries give us sufficient conditions to satisfy
(A\,g71) € J that can be verified easily. Corollary 2.15 (i7) and Corollary 2.16 (i) will be

applied repeatedly in Ch. 5.

Corollary 2.15. Let G be a group with an abelian normal subgroup A and let X € A. Let
T(A, C) : G — G where T\(Af) = Af for all Af € G/A.

(i) If (N, f~1) € T for all f € F such that Af € C, then 7(\,C) € W(G). (Rather than
verifying that (\,g71) € J for every g € Af € C (as required by Theorem 2.12), it
suffices to show (X, f~1) € J where f € F satisfies Af € C. )

14



(1) If N € T and I < G then (X, C) € W(Q).

Proof. Lemma 2.3 states that when A\ € A, for any g € Af we have (A\,¢7!) = (A, f71).
Thus (A, f7') € J implies (A, g!) € J for all g € Af € C. Statement (i) then follows from

Theorem 2.12.

Now to prove (i), assume A € J. Then for any g € G (since J is normal by hypothesis) we
have A\™'A9"" = (X, g7") € J as well. This holds in particular when g € Ag € €, as required

for Theorem 2.12. Then by that result we have 7, € W(G). O

Corollary 2.16. Let G be a group with an abelian normal subgroup A and let T(\,C) : G —
G be a map of the form given in Eq. (2.7). Suppose that X commutes with every element
f € F such that Af € C.

(i) If (\,a) € T for all a € A then T7(\,C) € W(G). Equivalently, (\,z;) € I for all

generators x; of A, 1 < i < n, implies 7()\,€C) € W(G).
(i1) If we have Ky < J then 7(\,C) € W(G).

Proof.  This follows from Theorem 2.12. Note that since A commutes with every f € F
such that Af € €, we have 7\(Af) = Af for all Af € G/A. Thus to show 7, € W(G) is
suffices to show that (A, g7!) € I for every g € G such that Ag € C.

We first prove (7). Let f € F satisfiy Af € €. For g € Af we can write g = a~!f for
some a € A. By hypothesis A commutes with f, thus (A, f~!) = 1. Then using Eq. (2.2) we

have

(A g =\ f"a)
=\ a)- (A f7) (A f7),a)

=(\, a).

By assumption (A, a) € J for all a € A therefore (A, g~1) € I for all g € Af € €. By Theorem

2.12, 7, € W(G). The second statement in (¢) follows from Lemma 2.1.
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To prove (ii) we will show that (A\,a) € J for a € A and then our result follows from
(7). Recall K\ = ((a,\) : a € A) by Lemma 2.2, thus an arbitrary element of K, can be
written as (a, \) for a € A. We are assuming K, < J thus we have (a, \) and its inverse (A, a)

contained in J, so we are done. O
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CHAPTER 3. GENERALLY APPLICABLE RESULTS

In this chapter we include results that may be applied to groups that are not necessarily

crystallographic.

3.1 SUFFICIENT CONDITIONS FOR A WCT TO BE NON-TRIVIAL

Theorem 3.1. Let G be a group with an abelian normal subgroup A. Assume that the
conjugation action of G/A on A defined by a - (Ag) = a9 is faithful. Let 7(\,C) € W(G) be

a wct of the form given in Eq. (2.7). Also assume that F and C are not empty.

(1) If X ¢ A then 7(\, C) is not an automorphism, i.e. T(\,C) € W(G) \ Aut(G).

(i1) If |GJA| > 3 then T(\,C) is not an anti-automorphism, i.e. either T(\,C) € Aut(G)
or T(\, €C) € W(G) \ Wy(G).

Proof. We prove (i) by contradiction. Suppose that 7, is an automorphism, and let a € A
satisfy (a, ) # 1. (Since the conjugation action of G/A is faithful and A ¢ A we know such

an a exists.) Let 7, = 7(\, C). We consider two cases:

Case 1: A€ JF : Then for f € Af € C we have
af* = n(a)m(f) = a(a- f) = (af)* = a*f.
Case 2: A€ C: Then for f € Af € F we have

ClAf =7(a)ma(f) = ala- f) = af.

A

In either case we arrive at a = a*, contradicting (a, \) # 1. We conclude that 7, is not an

automorphism, proving (7).

To prove (i7) we assume that |G/A| > 3 thus (since € and F each contain at least one
coset) € or F contains at least two cosets. We consider two cases with A € F and two

cases with A € €. In all four cases we assume by way of contradiction that 7(\,€) is an
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anti-automorphism and use the fact that the action of G/A on A is faithful (i.e. a/ = a for

all @ € A implies f € A) to arrive at a contradiction.

Case 1: F = {A} : Let a € A and let f € G satisfy Af € €. Note Af~* € €. (We do not
assume Af and Af~! are distinct.) Since we assume 7y is an anti-automorphism. Then for

a€ A,

a=m\(a) =n(af f7)=n(fnf) = (F)Naf) = (Flaf)* = '

This implies that fA commutes with a for all @ € A. Since the action of G/A is faithful we

conclude f\ € A, ie. A € Af~!. This must hold for all Af € €, which is a contradiction

since |C| > 2 in this case.

Case 2: Ac Fand |F| > 2: Let g € G satisfy g ¢ A, Ag € F. Let a € A. Assuming that

Ty is an anti-automorphism, we have

ag =7x(a-g) =a(g)ma(a) = g a.
This shows that g commutes with any a € A, which by the faithfulness of the action of G /A
on A, indicates g € A, a contradiction.
Case 3: C = {A} : Let a € A and let h € G satisfy Ah € F. Note Ah™! € F. Again we
assume 7y is an anti-automorphism, and so we have

a* = 1y(a) = 1a(ah - h7Y) = (b 7a(ah) = h7! - ah = a".

We have a* = a" for arbitrary a € A. The faithful action of G/A tells us that A\ = Ah so
A € Ah. This must be true for all Ah € &, which is a contradiction since we have |F| > 2 in

this case.

Case 4: AcCand |C] >2:Letac A Let f € G, f ¢ A satisfy Af € C. Assuming that

Ty is an anti-automorphism gives

(af)A =na- f) =7m(f)ma(a) = anA = (fa)’\.

This shows that f commutes with any a € A thus we must have f € A, a contradiction. [
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Theorem 3.2. Let N be a normal subgroup in a group G. Assume that T € W(G) satisfies
T7(N) = N and suppose it induces the map 7 : G/N — G/N. If T is a non-trivial wct then T

18 also a non-trivial wct.

Proof. 'We prove the contrapositive: If 7 is a trivial wct then 7 is also a trivial wet. We

consider two cases: either 7 is an automorphism or 7 is an anti-automorphism.

First we suppose that 7 € Aut(G), i.e. for g1,9o € G we have 7(g192) = 7(g1)7(g2). It

follows that

(1N - g2N) = T(q192N) = T(1 N)7(g2 V),
thus 7 is an automorphism.

The second case follows from a similar argument. If 7 is an anti-automorphism then for

g1, 92 € G we have 7(g192) = 7(92)7(g1). In this case,
TN - g2N) =T(g192N) = T(g2N)7 (1 N),

thus 7 is an anti-automorphism. In either case, T is a trivial wct. O

3.2 GROUPS WITH CYCLIC QUOTIENTS

Theorem 3.3. Let G be a group with an abelian normal subgroup A such that G/A = C,
where 2 < n € N. Assume that the conjugation action of G/A on A defined by a - (Ag) = a?
is faithful. Then W(G) # Wo(G).

Proof.  Suppose that G/A = (Ap) where p € G satisfies p* € A. Without loss, we put
F={p : 0<j<n}. Accordingly we will write G/A = {Ap’ : 0 < j < n}.

Let ¢ be a prime divisor of n and let m € N satisfy ¢™ | n and ¢"™™! { n. Let ¢ = n/q™
(thus c¢ is relatively prime to ¢ and n = ¢¢™). Fix 1 < k < m. Note that there exists an
index ¢* subgroup (4p?) < G/A. Let N = n/q™*1 = ¢gb~1. Let F = (Ap?") and let

€ = (G/A)\ F. We will show that 7(p",C) € W(G) \ Wo(G). To prove 7(pV, €) € W(G) we
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will use Corollary 2.16 (ii). It is clear that p" commutes with every element of F. By the

corollary it suffices to show that K~ <J.

Since F is a subgroup of G/A, we have P(C) = C thus

1= () K.

Afee

Note that F = {Ap’ € G/A : ¢" | j}. Therefore its complement

C={Ap € G/A: ¢"1j}

={Ap € G/A : ged(5,¢") € {1,q.¢%, ..., ¢" '} since ¢ is prime
={Ap’ € G/A : ged(j,q™) € {1,q,¢%,...,¢"'}} since k < m

— (AP € G/A - ged(j,q™) | )

={Ap' € G/A : ged(j,n) | ¢} since n = cq™
={Ap’ € G/A : ged(j,n) | N} since N = ¢!
={Ap € G/A : K jecany > Kpn} by Lemma 2.8
={Ap’ € G/A : K,; > K~} by Lemma 2.9.

This shows that K,~ is contained in K, for all Ap/ € P, thus K,v < J as desired. By

Corollary 2.16 (ii), 7,~ is a wect. By Theorem 3.1 this map is a non-trivial wet. O

The next result uses notation for crystallographic groups that will be explained in §4.2.

Corollary 3.4. The following seventeen space groups have non-trivial wct groups: Graz, Graa,

G146a G757 G767 G77a G797 G807 GSla GSQ; G147a G1487 G1687 G169a G1717 G1737 and G174'

Proof. Groups G143, G144, and Gy satisfy G/A = Cs.
GI‘OUpS G75, G76, G77, G79, Ggo, Ggl, and Ggg satisfy G/A = C4.
Groups Gia7, Gias, Gies, Gieg, Gi71, Girs, and Gra satisfy G/A = Cs.

The result follows from Theorem 3.3. O
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CHAPTER 4. THREE-DIMENSIONAL SPACE GROUPS

A lattice in n-dimensional Euclidean space E" is a subgroup £ of E™ isomorphic to Z" [E, p.
25]. The set of translation symmetries of £ is a group (under composition) that is isomorphic
to Z™. We will denote this group as A. An n-dimensional crystallographic point group P is
a finite group of symmetries of £ that fix one point in E™ [E, p. 90]. An n-dimensional
crystallographic group, or space group G is an extension of A by the point group P [Ja,

p.127], [E, p. 155]. In other words, we have the short exact sequence
l1—A—G—P—1.

Thus, P is isomorphic to G/A and A has finite index in G [E, p. 154]. Consequently, a space
group element g € G acts on v € E" in a manner that such that g(v) = p(v) + t for some
p € P and some t € E". [Ja, p. 108], [E, p. 153].

The symmetries in a crystallographic point group of a three-dimensional space group may
include inversions, rotations, improper rotations, and reflections [I], [E], [Ja]. Inversions and
reflections in a crystallographic point group have order 2. The crystallographic restriction
states that for n € {2,3}, the symmetries of a lattice in E™ must have order 1,2,3,4, or 6
[L]. A consequence of this restriction, together with the fact that only seven distinct lattice
structures exist that tile E3, is that there exist 219 three-dimensional space groups [Ja, p.
119]. The International Union of Crystallography (IUC) has assigned each three-dimensional
space group a number from 1 to 230 [I]. (There are 11 isomorphic pairs that are numbered

separately. )

4.1 SPACE GROUP ELEMENTS

There are seven types of elements in three-dimensional space groups. These are: translations,
reflections, glide reflections, rotations, screw rotations, inversions, and improper rotations

(also known as rotoinversions) [E], [I]. We may think of these group elements as symmetries
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of an arrangement of atoms in a crystal in E3. They are also isometries of E3, meaning they
are bijections that preserve distances.

A translation is an orientation-preserving isometry that maps a vector v to v + a for
some fixed a € £. It is easy to see that any two translations commute, and it is also true
that any conjugate of a translation is a translation. Thus the set of translations is a normal
abelian subgroup of the crystallographic group [E, p. 153]. We will denote the translation
subgroup A because it is abelian. For a three-dimensional space group, A = Z3 and there
is a standard choice of standard generators which we denote as x,y, and z. Note that each
non-trivial translation in a crystallographic group has infinite order. There is a one-to-one
correspondence between the elements in A and the points on the lattice £, and this will be
useful in the proofs of Theorems 6.1 and 6.21.

A reflection is an order 2, orientation-reversing isometry. Let s be a reflection in E3, thus
it is a reflection across a plane P(s), the mirror plane of s. Suppose that P(s) is a plane
that contains the origin and let up(,) = u be a unit normal vector to P(s). Then for v € E?,
s maps v to the vector v — 2(v - u)u. Note that for any vector w € P(s), w-u = 0 so
s(w) = w. Thus s fixes every vector in its mirror plane, P(s).

A glide reflection + reflects across a plane P(7) and then translates in a direction parallel
to some vector in P(7). A glide reflection fixes P(vy) but not the vectors in P(). A glide
reflection is orientation-reversing. The distance of the translation is half of a unit vector
in £, or some multiple of that distance. The square of a glide reflection is a non-trivial
translation. Hence, glide reflections have infinite order. If a reflection s commutes with a
translation x then their product xs is one example of a glide reflection [Ja, p. 109-10].

In a three-dimensional space group, a rotation p is a finite order, orientation-preserving
isometry that fixes every point on a line in E3. This line is the azis of rotation and if p # Id
then this axis is unique. Suppose p is rotation about a line ¢ that contains the origin, with
turning angle 0. (If |p| = m then 6 = 2wk /m where ged(k, m) = 1.) Then p(v) = w implies

that |v| = |w| and also that the distance from v to the line ¢ is equal to the distance from
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w to £. By the crystallographic restriction, p must have order 1, 2, 3, 4, or 6.

A screw rotation r is a rotation about an axis ¢ together with translation in the direction
of . Thus it fixes the line £ but it does not fix the vectors in £. Like translations and rotations,
a screw rotation is orientation-preserving. If 6 is the turning angle of a screw rotation 7 in E3,
then by the crystallographic restriction, § € {r/3,7/2,27/3, 7,27} and r?™/? is a nontrivial
translation in A in the direction of ¢, [Ja, p. 109-10]. Hence, screw rotations have infinite
order. If a rotation p commutes with a translation x then their product zp is one example
of a screw rotation.

An inversion through a point p is an order 2, orientation-reversing isometry that maps a
vector v to 2p — v. It follows that p is the only point fixed by the inversion. Inversions are
also known as point inversions or point reflections. Inversions that fix the origin are known
as central inversions [Ja, p. T1].

Lastly we have improper rotations, which are also referred to as rotoreflections or ro-
totnversions. The latter two designations are indicative of the fact that there are two ways
to think of this symmetry element. The first is to consider it a rotation with turning an-
gle # through an axis /¢, followed by a reflection across a plane P perpendicular to ¢. The
second is to consider it a rotation with turning angle # + 7 through an axis ¢, followed by
an inversion through the point where ¢ intersects P. By the crystallographic restriction,
0 € {r/3,7/2,7}, however when § = 7 then this symmetry could be regarded as a point
inversion. Thus an improper rotation that is not an inversion will have order 4 or order 6
[Ja, p. 70].

We prove a lemma about the cardinality of conjugacy classes in a crystallographic group.
Lemma 4.1. Let G be a crystallographic group with translation subgroup A.
(i) If a € A then |a®| < |G/A|.

(ii) If h € G\ A then |h%| = co.
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Proof. Recall A<G. To prove (i) we note that every g € G can be written g = bf for some
be A, f € F. Therefore,

a“={a?:gcGl={d":bec A fcF}y={d:fecF}

Since there are at most |G/A| elements in F, we have |a“| < |G/A].

To prove (i7) we note that the conjugation action of G/A on elements of A is faithful.
Thus for fixed h € G there exists some b € A (depending on h) such that (h,b) # 1. Note
that for k € Z, h*" = hh='b=Fhb* = h(h,b*). Thus

WG ={n9:ge Gy D (W :keZ}={h(hb") : keZ}={nhb": keZ}

where the last equality follows from Lemma 2.1. Since 1 # (h,b) € A and therefore has

infinite order, we see that h“ contains an infinite number of elements in the Ah coset. [

4.2 NAMING CONVENTIONS

There are at least ten different naming systems or naming conventions commonly used to
identify space groups and their point groups. In our previous work [HP] we used Hermann-
Mauguin notation to represent the seventeen wallpaper groups. Here we will continue to
use Hermann-Mauguin notation when referring to a wallpaper group and we will also use it
when identifying the crystallographic point group of a space group. However, when referring
to a three-dimensional space group we will identify it by the number assigned to it by
The International Union of Crystallography. (Recall that IUC has assigned each three-
dimensional space group a number from 1 to 230.) We will write the group represented by

IUC number n as “G,,.”

4.3 THE FOUR WALLPAPER GROUPS

In [HP] we find that the wallpaper groups that have non-trivial wct groups are p3, p4, p6,

and p2mm. In this section we will briefly describe these four groups. A wallpaper group is

24



a 2-dimensional crystallographic group. We think of a wallpaper pattern corresponding to
a wallpaper group G as a subset of E2. The action of the group elements on E? leaves the
pattern unchanged. The translation subgroup A = (x,y) is a finite index normal subgroup
A = 72 We think of z as horizontal translation (to the right) and y as either vertical
translation upwards for groups p4 or p2mm or translation at an angle of 7/3 from the
horizontal for groups p3 and p6. The other generators of G will be denoted p (for a rotation)
and o (for a reflection).

Each of these four groups are a semi-direct products, G = A x4y P where P is the
corresponding crystallographic point group. For p3, the point group contains only order 3
rotations and is isomorphic to C3. For p4, the point group contains only two order 4 rotations
and one order 2 rotation. It is isomorphic to C4. Similarly, p6 has point group isomorphic
to Cg and contains rotations of order 6,3, and 2. The point group for p2mm contains two
reflections and their product, an order 2 rotation. It is isomorphic to C3.

The group presentations we used as we studied these groups are:

p3: (z,y,p|(z,y),2” =27y, y" = 27", p°);
pd: (z,y,p|(z,y), 2" =y, y" =2, p);
p6: (z,y,p|(z,y),2” = y,y" = 2y, p°);

p2mm : (z,y, p,0 | (2,y),p°, 0%, (p,0), 2" =2y =y ' 2 =x,y7 =y ).

4.4 THE FIFTY-SIX GROUPS

If G is a group that acts on E™, then a fibration of G is determined by a decomposition of
E" as a direct product: E* = E"! x E! such that for all z € E"1, g € G, there exists an
2’ € E"! such that g({z} x E!) = {2/} x E'. In the case where n = 3, the action of G on
the subspace [E? corresponds to the action of some wallpaper group on E2. In this situation,
[CFHT] say that the space group G can be obtained as a fibration over the corresponding

wallpaper group.
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In [CFHT] Conway et al. show which three-dimensional space groups may be obtained
as a fibration over some wallpaper group, i.e. a two-dimensional crystallographic group or
plane group. For each plane group they list all fibrations that exist over it and the space
group that corresponds to each fibration. Accordingly, we focus our attention on the fifty-six
space groups that may be obtained as a fibration over one of these four wallpaper groups,
i.e. the wallpaper groups described in the previous section. These fifty-six groups are listed

in Tables 4.1, 4.2, 4.3, 4.4, and 4.5.

4.5 TWELVE CRYSTALLOGRAPHIC POINT GROUPS

This section has been taken from Table 10.1.2 which begins on page 752 of [I]. It will be
convenient to partition the fifty-six space groups according to their crystallographic point
group. There exist thirty-two crystallographic point groups in E? but only twelve of those
will be of interest to us in this thesis. These twelve groups are (using Hermann-Mauguin
notation):

2222 mm2, 222 4 4 4.3 3 6,6, and 2.

Here we will give a description of the non-identity elements that are contained in each of
these point groups.

The point groups 2, 222, and mm2 are isomorphic to C3. The point group 2 contains
a rotation, a reflection, and an inversion. The point group 222 contains three rotations.
The point group mm2 contains one rotation and two reflections. The point group %%%
is isomorphic to C3. This point group contains one inversion, three rotations, and three
reflections. These four point groups correspond to space groups that may be obtained from
the wallpaper group p2mm.

The next three point groups listed, 4,4, and % correspond to space groups that may

be obtained from the wallpaper group p4. They are isomorphic to C4,Cy4, and Cy X Ca,

respectively. The point group 4 contains three rotations. The point group 4 contains two
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improper rotations as well as one rotation. The point group % contains three rotations, two
improper rotations, one reflection and one inversion.

Point groups 3 and 6 correspond to space groups that may be obtained from p3. They
are isomorphic to C3 and Cg, respectively. The point group 3 contains two rotations. The
point group 6 consists of two rotations, two improper rotations, and one reflection.

The point groups 3, 6, and % correspond to space groups that may be obtained from p6.
The first two are isomorphic to Cs. The point group 3 consists of two improper rotations,
two rotations, and one inversion. The point group 6 contains five rotations. Lastly we have
the point group % which is isomorphic to Cs x Co. This point group contains five rotations,

four improper rotations, one reflection, and one inversion.

4.6 CHOOSING GENERATORS FOR GROUP PRESENTATIONS

From [SHC, SCC] we have irreducible representations for each of the 219 three-dimensional

space groups. These are 4 x 4 orthogonal matrices over Q. For each space group, [SHC]

gives a sequence of matrices that generates a group isomorphic to that space group. Using

Magma, [BCP| we use these matrices to find presentations for the fifty-six space groups of

interest to us. For twenty-nine of the fifty-six groups we examined, the matrices we use

to define group generators for the presentations are simply the set of matrices given in the

file. (Such groups will not be mentioned in the discussion below.) However for twenty-seven

space groups there are advantages to using other generators, which will be explained here.
We denote the ¢th matrix in the set corresponding to a space group as M,;.

For Groups 75, 76, and 77 we define: p = My; x = M3; y = My; z = Ms.

For Groups 79 and 80 we define: p = Ms; o = M;s; y = M3_1M4; z = Ms.

For Group 81 we define: p = My'; o = Ms; y= My; z = Ms.

For Group 82 we define: p = My; x = Ms; y = MsM;"; 2 = Ms.

For Groups 83, 84, 85, and 86 we define: p = Msy; t = Ms; x = My; y= Ms; z = M.

For Groups 87 and 88 we define: p = My; t = Ms; x = My; y = M, 'Ms; z = M.
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For Groups 147, 168, 169, and 173, define: p = M, 'My; o = Ms; y = MsMy; z = Ms.
For Group 148 we define: p = M; 'My; x = Ms; y = My ' My, z = Ms.

For Group 171 we define: p = M 'MyMs; © = Ms; y = MsMy; z = Ms.

For Groups 175 and 176, define: p = M, 'Msy; t = Ms; o = My; y = MyMs; z = M.
For Groups 143 and 144 we define: p = My; x = My; y = MoMs; z = M,y.

For Group 146 we define: p = My; © = My; y = My Ms; z = M,.

For Group 174 we define: p = My; s = My, x = Ms; y = M3My; z = Ms.

In the first twenty-one groups listed above (including Groups 175 and 176), we use the
single generator p in our presentations instead of the two generators M; and M,. By doing
so we reduce the number of generators in the presentation, a helpful simplification. We will
show that in all cases, this does not yield a proper subgroup of the space group, therefore
nothing is lost in this simplification. It suffices to show that M; and M, are contained in
{p,r,y,2). (Note that for Groups numbered 88 or lower we have M, = p*! thus we need

only show that M; € (p,z,y, z).)

In Groups 75, 76, 79, 81, 82, 83, 85, and 87 we have M; = p?. In Groups 77 and 84 we
have M; = 2~ !p%. In Group 80 we have M; = 2 2yzp%. In Group 86 we have M; = 127 1p?.
In Group 88 we have M, = yp?. In Groups 147, 148, 168, 169, and 175 we have M; = p? and
My = p3. In Group 171 we have M; = p? and M, = 271p3; in Groups 173 and 176 we have
M, = z71p? and M, = 27 1p3.

In most of the twenty-five groups listed above we have defined y as a product of matrices.
This is so that specific relations would be included in the group presentations. (This is also
the reason p is defined as M, ' in Group 81.) For spacegroups numbered between 75 and
88, these relations are 2# = yz° for § € {—1,0,1} and y” = z~!. For spacegroups numbered
between 147 and 176 (except 174) these relations are 2” = y and y” = x~1yz°, for § € {0, 2}.
For spacegroups numbered between 143 and 146 and also for group 174 these relations are
2? = 27 'y and y” = z~!'. Taking a quotient of the space group mod (z) (this subgroup is

normal in all twenty-five of these space groups) these relations are identical to the relations
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found in the presentation of wallpaper groups of type p3, p4 or p6 in our previous work,
[HP]. This consistency will be particularly helpful when applying Theorem 3.2.

For Group 13 we define: » = My; t = My; x = Ms; y = My; z = M;'. For merely aesthetic
reasons we chose to use the inverse of My instead of M;. This affects only one change in the
group presentation: it gives (rt)? = z rather than (rt)? = z71.

For Group 39 we define: p = M;*MsMy; s = My; x = Ms; y = My; z = Ms. The simplest
way to define p would be to choose p = M;. This would result in the group presentation
for Group 39 including the relations (p,s) = (ps)? = y?27!. The relation (ps)? = y?z2~! ¢
Z(G) = (z) is problematic because it does not satisfy the hypotheses of Proposition 6.13.
By defining p = M, 'MsM,; we have the nicer group relations (p,s) = 1 and (ps)? = z.
With (ps)? in the center of the group the proposition is applicable, which is a significant

advantage.

4.7 THE GROUP PRESENTATIONS

According to Table 1 in [CFHT], there are thirty-one space groups that can be obtained
as a fibration over a wallpaper group of type p2mm. These thirty-one groups are listed in
Tables 4.1 and 4.2.

The three groups Gig, G12, and G153 have presentations of the form
G = (x,y,z,rt](x,9),(y,2), (x,2),r* 1, (rt)> = a, (4.1)
2 =2y (yor), 2 = 2 (a)?, (yt)?, (21)?),
where a,; € A= (z) and 0 € {0,1}.
The four groups Gig, G17, G21, and Gas have presentations of the form
G = (z,y,2,p,7| (2, ), (y, 2), (x,2),p* = ap, 7%, (pr)?, (4.2)
=L =y (), =y =yt = Y,

where «,,, € A = (z) and §,v € {0,1}.
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The six groups Gas, Gag, Gar, G3s, G39, and G4 have presentations of the form

2

G = (r,y,2,p, 8| (2,9), (y,2), (2, 2),p* = ap, s* = as, (p, ), (4.3)

1

l‘p :aj_ 267 yp = y_lz’\/7 (Z7p)7 (x’ 8)7 ys = y_lz/y’ (27 S)>’

where a,, a5, € A= (z,y,2) and 0,7 € {0, 1}.

Table 4.1: Parameters in the presentations of some space groups G with point groups %, 222
or mm?2

Point | Group | Equation
group | number | number | o |, | a5 |0 | Y
2/m 10 (4.1) 1 0
2/m 12 (4.1) 1 1
2/m 13 (4.1) z 0
222 16 (4.2) 1 010
222 17 (4.2) z 00
222 21 (4.2) 1 01
222 22 (4.2) 1 110
mm?2 25 (4.3) 111/0]0
mm?2 26 (4.3) z |z [0]0
mm?2 27 (4.3) 11 2(0]0
mm2 38 (4.3) 1/ 11]0(1
mm2 39 (4.3) z | 1]0]1
mm?2 42 (4.3) 1] 1]1(1

The fourteen groups Gz, Gag, G0, Gs1, Gs3, Gsa, Gss, Gs7, Gez, Gea, Ges, Ges, Ger, and Ges
have presentations of the form

G = <x7y7 Zapv T7t| (xay)a <y7 Z)a (l‘a Z)7p2 = apv TQ = O'/T‘vt27 (pr)g = ap?" (pt)2 = apt’ (44)

(rt)? = o, a? =27 P =y~ (z,p), 2" =270, (y, ), 27 = 271 (@), (yt)?, (21)%),
where o, € (2), @, € (Y), apr, O, 4y € A= (x,y,2) and § € {0,1}.
The four groups Ggg, G72, G73, and G74 have presentations of the form

G = <x7y7 z7p7 T,t| ("L‘ay)a (y7z>a (xaz)7p2 = Oép,T'Q = aT7t27 (pT)Q = Oépr, (pt>2 - apt’ (45)

(rt)? = g, a? = a7z, yP =y 1270 (2,p), 2" = 2Ty g = w2t 2T ()2, ()P, (2)?),

where o, € (2), a, € (y), apr, apr, e € A= (x,y,z) and ¢ € {0, 1}.

30



ge

2
m

Table 4.2: Parameters in the presentations of some space groups with point group %

Group | Equation
number | number | q, | a, Qpy Qpt Qpy )
47 @4) |11 1 1 1 |0
49 44) |11 1 1 =10
50 (4.4) 1|1 1 T TR B e
51 (4.4) 1] 1 ! ! 1 0
53 (4.4) z |1 1 L
54 (4.4) 1|1 ! ! b0
55 (4.4) 1|y T 1 =t |0
57 (4.4) z |y 1 1 2110
63 44) | 2z | 1 1 1 T |1
64 (4.4) z |y 1 y~ ! b1
65 44) |11 1 1 11
66 44) |11 1 1 PR
67 44) | 1]y 1 y! 1|1
68 (4.4) 1|1 %y 2%y 21
69 (4.5) 11 1 1 1 |0
72 (4.5) 1|y | 22y te! 1 r%yz |1
73 (4.5) 2y | 2%z | 7%z P |
74 45 |1 |y 1 y! 1|1

In [CFHT] they find that there are thirteen space groups that can be obtained as a
fibration over a wallpaper group of type p4. These thirteen groups are listed in Table 4.3.
The seven groups Grs, Grg, G77, Gr9, Giso, G1, and Ggs have presentations of the form
G: <x7y7z7p‘(x7y)7(y72)7(x72>7 p4:ap7xp:yz67yp:xilazp:’z’y>7 (4'6)

where a, € A= (2),0 € {—1,0,1}, and v € {—1,1}.

The six groups Ggs, Gga, Ggs, Gsg, Ggr, and Ggg have presentations of the form
G = (z,y,z,p,t| (x,1), (y,2), (x,2), p* = a,, 1, (p,t) =1, (4.7)
P = y267 yp = $_1, (Za p)a (xt)Qa (yt)2> (Zt>2>?

where o, € (z),n € A= (z,y,z) and 0 € {0, 1}.
There are four space groups that can be obtained from a wallpaper group of type p3

[CFHT]. These are groups G143, G144, G146, and Gq74. The first three have a point group 3.
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Table 4.3: Parameters in the presentations of groups with point groups 4, 4, or %

Point | Group | Equation
group | number | number | «, n o |
4 75 (4.6) 1 01
4 76 (4.6) z 01
4 77 (4.6) 22 01
4 79 (4.6) 1 171
4 80 (4.6) z 111
4 81 (4.6) 1 0 -1
4 82 (4.6) 1 -1 -1
4/m 83 (4.7) 1 1 0
4/m 84 (4.7) 22 27! 0
4/m 85 (4.7) 1 ! 0
4/m 86 (4.7) 2yt 0
4/m 87 (4.7) 1 1 1
4/m 88 (4.7) z | a7%yz | 1

Group G174 has point group 6. The space groups G143, Giaa, and G146 have presentations of

the form

3

G = (z,y,2,p|(x,y), (y,2), (2,2),p° = ,,0° = 27y’ P =271 (2,p)),  (4.8)

where «a, € (z) and 0 € {0,2}.

Table 4.4: Parameters in the presentations of groups with point group 3

Group | Equation

number | number | o, | J
143 (4.8) 110
144 (4.8) z |0
146 (4.8) 1 ]2

The group G174 has presentation

G = <x7 y? Z? 1075 ‘ (x7 y)7<y7 Z)? ("'U? Z)7p37527 (p? S)J
2 =27l = 1l (), (29), (9,8), 2" = =) (49)

We again refer to [CFHT] to determine which space groups may be obtained from the

wallpaper group of type p6. According to Table 1 there are eight such groups. These are
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listed in Table 4.5. G1gs, G169, G171, G173 Which have point group 6 = Cs.

The six groups G47, G1as, Gigs, Gieg, G171, and G173 have presentations of the form
G=(z,y,2,p|(2,9),(y.2). (x,2),p° = ap,a? = y,yf = a7y’ 2" = 27), (4.10)
where a, € A= (2),0 € {0,2}, and v € {—1,1}.
The two groups G175 and G176 have presentations of the form
G =,y 2, p,t](2,9), (y,2), (2,2),0° = 0, %, (p,t) = 1, (4.11)
2’ =y,y" =27y, (p,2), (wt)?, (yt)?, (21)%),

where a,,n € (2).

Table 4.5: Parameters in the presentations of groups with point groups 3, 6, or %

Point | Group | Equation
group | number | number | o, | n |d |y
3 147 (4.10) 1 0]-1
3 148 (4.10) 1 2| -1
6 168 (4.10) 1 0] 1
6 169 (4.10) z 0] 1
6 171 (4.10) 22 0] 1
6 173 (4.10) 23 0] 1
6/m 175 (4.11) 1 1
6/m 176 (4.11) 23|27t
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CHAPTER 5. SPACE GROUPS WITH NON-TRIVIAL

WCT GROUPS

5.1 GROUPS HAVING POINT GROUP 3 OR 6
The following applies to G143, G144, and G1ug.

Theorem 5.1. Let G be a group with presentation of the form given in Eq. (4.8). Then

7(p, €), with C = {Ap, Ap*}, is a non-trivial wet map.

Proof.  For this map we have P = {Ap, Ap?} and so by Lemma 2.6 we have J = K,,. It is
clear that p commutes with every element of F, thus we may apply Corollary 2.16 (ii). Since

J = K,, we see that 7, is a wct map.

We may use Theorem 3.2 to verify that 7, is a non-trivial wet. Note that Z(G) = (2) <G.

The quotient

G/Z(G) = (z,y,p|(z,y),p°,2" = 27y, 4" =271,
is a wallpaper group of type p3. Now 7, induces a map on the quotient G/Z(G) :

g—g° if Age€={Ap, Ap?},
Ty

g—g if Age T ={A}.
This is precisely the non-trivial wect that exists in the wallpaper groups of type p3 [HP]. Tt
follows by Theorem 3.2 that 7, € W(G) \ Wh(G). O

The following applies to Gy74.

Theorem 5.2. Let G be a group with presentation of the form given in Eq. (4.9). The

following are non-trivial wct maps:
(Z) T(p7 61)7 e1 = {Ap7 A027 Al)Sa A[)QS}, and

(”) T(Sv 62)7 Ct')2 - {AS7 Apsa AIOQS}'
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Proof. For the map 7, we have P(C;) = {Ap, Ap?, Aps, Ap*s} and applying Lemma 2.6 we
have J(€;) = K, N K,s. Now the relations in the presentation of G give K, = (2?y™', xy)
and K,s = (z%y !, 2y, 2%), therefore J(C;) = K,,. Since F = (p, s) is an abelian subgroup of
G, we see that p commutes with every element of F. By Corollary 2.16 (ii) we conclude that

7, € W(G).
Now (z,s) 9G. (In fact, G = (z,y, p) X (z,s).) Consider the quotient G/(z,s) :

G/(z,s) = (z,y,p| (x,y), p*, 2" = 27y, y? = 27 1).

This is the wallpaper group p3. The map 7, induces a map on the quotient 7, : G/(z, s) —
G/(z,s) defined as
g g if Age€={Ap, Ap*},
Tp
g—g if Age T ={A}
which we know to be a non-trivial map [HP]. It follows by Theorem 3.2 that 7(p,C) is also

a non-trivial wct.

We now consider the map 7,. We will show that this is a wet by applying Corollary 2.16
(i1). We have F' = (p, s), an abelian subgroup of G, thus s commutes with every element of
F. For this map we have P = K, N K,; N K ,2,. The relations in the group presentation give
us K,s = Koy = (2*y~ 1, zy, 2%) and K, = (2?). Therefore J(C;) = K. By Corollary 2.16 (i)
we conclude that 7, € W(G). By Theorem 3.1 7, € W(G) \ Wo(G). O

5.2 GROUPS HAVING POINT GROUP 4,4, OR %

The following two theorems apply to space groups with point group 4 or 4.

Theorem 5.3. Let G be a group with a presentation of the form given in Eq. (4.7). Then

for X\ € (x,y, p), the map T(\, {Ap, Ap}) is a non-trivial wct.

Proof.  For this map P = {Ap, Ap*}. By Lemma 2.6 K, = K3, thus we have J = K. For

any A € (z,y) < A we clearly have (), p) and (), p?) contained in K, = K5 = J. Thus by
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Lemma 2.14 and Corollary 2.15 (i), 7, is a wect.

For A = p we may apply Corollary 2.16 (i) since p commutes with every element of F.

Clearly we have K < J; thus 7, is also a wct.

Notice that Z = (z) < G; thus we may consider the quotient

G/Z = <l’,y,p\ (xvy)7p47xp = y,yp = $71>.
This is a wallpaper group of type p4. The map 7, induces a map on the quotient, 7 :

G/Z — G/Z defined as

g* if Ag e {Ap, Ap?},
™ni(9) = L
g if Age {A Ap?},
which we know to be a non-trivial wet [HP]. It follows by Theorem 3.2 that 7, is also a

non-trivial wct. U

Theorem 5.4. Let G be a group with a presentation of the form given in Eq. (4.7). For these
groups we have K, = (zy,z 'yz°), with § € {0,1}. Then for A € K, the map (), C),€C =

{Ap, Ap®, Apt, Ap3t} is a mnon-trivial wct.

Proof. From the relations in the presentation of the group one can check that K, = (zy, 7 ly2%).

Now for this map we have P = {Ap, Ap3, Apt, Ap3t} and so
j == Kp N Kp3 prthp3t == Kmepb

the last equality being justified by Lemma 2.6. Note also that J<IG since it is the intersection

of normal subgroups by Lemma 2.5.

We will use Corollary 2.15 (i) to show that 7, is a wct. Accordingly, we need to show
that {(\, Y| f € {p,p pt, p?t}} C J. By Lemmas 2.3 and 2.14, it suffices to show that
(A, p) and (A, pt) are contained in J = K, N K,;. Obviously (), p) € K, and (X, pt) € K.

36



It is also easy to see that (A, pt) € K, since A € K, and by Lemma 2.5 K, is normal, thus

(A, pt) = A1 is a product of two elements in K. It remains to show that (X, p) € K.
First we prove a lemma.

Lemma 5.5.

Forbe A, (b°,p) = (bp)~". (5.1)

Proof. From the relations in the group presentation we have K 2, = (2%, 2%). Since (z,p) = 1
this implies that p € Cg(K 2. It follows by Lemma 2.7 that p*t € C(K,). In other words,
for b € A, (b, p)”"* = (b, p). By Lemma 2.4 the left hand side is (b”°, p)*. Recall that for o € A
we have o = o' and so we have (b”°, p)~' = (b, p), which proves the lemma. O

Now we will show that (), p) € K, by showing that (A, p) can be written as a commutator

(c, pt) for some ¢ € A. Let A = (a, p) for some a € A. Let b= a?"' so that A = (b”, p). Then

()\,ﬁ) = ((av p)?ﬂ) = (ap ’ a’ilv p)

=(a”,p)(a™", p) by Lemma 2.1

- (bp27p) (bpta p) Clp - bp2 and CL_I = bpt
= (b, p)~ (b, p) using Eq. (5.1)

= (b,p)"' (b, p)”" by Lemma 2.4

=((b, p), pt).

We conclude that 7, is a wct.

Now we show that 7,, and 7,-1,,s are non-trivial wcts:
Tay(p)  Tuy(p) = 272y 72p* # 0 = 70y (7).

Ty—1yz0 (p)’rxflyz‘s (p) - Ji2y_2Z_2§,02 = (I22_6P)2 7é IO2 = Tp—1yz0 <02> L
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5.3 GROUPS HAVING POINT GROUP 3,6 OR %

Proposition 5.6. We define o = zy, and B = x~2y. For groups having a presentation of
the form given in Eq. (4.10) (and assuming that 6 =0 or v = —1) we have
K, =K, =(z,y, 277,
Kp=Ku :(04,525};
K, =(2®,y? 2'77).
For groups having a presentation of the form given in Eq. (4.11) we have
K, = Ky = (2,y);
sz = Kp4 = <Oz,5>;

Kp3 = <$2ay2>3
Kt = <$2,y2, 22>

Kpt = Kp5t = <Ck,ﬁ,22>;

szt = Kp4t = <CE, Y, 22>;
Kp3t = <22>.
Each of these subgroups is normal.
Proof. From the given presentations and the definition of the K; subgroups one can

calculate the Ky subgroups to be as given above. Lemma 2.6 may also be applied. Since

G/A is abelian, we know by Lemma 2.5 that the K subgroups are normal. O

The fOHOWil’lg applies to G147, G148, G1687 G169, G171, and G173.

Theorem 5.7. Assume \ # 1. Let a = xy, and B = v 2y. Groups with presentations of the

form described in Eq. (4.10) with 6 =0 or v = —1 have the following non-trivial wct maps:
(i) For X € (x% 42 p3), T7(\, €1),Cr = {A, Ap?, Ap*}; and

(ii) For X € (o, 8%, p), T(),€2), € = {4, A*}.
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Proof. We will use Corollaries 2.15 and 2.16 to show that these two maps are wcts. For the
first map 7(\, C1) we have P(C;) = {Ap, Ap*, Ap°}. By Proposition 5.6, K3 C K, = K3,
thus J(€;) = K,s. Since 2% and y? are contained in K,z = J(C;), by Corollary 2.15 (i)
7(22,€;) and 7(y?, €;) are wet maps. Now clearly p3 commutes with every element of F and

K s is contained in J(€;). Then by Corollary 2.16 (i), 7(p?, C;) is also a wct map.

For the second map 7(), Cy) we have P(Cy) = {Ap, Ap?, Ap*, Ap°}. By Proposition 5.6

Kpy=K

p » C K, = K, thus J(Cy) = K . Since a and 8z° are in K2 = J(C3), by Corollary

2.15 (i) 7(a, €y) and 7(B2°, Cy) are wet maps. Of course p? commutes with every element

of F' and K 2 is contained in J(Cs), so by Corollary 2.16 (i) 7(p?, €2) is also a wet map.

Note that (z) IG. The image of these maps in G/(z) are the non-trivial wcts in wallpaper

group p6. By Theorem 3.2 these maps are also non-trivial wcts. O

The following applies to G175 and G17g.

Theorem 5.8. Assume \ # 1. Let a = zy, B = x~2y. Groups with presentations of the form

described in Eq. (4.11) have following non-trivial wcts maps:
(i) For X € (z*,y%), (A, C1), €1 = {A, Ap?, Ap", Apt, Ap’t, Ap°t}; and
(”) For X € <CY, B>a T()\a 62)7 e2 - {A7 AP3> At7 Ap3t}

Additionally, if n = 1 (which is the case for Gyrs), then 7(p%, C1) and 7(p?, €3) are non-trivial

wcts.

Proof. We will use Corollaries 2.15 and 2.16 to show that these two maps are wcts. For the

first map 7(\, C1) we have P(Cy) = {Ap, Ap3, Ap>, At, Ap’t, Ap*t} thus by Proposition 5.6
J(C1) = (w,y) N (%, y%) N (2®, %, 2%) N (2,9, 2°) = (2°,9°) = K.

Since z? and y? are contained in K3 = J(Cy), by Corollary 2.15 (i), 7(z*, C;) and 7(y?, C)

are wcts.
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For the second map, 7, we have P(Cy) = (G/A)\ {A, Ap?, At, Ap3t}; thus by Proposition
5.6

1(€2) = (z,y) N (e, B) N e, B,2%) N (2,9, 2%) = (o, B) = K.

Since o and 3 are contained in K2 = J(Cy), by Corollary 2.15 (ii) 7(c, C2) and 7(3, Cy) are

wcts.

Now we consider the maps 7(p?, C;) and 7(p?, Cy). Here F consists of elements p/t* for
j €40,1,2,3,4,5} and k € {0,1}. Since we are assuming 1 = 1 it is clear that p? p> € F
commute with every element of F. Thus by Corollary 2.16 (i), since J(C;) = K, and

J(€y) = K2 we know that 7(p?, €;) and 7(p?, €2) are wect maps.
Next we show that 7,2, 7,2, 7,, and 75 are not homomorphisms:
Taa(p) Ta2(p) = pp#F a7y 70" = Ta2(p p);
T2(p) T2(p) = p- p# 2y 'p* =12 (p - p);
Tal(p) Talp?) = p- p* # 070 = 7a(p - p%);
75(p) T5(p") = p - p* # BTp7 = 15(p - p?).
It follows by Theorem 3.1 (ii) that these are non-trivial wets. This theorem also tells us

(since p?, p* ¢ A) that 7,2 and 7,5 are non-trivial wets. O

5.4 SOME GROUPS THAT HAVE POINT GROUP 2 mm2, OrR 222

m

Theorem 5.9. The following are non-trivial wcts:
(i) For Gy : 7(r,{Ar, At}) and 7(rt,{Art, At});
(i1) For Gas, Gag, Gor, Gsg, Gag, and Gy : T(ps,{Ap, Aps}) and 7(s, {Ap, As});
(i1i) For Ggr : T(prt, {Aprt, At, Ap, Ar});
(iv) For Gy7 and Gsy : T(rt, {Art, At, Apr, Ap});
(v) For Gyz,Gss5, and Ges : 7(pt, {Apt, At, Ar, Apr}).
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Proof. Note that each of these maps are of the form given in Eq. (2.7). To show that such
amap (a 7(\, €) map) is a wet of the indicated space group, Corollary 2.16 (i) asserts that
it suffices to show that two conditions are met. The first is that (A, f) = 1 for every f € F
such that Af € €. The second is that K, < J. Also note that for each of the maps here,
I=N4 ree K. The relations in the presentations of each of these groups show that the first
condition is met. Proposition A.1 gives the K subgroups for each of these groups and shows
that the second condition (the containment of K) is also met. Thus we conclude that each

of these maps are wcts. By Theorem 3.1 they are non-trivial wcts. O
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CHAPTER 6. TO DETERMINE W(G)

6.1 METHOD

For the thirty-one groups listed in Tables 4.1 and 4.2 we will determine a set of generators

of W(G). We do so in six steps which we also used in [HP]. These are:

Step one: For an arbitrary wect ¢, we show that |4 is an automorphism.

Step two: We show that we may compose ¢ with trivial weak Cayley table maps so that

©|a is the identity map on A.

Step three: We show that we may again compose ¢ with trivial wcts so that ¢ fixes each

coset in G/A.

Step four: We determine elements of W(G) that we may compose ¢ with so as to have

p(t)=tforall t € F.
Step five: We show that for t € F there is an f € F such that p(at) = a’t for a € A.

Step six: We determine elements of W(G) that we may compose ¢ with so as to have

p =1Id.

In our work here we found it advantageous to combine steps two and three. Note that The-
orem 6.1 shows that step one is true for any crystallographic group and similarly, Theorem
6.21 shows that step five is true for any crystallographic group. Also note also that in steps
two, three, four, and six we frequently will compose with inner automorphisms. We will

denote the automorphism that conjugates each group element by g € G as 1.

6.2 STEP ONE

Here we show that step one is true for any n-dimensional crystallographic group.
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Theorem 6.1. Let G be a crystallographic group with translation subgroup A = Z" for

n € N. Let o € W(G). Then ¢|a is an automorphism.

Proof. By Lemma 4.1, the only elements of G that have finite conjugacy classes are in A.
Since ¢ preserves conjugacy classes and is bijective, ¢ maps finite conjugacy classes to finite
conjugacy classes. We therefore have ¢(A) = A. Because A is abelian, in this proof we will
denote the group operation for A additively. Also, to denote the conjugation action of g € G

on a € A we will write g(a).

Let a,b € A. Using the fact that ¢ respects inverses, we have

p(a+0b) ~ p(a) + o(b); (6.1)
p(b) = pla+b—a) ~pla+b) - ¢(a) (6.2)
pla) = pla+b—0b) ~pla+b) —p(b). (6.3)

Eq. (6.1) implies there exists some g; € G such that ¢(a +b) = g1(¢(a) + ¢(b)). Similarly,
Eq. (6.2) implies there exists some go € G such that ¢g2(p(b)) = ¢(a + b) — ¢(a) and Eq.
(6.3) implies there exists some g3 € G such that gs(¢(a)) = p(a + b) — ¢(b). Solving for

©(a + b) we have the following three equations:

pla+b) = gi(p(a) + p(b)); (6.4)
= w(a) + g2((b)); (6.5)
= ¢(b) + g3(p(a)). (6.6)

Recall that every element of A corresponds to a translation in Euclidean n—space, n € N,
and thus to a point on the lattice £. We may think of a € A translating the lattice £ by a
distance of |a| and so it follows that ¢ € a will also translate by a distance of |a|. Thus for
g € G, we can think of g(a) as being some point on an (n— 1)-sphere of radius |a| centered at
the origin. From this we see that Eq. (6.4) indicates that ¢(a + b) lies on an (n — 1)-sphere
of radius |¢(a) + ¢(b)| centered at the origin. Next we see that Eq. (6.5) indicates that

©(a + b) lies on an (n — 1)-sphere of radius |¢(b)| centered at ¢(a). Lastly Eq. (6.6) implies
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©(a + b) lies on an (n — 1)-sphere of radius |p(a)| centered at ¢(b).

Therefore ¢(a + b) lies in the intersection of these three spheres. By Lemma 6.2 this

intersection is p(a) + ¢(b). In other words, ¢(a + b) = (a) + ¢(b).

Lemma 6.2. Let a # 0 and b # 0 be vectors in E". Let Sy be an (n — 1)-sphere of radius
l|a+ b|| centered at the origin. Let S, be an (n — 1)-sphere of radius ||b|| with center a and
similarly let Sy be an (n — 1)-sphere of radius ||a|| with center b. Then the intersection of

the three spheres is one point, namely a + b.

Proof. Clearly a+b is contained in each of S,, S;, and Sy thus we have {a+b} C S§,NS,NS,.
It remains to show the reverse containment: S, NS, NSy C {a+ b}.

We note that if a+ b = 0, then Sp = {0} so So NS, NS, = {0} is one point, proving
this case. So now we assume a + b # 0.

We have Sy = {x € E" : ||x||> = ||]a+ b||*}, S, = {x € E" : ||(x — a)||* = ||b||*}, and
Sy = {x € E" : ||x — b||> = ||a]|?}. Also, let P be the hyperplane that is tangent to Sy at

the point a + b.

Figure 6.1: The spheres Sy, S,, Sy with the plane P in E?
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Now any x € § must satisfy

x-Xx—(a+b)-(a+b)=0. (6.7)
Also, any x € S, must satisfy

(x—a)-(x—a)—b-b=0. (6.8)

Any x € Sy NS, must satisfy both of these equations. Subtracting Eq. (6.7) from Eq. (6.8)

and expanding we have
(x-x—2a-x+a-a)—b-b—(x-x—(a-a+2a-b+b-b))=0.
Canceling gives
(—2a-x+a-a)+(a-a+2a-b)=0.

Simplifying and dividing by 2 gives

a-((a+b)—x)=0.
Using x € Sy NSy, a similar argument gives

b-((a+b)—x)=0.
It follows that any x € So NS, NS, satisfies

(a+b)-((a+b)—x)=0,

The set of all x that satisfy this equation is the hyperplane that has normal vector a + b
and contains the point a + b. This is the plane P that is tangent to Sy at the point a + b.
Recall that we also have x € Sy, thus x € PN Sy. Of course, this intersection is just one

point (the point of tangency), which is a + b. ]

6.3 STEPS TWO AND THREE

In this section we will prove results useful for proving step two and step three. These results

will be applied in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and
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4.2.

Definition For a group G with abelian normal subgroup A we define the set
Cy=Cy(G)={ac A:a® ={a,a'}}.

Proposition 6.3. In Table 6.1 we have the Cy subsets for the space groups that have a

presentation of the form given in Eqs. (4.1), (4.2), (4.3), (4.4), or(4.5).

Table 6.1: C, for thirty-one groups

Group
number(s) C,
10, 13 (x,2) U (y)
12 (z’y ', 2) U (y)
16, 17 (x) U(y) U (2)
21 (zy~ ) U (y) U (2)
22 (227 HY Uy U (2)
25, 26, 27 (x) U (y)
38, 39 (x) U (y?21)

42 (22271 U (y?27h)
47-57 (x) U (y) U (z)
63-68 (z2y~1) U (y) U (2)

69 (2227H U (22 1) U (2)
72-74 (2y~ 27y U (y) U (2)

Proof. This follows from the relations found in the presentation of the respective groups.
(For brevity we write “47-57" to represent groups Gyu7, Gag, G50, Gs1, Gs3, G54, G55, and Gsy
(note we are not including Gug and Gsg); we write “63-68” to represent Gz, Ges, Ges, Ges,

G67, and G68-) ]

Lemma 6.4. Let G be a crystallographic group. Let ¢ € W(G) and a € A. Let g € G satisfy
g> € A. Then

a? = a~" implies that p(a)?9 = ¢(a)™ .

Proof. By Theorem 6.1 we know that ¢| 4 is a homomorphism thus for k € Z, p(a*) = p(a)*.

Then p(a* - g) ~ ¢(a)*p(g). Squaring both sides we have



Since g% € A its image ¢(g?) has finitely many conjugates, thus ¢(a)e(a)?9 = 1, in other

words, p(a)?9) = p(a)™!. O

Proposition 6.5. Let G be a crystallographic group. Let o € W(G). Then

(i) Z(G)NCy = {1}.
(ii) o(Cz) = Ca.
(m) 90(<C2>) = <C2>-

(iv) Let j € N. If there evists a set B = {Bi}_, C Cy such that Co = \J_,(8:) and
(Cy) is a free abelian group of rank j with generating set B, then for 5 € B we have
p(B)e{aceA:a€Borale B}

Proof. Statement (4) is clear since a™*

= a € A is only possible if a is the identity. Now to
prove (i) we recall that ¢ maps conjugacy classes to conjugacy classes bijectively, therefore
any nontrivial element in C, is mapped to a conjugacy class containing exactly two elements
of A. By Proposition 1.1 (i), ¢ also respects inverses, thus we conclude that ¢(Cy) = Cs.
By Theorem 6.1 ¢|4 is an automorphism of A thus (ii7) follows immediately from (ii).

To prove (iv), we will assume there exists B = {#;})_, C C, such that Cy = |J/_,(5:)
and (Csy) is a free abelian group of rank j with generating set B. Let § € B. As € Cy,
we have ¢(f3) € Cy by (ii). Our assumption that Cy = |J/_,(8;) implies that o(8) = F for
some 1 < ¢ < jand k € Z. Since ¢|4 is an automorphism of A, we see that (iii) implies ¢(B)
must be a free generating set for (Cy). We therefore must have ¢(3) = ¥ for k € {1,—1}
and we are done. O

The following applies to Gig, G12, and Gi3. This result is analogous to (i) and (ii) of

Proposition 6.9 (which does not apply to these three groups because here Cs is not a union

of cyclic subgroups).

Proposition 6.6. Let G be a crystallographic group with presentation of the form given in
Eq. (4.1). (Therefore A= (z,y,z).) Let ¢ € W(G). Then ¢(y) € {y,y'} and p(Af) = Af
for all f € F.
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Proof.  The generators used in the group presentation are x,y, z,r,t and we define F =
{r,rt,t,1}. Every element in the At coset is an involution, and this is not the case for any

other coset. This implies p(At) = At, and therefore p(Art) € {Ar, Art}.

By Proposition 6.5 (ii) we know ¢(C;y) = Cy and here Cy is the union of a free abelian
subgroup of rank two and a cyclic subgroup. Since ¢|4 is a bijective homomorphism, it must
preserve this structure and in particular, it must map the cyclic subgroup to itself. The

cyclic subgroup contained in Cs is (y). We may therefore assume o(y) = 3° for § € {—1,1}.

Now (rt)> € A and y* = y~', thus by Lemma 6.4 we have ¢(y)?) = (y)7!, ie.
(y2)¢rt) = =9 If p(rt) € Ar we would have a contradiction since y commutes with every

element in Ar. We conclude that p(Art) = Art and thus ¢(Ar) = Ar. O
The following corollary applies to Ga1, Gz, Ggs, Ggs, Ges, Ge7, and Ges.

>~

Corollary 6.7. Let G be a crystallographic group with translation subgroup A = (x,y, z)
Z3 and Cy = (2?y™') U (y) U (2). Let ¢ € W(G). For B € {2*y~',y} we have p(B) €

{(2%y=1)* y*}. We also have p(2) € {z,271}.

Proof. By Proposition 6.5 (iv) with B = {z?y~!,y, 2} we have

{o(@®y™ ), e(y), 0(2)} S {x®y~ )"y, 2}

Now since ¢|4 is a homomorphism,

ey " ely) = ey~ - y) = p(a?) = p(z)?

must be a square of an element in A. The bijectivity of ¢ requires ¢(z2y~1)p(y) to be a

Lyl 251 In order for this product to be

product of two distinct elements in {(x%y~1)*
a square, one of the two factors must be in {(z%y~!)*'} and the other must be in {y*'}.
In other words, p(x?y~1)p(y) cannot be a square if either of p(z?y~!) or ¢(y) is in {z*'}.

Therefore by bijectivity we must have p(z) € {z*}. O

The fOHOWiIlg applies to G25, GQ(;, G27, G38, Ggg, and G42.
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Lemma 6.8. Let G be a group with presentation of the form given in Eq. (4.3). We define
F={1,p,s,ps}. Let ¢ € W(G). Then

(1) Z(G) = (2).

(ii) a € Cy if and only if both a? = a™' and a € {a®, a"*}.
(iii) Cy is the union of two cyclic groups.

(iv) (Cy) N Z(G) = 1.

(v) p(z) € {1},

(vi) There exists an outer automorphism v, : G — G such that

U, (@, y,2,p,8) = (@ y 2 pThsTh.

Composing ¢ with this map if necessary we may assume that p(z) = z.

Proof. The relations given in the group presentation indicate that for ¢, j, k € Z we have

(2iy72F)P = 27y ~I 2% where u € {k,j + k,i+ j + k}. This shows that for a € A,
if a? = a, then a € (z). (6.9)

It follows that Z(G) C {a € A : (a,p) = 1} = (2). The reverse inclusion is clear since the

relations in the presentation of G state that z commutes with x,y, p and s. This proves (7).

Recall that C, is the set of elements a € G such that a¥ = {a,a"1}. Therefore, 1 # a € C,
is inverted by the action of two of the elements of F' and fixed by the action of the other two
elements of F) one of which is of course the identity. Eq. (6.9) shows that p cannot be the
non-identity element of F' that fixes a € C,, since any element fixed by p is central and by
Proposition 6.5 (i), the only central element contained in Cs is the identity. Hence we have
(id).

Statement (i77) follows from (i7). The set of elements fixed by s is a cyclic subgroup and

the set of elements fixed by ps is another cyclic subgroup. Any element in one of these two
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cyclic subgroups is inverted by p. Therefore, Cy is comprised of the union of these two cyclic
subgroups The relations in the presentation of G determine which elements generate the two

cyclic subgroups. (Refer to Table 6.1.)

To prove (iv) we use the facts given in Proposition 6.3, specifically, the generators of the
cyclic subgroups that comprise Cy. Thus we see that for groups Gas, Gag, and Gar, we have
(Cq) = (x,y). For groups Gss and G3g, we have (Cy) = (x,y?271). For group Gya, we have
(Cy) = (22271, 9?271). Each of these subgroups intersects the cyclic subgroup (z) = Z(G)

trivially.

We will show that p(2) € {z, 27!} results from the fact that ¢|4 is a bijective homomor-
phism. We have ¢(Z(G)) = Z(G), by Proposition 1.1 (iv), thus p(2) € (2). Let ¢(z) = 2*
for some k € Z, then as ¢|4 is a homomorphism (p(2)) = (2*). If k ¢ {£1} then {(p(2))

would be a proper subgroup of (z), contradicting the surjectivity of ¢. This proves (v).

The map 1, satisfies the relations in each of the six presentations of these groups thus it

is in Aut(G). Since ¥,(2) = 27!, and p(z2) € {z,27'} by (v), we therefore have (vi). O
Definition Let j € N. Given a set B = {3}/_, € A and f € F we define

(B, )= {Fe B : p' = 51},
When B is understood then we may write Inv(B, f) simply as Inv(f).

The following proposition applies to twenty-eight of the thirty-one groups listed in Tables
4.1 and 4.2. (It does not apply to Go, G12, and G13.) Result (iii) applies to the twenty-four
groups that have presentations of the form given in Eqgs. (4.3), (4.4), or (4.5). Result (iv)

applies only to the eighteen groups listed on Table 4.2.

Proposition 6.9. For m,n € N, such that 2 < m < n let G be a group with normal abelian
subgroup A = 7" and GJA = C¥'. Suppose that for some 2 < j < n there exists a set
B = {B;}_, C Cy such that Cy = \J_,(B;). Assume also that B is a free generating set

for (Cy) = Z7. Lastly we assume that the action of G/A on B defined by - (Ag) = B9 is
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well-defined and faithful, so that 9 = 92 holds for all 5 € B if and only if Agy = Ago. Let
v € W(GQ).

(i) For f,g € F, if o(Af) = Ag, then |Inv(B, f)| = |Inv(B, g)|.

(ii) o(B) € B for all B € B if and only if o(Af) = Af for all f € F.

(ii) If 5 = m and p(B) € B for all B € B, then there exists I; for some f € F so that

(Iy o p)|icyy = 1d.

() If j = m =n and p(B) € BY for all B € B, then there exists I; for some [ € F so

that (I; o )|4 = Id.

Proof. We prove (i) using Lemma 6.4. Let f,g € F. Fix 8 € Inv(f), so that 3/ = 371. By
the Lemma, o(3)?Y) = ()7L, By assumption @(Af) = Ag, thus the action of p(f) on A
must be equal to the action of g on A so we have p(8)? = ¢(8)~". By Proposition 6.5 (iv)
we have ¢(3) € {(B)*!} for some 3 € B. As ¢ respects inverses we see that the statement
0(B) € {(B)*!'} implies (8)9 = (8)~!. Thus B € Inv(g). Since ¢ is bijective, this shows
that for every § € Inv(f) there exists a 5 € Inv(g) and therefore |Inv(f)| < |Inv(g)|. To
prove that |Inv(f)| > |Inv(g)| we note that ¢ € W(G) implies o~ € W(G), ¢~ (Ag) = Af
and apply the previous argument. Therefore |Inv(f)| = |Inv(g)|, proving (7).

We prove (ii). (=) Suppose contrapositively that ¢(f1) € Afy for some fi, fo € F,
with fi; # f5. Since f; # fo, by interchanging f; and fs if necessary we may assume there
exists some 3 € B such that 8 € Inv(f),8 ¢ Inv(fs); thus 32 = B but gt = g=L
Using ¢(f1) € Af, and applying Lemma 6.4 to the statement 3/t = 371, we have ¢(3)2 =
©(B)?Y1) = p(B)~1. This shows ¢(3) is inverted by the action of f,, although we know 3 and

its inverse are not (because 3 ¢ Inv(f,)). From this we conclude that o(8) ¢ {5*'} = 3.

(«<=) Conversely, assume that p(Af) = Af for all f € F and suppose to the contrary
that there exists 3 € B such that ¢(8) ¢ 8. By Proposition 6.5 (iv) we know ¢(83) €

(B)G = {Bil} for some § € B. In other words, ¢ permutes the conjugacy classes in the
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collection {3Y : B € B}. Define the subset B’ C B to be

B'={p € B:p(5% # 5,

and define a function A : B’ — N to be

N:B—=|{feF :pelnv(f)}.

(Note that the codomain of A does not include zero because A(5) = 0 means 5 commutes
with every element of F, which would imply J is central, a contradiction.) Choose 5, € B’
so that A(f;) is maximal, i.e. A(f;) = max{\(8) : B € B'}. Let ¢(BY) = B¥. Note that
Ps € B’ (because ¢ is bijective) and thus A(81) > A(B2). In other words, (; is inverted by at
least as many elements of F' as (5 is. This, combined with the fact that the action of G/A
on B is faithful, ensures that there exists an h € F' such that 5, € Inv(h) but £y ¢ Inv(h).

We will show that §; € Inv(h) implies that Sy € Inv(h), thus arriving at a contradiction.

We have B, € Inv(h) ie. B = p;', and applying Lemma 6.4 to this equation gives
©0(B1)P™ = p(B)7L. Since o respects inverses, Bf(h) = B;'. We are assuming p(Ah) = Ah
so we know ¢(h) € Ah, thus B2 = B;'. This shows that 8, € Inv(h), giving the needed

contradiction.

Before we can prove (7i7) we will first need to prove that when j = m, the collection
{Inv(f)}ser is P(B), the power set of B. By definition {Inv(f)}ecr is a subset of the power
set of B, thus it suffices to show that the cardinality of {Inv(f)}er is at least |P(B)|. We
will use the fact that G/A acts faithfully on B. If f,g € F and f # g, then j = m shows

that there exists some 3 € B such that 3/ # 39 thus Inv(f) # Inv(g). This shows that
{Inv(f) : f € F} > |F| = |G/A] = 2" =2 = [P(B)].

We are now ready to prove (iii). By assumption we have j = m and (f;) € B¢ =
{B;,B;'} for 1 < i < j. Thus there exists some subset B, = {8 € B : ¢(8) = 7'},
but also, ¢ fixes all elements in B \ Byyy. Since {Inv(f)}ser is the power set of B, we know
there exists an f € F such that Inv(f) = By,y. In other words, there exists an f € F' such

that (p o Iy) : B; — B; for 1 < i < n. Composing we have ¢|p = Id and since |4 is a
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homomorphism and B is a generating set for (C,), we now have ¢|c,) = Id and we are
done.

Lastly we show that statement (iv) follows from (éii) when n = j = m. Recall that
both A and (C,) are free abelian groups and j = n means that rank({C,)) = rank(A). It
follows that (Cs) has finite index in A so we may write |A : (Cy)| = ¢ for some ¢ € N. Let
A = (x1,23,...,1,). Note that for every generator x; we have x¢ € (Cs), and so by (iii) we

may assume ¢(zf) = z¢. Since ¢|4 is a homomorphism, we have
()" = p(a;) = a,

which can only be true if ¢(x;) = z;, since A = Z". This is true for all generators x; of A,

proving (iv). O

The following is a corollary to Proposition 6.9 and it applies to Gas, Gag, Gar, G3s, G3,
and G42.

Corollary 6.10. Let G be a group with a presentation of the form given in Eq. (4.3). Define
F ={1,p,s,ps}. Let o € W(G). Then

(i) o(Ap) = Ap.

(ii) If p(Af) = Af forall f € F and ¢(z) = z, then composing with inner automorphisms

as necessary we may assume that ¢|, = 1d.

Proof. By Lemma 6.8 (iii) there exist 8, 32 € Cy so that Cy = (f;1) U (B2). To prove (i)
we apply Proposition 6.9 (:) with B = {5, f2}. For these groups we have |Inv(p)| = 2 but

|Inv(s)| = |Inv(ps)| = 1. Thus ¢ must map the Ap coset to itself.

To prove (ii) we assume that p(Af) = Af for all f € F and we apply Proposition 6.9 (ii).
This gives () € B¢ for all 3 € B. Then applying Proposition 6.9 (iii) we know there exist
inner automorphisms so that composing ¢ with these automorphisms we have ¢|c,) = Id.

Now by hypothesis ¢(2) = z so, since ¢|4 is an isomorphism, we have ¢|c, .y = Id. We will
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show that (Cs, z) is a finite index subgroup of A. Since ¢|4 is an isomorphism, this implies

that ¢|4 = Id.

By Lemma 6.8 (i), we have Z(G) = (z) and by Proposition 6.5 (i), (z) intersects (Cs)
trivially. Statement (7ii) of Lemma 6.8 indicates that (Cs) has rank two. Thus (C,, z) has

rank three, which implies it has finite index in A, and we are done. O

The following is a corollary to Proposition 6.9 and it applies to the space groups numbered

between 47 and 74 which are listed in Table 4.2.

Corollary 6.11. Let G be a group with a presentation of the form given in Eqs. (4.4) or
(4.5). We write the presentation of G using generators x,y,z,p,r,t and we define F' =

{p,r,pr,prt,rt,pt,t,1}. Let o € W(G). Then we have
(i) p(At) = At.
(i) For f € {p,r,pr} we have p(Af) = Ag for some g € {p,r,pr}.
(11i) For f € {prt,rt,pt} we have o(Af) = Ag for some g € {prt,rt, pt}.
Proof. For these groups we have
()] = 3; [iav(p)| = [iav(r)| = [Tov(pr)] = 2; [Tav(prt)| = [iav(rt)| = [Tav(pt)| = 1.
Applying statement (i) of Proposition 6.9 gives the result. O

In step three it is often helpful to consider which cosets contain elements of order 2 since
cosets containing involutions may only be mapped to cosets that contain involutions. When
f € F has order 2 it is clear that Af contains order 2 elements. However, it is possible
to have f? # 1 and yet have involutions in Af. The following Lemma makes it easy to
determine whether or not a given coset contains involutions. (Note that it only applies to

groups having presentations of the form given in Eqs. (4.1), (4.4), or (4.5).)

Lemma 6.12. Let G be a group with an abelian normal subgroup A and suppose t € G
satisfies t2 = 1 and a' = a=! for any a € A. Let f € F and assume f*> € A. Then the Af

coset contains elements of order 2 if and only if f* € K.
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Proof. Let a € A. Note that as f2 € A, a’”" = af. Then

(af)? = 1= afaf = aal (%) = 1
— fP=aYa) ' =a " = (a, ft).

This shows that there exists an a € A such that (af) has order 2 if and only if there exists

an a € A such that f? = (a, ft). By Lemma 2.2 this is equivalent to 2 € K. O

6.4 STEP FOUR

In this section we will prove results useful for proving step 4. These results will be applied

in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and 4.2.

The fOHOWng applies to G25, 0267 G27, G38, Ggg, and G42.

Proposition 6.13. Let G be a group with a presentation of the form given in Eq. (4.3).
We define F' = {1,p,s,ps}. Let ¢ € W(G) and suppose that |4 = 1d and ¢(p) = p. Then

o(f)=f forall f €F.

Proof. We will prove two results and then use them to prove the proposition.

Claim 1: Forbe A, if b* =b* =b~!, then b= 1.

To prove this we first note that b° = bP° implies that b commutes with p and therefore
bY = {b,b7'}, so b € Cy. By Lemma 6.8 (i7i) we know that C, is the union of two cyclic
subgroups that intersect trivially. By Lemma 6.8 (i) we know one cyclic subgroup contains
all elements of Cy that are inverted by the action of ps, and the other contains all elements of
C, that are inverted by the action of s. It follows that the only element of C, (and therefore

any element of A) that is inverted by both s and ps is the identity. This proves Claim 1.

Claim 2: For f € F we have f? € Z(G).
Now recall that for f € F' we have defined oy = f2. We have Z(G) = (z) by Lemma 6.8 (i),
and the relations in the presentation of G state that «,,, o, and oy, = s are all contained

in (z). (See Table 4.1.) This proves Claim 2.
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We now show that ¢|4 = Id and ¢(p) = p imply that ¢(f) = f for all f € F. By
Proposition 6.9 (ii) we have p(Af) = Af for all f € F. Therefore ¢(ps) = bps and ¢(s) = cs
for some b, c € A.

Squaring both sides of ¢(ps) = bps we have
ps = P(aps) = p((ps)?) ~ (bps)® = Db psps = bbP*aups.
Since ayy is central, conjugacy implies equality; therefore o, = bbP*a,s and so b5 = b1 We
also have p(p~' - ps) ~ p~lbps and squaring both sides of this relation gives
as = @(ag) = o(s?) ~ (p~tbps)? = (WPs)? = WPsbPs = BPHPs* = WPhP a.
Again, conjugacy implies equality since a is central, so we have
o, = WPhPa thus (bP) ™1 = bP° and so b~ = b°.

We have shown that b* = b** = b~! so we must have b = 1, i.e. ¢(ps) = ps.

Similarly, squaring both sides of ¢(s) = c¢s we have

s = @(5%) ~ (cs)* = cc’s* = ccay.
Conjugacy again implies equality so a, = cc®a, thus ¢® = ¢~1. We also have p(p-s) ~ pcs =
c’ps and squaring both sides gives
ps = ©((ps)?) ~ (Pps)? = P () P*psps = 5 ps.

Again we may assume we have equality so a,s = Pc®ay,,s thus (¢?)7! = ¢® and conjugating

1 1

both sides by p gives ¢ = . We have shown that ¢® = ¢ = ¢ so ¢ = 1, and thus
o(s) = s. O

The following proposition applies to groups Gig, G12, G13, and also the eighteen groups
listed in Table 4.2. However, this result is not useful for the ten groups where K =
(22 y?,2?). Tt is only useful when (22,52, 2?) < K, which is the case in the eleven groups

G2, Ges, Gea, Ges, Ges, Gor, Ges, G, Gra, Gz, and Gry.

Proposition 6.14. Let G be a group with a normal abelian subgroup A = (x1,xa,...).
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Suppose there exists t € F such that t* = 1 and (at)> = 1 for alla € A. Let f € F and
assume ft € F. Let ay = f? and similarly ap, = (ft)?. Assume ay, oy € Co. Let p € W(G)
and assume p|4 = Id and p(Af) = Af. Given ¢ € A, if we have (c, f) & (x2,23,...), then
p(t) # ct.

Proof. We will prove the contrapositive:
If o(t) = ct for some ¢ € A, then (c, f) € (z3,23,...).

Note that for a € A we have a/* = !/, which is a consequence of the relation a* = a=* for
all a € A. Also note that o/ = af and o' = a' since 2,12 € A. We will use these two

facts throughout this proof.
Let ¢(f) = bf for some b € A. Squaring both sides gives
ar = plag) = o(f - f) ~ 0fbf = Wb f* = bbay.
Since oz? = {ajfl}, we see that oy ~ bb/ap implies that bb/ = o for i € {—2,0}. Conjugating
by t and solving for b/* we have b/t = boz]?i.

Recall that by assumption ¢(t) = ct for some ¢ € A, thus we have o(f - t) ~ bfct.

Squaring both sides of this relation gives
ap = @layg) = p(ft- ft) ~bfet bfct = b/ bt (ft)? = belbictay,.

Since af, = {aftl} we have be/b/tct = oz‘jct for j € {0,—2}. Using b/t = boz;i and algebraically
rearranging we have

L il o
et = b7 ba ) e, = b Paad,.

Since i and j are either 0 or —2, this shows that ¢/c' = (c, f) is the square of an element in

A ie. (¢, f) € (2, 23, ...). O

The fOHOWiIlg applies to Gﬁg, G64, G65, GGG; G67, and Gﬁg.

Corollary 6.15. Let G be a group with a presentation of the form given in Eq. (4.4)

(hence we write the presentation of G with generators x,y,z,p,r, and t), and assume that
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d =10, € (y), and o,y € (2). Let ¢ € W(G) and suppose that p|4 = 1d and ¢(Ar) = Ar.
Then ¢(t) # xt.

Proof.  We will use Proposition 6.14 which states that if (z,r) ¢ (22, y?, 2?) then o(t) # zt.
To justify applying the proposition we note that by Proposition 6.3 we have Cy = (z?y~!) U
(y) U (2}, thus a,, a,y € Cy. We have (x,7) = 22y which is not a square. Therefore, by the

proposition, ¢(t) # zt. O

The following applies to G2, G73, and Gr4.

Corollary 6.16. Let G be a group with a presentation of the form given in Eq. (4.5)
(hence we write the presentation of G with generators x,y,z,p,r, and t), and assume that
o, € (2),ap, € (2?y™ 127 U (y) and § = 1. Let o € W(G) and suppose that |4 = Id and

w(Ap) = Ap. Then (t) # zt.

Proof.  To prove this is a straightforward application of Proposition 6.14. By Proposition
6.3 we have Cy = (z*y~ 27 1)U (y)U(z). Thus we have a,, a;; € Ca. Then by the proposition,

since

(z,p) =27%2 ¢ (2%, 9", 2)

we conclude ¢(t) # xt. O

Proposition 6.17. Let G be a group with abelian normal subgroup A and let |G/A| =n € N.
Let o € W(G) and assume ¢|a = 1d. Fiz f € F such that « = f? € A. Let o(f) = bf for

some b€ A. Then
(i) b/ = b1

Furthermore, suppose there exists t € F such that a' = a1 for all a € A and (ft)? € A.

Assume we have p(t) =t. Let ayy = (ft)% Then
(i) ape ~ bPaye, in other words, bay € af,.
From the above we immediately have these two statements:
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(iii) If ag € Cy (ice. af, = {ozft,oz;tl}), then b € {1,0@1};
(iv) If ft has order 2, then b =1, i.e. p(f) = f.

Proof. For any k € Z we have p(a¥ - f) ~ a*bf. Note that o commutes with f and thus

also with bf. Then squaring both sides we have

o = p(a® f?) ~ oo fbf = o b(af TS = a®bab’ = o bb!. (6.10)
Let v = bb/ and note that to prove b/ = b= it suffices to show that v = 1. Now Eq. (6.10)
becomes a?**! ~ a2+~ This implies that for any j € Z,

PNCLES VN (a2k+17)j _ a(%ﬂ)jvj-

We note that a and ~ are fixed, but the stated conjugacy must hold for any 7, k € Z. Recall
n = |G/A| and put (2k + 1)j = 3". (For each j € {1,3,9,...,3"} there is a corresponding

value of k so as to ensure (2k 4+ 1)j = 3™.) Thus we have
o~ (6.11)

Eq. (6.11) thus yields the following n + 1 statements:
o~ Al
0~

n n
o ~ a0

Now if 7 # 1 then this implies that |(a®")¢| > n + 1. Since o®" € A and n = |G/A] this is a
contradiction. We conclude that v = 1 and so b/ = b1

It follows that b commutes with ft. Now since ¢(t) =t we have ¢(f - t) ~ bft. Squaring
both sides gives (ft)* ~ (bft)? = b*(ft)?, i.e. ap ~ b2ayp. O

Proposition 6.18. Let G be a group. Let fi, fo,t € G and assume t* = 1. Let ay = (f1t)?
and ag = (fat)?. Let p € W(G.)
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(i) Fori€ {1,2}, if o(fi) = a; ' fi then (I o to p)(fi) = fi.
(i1) If fit has order 2 then I, o v acts trivially on f;, and also on t.
(iir) If o(f1fz) ~ fifa = ar' fufo and o(f2) = fo then ©(fi) # oy fi.
Proof. A straightforward calculation proves (4):
(Trovo@)(fi) =(Ir o) (a7 fi)
=(Li o )((fit) 1)
=(l; 0 L)(tfi_ltfi_lfi)
=T o )((f7)")
=fi.
The first statement in (i7) follows from (i) with a; = 1. It is also clear that I, o¢ acts trivially
on t since t = ¢t~! and since I;(t) = t.

To prove (iii) we assume that ¢(fif2) ~ fifo and ¢(f2) = fo. Now suppose to the

contrary that o(f1) = a;'fi. Then

fifo~o(fi- fo) ~ai' fi fa,

which contradicts fifo = a;'fifo and we are done. O
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Proposition 6.19. The following maps are automorphisms of the indicated groups. (One

can show that these are outer automorphisms.)

Gro,G13 - Uy (z,y, 2,7, 1) = (2,y, 2, 21, 2t),
G0, G12,G13 Yyt (x,y, 2,1, t) = (x,y, 2,7, Yt),
G, G12,G13 U, (x,y, 2, t) =(x,y, 2, 21, 21),
Gig, G17 - Uy (z,y, 2, p,1) —(2,y, 2, Tp, TT),
Goz: Wyt (w,y,2,p,7) (2,9, 2,2y p, ar),
Gi6, Gi7, Gor1 Yy (2, y,2,p,1) = (2,0, 2,yp, 1),
Gie, G17, Go1, Gag v, (z,y,2,p,7) —(2,y, 2,p, 27),
Gas, Gag, Gar, Gag, Gag Vot (2,y,2,p,8) = (2,9, 2, 2D, 5),
Gas, Gag, Gor Uy i (T, y,2,p,8) = (2,9, 2,yp, ys),

G47, G49, G50> G51, Gss, G54> G55, Gs? :

All groups listed in Table 4.2 except Ggg :

All groups listed in Table 4.2 :

wﬂﬁ (x7y7z7p7 r7t) '—>(x7y7 Z?‘Ip?xr7 xt)?
Yy (x,y, 2,p, 7, t) = (2,y, 2, yp, T, Y1),

(UR (x,y,z,p, Ty t) '—><5U7?/727P, zT, Zt).

Proof. 'This follows from the relations in the respective group presentations.

6.5 STEP FIVE

Here we prove Theorem 6.21 which shows that step five is true for any n-dimensional crys-

tallographic group. We begin with a lemma.

Lemma 6.20. Let G be a group with a normal abelian subgroup A. Let ¢ € W(G). Suppose

that |4 =1d and t € G satisfies p(t) =t. Let a,b € A. If p(at) = bt then a ~ b.

Proof. Given the hypotheses we have

an~a' =pa) =t at) ~ p(t™") - plat) = t7'bt ~b.



Recall that F'is a set of coset representatives for G/A. In the situation of Lemma 6.20,

we will write p(at) = a"*t, where r, € F.

Theorem 6.21. Let G be a crystallographic group with translation subgroup A = 7" for
n € N. Let ¢ € W(G) and suppose that p|4 = 1d and t € F satisfies p(t) = t. Then there is

an f € F such that p(at) = a't for all a € A.

Proof. From Proposition 1.1 (vii), we see that p(At) = At. Now, for a,b € A, we have
ab™' = at(bt)™t = p(at - (bt)"") ~a"t -t () =@ (b)) h

Thus, there is some f € F such that ab™! = (a"*(b")~1)7, so that letting o = r,f, B = n,f,

this may be rewritten as ab™! = a®(b~!)?. Thus we have

a(a™)* = b(b™H)~. (6.12)

Recall that every element of A corresponds to a translation in Euclidean n—space, and
thus to a point on the lattice £. Let v, denote the point on £ that corresponds to a € A. For
a € A, let S, denote the (n — 1)-sphere in E" that contains the origin and that is centered
at vq, and let T, = {V,,-1ys : f € F}. Then, T, consists of |a“| points that lie on S,. Note

that the origin is in T, for all a € A.
Lemma 6.22. (i) If |T,NTy| =1 then there is a § € F such that a™ = a°,b" = 1.

(ii) If the origin, V4, and vy, are collinear, then there is a 6 € F such that a™ = a®,b"™ = b°.
Proof.

(i) If |T,NTy| = 1, then T,NT;, = {0} and so from Eq. (6.12), we get a(a™!)* = b(b 1) =1,
so that a = a®,b = b?. From this we obtain /™ = a™ b/~ = b™, so that we can let

5=fL

(ii) We may assume that a # b. By hypothesis the origin, v,, and v;, are collinear, in other
words, the centers of the (n — 1)-spheres S,, S, are on the line through these points.

Since a # b, we have S, # Sy, and this together with collinearity tells us that the
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radius of S, is not equal to the radius of S,. Therefore, S, # S, implies that S, NS,
consists of just the origin (remembering that the origin is common to S, and S,.) Thus

we have |T, NTy| = 1, as in (7), which then gives the result. O

Lemma 6.23. Let b € A satisfy [b°| = |G/A|. Then, for all a € A there is a unique

[ = fap € F such that p(at) = a't, o(bt) = b't.

Proof.  If the origin, v,, and v, are collinear, then the existence of such a § € F follows
from Lemma 6.22 (ii), while the uniqueness follows from [b%| = |F|.

Now, assume that the origin, v,, and v, are not collinear. If |7,N7},| = 1, then by Lemma
6.22 (i), there is a § € F such that a" = a°,b™ = °, and the fact that § is unique follows
from [b%| = |F|. So, now assume that |T, N T;| > 1. Note that for 2 < k € N, the origin, vy,
and vy are collinear. Then, by Lemma 6.22 (i7) applied to b and b*, there is some h € F
such that b = b and (b*)7x = (b*)". Since |b%| = |F| this element h is unique. Since T}, is
finite, there is some 1 < k € N such that |7, N Ty:| = 1; then by Lemma 6.22 (i) we have
W € F with (b)) = (bF)" a™ = a”. Since |b®| = |F| we again see that h, k' are unique, so
that h = h/. Thus we have @™ = o and b™ = b", as required. O

Now let a,b,c € A, where b satisfies [b°| = |F|. Then, by Lemma 6.23 there are unique
f,h € Fsuch that p(at) = a’t, o(bt) = b't and p(bt) = b, p(ct) = c't. Since f, h are unique
and o(bt) = b/t p(bt) = V"t we must have f = h; it follows (by fixing a and varying ¢) that
for all d € A we must have ¢(dt) = d/t for this value of f € F that is completely determined

by an element b such that [b“| = |F|. This concludes the proof of Theorem 6.21. O

6.6 STEP SIX

In this section we will prove results useful for proving step six. These results will be applied

in Ch. 7 and Ch. 8 to the thirty-one space groups listed in Tables 4.1 and 4.2.

Lemma 6.24. Let G be a group with a normal abelian subgroup A. Assume that G/A is
abelian. Letn = |G/A|. Leta € A and f € F. If f ~ a®*f for all k € Z such that 0 < k < n,
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then a®™ € Ky for some 1 <m <n.

Proof. By Proposition C.2 we have

FO= U Kpf" = Ke(h, f O

heF heF

Thus f ~ a* f implies that a** € K;(h, f~') for some h € F. In other words, there exists an
h € F for every 0 < k < n so that a®* € Ky(h, f~1). Since there are at most n choices for
h there must be some h € F and some j € Z such that a%,a?0+™ € K;(h, f~1) for some

1 < m < n. It follows that a*™ € K. O]

Definition Let G be a space group and let F' be a set of coset representatives for G/A.
For f € F, f # 1, we define the set

Rf={heF: f~(ha)f forall « € Cy}.
Recall that given a set B C A we have the following definition of the subset Inv(f):
mv(B, f) = {8 B : 85 = 5},

The following proposition applies to the thirty-one groups listed in Tables 4.1 and 4.2.

Proposition 6.25. Let j,n € N. Let G be a group with normal subgroup A = 7" where G /A

is abelian and finite. Suppose that there exists B = {f3; Z:l CCyC(B)yx=7/.

Assume that the action of G/A on B defined by 5-(Ag) = 9 is well-defined and faithful.
Let 1 # f € F and assume that rank(Ky) = |Inv(B, f)|. Then

h € Ry if and only if Inv(B, h) C Inv(B, f).

Proof. (=) We assume h € R;. Note that if h = 1, then Inv(h) = @ so Inv(h) C Inv(f)
is satisfied. Thus we may assume that h # 1. This implies that Inv(h) is not empty because
G/A acts faithfully on B. We will show that 5 € Inv(h) and f ~ (h,«a)f for all @ € C,
together imply that 5 € Inv(f).

Suppose to the contrary that § ¢ Inv(f). As € Cs its only conjugates are itself and

its inverse. It follows that § commutes with f. Since 8 € Inv(h) we have (h,3) = 2
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Then for any k € Z we have (h,3*) = % and note that 8¢ € C,. We are assuming
f ~ (h,a)f for all @ € Cy, so in particular we have f ~ (h, 8%)f = 8% f. By Lemma 6.24
we have %™ € K; for some m € N. Now f3; € Inv(f) implies that ? € K; and therefore
{B?: B; € Inv(f)} C K;. However, recall that by assumption, 8 commutes with f; thus §*"
commutes with f and so 3™ ¢ (82 : 8; € Inv(f)). The fact that rank((B)) = j implies that
the subgroup generated by 52™ and {7 : 5; € Inv(f)} would be a subgroup of K; with rank

1+ [Inv(f)|, a contradiction.

(<=) Assume that Inv(h) C Inv(f). We need to show that f ~ (h,«)f for all @ € C,. For
a € Cy which commutes with A there is nothing to show so we may assume that o = a~!.
We have a € Cy C (B), therefore we may write av = fl 52 - B]k] for some ki, ko, ..., k; € Z.
Notice that for each 3; ¢ Inv(h) we must have k; = 0, in order to satisfy o = a~!. This

is true because (B) is a free group of rank j. This shows that a € (Inv(h)). By hypothesis
Inv(h) C Inv(f), so a € (Inv(f)). We thus have o/ = a~! and so (h,a) = (f, ). Then

ffl= (o) f(af) = (f.a)f = (ha)f.

This shows h € Ry. ]

Corollary 6.26. Let G € {G1o, G12, G13}. We write the presentation of G using generators

x,y, 2,1t and we define F = {r,t,rt,1}. For these groups we have
R = F; R, ={1,r}; R, = {1,rt}.

Proof.  For Gyp and G5 we have Cy = (z,2) U (y). Without loss of generality, let B =
{z,y,z}. Then Inv(t) = B,Inv(r) = {z,z}, and Inv(rt) = {y}. The result follows from
Proposition 6.25.

For G5 we have Cy = (z?y~!, 2) U (y). Without loss of generality, let B = {z?y~!,y, z}.
Then Inv(t) = B,Inv(r) = {2?y~ !, z}, and Inv(rt) = {y}. The result follows from Proposi-

tion 6.25. 0
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Corollary 6.27. Let G € {G1s, G117, Go1, Gao }. These presentations use generators x,y, z, p, T,

and we define F' = {p,r,pr,1}. For these groups we have

Ry ={1,p}; Ry =A{Lr}; Rpr = {1,pr}.
Proof.  For Gis and G17 we have Cy = (x) U (y) U (z). Without loss of generality, let
B = {z,y,z}. Then Inv(p) = {z,y},Inv(r) = {x,z}, and Inv(pr) = {y,z}. The result
follows from Proposition 6.25.

For Go1 we have Cy = (22y~1)U(y)U(z). Without loss of generality, let B = {z*y~!, y, 2}
Then Inv(p) = {z*y~ 1, y}, Inv(r) = {z%y~', 2}, and Inv(pr) = {y, z}. The result follows from
Proposition 6.25.

For Ga we have Cy = (2%271) U (y2271) U (2). Without loss of generality, let B =
{z?271 y?271 2} Then Inv(p) = {z2271, y*27 1}, Inv(r) = {2271, 2z}, and Inv(pr) = {y?271, 2}

The result follows from Proposition 6.25. O

Corollary 6.28. Let G € {Gas, Gog, Gar, Gs, Gsg, Gaz}. We write the presentation of G

using generators x,y, z,p, s, and we define F' = {p, s,ps, 1}. For these groups we have
Ry, = {1,p,ps, s}; Rs = {1,s}; Rps = {1, ps}.

Proof.  For Gas,Gas, and Ga7 we have Co = (x) U (y). Without loss of generality, let
B = {xz,y}.

For Gsg and Gizg we have Cy = (z) U (y?27!). Without loss of generality, let B =
{z, 9?71}

For G4» we have Cy = (z2271)U(y?271). Without loss of generality, let B = {z%27! y?271}.

In all cases, Inv(p) = B. On the other hand, Inv(s) and Inv(ps) each contain exactly one

element of B and Inv(s) # Inv(ps.) The result follows from Proposition 6.25. O

Corollary 6.29. Let G be a group with a presentation of the form given in Eqs. (4.4) or
(4.5). These presentations use generators x,y, z, p,r, t, and we define F' = {p, r, pr, prt,rt,pt,t, 1}.

For these groups we have
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Rt:F,

7?'p = {1,p,p7"t,’l“t}; Rpt - {Lpt}v
Rr = {Lﬁpﬁ,pt}; th = {1,Tt}7
Ry = {1, pr,rt, pt}; Ryt = {1, prt}.

Proof.  For groups with a presentation of the form given in Eq. (4.4) with § = 0 we have
C, = (x) U (y) U (z). Without loss of generality, let B = {z,y, z}.

For groups with a presentation of the form given in Eq. (4.4) with § = 1 we have
Cy = (z%y™1) U (y) U (2). Without loss of generality, let B = {z%y~!,y, 2}.

For groups with a presentation of the form given in Eq. (4.5) with § = 0 we have
Cy = (2?27 U (y?271) U (2). Without loss of generality, let B = {22271 y?271 2}.

For groups with a presentation of the form given in Eq. (4.5) with § = 1 we have

C, = (z2y 1271 U (y) U (2). Without loss of generality, let B = {z*y~1271 y, 2}.

In all cases

e Inv(prt) is contained in Inv(p) N Inv(r);
e Inv(rt) is contained in Inv(p) N Inv(pr);
e Inv(pt) is contained in Inv(r) N Inv(pr);
o for f € F we have Inv(f) C Inv(?).

The result follows from Proposition 6.25. ]

Here we make a comment that applies to the eight space groups with presentation of
the form given in Eq. (4.4) with § = 0. For these groups we have Cy = (x) U (y) U (z). A

consequence of this is that the definition of R is equivalent to

{heF : f~(ha)f forall o € A},
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as we now show.

Proof of the equivalence: Note that for any crystallographic group we have Cy C A. It
follows that the set {h € F' : f ~ (h,a)f for all « € A} is contained in Ry. We will show
that the reverse containment holds when G is a group with presentation of the form given

in Eq. (4.4) with 6 = 0.
he Ry = Inv(h) C Inv(f) by Proposition 6.25
= Kj < Ky by Lemma 6.30,
= fora € A, (h,a) € Ky,

= f ~ (h,a)f fora € A by Lemma 2.10.

Lemma 6.30. Let G be a group with presentation of the form given in Eq. (4.4) with § = 0.
Thus we have A = (z,y,z) and Cy = (x) U (y) U (2). Let B = {x,y,2}. Let h,f € F. If
Inv(B, h) C Inv(B, f) then K, < K.

Proof. By definition we know that Kj, is generated by commutators of the form (5, h)
for 5 € B. To show K), < Ky it suffices to show that (5,h) € K. We have two cases to
consider: either 8 € Inv(h) or 8 ¢ Inv(h). Note that for g € F' we have (3,9) € {872,1}
and (8, g) = 72 if and only if 8 € Inv(g). Therefore for 3 € Inv(h) we have (3,h) = 72 =
(B, f) € Ky since by assumption § € Inv(h) implies 5 € Inv(f). For 8 ¢ Inv(h) we have
(B,h) =1 € K. 0

In general however, the set {h € F' : f ~ (h,a)f for all « € A} will be a subset of Ry.

Example: For G € {Ge3, Goa, Ges, Ges }, we have R, = {1, prt,rt,p}. On the other hand,
{heF :p~(hya)p forall a € A}

does not include prt since (prt,z) = x?y~! and p = 2%y~ 1p.

Lemma 6.31. Let G be a crystallographic group and assume Cy # {1}. Let o € W(G) and

assume that p|a = Id. Suppose that for some f € F we have o(f) = f. Then there ezists
some h € Ry such that p(af) =a"f for all a € A.
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Proof. We know by Theorem 6.21 that there exists some h € F such that o(af) = a”f for

all @ € A. Then
f=e"af)~a(a)"f = (a,h)f.

Since this must hold in particular for a € Cy we must have h € Ry. n

Definition For f € F f # 1, we define the set
S;={he€F:af ~a"fforallac A}.

Lemma 6.32. Let f,h € F and assume [ # 1.

(i) If (f,h) € Ky, then h € Sy.

(i1) If K, < Ky, then h € Sy.

(1it) If hy, hy € Sy, then the element in F' representing the coset ARy hy s in Sy

(iv) Sy is a set of coset representatives for a subgroup of G/A.
Proof. Let a € A. Assume (f,h) € K. First we show that af ~ (f, h)a"f :

af ~ far~ (fa) = fra" ~ (fa") = f71fa" f = (f, h)a"f.

By Lemma 2.10, (f,h) € Ky implies a"f ~ (f, h)a" f. Thus by transitivity af ~ a" f and so

h € Sy, proving (7).

Next, suppose that K}, < Ky; thus for a € A, we have (a,h) € K. Then by Lemma 2.10,
af ~(a,h)af =a td"af = d"f,
and so h € Sy, proving (it).

To prove (iii), suppose that hy, he € Sy. We will show that there exists ¢ € A such that
chi'hy € ;. By definition of S; for a € A, we have af ~ a" f and af ~ a2 f,

Taking a = b these two assertions become respectively

P f o bt f = b and b f ~ bt B2
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Again using transitivity we have bf ~ phi 'he f, in other words, there exists some h € F' such
that h = chy 'hy for some ¢ € A and bf ~ b"f for all b € A. This proves (iii). The fourth

statement follows from (ii7) and from the fact that 1 € S;. [

Theorem 6.33. Let G be a group with abelian normal subgroup A such that G/A abelian.
Let ¢ € W(G) and assume p|a = 1d. Let f € F and let g € G satisfy fg € F or gf € F.

Let v € F be the coset representative for the Afg coset (i.e. v = fg or~v = gf). Suppose

o(f) = f, p(g) = g, and p(v) = . (We also assume that 1 & {f, g,7}.)

Then there is an h € Ry NS, such that p(af) = a"f for all a € A.

Proof.  We have ¢(f) = f, so by Lemma 6.31 we know there exists an h € R such that for

a € A we have p(af) = a"f. It remains to show that h € S,,.

Case 1: v = fg: Then for a € A we have

ay = p(a)p(y) ~ pla-7) = p(a- fg) = plaf - g) ~a"fg = ay.
Case 2: v = gf : (Here we will use the fact that G/A is abelian, thus a9 = a"9.) Then for
a€ A,

ay ~pla-v)=pla-gf) =¢(g-a’f) ~ ga®f = a"gf = a".
In both cases we arrive at ay ~ a”y for all a € A, which shows that h € S,,. m

Corollary 6.34. Let G be a group with presentation of the form given in Eqs. (4.4) or (4.5).
These presentations use generators x,vy, z, p, 7, t, and we define F' = {p,r, pr,prt,rt, pt,t, 1}.
Let ¢ € W(G) and suppose that pla = Id and ¢(t) = t. Fixz f € {prt,rt,pt} and suppose
o(f) = f and p(ft) = ft. Then f ¢ Sy implies that p|ay = Id.

Proof.  Recall that t* = 1; thus for f € {prt,rt,pt} we have ft € F \ {1}. Therefore
we may apply Theorem 6.33 which asserts that for a € A we have p(af) = a”f for some
h € Ry NSy To show play = Id it suffices to show this intersection is {1}. Now Corollary
6.29 indicates that for f € {prt,rt,pt} we have Ry = {1, f}. Since f ¢ Sy by assumption,

we see Ry NSy = {1} so we are done. O
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Theorem 6.35. Let G be a group with abelian normal subgroup A. Let ¢ € W(G). Assume

vla =1d and let o(f) = f for some f € F\ {1}.

(i) Suppose that ¢|ay = 1d for some Ag’" € (GJ/A)\ {Af~'}. Let g € Ag' satisfy fg €
F\ {1}. Then there exists h € Ry N'Ry, so that for a € A we have p(af) = a"f.

(ii) Suppose that for j € Z, there are cosets Agy, Agy, ..., Ag; in G/A such that |4y = 1d
for1 <i<j. Letg; € Ag. satisfy fg; € F\{1} for1 <i <. ]fRfﬂﬂgzl Ryg =1{1},

then |4y = 1d.

Proof. By Lemma 6.31 we know there exists an h € Ry such that for all a € A we have

o(af) = a™f. Then for all « € Cy we have p(g) = g, since g € Ag’, so

fg=wo(Pelg) ~plataf-g) =pla™f-alg)~ (@)'f-alg = (a")'afg = (h,a)fy;
This shows h € Ry, proving (7). The second statement follows from applying the first

statement j times. O

The following applies to space groups Gig, G17, Ga1, and Gas.

Corollary 6.36. Let G be a group with presentation of the form given in Eq. (4.2). These
presentations use generators x,y, z,p,r, and we define F' = {1,p,r,pr}. Let ¢ € W(G) and
assume p|s = 1d. Let f € F\ {1}. Suppose that for some g € G such that fg € F'\ {1, f}

we have SO|Ag —1d. Then

Proof. We will apply Theorem 6.35 (i) and use the fact that by Corollary 6.27, Ry = {1, f}
for all f € F. Since fg € F\ {1, f} the cosets Af and Afg are distinct, thus R;NR s, = {1}.
The result follows directly. O

The following applies to space groups Gas, Gag, Go7, G3s, G39, and Gyo.

Corollary 6.37. Let G be a group with presentation of the form given in Eq. (4.3). These

presentations use generators x,y, z,p, s, and we define F' = {p,ps,s,1}. Let ¢ € W(G) and
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suppose that pla =1d , and (f) = f for all f € F. Then

@l aps = ¢las = 1d implies that ¢ = 1d.

Proof.  Note that |G/A| = 4 and so it suffices to show that ¢|4, = Id. We assume that
©|aps = ¢|as = Id and apply Theorem 6.35 (i¢). Then since ¢(p) = p and R,s N Ry = {1}

by Corollary 6.28, the theorem implies ¢|4, = Id. O

Corollary 6.38. Let G be a group with presentation of the form given in Eqs. (4.4) or (4.5).
These presentations use generators x,y, z,p,7,t, and we define F' = {p,r,pr,prt,rt,pt,t, 1}.

Let ¢ € W(G) and suppose that o|4 =1d , and o(f) = f for all f € F. Then
(i) p|ae = Id implies that ¢ = 1d,

(i) 90|Aprt = Q|lar = 90|Apt = Id implies that ¢ = Id.
Proof. We will use the following results that follow from Corollary 6.29.

For f € F \ {1,t}, Rf N th = {1} (613)
For fi, fo € {prt,rt,pt}, Ry, N Ry, = {1}. (6.14)

First we prove that ¢|4; = Id implies that ¢ = Id. It suffices to show that for f €
{p,r,pr,prt,rt, pt}, o(af) = a"f implies that h = 1. We apply Theorem 6.35 (i), using
¢lar = Id and ¢(f) = f. Then by the theorem we have h € Ry N Ry. By Eq. (6.13) this
intersection is {1}, so we conclude ¢|4; = Id.

Now assume that ¢|apt = @|are = @|lapr = Id. To prove this implies ¢ = Id it suffices
to show that p|ay = Id for f € {p,r,pr,t}. We proceed by first showing that this holds
for f € {p,pr}. We will apply Theorem 6.35 (i7), using ¢(p) = p and @|at = @|apt = 1d.
Since Ry N Ry = {1} by Eq. (6.14), the theorem implies ¢|4, = Id. Similarly, by using
(pr) = pr with ¢|ap = ¢|e = 1d, and R,y "R N Ry = {1} by Eq. (6.14), Theorem 6.35

(i1) gives p|ap = Id.
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Now that we have |4, = ¢|ap = Id, we use this to apply the theorem a third time.
Using ¢(t) = t and since Eq. (6.14) gives Ry N Ryt = {1}, we have |4 = Id. From (i),

this implies ¢ = Id. 0

73



CHAPTER 7. W(G) OF SPACE GROUPS WITH POINT

GROUP 2,222, OR mm?2

7.1 GROUPS 10 THROUGH 13

Lemma 7.1. The following results will be useful as we determine the step 2 automorphisms

which can be found in Gy, G1o, and G13.

(i) The group of automorphisms of Z* is GL(2,7Z). It is generated by

11 1 0 -1 0

a = , b= , and c =

0 1 -1 1 0 1

i
(ii) The set of all matrices € GL(2,2Z) such that j € 27 is an index three subgroup
k ¢

of GL(2,Z) and it is generated by

1 2 1 0 -1 0
a” = , b= , and ¢ =

i
(iii) The set of all matrices g € GL(2,Z) such that k € 2Z is an index three subgroup
k ¢

of GL(2,Z) and it is generated by

Proof. We know SL(2,Z) is an index two subgroup of GL(2,Z) and it is generated by a and

b [N]. Since ¢ has determinant —1, these three matrices generate GL(2,Z), thus we have ().
i

Let H denote the subset of interest in (i7), i.e. the subset of matrices € GL(2,72)

k¢
such that j is even. We verify that this subset is a subgroup by checking that it contains
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inverses and is closed under multiplication. Let € = il — kj € {£1}. Then
-1

i t —j
=€ € H.
k / —k i
Also, for some m,n,p € Z,
i G\ [ mij +
J J _ J T J cH
k ¢ KV n P

It is apparent that a® b,c € H, so (a* b,c) < H. Using Reidemeister-Schreier’s algorithm
as implemented in Magma [BCP],[MKS], (see Appendix B), we verified that (a?,b,c) is an
index three subgroup of GL(2,Z). Since three is prime, evidently (a? b, c) is not a proper
subgroup of H, proving (7).

Statement (iii) follows from (i7) and from the fact that for matrices B, C' we have

(BHYT = (B")"' and (BO)" = C"B”. O

We will now apply steps one through six to the group Gig to determine a set of generators
of W(Gho). Let ¢ € W(G1p). By Proposition 6.6 we have p(Af) = Af for all f € F and
o(y) € {y,y'}. If we have p(y) = y~! then we may compose with I; and now we may
assume that ¢(y) = y. Since Cy = (x, z) U (y), Proposition 6.5 (ii) gives p((z,2)) = (x, z).
Thus ¢|(,.y is an automorphism of a free abelian group of rank 2. The set of all such maps

is GL(2,Z). Let £ : (z,z) — (x, z) be one such automorphism. Then

Ve : (w9, 2,1 8) = (€(x), y,€(2), 7, 1)

determines an automorphism of Gy as it satisfies all the relations in the presentation of
G1o- By Lemma 7.1 we know G'L(2,7Z) can be generated by three matrices, therefore there

exist three corresponding automorphisms that generate all the automorphisms that are of
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the form described by 1. These are:

Uy (T, y, z,mt) = (2,y, 22,7, t);

Uyt (x,y, z,m,t) = (w27t y, 2,7, 1);

Uyt (2, z,rt) = (x7h y, 2,1 1),
Composing with these three outer automorphisms, we can ensure that ¢|, ., = Id. Since we
also have p(y) = y we now have ¢|4 = Id.

By Proposition 6.19 we may compose with outer automorphisms v, v,, and 1, as nec-

2 = (rt)? = 1, Proposition 6.17 gives ¢(r) = r and

essary so as to have o(t) = t. Since r
o(rt) = rt; thus we have p(f) = f for all f € F.

Applying Theorem 6.21 with Lemma 6.31 we have for all a € A, p(art) = a”rt for some
h € {1,rt}. If h = 1, then we are done. If h = rt then we may compose with I; o ¢. Since
(rt)? = (rt,t) = 1,

(I; o 1)(a"rt) = L(rt(a™")™) = rta™ = art,

we now have |4+ = Id.

Now by Lemma 6.31, for some h € R, = {1,7},a € A, we have ¢(ar) = a"r. If h =1 we
may compose with the non-trivial wet 7(r, { Ar, At}) so that ¢|, = Id. (Theorem 5.9 proves
7, is non-trivial.) Note that Corollary 6.26 gives R; N R, N R, = {1}. We use this to apply
Theorem 6.35 (i7). We have ¢(t) =t and ¢|a+ = ¢|ar = Id. Then by the theorem we have

¢|ar = 1d; and therefore ¢ = Id.

We have shown that

Theorem 7.2. For crystallographic group Gig, the group W(G) is generated by the inverse
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map t, the inner automorphisms,

U (T, y, 2z, t) = (2, y, 22,7, t),
Uyt (x,y, z,rt) = (w27 y, 2,7, 1),
Uy : (x,y, z,rt) = (27 y, 2, t),
Uyt (xyy, 2,7m,t) — (x,y, 2,27, 2t),
Yy o (zyy, 2,1, t) = (2,9, 2,7, yt),

wz : (l.?y?Z?/r?t) l_) (x7y7272'”r7 Zt)?

and the non-trivial wet .. Thus we have W(G) = Wy(G), 7). O

Let ¢ € W(G12). By Proposition 6.6 we have p(Af) = Af for all f € F and ¢(y) €
{y,y~'}. Composing with I, if necessary we have ¢(y) = y. By Proposition 6.5 (i7) we know
that ¢((z?y~',2)) = (2®y~ !, 2). In other words, ¢|y2,-1,) is an automorphism of a free
abelian group of rank 2. We may write p(2?y~!) = (2%y~1)%27 and p(z) = (22y~1)*2* for

i
i,7,k,¢ € Z, and thus ¢|4 corresponds to the matrix € GL(2,2), relative to the
k ¢

basis 22y~ !, z. Now by Proposition A.1,
K, = 2%y, 2, K, = (2%, 4%, 2%) and K,; = (y);
thus we have K = (z?%,y, 2?). By Lemma 2.11, ¢(K) = K. Then since z*y~! € K,
p(ay™) = (2% )'2 € K = (a%,y,2%),

so j is even.

Let € : (z%y~1, 2) — (2%y~ %, 2) be the automorphism given by
£ (2Py, 2) = ((aPy 1), (aPy 1)k,

J
Thus £ corresponds to a matrix in the subgroup of GL(2,Z) of matrices with j
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even. The map

Ve s (2Py~ Ny zmt) = (E(@Py ),y E(2), 0 t)

determines an automorphism of G5 because it satisfies the relations in the presentation of

i
G12. By Lemma 7.1 (ii) we know that the set of matrices g in GL(2,Z) with j even
k¢

is a subgroup of GL(2,Z) and that it can be generated by three matrices. Therefore there
exist three corresponding automorphisms that generate all the automorphisms that are of

the form described by 1. These are:

Uy (T, y, z,m,t) = (T2,y, 2,7, 1);
Vs 1 (x,y, 2, r,t) = (z,y, 2 2yz, r,t);
Ve 1 (1,y, 2,7, ) = (27 y,y, 2,7, 1).
Composing with these three outer automorphisms gives ¢|(,2,-1 ., = Id. Since we also have

o(y) =y and (y) x {(x?y~!, 2) has finite index in A, we conclude that |4 = Id.

By Proposition 6.19 we may compose with outer automorphisms if necessary so as to
have ¢(t) € {t,z't} for some ¢ € Z. Composing with I, can ensure p(t) € {t, zt}. However,
Proposition 6.14 implies that since p(Ar) = Ar and (z,7) = 2%y ¢ (2%, 9?, 2?), we cannot
have o(t) = xt. Thus we have p(t) = t.

Since r? = (rt)*> = 1, Proposition 6.17 gives ¢(r) = r and ¢(rt) = rt; thus we have

o(f) = fforall f eF.

Applying Theorem 6.21 with Lemma 6.31 for all a € A, we have p(art) = a"rt for some

h € {1,rt}. If h = rt then we may compose with [; o ¢. Since
(I, o 1)(a""rt) = I,(rt(a™)"™) = rta" = art,

we now have |4+ = Id.

By Lemma 6.31, for all a € A we have ¢(ar) = a"r for some h € R, where R, = {1,7}
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by Corollary 6.26. Suppose that h = r. Then
22y~ o(z(zyh) 1) = plar -7 rt) ~ p(zr)p(ztrt) = 2"r -t = 2" (a7t = ¢,

However, 22yt ¢ t9 = (22,92, 2%)t. This contradiction implies that h # r; thus |4, = Id.
Now by Corollary 6.26 we have R;N'R,s 'R, = {1}. We use this to apply Theorem 6.35
(17). Since @|a = @|ar = Id and ¢(t) = t, by the theorem it follows that ¢|4; = Id and

therefore ¢ = Id..

We have shown that

Theorem 7.3. For crystallographic group Gia, the group W(G) is generated by the inverse

map ¢, the inner automorphisms and

Uy (xyy, 2,1 t) = (x2,y, 2,7, 1);

Vs 1 (2,0, 2,7, ) = (2,y, 27 2yz, r, t);
Vs 1 (2, 2,7, ) = (27 y,y, 2,7, 1);
Yy (x,y, 2,7, t) = (2,y, 2,7, yt);

v, (x,y, 2,1, t) = (x,y, 2, 21, 2t).

Thus we have W(G) = Wy(G). O

Let ¢ € W(G13). By Proposition 6.6 we have p(Af) = Af for all f € F and p(y) €
{y,y~'}. If we have ¢(y) = y~! then composing with I; we may assume that p(y) = y.
Since Cy = (z,2) U (y), by Proposition 6.5 (i) we have ¢({x, z)) = (z,z). In other words,
©|(z.2) 18 an automorphism of a free abelian group of rank 2. We may write p(z) = 2'27 and

7

o(2) = a*2" for 4, §, k, ¢ € Z, and so |4 corresponds to the matrix / € GL(2,Z). Now
k ¢

for this group we have G’ = (2%, 9%, 2) and by Lemma 2.11 ¢(G’) = G’. Then since z € G,

o(z) = ?Fled = (xZ,yQ, z)

so k is even.
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Let & : (x,z) — (x, z) be the automorphism determined by

€:(z,2) > (227, 272,
iJ
Thus & corresponds to a matrix in the subgroup of GL(2,Z) of matrices with k
k ¢

even. For a € A, the map

Vea: (2,9, 2,7m,1) = (£(2),y,£(2), ar, 1)

determines an automorphism of (GGy3 if it satisfies the relations in the presentation of G3.
(The pertinent relations here are > = 1 and (rt)*> = 2.) Accordingly, we require (ar)? = 1
(which implies a” = a!) and (art)? = aa"z = £(2), i.e. a’z = 2%z, Equivalently, we
1
require that a = 2*/22=1/2, By Lemma 7.1 (iii) we know that the set of matrices
k¢

in GL(2,Z) with k even is a subgroup of GL(2,Z) and that it can be generated by three
matrices. Therefore there exist three corresponding automorphisms that generate all the

automorphisms that are of the form described by ). These are:

w? : (x7 y’ Z7 r? t) H (’x? y? 'ZE2Z7 .177“, t);

w8 : (x7 y’ Z7 T? t) H (mz_]-?y? Z? r? t);

w9 : (x) y? Z? r? t) H (x_17y7 Z? r? t)'
Composing with these three outer automorphisms, we can ensure that ¢|, ., = Id. Since we
also have p(y) = y we conclude that ¢|4 = Id.

By Proposition 6.19 we may compose with outer automorphisms v, v, and v, if neces-
sary so as to have (t) = t. Since r? = 1 and (rt)* = 27!, Proposition 6.17 gives ¢(r) € {r, 2r}
and p(rt) = rt. If ¢(r) = zr then composing with I; o ¢« we have ¢(r) = r. (Notice that
we still have o(rt) = rt as (rt)! = (rt)~!. Another way to see this is to realize that after

composing with [; o ¢ the hypotheses of Proposition 6.17 are still met; thus we still have

o(rt) = rt. ) Thus we now have p(f) = f for all f € F.
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Let 4,5,k € Z. For G = G13 we have

(z'y? 2Fr)Y = (2%, 22Vl 2P U (22, 22)aty I 2

From this we see that yzr = (yz)ir = y~1z7!r;, thust ¢ S,. By Lemma 6.32 (iv) we conclude
S, = {1,7}. By Corollary 6.26 R,; = {1,7t}. We use this to apply Theorem 6.33 to the Art
coset. Since R,y NS, = {1} we must have |4, = Id.
Next we use a similar argument to show that |4, = Id. We have
(z'y? 2Frt)C = (P aty? 2Prt U (y?) ey 2R et

Therefore zrt »= z'rt = z7'rt which shows that t ¢ S,;; so by Lemma 6.32 (iv) we have
St = {1, rt}. Corollary 6.26 gives R, = {1,7}, and so R, NS,; = {1}. By Theorem 6.33 we
conclude |4, = Id.

Note that we have R, N R, = {1} by Corollary 6.26. We use this to apply Theorem
6.35 (i1), using the fact that |4, = @|a = Id and p(t) = t. Then by the theorem we have

¢|a¢ = Id and therefore ¢ = Id.

We have shown that

Theorem 7.4. For crystallographic group Gis, the group W(G) is generated by the inverse
map ¢, the inner automorphisms, and

Uy (2,0, 2,m,t) = (2,y, 2% 2, 27, 1);

Ug i (2, z,m,t) = (w27 y, 2,7, 1);

Vg i (2, z,m,t) = (271 y, 2,7, 1);

Uy (z,y, 2,r,t) = (2,9, 2,27, 2t);

Yyt (z,y, 2,1, t) = (x,y, 2,1, yt);

¢Z : ("L‘ayazant) = (x,y,z, 2T, Zt)

Thus we have W(G) = Wy(G). O
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7.2 GROUPS 16 THROUGH 22

Let ¢ € W(G16). By Proposition 6.3 we have Cy = (x) U (y) U (z). By Proposition 6.5 (iv)
for 3 € B = {x,y, 2} we have p(f) € {z*!,y*!, 2*1}. Composing ¢ with either

wl : (ZL’, Y, %D, T) H(?/? 2 :E,p?“,p) or

w% : <x7 y7 z7p7 /r.) H(z7 a:’ y? /r.’p/r.)

we may assume we have ¢(z) € {#*'}. Then composing ¢ with

¢2 : (957%2,107 T) = (l',Z,y,T,p)

we have () € B¢ for all 8 € {z,y,2}. Composing with I, and I, if necessary we have

o(x) =z and p(y) = y. To arrive at p(z) = 2z we may compose with I, composed with

Lt pr). (7.1)

Yo (@, z,p,m) = (@Y
We may now assume that ¢|4 = Id.

By Proposition 6.9 (ii) we have p(Af) = Af for all f € F. Thus we have ¢(p) = ap for
some a € A. Squaring both sides we have 1 = p(p?) ~ (ap)? = aa?, thus a? = a~'. We may

therefore assume a € (x,y). By Proposition 6.19 the following are outer automorphisms:
Yo 2 (2, y, 2,p,7) = (2, y, 2, 2p, wr) and
Uy (2, 2,p,7) = (2, 2,yp, 7).

Composing ¢ with these maps we may then assume that we have p(p) = p.
Let o(r) = br. Squaring both sides we have 1 = ¢(r?) ~ (br)?> = bb"; thus b" = b~'. We

also have ¢(p - r) = pbr, and squaring both sides we have
1 = o((pr)?) ~ (pbr)* = pbrpbr = VPb" = bPb*,
so that b” = b, which implies b € (z). Composing with
v s (@,y,2,p,7) = (2,9, 2,p, 27),

we have p(r) =r.
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We have by Lemma 6.31 and Corollary 6.27 that o(ap) = a”p for some h € {1,p}. Note
that (¢, o ¢)(ap) = ¥, (pa™') = pa = aPp, thus if we have h = p, then composing with this
anti-automorphism we have arranged to have ¢|Ap = Id. Since ¢(r) = r, Corollary 6.36

gives ¢4, = Id.
Let ¢(pr) = cpr for some ¢ € A. This gives ¢(pr - p) ~ cr and @(pr - r) ~ cp. Squaring
both sides of each of these equations gives the following:

1 ~ (cpr)? = cc’” which implies " = ¢~

1 ~ (cr)? = cc” which implies ¢" = ¢!

1 ~ (cp)* = cc” which implies ¢ = ¢ .

1

This shows ¢! = ® = ¢ = ", thus ¢ = 1. We now have ¢(pr) = pr and therefore by

Corollary 6.36 ¢|a, = Id, so that ¢ = Id.

We have shown

Theorem 7.5. For crystallographic group G, the group W(G) is generated by the inverse

map t, the inner automorphisms, and

¢1 : (m,y,z,p,r) = (yazwraprvp)?
¢2 : (a:,y,z,p,r) = ($727y7T7p)7

1 -1
)% 7p77n)a

Vo (@, z,p,m) = (27 y”
Uyt (2,y, 2, p,1) = (2,y, 2, Tp, x1),
vyt (2,y,2,p,7) = (2,9, 2,yp, 1),
Ve (@,y,2,p,7) = (3,y,2,p,27).

Thus we have W(G) = Wy(G). O

Let ¢ € W(G17). Since Ar and Apr contain elements of order 2 but Ap does not, we

must have p(Ap) = Ap. If we have p(Ar) = Apr then we may compose ¢ with
¢3 : (Q?,y,Z,p,?") = (y,l’,Z,p,pilT), (72)
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and now we have p(Af) = Af for all f € F. By Proposition 6.9 (ii) we have p(3) € {3*'}
for all 8 € {z,y, z}. Composing with I, and I, if necessary we have p(z) = z and p(y) = y.
To arrive at ¢(z) = z we may compose with [, composed with
bt (,y,2,pr) = (T y T 2T p T ). (7.3)
We may now assume that ¢|4 = Id.
Let ¢(r) = br. Squaring both sides we have 1 = ¢(r?) ~ (br)> = bb", so b" = b~ !; thus we
have b € (x, z). By Proposition 6.19 the following maps are outer automorphisms:
Uy (x,y, 2,p,1) = (2, Y, 2, xp, zr) and
¢Z : (I, Y,z,p, T) l—>($, Y, z,p, ZT)-
Composing ¢ with these maps as necessary we have ¢(r) = r.

Let ¢(p) = ap for some a € A. Then ¢(p - r) ~ apr, and squaring both sides we have
1 ~ aaP". This implies that a € (y, z). Squaring both sides of ¢(p) = ap we have z = p(p?) ~
(ap)? = aaPz, thus aa? € {1,272}. This gives a € (z,y) U (z,y)z~!. Since we also have
a € (y,z), we conclude that a € (y) U (y)2~'. Then composing ¢ with
by (@Y, 2,p,7) = (2,9, 2,yp,7), (7.4)
we can arrange to have ¢(p) € {p,27'p}. Note 2p ~ (2p)” = 272p, thus p(zp) ~ p(z72p).
However, if we have ¢(p) = 2z~ 1p, then
p(z-p)~z-27p=p,
while
(2
Since p& = (22, y*)p U (z2,9%) 2 1p, we see p = z~?p which is a contradiction. We therefore

must have p(p) = p.

We have by Lemma 6.31 and Corollary 6.27 that ¢(ap) = a”p for some h € {1,p}. Note

that (¢, o ¢)(ap) = ¥, (p~ta™') = pa = aPp, thus if we have h = p then composing with this
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anti-automorphism we may assume we have ¢|4, = Id. We have ¢(r) = r, thus by Corollary

6.36, |4 = Id.

Let ¢(pr) = cpr. Squaring both sides we have 1 ~ (cpr)? = ¢ so & = ¢ !; thus

“L.pr) ~ p7lepr = Pr. Squaring both sides this is

¢ € (y,z). We also have r = ¢(p
1 ~ (¢’r)* = (cc”)P, which implies ¢" = ¢ !; thus ¢ € (z, z). Combining these results we have
c € (z). Now o(pr-r) ~ cp, and squaring both sides we have z ~ cc’z = ¢?z, s0 ¢® € {1,27%}.
Thus we have ¢ € {1,27'}. Suppose that ¢ = z7'. Then using ¢|a = ¢|ap = ¢|ar = Id we
have

vz tpr = o(x-pr) = @lap 1) ~ zpr.

)G

Proposition C.2 gives (zpr)® = (y?, z%)apr U (y?, 22)z'zpr which implies zpr ~ xz tpr.

This is a contradiction. We therefore must have ¢ = 1 i.e. ¢(pr) = pr. Corollary 6.36 then

gives ¢|apr = Id and thus ¢ = Id.

We have shown

Theorem 7.6. For crystallographic group G = Gi7, the group W(G) is generated by the

mverse map t, the inner automorphisms, and

Usc (@, 2,0,7) = (y,2,2,0,07 1)

o (@y,2,pr) o (27 y T T p T )
Vi (2,9, 2,p,7) = (2,9, 2, 2P, T7);

by (@, y,2,p,7) = (2,9, 2,4p,7);

v, (z,y,2,p,7) — (2,Y,2,D, 2T).

Thus we have W(G) = Wy(G). O

Let ¢ € W(G91). Proposition 6.3 gives Cy = (z?y~') U (y) U (z). By Corollary 6.7 we
have ¢(z) € 2. By Lemma 6.4 it follows that ¢(Ap) = Ap. Composing ¢ with

1

Uy (@,y,2,p,7) = (z,2°y ", 2, p,pr)
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we may assume we have () € B¢ for all 3 € B = {z*y~!,y, z}. Composing ¢ with I, and

Uand ¢(y) = y. To arrive at ¢(z) = z we may

I, if necessary we have p(z?y™') = 2%y~
compose with I, composed with

U (zyy, 2,p,r) = (7 y T 2 ).

We now have ¢(f) = f for § € B, and since (B) = (Cz) and ¢|4 is a homomorphism, we
have ¢|(c,y = Id. Since (Cs) has finite index in A and we conclude that ¢|4 = Id. Now by
Proposition 6.9 (i7) we have p(Af) = Af for all f € F.

Let ¢(pr) = cpr for some ¢ € A. Squaring both sides gives 1 ~ cc” i.e. ¢ = ¢! thus
¢ € (y, z). By Proposition 6.19 the maps below define outer automorphisms.
Yyt (x,y,2,p,7) — (x,y, 2,yp, ) and
77Z)Z : (I, Y,z,p, T) = (CC’ Y,z,p, ZT)'

Composing ¢ with these automorphisms we may assume we have @(pr) = pr. We have
by Lemma 6.31 and Corollary 6.27 that p(apr) = a"pr for some h € {1,pr}. Note that
(¢, 0 1) (apr) = ¥, (pra~) = pra = a’"pr, thus if we have h = pr then composing ¢ with this

anti-automorphism we may assume we have ¢|4,, = Id.

Let ¢(p) = ap for some a € A. Squaring both sides we have 1 ~ aa®? so a? = a~! thus
a € {(x,y). Squaring both sides of ¢(p - pr) ~ ap - pr gives 1 ~ aa", so a” = a~', thus

a € (z*y~!, z). Therefore we have a € (z*y~!). Composing ¢ with the inner automorphism
Ix : (x7 y7 Z7p7 T) H (:I:7 y7 Z7¢T—2p7 x_2y/r‘)
we may assume that we have ¢(p) = p and by Corollary 6.36 ¢|4, = Id.

Let ¢(r) = br for some b € A. This gives ¢(r-p) ~ bpr and ¢(r - pr) ~ bp. Squaring both
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sides of each of these equations gives the following:
1 ~ (br)? = bb" which implies b" = b™;
1 ~ (bpr)? = bb*" which implies " = b™*;
1 ~ (bp)* = bV which implies ¥ = b~

This shows b~! = P = §" = P and so we must have b = 1. We now have o(r) = r and

therefore by Corollary 6.36, |4, = Id and thus ¢ = Id.

We have shown that

Theorem 7.7. For crystallographic group G = Ga, the group W(G) is generated by the

wmverse map L, the inner automorphisms, and

b (2,y,2,p,7) = (2,2%y 7", 2,p, pr);
G (Y, 2,p,m) = (@7 y T 2T pr);
Yy i (T, y,2,0,7) = (2,9, 2,yp,7);
Vst (@,y,2,p,7) = (2,9, 2,0, 27).

Thus we have W(G) = Wy(G). O

Let ¢ € W(Ga2). We have p(Ap) € {Ap, Ar, Apr}. Note that the following automor-
phisms permute these three cosets:

¢5 : ($ayazap> T) = ($y_l>wax2z_l>pT7p);

wﬁ : (mayazapa 71) — (y,x,z,p,pr).

Thus by composing ¢ with these maps we can assume we have p(Af) = Af for all f € F.
Note that by Proposition 6.3 we have Cy = (z2271) U (y?2~!) U (z). Then by Proposition 6.9

(i4) we have @(8) € B¢ for all b € B = {2*27',y*27!, z}. Composing ¢ with I, and I, as

2

necessary we have p(z?27!) = 22271 and p(y?271) = y?27!. Now we have the automorphism

1

U, (xy,z,pr) e (27 y 2 )
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and note that

I,o, : (:c2z’1,y22’1,z) — (:czz’l,gfz’l,z’l).

If we have ¢(z) = 27! then composing with I, 0 ¢, we have we have () = 8 for all 8 € B.
Using the fact that ¢|4 is a homomorphism gives ¢|c,) = Id and since and (Cs) has finite

index in A, it also gives ¢|4 = Id.

Let o(p) = ap for some a € A. Squaring both sides we have 1 ~ aa? thus a? = a~!. This
implies a € (xy~ ' xyz~") = (zy~',y*27!). By Proposition 6.19 the map below defines an
outer automorphism:

wﬁ : (x7y7 Z7p7 r) H (.’L‘, y? Z?'ryilp? mr)' (7'5)
Composing ¢ with 1, and with
I (2, 2,0,m) = (2, 2,427 p, 2r), (7.6)

we may assume that p(p) = p. Now by Lemma 6.31 and Corollary 6.27 that ¢(ap) = a"p for

some h € {1,p}. If we have h = p then we may compose ¢ with

Ut (o, z,p,r) = (2 y 2T p, )

and then with ¢. Since (¢, o t)(ap) = ¥,(pa™') = pa = aPp, composing ¢ with this anti-

automorphism we now have ¢|4, = Id.

Let ¢(r) = br for some b € A. Squaring both sides gives 1 ~ bb", thus b € (x, z). We also
have o(p - 1) ~ pbr = bPpr and squaring both sides of this relation gives 1 ~ (bPpr)* = bPb".

This implies b € (y, z), thus we must have § € (z). Composing ¢ with the automorphism

V.2 (2,y,2,p,7) = (2,9, 2,p, 27)
we now have ¢(r) = r and so by Corollary 6.36 ¢|4, = Id.

Let p(pr) = cpr for some ¢ € A. This gives ¢(pr - p) ~ cr and @(pr - r) ~ cp. Squaring
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both sides of each of these relations gives the following:
1 ~ (cpr)? = cc’” which implies " = ¢
1 ~ (er)* = cc” which implies ¢" = ¢ ;
1 ~ (cp)* = cc? which implies ¢ = ¢

1

This shows ¢! = ® = ¢ = ", thus ¢ = 1. We now have ¢(pr) = pr and therefore by

Corollary 6.36, |4, = Id and thus ¢ = Id.

We have shown that

Theorem 7.8. For crystallographic group G = Gaa, the group W(G) is generated by the

wmverse map L, the inner automorphisms, and

¢5 . (x,y,Z,p, T) — ('Iy_lax?xzz_l)pr;p);
wﬁ : (l’,y,Z,p,T) = (y,l‘,Z,p,pT);

1 -1 .
) % 7pa7')7

U, (@, y,z,p,r) = (7Y
Uyt (2, y,2,p,7) = (2,9, 2,2y ', ar);
wz : (.T,y,Z,p,'f’) = (x7y727p7 Z?”).

Thus we have W(G) = Wy(G). O

7.3 GROUPS 25 THROUGH 42

Let ¢ € W(Gay;5). By Lemma 6.8 (vi) composing ¢ with 1, if necessary we may assume
©(z) = z. By Corollary 6.10 (i) we have p(Ap) = Ap. If p(As) = Aps we may compose ¢
with

¢1 : (I7yazap7 S) = (yax72ap7ps)7

and now we have p(Af) = Af for all f € F. Then by Corollary 6.10 (ii), by composing ¢

with inner automorphisms as necessary we have ¢|4 = Id.
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Let ¢(p) = ap for some a € A. Note p has order 2 thus ap must have order 2 which

implies a € (x,y). By Proposition 6.19 the maps below determine outer automorphisms:

Uy (z,y,2,p,8) — (2,9, z,2p, s) and
Yy (x,y,2,p,8) — (x,Y, 2,Yp, yS).
Composing ¢ with these maps we can ensure that ¢(p) = p. Then by Proposition 6.13 we
have p(f) = f for all f € F.
Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all
a € A we have p(as) = a”s for some h € R, = {1,s}. Suppose we have h = s, thus
p(as) = a®s = sa. Now composing ¢ with

1

U, (@,y,z,p,8) = (e y 2 pThsTh

and then composing again with ¢, we now have ¢|4,4s = Id. By Lemma 6.31, for all a € A
we have ¢(aps) = a"ps for some h € R,s = {1,ps}. Composing ¢ with the non-trivial wct
7(ps, {Ap, Aps}) we now have ¢|4,s = Id. (Theorem 5.9 proves 7, is non-trivial.)

By Corollary 6.37, since ¢|asuaps = Id we conclude ¢ = Id.

We have shown that

Theorem 7.9. For crystallographic group G = Gas, W(G) is generated by the inverse map

L, the inner automorphisms,
Yo (2,9, 2,p,8) = (x_lay_laz_lapa s),
Ur (3,9, 2,p,8) = (Y, 2, 2,p,ps),
Vo (2,9, 2,p,8) = (3,9, 2,3, 5),
Uy (2,y,2,p,8) = (2,y,2,yp, ys),

and the non-trivial wet 7,5. Thus we have W(G) = Wo(G), Tps)- O

Let ¢ € W(Gg). By Lemma 6.8(vi), composing ¢ with 9, if necessary we have p(z) = z.

By Corollary 6.10 () we have ¢(Ap) = Ap. Next we note that the As coset contains no
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involutions but there are involutions in Aps. Thus we see that ¢(As) # Aps. Therefore
we have p(Af) = Af for all f € F. By Corollary 6.10 (ii), by composing ¢ with inner

automorphisms as necessary we have ¢|4 = Id.

Let ¢(p) = ap for some a € A. Squaring both sides gives (since z € Z(G)) we have
z = (ap)? = aaPz, thus a? = a~!. This implies a € (z,y). By Proposition 6.19 the following

maps define outer automorphisms:

Ve (T,y,2,p,8) — (2,9, 2,2p, s) and
Yy (x,y, 2,0, 8) = (2,9, 2,yp, ys).
By composing with these maps we can ensure that ¢(p) = p. Then by Proposition 6.13 we
have ¢o(f) = f for all f € F.
Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all
a € A we have p(as) = a"s for some h € R, = {1,s}. Suppose we have h = s, thus
p(as) = a®s = sa. composing ¢ with

1

¢L : (a:,y,z,p, S) = (x—l’y— 72_17]9_1’3_1),

and then with ¢, we now have ¢|4,4s = Id. By Lemma 6.31, for all a € A we have p(aps) =
aps for some h € R,s = {1,ps}. Composing ¢ with the non-trivial wet 7(ps, { Ap, Aps})
we now have ¢|4,s = Id. (Theorem 5.9 proves 7,, is non-trivial.) By Corollary 6.37, since

©|asuaps = Id we conclude ¢ = Id.

We have shown that

Theorem 7.10. For crystallographic group G = Gog W(G) is generated by the inverse map

L, the inner automorphisms,

17p_178_1)7

¢L : (:L” y? Z’p7 S) ’_> (‘/I/‘_17y_1’z_
1/}$ : ($’y7z7p78)}_>(:L‘7y’z7mp7s)7
Yy (2,y,2,p,8) = (2,Y, 2,YD, YS),

and the non-trivial wct 7,s. Thus we have W(G) = (Wo(G), Tps)- O
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Let ¢ € W(G37). By Lemma 6.8 (vi) composing ¢ with 1, if necessary we may assume
©(z) = z. By Corollary 6.10 (i) we have p(Ap) = Ap. If ¢(As) = Aps we may compose ¢
with

1/}1 : (l’, Y,z,p, S) = (ya xz, Zapaps)a
and now we have p(Af) = Af for all f € F. Then by Corollary 6.10 (ii), by composing ¢

with inner automorphisms as necessary we have ¢|4 = Id. Let ¢(p) = ap for some a € A.

Note p has order 2 thus ap must have order 2 which implies a € (z,y). By Proposition 6.19
the maps below determine outer automorphisms:

¢$ : (a:'7y7 Z7p7 S) }% ('I? y? Z’ ‘/I/'p’ 8) and

¢y : (Ia Y,z,p, S) = (ZE, Y, z,yp, yS)
By composing ¢ with these maps we can assume that ¢(p) = p. Then by Proposition 6.13
we have p(f) = f for all f € F.

Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all
a € A we have p(as) = a"s for some h € R, = {1,s}. Suppose we have h = s, thus
p(as) = a®s = sa. composing with ¢ composed with
bt (@, 2,p08) = (27 y 2T pT s

we now have ¢|4u4s = Id. By Lemma 6.31, for all a € A we have p(aps) = a"ps for some
h € Rys = {1,ps}. Composing ¢ with the non-trivial wet 7(ps, {Ap, Aps}) we now have

©|aps = Id. (Theorem 5.9 proves 7, is non-trivial.)

We have shown that

Theorem 7.11. For crystallographic group G = Gaz, the group W(G) is generated by the
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wmverse map t, the inner automorphisms,

bo: (@, 2,p,8) = (@7 y 25T,
Y1 (2,9, 2,0, 8) = (Y, 2, 2,p, ps),
Vo (2,9, 2,0, 8) = (2,9, 2, 2D, 5),
Uy i (T, y,2,p,8) = (T, ¥, 2,Yp, ys),

and the non-trivial wct 1,s. Thus we have W(G) = (Wo(G), Tps)- O

Let ¢ € W(G3g). By Lemma 6.8 (vi), composing ¢ with 1), if necessary we have p(z) = z.
By Proposition 6.3, C, = (x) U (y?271), thus by Proposition 6.5 (iv) we have p(y?z7') €
{21}, (y2271)*1}. Now consider that

2, -1

2270 2) = o2 e(2) = e(y?z ).

e(y)? = o) = o(y°=

The left hand side is a square but if ¢(y*27!) € {x,27'} then the right hand side would
not be a square. We conclude ¢(y?271) € (y?2~1)“. Then by Proposition 6.9 (ii) we have
w(Af) = Af for all f € F and by Corollary 6.10 (i7), composing with inner automorphisms

if necessary, we have |4 = Id.

Let ¢(p) = ap for some a € A. Note p has order 2 thus ap must have order 2 which
implies a € (z,y*271). By composing ¢ with the automorphisms below we can ensure that
o(p) = p-

Ve (T,y,2,p,8) — (2,9, z,2p, s) and
L, (z,y,2,p,8) = (2,9, 2,y %2p,y >28).

(Note 1), is an outer autmorphism by Proposition 6.19.) Then by Proposition 6.13 we have

o(f)=fforall feF.
Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all

a € A we have p(as) = a”s for some h € R, = {1,s}. Suppose we have h = s, thus
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p(as) = a®s = sa. composing with ¢ composed with

1

¢L : <x7y7 z7p7 S) )_> (‘,L‘_I’y_ 72_17p7 S)

we now have |45 = Id. By Lemma 6.31, for all a € A we have p(aps) = a”ps for some
h € R,s = {1,ps}. Composing ¢ with the non-trivial wet 7(ps, {Ap, Aps}) we now have
©|aps = Id. (Theorem 5.9 proves 7,4 is non-trivial.) By Corollary 6.37, since ¢|asuaps = 1d

we conclude ¢ = Id.

We have shown that

Theorem 7.12. For crystallographic group G = Gss, W(G) is generated by the inverse map
L, the inner automorphisms,

1 -1
Y 2 3)7

b, (Y, 2,p,8) = (27 Y0
wl : <x7y727p7 3) = (ywr?Zap?pS)a
wl‘ . (','C?y7 Z7p7 8) H ('x7 y? Z? xp? 8)7

and the non-trivial wet T,5. Thus we have W(G) = Wo(G), Tps)- O

Let ¢ € W(G39). By Lemma 6.8 (vi), composing ¢ with 1), if necessary we have p(z) = z.
By Corollary 6.10 (i) we have ¢(Ap) = Ap. Since As contains involutions but Aps does not,
©(As) = Aps is not possible thus we have p(Af) = Af for all f € F. Then by Corollary

6.10 (i7), composing with inner automorphisms if necessary, we have |4 = Id.
Let ¢(p) = ap for some a € A. Squaring both sides of this equation we have
2= p(2) = (p°) ~ (ap)* = ad’p” = aaz.

Since z € Z(G) we have equality, i.e. z = aa’z thus a? = a~!. This tells us a € (z,y?z7").

By composing with the maps below we can ensure that p(p) = p.

Uy (z,y,2,p,8) — (2,9, z,xp, s) and

Iy : (179,37]9, S) = (xay7zay_22pa y_QZS)‘
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(By Proposition 6.19 1, is an outer autmorphism.) Then by Proposition 6.13 we havep(f) =
f forall f e F.

Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all
a € A we have ¢(as) = a"s for some h € R, = {1,s}. If h = s then we may compose with
the non-trivial wet 7(s, {Ap, As}) and now we have |45 = Id.

By Lemma 6.31, for all a € A we have ¢(aps) = a”ps for some h € R,s = {1, ps}. Com-
posing if necessary with the non-trivial wet 7(ps, { Ap, Aps}) we may assume that ¢|4,s = Id.
(Theorem 5.9 proves 7, and 7,5 are non-trivial.) We note that 7, = ¢ 09, o 75, therefore
7,5 Will not be listed as a generator of W(G). By Corollary 6.37, since ¢|asuaps = 1d and

Rps N [ =1, we conclude p|Ap = Id.

We have shown that

Theorem 7.13. For crystallographic group 39, W(G) is generated by the inverse map ¢, the
mner automorphisms,

U (m,y,z,p,8) = (a7 y 2T pTh ),

/l/}l' : ('r7y727p78) '_> (x7y7z’xp78>’

and the non-trivial wet 5. Thus we have W(G) = Wo(G), 7s). O

Let ¢ € W(Gy2). By Lemma 6.8 (vi), composing ¢ with 1, if necessary we may assume
©(z) = z. By Corollary 6.10 (i) we have p(Ap) = Ap. If p(As) = Aps we may compose ¢
with the outer automorphism

wl : (ZE, Y,z, D, 8) = (ya xz, Z7p>p8)7
and now we have p(Af) = Af for all f € F. Then by Corollary 6.10 (i7), by composing with

inner automorphisms as necessary we have |4 = Id.

Let ¢(p) = bp for some b € A. Note p has order 2 thus bp also has order 2 which implies

b€ (xy~t zyz~1). Note that (xy~1 zyz~!) has index 2 in (22271, y?271), thus by composing
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 with the inner automorphisms

‘[$ : (m7y727p78) )_) (x7y7z7x_22p’8)

a’nd [y : ($7 y7 Z’p? S) H (:'C7 y? Z? y_Qva y_228)7

we may assume that ¢(p) € {p, zy~'p}. Suppose that ¢(p) = zy~'p and let p(s) = as for

some a € A. Then

p(p-s) ~xy 'pas = xy 'aps.

Since s and ps have order 2, as and zy 'aPps also have order 2. We have |as| = 2 which
implies a € (y?27!) and so we have a? = a~'. Also, xy~'aPps has order 2, which implies it
is contained in the subgroup (z%27'). Thus we conclude that zy~'a? = zy~ta™! € (z?271).
This indicates that a € (y?z7') N (2?27 ')zy~" which is empty. This is a contradiction
thus o(p) = 2y~ !p is not possible. We may assume therefore that ¢(p) = p, and now by
Proposition 6.13 we have ¢(f) = f for all f € F.

Now by Corollary 6.28 we have Ry = {1, f} for f € {s,ps}. By Lemma 6.31, for all
a € A we have p(as) = a"s for some h € R, = {1,s}. Suppose we have h = s, thus

p(as) = a®s = sa. composing ¢ with ¢ and then with the automorphism

Y, (@,y,2,p,8) = (a7 y T pThsTh

we now have ¢|4,4s = Id. By Lemma 6.31, for all a € A we have ¢(aps) = a"ps for some
h € Rys = {1,ps}. Composing ¢ with the non-trivial wet 7(ps, {Ap, Aps}) we now have
©|aps = Id. (Theorem 5.9 proves 7,, is non-trivial.) By Corollary 6.37, since ¢|asuaps = 1d

we conclude ¢ = Id.

We have shown that

Theorem 7.14. For crystallographic group G = Gya, the group W(QG) is generated by the

wmoverse map t, the inner automorphisms,

1

wl/ : (x7y7z7p7 S) H (x_:l?y_ 7Z_17p7 s)?

wl : (.T,y,Z,p, S) — (ywrazvpaps)?
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and the non-trivial wet 7,s. Thus we have W(G) = Wo(G), Tps)-
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CHAPTER 8. THE WCT GROUPS OF SPACE GROUPS

HAVING POINT GROUP 222

mmim

8.1 GROUPS 47 THROUGH b7

Let ¢ € W(G47). By Proposition 6.3 Co = (x) U (y) U (z). Without loss of generality,
let B = {z,vy,2}. By Proposition 6.5 (iv) we have {¢(z), o(y), p(2)} C {z*, y*, 221} If

o(z) € {y*'} then we may compose ¢ with the automorphism

¢1 : <x7y727p7 T)t) = (y7x7zap7pr7t)

so that p(r) € x%. Alternatively, if p(z) € {z*'} then we may compose ¢ with the auto-
morphism

@Dz : (:U7 Y,z,p, T, t) = (Za Yy,x,pr,T, t)
so that o(z) € 2. If p(y) € {z*'} then we may compose ¢ with the automorphism

w3 : (‘xay?’zup?rat) = (:Uvzuy’,rup?t)a

so that we may now assume that ¢(3) € 8¢ for all 3 € B. Applying Proposition 6.9 (iv)
we may compose with inner automorphisms so that ¢|4 = Id and by (ii) we also have
w(Af) = Af for all f € F. By Proposition 6.19 we may compose with automorphisms
Yy, 1y, and ¢, in order to arrange that p(t) = t. Then by Proposition 6.17, since every
element of F' has order 2 we have ¢(f) = f for all f € F.

Now by Lemma 6.31 for a € A we have ¢(at) = a"t for some h € R;. We have R, = F by
Corollary 6.29. Since (Aprt, Art, Apt) = G/A, we see that composing with the non-trivial
wets T(prt, {Aprt, At, Ap, Ar}), T(rt, {Art, At, Apr, Ap}), and 7(pt, {Apt, At, Ar, Apr}), we
can assume that we have ¢|4; = Id. (Theorem 5.9 proves these three functions are non-
trivial wets.) We note that 7,4 = 1)1 03 0 7pp 093 010y and 7y = 11 013 0 T 013 091 SO We
will only include 7,,+ when we list the generators of the wct group. Applying Corollary 6.38

we have ¢ = Id.

98



We have shown that

Theorem 8.1. For crystallographic group G = Gz, the group W(G) is generated by the

mverse map t, the inner automorphisms,

Uy
Wy
Vs
(o
by
Vs

(z,y,2,p,r,t) = (y, 2,2, p,pr, 1),
(x,y,z,p,rt) = (z,y,x,pr,rt),
(z,y,2,p,7,t) = (2, 2,y,7,p, 1),
(z,y,z,p,1,t) = (x,y, 2, xp, x1T, Tt),
(z,y,2,p,7,t) = (2,1, 2,yp, 7, yt),

(z,y,2,p,7,t) = (z,y, 2,p, 21, 2t),

and that W(G) = Wo(G), Tprt) - O

Proposition 8.2. For group 49 we have

Sp - 87" - Spr - St - F; Sprt = {1ap7ﬂt7rtap};
Srt = {laprtvrt7p}; Spt = {1aptap7 t}
Proof. This follows from Lemma 6.32 and Proposition C.4. O]

Let ¢ € W(Gy9). By Proposition 6.3 Cy = (x) U (y) U (z). Without loss of generality,

let B = {x,y,2}. By Proposition 6.5 (iv) we have {¢(z), o(y), ¢(2)} C {z*, y*, 21} By

Proposition C.4 we have G' =

(22 y?, ), thus by applying Lemma 2.11 we conclude o(z) €

{21} If p(x) € {y*'} then we may compose ¢ with the automorphism ¢, : (z,y, z,p,7,t) —

(y,r,z,p,pr,t) and now p(x) € 2% and p(y) € y“. Applying Proposition 6.9 (iv) we may

compose ¢ with inner automorphisms so that ¢|4 = Id and by (i7) we have o(Af) = Af for

all f € F. By Proposition 6.19 we may compose ¢ with v,,,, and 1, so that we may have

p(t) = t.

The elements of F' that have order 2 (besides t) are p, r, pr, and pt. By Proposition 6.17 we

must have o(pt) = pt, (rt) = rt, p(prt) = prt, and p(p) = p. Recall that (prt)? = (rt)* =
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271 so by Proposition 6.17 ¢(pr) € {pr, zpr} and p(r) € {r, zr}. If we have ©(r) = zr then
by Proposition 6.18 (i) we may compose ¢ with [, ot so as to have ¢(r) = r. Now by (i) we
have o(f) = f for all f € F'— {pr}. Note that p(pr-r) = ¢(p) = p and we also have p = zp
by Proposition C.4. Therefore by Proposition 6.18 (ii7) ¢(r) = r implies ¢(pr) # zpr thus
o(pr) = pr. Thus we have o(f) = f for all f € F.

We now apply Theorem 6.33 three times. We will use the following facts from Proposition
8.2: prt ¢ Syt ¢ Sy, and pt ¢ S,. Also recall that by Corollary 6.29 Ry = {1, f} for
f € {prt,rt,pt}. Now since p commutes with r we have r-prt = pt. Then since R+ NSy = 1
Theorem 6.33 implies ¢| 4.+ = Id. Since r? = 1 we have pr - rt = pt and R+ N Spr = 1 50
the theorem implies |4+ = Id. Since p commutes with r we have pr - pt = rt so since

Ry NSyt =1 we have p|a, = Id. It follows by Corollary 6.38 that ¢ = Id.

We have shown that
Theorem 8.3. For crystallographic group G = Gy, the group W(G) is generated by the
tmverse map t, the inner automorphisms and
Urc(@,y, 2,7, t) = (y, @, 2, p, prs 1),
Uy (T, y, 2,01, t) = (x,y, 2, xp, 7T, Tt),
by (@,y, 2,p,mt) = (2,9, 2,yp, 7, yt),
v, (x,y,z,p, 1) — (2,9, 2, p, 21, 21),

and that W(G) = Wy(G). O

Proposition 8.4. For group 50 we have

§5,=8=85,=8=F, Sprt = {1, prt};
Sy = {1,rt}; Syt = {1, pt}.
Proof. This follows from Lemma 6.32 and Proposition C.5. [

Let ¢ € W(G50). By Proposition 6.3, Cy = (z) U (y) U (z). We apply Proposition 6.5

(iv), with B = {z,y, 2} and we conclude {¢(z), 0(y),¢(2)} C {z*,y*!, 2*1}. Proposition
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C.5 gives G’ = {x,vy, 2%) so by Lemma 2.11 we have p(z2) € {z*'}. If p(x) € {y*'} then we

may compose with the automorphism

¢1 : (%?J;Zap; T7t) = (y;xazap7prat)

and now (x) € ¢ and p(y) € y“. By Proposition 6.9 (iv) we may now compose with inner
automorphisms so that ¢|4 = Id and by (i) ¢(Af) = Af for all f € F. By Proposition 6.19

we may compose with 1,1, and 1, in order to ensure ¢(t) = t.

We have (rt)? = z~!, thus by Proposition 6.17 we conclude that ¢(r) € {r,zr}. If we
have ¢(r) = zr we consider the map I; which maps r to xr. Then composing with I; ot we
may assume that we have ¢(r) = r.

Since p,r, and pr are involutions, we may conclude by Proposition 6.17 that ¢(pt) =
pt,p(rt) = rt, and p(prt) = prt.

Now let ¢(p) = bp for some b € A. We have (pt)* = 271y ~! thus applying the Proposition
again we see that v’z 'y~! € {zy,zy~!, 271y, 7 ly~'} which gives v* € {z%y? 22, 4%, 1} thus
b€ {l1,z,y,ry}. However we also have bp = o(pt - t) ~ pt -t = p. Since p¥ = (zy, 2y~ )p we
see b € {x,y} would give a contradiction, thus we have b € {1, zy}.

I we see that

Let ¢(pr) = cpr. We again apply Proposition 6.17. Since (prt)? = y~
c € {1,y}. Now p ~ bp = @(pr - r) ~ cp but yp = p, therefore we must have p(pr) = pr.
Lastly, pr = @(p-r) ~ bpr and (pr)® = (y,2%)pr so b = xy gives a contradiction thus

©(p) = p. We have shown that we can assume ¢(f) = f for all f € F.

We will now apply Theorem 6.33 twice to the At coset. By the theorem, ¢(at) = a"t for
some h € Ry NS, and also p(at) = a”t for some h € R; N Spe. Combining these we have
h € R, NSt N Spe. Proposition 8.4 states that S,; = {1,rt} and S,y = {1, pt}. We conclude

that h = 1, i.e. |4 = Id. We apply Corollary 6.38 and now we have ¢ = Id.

We have shown that

Theorem 8.5. For crystallographic group G = Gsg, the group W(G) is generated by the
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wmverse map L, the inner automorphisms and

Ur:(@,y, 20,7, t) = (Y, @, 2,p, prs 1),
Vet (z,y, 2,1, 1) = (x,y, 2, xp, 7, Tt),
by (@, 2,01, 0) = (2, 2,up, 1, ut),
v, (x,y, z,p, 1, t) — (2,9, 2,p, 21, 21).

Thus, W(G) = Wy(G). O

Proposition 8.6. For group 51 we have
S =8:=8=F;
S, =Sy ={1,p,rt,prt};
Spr = Spe = {1, pr,rt, pt};
Proof. This follows from Lemma 6.32 and Proposition C.6. [

Let ¢ € W(G51). Note that by Lemma 6.12, Apr and Apt are the only cosets that
do not contain elements of order 2. This together with Corollary 6.11 gives p(Apr) =
Apr, p(Apt) = Apt, and p(At) = At. Note that (Apr, Apt, At) = G/A. Since G/A is abelian
@ is a homomorphism we conclude that ¢(Af) = Af for all f € F. Then by Proposition
6.9 (i) and (iv), we may now compose ¢ with inner automorphisms so that ¢|4 = Id. By

Proposition 6.19 we may compose with 1,1, and 1, so as to have p(t) = t.

We now consider that p,r, prt, and rt all have order 2 thus by Proposition 6.17 we have
o(f) = f for all f € {pt,rt,pr,r}. Applying the proposition again, since (pt)? = (pr)? =
z~! we have o(p) € {p,zp} and p(prt) € {prt,xzprt}. If we have ¢(prt) = xprt then by
Proposition 6.18 (i),composing with [, o ¢ we have ¢(prt) = prt. By (ii) we have p(f) = f
for all f € F — {p}. Now by Proposition C.6 we have (rt) = (y*)rt thus rt = zrt. We use
this as we apply Proposition 6.18 (iiz). Since @(p-prt) = p-prt ~ xrt, it follows by (iii) that
o(prt) = prt implies ¢(p) # xp therefore we conclude ¢(p) = p. Thus we now have p(f) = f

for all f € F.
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Since pt ¢ S, and prt ¢ S,,, we may apply Corollary 6.34 with f € {pt,prt} which
gives | apruaprt = 1d. Now Lemma 6.31 gives p(art) = art for some h € R,y = {1,rt}. If
h = rt we may compose with 7(rt, {Art, At, Apr, Ap}) so as to have |4+ = Id. (Theorem
5.9 proves 7,4 is a non-trivial wet.) We now have ¢(g) = g for all g € Aprt U Art U Apt, thus
by Corollary 6.38 that ¢ = Id.

We have shown that

Theorem 8.7. For crystallographic group G = Gs;, the group W(QG) is generated by the

mverse map t, the inner automorphisms,
Uy (T, y, z,p,1,t) = (x,y, 2, zp, 7T, T1),
Uy (@, y, 2,p,mt) = (2,9, 2,yp, 7, yt),
v, (x,y,z,p,rt) — (2,9, 2,p, 27, 2),

and 1.t. Thus W(G) = Wo(G), Tre)- O

Proposition 8.8. For group 53 we have

Sy =8 = F; S, = {1,p,prt,rt};
S, = {1,r,prt, pt}; Sprt = {1, pr,prt, t};
Sy = {1,rt}; Syt = {1, pt}.
Proof. This follows from Lemma 6.32 and Proposition C.7. [

Let ¢ € W(G53). Corollary 6.11 tells us p(At) = At and ¢(Ap) € {Ap, Ar, Apr}. However
by Lemma 6.12, Ap contains no elements of order 2 and Ar and Apr do, thus we have
©(Ap) = Ap. Similarly Aprt contains elements of order 2 but Apt and Art do not thus by
Corollary 6.11 ¢(Aprt) = Aprt. We know % is a homomorphism as G/A is abelian. Since
(Ap, At, Aprt) = G /A, we conclude ¢(Af) = Af for all f € F. Now by Proposition 6.9 (i7)
and (iv), we may compose with inner automorphisms so that ¢|4 = Id. By Proposition 6.19

we may compose ¢ with 1,1, and 1, as necessary so we may now assume @(t) = t.
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We now apply Proposition 6.17 with f = p using the fact that (pt)?> = 7! to deduce

that ¢(p) € {p,xp}. If we have p(p) = xp then we may compose ¢ with I; o ¢ and now we

have ¢(p) = p.

Again applying the proposition we see that since r, pr, and prt have order 2, we must have
o(rt) = rt, p(prt) = prt, and @(pr) = pr, and since p* = z we must have o(pt) € {pt, z"'pt}.
However if o(pt) = z~'pt then

t=op " pt)~p e ipt =27
However, t¢ = (xz, 2712, y?)t which does not contain z~1¢, thus we have a contradiction. We
conclude that p(pt) = pt.

Using Proposition 6.17 with f = r and thus § = (rt)? = z7'27! we see that ¢(r) = br
implies that b € {1, z, 2z, zz}. However ¢(r) must also satisfy

t=@(r-rt) ~br-rt="bt,

yet t¢ = (xz, 2712, y?)t does not contain xt nor zt. We also have

pr = (p-r) = pbr = bPpr,

but (pr)¢ = (y2, z)pr which does not contain (zz)Ppr = x~'zpr. Thus we must have (1) = 7.

We now have o(f) = f for all f € F.

We now apply Theorem 6.33 twice to the At coset. By the theorem, ¢(at) = a”t for some
h € Ri NS,y and also ¢(at) = a"t for some h € R; N Sy. We conclude h € Ry N Sy N Sy
Proposition 8.8 states that S, = {1,7t} and S, = {1,pt}. We conclude that h = 1, i.e.

©|ar = Id. We apply Corollary 6.38 and now we have ¢ = Id.

We have shown that

Theorem 8.9. For crystallographic group G = Gss, the group W(G) is generated by the
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wmverse map L, the inner automorphisms and
Vet (z,y, z,p,1,t) = (x,y, 2, xp, 7, ),
by @y, 2,0, t) = (2,9, 2,p, 7, yt),
v, (z,y,z,p, 1, t) = (2,9, 2,p, 2T, 21).

Thus W(G) = Wy(G). O

Proposition 8.10. For group 54 we have

‘Spt = {17pt}7 ’Sp = Sprt = Srt - {17]77]77“7577"75}3
S, = {1,r,prt, pt}; Spr = {1, pr, rt, pt};
St — F
Proof. 'This follows from Lemma 6.32 and Proposition C.8. O

Let o € W(Gs4). By Proposition 6.3 Cy = () U (y) U (z). We apply Proposition 6.5 (iv),
with B = {x,y, 2} and we conclude {p(x), p(y), p(2)} C {z*! y*, 2%}, Now by Corollary
6.11 we have p(At) = At and p(Apr) € {Ap, Ar, Apr}. However, as Ap and Ar each contain
elements of order 2 but by Lemma 6.12, Apr does not, we know ¢(Apr) = Apr. Since G/A
is abelian, ¥ is a homomorphism thus ¢(Aprt) = Aprt. By Lemma 6.4 this implies that
o(z) € {x*'} (because y and 2z commute with every element in Aprt.) Now Proposition C.8
gives G’ = (x,42, z) so by Lemma 2.11 we have ¢(z) € {z*!} thus we have ¢(8) € B¢ for
all € B. By Proposition 6.9 (i7) and (iv) we have p(Af) = Af for all f € F and by
composing with inner automorphisms we have ¢|4 = Id. Now by Proposition 6.19 we may

compose with ., 1, and 1, so that we may assume ¢(t) = t.

We now apply Proposition 6.17 with f = p using the fact that (pt)?> = 27! to deduce
that ¢(p) € {p, zp}. If we have ¢(p) = xp then we may compose with [; o+ and now we have
e(p) =p.

Again applying the proposition we see that since p and r have order 2, we must have

©o(pt) = pt and @(rt) = rt. Since (pr)? = 2= we must have ¢(prt) € {prt, zprt}. However if
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o(prt) = xprt then

xprt = o(p-rt) ~p-rt,
which contradicts (prt)¢ = (x%)prt U (x?)xzprt. Therefore p(prt) = prt.

Since (prt)? = (rt)? = z~! Proposition 6.17 indicates we must have o(pr) € {pr, zpr}

and ¢(r) € {r, zr}. Suppose that ¢(pr) = zpr. Then

prt = p(pr-t) ~ zpr -t
which is a contradiction since zprt ¢ (prt)“. We conclude that ¢(pr) = pr. Lastly, suppose
that ¢(r) = zr. Then

p=pp)=plpr-r) ~pr-zr=2"p

This contradicts (p)¢ = (2%, y*)p U (22, y?)zp thus ¢(r) = r. We now have ¢(f) = f for all
feF.

Note that according to Proposition 8.10 prt ¢ S,,.,rt ¢ S,, and pt ¢ S,. We therefore
may apply Corollary 6.34 with f € {prt,rt,pt} which gives ©|aprtuartuape = Id. Then by
Corollary 6.38 we see that ¢ is the identity map on all of G.

We have shown that

Theorem 8.11. For crystallographic group G = Gy, the group W(G) is generated by the
mverse map t, the inner automorphisms, and

Uy (T, y, 2,01, t) = (x,y, 2, xp, T, Tt),

Uy (z,y,2,p,1,t) = (2,y,2,yp, 7 ut),

v, (x,y,z,p,1r,t) — (2,9, 2, p, 21, 21).

Therefore W(G) = Wy(G). O
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Proposition 8.12. For group 55 we have
Sp = Opt = S =F;
S’r - Sprt - {17Ta prt>pt}a

Spr — Ot — {17297“7 Tt>pt}a
Proof. This follows from Lemma 6.32 and Proposition C.9. O]

Let ¢ € W(G5s5). By Corollary 6.11 we have ¢(Apt) € {Apt, Art, Aprt}. Now by Lemma
6.12, Apt contains elements of order 2 and Art and Aprt do not, thus we know p(Apt) = Apt.
By Proposition 6.3 Cy = (z) U (y) U (z). Without loss of generality, let B = {z,y, z}. By
Proposition 6.5 (iv) we have {p(x), p(y), p(2)} C {z*!, y*! 2%}, Now we apply Lemma 6.4
using @(Apt) € Apt. This implies that p(2) € 2¢ (because z is inverted by every element in
Apt but x and y commute with every element in Apt.) If p(z) € y“ we may compose ¢ with

the outer automorphism

¢1 : <x7y727p7 T,t) = (yaxazap7prat)

and now we have ¢(f) = § for all g € {z,y, z}. By Proposition 6.9 (ii) ¢(Af) = Af for all
f € F and by (iv) we may compose ¢ with inner automorphisms so that we have |4 = Id.
By Proposition 6.19 there exist automorphisms v, ,, and ¢, and composing ¢ with these

maps we have p(t) = t.

The squares of the elements in F are p> = (pt)? = 1, r* =y, (pr)?> = x, (1t)* =
x71, and (prt)? = y~!. Applying these facts to Proposition 6.17 we have o(p) = p, p(pt) =
pt, o(r) € {r,zr}, o(pr) € {pr,ypr}, p(prt) € {prt,x " prt}, and p(rt) € {rt,y 'rt}. If we
have (rt) = y~'rt, then by Proposition 6.18 (i)we may compose ¢ with ;0¢ so as to ensure
that ¢(rt) = rt. Then by (i7) we have o(f) = f for all f € F — {r,pr,prt}. We will now

Proposition 6.18 (7i7) to show that this implies ¢(f) = f for all f € {r, pr, prt}. Accordingly,
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we note that by Proposition C.9,
yt o« xyt since (xyt)® = (xy, zy~ ", 22)t;
y~pt < pt since (pt)¢ = (22 pt;
zp = p since (p)° = (zy, zy~")p.

Therefore we have

o(r-rt) = @y -t) ~ yt = xyt;

thus by Proposition 6.18 (iii) , ¢(r) # zr and so we have ¢(r) = r. Similarly we have

-1

o(pr-rt) = o(pyt) = p(y~" - pt) ~ y~'pt = pt;

thus by the proposition, ¢(pr) # ypr so ¢(pr) = pr. Lastly, we have

plprt-rt) = p(pe™") = p(z - p) ~ zp = p;
thus by the proposition, p(prt) # z 'prt i.e. p(prt) = prt and so we now have ¢(f) = f for

all feF.

Note that prt ¢ S,, and rt ¢ S,. Thus we may apply Corollary 6.34 to get ¢|apriare = 1d.
Now by Lemma 6.31, for all a € A we have ¢(apt) = a’pt for some h € {1,pt}. If h = pt
then we may compose with the non-trivial wet 7(pt, {At, Apt, Ar, Apr}) to get ¢|an = Id.
(Theorem 5.9 shows 7, is a non-trivial wet.) By Corollary 6.38 we now have ¢ = Id on all

of GG.

We have shown that

Theorem 8.13. For crystallographic group G = Gss, the group W(G) is generated by the

wmverse map t, the inner automorphisms,
¢1 : ('Ta Y, z,p,T, t) = (y7 x,z,p,pr, t)7
,l/}-z' : (’ZE’ y? Z’p7 T? t) H (:L‘7 y’ 27 xp? l‘rl‘t)’
by (2, y, 2,p,1,8) = (2,9, 2,yp, TYt),

V. (z,y,2,p,7,t) = (2,9, 2,p, 212t),
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and T, Therefore W(G) = (Wo(G), Tpt)- O

Proposition 8.14. For group 57 we have

Sp = {1,p,p7’t,7’t}; 8’!’ = ’Sprt == Spt = {1,T’,p7’t,pt};
SPV = {Lpru Tt,pt}, ‘Srt = {1,7”t}7
St - F
Proof. This follows from Lemma 6.32 and Proposition C.10. [

Let ¢ € W(Gs7). By Proposition 6.3 Cy = (z) U (y) U (z). We apply Proposition 6.5
(iv), with B = {x,y, 2} and we conclude {o(z), p(y), p(2)} C {z*!, y*!, 2%}, Proposition
C.10 gives G’ = (22,9, 2) so by Lemma 2.11 we have p(x) € 2. By Corollary 6.11 we have
o(Apt) € {Aprt, Art, Apt}. Since Apt contains elements of order 2 but by Lemma 6.12 Aprt
and Art do not, we have p(Apt) = Apt. Applying Lemma 6.4 to the relation 2* = 271 we
see that p(2) € y“ gives a contradiction. We conclude that p(z) € 2% and so p(y®) = y¢
as well. By Proposition 6.9 (i7) and (iv) p(Af) = Af for all f € F. and we may compose
¢ with inner automorphisms so that ¢|4 = Id. By Proposition 6.19 we may compose with

automorphisms ;. v, and 1, as necessary so as to have p(t) = t.

We now apply Proposition 6.17 with f = r using the fact that (rt)? = 27! to deduce
that ¢(r) € {r, zr}. If we have ¢(r) = zr then we may compose with I; o ¢ and now we have
o(r)=r.

Again applying the proposition we see that since pr and pt have order 2, we must have
o(prt) = prt and p(p) = p. Since (prt)* =y~ we have ¢(pr) € {pr,ypr}; also, r* = y gives

o(rt) € {rt,y~'rt}. However if p(pr) = ypr then

and if p(rt) = y~'rt then

r=p(rt-t) ~ y it -t =y
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In both cases we arrive at r ~ y~'r which is a contradiction since r¢ = (2% 22)r U
(22, 22)y~zr. Therefore we have o(pr) = pr and p(rt) = rt.
Lastly, since p? = z the proposition gives ¢(pt) € {pt, 2 'pt}. If p(pt) = z~'pt then
ya~tprt ~ oy prt) = (- pt) ~ vz pt = yprt,

which contradicts (yprt)¥ = (x?)y prt,u € {0,1}, thus ¢(pt) = pt.
We now have o(f) = f for all f € F.

Note that prt ¢ Sy, 7t ¢ S,, and pt ¢ S, thus by Corollary 6.34 we have ¢| aprtvartoapt =

Id and so by Corollary 6.38 we now have ¢ = Id.

We have shown that

Theorem 8.15. For crystallographic group G = Gsz, the group W(G) is generated by the

mverse map t, the inner automorphisms and

ww : (I,y,Z,p,T,t) = (xay,z,xp, x’rxt),
wy : (‘T7y727p7 T, t) = (xay,z,yp, Tyt),
¢Z : (x,y,z,p,r, t) = (x,y,z,p, ZTZt)-

Therefore W(G) = Wy(G). O

8.2 GROUPS 63 THROUGH 68

The following applies to Gﬁg, G64, G65, GGG, G67, and G@g.

Proposition 8.16. Let ¢ € W(G) where G € {G(jg, Ges, Ges, Ges, Ger, G@g}.
(i) o(2) € {z,271}. Also, for a € {x?y~1,y} we have p(a) € {(z?y~ 1)+, y*1}.
(ii) For Af € {At, Ap, Apt} we have o(Af) = Af.

(i) For Af € {Ar, Apr} we have p(Af) € {Ar, Apr}. Also, for f € {prt,rt} we have
©(Af) € {Aprt, Art}. Finally, o(Ar) = Apr if and only if p(Art) = Aprt.

110



Proof. Statement (i) comes directly from Corollary 6.7.

We prove ¢(Apt) = Apt by using Corollary 6.11. We have ¢(Apt) € {Aprt, Art, Apt}.
Applying Lemma 6.4 to the relation z’* = z~' we have ¢(2)?®) = ¢(z)~!. Since both prt
and rt commute with z we cannot have ¢(pt) € Aprt U Art.

By Corollary 6.11 we have p(At) = At. Since G/A is abelian ¥ is a homomorphism, thus
©(Ap) = o(Apt - At) = Apt - At = Ap, proving (it). Statement (ii7) follows by Corollary 6.11

and the fact that © is a bijective homomorphism. O]

The following applies to Ggs, Ges, G5, Ges, Ger, and Gs.

Proposition 8.17. Let G be a group with presentation of the form given in Eq. (4.4) with
= 1. Let ¢ € W(G) and suppose that o|4 =1d and o(Af) = Af for all f € F. Then there

exists an automorphism ¢ such that 1 o ¢ satisfies (¢ o @)(t) =t.
Proof.  Let p(t) = ct for some ¢ € A. By Proposition 6.19 there exist outer automorphisms

Yy (x,y,2,p,7,t) = (2,9, 2,yp, 7, yt),

and 9, : (z,y,z,p,1,t) = (x,y, z,p, 21, 2t).

Composing with these maps as well as with I, we may assume ¢ € {1, z}. By Corollary 6.15

¢ = x is not possible so we are done. O

Proposition 8.18. For group 63 we have
‘St:Spr: prt:F;
‘Sp = Srt {vaprta Tt}a
S, =Sy = {1, r,prt, pt}.
Proof. This follows from Lemma 6.32 and Proposition C.11. [

Let ¢ € W(Ggs). Here the Aprt coset contains involutions but by Lemma 6.12 the
Art coset does not, therefore we cannot have p(Aprt) = Art. As G/A is abelian, @ is a

homomorphism and this together with Proposition 8.16 (i7) and (iii) gives p(Af) = Af for
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all f € F. Then by Proposition 6.9 (iv) we may compose with inner automorphisms so that

¢|a = Id. By Proposition 8.17 we may compose with an automorphism so that p(t) = t.

Five of the seven nontrivial elements in F' have order 2, thus by Proposition 6.17 we
have ¢(f) = f for f € {p,pr,prt,rt}. The proposition also gives ¢(r) € {r, zr} and p(pt) €
{pt, 2~ 1pt}. If we have ¢(pt) = z~'pt then by Proposition 6.18 (i) we may compose with I;o0¢
and now we have p(pt) = pt. Then by (i) we have p(f) = f for f € F—{r}. We will use this
with Proposition 6.18 (4ii) to show that ¢(r) = r as well. One can check that rpt = z~'prt
thus zrpt = prt. By Proposition C.11, (prt)¥ = (z?y~1)prt, so we have prt «~ z 'prt. Thus

we have
o(r-pt) =@zt -prt) ~ 271 prt o prt = zrpt.
By Proposition 6.18 (i4i) this implies ¢(r) = r and therefore we now we have ¢(f) = f for

all f € F.

Notice that pt ¢ S,, thus by Corollary 6.34 we have ¢|a, = Id.
By Proposition 8.18 S,y = {1, r, pt, prt} and by Corollary 6.29 R, = {1, p, rt, prt}. Apply-
ing Theorem 6.33 to the Ap coset we see that since R, NS, = {1, prt} we have ¢(ap) = a"p

for all a € A where h € {1, prt}. However if h = prt then
p =@t ap) ~ a2 p =2 yp.

Since Proposition C.11 gives p¥ = (2%, y*)pU (22, y*) 21 p we see that this is a contradiction.

Thus we conclude |4, = Id.

Next we apply Theorem 6.35 (i), using ¢(t) =t and ¢|a, = @|ap = Id. Since R;NR e N
R, = {1} by Corollary 6.29 then by the theorem it follows that ¢|4; = Id. By Corollary
6.38 ¢ = Id.

We have shown that

Theorem 8.19. For crystallographic group G = Ggs, the group W(G) is generated by the
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wmverse map L, the inner automorphisms, and

¢y : (l‘7yazvpa T, t) = (L%%yp, r, yt)7
,lvbz : (xvyﬂzvpa Tat) = (fa.%%p, 2T, Zt))

Therefore W(G) = Wy(G). O

Proposition 8.20. For group 64 we have
St == Spr = F,
Sp - Srt {]-7p7prt7 Tt}u

Sr = Sprt = Spt = {]_,’I", prtapt}v

Proof. 'This follows from Lemma 6.32 and Proposition C.12. O

Let ¢ € W(Ggy). The Aprt coset contains involutions but by Lemma 6.12 the Art coset
does not, therefore we cannot have p(Aprt) = Art. As G/A is abelian, @ is a homomorphism
and this together with Proposition 8.16 (i7) and (i) gives p(Af) = Af for all f € F. Then
by Proposition 6.9 (iv) we may compose ¢ with inner automorphisms so that ¢|4 = Id. By
Proposition 8.17 we may compose ¢ with an automorphism so that ¢(t) = t.

Recall that p? = 2, r2 =y, (pr)2 =1, (rt)? = 271, (pt)? = y~ !, and (prt)? = y=2.

Applying this information to Proposition 6.17 we have ¢(prt) = prt as well as

e(p) € {p.yp}, o(r) € {r,zr}, p(pr) € {pr,y’pr}, o(rt) € {rt,y 'rt}, o(pt) € {pt,z""pt}.

By Proposition 6.18 (i), we may compose ¢ with [; o ¢ and now we may assume @(rt) = rt.
Thus by (i7) we now have ¢(f) = f for f € {prt,rt,t}. We will use Proposition 6.18 (iii)

to show that this implies that ¢(f) = f for f € {p,r,pr,pt}. To show the hypotheses of the
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proposition are met we note that by Proposition C.12 we have

yt o yzt since (yt) = (2%, yz, yz~ Dyt;
prt « yprt since (prt)% = (x?y~Dprt U (z%y 1)y prt;
y it eyl since (y~'t)% = (2%, yz,yz Dy 't;
Yy ipt oo ypt since (ypt)© = (22 ypt U (z%) zpt.
Now we have
o(r-rt) =@y -t) ~yt = yzt = z(r - rt) and p(rt) = rt,
thus Proposition 6.18 (iii) implies ¢(r) # zr and so ¢(r) = r. Similarly, as we have
o(p-rt) =prt o« yp-rt and p(rt) = rt,
by the proposition we have ¢(p) # yp thus p(p) = p. Now we have (since ptp = (pt)*t = y~'t),
-1

e(pt-p) =y - t) ~y e zly = 2""pt - p and p(p) = p.

By the proposition it follows that o(pt) # 2z~ pt thus p(pt) = pt. Lastly, we have

“Lopt) ~yTipt o ypt =y (y " pt) = yPpr -t and p(rt) = rt,

plpr-rt) = ¢y
and so the proposition gives p(pr) = pr. We now have ¢(f) = f for all f € F.

By Proposition 8.20, pt ¢ S,, so Corollary 6.34 gives ¢4, = Id.
Applying Theorem 6.33 to the Ap coset we have p(ap) = a"p for some h € R, N Sy. By

Corollary 6.29 and Proposition 8.20 this intersection is {1, prt}. However if h = prt then
p=pa™" - ap) ~ a7 ap =z 7%yp.
Since p¢ = (22, y*)p U (22, y*)yz~'p this is a contradiction, thus p|4, = Id.

Next we apply Theorem 6.35 (i7), using ¢(t) = t and ¢|a, = ¢|ap = Id. Since we have
Ry, NR, = {1} by Corollary 6.29 the theorem gives ¢|4; = Id. Then by Corollary 6.38
p =1Id.

We have shown that
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Theorem 8.21. For crystallographic group G = Gy, the group W(G) is generated by the
mverse map t, the inner automorphisms, and

Uyt (2,y,2,p,7,8) = (2,9, 2,yp, 7, Y1),

v, : (z,y,2,p,7,t) = (2,y, 2,p, 21, 2t).

Therefore W(G) = Wy(G). O

Proposition 8.22. For group 65 we have Sy = F' for all f € F — {1}.

Proof. Here F' is an abelian subgroup of G. It follows that for f € F — {1}, h € F,a € A,
af ~ (af)t = a"f* = a"f. 0

Let ¢ € W(Ges). Proposition 8.16 (i) we have o(y) € {(z%y= )=y} If o(y) ¢ v© =
{y*'} then we may compose with the outer automorphism
,l7b1 : (x7 y7 Z’p? T? t) )_> ('CC7 ny_lv Z?p’p’r7 t)?

and now we have p(f8) € B¢ for all 3 € {2?y~',y,2}. By Proposition 6.9 (iv) we can
compose with inner automorphisms to get p|4 = Id and p(Af) = Af for all Af € G/A. By

Proposition 8.17 we may compose with an automorphism so that p(t) = t.

Now for f € F we have ft € F and (ft)? = 1. Therefore by Proposition 6.17 we have

o(f) = fforall f eF.

By Lemma 6.31, for a € A we have ¢(art) = a”rt for some h € R,; = {1,7t}. If we have

o(art) = a™rt then composing with I, o« we have
(I ovop)(art) = (I, 0 )(a"rt) = ((a™rt) ™M) = (tr(a™H)™)" = (a7 'rt)" = art.

Thus now we may assume we have @[+ = Id.
By Lemma 6.31, for a € A we have ¢(apt) = a"pt for some h € R, = {1,pt}. If we have
p(apt) = aP'pt then composing with the non-trivial wet 7(pt, { Apt, At, Ar, Apr}), we can

assume we have ¢|ar1uape = Id. (Theorem 5.9 shows that 7,4 is a non-trivial wct.) We apply
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Theorem 6.35 (7) twice using ¢(t) =t and |yt = @|apt = Id. Since RN R, NR, = {1, prt}
by Corollary 6.29, the theorem indicates that for a € A, p(at) = a”t for some h € {1, prt}.

However, if h = prt then

t=@ - ot) ~ 2 2P = a7yt

which is a contradiction since Proposition C.13 gives t¢ = (22 42, 22)t, thus 2 2yt ~ t. It
follows that A = 1, in other words, ¢(at) = at for all a € A. By Corollary 6.38 we have
e =1Id.

We have shown that

Theorem 8.23. For crystallographic group G = Ggs, the group W(G) is generated by the
mverse map t, the inner automorphisms,

b (2,y, 2,1, 1) = (2,2%y 7 2,p, ),

Uyt (2,9, 2,p,m,t) = (2, 2,yp, 1, Y1),

¢Z : (IL‘, y7 Zapv 7", t) = (I’, ya Zapa ZT‘, Zt))

and the non-trivial wet 1. Thus we have W(G) = Wo(G), Tpe)- O

Proposition 8.24. For group 66 we have
S$,=85 =8, =F;
Sprt - S’rt - {Lpaprtu Tt}7

St = Spt = {17p7pt7t}
Proof. 'This follows from Lemma 6.32 and Proposition C.14. O]

Let ¢ € W(Ges). By Proposition 8.16(i) we have p(y) € {(22y~1)*, yF1}. I o(y) ¢ y©& =
{y*'} then we compose with the outer automorphism

1

wl : (:U7y7 2y 2 T7t) = (.17,3323./_ ,Z,p,pr,t),
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and now we have p(8) € B¢ for all B3 € {2%y~',y,2}. By Proposition 6.9 (iv) we may
compose ¢ with inner automorphisms to get ¢|4 = Id and ¢(Af) = Af for all Af € G/A.

By Proposition 8.17, composing ¢ with an automorphism gives ¢(t) = t.

Now for f € {p,prt,rt,pt} we have ft € F and (ft)?> = 1. Therefore by Proposition 6.17
we have ¢(f) = f for all f € {p,prt,rt,pt}. The proposition also gives p(pr) € {pr, zpr}
and ¢(r) € {r,zr}. Composing ¢ with I; o ¢ if necessary we can arrange to have ¢(r) = r,
by Proposition 6.18 (¢). By (ii) we now have ¢(f) = f for f € F — {pr}. We will show that
o(pr) = pr as well by applying (iii). Now Proposition C.14 gives p® = (22,4?)p, so p = zp.
Thus we have

p(pr-r)=p(p) =p»2p=2zpr-rand o(r) =r.

It follows by Proposition 6.18 (éiz) that ¢(pr) = pr and we now have ¢(f) = f for all f € F.

We now apply Theorem 6.33 three times. We will use the following facts from Proposition
8.24: prt ¢ Sy, rt ¢ Sp; and pt ¢ S,y. Also recall that by Corollary 6.29 Ry = {1, f} for
f € {prt,rt,pt}. First we will apply the theorem to the Aprt coset. Since (pr)* =1 we have
pr-prt =t. Then as R+ NS; = 1 Theorem 6.33 implies ¢|4,+ = Id. Next we consider the
Art coset. Since 72 = 1 we have pr - rt = pt. We also have R,; N Spt = 1 so the theorem
implies |4+ = Id. Lastly we apply the theorem to the Apt coset. Since p commutes with r
we have pr-pt = rt. We also have R,;NS,+ = 1. By the theorem we conclude that ¢| 4, = Id.

Now it follows by Corollary 6.38 that ¢ = Id.

We have shown that

Theorem 8.25. For crystallographic group G = Ggg, the group W(G) is generated by the
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wmverse map L, the inner automorphisms, and

Yz, p,pr,t),

1/)1 : (xayvzap7 r, t) — (%IZQ_
Q/)y : (x7y7zap7 ’I", t) = <x7y7 Zvyp> Ta yt)a
wz : ($7y727p7 r, t) = (l’,y, Z, P, 2T, Zt)

Therefore W(G) = Wy(G). O

Proposition 8.26. For group 67 we have
St:Spr: Tt:F;

Sp = {17p7prta Tt},

Sy =Sy =Sy {1, 1, prt, pt}.
Proof. 'This follows from Lemma 6.32 and Proposition C.15. ]

Let ¢ € W(Ger). By Proposition 8.16 (i) we have ¢(y) € {(x?y~)*, y='}. If p(y) ¢

y“ = {y*'} then we compose ¢ with the outer automorphism

Vo i (z,y, 2,p,1,t) = (2, 2%y, 2, p, apr,xy '),

and now we have ¢(3) € B¢ for all § € {2%y~!,y,z}. By Proposition 6.9 (iv) we may
compose with inner automorphisms to get ¢|4 = Id and by (i) we have p(Af) = Af for all
Af € G/A. We may now compose ¢ with an automorphism so that ¢(¢) = ¢, according to

Proposition 8.17.

Recall that p,pr and rt have order 2, thus by Proposition 6.17 we have o(f) = f for
f € {r,prt,pt}. The proposition also gives p(p) € {p,yp}, o(pr) € {pr,y*pr} and p(rt) €
{rt,y~'rt}. By Proposition 6.18 (i), composing with I; o ¢ if necessary we may assume
@(pr) = pr. We now have ¢(f) = f for f € F —{p,rt}, by (i7). Note that Proposition C.15
gives

r% = (2Py", 2% U 2Pyt 2%y e and (ypt)9 = (2%)pt U (%) ypt,
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therefore r » yr and ypt ~ y*pt. So we have

o(p-pr)=@(r)=r~yr=yp-prand ¢(pr) =pr,

thus by Proposition 6.18 (iii) we have ¢(p) # yp so ¢(p) = p. Similarly we have

p(rt-pr) =y - pt) ~ y’pt < ypt =y~ (y’pt) = y~'rt - pr and p(pr) = pr.
Then by Proposition 6.18 (i7i) we have p(rt) # y~'rt thus ¢(rt) = rt. We now have o(f) = f

for all f € F.

We apply Theorem 6.33 to the Ap coset, noting that since p has order 2, p - pr = r, and
thus for a € A we have ¢(ap) = a”p for some h € R,NS,. By Corollary 6.29 and Proposition

8.26 we see this intersection is {1, prt}. However, if h = prt then

1 1

z oty =7y a7 lyp = 2%y ep.

zp~p(z-p) =@ 'z ap) ~a~

This is a contradiction since according to Proposition C.15 (2p)¢ = (2%, y*)2pU(z?, y*)yz~1p.

We conclude that ¢4, = Id.

Proposition 8.26 indicates pt ¢ S, thus by Corollary 6.34 ¢|a,: = Id. We therefore may
apply Theorem 6.35 (ii) using ¢(t) = t,¢|ap = ©|apt = Id. Since Corollary 6.29 indicates
Ryt MR, = {1} the theorem implies that ¢|4; = Id. Then by Corollary 6.38 ¢ = Id.

We have shown that

Theorem 8.27. For crystallographic group G = Ggy, the group W(G) is generated by the
mverse map t, the inner automorphisms, and

o (2,y, 2,p,mt) = (2, 2%y~ 2, papr,ay '),

ey (2,y,2,p,m,0) = (2,9, 2,yp, 1 t),

v, (x,y,z,p,rt) — (z,y, 2, p, 21, 21).

Thus W(G) = Wy(G). O
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Proposition 8.28. For group 68 we have

Sp = Sprt = Srt - {1,p,p’l“t,7"t}; Spr = {17]77”» rtapt}v
St - {vaptat}a Spt = {Lpt}a
S, =F.
Proof. 'This follows from Lemma 6.32 and Proposition C.16. O]

Let ¢ € W(Geg). By Proposition 8.16 (i) we have ¢(y) € {(x?y~ )=, y=1}. If p(y) ¢
y“ = {y*'} then we compose ¢ with the outer automorphism
by (2, 2,p,7,) = (2,27 2, p,apr, at),

and now we have p(8) € B¢ for all 3 € {z?y~',y, z}. By Proposition 6.9 (ii) and (iv) we
may compose with inner automorphisms to get |4 = Id and p(Af) = Af for all Af € G/A.

By Proposition 8.17 we may compose with an automorphism so that ¢(t) = t.

From the presentation of G we see that p and r have order 2, thus by Proposition 6.17

we have p(pt) = pt and ¢(rt) = rt. The proposition also gives

o(p) € {p, %y 'p} and p(prt) € {prt, x>y 'prt}.

By Proposition 6.18 (i) if p(prt) = x*y~'prt then composing with I, 0. we have p(prt) = prt,
and now by (i) we have ¢(f) = f for all f € {prt,rt,pt,t}. Note that by Proposition C.16
we have

(rt) = (y)rt U {y)art;
therefore rt « x?y~'rt. Then
o(p-prt) = p(rt) = rt o« 2%y 'rt = 2%y 'p- prt and @(prt) = prt,
and so by Proposition 6.18 (ii7) we have p(p) = p.

Now we have p(pt) = pt and ¢(p) = p so Corollary 6.34 may be applied to the Apt coset.
Since pt ¢ S, the Corollary gives ¢|4,+ = Id. Next we apply Theorem 6.33 to the Ap coset.

By Corollary 6.29 and Proposition 8.28 we have R,NS,: = {1}. The theorem therefore gives
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¢|ap = Id. Using this we may apply Theorem 6.35 (i) using ¢(prt) = prt and ¢|a, = Id.

Since Ryt N R,e = 1 by Corollary 6.29, then according to the theorem |4, = Id.

Now by Proposition 6.17 we have ¢(r) € {r, zr}. We will use ¢| 45+ = Id with Proposition

6.18 (iii) to show @(r) # zr. By Proposition C.16 we have
(ypt)® = (2)ypt U (2%)y~'zpt U (2%)ay>pt U (z*)a>2pt,
so ypt ~ yzpt. Thus we have
o(r - 2?prt) = p(y - pt) ~ ypt = yzpt = z(ypt) = zr - *prt and @(2’prt) = x*prt.
By statement (éi7) of the proposition we have p(r) = r.

Now by Proposition 6.17 ¢(pr) € {pr, zpr}. We will again apply Proposition 6.18 (iii)
to show @ (pr) # zpr. Proposition C.16 gives

p© = (2%, y*)p U (2, y*)yp,

therefore p « zp. Thus we have
p(pr-r) =p(p) =p=2p=2zpr-rand o(r) =r,
therefore by (iiz) we have ¢(pr) = pr. We now have ¢(f) = f for all f € F.
Now that we have ¢(r) = r we may apply Theorem 6.33 to the Art coset. Since R,,NS; =

{1}, we conclude that ¢|4,+ = Id. We have shown that ¢|ap-tuartuape = Id, thus by Corollary
6.38 © = Id.

We have shown that

Theorem 8.29. For crystallographic group G = Ggs, the group W(G) is generated by the

mverse map t, the inner automorphisms, and

1/}3 : (x7yuzap7 r, t) = (%3523/71,27]97 xpr, xilyt)a
Yy o (2,y,2,p,1t) = (2,0, 2,9p, 1, y1),

v, : (z,y,2,p,7,t) = (2,9, 2,p, 21, 2t).
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Thus W(G) = Wy(G). O

8.3 GROUPS 69 THROUGH 74
Proposition 8.30. For group G¢y we have Sy = F for all f € F.

Proof. Fix f € F. For any h € F we have af ~ (af)" = a"f since F is an abelian subgroup

of G. OJ

Let ¢ € W(Geg). By Proposition 6.3 we have Cy = (22271) U (y?27!) U (2). We apply
Proposition 6.5 (iv) with B = {2?27!,y?271 2z} which gives {p(z?271), p(y?271), p(2)} C

{(ZEQZ—I)il7 (yQZ—l)il’ Zil}. Now
¢1 : (‘Tayvzap7 T, t) = (Iy_l,x,xQZ_lpr,p, t) and
¢2 : (mvya Z, D, T7t) = (yvmvzapvprvt)

determine automorphisms of GGgg and note that

1:X°2 =y Tz 01 X2 T =Yz

" 2,71y " 2,71y 2s1

R TR % vy s yPz Tt !
R e Wy 1 2 2.

In other words, these two automorphisms permute the elements of B. Thus composing with
1 and 1y as needed we have () € {3*!} for all 3 € B. Then by Proposition 6.9 (iv) we
may compose with inner automorphisms to have ¢|4 = Id and by (i) we have p(Af) = Af
for all f € F.

Let ¢(t) = ct for some ¢ € A. By Proposition 6.19 the following defines an automorphism:
¢Z : ('Z‘7 y’ Z?p’ r? t) H (x7 y7 Z?p) ZTZt)'

Composing ¢ with this map and also with I, and I,, as necessary we may assume that

ce{l,z,y,zy}.
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We will use Proposition 6.14 to show that o(t) ¢ {xt,yt,zyt}. To justify using the
proposition we note that o, = oy = o, = o,y = 1 thus they clearly are contained in C,.

Note also that we have p(Ar) = Ar and ¢(Ap) = Ap. Then by the proposition,
(z,p) = 2722 ¢ (2?, %, 2°) therefore p(t) # t;
(y,7) = 271 ¢ (2,97, 2%) therefore ¢(t) # yt;
(zy,r) = 272271 ¢ (2% 4%, 2*) therefore p(t) # xyt.

We conclude that (t) = t. It follows by Proposition 6.17 that since every nontrivial element
of F has order 2, ¢(f) = f for all f € F.

Now by Lemma 6.31 for a € A we have p(at) = a”t for some h € R; = F. We will assume
h € {p,pr,prt,pt} and show this leads to a contradiction. Note that z" € {(zz~1)*'}. This
gives

2

22~ p(2? ) = oz

cxt) ~azt ot = rr e

Since t¢ = (22 y2, 2%)t we see rz 1 (x271)*t ~ ¢ but 2227 = t. This contradiction leads
us to conclude that ¢(at) = a”t for some h € {1,r,rt,t}. We will give a similar argument to

show that h ¢ {r,rt}. Assuming h € {r,rt} we have y" € {(yz~1)*'} thus

2 -1

vt~ oy ) = p(yz!

cyt) ~yz eyt =y ye )~

a contradiction. Therefore we have ¢(at) = a"t for some h € {1,t}. If h = t then we have
p(at) = a't = (at)'. Note that since every element at € At has order 2, composing with I; o

we now ¢|4; = Id and so by Corollary 6.38, ¢ = Id.

We have shown that

Theorem 8.31. For crystallographic group G = Ggg, the group W(G) is generated by the
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wmverse map L, the inner automorphisms, and

22—1plr‘7 p7 t)’

1/)1 : (fEa?J,Zap, r, t) = (l'y_l,l',l’
1/}2 : (Ivyvzap? r, t) = (y,x,z,p,pv“, t),
v, (x,y,2,p,1m,t) = (2,y,2,p, 2r2t).

Therefore W(G) = Wy(G). O

Proposition 8.32. For group 72 we have
Stzsp:Spt:F;
S’r = Sprt = {17Ta prtapt}a

Spr = S = {1, pr, 1t pt}.

Proof.  'This follows from Lemma 6.32 and Proposition C.18. ]

Let ¢ € W(Grp). We have Cy = (27 %yz) U (y) U (2) by Proposition 6.3. We apply
Proposition 6.5 (iv) with B = {x7%yz,y, 2z} and conclude that for 3 € B we have ¢(3) €
{(@2y2)*, ()= 25}

Lemma 6.12 indicates that the Apt coset is unlike Art and Aprt in that Apt contains
elements of order 2. This fact together with Corollary 6.11 gives p(Apt) = Apt and p(At) =
At. Since G//A is abelian % is a homomorphism thus ¢(Ap) = Ap. By Lemma 6.4 ¢(z~%yz)
and o(y) are inverted by the action of p therefore {p(272yz), o(y)} C {(z1y2)*!, y*} and

s0 p(2) € {zF1}. If we have p(z72yz) € {y*'} then we may compose ¢ with

¢3 : ($7y7z?p7 T7t) = ('x?ny_lz_l?Z?p’pT?t)?

and now we have ¢(z72%yz) € {(x7%yz)*'} and p(y) € {y*'}. Then by Proposition 6.9
(#7) and (iv), composing ¢ with inner automorphisms if necessary we have |4 = Id and

o(Af) = Af for all f € F.
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Let ¢(t) = ct for some ¢ € A. By Proposition 6.19 the maps
Uyt (2,y,2,p, 1, t) = (2, 2,yp, 1, yt)
and¢z . (1‘7 y’ Z?p’ r? t) H (x’ y7 Z?p? ZT’ Zt)
determine outer automorphisms. Composing ¢ with these maps and with I, we may assume
c € {1,z}. By Corollary 6.16 ¢ = z is not possible so we have p(t) = t.
It follows by Proposition 6.17 that since p and pt have order 2, p(p) = p and (pt) = pt.
The proposition also gives
p(pr) € {pryypr}; o(r) € {r. 2y~ 27} p(rt) € {rt,y~'rt}s o(prt) € {prt, 2™ yzprt}.

By Proposition 6.18 (i), if ¢(prt) = x 2yzprt then we may compose with I; o + and now
o(prt) = prt. It follows by (ii) that we now have ¢(f) = f for all f € {p,prt,pt,t}.
Now we will use Proposition 6.18 (7iz) three times to show that this implies ¢(f) = f for
f € {r,pr,rt} as well. The following facts from Proposition C.18 will be needed to satisfy

the requisite hypotheses:
pooypand p ooy p since p@ = (22271, 4?)p;
t ooyt since t = (22, y°, 2)t.
Now we have

e(rt-(prt) ™) =o(p) =p=y 'p=y 'rt- (prt)"" and p(prt)"' = (prt) ",

therefore Proposition 6.18 (iii) implies ¢(rt) = rt.
Next we consider that
o(r ™t -rt) = p(t) =t = 2y e = (2Py )T et and o(rt) = 1t
By the proposition we have o(r~1) = r~1 thus o(r) = r. Lastly we have
plpr-r7) = p(p) =p=yp=ypr-r~" and p(r7!) =17,
therefore ¢(pr) = pr by the proposition. We now have ¢(f) = f for all f € F.

Now rt ¢ S, and prt ¢ S,, thus by Corollary 6.34, ¢|aruapt = Id. Now by Lemma 6.31
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and Corollary 6.29 we know that for all a € A, p(apt) = a"pt for some h € {1, pt}. Suppose

h = pt. Let v = 2%y~22~! and note that ptprt = yr. Then for a,b € A we have
ab?yr ~ p(ab’y - 1) = p(ab ptprt) = @(apt - bprt) ~ a’*pt - bprt = (ab)" ptprt = (ab)"'yr.

Now if we let @ = b = ™'y, the left hand side becomes

1 1

ab?'yr = x_ly(x_ly)ptvr = y(a;_lyz)x2y_22_ r=r,

while the right hand side becomes

—-2,2.2,2 1

(ab)P'yr = (2722 Plyr = 2 2y2 %%y 22 e = 2r,

By Proposition C.18, ¢ = {22y~ 1, 2%)r U (2?y~ 1, 22)y~2r therefore r ~ zr. This contradic-
tion indicates that ¢(apt) = a"pt is only possible if h = 1. In other words, |4, = Id, and

now by Corollary 6.38 ¢ = Id.

We have shown that

Theorem 8.33. For crystallographic group G = Gra, the group W(G) is generated by the
wmverse map L, the inner automorphisms, and

Vs : (x,y, z,p, 1, t) = (z, 2%y 270 2, p, pr, t),

ey (@,y,2,p,m0) = (2,y,2,up, 1, 5t),

v, (x,y, z,p, 1, t) = (2,y, 2, p, 21, 21).

Thus W(G) = Wy(G). O

Proposition 8.34. For group 73 we have

Sy = {1,p,prt,rt}; Spre = {1, 7, prt, pt};
Spe = {1, pr,rt, pt}; Sp = {Lp};
S, =A{1,r}; Spr = {1,pr};
S =F.
Proof. 'This follows from Lemma 6.32 and Proposition C.19. ]
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Let ¢ € W(Gr3). We have Cy = (2 %y2) U (y)U(z) by Proposition 6.3. We apply Proposi-
tion 6.5 (iv) with B = {x2yz,y, 2} : thus for 8 € B we have p(3) € {(x72y2)*!, (y)*!, 2*1}.
The following maps determine automorphisms of Gr3 :

2

¢4 : (xaya Z,p,T, t) = (a:y_la Zalzy_lz_l»x Z_lp’f',p, t)a and

5: $7y7z7p7717 H x?’Z?y?xi yZT.’p,.,L‘iy °

These two automorphisms permute the elements of B and so composing ¢ with ¢, and 5 we
can arrange to have p(3) € {#** : B € B}. Then by Proposition 6.9 (iv) we can compose ¢
with inner automorphisms to have ¢|4 = Id and by (ii) we have @(Af) = Af for all f € F.

Let ¢(t) = ct for some ¢ € A. By Proposition 6.19 the maps

Yy (x,y, 2,p, 1, t) = (2,9, 2, yp, T, yt),

andy, : (x,y, z,p,1,t) — (x,y, 2,p, 21, 2t)

determine outer automorphisms. Composing ¢ with these maps and with 7, we may assume

c € {1,z}. By Corollary 6.16 ¢ = x is not possible so we have ¢(t) = t.

Now by Proposition 6.17 we have

1

o(p) € {p.z%y "2 "p}; o(r) € {r,2r}; o(pr) € {pr,ypr};

o(prt) € {prt,z’y 2" prt}; o(rt) € {rt,y~'rt}; o(pt) € {pt,z""pt}.

By Proposition 6.18 (i), composing with [; o ¢ if necessary we may assume that we have
©(p) = p. We will now use Proposition 6.18 (iii) to show that ¢(p) = p implies ¢(prt) = prt.
Note that

(rt)® = (y)rt U (y)zrt.

This gives two pertinent facts. The first is that rt ~ y~'rt therefore (since p(rt) €
{rt,y~'rt}), we have p(rt) ~ rt. Secondly, we have rt =~ x~2yzrt. We are now ready to

apply the proposition. We have

o(prt -p’l) = gp((rt)p_l) ~ @(rt) ~rt < r2yzrt = (ny’lz’l)prt ~aty e ot p
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The above, together with ¢(p~') = p~!, implies that ¢(prt) = prt, by Proposition 6.18 (#i4).
Next we show that ¢(r) = r if and only if ¢(pt) = pt. Suppose to the contrary that
o(r) =r and ¢(pt) = 2~ 'pt. Then (using rpt = x22 *prt)
22272 prt ~ gp(.r2z_2 cprt) = @(r - pt) ~ 127 pt = 2rpt = 222 prt.
Since 22z 1prt € (prt)¥ = (2?y~Lz Hprt U (x®y~ 1z~ Yyprt by Proposition C.19, this gives a

contradiction. Now to prove the converse suppose we have p(r) = zr and ¢(pt) = pt. Then

2

2?27 prt ~ (a2 prt) = o(r - pt) ~ zr - pt = 2?27 prt.

We arrive at the same contradiction which proves the biconditional.

We will use this result to show that ¢|4,+ = Id. To begin, we recall that by Lemma 6.31
and Corollary 6.29 that p(aprt) = a"prt for some h € {1, prt}. Suppose that h = prt. Then
(using prir = 2~ 'pt) we have

1 pt) = p(aprt - r) ~ 2P prt - o(r) = x Yyzprt - o(r).

w27 p(pt) ~ p(ez”
We have two cases to consider. If p(pt) = pt thus ¢(r) = r, the above is
:Ez_lpt ~ x_lyzprt L= x_lypt.
Alternatively, if ¢(pt) = 27 'pt thus p(r) = zr, this becomes

:Uz’2pt ~ x’lyzprt S 2r = x’lyzpt.

As xz7lpt,xz2pt € (xpt)® = (2)apt U (z)zy~'pt we see that in both cases we have a

contradiction. Thus h # prt and so ¢|ape = Id.

We will use this result to show that ¢(rt) = rt. Suppose to the contrary that ¢(rt) =

y~trt. Then since ¢ respects inverses, Then

xp ~ @(x - p) = p(xprt - (rt)’l) ~ xprt(rt)’ly = a2y p.

However (zp)¢ = (2?2271 y?)ap U (22271, y?)ayz—2p thus xp < zy~1p, a contradiction. We

conclude that p(rt) = rt.
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Now suppose that ¢(pr) = ypr. This gives

-1

yrp(pt) ~ p(y~ - pt) = @(pr - rt) ~ ypr - rt = pt.

The left hand side is either y~'pt or y~'z~!pt, neither of which is contained in (pt)¥ =

(z)pt U (z)z*y~1pt. This shows that we must have ¢(pr) = pr.

Next we apply Theorem 6.33 to the Art coset. (Recall that we have ¢(rt) = rt, o(p) = p
and @(prt) = prt.) Since R,s N Syt = {1} by Corollary 6.29 and Proposition 8.34, the
theorem implies that ¢|4,. = Id.

We use this result to show that o(pt) = pt. Suppose to the contrary that o(pt) = 27 1pt.
Then (using ptrt = yzpr) we have

-1_2 1

vl pr ~ (e hpr) = platy e iptrt) = o(ptaty T Ert) ~ 2 ipta Tty T At = o

This is a contradiction because according to Proposition C.19, (z71pr)¢ = (yz,yz Yo~ pru

(yz,yz~1)a3zpr, so now we have ¢(pt) = pt. We have already shown that this implies (1) =

r, so now we have ¢(f) = f for all f € F.
Notice that pt ¢ S,, thus by Corollary 6.34 ¢| 4, = Id. Then by Corollary 6.38 ¢ = Id.

We have shown that

Theorem 8.35. For crystallographic group G = Grs, the group W(G) is generated by the
wmverse map L, the inner automorphisms, and

Yy (2,y, 2, p,r,t) = (wy ™t 2, 2%y 27 22 p, t),
Vs : (x,y, 2,p, 1, t) = (2, 2,y, 2 2yzr, p, v yt),

ey @,y 2,01 0) = (2, 2,up, 1 t),

v, (x,y, z,p, 1, t) — (2,y, 2, p, 27, 21).

Therefore W(G) = Wy(G). O
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Proposition 8.36. For group 7/ we have

Spr = 8 = {1, ¢, pr, pri}; S, = {1,p,prt,rt};
Sy = Spre = S = {1, 7, prt, pt}; Sy = F.
Proof.  'This follows from Lemma 6.32 and Proposition C.20. [

Let ¢ € W(Gry). We have Cy = (27 %yz) U (y) U (2) by Proposition 6.3. We apply
Proposition 6.5 (iv) with B = {7 2yz,y, 2z}, which tells us that for 3 € B we have () €
{(@2y2)™, ()™, 2}

It is clear that the Art coset contains elements of order 2 (since rt has order 2). By
Lemma 6.12 we find that the Aprt coset also contains elements of order 2 but Apt does not.
This fact together with Corollary 6.11 gives ¢(Apt) = Apt and ¢(At) = At. Since G/A is
abelian @ is a homomorphism and so ¢(Ap) = Ap. By Lemma 6.4 o(x7%yz) and p(y) are
inverted by the action of p. It follows that {p(z7%yz2),o(y)} C {(z7lyz)* y*'} and thus
©(z) € {21}, If we have p(z?yz) € {y*'} then we may compose ¢ with the automorphism

1

¢6 : (‘,'U7 y? Z7p7 T? t) ’_> (I_ z? x_2y27 Z7p7 x_lypr’ x_lt)7

and now we have p(r72yz) € {(z72y2)*'} and ¢(y) € {y*'}. Then by Proposition 6.9

(77) and (iv), composing with inner automorphisms if necessary we have |4 = Id and
w(Af)=Af for f € F.

Let ¢(t) = ct for some ¢ € A. By Proposition 6.19 the maps
vy (2,y,2,p,7,t) = (3,9, 2,yp, 7, 4t),
and wz : (:'C7 y7 Z’p7 T? t) H (I7 y7 Z7p’ ZT? Zt)

determine outer automorphisms. Composing with these functions and with 7, we may assume

c € {1,z}. By Corollary 6.16 ¢ = z is not possible so we have p(t) = t.

It follows by Proposition 6.17 that since p, pr and rt are involutions, ¢(pt) = pt, ¢(prt) =

prt, and ¢(r) = r. The proposition also gives
p(p) € {p,yp}s (pr) € {pr,y?prs o(rt) € {rt,y~'rt}.
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By Proposition 6.18 (i), we may compose ¢ with I; o ¢ if necessary so as to have p(rt) = rt.
Then by (ii) we now have ¢(f) = f for all f € F— {p,pr}. We will apply Proposition 6.18
(7i7) twice in order to show that this implies that ¢(p) = p and p(pr) = pr as well. To justify
this we will use the following facts from Proposition C.20:
yprt & (prt)? = (%2 Dprt U (2?y 2Dy prt;
yr ¢ 16 = (%™ 22Uty By
We have

p(p-rt) = prt o yprt = (yp)(rt) and p(rt) = rt,

thus by the proposition we conclude ¢(p) # yp i.e. p(p) = p.

Similarly, since we have ¢(p) = p and
p(pr-p) = @(1") ~ (r) =1 ~ 17 = yr = (y’pr)(p),
the proposition gives p(pr) = pr. ; We now have ¢(f) = f for all f € F.

Since pt ¢ S, and rt ¢ S,, Corollary 6.34 gives ¢|apuare = Id. We now apply Theorem
6.35 (i) using ¢(p) = p and ¢|4,+ = Id. Since Corollary 6.29 gives R, N Rt = {1,prt} we
have ¢(ap) = a"p for some h € {1, prt}. However if h = prt then

zp~p(z-p) =@z ap)=a 2 2"'p =2 2a yzp = 2y p,

which is a contradiction since Proposition C.20 indicates that 27 2y2%p ~ yzp ¢ (2p)¢ =
(2227 y®)2p U (22271 y?*)yz~t. We conclude that h =1 i.e. ¢|a, = Id.

Again we apply Theorem 6.35, this time using ¢(prt) = prt and ¢|4, = Id. We also use
RptNR, = 1 as given by Corollary 6.29. It follows by the theorem that we have ¢|4,,+ = Id.
Then by Corollary 6.38 ¢ = 1d.

We have shown that

Theorem 8.37. For crystallographic group G = Gry, the group W(G) is generated by the
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wmverse map L, the inner automorphisms, and

IZ’ x_2y27 Z’ p? I_lyp/r’7 m_lt)’

¢6 : (xyyazvpa r, t) = (l‘_
Yy (2,y,2,p, 1, t) = (2,9, 2,yp, T, yt),
V. (z,y,2,p,7,t) = (2,9, 2,p, 21, 2t).

Therefore W(G) = Wy(G). O
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APPENDIX A. Ky SUBGROUPS

Proposition A.1. Recall that for each f € F we define the subgroup Ky to be

Kf = <(J}, f)? (y, f>> (Zaf)>

Below we have the Ky subgroups for groups that have a presentation of the form given in

Bas. (4.1), (4-2), (4-3), (4:4). or(4.5).

Table A.1: Ky subgroups for thirty-one groups

Group K, or K, or
number(s) K, K, K,, Ky K, K,
10, 13 z?) 2%) (y?)
12 (z?y ', 2%) (y)
16, 17 (22, y?) (22, 22 (y?, 2%)
21 (2*,9°) (@?y~12%) | (y,2%)
22 (z?2LyPeh) | (2% 2) (% 2)
25, 26, 27 (x? y?) (x?) (y?
38, 39 (2, %271 x? (y?2h)

42 (02271, 42271 (@221 | (2 )
A7-57 (z%,9%) (z%,2%) | (y%2%) (z° (y*) | (%)
63-68 (z%,9%) @y 2%) | (y,2%) (z2y~") ) | (=%

69 (@27 y?2 ) | (2?,2) (y?, 2) (@227 [ (y*=7h) | (2)

72,73, 74 | (27hyh) | (@Pyh %) | (yryzTh) [ PPy | () | (2)

Additionally, for groups having t € F we have K; = (22 y?,2?). (For brevity we write
“YT-57" to represent groups Gur, Gag, G50, Gs1, Gs3, G54, G5, and Gsr and we write “63-68”
to represent Ggs, Gos, Ges, Ges, Gor, and Ges.)

Note that G1g, G12 and Gi3 do not contain an element p (nor pr,ps, prt, pt) therefore we
have nothing to write in the cell of the table that corresponds to those Ky subgroups. The
next two rows in the table have blank cells in three places for a similar reason; Gig, G17, Ga1
and Gag do not contain an element s nor t, (nor ps,prt,rt,pt); Gas, Gog, Go7, Gs, G39, and

G4o do not contain an element r, pr nor pt.

Proof. This follows from the relations found in the presentation of the respective groups. [
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APPENDIX B. PROOF OF LEMMA 7.1 (MAGMA)

Below is the code (with its output) that we used to prove that H = (a? b, c).
F{a,b,c) := FreeGroup(3);
G :=quo < F[{c"2,a*xbxax(bxaxb)*(—1),(axbxa)*4, (ax*c)"2,(b*c)"2,
(c*a)"2,(c*b) 2} >;
Index(G, sub < Gla,b >);
2
Index(G, sub < G|a"*2,b, ¢ >);

3
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APPENDIX C. COMMUTATORS AND CONJUGACY

CLASSES FOR EIGHTEEN SPACE GROUPS

Here we list the conjugacy classes for the eighteen groups listed in Table 4.2. We do not
include the conjugacy classes for the elements in A, as those conjugacy classes are not needed
as we determine W(G). Before we list these conjugacy classes, we give some results that were

used to determine them.

The following lemma is applicable to the eighteen groups listed in Table 4.2. This lemma
will be useful when determining certain commutators which are used when determining the

conjugacy classes.

Lemma C.1. Let G be a group with an abelian normal subgroup A such that G /A is abelian.
Let p,r,t € G and suppose that t> = 1 and that a* = a™* for a € A.

Let U = (p,r), V = (p,t), and W = (r,t). Then we have

(p,pr) =U; (p,prt) = (p,rt) =U'V;
(p.pt) = (t,pt) =V (rt,pt) =U VW™
(ryrt) = (t,rt) =W, (rt,prt) = (U V),
(r,pt) =UW, (pr,rt) = (U V) W;
(pr,r) =U"; (pr;t) = (pr,prt) = (¢, pri) =V'W;
(ryprt) =U"W; (pr,pt) =UV"W,

(pt,prt) =UV'W - V1,

Proof. Note that G/A abelian implies that every commutator is in A. We apply Egs. (2.1),
(2.3) and (2.5) and these results follow. O

Proposition C.2. Suppose G/A is abelian. Let a € A and f € F. Then

@hH?=|J KN,

A(G/A)/(F)
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where f € G /A is the image of f in the quotient so we are taking the union over A € G such

that X is a coset representative of the cosets in G /A after taking a quotient over (f).

Proof. Let b € A. Using 2.3 we have

(af)"H(af)" = (af.b) = (f,0) € Ky,

thus K (af) = K;(af). From this we see that

(af)% = Kpaf)* = | Kpa* 2 r1f = | Kpa O\ £

AeF AEF AEF

Next we show that K;(A, f7') = K;(f,\). Let a = (f~, \). Clearly (a, f) € K. Then

(a, f) =((f 70, f)
=\ SONS
=ATUATHTIOAT NS
=\ )
=\ SN T E Ky,

so that Ky(\, 1) = K (f, \).

Lastly we show that it suffices to take the union over A € G where X is a coset rep-

resentative of the quotient (G/A)/(f). In other words, we show that if A\;f = Ag then
Kra* (A, f71) = Kpa* (N, f71). Using the Witt-Hall Identities we have
™ (A1, f71) - (a2 (g, f7) 7 =a (A, f7) - (@™ (O f )
= (A, 7Y - (R A @)
=a™ (a” )M L T (F M)
=(ala™ )M O F) - (L HES AN )
=@ M M) ).
Since G//A is abelian, K; is normal and (f~',\) € A. Thus (a(a=")")*((f~1,N), f) is the
product of two elements of K. This shows that the K; cosets corresponding to A, (f) and

X2(f) are the same. O
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Proposition C.3. The conjugacy classes in G47 are as follows:
Fori,j5,k € Z,
(a'y’ ") = (2, y?)a'y’ 7 p;
(w7 2#)C = (22, )iy oo
(a'y’ Ppr) = (y?, 2%y 2 Fpr
(miyjzkprt)G = (I2>xiyijzikprt
(miyjzkrt)G = (y2>xiiyjzik7"t
(@'y? 2 pt) = (%)™ y™ 2 pt
(xiyjzkt)G = <£L‘2, v, ZQ)xiyjzkt.

We also have G' = K = (z%,y?%, 2%).

Proof. This follows from Proposition A.1, Proposition C.2, and from the relations in
the presentation of G47. The presentation of Gy7 is of the form given in Eq. (4.4), with

Qp = Qp = Qpp = Qpy = 0y = 1 and 6 = 0. O

Proposition C.4. For G49 we have the following commutators:

(p,7) = (p,t) = (p,7t) =1;
(t,r) = (pt,r) = (t,pr) = (pt,pr) = (prt,r) = (rt,pt) =z.

Thus G' = (z%,y?%, 2).
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The conjugacy classes in Gy9 are as follows:

Fori,j5,k € Z,

(a'y’2"p) = (2%, i)'y = p;
(xiyjzkr)e (z?, 2)a’ 'y
(a'y’ = pr) = (y?, z)a™"y pr
(@'y? 2 prt) = (2®)a'y™ 2Ppre U (@?)a'y™ 2 prt;
(z'y? 2Frt)C = ()Tl 2Prt U (y?) oty 2t
(a'y’ 2 pt) = (%) (a'y’ )= 2Ppt U (%) (a'y ) pts
(' 27 = (22,92, 2)a'yt.
Proof. This follows from Lemma C.1, Proposition A.1, Proposition C.2, and the relations

in the presentation of Gyg. O

Proposition C.5. For G5 we have the following commutators:

(p,r) =1;
(t,r) = (prt,r) = (pt,r) =x;
(t,pr) = (pt, pr) = (pt,rt) =y;
(t,p) = (rt,p) =zy;
(rt,prt) =zy~"

Thus G' = (z,vy, z*).
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The conjugacy classes in Gy are: Fori,j, k € 7Z,

(x'y!2*p)©
(a'y )
(a'y? 2 pr)©
(a'y? 2 prt)@
(7 2" rt)G
(2" 2" pt)©

(a'y’ M)

= <.’B, Zz):y

=y, #")x

= (zy, zy 'y 2 Fp;

:tJZkT;

:I:zz pr

= (D xly Fprt U (@) Tyl prt U @)ty T e et U (2o Ty I R et
:<y2)a:iyjzkrt U (y2>:ciyj+1z_krt U <y > —H—ly e T’t U <y > —z+1yj+1 k?”t
= (2%)a"y 2 ptu € (i, —i+ 1}, 0 € {4, =) + 1}

= (x,y, 2%) 2"t

Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Gig. O

Proposition C.6. For G5, we have the following commutators:

Thus G' =

(r,t) = (p,rt) = (pr,pt) = (rt,pt) = (pr,rt) =1;

(r,p) = (t,p) = (r,prt) = (pt,r) = (pr,t) =2

x,y%, 2%).
(z,y

The conjugacy classes in Gsy are: Fori,j,.k € Z,

(2" 2Fp) = (2®, yP)a'y? 2Fp U (2, yP)a ™y 2y

(a'y? ) = (2, 2%)y™ 2,

(a'y? 2Ppr)¥ =y, 22)aty 2 pr U (2, 20t Ty
(@'y? 2 prt) = (2®)a'y™ 2Fprt U (a®)a ™y prt
(@ 2Frt)C = ()il 4

(@i #pt)C = (Pt hpt U (Rt

(2'y? M) = (x,y?, )y 2.

Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Gsx;. n
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Proposition C.7. For G535 we have the following commutators:

(t,pr) =1;
(rt,p) = (prt,r) =;
(r,p) = (pt,pr) = (rt, pt) =z;
(t,p) = (t,1) =2z
(pt,r) =xz>
Thus G' = (x,y?, 2).
The conjugacy classes in Gz are: Fori,j, k € 7Z,
(a'y’2"p) = (2, y*)y’2"p,u € {k, —k — 1};
(z'y? 2Fr)Y = (z, 22y 2Pr U (, 22y 2 s
(a'y’2pr) =y, 2)a™ypr;
(@i 22 prt)C = (222 () E prt U (@) (i 2~ et
(z'yf 2Frt)C = (P a2Vt u € {i,1 — i}y, v € {k, 1 —k};
(a'y' 2 pt)® = (P)ay’ 2 pt U (22)a"y ™ pt e {i,1 — i)
(@i 240)C = (22,2, 22 aiyf 25t U (22,2, 22V ety
= (w2, 5 2,9y a2
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Giss. ]

Proposition C.8. For G5, we have the following commutators:

(p,rt) =1;

(r,p) = (t.p) =x;

(t,r) = (rt, pt) = (pt, pr) =z;
(pt,r) =x2;

(pr,t) = (r,prt) =zz"".
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Thus we have G' = (x,y?, z).

The conjugacy classes in G4 are: Fori,j, k € Z,

i+1

(2'y? 2Fp)¥ = (2, y®) 'y 2Fp U (22, yP) Ty 2 Fp;

k+1,..

)G = (wz, vz Nyl 2Fr U (w2, 027 Dty Iy,

(z'y? 2Fr
(zf 2Fpr)C = (2, )yl pr, w € {i, 1 — i},
(z'y? 2P prt)? = (o) a'y™ Fprt U (2?)a Ty 2 Fprt;
(2l 2Frt)Y = (yP) a2t w € {k, 1 — k};
(i 27pt)C = ()i 2opt, U (22aiy =027t U (22)al iy M pr U (22 et iy 2t
(57 24)° = (2,42, 2yt
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Gsy. O

Proposition C.9. For G55 we have the following commutators:

(p,t) = (r,pt) = (pr,pt) = (rt, pt) =1;
(prt,r) =2*;
(p,7) = (t,r) = (rt,p) = (t,pr) =zy.
It follows that G' = (zy, zy~!, 2%).
The conjugacy classes in Gss are: Fori,j, k € Z,
(a'y’2"p) = (wy, zy™a'y’ = p
(287 2*r)C = (22, D)y P U (22, 22y LT ok

—1—i, j+1_k

)¢ = (y?, 2ty Fpr U (yP, ) Ty

(a'y’ =" pr
(z'y? 2 prt)" = (a?)a'y? 2 Fprt U (@®)a™y' 2 prt;
(l‘iijth>G _ <y2>$iyj2ik7”t U (y2>w1_iyj+1zikrt;

(z'y/ 2Fpt)© = ()™ y™ 2 pt;

(l,z‘yjzkt)(} _ <$y7$y—1’ Z2>[Biyj2’kt.
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Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Gss. n

Proposition C.10. For G5; we have the following commutators:
(prt,r) =1;
(rt,p) = (t,pr) =y;

(t,p) = (pt,pr) = (rt,pt) =2;

(p.r) =yz~;
(pt,r) =2%
(t,r) =yz.

It follows that G' = (22, y, 2).

The conjugacy classes in Gs7 are: Fori,j, k € 7Z,
(a'y? 2 p)® = (2*, y)a'z"p U (2®, y)a'z ™" p;

(:Eiyjsz)G _ <x27 zQ):I:iyjzkr U <.T2, Z2>xiy—j—lzk+1r;

(a'y? 2pr)S = (v, 2)a'ypr U (2, 2)a 'y prs
(a'y’ Fprt) = (@?)a'y 2 prt,u € {4,1 - j};
(i 2Frt)C = () atyd 2t U () ot w e {k,1 — k)
(@i 2Fpt)C = () aFiyd 2pt, U (22)aiy I+ pt,
(' 250 = (2%, y, 2)a't.
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Gsy. O

Proposition C.11. For Ggz we have the following commutators:

(p,rt) = (pr,t) = (prt,r) =1;
(r,p) = (t,r) = (t,p) = (pt,pr) = (rt, pt) =2;

(pt,r) =2".

143



It follows that G' = (22 y, z).
The conjugacy classes in Ggz are as follows:

For,j,k € Z,

(@ p)C = (22, 42V 'y 2"p, w € {,i+ j}v € {ky—k — 1)

(i #r)C = (g, 22ty 2R
U{x?y™t, 22ty I 2 s

(ay 2 pr) = {y, 2)a*pr;

(a1 Fprt)® = (ay ) a'y! Yt

(2l 2Prt)Y = (y)a*2rt,u € {k, 1 — k};
(z'y? 2P pt)¢ = (z2>xiyj_5(i+2j)zk+6pt, 5 € 40,1},
U (22) (alyf 002~ k=8 5 e 10 1),
(' 250 = (2%, 92, 2)a'y t,u € 4,1+ 5}
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggs. n
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Proposition C.12. For Ggy we have the following commutators:

(prt,r) =L
(p,7) = (pt,rt) =yz""
(t,p) = (t,r) = (pt,pr) =yz;
(t,pr) = (rt,p) =y*
(pt,r) =22
It follows that G' = (22, y, 2).

The conjugacy classes in Ggq are as follows:

Fori,j5,k € Z,
(a'y’2"p) = (2%, y)a'y" 2 p,u € {j,i + j}
U )ty e pu e {j+ Lit+j+ 1)
(@i 251)C = (a2y, 22) iyl oo
U (ay~t, 22 ey~
(a'y? Fpr) = (y, 2)a™pr
(2 2Fprt) = 2Py D'y 2 Frprt,u € {5,2 —i — j};

(z'yf 2Frt)C = (a2t u € {k, 1 — k};
(i 25 pt)C = (22120 d+dii ke 6 £0) 1}
U (22) 202Dy l=i=bsi ks 5 €0 1),
(2 2°0)Y = (2% yz, yz VP 2t if i is even,
(x%,y, 2)at if i is odd.

Proof. ~ This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggy. O
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Proposition C.13. Let G = Ggs. Here F is an abelian subgroup of G, thus G' = K =
(2?,y,2%).
The conjugacy classes in Ggs are as follows:
Fori,j5,k € Z,
(a'y’2*p)" = (o, y?)a'y 2 p, w € {j.i+ 5}
(@'y?25r) = (a?y ™", %) (a'y? )
('’ Fpr) = (y, 2™ 2 pr;
(@'y? Fprt)© = (aPy =) 2"y ) prt;
(2 2Frt)Y = (y)at 2t
(a'y?2"pt) = (%) (@'y" ) 2 pt, w e {5, —i = j);
(a'y? M) = (2, 4%, 2)a'y 2t w e {4, + j}.
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggs. O

Proposition C.14. For Ggs we have the following commutators:

(p,r) = (p,t) = (p,1t) =1;
(t,r) = (prt,r) = (rt,pt) = (pt,pr) = (t,pr) = (pt,r) =2.

It follows that G' = (22, y, 2).
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The conjugacy classes in Ggg are as follows:
Fori,j5,k € Z,
(a'y2"p)" = (a?, y*)a'y" 2 p, w € {j,i + j};
(@) =ty )
(a'y’ 2 pr) = (y, 2)a™'pr;
(2l 2P prt) = (2% ) (2" ) 2 prt, w € {k, 1 — k};
(' 2Frt)Y = (ot 2rt,u € {k, 1 — k};
(@'y 1) = (2) (g =
U2 iy
(27 )6 = (a2, 42, 22wl 2t

U <$2’ yQ’ 22>£L‘iyi+j2k+lt.

Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggg. ]

Proposition C.15. For Gg; we have the following commutators:

(r,pt) = (r,prt) =1;
(p,r) = (pt,pr) =(pt,rt) = (t,p) = (t,7) = y;

(rt,p) = (t,pr) =y~

It follows that G' = K = (22, y, 2?).
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The conjugacy classes in Ggr are:

Fori,j5,k € Z,

(xiyjzkp)G — (x2,y2>xiy“zkp,u e {i,i +j}
U(a? yP)aly z Fpu e {+ 1,0+ + 1}

G

(xiyjzkr) - <I2y_1, 22>xiyuzkr7u € {j’ —1 _] - 1};

(2'y? 2*pr)¥ = (y, 2*)x™ 2 pr;

(' 2fprt) = (2 aty et u € (7.2 — 1 - )
(:Eiyjzkrt)G = (y>xiizikrt;
(a'y’ 2 pt) = (%)a'y" 2 pt,u € {51 — i — j}
U (zz>x_iy“zkpt, uef{i+j,1—j}
(z'yf 2*0)% = (2%, y, 222’2t
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggy. ]

Proposition C.16. For Ggg we have the following commutators:

(p,rt) =1;
(t,r) = (rt,pt) = (pt,pr) =z;
(p.r) = (p,t) =2%y;

ropt) =%y
(

pr,t) = (r,prt) =2y 271
(

It follows that G' = (22, y, 2).

The conjugacy classes in Ggg are:
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Fori,j,k € Z,

i, u k

(2l 2Fp) Y = (22, )ty 2 p,u € {4, i+ 5},
Ua® g2ty e pu € {j+ 1 i+ + 1}
(x'y? 2°r)Y = (2P~ 2ty e u € {§, —i — j},v € {k, k — 1};
(2 2 pr) =y, 22 a2 pr,u € {i,2 — i}, v € {k, k — 1};
(' 2P prt) € = (22y YW (@'y? ) E 2t u € {k, 1 — k)
(z'yf 2Frt)C = ()t 2t u € {k, 1 — k};
(z'f 2Fpt)E = (2D aly? 2P (y 7% 2)0pt, 6 € {0,1},
U (22) 2?71  (y T2 2)0pt, 5 € {0,1};
(2 2F)C = (22, y, 2)a't.
Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggg. O

Proposition C.17. The following pertains to Ggg.
Here F is an abelian subgroup of G, thus G' = K = (2% 42, 2).
Fori,j,k € Z,

(a'y'2"p)® = (@®= 71 y? 2 'y’ 2 p, w € {k, —i— j — k}
U{x?z h y? e Daly 2%, u € {j +k,—i — k};
(z'y 2Fr)E = (2%, )ty 2, u € {k, —i — j — k}
U{a? 2o’y 2 r, u € {j + k, —i — k};
(a'y’ 2 pr) % = (y?, 2)a™y pr;
(xiyjzkprt)c = <x2z_1)(xiyj)ilz“prt, ue{k,1—k};
(' 2Prt)Y = (P2 Dttt u € {k, 1 — k};
(a'y? 2 pt) = (2)a™"y™pt;

(z'yf 2F0)% = (2% 92, 2wy 2t u € {k,j + ki + k}.
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Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Ggg. n

Proposition C.18. For G we have the following commutators:

(p,t) = (pt,rt) = (pt,pr) = (pt,r) = (pt,prt) =1;
(p,r) = (t,r) = (t,pr) = (rt,p) = 2%z~

(r,pr) = (rt,prt) =2’y 227"

(rt,pr) =y*.
It follows that G' = K = (2%,y, 2).
The conjugacy classes in Gro are:
Fori, 5,k € Z,
(z'y’ 2 )% = (227", P) (2" ) p
U (2221, ) (2t 2R,
(2 )Y = (2 2wty 2w € {ky i+ k)
U@y ey 7 e u e {k+ 1,0+ k+ 1)
(z'f 2Fpr)C = (yz,yz D'y 2pr,u € {k,i + k}
Uyz,yz Da "2y zprou e {k+1,i+k+1};
(2 2Pprt) = (2Py e Dty prt,u € {k, —i — k}
U (@?y e Dy 2 et u € {—k,i + k)
(' 2Frt)Y = (y)a'2rt,u € {k, —i — k}
Ua* 'z rt,ue {i+k—1,—k—1};
(a'y’2*pt) = (2) (x'y") ' pt,w € {4, —i — j};
(' 27 = (22,92, 2)y’t if i is even,

or (2%,y, 2)xt if i is odd.

Proof.  This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the
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relations in the presentation of Grs. [

Proposition C.19. For G73 we have the following commutators:

(p.7) =27y* (p.t) =2%y;
(t,r) =yz; (pr,r) = 2%
(rt,p) = (prt,rt) =vy; (rt,pr) =yz;
(pt,r) = 2%y 'z, (pr.t) =x*y~ 2271
(pt,pr) = (rt, pt) == (r,prt) = (pt,prt) =2y~ 27"

Therefore G' = K = (22, y, 2).
The conjugacy classes in Grg are:
For,j,k € Z,

2 i—k

(27 2Fp)¢ = (22271 y)atFp U (2?27 y)ale T if i s even,

(271 D ayi2Fp U (2 gDty Ty R s if i is odd;
(x'yf 2°r)Y = (2P 2wty 2w € {kyi+ k1)
Uy 2Dy T u € ik, 1+ k)
(zf 2 pr)E =y, 2)apr,u € {i,2 — i}, if i is even,
(yz,yz" D'y 2 (2272 2)pr, § € {0,1} if i is odd,
(z'y? Fprt)e = (2Py 2 Dy 2 prt,u € {5, 1 — i — j},v € {k, —i — k};
(z'y? 2Frt)C = (y)a'2rt, u € {k,1 —i — k}
Uy)z 2"t u € {i+k,1—k};
(a'y’2"pt) = (2)a"y"pt, u € {j, —i — j}
U(z)z* "y pt,uc {i+j—1,-1— 3}
(2l M) = (2%, y, 2)a't.
Proof. ~ This follows from Lemma C.1, Proposition A.1, Proposition C.2, and from the

relations in the presentation of Grs. ]
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Proposition C.20. For G74 we have the following commutators:

(r,prt) = (r,pt) = (prt, pt) =1;
(p,7) = (t,p) = (prr) = (t,7) = (pt,pr) = (pt, 1) =y;
(rt,p) = (t,pr) = (prt, rt) =y*
(rt,pr) =y°.
Therefore G' = K = (22, y, 2).
The conjugacy classes in G74 are:

Fori,j,k € Z,

i, u k

(@ )G = (22271 2wy 2 p, w € {j,i + )
Ua?z )ty u e i+ + 1,5 + 1)

(2l 7Y = (2™t AV aly e, u e {f, —i — j — 1}, v € {k,i + k};

)G

(a'y? 2 pr)© = (yz, yz""Ya™y’ 2Fpr

U (yz, yz—1>x:tiyj+lzi+k

pry
(2l 2Pprt) = (2Py e Dty prt, w € {5,2 — j —iyv € {k,—i — k};
(' 2Frt)Y = () (22 rt, u € {k, —i — k};
(a'y’ 2 pt)? = (2)a'y"pt, w € {j,1 —i — j}
Uz)az"ypt, ue {i+34,1—75}
(z'f 2F0)Y = (2%, 222"t if i is even,
(2, yz,yz Dy 2t if i is odd.
Proof.  This follows from Proposition A.1, Proposition C.2, and from the relations in the

presentation of Gz4. O]

152



	Weak Cayley Table Groups of Crystallographic Groups
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Properties of weak Cayley table isomorphisms

	2 Preliminary results
	2.1 Commutators and commutator subgroups
	2.2 Maps defined using C and F

	3 Generally applicable results
	3.1 Sufficient conditions for a WCT to be non-trivial
	3.2 Groups with cyclic quotients

	4 Three-dimensional space groups
	4.1 Space group elements
	4.2 Naming conventions
	4.3 The four wallpaper groups
	4.4 The fifty-six groups
	4.5 Twelve crystallographic point groups
	4.6 Choosing generators for group presentations
	4.7 The group presentations

	5 Space groups with non-trivial WCT groups
	5.1 Groups having point group 3 or 6
	5.2 Groups having point group 4, 4, or  epstopdf4 m
	5.3 Groups having point group 3, 6 or  epstopdf6 m
	5.4 Some groups that have point group  epstopdf2 m, mm2,   or   epstopdf2 m  epstopdf2 m  epstopdf2 m

	6 To determine W(G)
	6.1 Method
	6.2 Step one
	6.3 Steps two and three
	6.4 Step four
	6.5 Step five
	6.6 Step six

	7 W(G) of space groups with point group 2m, 222, or mm2 
	7.1 Groups 10 through 13
	7.2 Groups 16 through 22
	7.3 Groups 25 through 42

	8 The wct groups of space groups having point group 2m 2m 2m 
	8.1 Groups 47 through 57
	8.2 Groups 63 through 68
	8.3 Groups 69 through 74

	Bibliography
	A Kf subgroups
	B Proof of Lemma 7.1 (Magma)
	C Commutators and conjugacy classes for eighteen space groups 

